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Perturbation theory for stationary states

Consider a Hamiltonian
H(λ) = H0 + λV, (1)

depending on a parameter λ, and suppose that for λ sufficiently near λ = 0 one can
follow the energy eigenstates as differentiable functions of λ. For a particular one
parameter family of such eigenstates |ψ(λ)〉 we then have

H(λ)|ψ(λ)〉 = E(λ)|ψ(λ)〉, (2)

with corresponding energy eigenvalues E(λ). If the state can be followed all the
way from λ = 0 to λ = 1 then it makes sense to say that E(1) is the energy of
the eigenstate |ψ(1)〉 of the Hamiltonian H0 + V . Perturbation theory gives an
approximation to E(1) and |ψ(1)〉 by Taylor expansion of E(λ) and |ψ(λ)〉 about
λ = 0.

Perturbation equations

We begin by writing out the Schrödinger equation (2) and its first two derivatives
with respect to λ:

(H − E)|ψ〉 = 0 (3)

(Ḣ − Ė)|ψ〉+ (H − E)|ψ̇〉 = 0 (4)

(Ḧ − Ë)|ψ〉+ 2(Ḣ − Ė)|ψ̇〉+ (H − E)|ψ̈〉 = 0. (5)

(Overdot denotes d/dλ.) These equations hold for all values of λ, but for the purpose
of Taylor expansion we are only interested in evaluating them at λ = 0. The
expansion for the energy eigenvalue is

E(λ) = E(0) + Ė(0)λ+ 1
2Ë(0)λ2 + · · · (6)

=: ε+ E(1)λ+ E(2)λ2 + · · · , (7)

introducing the notation ε for the unperturbed energy and E(k) for the kth order
contribution to E(1). For the Hamiltonian (1), the perturbation equations evaluated
at λ = 0 take the form

(H0 − ε)|ψ〉 = 0 (8)

(V − E(1))|ψ〉+ (H0 − ε)|ψ̇〉 = 0 (9)

−2E(2)|ψ〉+ 2(V − E(1))|ψ̇〉+ (H0 − ε)|ψ̈〉 = 0, (10)

where here and hereafter all kets are implicitly evaluated at λ = 0.
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First order perturbation

Multiplying (9) by the bra 〈ψ| yields the first order energy shift:

E(1) = 〈ψ|V |ψ〉 (11)

Remember that we have assumed |ψ〉 is the limit as λ → 0 of a one-parameter
family of eigenstates |ψ(λ)〉 of H(λ) with eigenvalues E(λ) that converge to ε. The
information in the vector equation (9) not captured in the scalar equation (11)
restricts what this limit could be. To see how, let P be the projection onto the
degeneracy subspace of states with energy ε (at λ = 0), which we’ll denote by Hε.
Then P |ψ〉 = |ψ〉, and P (H0 − ε) = 0, so acting with P on (9) yields

PV |ψ〉 = E(1)|ψ〉. (12)

This is called the first order secular equation. It tells us that |ψ〉 must be an eigen-
state of PV , and that the first order energy shift is the corresponding eigenvalue.
Since P |ψ〉 = |ψ〉, we may replace PV in (12) by PV P , the perturbation projected
into Hε. Thus (12) states that |ψ〉 must be an eigenvector of the projected pertur-
bation. If ε is non-degenerate, then P = |ψ〉〈ψ| is a one-dimensional projector. In
this case |ψ〉 automatically satisfies the secular equation (12), with E(1) given by
(11).

To write out the first order secular equation (12) in matrix form, choose an
orthonormal basis {|m〉} for Hε. Then take the inner product of (12) with 〈m|, and
insert P =

∑′
m |m′〉〈m′| before |ψ〉 on the left hand side. This yields∑

m′

〈m|V |m′〉〈m′|ψ〉 = E(1) 〈m|ψ〉 (13)

Figure 1: The degeneracy subspace Hε for the H0 eigenvalue ε, and its orthogonal
complement H⊥

ε .
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Example of the degenerate case

For a simple example consider a two-dimensional system with

H0 = εI, V |0〉 = |1〉, V |1〉 = |0〉.

The eigenvalue ε of H0 is totally degenerate in the two-dimensional Hilbert space
spanned by |0〉 and |1〉. If we start with the eigenvector |0〉, the first order en-
ergy shift according to (11) is E(1) = 〈0|V |0〉 = 0. But this is wrong! The exact
eigenstates of H(λ) = εI + λV are (|0〉 ± |1〉)/

√
2, with corresponding eigenvalues

E(λ) = ε ± λ. The reason the perturbation formula (11) gave the wrong answer is
that we started with an unperturbed state |0〉 which is not the λ → 0 limit of an
exact eigenvector. The secular equation (12) would have told us this if we hadn’t
noticed it by inspection: Here P is just the identity, so the secular equation reads
V |ψ〉 = E(1)|ψ〉. Thus we must begin with an eigenvector of V .

First order perturbation of the eigenstate

To find the first order correction to the state we need to solve (9) for |ψ̇〉. Actually,
we can only solve for the part of |ψ̇〉 that is orthogonal to the projector P , since
(H0 − ε)P = 0. To do so, let {|i〉} be an orthonormal basis of eigenstates for H⊥

ε ,
the subspace orthogonal to Hε, satisfying H0|i〉 = εi|i〉. The inner product of (9)
with 〈i| is

〈i|(V − E(1))|ψ〉+ 〈i|(H0 − ε)|ψ̇〉 = 0. (14)

The E(1) term drops out since 〈i|ψ〉 = 0. Acting to the left with H0 in the second
term thus yields

〈i|ψ̇〉 =
〈i|V |ψ〉
ε− εi

(15)

We can’t in general determine the component of |ψ̇〉 in the degenerate subspace,
because it is in general not uniquely determined!

Second order perturbation

To find the second order perturbation E(2) to the energy eigenvalue, suppose |ψ〉 is
both an unperturbed eigenstate (8) and a solution of the first order secular equation
(12). Then the inner product of 〈ψ| with (10) yields

E(2) = 〈ψ|(V − E(1))|ψ̇〉 (16)

Now suppose we insert the identity I = P+
∑

i |i〉〈i| just before |ψ̇〉. The P -term will
drop out, because ψ satisfies the first order secular equation, 〈ψ|(V − E(1))P = 0.
Therefore only the part of |ψ̇〉 orthogonal to the degenerate subspace contributes,
yielding

E(2) =
∑
i

〈ψ|(V − E(1))|i〉〈i|ψ̇〉. (17)
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The E(1) term drops out, because 〈ψ|i〉 = 0. Using the expression (15) for 〈i|ψ̇〉 we
thus obtain an explicit formula for the second order energy shift:

E(2) =
∑
i

〈ψ|V |i〉〈i|V |ψ〉
ε− εi

. (18)

The sum is over all states with unperturbed energy not equal to ε.
Similar to what happened with the first order perturbation, if E(1) is degenerate

for the states in Hε, then (18) holds only if the state satisfies an additional, vector
equation. To find this vector equation, instead of taking the inner product of 〈ψ|
with (10) we take the inner product with any basis vector |m̃〉 in Hε that is also a
solution to the first order secular equation, PV |m̃〉 = E(1)|m̃〉. This yields

〈m̃|(V − E(1))|ψ̇〉 = E(2)〈m̃|ψ〉. (19)

As explained above, we may insert
∑

i |i〉〈i| before |ψ̇〉, which yields∑
i

〈m̃|(V − E(1))|i〉〈i|ψ̇〉 = E(2)〈m̃|ψ〉. (20)

Then, again using (15), and replacing |ψ〉 by
∑

m̃′ |m̃′〉〈m̃′|ψ〉 in (15) (which is valid
since we are assuming that PV |ψ〉 = E(1)|ψ〉), we obtain

∑
m̃′

[∑
i

〈m̃|V |i〉〈i|V |m̃′〉
ε− εi

]
〈m̃′|ψ〉 = E(2) 〈m̃|ψ〉 (21)

This is the matrix form of the second order secular equation. It requires that |ψ〉
must be an eigenvector of the matrix on the left hand side of (21), in addition to
being an eigenvector of PV . If E(1) is nondegenerate, then (21) is equivalent to the
scalar equation (18).
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