HW#1-S — Phys675—Fall 2014 www.physics.umd.edu/grt/taj/675e/ Prof. Ted Jacobson Room 3151 PSC, (301)405-6020 jacobson@umd.edu

Relativistic Beaming

Consider a source of radiation that emits isotropically in its own rest frame S_* . If the source is moving with velocity v in the x-direction of an inertial frame S, the flux will not be isotropic in S but will rather be concentrated towards the forward direction. This is called relativistic beaming and is very important in high energy astrophysics.

1. (a) A photon with frequency ω_* travels with angle θ_* from the x-direction in the frame \mathcal{S}_* . Find the frequency ω and angle θ of travel from the x-axis in the frame \mathcal{S} . Show that the angle is given by

$$\cos\theta = \frac{k_x}{|\mathbf{k}|} = \frac{\cos\theta_* + v}{1 + v\cos\theta_*} \tag{1}$$

or (which is simpler for taking the small angle limit)

$$\tan \theta = \frac{k_y}{k_x} = \frac{\sin \theta_*}{\gamma(\cos \theta_* + v)},\tag{2}$$

where **k** is the photon wavevector, and we use units with c = 1. (Note that one can find the inverse relations by interchanging θ and θ_* and replacing v by -v.)

- (b) To what angle θ does $\theta_* = \pi/2$ correspond? What angle θ_* corresponds to $\theta = \pi/2$?
- 2. Suppose two photons are emitted at angles θ and $\theta + \delta \theta$ from the moving source, with a time separation Δt_e , and suppose both photons reach a distant observer at rest in the frame S. (Since the observer is distant the angle difference $\delta \theta$ can be neglected.) Show that the time separation of observation of the two photons is given by

$$\Delta t_o = (1 - v \cos \theta) \Delta t_e, \tag{3}$$

where both times are measured in the frame S.

3. (a) The specific intensity I_{ω} at frequency ω is defined by $I_{\omega} = dE/d\omega dt d\Omega$, where dE is the energy in the frequency range $d\omega$ passing in a time dt through a surface subtending a solid angle $d\Omega$. Show that the ratio of specific intensities seen in the two frames is

$$I_{\omega}/I_{\omega_*} = (\omega/\omega_*)^3 = \left(\gamma(1 - v\cos\theta)\right)^{-3} \tag{4}$$

where γ is the usual relativistic gamma factor $(1 - v^2)^{-1/2}$. [*Hint*: Compare the radiation energy that emerges between the angles θ_* and $\theta_* + d\theta_*$ during a time dt_* in the frame S_* with the corresponding energy received by the observer in the frame S.]

(b) Show that the forward intensity ratio is given by

$$I_{\omega}(0)/I_{\omega_*} = \gamma^3 (1+v)^3.$$
(5)

In the limit where v is very close to the speed of light, this memorably becomes $8\gamma^3$. Note that for $\gamma = 10$ this is already of order 10^4 ! Sources beamed toward the viewer can appear *much* brighter than in their rest frame.