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I. INTRODUCTION

The citation for my share of the 1998 Nobel Prize in
Chemistry refers to the ‘‘development of the density-
functional theory.’’ The initial work on Density-
Functional Theory (DFT) was reported in two publica-
tions: the first with Pierre Hohenberg (Hohenberg and
Kohn, 1964) and the next with Lu J. Sham (Kohn and
Sham, 1965). This was almost 40 years after E. Schrö-
dinger (1926) published his first epoch-making paper
marking the beginning of wave mechanics. The Thomas-
Fermi theory, the most rudimentary form of DFT, was
put forward shortly afterwards (Fermi, 1927; Thomas,
1927) and received only modest attention.

There is an oral tradition that, shortly after Schröd-
inger’s equation for the electronic wave function C had
been put forward and spectacularly validated for small
systems like He and H2, P. M. Dirac declared that chem-
istry had come to an end—its content was entirely con-
tained in that powerful equation. Too bad, he is said to
have added, that in almost all cases, this equation was
far too complex to allow solution.

*The 1998 Nobel Prize in Chemistry was shared by W. Kohn
and John A. Pople. This lecture is the text of Professor Kohn’s
address on the occasion of the award.
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In the intervening more than six decades enormous
progress has been made in finding approximate solutions
of Schrödinger’s wave equation for systems with several
electrons, decisively aided by modern electronic com-
puters. The outstanding contributions of my Nobel Prize
co-winner John Pople are in this area. The main objec-
tive of the present account is to explicate DFT, which is
an alternative approach to the theory of electronic struc-
ture, in which the electron density distribution n(r),
rather than the many-electron wave function, plays a
central role. I felt that it would be useful to do this in a
comparative context; hence the wording ‘‘Wave Func-
tions and Density Functionals’’ in the title.

In my view DFT makes two kinds of contribution to
the science of multiparticle quantum systems, including
problems of electronic structure of molecules and of
condensed matter.

The first is in the area of fundamental understanding.
Theoretical chemists and physicists, following the path
of the Schrödinger equation, have become accustomed
to think in terms of a truncated Hilbert space of single-
particle orbitals. The spectacular advances achieved in
this way attest to the fruitfulness of this perspective.
However, when high accuracy is required, so many
Slater determinants are required (in some calculations
up to 109!) that comprehension becomes difficult. DFT
provides a complementary perspective. It focuses on
quantities in the real, three-dimensional coordinate
space, principally on the electron density n(r). Other
quantities of great interest are: the exchange correlation
hole density nxc(r ,r8) which describes how the presence
of an electron at the point r depletes the total density of
the other electrons at the point r8; and the linear re-
sponse function, x(r ,r8;v), which describes the change
of total density at the point r due to a perturbing poten-
tial at the point r8, with frequency v. These quantities
are physical, independent of representation, and easily
visualizable even for very large systems. Their under-
standing provides transparent and complementary in-
sight into the nature of multiparticle systems.

The second contribution is practical. Traditional mul-
tiparticle wave-function methods when applied to sys-
tems of many particles encounter what I call an expo-
nential wall when the number of atoms N exceeds a
critical value which currently is in the neighborhood of
N0'10 (to within a factor of about 2) for a system with-
out symmetries. A major improvement in the analytical
and/or computational aspects of these methods along
present lines will lead to only modest increases in N0 .
Consequently problems requiring the simultaneous con-
125399/71(5)/1253(14)/$17.80 © The Nobel Foundation 1998
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FIG. 1. Methanol inside a cage of the zeolite sodalite. Zeolites are crystalline arrays of cages built of silicon (blue), aluminum
(yellow), and oxygen (red) atoms. For each Al atom one must have a positive counter ion [in this case H1 (white)]. A methanol
molecule is inside the cage (carbon is green) where it can react with the proton. DFT calculations have assigned and clarified the
IR spectra, have determined the binding sites of methanol, and have calculated the activation energy for the reaction. Acid
catalysis in zeolites is widely used in the chemical industry (after E. Nusterer, P. Bloechl, and K. Schwarz, 1996, Angew. Chem. 35,
175) [Color].
sideration of very many interacting atoms, N/N0@1,
such as large organic molecules, molecules in solution,
drugs, DNA, etc., overtax these methods. On the other
hand, in DFT, computing time T rises much more mod-
erately with the number of atoms, currently as T;N a

with a'2 –3, with ongoing progress towards bringing a
down towards a'1 (so-called linear scaling). The cur-
rent state of the art of applied DFT can handle systems
with up to N085O(102), 20(103) atoms.

The following Figs. 1, 2, and 3 and legends illustrate
what can currently be achieved.

In Sec. I, I shall talk about traditional wave-function
methods and contrast their great success for few-atom
systems with their fundamental limitations in dealing
with very-many-atom systems.

Section II deals with DFT against the backdrop of
wave-function methods. The basic theory is summarized:
First the original Hohenberg-Kohn (HK) variational
principle, where n(r) is the variational variable, is de-
scribed. This is followed by the Kohn-Sham (KS) self-
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
consistent single-particle equations which involve the
well-defined but—at this point—unknown exchange-
correlation functional Exc@n(r)# . In principle, when
used with the exact Exc , these single-particle equations
incorporate all many-body effects.1

Next the physics of Exc@n(r)# is discussed in terms of
the concept of the exchange-correlation hole nxc(r ,r8).
I have found the concept of ‘‘nearsightedness’’ useful
which in the present context says that the exchange-
correlation hole nxc(r ,r8) for an electron at the point r ,
is largely determined by m2veff(r8), where m is the
chemical potential and veff(r8) is the effective single-
particle potential for r8 near r . Although nearsighted-
ness becomes a well-defined concept only for metallic
systems which are very large, it has been found to be
useful also for systems as small as a single atom.

1It is, however, known that for some density distributions
Exc@n(r)# cannot be defined.
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FIG. 2. The geometric structure of the clathrate Sr8Ga16Ge30 (Sr, red; Ga, blue; Ge, white) and its charge density in a plane
bisecting the centers of the cages. DFT calculations have shown that the Sr atoms are weakly bound and scatter phonons
effectively, thereby lowering thermal conductivity. However, contrary to intuitive expectations, the Sr atoms do not donate
electrons to the frame and are practically neutral. Conductivity is due to electrons traveling through the frame, not through the
one-dimensional Sr ‘‘wires’’ in the structure; there is thus little scattering of conduction electrons by Sr vibrations. For these
reasons, the compound is a metal with a large Seebeck coefficient (unlike ordinary metals). The calculation suggests that other
compounds of this type may be even better thermoelectrics (theory by N. P. Blake and H. Metiu, submitted for publication)
[Color].
There follows a brief discussion of approximations for
Exc , which reflect nearsightedness, and other general
principles.

Sections III–VI discuss applications of DFT to elec-
tronic ground states, as well as a host of generalizations
to other electronic and nonelectronic systems.

Finally a few concluding remarks and speculations are
offered.

II. SCHRÖDINGER WAVE FUNCTIONS—FEW VERSUS
MANY ELECTRONS

The foundation of the theory of electronic structure of
matter is the nonrelativistic Schrödinger equation for
the many-electron wave function C,
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where rj are the positions of the electrons and Rl , Zl
the positions and atomic numbers of the nuclei; \, m ,
and e are the conventional fundamental constants; and
E is the energy. This equation reflects the Born-
Oppenheimer approximation, in which—for purposes of
studying electron dynamics—the much heavier nuclei
are considered as fixed in space. This paper will deal
largely with nondegenerate groundstates. The wave
function C depends on the positions and spins of the N
electrons but in this paper spins will generally not be
explicitly indicated. Thus

C5C~r1 ,r2 , . . . rN!. (2.2)

The Pauli principle requires that

Pjj8C52C , (2.3)

where Pjj8 permutes the space and spin coordinates of
electrons j and j8. All physical properties of the elec-
trons depend parametrically on the Rl , in particular the
density n(r) and total energy E, which play key roles in
this paper:
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FIG. 3. Fully hydroxylated aluminum (0001) surface (red, O; blue, interior Al; Al; gray, H atoms; the green lines are H bonds).
Each surface A atom in Al2O3 has been replaced by three H atoms. The figure represents a superposition of configurations in a
molecular-dynamics simulation at regular intervals of 1 ps. These calculations help to understand the complex dynamics of water
adsorption on aluminum [K. C. Haas et al., Science 282, 265 (1998)] [Color].
n~r !5n~r ;R1 , . . . RN!, (2.4)

E5E~R1 , . . . RN!, (2.5)

where N is the number of nuclei.

A. Few-electron systems—the H2 molecule

The first demonstrations of the power of the Schrö-
dinger equation in chemistry were calculations of the
properties of the simplest multielectron molecule, H2:
Its experimental binding energy2 and internuclear sepa-
ration are

Exp: D54.75 eV, R50.740 Å. (2.6)

The earliest quantum-theoretical estimate was made
by Heitler and London in 1927, who used the ansatz

CHL5A@wH~r12R1!wH~r22R2!

1wH~r12R2!wH~r22R1!#x0 , (2.7)

where wH(r12R1) is the orbital wave function of elec-
tron 1 in its atomic ground state around a proton located
at R1 , etc.; x0 denotes the spin singlet function; and A is
the normalization. The components of this wave func-
tion describe two hydrogen atoms, at R1 and R2 , with
spins pointing in opposite directions. The combination
satisfies the reflection symmetry of the molecule and the

2This is the observed dissociation energy plus the zero-point
energy of 0.27 eV.
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Pauli principle. The expectation value of the Hamil-
tonian as a function of R5uR12R2u was calculated. Its
minimum was found to occur at R50.87 Å, and the cal-
culated dissociation energy was 3.14 eV, in semiquanti-
tative agreement with experiment. However the errors
were far too great for the typical chemical requirements
of udRu<0.01 Å and udDu<0.1 eV.

An alternative ansatz, analogous to that adopted by
Bloch for crystal electrons, was made by Mullikan
(1928):

CBM5wmol~r1!wmol~r2!•x0 , (2.8)

where

wmol~r1!5A8@wH~r12R1!1wH~r12R2!# , (2.9)

and A8 is the appropriate normalization constant. In this
function both electrons occupy the same molecular or-
bital wmol(r). The spin function x0 is again the antisym-
metric singlet function. The results obtained with this
function were R50.76 Å and D52.65 eV, again in semi-
quantitative agreement with experiment.

The Mullikan ansatz can be regarded as the simplest
version of a more general so-called Hartree-Fock ansatz,
the Slater determinant

CHF5
1

21/2 Detuwm~r1!a~1 !wm~r2!b~2 !u, (2.10)

where wm(r) is a general molecular orbital and a and b
denote up and down spin functions. For given R[uR1
2R2u, minimization with respect to wm(r) of the expec-
tation value of H leads to the nonlocal Hartree-Fock
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equations (Hartree, 1928; Fock, 1930) for the molecular
orbital wm(r), whose solution gives the following re-
sults: R50.74 Å, D53.63 eV.

The most complete early study of H2 was undertaken
by James and Coolidge (1933). They made the very gen-
eral variational ansatz

CJC5C~r1 ,r2!x0 , (2.11)

where C(r1 ,r2) is a general, normalized function of r1
and r2 , symmetric under interchange of r1 and r2 and
respecting the spatial symmetries of the molecule. The
trial function C was written as depending on a number
of parameters, p1 ,p2¯pM , so that for given uR12R2u,
the expectation value of the Schrödinger Hamiltonian in
C, an upper bound to the true ground-state energy, be-
came a function of the parameters pj , E
5E(p1 , . . . ,pM). The calculations were made with M
up to 13. Minimization of E(p1 , . . . ,pM) with respect to
the pj resulted in R50.740 Å and D54.70 eV, in very
good agreement with experiment. More recent varia-
tional calculations of the same general character give
theoretical results whose errors are estimated to be
much smaller than experimental uncertainties, and other
theoretical corrections.

Before leaving the variational calculation for H2, we
want to make a very rough ‘‘guesstimate’’ of the number
of parameters M needed for a satisfactory result.

The number of continuous variables of C(r1 ,r2) is 6
2155, the reduction by 1 reflecting axial symmetry. Let
us call the number of parameters per variable needed
for the desired accuracy p . Since a fractional accuracy of
O(1022) is needed for the energy, implying a fractional
accuracy of O(1021) in C, we guess that 3!p!10.
Hence M5p55352105'1022105.

By using symmetries and chemical and mathematical
insights, this number can be significantly reduced. Such
relatively modest numbers are very managable on to-
day’s (and even yesterday’s) computers.

It is thus not surprising that for sufficiently small mol-
ecules, wave-function methods give excellent results.

B. Many electrons—encountering an exponential wall

In the same spirit as our last ‘‘guesstimates’’ for H2,
let us now consider a general molecule consisting of N
atoms with a total of N interacting electrons, where N
@10, say. We ignore symmetries and spin, which will not
affect our general conclusions. Reasoning as before, we
see that the number M of parameters required is

M5p3N, 3<p<10. (2.12)

The energy needs to be minimized in the space of these
M parameters. Call M̄ the maximum value feasible with
the best available computer software and hardware; and
N̄ the corresponding maximum number of electrons.
Then, from Eq. (2.12) we find

N̄5
1
3

ln M̄

ln p
. (2.13)
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Let us optimistically take M̄'109 and p53. This gives
the shocking result

N̄5
1
3

9
0.48

56~! !. (2.14)

In practice, by being ‘‘clever,’’ one can do better than
this, perhaps by one half order of magnitude, up to say
N̄'20. But the exponential in Eq. (2.12) represents a
‘‘wall’’ severely limiting N̄ .

Let us turn this question around and ask what is the
needed M for N5100. By Eq. (2.12) and taking p53 we
find

M'3300'10150~! !. (2.15)

I cannot foresee an advance in computer science
which can minimize a quantity in a space of 10150 dimen-
sions. Of course, estimates like Eq. (2.15) are very rough
and only their logarithm should be taken seriously. But
the ‘‘exponential wall’’ is real and reflects the intercon-
nectedness of C(r1 , . . . ,rN) in the 3N-dimensional con-
figuration space defined by all rj being inside the 3D
region containing the molecule.

We conclude that traditional wave-function methods,
which provide the ‘‘required’’ chemical accuracy, are
generally limited to molecules with a small total number
of chemically active electrons, N&O(10).

C. Some meta-physical-chemical considerations

The following remarks are related to a very old paper
by one of my teachers, J. H. Van Vleck (1936), in which
he discusses a problem with many-body wave functions,
later referred to as the Van Vleck catastrophy.

I begin with a provocative statement. In general the
many-electron wave function C(r1 , . . . ,rN) for a system
of N electrons is not a legitimate scientific concept, when
N>N0 , where N0'103.

I will use two criteria for defining ‘‘legitimacy’’: (a)
That C can be calculated with sufficient accuracy and
(b) that C(r1 , . . . ,rN) can be recorded with sufficient
accuracy.
Construction of an accurate approximation to C.

Without leaving the context of wave functions, I shall
call the approximate wave function C̃ sufficiently accu-
rate if

uC̃ ,Cu2@0.5, (2.16)

a rather liberal requirement (one could equally well
choose 0.9 or 0.1).

Consider now the example of N nonoverlapping iden-
tical n-electron molecules with exact wave functions
c l(r1 , . . . ,rn), and approximate wave functions
c̃ l(r1 , . . . ,rn). Let us take n510 and posit that a very
accurate c̃ l can be calculated with

u~ c̃ l ,c!u512e where e51022, (2.17)

again a liberal estimate.
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Then, for an N-molecule system with N'102, and
thus N5103 electrons (C̃ ,C̃)5(12e)N'e2Ne'e21

'0.37, i.e., almost acceptable by the criterion (2.16).
Note, however, that for N5104, (Ĉ ,C)'e210'5
31025 so that uĈ ,Cu2;331029(!)—the exponential
wall is again there, in another form. For fully interacting
systems the situation is much worse and our estimate of
N0'103 is probably much too high.

Can this problem ever be overcome along present
lines of thought? I think not. Even if there were no com-
putational limits, other physical effects, such as relativ-
istic or radiative corrections which may be minor for
systems of small N exponentiate when N exceeds N0 .

(It is obvious that the estimates made above have only
logarithmic validity.)
Recording of C(r1 ,r2 , . . . ,rN).

Let us now assume that somehow we have obtained
an accurate approximation to Ĉ , in the sense of Eq.
(2.16), and wish to record it so it can be reproduced at a
later time. How many bits are needed? Let us take q bits
per variable. Then the total number of bits is

B5q3N.

For q53, a very rough fit, and N5103, B5101500, a
quite unrealistic number (the total number of baryons in
the accessible universe is estimated as 10806).

Having attempted to discredit the very-many-electron
wave function C(r1 , . . . ,rN), for many electrons I must,
of course, recall two well-known facts: physically/
chemically interesting quantities, like total energy E ,
density n(r), pair correlation function g(r ,r8), etc., de-
pend on only very few variables and, formally, can be
thought of as obtained by tracing over all other vari-
ables, e.g.,

n~r !5NE uC* ~r ,r2 , . . . ,rN!C~r ,r2 , . . . ,rN!

3dr2 . . . drN ;

and that some C̃’s which, by the criterion (1.16) are
hopelessly ‘‘bad’’ for large N , can give respectable and
even very accurate results for these contracted quanti-
ties. Of course not every bad trial C̃ will give good re-
sults for these quantities, and the question of how one
discriminates the useful ‘‘bad’’ C̃ , from the vast majority
of useless ‘‘bad’’ C̃’s requires much further thought.
This isue is related, I believe, to the concept of ‘‘near-
sightedness’’ which I have recently suggested (Kohn,
1996).

In concluding this section I remark that DFT, while
derived from the N-particle Schrödinger equation, is fi-
nally expressed entirely in terms of the density n(r), in
the Hohenberg-Kohn formulation, (Hohenberg and
Kohn, 1964) and in terms of n(r) and single-particle
wave functions c j(r), in the Kohn-Sham formulation
(Kohn and Sham, 1965). This is why it has been most
useful for systems of very many electrons where wave-
function methods encounter and are stopped by the ‘‘ex-
ponential wall.’’
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
III. DENSITY-FUNCTIONAL THEORY—BACKGROUND

In the fall of 1963 I was spending a sabbatical semes-
ter at the Ecole Normale Supérieure in the spacious of-
fice of Philippe Nozieres. A few weeks after my arrival
Pierre Hohenberg, also a visitor from the US joined
forces with me. Ever since my period at the Carnegie
Institute of Technology (1950–1959) I had been inter-
ested in disordered metallic alloys, partly because of the
excellent metallurgy department and partly because of
the interesting experimental program of Emerson Pugh,
in Physics, on substitutional Cu alloys with the adjacent
elements in the periodic table, such as CuxZn12x . These
alloys were viewed in two rather contradictory ways: As
an average periodic crystal with nonintegral atomic num-
ber Z̄5xZ11(12x)Z2(Z1529, Z2530). This model
nicely explained the linear dependence of the electronic
specific heat on x . On the other hand the low-
temperature resistance is roughly proportional to x(1
2x), reflecting the degree of disorder among the two
constituents. While isolated Cu and Zn atoms are, of
course, neutral, in a Cu2Zn alloy there is transfer of
charge between Cu and Zn unit cells on account of their
chemical differences. The electrostatic interaction en-
ergy of these charges is an important part of the total
energy. Thus in considering the energetics of this system
there was a natural emphasis on the electron density
distribution n(r).

Now a very crude theory of electronic energy in terms
of the electron density distribution, n(r), the Thomas-
Fermi (TF) theory, had existed since the 1920s (Fermi,
1927; Thomas, 1927). It was quite useful for describing
some qualitative trends, e.g., for total energies of atoms,
but for questions of chemistry and materials science,
which involve valence electrons, it was of almost no use;
for example it did not lead to any chemical binding.
However the theory had one feature which interested
me: It considered interacting electrons moving in an ex-
ternal potential v(r), and provided a (highly over-
simplified) one-to-one implicit relation between v(r)
and the density distribution n(r):

n~r !5g@m2veff~r !#3/2, g5
1

3p2 S 2m

\2 D 3/2

, (3.1)

veff~r ![v~r !1E n~r8!

ur2r8u
dr8, (3.2)

where m is the r-independent chemical potential; Eq.
(3.1) is based on the expression

n5g~m2v !3/2 (3.3)

for the density of a uniform degenerate electron gas in a
constant external potential v ; and the second term in
Eq. (3.2) is just the classically computed electrostatic po-
tential times (21), generated by the electron density dis-
tribution n(r8). Since Eq. (3.1) ignores gradients of
veff(r) it was clear that the theory would apply best for
systems of slowly varying density.

In subsequent years various refinements (gradient-,
exchange-, and correlation corrections) were introduced,
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but the theory did not become significantly more useful
for applications to the electronic structure of matter. It
was clear that TF theory was a rough approximation to
the exact solution of the many-electron Schrödinger
equation, but since TF theory was expressed in terms of
n(r) and Schrödinger theory in terms of C(r1 , . . . ,rN),
it was not clear how to establish a strict connection be-
tween them.

This raised a general question in my mind: Is a com-
plete, exact description of electron structure in terms of
n(r) possible in principle. A key question was whether
the density n(r) completely characterized the system. It
was true in TF theory, where n(r), substituted in Eq.
(3.1), yields @veff(r)2m# and, by Eq. (3.2), @v(r)2m# .
In addition, n(r) also yields the total number of elec-
trons by integration. Thus the physical system is com-
pletely specified by n(r). It was also simple to check
that the same was true for any one-particle system, as
well as for a weakly perturbed, interacting, uniform elec-
tron gas

v~r !5v01lv1~r ! ~l!1 !, (3.4)

n~r !5n01ln1~r !1••• , (3.5)

for which v1(r) can be explicitly calculated in terms of
n1(r) by means of the wave-number-dependent suscep-
tibility of the uniform gas. This suggested the hypothesis
that a knowledge of the ground-state density of n(r) for
any electronic system (with or without interactions)
uniquely determines the system. This hypothesis became
the starting point of modern DFT.

IV. THE HOHENBERG-KOHN FORMULATION OF
DENSITY-FUNCTIONAL THEORY

A. The density n(r) as the basic variable

The basic lemma of HK. The ground-state density
n(r) of a bound system of interacting electrons in some
external potential v(r) determines this potential
uniquely (Hohenberg and Kohn, 1964).
Remarks: (1) The term ‘‘uniquely’’ means here: up to an
uninteresting additive constant. (2) In the case of a de-
generate ground state, the lemma refers to any ground-
state density n(r). (3) This lemma is mathematically rig-
orous.

The proof is very simple. We present it for a nonde-
generate ground state.

Let n(r) be the nondegenerate ground-state density
of N electrons in the potential v1(r), corresponding to
the ground state C1 , and the energy E1 . Then,

E15~C1 ,H1C1!

5E v1~r !n~r !dr1„C1 ,~T1U !C1…, (4.1)

where H1 is the total Hamiltonian corresponding to v1 ,
and T and U are the kinetic and interaction energy op-
erators. Now assume that there exists a second potential
Rev. Mod. Phys., Vol. 71, No. 5, October 1999
v2(r), not equal to v1(r)1constant, with ground state
C2 , necessarily ÞeiuC1 , which gives rise to the same
n(r). Then

E25E v2~r !n~r !dr1E „C2 ,~T1U !C2…. (4.2)

Since C1 is assumed to be nondegenerate, the
Rayleigh-Ritz minimal principle for C1 gives the in-
equality

E1,~C2 ,H1C2!

5E v1~r !n~r !dr1„C2 ,~T1U !C2…

5E21E @v1~r !2v2~r !#n~r !dr . (4.3)

Similarly,

E2<~C1 ,HC1!5E11E @v2~r !2v1~r1!#n~r !dr , (4.4)

where we use < since the nondegeneracy of C2 was not
assumed. Adding Eqs. (4.3) and (4.4) leads to the con-
tradiction

E11E2,E11E2 . (4.5)

We conclude by reductivo ad absurdum that the as-
sumption of the existence of a second potential v2(r),
which is unequal to v1(r)1constant and gives the same
n(r), must be wrong. The lemma is thus proved for a
nondegenerate ground state.

Since n(r) determines both N and v(r) (ignoring an
irrelevant additive constant) it gives us the full H and N
for the electronic system. Hence n(r) determines implic-
itly all properties derivable from H through the solution
of the time-independent or time-dependent Schrödinger
equation (even in the presence of additional perturba-
tions like electromagnetic fields), such as: the many-
body eigenstates C(0)(r1 , . . . ,rN),C(1)(r1 , . . . ,rN), . . . ,
the two-particle Green’s function G(r1t1 ,r2t2), the fre-
quency dependent electric polarizability a(v), and so on.
We repeat that all this information is implicit in n(r).

Remarks:

(1) The requirement of nondegeneracy can easily be
lifted (Kohn, 1985).

(2) Of course the lemma remains valid for the special
case of noninteracting electrons.

(3) Lastly we come to the question whether any well-
behaved positive function n(r), which integrates to
a positive integer N , is a possible ground-state den-
sity corresponding to some v(r). Such a density is
called v-representable (VR). On the positive side it
is easy to verify that, in powers of l, any nearly
uniform, real density of the form n(r)5no
1lSn(q)eiq•r is VR, and that for a single particle
any normalized density n(r)5uc(r)u2 is also VR.
On the other hand Levy (1982) and Lieb (1982)
have shown by an example which involves degener-
ate ground states, that there do exist well-behaved
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densities which are not VR. The topology of the re-
gions of v-representability in the abstract space of
all n(r) continues to be studied. But this issue has so
far not appeared as a limitation in practical applica-
tions of DFT.

B. The Hohenberg-Kohn variational principle

The most important property of an electronic ground
state is its energy E . By wave-function methods E could
be calculated either by direct approximate solution of
the Schrödinger equation HC5EC or from the
Rayleigh-Ritz minimal principle,

E5minC̃~C̃ ,HC̃!, (4.6)

where C̃ is a normalized trial function for the given
number of electrons N .

The formulation of the minimal principle in terms of
trial densities ñ(r), rather than trial wave functions C̃
was first presented in Hohenberg and Kohn (1964).
Here we shall follow the more succinct derivation due to
Levy (1982) and Lieb (1982), called the constrained
search method.

Every trial function C̃ corresponds to a trial density
ñ(r) obtained by integrating C̃* C̃ over all variables ex-
cept the first and multiplying by N . One may carry out
the minimization of Eq. (4.6) in two stages. First fix a
trial ñ(r) and denote by C̃ ñ

a the class of trial functions
with this ñ . We define the constrained energy minimum,
with ñ(r) fixed, as

Ev@ ñ~r !#[mina~C̃ ñ
a ,HC̃ ñ

a!

5E v~r !ñ~r !dr1F@ ñ~r !# , (4.7)

where

F@ ñ~r !#[mina@C̃ ñ(r)
a ,~T1U !C ñ(r)

a # . (4.8)

F@ ñ(r)# requires no explicit knowledge of v(r). It is a
universal functional of the density ñ(r) (whether the lat-
ter is VR or not). In the second step minimize Eq. (4.7)
over all ñ ,

E5minñ(r)Ev@ ñ~r !#

5minñ(r)H E v~r !ñ~r !dr1F@ ñ~r !#J . (4.9)

For a nondegenerate groundstate, the minimum is at-
tained when ñ(r) is the ground-state density; and, for
the case of a degenerate ground state, when ñ(r) is any
one of the ground-state densities. The Hohenberg-Kohn
(HK) minimum principle (4.9) may be considered as the
formal exactification of Thomas-Fermi theory.

The formidable problem of finding the minimum of
(C̃ ,HC̃) with respect to the 3N-dimensional trial func-
tion Ĉ has been transformed into the seemingly trivial
problem of finding the minimum of Ev@ ñ(r)# with re-
spect to the three-dimensional trial function ñ(r).
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Actually the definition (4.8) of F@ ñ(r)# leads us right
back to minimization with respect to 3N-dimensional
trial wave functions. Nevertheless significant formal
progress has been made: the strict formulation of the
problem of ground-state densities and energies entirely
in terms of the density distribution ñ(r) and of a well-
defined but not explicitly known functional of the den-
sity, F@ ñ(r)# , which represents the sum of kinetic en-
ergy and interaction energy (T1U), associated with ñ
[see Eq. (4.8)].

One could now easily rederive the Thomas-Fermi
(TF) theory by making the approximations

T5E n~r !
3
10

kF
2 @n~r !#dr , (4.10)

U5
1
2 E n~r !n~r8!

ur2ru
drdr , (4.11)

where kF(n) is the Fermi wave vector of a uniform elec-
tron gas of density n and 3

10 kF
2 (n) is the mean kinetic

energy per electron of such a gas. The expression for U
is the classical (or mean-field) approximation. Various
previously known corrections of TF theory for ex-
change, correlation and density gradients could also be
easily rederived.

The main remaining error is due to the seriously inad-
equate representation of the kinetic energy T by Eq.
(4.10) or its gradient-corrected forms. This deficiency is
largely remedied by the self-consistent, so-called Kohn-
Sham equations, discussed in the following Sec. IV.C.

A second interesting class of systems n(r)5n0
1n1(r), where n1(r)!n0 , could also be treated using
the n0-dependent density-density response function
K(ur2r8u).

C. The self-consistent Kohn-Sham equations

Soon after the publication of the TF theory, Hartree
(1928) proposed a set of self-consistent single-particle
equations for the approximate description of the elec-
tronic structure of atoms. The concept was physically
very simple. Every electron was regarded as moving in
an effective single-particle potential

vH~r !52
Z

r
1E n~r8!

ur2r8u
dr8, (4.12)

where the first term represents the potential due to a
nucleus of atomic number Z and the second the poten-
tial due to the average electronic density distribution
n(r) (the negative charge of the electron has been al-
lowed for). Thus each electron obeys the single particle
Schrödinger equation

H 2
1
2

¹21vH~r !J w j~r !5e jw j~r !, (4.13)

where j denotes both spatial as well as spin quantum
numbers. The mean density is given by
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n~r !5(
j51

N

uw j~r !u2, (4.14)

where, in the ground state, the sum runs over the N
lowest eigenvalues, to respect the Pauli exclusion prin-
ciple. Equations (4.12)–(4.14) are called the self-
consistent Hartree equations. One may start from a first
approximation for n(r), (e.g., from TF theory), con-
struct vH(r), solve Eq. (4.13) for the wj ; and recalculate
n(r) from Eq. (4.14), which should be the same as the
initial n(r). If it is not one iterates appropriately until it
is.

In the winter of 1964, I returned from France to San
Diego, where I found my new post-doctoral fellow, Lu
Sham. I knew that the Hartree equations described
atomic ground states much better than TF theory. The
difference between them lay in the different treatments
of the kinetic energy T [see Eqs. (4.10) and (4.13)]. I set
ourselves the task of extracting the Hartree equations
from the HK variational principle for the energy, Eqs.
(4.9), (4.7), and (4.8), which I knew to be formally exact
and which therefore had to have the Hartree equations
and improvements ‘‘in them.’’ In fact it promised a
Hartree-like formulation, which—like the HK minimal
principle—would be formally exact.

The Hartree differential Eq. (4.13) had the form of
the Schrödinger equation for noninteracting electrons
moving in the external potential veff . Could we learn
something useful from a DFT for noninteracting elec-
trons moving in a given extenal potential v(r)? For such
a system, the HK variational principle takes the form

Ev(r)@ ñ#[E v~r !ñ~r !dr1Ts@ ñ~r !# (4.15)

>E , (4.16)

where „assuming that ñ(r) is VR for noninteracting
electrons…

Ts@ ñ~r !#[kinetic energy of the ground state of

noninteracting electrons with density

distribution ñ~r !. (4.17)

The Euler-Lagrange equations, embodying the fact that
the expression (4.14) is stationary with respect to varia-
tions of ñ(r) which leave the total number of electrons
unchanged, is

dEv@ ñ~r !#[E dñ~r !H v~r !

1
d

dñ~r !
Ts@ ñ~r !#u ñ[n2eJ dr50, (4.18)

where ñ(r) is the exact ground-state density for v(r).
Here e is a Lagrange multiplyer to assure particle con-
servation. Now in this soluble, noninteracting case we
know that the ground-state energy and density can be
obtained by calculating the eigenfunctions w j(r) and ei-
genvalues e j of noninteracting, single-particle equations
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S 2
1
2

¹21v~r !2e jDw j~r !50, (4.19)

yielding

E5(
j51

N

e j ; n~r !5(
j51

N

uw j~r !u2 (4.20)

(here j labels both orbital quantum numbers and spin
indices, 61).

Returning now to the problem of interacting electrons,
which had previously been addressed approximately by
the single-particle-like Hartree equations, we deliber-
ately wrote the functional F@ ñ(r)# of Eq. (4.8) in the
form

F@ ñ~r !#[Ts@ ñ~r !#1
1
2 E ñ~r !ñ~r8!

ur2r8u
drdr8

1Exc@ ñ~r !# , (4.21)

where Ts@ ñ(r)# is the kinetic energy functional for non-
interacting electrons, Eq. (4.15). The last term,
Exc@ ñ(r)# , the so-called exchange-correlation energy
functional is then defined by Eq. (4.21). The HK varia-
tional principle for interacting electrons now takes the
form

Ev@ ñ~r !#[E v~r !ñ~r !dr1Ts@ ñ~r !#

1
1
2 E ñ~r !ñ~r8!

ur2r8u
drdr81Exc@ ñ~r !#>E .

(4.22)

The corresponding Euler-Lagrange equations, for a
given total number of electrons has the form

dEv@ ñ~r !#5E dñ~r !H veff~r !

1
d

dñ~r !
Ts@ ñ~r !#U ñ(r)5n(r)2eJ dr50,

(4.23)

where

veff~r ![v~r !1E n~r8!

ur2r8u
dr81vxc~r ! (4.24)

and

vxc~r ![
d

dñ~r !
Exc@ ñ~r !#u ñ(r)5n(r) . (4.25)

Now the form of Eq. (4.23) is identical to that of Eq.
(4.18) for noninteracting particles moving in an effective
external potential veff instead of v(r), and so we con-
clude that the minimizing density n(r) is given by solv-
ing the single-particle equation

S 2
1
2

¹21veff~r !2e jDw j~r !50, (4.26)

with



1262 W. Kohn: Electronic structure of matter (Nobel Lecture)
n~r !5(
j51

N

uw j~r !u2, (4.27)

veff~r !5v~r !1E n~r8!

ur2r8u
dr81vxc~r !, (4.28)

where vxc(r) is the local exchange-correlation potential,
depending functionally on the entire density distribution
ñ(r) as given by Eq. (4.25). These self-consistent equa-
tions are now called the Kohn-Sham (KS) equations.

The ground-state energy is given by

E5(
j

e j1Exc@n~r !#2E vxc~r !n~r !dv

2
1
2 E n~r !n~r8!

ur2r8u
. (4.29)

If one neglects Exc and vxc altogether, the KS Eqs.
(4.26)–(4.29) reduce to the self-consistent Hartree equa-
tions.

The KS theory may be regarded as the formal exacti-
fication of Hartree theory. With the exact Exc and vxc all
many-body effects are in principle included. Clearly this
directs attention to the functional Exc@ ñ(r)# . The prac-
tical usefulness of ground-state DFT depends entirely on
whether approximations for the functional Exc@ ñ(r)#
could be found which are at the same time sufficiently
simple and sufficiently accurate. The next section briefly
describes the development and current status of such
approximations.

Remarks:

(1) The exact effective single-particle potential veff(r)
of KS theory, Eq. (4.28) can be regarded as that
unique, fictitious external potential which leads, for
noninteracting particles, to the same physical den-
sity n(r) as that of the interacting electrons in the
physical external potential v(r). Thus if the physical
density n(r) is independently known (from experi-
ment or—for small systems—from accurate, wave-
function-based calculations) veff(r) and hence also
vxc(r) can be directly obtained from the density
n(r) (Wang and Parr, 1993).

(2) Because of their linkage to the exact physical den-
sity n(r), the KS single particle wave functions
w j(r) may be considered as ‘‘density optimal,’’
while, of course, the Hartree-Fock HF wave func-
tions w j

HF(r) are ‘‘total-energy optimal’’ in the sense
that their normalized determinant leads to the low-
est ground-state energy attainable with a single de-
terminant. Since the advent of DFT the term ‘‘ex-
change energy’’ is often used for the exchange
energy computed with the exact KS w j , and not with
the HF w j

HF (for the uniform electron gas the two
definitions agree; typically the differences are
small).

(3) Neither the exact KS wave functions w j nor energies
e j have any known, directly observable meaning, ex-
cept for (a) the connection (4.27) between the w j
and the true, physical density n(r) and (b) the fact
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that the magnitude of the highest occupied e j , rela-
tive to the vacum equals the ionization energy
(Almbladh and Barth, 1985).

In concluding this section we remark that most practical
applications of DFT use the KS equations, rather than
the generally less accurate HK formulation.

V. APPROXIMATION FOR Exc@n(r)#: FROM
MATHEMATICS TO PHYSICAL SCIENCE

So far DFT has been presented as a formal math-
ematical framework for viewing electronic structure
from the perspective of the electron density n(r). This
mathematical framework has been motivated by physi-
cal considerations, but to make concrete use of it we
require effective approximations for F@n(r)# in the HK
formulation, and for Exc@n(r)# in the KS formulation.
These approximations reflect the physics of electronic
structure and come from outside of DFT. In this account
I limit myself to the much more extensively used func-
tional Exc .

The most important approximations for Exc@n(r)#
have a quasilocal form. As will be discussed in Sec. V.B,
Exc@n(r)# can be written in the form

Exc@n~r !#5E exc~r ;@n~ r̃ !#n~r !dr , (5.1)

where exc(r ;@n( r̃)#) represents an exchange-correlation
(xc) energy/particle at the point r , which is a functional
of the density distribution n( r̃). It depends primarily on
the density n( r̃) at points r̃ near r , where ‘‘near’’ is a
microscopic distance such as the local Fermi wavelength
lF(r)[@3p2n(r)#21/3 or TF screening length, typically
of similar magnitude. The general form of Eq. (5.1), rep-
resenting the total Exc as an integral over all space of a
suitable integrand, is similar to the treatment of kinetic
energy in Thomas-Fermi theory, Eq. (4.10). All compo-
nents of the KS energy, except the long-range classical
Coulomb interaction, can be expressed in terms of the
one- and two-particle density matrices of the interacting
and noninteracting system G1(r1 ;r18), G2(r1 ,r2 ;r18 ,r28)
and G1

0(r1 ;r18), G2
0(r1r2 ;r18r28), all corresponding to and

uniquely defined by the same physical n(r); their calcu-
lation involves these Green’s functions primarily for ar-
guments, such as (r1 ,r18) and (r1 ,r2 ;r18r28), which are mi-
croscopically close to one another; furthermore, for
given r1 , these Green’s functions depend only on the
form of n( r̃) for r̃ near r1—the property of ‘‘nearsight-
edness’’ previously mentioned (Kohn, 1996). This leads
immediately to the form (5.1) for Exc@n(r)# , where exc
is a nearsighted functional of n( r̃).

We now briefly discuss several implementations of
this quasilocal approach.

A. The local-density approximation (LDA)

The simplest, and at the same time remarkably ser-
viceable, approximation for Exc@n(r)# is the so-called
local-density approximation (LDA),
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Exc
LDA[E exc„n~r !…n~r !dr , (5.2)

where exc(n) is the exchange-correlation energy per
particle of a uniform electron gas of density n (Kohn
and Sham, 1965). The exchange part is elementary and
given, in atomic units, by

ex~n ![2
0.458

rs
, (5.3)

where rs , is the radius of a sphere containing one elec-
tron and given by (4p/3)rs

35n21. The correlation part
was first estimated by E. P. Wigner (1938):

ec~n !52
0.44

rs17.8
, (5.4)

and more recently with a high precision of about 61%
by D. M. Ceperley (1978); Ceperley and Alder, (1980)
using Monte Carlo methods.

Remarks:

(1) The LDA, obviously exact for a uniform electron
gas, was a priori expected to be useful only for den-
sities varying slowly on the scales of the local Fermi
wavelength lF and TF wavelength, lTF . In atomic
systems these conditions are rarely well satisfied and
very often seriously violated. Nevertheless the LDA
has been found to give extremely useful results for
most applications. This has been at least partly ra-
tionalized by the observation that the LDA satisfies
a sum rule which expresses the normalization of the
exchange-correlation hole. In other words, given
that an electron is at r , the conditional electron den-
sity n(r ;r8) of the other electrons is depleted near r
in comparison with the average density n(r8) by the
hole distribution nh(r8;r) which integrates to 1.

(2) The solution of the KS equation in the LDA is mini-
mally more difficult than the solution of the Hartree
equation and very much easier than the solution of
the HF equations. Its accuracy for the exchange en-
ergy is typically within O (10%), while the normally
much smaller correlation energy is generally overes-
timated by up to a factor of 2. The two errors typi-
cally cancel partially.

(3) Experience has shown that the LDA gives ioniza-
tion energies of atoms, dissociation energies of mol-
ecules and cohesive energies with a fair accuracy of
typically 10–20%. However the LDA gives bond
lengths and thus the geometries of molecules and
solids typically with an astonishing accuracy of
;1%.

(4) The LDA (and the LSDA, its extension to system
with unpaired spins) can fail in systems, like heavy
fermion systems, so dominated by electron-electron
interaction effects that they lack any resemblance to
noninteracting electron gases.

B. Beyond the local-density approximation

The LDA is the ‘‘mother’’ of almost all approxima-
tions currently in use in DFT. To discuss more accurate
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approximations we now introduce the concept of the av-
erage xc hole distribution around a given point r . The
physical xc hole is given by

nxc~r ,r8!5g~r ,r8!2n~r8!, (5.5)

where g(r ,r8) is the conditional density at r8 given that
one electron is at r . It describes the ‘‘hole’’ dug into the
average density n(r8) by the electron at r . This hole is
normalized

E nxc~r ,r8!dr8521, (5.6)

which reflects a total ‘‘screening’’ of the electron at r ,
and is localized due to the combined effect of the Pauli
principle and the electron-electron interaction. Of
course, like everything else, it is a functional of the den-
sity distribution n( r̃). To define the average xc hole one
introduces a fictitious Hamiltonian Hl for the many
body system, 0<l<1, which differs from the physical
Hamiltonian, Hl51 , by the two replacements

e2

uri2rju
→ le2

uri2rju
, (5.7)

v~r !→vl~r !, (5.8)

where the fictitious vl(r) is so chosen that for all l in
the interval (0, 1) the corresponding density equals the
physical density, n(r):

nl~r ![nl51~r !5n~r !. (5.9)

The procedure (5.2), (5.3) represents an interpolation
between the KS system (l50) and the physical system
(l51) in which n1(r)5n(r). The average xc hole den-
sity n̄(r ,r8) is then defined as

n̄xc~r ,r8!5E
0

1
dlnxc~r ,r8;l!. (5.10)

Its significance stems from the exact result, proved in-
dependently in three important publications (Harris and
Jones, 1974; Langreth and Perdew, 1975; Gunnarson and
Lundquist, 1976), that

Exc5
1
2 E drdr8

n~r !n̄xc~r ,r8!

ur2r8u
. (5.11)

An equivalent expression is (Kohn and Mattsson,
1998)

Exc52
1
2 E drn~r !R̄xc

21
„r ,@n~ r̃ !#…, (5.12)

where

R̄xc
21

„r ,n~ r̃ !…[E dr8
2n̄xc„r ,r8@n~ r̃ !#…

ur2r8u
, (5.13)

is the moment of degree (21) of 2n̄xc(r ,r8), i.e., minus
the inverse radius of the l-averaged xc hole. Compari-
son of Eqs. (5.12) and (5.1) gives the very physical, for-
mally exact relation

exc„r ;@n~ r̃ !#…52
1
2

Rxc
21

„r ;@n~ r̃ !#…. (5.14)
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Gradient expansion and generalized gradient approxima-
tion.

Since Rxc
21(r) is a functional of n( r̃), expected to be

(predominantly) shortsighted, we can formally expand
n( r̃) around the point r which we take to be the origin:

n~ r̃ !5n1nir̃ i1
1
2 ( nijr̃ ir̃ j1 . . . , (5.15)

where n[n(0), ni[¹ in(r)ur50 , etc., and then consider
Rxc(r) as a function of the coefficients n ,ni ,nij , . . . . Or-
dering in powers of the differential operators and re-
specting the scalar nature of Rxc

21 gives

Rxc
21~r !5F0„n~r !…1F21„n~r !…¹2n~r !1F22„n~r !…

3( „D in~r !…„D in~r !…1 . . . . (5.16)

When this is substituted into Eq. (5.12) for Exc it leads
(after an integration by parts) to the gradient expansion

Exc5Exc
LDA1E G2~n !~¹n !2dr

1E @G4~n !~¹2n !21¯#dr1 . . . , (5.17)

where G2(n) is a universal functonal of n (Kohn and
Sham, 1965). In application to real systems this expan-
sion has generally been disappointing, indeed has often
worsened the results of the LDA.

The series (5.15) can however be formally resummed
to result in the following sequence:

Exc
0 5E e„n~r !…n~r !dr ~LDA!, (5.18)

Exc
(1)5E f(1)

„n~r !,u¹n~r !u…n~r !dr ~GGA!, (5.19)

Exc
(2)5E f(2)

„n~r !,u¹n~r !u…¹2n~r !. (5.20)

Exc
0 is the (LDA), requiring the independently calcu-

lated function of one variable, x[n . Exc
(1) , the so-called

generalized gradient approximation (GGA) requires the
independently calculated function of two variables, x
[n , y[u¹nu, etc.

Thanks to much thoughtful work, important progress
has been made in deriving successful GGA’s of the form
(5.19). Their contruction has made use of sum rules,
general scaling properties, asymptotic behavior of effec-
tive potentials, and densities in the tail regions of atoms
and their aggregates. In addition, A. Becke in his work
on GGA’s introduced some numerical fitting parameters
which he determined by optimizing the accuracy of at-
omization energies of standard sets of molecules. This
subject was recently reviewed (Perdew and Kurth,
1998). We mention here some of the leading contribu-
tors: A. D. Becke, D. C. Langreth, M. Levy, R. G. Parr,
J. P. Perdew, C. Lee, and W. Yang.

In another approach A. Becke introduced a successful
hybrid method:
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Exc
hyb5aEx

KS1~12a!Exc
GGA , (5.21)

where Ex
KS is the exchange energy calculated with the

exact KS wave functions, Exc
GGA is an appropriate GGA,

and a is a fitting parameter (Becke, 1996). The form of
this linear interpolation can be rationalized by the
l-integration in Eq. (5.10), with the lower limit corre-
sponding to pure exchange.

Use of GGA’s and hybrid approximations instead of
the LDA has reduced errors of atomization energies of
standard sets of small molecules, consisting of light at-
oms, by factors of typically 3–5. The remaining errors
are typically 6(2 –3) kg moles per atom, about twice as
high as for the best current wave-function methods. This
improved accuracy, together with the previously empha-
sized capability of DFT to deal with systems of very
many atoms, has, over a period of relatively few years
beginning about 1990, made DFT a significant compo-
nent of quantum chemistry.

For other kinds of improvements of the LDA, includ-
ing the weighted density approximation (WDA) and
self-interaction corrections (SIC), we refer the reader to
the literature, e.g., Perdew and Kurth (1998).

Before closing this section I remark that the treat-
ments of xc effects in the LDA and all of its improve-
ments, mentioned above, is completely inappropriate for
all those systems or subsystems for which the starting
point of an electron gas of slowly varying density n(r) is
fundamentally incorrect. Examples are (a) the electronic
Wigner crystal; (b) Van der Waals (or polarization) en-
ergies between nonoverlapping subsystems; (c) the elec-
tronic tails evanescing into the vacuum near the surfaces
of bounded electronic systems. However, this does not
preclude that DFT with appropriate, different approxi-
mations can successfully deal with such problems (see
Sec. VIII).

VI. GENERALIZATIONS AND QUANTITATIVE
APPLICATIONS

While DFT for nondegenerate, nonmagnetic systems
has continued to progress over the last several decades,
the DFT paradigm was also greatly extended and gener-
alized in several directions. The purpose of this section
is to give the briefest mention of these developments.
For further details we refer to two monographs (Parr
and Yang, 1989; Dreizler and Gross, 1990) and a recent
set of lecture notes (Vosko, Perdew, and MacDonald,
1975).

A. Generalizations

a. Spin DFT for spin polarized systems: v(r),Bz(r);
n(r),@n↑(r)2n↓(r)# .

b. Degenerate ground states: v(r); n ,nn(r);
n51, . . . M ; E0 .

c. Multicomponent systems (electron hole droplets,
nuclei): va(r); na(r); E0 .

d. Ensemble DFT for M degenerate ground states:
v(r); n(r)([M21

„Tr nn(r)…; E0 .
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e. Free energy at finite temperatures T : v(r); n(r),V
(grand potential).

f. Superconductors with electronic pairing mecha-
nisms: v(r), D(r) (gap function); nnorm(r), nsuper(r),
E0 .

g. M excited states, equiensembles v(r),n̄(r)
[M21(1

Mnm(r), Ē[M21(1
MEm .

h. Relativistic electrons.
i. Current-density functional theory, diamagnetism:

v(r),curlA(r); n(r),curlj(r); E0 .
j. Time-dependent phenomena: v(r ,t); n(r ,t), and

excited states v(r)e2ivt; n(r)e2ivt; Ej2Ei5v .
k. Bosons (instead of fermions) v(r); n(r); E0 .
l. Combination of DFT with molecular-dynamics or

Monte Carlo methods (especially for determinations of
structures).

This incomplete list is only intended to give a general
sense of the great diversity of contexts in which the basic
concept of DFT has been found useful.

B. Applications

To do any kind of justice to the many thousands of
applications of DFT to physical and chemical systems is
entirely impossible within the framework of this lecture.
So I will, quite arbitrarily, choose one example, the spin
susceptibility of the alkali metals (Table I; Vosko, Per-
dew, and MacDonald, 1975).

This is an early, completely parameter-free calcula-
tion. It uses only the independently calculated external
pseudopotential v(r) and the exchange-correlation en-
ergy of a spatially uniform, magnetized electron gas (the
so-called local spin density approximation, LSDA). The
only input specific to each metal is the atomic number
Z . Note how accurately the theoretical results agree
with the rather irregular sequence of experimental data.
The deviations of the ratio (x/x0) from 1, are due, in
comparable degree, to the combination of the effects of
the nonuniform, periodic potentials and the electron-
electron interactions.

Of course these metals have, over most of space, fairly
uniform densities, which makes them favorable test-
cases for local spin density calculations. For other classes
of systems and their properties the accuracies can be
considerably poorer, with the exception of the already
mentioned very accurate results for structures, typically
a 1% error (which is still somewhat astonishing to me).

TABLE I. Spin susceptibility of the alkali metals.

Metal

x/x0
a

Variational theory Experiment

Li 2.66 2.57
Na 1.62 1.65
K 1.79 1.70
Rb 1.78 1.72
Cs 2.20 2.24

ax0 is the Pauli susceptibility of a free-electron gas.
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Inclusion of gradient corrections and/or hybrid
schemes have improved calculated energies for large
classes of chemical applications by typically almost an
order of magnitude; in physical applications the im-
provement is usually less dramatic. Accuracies of geo-
metric parameters remain at the 1% level.

VII. CONCLUDING REMARKS

DFT has now been widely accepted by both physicists
and chemists. For periodic solids it is sometimes referred
to as the standard model. In chemistry DFT comple-
ments traditional wave-function-based methods particu-
larly for systems with very many atoms (*10).

In both these fields DFT has been very useful for sur-
veying large classes of systems and often has yielded
important practical results. In cases where DFT cur-
rently works still rather poorly (e.g., long-range polar-
ization energies; regions of evanescent electron densi-
ties; partially filled electronic shells; reaction barriers) it
often provides clues of how our present understanding
of electronic structure in real space coordinates needs to
be modified.

Looking into the future I expect that wave-function-
based and density-based theories, will in complementary
ways, continue not only to give us quantitatively more
accurate results, but also contribute to a better physical/
chemical understanding of the electronic structure of
matter.
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