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Size of a hydrogen atom in the expanding universe
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Abstract. I take a simple model of the hydrogen atom in a universe without spatial curvature.
The Maxwell equations are formulated on the background cosmic spacetime. For a class of cosmic
metrics, which includes the de Sitter universe, these equations admit solutions corresponding to
an atom whose radius remains strictly constant during the expansion. In the Einstein–de Sitter
universe approximate calculations show that the atom expands, but at a rate which is negligible
compared with the general cosmic expansion.

PACS number: 0420

1. Introduction

Which entities participate in the expansion of the universe? Granted that clusters of galaxies
expand, one can ask whether each galaxy expands, whether the expansion applies to the solar
system, and even to atoms. The fact is, as has been emphasized recently by Anderson [1], that
cosmological theory does not give a clear statement of the scale at which the expansion begins
to apply. There have, however, been several attempted and partial answers, as the following
brief history shows (for further historical material see [2]).

The question of whether the solar system participates in the expansion seems first to have
been considered by McVittie [3], who discovered a model of the universe containing a mass
point which could represent the Sun. He studied planetary orbits in the model but came to
no definite conclusion. The question was taken up by Järnefelt [4, 5] who used McVittie’s
model and concluded that planetary orbits do not participate in the expansion. Dicke and
Peebles [6], using general arguments, decided that the binary orbits of charged or uncharged
particles are unaffected by the expansion. Noerdlinger and Petrosian [7] considered clusters
or superclusters of galaxies and found that they would expand, but at a rate depending on the
ratio of their density to the cosmic density.

A different approach was initiated by Einstein and Straus (E–S) [8, 9]. They showed that
a Schwarzschild solution could be embedded in a pressure-free expanding universe. In the
Schwarzschild vacuum region (‘vacuole’), test particles, representing planets, would be totally
unaffected by the expansion, so it was concluded that the solar system does not expand.

It has since been realized that the E–S model does not settle the question. In the first place
it requires a certain relation between the radius of the vacuole, the mass of the Schwarzschild
particle and the cosmic density. This relation is not fulfilled in the case of the solar system
[10]. Secondly, the E–S model is spherically symmetric, whereas the astronomical systems to
which one wishes to apply it are usually not. Moreover, subsequent theoretical work has made
it doubtful whether the E–S model can be extended to non-spherical systems [11, 14].
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Gautreau [12] put forward a model of a particle embedded in an inhomogeneous, pressure-
free expanding universe. He examined geodesics to study the influence of the expansion on
planetary orbits. He concluded that in this model the orbits do expand. His work will be
referred to again in section 5.

Interest in this topic has been renewed recently. Anderson [1] has used the method of
Einstein, Infeld and Hoffmann to study a pair of gravitating particles in an Einstein–de Sitter
(E–deS) universe. He concludes that the expansion does have an effect on the motion of the
particles, though if they are in circular orbit it does not expand. Cooperstocket al [13] have
studied the effect of the cosmic expansion on local dynamics, using Fermi normal coordinates,
and conclude that ‘the expansion affects all scales, but the magnitude of the effect is essentially
negligible for local systems, even at the scale of galactic clusters’.

In an investigation of a different kind [10] I showed by an exact solution of the Einstein–
Maxwell equations that local distributions of a certain sort of matter definitely participate in the
expansion. The matter concerned was electrically counterpoised dust: this is dust carrying an
electric charge density such that the gravitational attraction and the electric repulsion balance.
A body composed of such matter would double its size in a few billion years. It is therefore
interesting to study whether an atom, which at a simple classical level can be regarded as
charged matter held stationary by inertial (centrifugal) force, also participates in the expansion.

In this paper I consider the effect on a hydrogen atom of the expansion of a Friedmann–
Robertson–Walker (FRW) universe with no spatial curvature. I form the Maxwell equations
with this as background, and set up the Bohr model in its ground state. In a class of cases—
which includes the de Sitter universe—an exact analysis of the equations shows that the
electron’s orbit is unchanged during the expansion. In general, approximation is necessary
and I limit myself to the E–deS model. I calculate approximately the change in radius of the
electron’s orbit in one revolution, and compare it with the displacement, in the same cosmic
time, of a comoving uncharged test particle. The ratio of the two quantities, though positive,
is negligibly small. The conclusion is that the hydrogen atom effectively does not participate
in the cosmic expansion.

The plan of the paper is as follows. In section 2 I set up the equations of motion of
the electron in the FRW universe with no spatial curvature. Section 3 gives the special exact
solution of the equations, and in section 4 I use an approximation method to solve the equations
in the E–deS case. The physical significance of the results is discussed in section 5 and there
is a brief concluding section 6. There are two appendices.

2. The equations

I take a FRW universe with no spatial curvature

ds2 = −[R(t)]2
(
dr2 + r2

(
dθ2 + sinθ2 dφ2

))
+ c2 dt2, (1)

whereR is a dimensionless function andc is the speed of light, and consider the Maxwell
equations on this background metric:

Fik = κi;k − κk;i , (2)

(F ik);k = 4πJ i. (3)

F ik, κi andJ i are the electromagnetic field tensor, the potential and the current, respectively.
Here and throughout the paper indices are raised and lowered by the metric (1), and covariant
differentiation is with respect to (1). It will be assumed thatJ i vanishes, charges being
represented by point singularities.
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The electron has massm and chargeq, and so, as we are neglecting radiative effects, its
4-velocityui is determined by the Lorentz equation

mui;ku
k = qukF i

k . (4)

The fieldF ik is provided by the positive charge of the proton situated permanently at the
origin of the coordinates of (1). Assuming spherical symmetry we take

κi = P(t) r−1δ4
i ;

then (2) gives as the only components ofFik:

F14 = −F41 = P(t) r−2.

Raising indices by the metric (1) and using (3) withi = 1 and 4 we find

F 41 = −F 14 = Qc−3r−2R−3, (5)

whereQ is a constant with the dimensions of charge, which we take to be that of the proton.
To find how the size of the atom changes during the cosmic expansion we need to solve

(4) for the motion of the electron in the field (5)†. Taking the orbit to lie in the planeθ = π/2,
and numbering the coordinates

r = x1, θ = x2, φ = x3, t = x4,

we obtain from (4) three equations:

du1

ds
− r(u3)2 +

2Ṙ

R
u1u4 = qQ

mcr2R3
u4, (6)

du3

ds
+

2

r
u1u3 +

2Ṙ

R
u3u4 = 0, (7)

du4

ds
+
RṘ

c2
((u1)2 + r2(u3)2) = qQ

mc3r2R
u1. (8)

The metric (1) gives a fourth equation

c2(u4)2 − R2((u1)2 + r2(u3)2) = 1, (9)

but only three of the four are independent. Equation (7) can be integrated to give the
conservation of angular momentum:

u3r2R2 = h, (10)

whereh is a constant.
The rest of the paper deals with the solution of these equations. In the general case

approximations are necessary, but for certain forms ofR(t) there is an exact solution as I show
in the next section.

3. An exact solution of the equations of motion

The productrR represents proper radial distance from the origin in the spacetime (1), and also
areal radius, i.e. 4π(rR)2 is the area of a spherer = constant,t = constant. Hence for a
circular orbit not expanding at all with the universe it is reasonable to suppose

rR = a (11)

† By using the metric (1) we are neglecting the gravitational fields of the proton and electron. This is justifiable
because the ratio of the gravitational force between the particles to the electric one is about 10−40.
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wherea is a constant. We shall find an exact solution of the equations of motion (6) and
(8)–(10) by imposing the condition (11).

Differentiating (11) along the path of the electron we have

Ru1 + rṘu4 = 0, (12)

and differentiating again

R
du1

ds
+ 2Ṙu1u4 + rR̈(u4)2 + rṘ

du4

ds
= 0, (13)

where an overdot means d/dt . We now substitute (6), (8)–(10) and (12) into (13) and obtain,
after a calculation,

h2

a4
+
qQ

mca3

(
1− a

2Ṙ2

R2c2

)
u4 +

(
R̈

R
− Ṙ

2

R2

)
(u4)2 +

Ṙ2

c2R2
= 0. (14)

Substitution of (12) into (9) gives

(u4)2 =
(

1 +
h2

a2

)(
c2 − a

2Ṙ2

R2

)−1

, (15)

and this can be inserted into (14) to give a differential equation inR(t) for the existence of non-
expanding circular orbits.u1 given by (12),u3 by (10) andu4 by (15) solve equations (6)–(9)
providedR(t) satisfies (14).

There is one functionR(t) which by inspection satisfies (14). This is

R = expαt, (16)

whereα is a constant. With this form ofR, equations (14) with (15) reduces to an equation
between the constantsa, h, qQ/m, c andα. R given by (16) refers to the de Sitter universe so
we have shown thatin the de Sitter universe there are circular electron orbits which remain
unchanged during the expansion.This, of course, is no surprise if one recalls that the metric
for the de Sitter universe can be written in static form by the transformation

ρ = r expαt, τ = t − (2α)−1 log(1− α2r2 exp 2αt). (17)

The unchanging orbits are then given byρ = constant.
The equation between constants to which (14) and (15) reduce in the de Sitter model is

h2

a2
+
a2α2

c2
= − qQ

mc2a

[(
1 +

h2

a2

)(
1− a

2α2

c2

)]1/2

; (18)

qQ is, of course, negative.Here, and throughout the paper, positive square roots are to be
taken.Equation (18) will be referred to again in section 4.

The de Sitter model is not the only member of (1) which has strictly constant circular
orbits. Others are given by the differential equation obtained by eliminatingu4 between (14)
and (15). It would be interesting to know their expansion functionR(t) and the equation of
state of the matter they contain. Unfortunately the differential equation concerned is extremely
complicated, so I take a different approach, namely, I consider nearly circular orbits in the
Einstein–de Sitter universe.

4. Nearly circular orbits in the Einstein–de Sitter universe

Let us imagine an electron projected at an eventE ≡ [a/R(t0), π/2, 0, t0] with velocity such
that initially d(rR)/ds = 0, wheres is the parameter along the trajectory. As before we
suppose there is a proton at the origin. If the path were strictly circular d2(rR)/ds2 would
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vanish initially, and, of course, both derivatives would remain permanently zero. To find a
nearly circular path I shall assume that d2(rR)/ds2 is zero initially, and try to find how far the
path diverges from a circle of radiusa as time passes. This will be a measure of how the size
of a hydrogen atom changes as the universe expands. Thus our initial conditions are

s = 0, rR = a, d(rR)/ds = 0, d2(rR)/ds2 = 0. (19)

It is necessary to use approximations. Some details of the calculations are given in
appendix A. The motion of the electron takes place in the planeθ = π/2. Assume thatr and
t along the trajectory can be expanded as follows:

r = r0
(

1 +
∞∑
n=1

bns
n

)
, (20)

t = t0
(

1 +
∞∑
n=1

cns
n

)
, (21)

wherebn andcn are constants. For the Einstein–de Sitter universe†

R(t) = t2/3. (22)

Using (21) we can expandR(t) along the trajectory in terms ofs, and then formrR and expand
that too:

rR = r0t2/30

(
1 +

∞∑
n=1

kns
n

)
(23)

wherekn are constants determined in terms ofbn andcn; the first two are zero because of (19)
and the third is given in appendix A.

The object of this section is to expressk3 in terms of known quantitiesa,m, c, t0 andqQ;
this will tell us how the electron’s orbit begins to diverge from a circle. We find that to satisfy
(19)

b1 + 2
3c1 = 0 (24)

b2 + 2
3c2 = 5

4b
2
1. (25)

At this stage it is useful to introduce some further notation. Let

x := 2a/3ct0, (26)

p := h2/a2, (27)

y := (1 +p)1/2(1− x2)−1/2, (28)

A := |qQ|(mc2a)−1. (29)

All quantities on the left are dimensionless. Further relations between the coefficients come
by formingui = dxi/ds and substituting into (9); note that because of (10) and (19),

u3 = h/a2 + O(s3).

We find, making use of (24) and (25),

b1 = −xy/a, (30)

c1 = 3xy/2a, (31)

b2 = y2(5− 2x2)

9(ct0)2(1− x2)
, (32)

† As stated previously,R(t) is a dimensionless function, so strictly we should writeR(t) = (t/β)2/3 whereβ is a
constant with the dimensions of time; however,β would have no observational significance so I omit it here.
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c2 = − x2y2

2(ct0)2(1− x2)
, (33)

c3 = − x2y3

54(ct0)3(1− x2)2
(13− 17x2 + 4x4)− 3

2x
2b3. (34)

To proceed further we must use one or other of the equations of motion (6) and (8). Let
us substitute (10), (20) and (21) into (6). We find up to orders, dividing through byr0:

(2b2 + 6b3s)− pa−2(1 +b1s) + 4
3(b1 + 2b2s)(c1 + 2c2s)(1 + c1s)

−1

= −Aa−2(1 +b1s)(c1 + 2c2s)ct0, (35)

where we have used the fact thatqQ is negative. To zeroth order this equation gives

2b2 − pa−2 + 4
3b1c1 = −Aa−2c1ct0, (36)

whence, using (28) and (30)–(32), we find after a short calculation

(2− 5x2)

2(1− x2)
y2 − Ay − 1= 0. (37)

This equation determinesh in terms of known quantities.
At this stage it is useful to consider orders of magnitude. Let us use (in cgs units)

Q = 4.8× 10−10, q/m = −5.3× 1017, c = 3× 1010,

a = 5.3× 10−9, t0 = 3.15× 1017,
(38)

so that

x ∼ 10−36, A ∼ 5× 10−5. (39)

Then we can write for the solution of (37)

y = 1 + 1
2A + 1

8A
2 + O(A4), (40)

terms containingx2 being negligible compared withA4. Equations (28) and (40) give

p = A + 1
2A

2 + O(A3). (41)

At this point it is convenient to return to (18) which applies to the de Sitter model. Since
α = (3/3)1/2, the term(aα/c)2 is about 10−72 and may be neglected. Adopting the notation
(27) and (29) we find that (18) is the same as (41).

The lowest approximation to (41), namelyp = A, is equivalent to the classical formula
for the angular velocityω of a negative chargeq in circular motion about a positive oneQ:

ω2 = |Qq|/ma3.

(To see this puth = ωa2c−1, and use (27) and (29).)
The final step is to findb3 from (35). This will determinec3 by means of (34) and thence

the coefficientk3 in (23) which gives the initial change in radius of the orbit. From (35),
equating coefficients ofs we have

6b3− pa−2b1 + 4
3

[
2(b1c2 + b2c1)− b1c

2
1

] = −Aa−2ct0(2c2 + b1c1). (42)

Using (30)–(33) we find from this, after a short calculation

b3 = − py

9a2ct0
+

Ay2(2 +x2)

18a2(1− x2)ct0
− 8y3(4− x2)

81(1− x2)(ct0)3
. (43)

Inserting the value ofp in terms ofy given by (28) and simplifying, using (26), (37) and (40),
we find after a calculation

b3 = −(ct0)−3
[

34
81 + 5

9A + O(A2)
]
, (44)
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neglecting terms of ordera2(ct0)
−5. Substituting this into (34) we find

c3 = O(a2(ct0)
−5), (45)

which may be neglected in comparison withb3.
As shown in appendix A,k3, the coefficient ofs3 in the expansion ofrR, is

k3 = b3 + 2
3c3 + 2

9c2(3b1− c1) + 1
81c1

(
54b2 − 9b1c1 + 4c2

1

)
. (46)

We now have all the ingredients of the right-hand side, given by (30)–(34), (43) and (45). The
leading term in the sum on the right-hand side of (46) is found to be

k3 = 2
27(ct0)

−3, (47)

the greatest error term being of orderA(ct0)−3.
Let me summarize what has been done in this section. I assumed the initial condition (19)

for a nearly circular orbit, and expandedr andt as in (20) and (21). I used the equations of
motion (6)–(9) to find the coefficientsbi, ci (i = 1, 2, 3). This enabled me to calculatek3, the
coefficient in (23) which determines, up to orders3, how the trajectory diverges from a circle.

5. Physical interpretation

We wish to find how the size of our model of the hydrogen atom changes during the expansion.
We therefore study the change in radius of the electron’s orbit. Suppose, as in section 4, that the
electron is projected from eventE ≡ [a/R(t0), π/2, 0, t0] so that its motion is nearly circular.
The interval of a revolution is obtained from (10), the cosmic time of a revolution,trev, from
(21), and the change in radius from (23).

Now suppose that a particle comoving with the cosmic fluid is released at the same event
E; we can calculate the proper distance that it moves in timetrev, and compare that with the
change in radius of the orbit.

To carry out this programme we first integrate (10), using (23):
dφ

ds
= h

(rR)2
= h

a2
(1− 2k3s

3) + O(s4). (48)

The term ins3, which contains the extremely smallk3 (see equation (47)), may be neglected,
and we have

srev = 2πa2/h = 2πa/p1/2. (49)

The cosmic time corresponding to this is obtained from (21), the necessarycn being obtained
from (31), (33), (34) and (41):

trev = 2πa/(cA1/2) + O(aA1/2/c). (50)

Finally, the change in radius during this time is calculated from (23) and (47): it is, up to order
s3,

1
1(rR) = ak3s

3
rev =

16π3a4

27A3/2(ct0)3
. (51)

On the other hand, the change in radial distance of a particle comoving with the cosmic
matter during timetrev is

2
1(rR) = r0Ṙ trev + O(t2rev),

wherer0, the comoving radial coordinate, is that ofE, namelya/R(t0); the leading term of
this is found to be

2
1(rR) = 4πa2

3A1/2(ct0)
. (52)
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We can now compare these two changes:

1
1

2
1

= 4π2a2

9A(ct0)2
∼ 10−67. (53)

This means that for practical purposes the hydrogen atom does not expand with the universe.
The change in radius, though minute, is positive, and it is interesting to consider this

further. One possible reason for it follows from work by Gautreau [12]. Across any sphere of
fixed radius, such as the onerR = a we have been considering, there is, in the cosmological
model, a flux of matter due to the expansion. Thus the mass inside the sphere, and therefore
its gravitational attraction, is diminishing, which will cause orbits to spiral outwards. In our
application a flux of cosmic matter through the atom is obviously absurd and can be dismissed
as a defect of the model. However, a calculation, given in appendix B, shows that not all of
(51) can be accounted for in this way. The interesting possibility remains that there is some
increase in the atom’s size due to genuine relativistic effects.

6. Conclusion

The conclusion of the paper is that the cosmic expansion has a negligible effect on the size of
a hydrogen atom. By this is meant that the distance between the electron and proton increases
very much less rapidly than the distance between two uncharged particles, with the same
initial separation, and moving with the background cosmic fluid. This result is in qualitative
agreement with that of Anderson [1]. It is in contrast with a previous investigation [10], which
showed that some electrically charged matter does participate in the expansion.

It is an interesting question as to how matter with structure is affected by the expansion of
the universe. It is possible that bodies with different structures, such as the Sun and the Earth,
may be affected differently. The work in this paper suggests that atoms may be able to resist
the expansion.

It should be noted that the expansion of the Einstein–de Sitter universe does have a minute
effect on the atomic radius, as was remarked in section 5. On the other hand, in the de Sitter
universe, the electron’s orbit remains strictly constant during the expansion, as appeared in
section 3. A possible explanation is that in the E–deS case the cosmic matter has a frame-
dragging effect, whereas in the empty de Sitter universe this effect is absent.

Appendix A. Expansion ofrR

Using (20)–(22), we wish to writerR in terms ofs, so that we can impose conditions (19) and
calculatek3 in (23). We have, up to orders3,

R(t) = t2/30

[
1 + 2

3c1s +
(

2
3c2 − 1

9c
2
1

)
s2 +

(
2
3c3− 2

9c1c2 + 4
81c

3
1

)
s3 + · · · ]

so

rR = r0t2/30

{
1 +

(
b1 + 2

3c1
)
s + 1

9

(
9b2 + 6c2 + 6b1c1− c2

1

)
s2

+
[
b3 + 2

3c3 + 2
9c2(3b1− c1) + 1

81c1
(
54b2 − 9b1c1 + 4c2

1

)]
s3 + · · · }.

Imposing (19) we obtain (24) and (25), and the coefficientk3 of s3 is seen to be given by (46).
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Appendix B. Flux of matter through a fixed sphere

Here I consider the change in the electron’s orbit due to flux of dust through the sphererR = a.
The calculation is Newtonian, and I will denote the radius of the orbit byρ. Supposing that
the orbit is circular and unchanging we have

h2

ρ3
= |qQ|
mρ2

+
GM

ρ2
+

4

3
πGµρ, (B1)

whereG is the constant of gravitation,µ the density of dust within the sphere andM the mass
of the proton. Now suppose thatµ andρ depend on the time; multiply (54) through byρ3 and
differentiate with respect tot . (Strictly, a term d2ρ/dt2 enters the equation of motion but this
is negligible compared with the leading terms in (54).) The result is[ |qQ|

m
+GM +

16

3
πGµρ3

]
dρ

dt
= −4

3
πGρ4 dµ

dt
.

Let us now insert the value of the density in the E–deS model, namelyµ = (6πGt2)−1, and
neglect the second and third terms in the square brackets on the left which are minute compared
with the first; then

dρ

dt
= 4mρ4

9|qQ|t3 . (B2)

Suppose this change takes place at timet0 and thatρ then has the valuea. We can calculate
the change in radius in a revolution by multiplying (55) by the timetrev given in (50). We find,
using (29)

3
1ρ = 8πa4

9A3/2(ct0)3
. (B3)

It will be seen that the ratio of this to the relativistic value (51) is 3/(2π2), i.e. about 15%.

References

[1] Anderson J L 1995Phys. Rev. Lett.753602
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