

ATMOSPHERIC EFFECTS and the ULTIMATE RANGING ACCURACY for LUNAR LASER RANGING

Professor Douglas Currie

University of Maryland, College Park, MD, USA NASA Lunar Science Institute, Moffett Field, CA INFN – LNF, Laboratori Nazionali di Frascati, Italy

CURRENT SCIENCE ISSUES

- Open Questions in Cosmology and Fundamental Physics
 - Nature of Dark Matter
 - Gravitational Observations are the Only Clue to Date
 - Addressed by the MOND Theories
 - However, For Now I will Leave This to the Particle Talks
 - Nature of Dark Energy
 - SuperNova Discoveries of Acceleration of Distant Galaxies
 - Einstein' Lambda Constant
 - Quintessence
 - Relation between GR and Quantum Mechanics
 - Attempts toward the Quantization of Gravity
 - String Theory implies Variation of Fundamental Constants

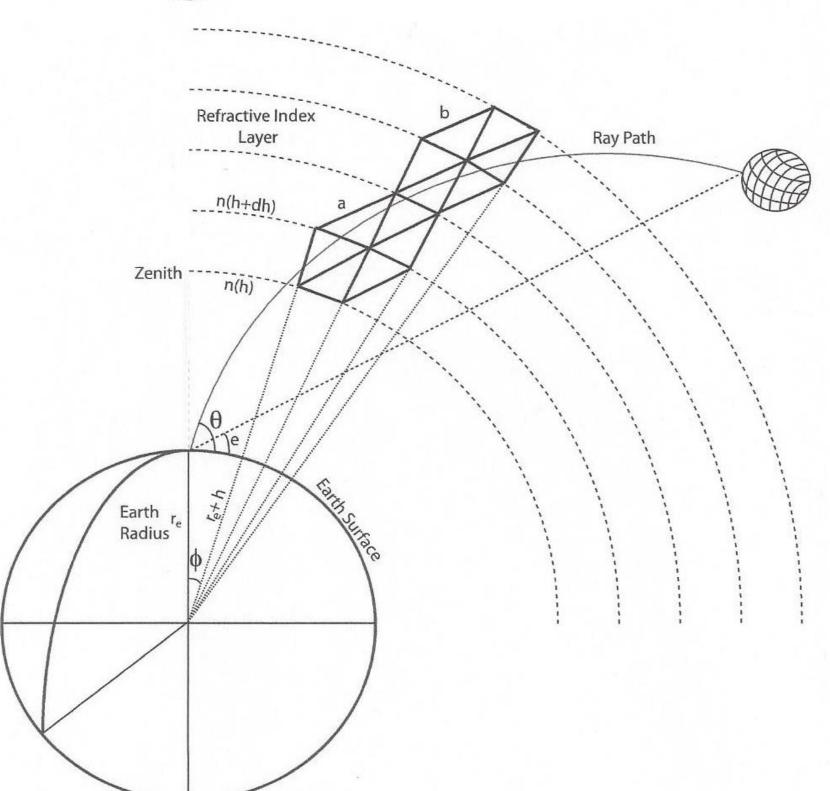
GRAVITATIONAL & GR SCIENCE

- LLR Currently Provides our Best Tests of:
 - The Strong Equivalence Principle (SEP)
 - Time Rate-of-Change of G
 - Inverse Square Law, Deviation of 1/r
 - Geodetic Precession
 - The Weak Equivalence Principle (WEP)
 - Gravitomagnetism

CHALLENGES FOR ALLRF

- To Achieve mm and/or sub-mm LLR Accuracy
 - For an Order of Magnitude Improvement in Science
- A) Deploy Three LLRRA-21s on the Moon
- B) Analysis of Upgrade Paths for Current GSs
- C) Improve GS Hardware, Software and Ops
- D) Upgrade Analysis and Scientific Software
- E) Geophysical Effects
- F) Understanding the Earth's Atmosphere

ATMOSPHERIC EFFECTS



- During two way path from earth to moon
 - Pulse Spreading Normal to Flight Direction
 - Path of Centroid is Altered Tilts
 - Temporal Delay Changing Index of Refraction
- No Comprehensive Data for Combined Effects
- Discussion will Divide into Two Domains
 - Short Term Local "High Frequency" Effects
 - Long term Large Scale "Slow", 'Biases"

Pavlis

OUTLINE

- Simulations
 - Short Term Effects Normal Points
 - Computations of Turbulence using GLAD
 - Long Term Effects Biases
 - Estimates of the Magnitude of the Horizontal Gradinets
- Observations
 - Short Term
 - Satellite Ranging Observations
 - Long Term
 - Satellite Ranging Estimates

LUNAR vs. SLR SCIENCE

- SLR Science Observations
 - Need Data Down to 10° Elevation
 - Domain for Most Analysis of Atmospheric Effects
- Lunar Science Observations
 - Gravitation and General Relativity Tests
 - Rotational Properties of the Moon
 - Current Lunar Laser Ranging Ground Stations
 - Observations Conducted between 40° and 30° Elevation

SHORT TERM EFFECTS Simulations

- Shot-to-Shot Variation in Timing of Delay
- Limits Precision of Mean Value of Normal Point
- Theoretical Estimate of Delay using GLAD
 - Ground to Ground
 - 6.0 km Path $Cn2 = 10^{-13} Lo = 10 \text{ m}$
 - RMS of 0.9 mm Shot to Shot
 - Ground to LEO Satellite
 - 40 degrees Elevation Hufnagfel-Valley Cn2 Lo = 100m
 - RMS of 0.4 mm Shot to Shot

LONG TERM EFFECTS

- Delay Computed from Met at Ranging Station
 - Pressure, Temperature and Humidity
 - Excellent Accuracy for Zenith Pass
- Zenith Observations Never Possible for Moon
- Almost All Observations at 40° or 30° Elevation
 - Need to Compute Off-Zenith Effects
- Assume Spherically Symmetric Atmosphere
 - But Horizontal Gradients in Pressure, Temperature &H
 - Heat Island, Weather Effects, Wind on Topology
- Need to Evaluate Magnitude of These Effects

LONG TERM EFFECTS Simulations

- Martini & Mendes
 - Spherically Symmetric Atmosphere
 - RMS Of Day to Day Estimates of Bias
 - 4.9 mm at $10^{\circ} 0.7$ mm at $40^{\circ} 333$ mm at 30°

Gardner

- Radiosondes for Horizontal Gradients
- RMS Of Day to Day Estimates of Bias
 - 8.7 mm at 10° 2.4 mm at 40° 333 mm at 30°

LONG TERM EFFECTS Simulations

- Hulley and Pavlis AIRS
 - Satellite Estimation of Horizontal Gradients
 - Ground Resolution ~ 250 km
 - RMS Of Day to Day Estimates of Bias
- Hulley and Pavlis Weather
 - Surface Estimates of Horizontal Gradients
 - RMS Of Day to Day Estimates of Bias
 - Ground Resolution ~50 km

MAGNITUDE OF PREDICTIONS Hulley and Pavlis

		N-S Gradient				E-W Gradient					
•	Station	Metho	od								
•			mean	r.m.s	mean	r.m.s	mean	r.m.s	mean r.	m.s	
			10°	10°	40°	40°	10°	10°	40° 40)0	
•			mm	mm	mm	mm		mm	mm	mm	mm
	McDonald	ART	+0.6	+7.0	+0.0	+0.4		-2.7	+6.0	+0.2	+0.4
•	Fort Davis,	NRT	-0.2	+0.6	+0.0	+0.0		-1.0	+3.1	+0.0	+0.2
•											
•	MLRO	ART	-2.1	+4.5	+0.1	+0.3		+1.8	+4.7	+0.1	+0.3
			•								
•	Materia,	NRT	-0.5	+8.4	+0.0	+0.5		-0.4	+7.5	+0.0	+0.5

• Average r.m.s. at 10° for both stations and for both computations 5.36 mm

19th International Workshop on Laser Ranging

27-31 October 2014 Annapolis, MD

SHORT TERM EFFECTS Observations

- Ranging Experiments at GRAZ
- Ground to Ground 4.3 km Path 2" Seeing
 - Shot to Shot 0.35 mm
 - Compares with GLAD Simulation Prediction
 - 1.8 mm for 6 km path
- Ground to LEO Satellite 36.6° Elevation
 - Shot to Shot 0.40 mm
 - Compare with GLAD Simulation Prediction
 - 0.40 mm for 40° elevation and Lo = 100 m

LONG TERM EFFECTS Observations

- Detailed Comparison
 - Computed Results with Observations
 - Day by Day Difference between
 - Laser Ranging and Ray Trace with Horizontal Gradients
 - By Hulley & Pavlis
 - -LAGEOS I & II
 - Over Two Years Ranging Experiments
 - -5 mm at $10^{\circ} 0.36$ mm at $40^{\circ} 0.6$ mm at 30°

SUMMARY

- Short Term Shot to Shot Variation in a NP
 - Simulation in GLAD at 40°
 - 0.4 mm for $L_0 = 100 \text{ m}$
 - Observation at GRAZ at 36.6°
 - 0.4 mm at 36.6° elevation
- Long Term Bias of a Normal Point
 - Simulation with ARIS and NCEP DtDay
 - 5.36 mm at 10° 0.39 mm at 40° 0.65 mm at 30°
 - Observation with LAGEOS vs. Simulation wOrb
 - 5 mm at 10° 0.36 mm at 40° 0.60 mm at 30°

FUTURE DIRECTIONS

- Obtain Existing Analysis Results
 - E.g., Hulley and Pavlis
 - Integrate into Analysis Structure
- Investigate Better Weather Models
 - Local Topology
 - 1 km resolution (at least for the lower atmosphere)
 - XXX
- Rework Short Term GLAD Analyses
 - Address Existing Lunar Stations
- Investigate Better Measurement Systems
 - E.g., Advanced DIMM Systems

ANCHORED EMPLACEMENT

- Lunar Day/Night Temperature Variation
 - -70 K to 400 K at Equator
 - Expansion of Lander and the Surface of the Regolith
- At 1 meter, Negligible Temperature Change
 - Anchor at depth and INVAR/SiC Support to CCR
- Requires Drilling into Regolith
 - Difficult During Apollo
 - Video from Astronaut Jack Schmidt

Regolith Drilling in Apollo

19th International Workshop on Laser Ranging 27-31 October 2014 Annapolis, MD


Kriz Zacny at HoneyBee

ACCOMPLISHING 0.1 mm

- High Accuracy Short Term
 - Normal Point 15 Returns 0.1 mm
- Long High Accuracy Long Term
 - Lidar Data
 - Need Regular Observations
 - Current and French Satellites
 - Need a Program for Regular Reduction of Data
 - In the Manner of Hulley & Pavlis
 - Remote Met Stations
 - Need Analytic Justification & Field Tests

Thank You!

any
Questions?

or
Comments?

with
Special Acknowledgements
to

NASA Lunar Science Sorties Opportunities
NASA Lunar Science Institute
Italian Space Agency
INFN-LNF, Frascati
LSSO Team
&
LUNAR Team

Douglas Currie currie@umd.edu 301 412 2033