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Entanglement and mixed states

A qubit is a two-state quantum system, or a state of one. A general “pure” state has the form

|ψ〉 = a|0〉+ b|1〉 (1)

where |0〉 and |1〉 form an orthonormal basis for the (two dimensional) qubit Hilbert space. (We’ll
discuss “mixed” states below. From here on, a pure state will be referred to simply as a “state,” and a
mixed state will be referred to as such.) Normalization 〈ψ|ψ〉 = 1 implies |a|2 + |b|2 = a2R +a2I + b2R +
b2I = 1, which is the equation for a 3-sphere S3 in four Euclidean dimensions. But states related by a
phase factor are physically equivalent, so the manifold of physically distinct states has one dimension
less. We’ll see below that it forms a 2-sphere S2, called the Bloch sphere. Every point on the Bloch
sphere corresponds to a circle in the S3.1

The Hilbert space of a pair of qubits is the tensor product of two single qubit Hilbert spaces, so is
four dimensional. A basis for this space is {|00〉, |01〉, |10〉, |11〉}, where |00〉 ≡ |0〉|0〉, etc. A general
pure state in the two qubit Hilbert space has the form

|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉, (2)

wtih |a|2 + |b|2 + |c|2 + |d|2 = 1. The manifold of these states is thus a 7-sphere in eight Euclidean
dimensions, and the manifold of physically distinct states is thus six dimensional.

Entanglement

Two qubit states that have the product form |α〉|β〉 for some pair of single qubit states |α〉 and |β〉 are
called separable, unentangled, or product states. When a state is written out as a sum of basis vectors,
it isn’t always obvious whether or not it is separable. For example, the state (2) with a = b = c = d is
actually separable: it’s equal to a(|0〉+ |1〉)(|0〉+ |1〉). A nonseparable basis for the Hilbert space is the
basis of Bell states,

|φ±〉 = (|00〉 ± |11〉)/
√

2, |ψ±〉 = (|01〉 ± |10〉)/
√

2. (3)

Most states are nonseparable. In fact, (2) is separable if and only if ad − bc = 0. This is one complex
condition, hence the separable states lie in a 4-dimensional submanifold of the 6-dimensional space of
states.2

Mixed states and density matrices

Suppose a two qubit system is in the state |ψ〉 = a|00〉 + b|11〉, and consider the expectation value of
any observable A⊗ I that is nontrivial only on the first factor:

〈ψ|A⊗ I|ψ〉 = |a|2〈00|A⊗ I|00〉+ |b|2〈11|A⊗ I|11〉+ a∗b〈00|A⊗ I|11〉+ b∗a〈11|A⊗ I|00〉
(4)

= |a|2〈0|A|0〉+ |b|2〈1|A|1〉. (5)

1This map S3 → S2 is called the Hofp fibration. The two circles in the S3 corresponding to any two states are linked. A
group theoretic description of this map is SU(2)→ SU(2)/U(1), where the group quotient is the space of cosets.

2The manifold of product states has topology S2 × S2, corresponding to the product of Bloch spheres of the factors.
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The expectation value is a sum of expectation values in the two possible states for the first qubit,
weighted by the probability |a|2 of being |0〉 and probability |b|2 of being |1〉. The first qubit isn’t
by itself in a definite pure state, but rather is described by a statistical mixture, called a mixed state.
That is, a mixed state is a ensemble of pure states, weighted with some probabilities. In the example just
given, these are “quantum probabilities,” since they originate from the amplitudes in a pure quantum
state. However, one could also consider mixed states whose probability has a different origin.

A convenient way to describe a mixed state is via a density matrix ρ. To introduce this notion, first
notice that the expectation value of an observable A in a state |ψ〉 can be expressed as3

〈ψ|A|ψ〉 = Tr(|ψ〉〈ψ|A), (6)

that is, as the trace of the projection of A into the |ψ〉 subspace. In the case of a mixed state, this is
replaced by a weighted sum,

〈A〉 :=
∑
i

pi Tr(|ψi〉〈ψi|A) =: TrρA, (7)

where in the last step the density matrix is defined,

ρ :=
∑
i

pi |ψi〉〈ψi|. (8)

The density matrix is a probability weighted sum of projection operators. The defining properties of a
general density matrix are thus ρ† = ρ, Trρ = 1, and ρ ≥ 0, where the last condition means that the
eigenvalues of ρ are nonnegative. Equivalently, it means that 〈ψ|ρ|ψ〉 ≥ 0 for all states |ψ〉.

In the basis that diagonalizes a density matrix, the eigenvalues are the probabilities for the corre-
sponding basis states in the ensemble. A pure state density matrix is a projection operator, which has
one eigenvalue equal to 1 and all others equal to 0, and satisfies ρ2 = ρ. A maximally mixed state is
one for which all probabilities are equal, so the density matrix is proportional to the identity. A weighted
linear combination of density matrices is another density matrix,

ρ3 = λρ1 + (1− λ)ρ2, (9)

provided λ is any real number between 0 and 1. Any mixed state density matrix can be expressed as a
weighted sum of other density matrices, in an infinite number of different ways. Pure states can only be
expressed in one way, by a unique projection operator.

Density matrix for a qubit: the Bloch ball

A general density matrix for a qubit has the form

ρ = 1
2(I +~b · ~σ), (10)

since this is the most general 2×2 hermitian matrix with unit trace. The eigenvalues of (10) are 1
2(1±|~b|),

so the positivity condition implies that |~b| is less than or equal to unity. The collection of all density
matrices for a qubit thus forms a unit ball in three-dimensional space, sometimes called the Bloch ball.
If |~b| = 1, then one eigenvalue is 1 and the other is 0, so ρ is a pure state projection operator. The pure
states therefore correspond to the surface of the unit ball, called the Bloch sphere. All the other density
matrices describe mixed states. The maximally mixed state 1

2I sits at the center of the Bloch ball.

3The trace moves the leading ket to the end of the expression: Tr(|ψ〉〈ψ|A) =
∑

n〈n|ψ〉〈ψ|A|n〉 =
∑

n〈ψ|A|n〉〈n|ψ〉 =
〈ψ|A|ψ〉, where the |n〉 comprise a complete orthonormal set of vectors.
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Reduced density matrix

The density matrix ρA for the A subsystem of a tensor product of Hilbert spacesHA⊗HB is called the
reduced density matrix, and is given by the partial trace, TrBρ, where ρ is the density matrix of the
full system. To see this, consider the expectation value of any observable that acts only on the A factor:

Trρ(O ⊗ I) =
∑
a,b

〈ab|ρ(O ⊗ I)|ab〉 =
∑
a

〈a|
(∑

b

〈b|ρ|b〉
)
O|a〉 =: Tr(TrBρ)O (11)

Here {|a〉} and {|b〉} are orthonormal bases for HA and HB respectively, and the final step defines
the partial trace over the B factor. If the reduced density matrix for a pure bipartite state is maximally
mixed, the state is said to be maximally entangled. For example, the Bell states (3) are maximally
entangled. If the composite state is pure, the von Neumann entropy SA = −TrρA ln ρA of the reduced
density matrix is called entanglement entropy.

Schmidt decomposition

There is a very convenient way to write a general entangled state, called the Schmidt decomposition:
any bipartite pure state |ψ〉, i.e. a state in the tensor product of two Hilbert spaces HA ⊗ HÃ, can be
written in the Schmidt form

|ψ〉 =
∑
a

√
pa |a〉|ã〉, (12)

where the vectors |a〉 are orthonormal in HA, the vectors |ã〉 are orthonormal in HÃ, and the pa are
probabilities, with 0 < pa ≤ 1, and

∑
a pa = 1. In fact, these are nothing but the probability eigen-

values of the reduced density matrix on subsystem A or on subsystem Ã. If the pa are all distinct, this
decomposition of |ψ〉 is unique except for the freedom to multiply |a〉 and |ã〉 by opposite phases. When
two or more pa are equal, there is ambiguity.

To verify these properties, let’s first check the converse: if |ψ〉 has the the form (12), then the reduced
density matrix onHA is

ρA = TrÃ|ψ〉〈ψ| = TrÃ

∑
a,a′

√
papa′ |a〉〈a′| ⊗ |ã〉〈ã′| =

∑
a,a′

√
papa′ 〈ã′|ã〉 |a〉〈a′| =

∑
a

pa |a〉〈a|.

(13)
That is, the |a〉 come from the eigenbasis of ρA, and the pa are the corresponding eigenvalues. Con-
versely, let |ψ〉 be any bipartite state, and let |a〉 be an orthonormal basis of eigenvectors of the reduced
density matrix for the A factor, ρA = TrÃ|ψ〉〈ψ|. Any state |ψ〉 in the Hilbert space can of course be
written as |ψ〉 =

∑
a |a〉|ā〉 for some set of vectors |ā〉 inHÃ. Now let’s evaluate the partial trace of the

projector:
TrÃ|ψ〉〈ψ| = TrÃ

∑
a,a′

|a〉|ā〉〈ā′|〈a′| =
∑
a,a′

〈ā′|ā〉 |a〉〈a′| (14)

Since we chose |a〉 to be the eigenbasis of ρA, it must evidently be the case that 〈ā′|ā〉 = paδaa′ . The
vectors |ā〉 are thus orthogonal, but not normalized. Defining normalized vectors by |ā〉 =:

√
pa |ã〉, we

have thus arrived at the Schmidt decomposition (12) for any bipartite state.
Note that local unitary transformations UA ⊗ UÃ acting on |ψ〉 change each of the reduced density

matrices, without changing the probabilities pa. Such transformations thus don’t change the degree of
entanglement between the two factors. In fact, any two states with the same set of nonzero pa’s are
related by such a transformation. Note also that the entanglement entropies for ρA and ρÃ are equal,
since these density matrices have the same nonzero probability eigenvalues.
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Maximally entangled states

For two qubits, the Bell states (3) provide an example of maximally entangled states. To construct the
most general maximally entangled two-qubit state we can choose any pair of states |a〉, |ã〉, and define
the state (|a〉|ã〉+ eiφ|a⊥〉|ã⊥〉)/

√
2, where the⊥ superscript denotes an orthogonal state. The freedom

in choosing this state appears to be parametrized by the five dimensional manifold S2 × S2 × S1,
because each of the two states comes from a Bloch sphere, and the relative phase between the two
terms is significant. However, some of these choices give the same state. For example, a spin singlet
(| ↑↓〉 − | ↓↑〉)/

√
2 of two spin-1/2 systems is maximally entangled, and is unchanged by any common

rotation of the two spins. Rotations about the z-axis would not change the presentation of this state, since
they just multiply the two spin states by opposite phases, so the distinct presentations are parametrized
by SU(2)/U(1), which is a 2-sphere. A similar statement applies to any maximally entangled state,
albeit with a different identification of the equivalence transformations. Thus the dimension of the
manifold of maximally entangled states is 5 − 2 = 3. I’ve read that the actual manifold is SU(2)/Z2

(which is the same as SO(3) and RP 3), but I don’t know at present how to deduce this.
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