www.physics.umd.edu/grt/taj/624c/

Prof. Ted Jacobson Room PSC 3151, (301)405-6020 jacobson@umd.edu

1. ϕ^3 theory

- (a) Write the Feynman rules for the S-matrix for a scalar field with Lagrangian density $\mathcal{L} = \frac{1}{2} (\partial \phi)^2 \frac{1}{2} m^2 \phi^2 \frac{1}{3!} \lambda \phi^3$ in four spacetime dimensions.
- (b) Draw the connected diagrams at $O(\lambda^2)$ for 2-2 scattering in ϕ^3 theory, and write the corresponding amplitudes. (I think there are three diagrams.)
- (c) Do the same as in the previous part, but at $O(\lambda^4)$. (Don't forget to check for nontrivial symmetry factors.)
- 2. Consider a scalar field ϕ in D spacetime dimensions.
 - (a) What is the mass dimension of ϕ ? (Recall we use units with $\hbar = c = 1$, and thus identify the dimensions mass ~ energy ~ 1/length.)
 - (b) What is the mass dimension of the coupling constant g in an interaction term $g\phi^n$? What does this give for the case of D = 4 and n = 3? For which values of D and n is g dimensionless?
- 3. Consider a free massive scalar field, with Lagrangian $\mathcal{L} = \frac{1}{2}(\partial \phi)^2 \frac{1}{2}m^2\phi^2$, and treat the mass term as an interaction, $\mathcal{L}_{int} = -\frac{1}{2}m^2\phi^2$, with no other interactions.
 - (a) What are the momentum space Feynman rules for $\langle \Omega | T(\phi(x)\phi(y)) | \Omega \rangle$, where $| \Omega \rangle$ is the "interacting" ground state?
 - (b) Sum the infinite series and show that you recover the Feynman propagator for the massive field. (The series converges for momenta satisfying $|p^2| > m^2$. For other momenta just define the sum by analytic continuation from the convergent case.)
- 4. Yukawa potential Problem 3.6 from Schwartz. Skip part (f). See Sec. 3.4 (Coulomb's law) for comparison.