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Vacuum

The field operators φ(x) and φ(y) commute when x and y are spacelike separated. The
same is true for operators locally constructed out of the field operators. So we get this
notion of the local algebra of operators associated with a region. In algebraic QFT, this is
part of the axiomatic framework.

Reeh-Schlieder theorem: Consider any region R in spacetime, and the algebra of
operators AR localized in R, meaning the operators that commute with every operator in
the “causal complement” of R. The set of states of the form A|0〉, with A ∈ AR is dense in
the full Hilbert space.

A little analogy for this theorem is provided by the spin singlet state in the Hilbert space
of two spin-1/2 degrees of freedom. The Hilbert space is the tensor product H = H1 ⊗H2,
which is four dimensional. The singlet state is |0〉 = (|+−〉− | −+〉)/

√
2. All of the states

in the Hilbert space can be generated by acting on |0〉 with operators that act only on the
first spin, H1:
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This is possible thanks to the entanglement of the singlet state, and the same is true for
quantum fields.

The vacuum state of a quantum field is entangled because the (~∇φ)2 term in the Hamil-
tonian couples the field values at neighboring points. For a free field, the ground state is
the ground state of the normal modes, which is highly entangled with respect to degrees
of freedom localized in space. A sign of this entanglement is the fact that the correlation
function 〈0|φ(~x, t)φ(~y, t)|0〉 is nonzero, while 〈0|φ(~x, t)|0〉 = 0.

The Hilbert space of a quantum field theory can be thought of roughly as a tensor
product of Hilbert spaces at each point, ⊗~xH~x. For instance, suppose we make a lattice
approximation to space, with a discrete set of points labeled by an index i. Then the field
takes a value at each lattice point, φi, and the quantum state is a function of all these
values, Ψ(φ1, φ2, . . . ). The space of such functions is the tensor product of the Hilbert
spaces associated with the lattice points, ⊗iHi.

Suppose we divide space at one time into two regions L and R, separated by the yz
plane. We can think of the total Hilbert space of a quantum field roughly as the tensor
product HL⊗HR. Let OR be any observable localized in the causal domain determined by
the right half space x > 0 at t = 0 — a.k.a. the Rindler wedge. Then its vacuum expectation
value is given by the density matrix arising from the partial trace of the vacuum projection
operator |0〉〈0| over the left factor HL of the Hilbert space:

〈0|OR|0〉 = Tr(ρRO), where ρR = TrL|0〉〈0|. (4)



It shouldn’t surprise you that ρR is not a pure state; rather, it is a mixed state, because
of the spatial entanglement in the vacuum. What is really remarkable, however, is that,
for any relativistic quantum field theory, ρR has precisely the form of a thermal state, with
respect to the Hamiltonian HB that generates Lorentz boosts.

To understand the nature of Lorentz boosts in a simple way just consider the Minkowski
metric written in (hyperbolic) polar coordinates:

ds2 = dt2 − dx2 = l2dη2 − dl2. (5)

The coordinate relation is
x = l cosh η, t = l sinh η, (6)

in perfect analogy with polar coordinates on the Euclidean plane, and the coordinate η is
the hyperbolic angle. The Lorentz boost symmetry is simply η translation, which moves
points along the timelike hyperbolae at fixed l.

Now just as the angular momentum operator Jz generates ordinary rotations in the xy
plane, there is a boost generator HB that generates hyperbolic rotations in the tx Minkowski
space plane. In terms of this “boost Hamiltonian”, the vacuum density matrix takes the
form of a thermal, Gibbs state,

ρR = Z−1e−HB/TU , where TU = h̄/2π is the Unruh tempreature. (7)

How does this temperature with dimensions of action relate to “real” temperature? Well
an observer on a hyperbolic trajectory at a fixed l has proper time interval dτ = ldη. And
l is actually the inverse of the acceleration (like the radius is the inverse of the curvature
of a circle), l = a−1. So we also have dη = adτ . So if we want to scale HB to the
generator of proper time translations on a given hyperbola, we need only multiply it by
a: HBdη = (HBa)dτ . Then we must correspondingly multiply the temperature TU by a,
which yields the Unruh temperature for an accelerating observer, T = h̄a/2π.

Being that it is a mixed state, ρR has nonzero von Neumann entropy, S = −TrρR ln ρR.
This entropy is infinite. A quick way to see why — and how — is to think of the vacuum
as a thermal bath with a local temperature T = h̄/2πl, which diverges as the yz plane
at l = 0 is approached. In four spacetime dimensions, the entropy density of a massless
field in thermal equilibrium is proportional to T 3/h̄3 — this follows from scale invariance:
the entropy density has dimensions of inverse length cubed, and the only quantity with
dimensions of energy is the temperature. Integrating the entropy density thus yields (note
that dl measures proper length at fixed η)

S ∼
∫
dA

∫ ∞
ε

dl l−3 ∼ A/ε2, (8)

where A is the (infinite) area of the yz plane, and ε is a short distance cutoff just to regulate
the divergence coming from the infinite acceleration temperature. Note that almost all the
entropy comes from degrees of freedom close to the yz plane, and the entropy therefore
scales as the area of the plane. If there were some reason to cut off the integral, the entropy
per unit area would be finite. If the cutoff is placed at the Planck length lP =

√
h̄G/c3, the

result is of the order of the Bekenstein-Hawking black hole entropy, A/4l2P .
Finally, it is not hard to be more specific about the nature of the entanglement between

HL and HR in the vacuum state. Indeed, the vacuum state has the form

|0〉 ∝
∑
n

e−
π
h̄
En |n̄〉|n〉, (9)



where n labels a basis of eigenstates of the boost hamiltonian, En is their boost energy
eigenvalue, and |n̄〉 ∈ HL is the CPT conjugate to the state |n〉 ∈ HR. The reduced density
matrix formed by the partial trace over HL yields (7).


