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Nuclear multipole moments and symmetries

Since a nucleon (neutron or proton), or a compound nucleus, contains a charge
distribution, it might have electric and/or magnetic multipole moments. These are
strongly constrained by symmetry considerations. For example, while a neutron has
a magnetic dipole moment, and might have an electric dipole moment, it cannot
have a magnetic quadrupole moment. This follows from the selection rule aspect of
the Wigner-Eckart theorem, as will now be explained.

Assuming that the nuclear Hamiltonian is rotationally invariant, it commutes
with the angular momentum ~I, so it can be simultaneously diagonalized together
with Iz and I2. The energy eigenstates can therefore be taken to have a definite total
angular momentum. Barring accidental degeneracy of the energy between different
total angular momenta, the ground state must therefore have a definite total angular
momentum. Thus the nuclear state can be written as |αImI〉, where α represents
other state labels not related to the total angular momentum in the center of mass
frame.

Magnetic dipole moment

The magnetic dipole moment operator is a vector operator ~µ with respect to the
nuclear rotation generators ~I. The Wigner-Eckart theorem tells us that the vector
of matrix elements of ~µ is parallel to that of the angular momentum ~I (a.k.a. the
nuclear “spin”),

〈m′I |~µ|mI〉 ∝ 〈m′I |~I|mI〉, (1)

where the αI labels of the states are omitted for notational brevity. In particular,
the expectation value of the magnetic moment is aligned (or anti-aligned) with the
spin. The ‘value’ of the magnetic moment is defined as the expectation value in the
top state,

µ := 〈mI = I|~µ|mI = I〉. (2)

Note that this vanishes for a spin-0 nucleus, because, having spin-0, the nucleus
is rotationally invariant, so cannot define a direction for the expectation value of
µ. Argued differently, the selection rule part of the Wigner-Eckart theorem tells us
that, since ~µ is a rank-1 tensor operator, this matrix element vanishes unless the
representation I is included in the tensor product 1⊗ I = (I+ 1)⊕ I⊕|I− 1|. That
is, it vanishes unless I ≥ |I − 1|, which holds for all I ≥ 1

2 but not for I = 0. So
spin-0 nuclei have no magnetic dipole moment.
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Electric dipole moment

Everything just said about the magnetic dipole moment applies also to the electric
dipole moment (EDM) ~d, however there is an additional symmetry consideration: ~d
is invariant under time reversal T. This means there is a mismatch with the spin ~I,
which flips sign under T. If the Hamiltonian is invariant under time reversal, then
this mismatch implies that the EDM vanishes. (I think this last statement should be
plausible, but not completely obvious. It’s tricky to formulate this sharply, because
the time-reversal operator is anti-unitary, which requires delicate handling...)

The EDM of the neutron, nEDM, is constrained by measurements to be no
larger than 3 × 10−26e-cm. However, it should not be exactly zero. For one thing,
the Hamiltonian of the standard model is not T (or CP1) invariant. For one thing,
the phases in the quark mixing matrix violate T invariance, but this implies only
a very small nEDM, of order 10−31e-cm, five orders of magnitude smaller than the
current upper bound. However, there is another expected source of T violation,
coming from QCD, and characterized by an angle θ. The current observational
upper bound implies that this angle is smaller than 10−10 radians. The difficulty of
explaining the smallness of this angle is called the strong CP problem. The leading
idea for explaining it invokes a mechanism that in effect turns the value of this angle
into an additional field, called the QCD axion. The axion is a dark matter candidate,
but as yet has not been observed, nor has any nEDM. Several experiments on both
fronts are ongoing.

Quadrupole moment

The Cartesian components of the electric quadrupole moment are defined by Qij =∫
ρ(xixj − 1

3δ
ij)dV , where ρ is the charge density. Qij is a rank-2 irreducible tensor

operator with respect to the nuclear rotation generators ~I, with spherical compo-
nents Q2q, q = 0,±1,±2. The “electric quadrupole moment of the nucleus” can be
defined as the expectation value of Q20 in the top state,

electric quadrupole moment = 〈αII|Q20|αII〉 (3)

The selection rule tells us that this vanishes unless I ≥ |I − 2|, which holds only
for I ≥ 1. A spin-12 or spin-0 nucleus (or nucleon) therefore cannot have an electric
quadrupole moment. The same goes for a magnetic quadrupole moment. The
hyperfine splitting of the ground state of alkalai atoms is unaffected by the nuclear
electric quadrupole moment. Why? (Answer: By the Wigner-Eckart theorem, the
S1/2 state of the outer electron can produce no quadrupole electric field gradients
at the nucleus.)

1If CPT symmetry is assumed to hold—which is implied by axioms of relativistic quantum field
theory that so far at least seem to hold—then T invariance is equivalent to CP invariance.
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