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There is a 1-1 correspondence of vectors xµ = (t, ~x) in Minkowski space with 2 × 2
hermitian matrices, X = tI + ~x · ~σ, and detX = t2 − ~x · ~x is the squared norm of the
Minkowski vector. For any 2× 2 complex matrix Λ, X → Λ†XΛ is a linear transformation
taking X to another hermitian matrix with determinant |det Λ|2 detX. If det Λ = 1, this
is a Lorentz transformation of xµ. Moreover, the transformation corresponding to the
matrix product is the composition of two such Lorentz transformations in the reverse order:
(Λ2Λ1)

†X(Λ2Λ1) = Λ†1(Λ
†
2XΛ2)Λ1, so this correspondence yields an anti-homomorphism

SL(2, C)→ SO+(3, 1). The “+” indicates the component connected to the identity, which
is the component that preserves the direction of time and the orientation of space. This is
a 2→ 1 cover, because Λ and −Λ map to the same Lorentz transformation.1

There are two distinct representations of SL(2, C), sometimes called “right” and “left”
handed:

ΛR = exp[12(~η + i~θ) · ~σ], ΛL = exp[12(−~η + i~θ) · ~σ], (1)

which satisfy
Λ†Rσ

µΛR = Λµνσ
ν , Λ†Lσ̄

µΛL = Λµν σ̄
ν (2)

where σµ = (I, ~σ), σ̄µ = (I,−~σ), and xµ → x′µ = Λµνx
ν is a Lorentz transformation with

boost angle ~η and rotation angle ~θ. Note that the left representation differs from the right
representation only by the sign of the boost angle term.

1. Lorentz invariance of Weyl, Dirac, and Majorana Lagrangians

(a) Verify (2) for the two special cases (i) pure rotation through θ about the z axis,
and (ii) pure boost through η in the z direction.

(b) Show that the Weyl Lagrangians iR†σµ∂µR and iL†σ̄µ∂µL are Lorentz invariant,
if R and L are right and left handed spinors, respectively. That is, show that
R†σµ∂µR = R′†σµ∂′µR

′, where ∂′µ = ∂/∂x′µ and R′ = ΛRR, and similarly for the
left-handed spinor.

(c) Show that the Dirac mass term −m(R†L+ L†R) is Lorentz invariant.

(d) Show that σ2~σσ2 = −~σ∗, where σ2 is the Pauli matrix otherwise known as σy.

(e) Show that iσ2R
∗ transforms as a left-handed spinor, if R is a right-handed one.

(f) The previous three parts imply Lorentz invariance of the Majorana mass term,
−i(M/2)(RTσ2R − R†σ2R∗). (This term would vanish if the components of R
were commuting fields, but if the components are fermionic, and hence anticom-
mute with each other, it is nonvanishing.) Show that it is Lorentz invariant just
using det Λ = 1 directly, without any appeal to the previous parts.

1The group SL(2, C) is the simply connected covering group of SO+(3, 1) = SL(2, C)/Z2. All closed
loops are contractible in SL(2, C), whereas SO+(3, 1) has noncontractible closed loops. To be specific, there
is one homotopy class of noncontractible loops based at any point. For example, the rotations through angles
θ ∈ [0, 2π] form a noncontractible closed loop in the group, whereas the rotations through angles θ ∈ [0, 4π]
form a contractible loop.



2. Seesaw mechanism

Consider the Lagrangian for two, 2-component spinor fields coupled by a Dirac mass
term, and with a Majorana mass term for one of the fields:

L = iR†σµ∂µR+ iL†σ̄µ∂µL−m(R†L+ L†R)− i(M/2)(RTσ2R−R†σ2R∗) (3)

(a) Re-express the Lagrangian in terms of the doublet of left-handed fields, N =(
L
χ

)
, where χ = iσ2R

∗, with a term involving a mass matrix of the form M̂⊗iσ2.

That is M̂ is a 2× 2 matrix whose entries are multiplied by iσ2, yielding a 4× 4
matrix. You will need to drop a total divergence. (Hint: After integrating by
parts on the R kinetic term, rewrite it in terms of its transpose, and remember
that the fermion fields anticommute.)

(b) Write the field equation for N . (Hint: When finding the field equation for
a complex field, you can pretend that you can vary the field and its complex
conjugate separately, since the two equations that yields are together equivalent
to the two equations that arise from varying separately the real and imaginary
parts of the field.)

(c) Show that if N satisfies its first order field equation, and is an eigenvector of the
mass matrix M̂ ⊗ I, then N satisfies the Klein-Gordon equation with mass equal
to the corresponding eigenvalue. (Hint: Use the nice identity σ(µσ̄ν) = ηµνI.)

(d) Find the eigenvalues of the mass matrix M̂ . Then assume m�M , and express
the eigenvalues to leading order in m/M . You should find at leading order that
one eigenvalue is M and the other is m2/M . This is the seesaw mechanism: as
M goes up, the light neutrino mass goes down.

(e) If m = 100GeV, what value of M would yield a light neutrino mass of 0.1eV,
and what would be the heavy neutrino mass?

(f) Schwartz 11.9d, 5th printing, or e, earlier printings (second to last part of 11.9).

(g) Schwartz 11.9e 5th printing, or f, earlier printings (final part of 11.9).


