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Notes

Tuesday April 10, Thursday April 12: Radiative transitions

Tuesday we considered spontaneous decay of an atom in an excited state, interacting
with the quantized electromagnetic field. The field (vector potential) is quantized
using the Coulomb (transverse) gauge condition, ∇· ~A = 0. We derived the formula
for the differential decay rate,

dΓ

dΩ
= (α/2π)ω|M|2 (1)

where

M =
1

mc
~ε ∗
k,λ · 〈B|

∑
i

(~pi + i~k × ~Si)e
−i~k·~xi |A〉 (2)

is the dimensionless matrix element between the initial and final atomic states. This
gives the rate for transitions to a particular final atomic state |B〉 and a particular
photon polarization ~εk,λ, with the photon wavevector in an infinitesimal solid angle

dΩ around ~k. The frequency is given by energy conservation ~ω = ~ck = EA −EB.
The sum is over the electrons in the atom.

Multipole expansion

It is often a good approximation to replace the exponential e−i
~k·~xi by 1. To see

why/when , note that xi in the atom is of order a/Z for an orbital seeing a nuclear
charge, or effective nuclear charge Z, so the exponent is ∼ ka/Z. The photon
energy is ~ck . Z2e2/a, where the upper bound is for maximal transition energies.
So ka . Z2α, hence ka/Z . Zα. Except for inner shell electrons of high Z atoms,
this is much smaller than unity. Hence it makes sense to expand:

e−i
~k·~xi = 1− i~k · ~xi +O(k2x2i ). (3)

The 1 term gives the electric dipole matrix element (E1) from the ~p term, and spin
magnetic dipole (SM1) from the ~S term in (2). The ~k · ~xi term gives the electric
quadrupole (E2) from the and orbital magnetic dipole (OM1) contributions, from
the symmetric and antisymmetric parts of pai x

b
i under ab index permutation.

For the electric dipole, one could work with matrix elements of ~pi, but usually
this is re-expressed in terms of the position vectors, using [H0, ~xi] = (−i~/m)~pi,
where H0 is the electronic Hamiltonian. Thus

1

mc
〈B|~pi|A〉 =

i

~c
〈B|[H0, ~xi]|A〉 =

i(EB − EA)

~c
〈B|~xi|A〉 = −ik〈B|~xi|A〉. (4)
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Together with (1) and (2), this yields for the E1 transition rate

dΓE1

dΩ
=
αω3

2πc2
|~ε ∗
k,λ · ~dBA|2, (5)

where the dipole matrix element ~dBA is defined by

~dBA =
∑
i

〈B|~xi|A〉. (6)

I’ll come back to the other terms in the multipole expansion, but for now let’s
consider the dipole selection rules. xi is an odd-parity vector operator with respect
to both ~L and ~J . So in order for dBA to be nonzero we must have ΠB = −ΠA, and
LB ⊂ 1 ⊗ LA, and JB ⊂ 1 ⊗ JA. This requires ∆L = ±1. ∆L = 0 is excluded by
the parity selection rule, and, if L = 0 then of course ∆L = −1 is meaningless. For
J it requires ∆J = 0,±1, unless JA = 0, in which case only ∆J = 1 is allowed.
Transitions not satisfying a selection rule are called “forbidden” for that kind of
transition.

Transitions from J = 0 to J = 0 are “absolutely forbidden” for one-photon tran-
sitions. Intuitively, this is because the photon carries angular momentum, but the
initial and final atomic states have zero angular momentum, thus violating angular
momentum conservation. You should worry that perhaps orbital angular momen-
tum of the photon-atom system could cancel the photon’s spin angular momentum,
but this isn’t possible, since the latter is parallel to ~k whereas the former is perpen-
dicular to ~k. For a more computational derivation of this absolutely forbiddeness,
note that for rotationally invariant states |A〉 and |B〉, the matrix element in (2)
must be parallel to ~k, so its inner product with the polarization vector vanishes.

Thursday, March 8: Degenerate electron gas, Thomas-Fermi model

Today I discussed the physics of the Thomas-Fermi model of the ground state of
an atom, and also explained the physics of the Chandrasekhar limit on the mass of
white dwarf and neutron stars.

Thomas-Fermi model

The TF model treats the electrons in the ground state of an atom as a spherically
symmetric, degenerate Fermi gas cloud. The key idea is to impose at each point
the relation n = (3π2)−1(pF /~)3 between the number density n and the Fermi
momentum pF , as if one had a uniform density system. pF in turn can be expressed
in terms of the local electrostatic potential V , using the fact that the ground state
is stationary: the Fermi kinetic energy plus the electrostatic potential energy must
be constant throughout space, otherwise charges could move around to minimize
the energy. This allows n to be expressed in terms of V . Finally, V is required to
satisfy Poisson’s equation, with source given by the nuclear charge density plus the
electron charge times n. This results in a second order ordinary differential equation
for V which can be solved numerically. The subject is discussed in Schwabl and in
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Littlejohn’s notes, so I will add here only a few remarks I made that are not in those
sources.

• For Ag (silver), [Kr]4d105s1, the TF energy levels agree with Hartree-Fock
calculations to within 1% for the 1s, 2s, and 2p levels, 2% for the 2p level, and
6% for the 4s level.

• One can show that the total Coulomb repulsion energy of the electrons is −1/7
times the total Coulomb attraction energy to the nucleus.

• One half the total charge lies within the radius ∼ 1.33Z−1/3a, where a is the
Bohr radius.

• The mean velocity of the electrons scales as ∼ Z2/3α.

• The approximation is valid in the range a > r > a/Z. For large Z, most of
the electrons lie in this range.

• The total ionization energy is ≈ 20.8Z7/3 eV, which compares well with the
experimental formula ' 20.8Z7/3 eV. For 26Fe (iron), Z7/3 ' 77, so the ex-
perimental total ionization energy is ' 1.2keV.

Degenerate stars

If you squeeze a degenerate Fermi gas into a smaller volume, the density goes up,
and hence so does the Fermi energy εF and the total energy. This means the gas
has a pressure, called Fermi pressure. A white dwarf star is supported by electron
Fermi pressure. This can support any mass against Newtonian gravitational collapse
if the nonrelativistic energy-momentum dispersion relation is used. However, if the
relativistic one is used, there is a maximum mass that can be supported, which is
called the Chandrasekhar mass, and is about 1.44M�. A white dwarf with the mass
of the sun is about as large as the earth. Similarly, a neutron star is supported by
neutron Fermi pressure. The maximum mass of a neutron star depends on unknown
aspects of the equation of state, but it seems to be around 2M�. The radius of a
neutron star is around 10-12 km.

Here are some rough estimates to support these claims. The gravitational energy
is Egrav ∼ −GM2/R ∼ −Gm2

pN
2/R, where mp is the proton mass and N is the

number of protons. (I’m ignoring all numerical factors.) The nonrelativistic kinetic
energy of the Fermi gas of electrons is EF ∼ Np2F /me. Now p2F ∼ ~2n2/3 ∼ N2/3/R2,
so the kinetic energy rises faster with R than the gravitational energy falls, and the
star is always supported.

Suppose however the Fermi momentum is relativistic, pF & mec. Then εF =
(p2F c

2 + m2
ec

4)1/2, which at large momentum becomes εF ∼ pF c, and so the total
kinetic energy is EF ∼ NpF c ∼ N4/3~c/R. Now since the gravitational energy is
∝ N2, while the kinetic energy is only ∝ N4/3, there is an upper limit for N beyond
which the star cannot be supported. This happens when Gm2

pN
2 & N4/3~c, i.e.

when N > (~c/G)3/2m−3
p . Since this must be dimensionless, the quantity (~c/G)1/2
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must be the Planck mass, mPlanck = 1019GeV = 10−5gm. A white dwarf star is thus
unstable when the mass is

M ∼ Nmp &

(
mPlanck

mp

)2

mPlanck ∼ 1033gm ∼M�. (7)

For a neutron star, we replace the electron gas by the neutron gas. Since the electron
mass doesn’t enter the result, and since the neutron and proton masses are equal to
within a tenth of a percent, the result at this level of accuracy is the same. Of course
the above were rough estimates dropping factors. Moreover, for neutron stars it is
important to take into account general relativity corrections to Newtonian gravity.

We should check that if N takes on the putative maximum value, then the Fermi
energy is indeed relativistic, otherwise our estimate is inconsistent. One way to do
this is to use the nonrelativistic result to compute the stellar radius, by minimizing
the total energy with respect to R. This yields R = N−1/3m−2

p m−1
e in Planck units

(~ = c = G = 1). On the other hand we showed above that the Fermi momentum
is pF ∼ N1/3/R, so we have pF ∼ N2/3m2

pme ∼ me, where I’ve used the result
we found above for the maximum N . This estimate thus suggests that the Fermi
momentum is becoming relativistic, so that the rough estimate is consistent, but I
wouldn’t say it’s definitive. A more careful computation seems required to draw a
definite conclusion, although perhaps just a more clever estimate could be adequate.

Thursday, March 1: Multi-electron atoms

1. The simple product of hydrogenic variational wavefunctions for a proton with
two electrons yields an upper bound −0.945 Ry to the ground state energy.
Since this is not less than −1 Ry, it is higher that the ionized state, H + e−,
so it fails to reveal the existence of the hydrogen anion, H−. Challenge: try
to find a trial wavefunction that establishes the existence of the bound state.
It will presumably need to incorporate correlations between the two electrons,
so that the electrons tend to be on opposite sides of the proton...If you find
one, please share it with the class.

2. Excited states of helium, as covered in Schwabl. I harped on the fact that while
the exchange integral “K” can be shown to be positive, it isn’t manifestly
positive, and I conjectured that if the Coulomb potential were modified, it
might not be positive. For instance: suppose the denominator is replaced
by d + w, where d is the distance between the electrons (the usual Coulomb
denominator), and w is a constant length. This would decrease the advantage
of the two electrons avoiding being in the same location, which leads me to
suspect that it might invalidate the positivity of the integral. Let me know if
you test this (for different w’s)...

3. Multi-electron atoms: I tried to summarize the salient points. Many more
details, and in particular explanations of the Hartree-Fock method of the self-
consistent field approximation, can be found in Schwabl or Littlejohn. I don’t
plan to delve into those details, but wanted to emphasize a conceptual point:
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the ground state, being an energy eigenstate of a rotationally invariant Hamil-
tonian, must be an eigenstate of F 2 (unless it’s degenerate, which it ain’t
except with respect to the mF value), hence has a definite total angular mo-
mentum quantum number F . To the extent that the hyperfine interaction can
be treated as a term proportional to ~I · ~J in the Hamiltonian, it can also be
taken to be an eigenstate of J , L and S, but that is only a (very good for
many purposes) approximation, valid in first order perturbation theory, but
(I think) not in general valid beyond that.

4. I explained the notion of electron configurations and shells, along the lines in
Schwabl. I also explained the meaning of the “term symbol” (a.k.a. “spectro-
scopic symbol”), 2S+1LJ , and how Hund’s rules allow you to infer — usually
correctly — the term symbol, given the configuration. I explained the example
of oxygen, showing it is 3P2. I’d like to do another couple of examples here:
iron (Fe), and ytterbium (Yb).

5. Example: The configuration of Fe is [Ar]4s23d6. The 4s shell is filled but the
3d shell has room for 2× 5 = 10 electrons, and contains only 6. To maximize
the spin, we can distribute 5 electrons with spin up among the 5 ml values,
and place the 6th electron with spin down in any one of the orbitals. That
yields S = 2. The maximal ml would be obtained if we placed the 6th electron
in the ml = 2 orbital, yielding a maximal total ml = 2, and therefore L = 2
is the maximal L accessible (given that S was already maximized). Finally,
since the shell is more than half-filled, we should maximize J given S = 2 and
L = 2, which yields J = 4, and therefore the term symbol is 5D4.

The states with higher J values but the same L and S are excited states,
and it’s interesting to inspect the energy differences. You can see them here:
https://physics.nist.gov/PhysRefData/Handbook/Tables/irontable5.htm.
If you compute the energy differences and divide by J , for adjacent levels,
[E(J)−E(J−1)]/J , you find that they are fairly constant: −104,−96,−92,−90,
in units of inverse cm. This near-constancy follows from the Landé interval
rule. That rule follows from the fact that, in first order perturbation theory,
the net effect of the spin-orbit coupling can be seen to be equal, for each con-
figuration and L and S, to an L, S dependent constant times the expectation
value of ~L · ~S = (J2 − L2 − S2)/2 = [J(J + 1) − L(L + 1) − S(S + 1)]/2.
The change of this quantity between J and J − 1, for fixed L and S, is J .
The adjacent energy differences are thus proportional to J , so if you divide
them by J , the result should be J independent. As to the magnitude of the
energy differences, for instance, between the ground state (J = 4) and the
next excited state (J = 3) the energy goes up by 416 inverse cm. Now 1/cm
is about 0.12 meV, so 416/cm is ∼ 50 meV. Compared to 10 eV this is 50
×10−4, which is ∼ 10−3. This is ∼ 10 times larger than the relative size of
relativistic corrections in hydrogen. Apparently, as the atomic number grows,
spin-orbit coupling strengths do increase, I suppose because the participating
electrons are moving faster and/or they are sometimes seeing a larger central
charge.
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6. The final example I want to mention here is Yb, since a student mentioned
using that atom in a quantum computer setting in the lab she works in, and
since it is used in the most stable atomic clock. (The quantum computer
may use trapped ions not neutral atoms... To read about the clock, see the
article linked on the Supplements page.) The ground state configuration is
[Xe]4f146s2. The letter f denotes l = 3, whose shell has 2× 7 = 14 states, so
it is a filled shell, which has S = 0 and L = 0, and the term symbol of the
ground state is thus 1S0.

The two 6s electrons are like in helium, so among the excited states is a spin
triplet (S = 1) (like orthohelium) that also has orbital angular momentum
L = 1, and the fine structure of this level includes J = 0, 1, 2 sublevels. The
J = 0 term has term symbol 3P0. In this state, the spin and orbital angular
momenta are each nonzero but they add to zero. The one-photon transition
from this state down to the ground state is “completely forbidden” as we’ll see
later in the semester, because the ground state also has J = 0, and there is no
J = 0 to J = 0 one-photon transition. If that were the whole story the lifetime
of this state would be extremely long (years?). That would be the case for one
of the I = 0 isotopes of ytterbium. However, the long lifetime also means the
transition line “width” is extremely narrow, so it is too difficult to excite the
transition to be practical. The Yb-171 isotope, on the other hand, has nuclear
spin I = 1

2 , and therefore a magnetic dipole moment, which introduces a
hyperfine interaction. This means that the 3P0(F = 1

2) state mixes with the
3P1(F = 1

2) state, and the latter state has an allowed decay mode. Although
not as narrow, it’s still a very narrow transition, and correspondingly very
long lived, since a spin flip is needed to get from the triplet to the singlet spin
state, and since (I presume) the amount of admixture of the latter state is
small.

Tuesday Feb. 20: Hyperfine interactions

Today I finished discussing the hyperfine splitting of atomic energy levels. Since I
approached the material rather differently than does Schwabl or Littlejohn, I wanted
to make a brief synopsis here. The following main points were made:

1. Reviewed definition of gyromagnetic ratio and g-factor.

2. Hyperfine interactions are interactions of nuclear magnetic dipole or electric
quadrupole moments with the field produced by the electrons, evaluated at
the nucleus. One could also view this the other way around: the influence of
nulcear multipole fields on the electron. Either way, it’s the interaction energy
that matters, and we’ll view it the first way.

3. An electric dipole moment (EDM) is forbidden unless the Hamiltonian violates
both time reversal symmetry and parity symmetry. (See my Supplement on
Nuclear moments.) Parity is strongly violated by the weak interactions, and
time reversal symmetry is violated by the complex phases in the quark mixing
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matrix of the standard model, but that would be a very small effect in nuclei,
so some very small EDM is expected, but none has been detected as yet. The
main search is for a neutron EDM. The present upper limit is 105 times larger
than the value expected from the quark mixing matrix, but other theoretical
considerations suggest that there should be a larger value, and finding it could
be an important sign of new physics. See the Supplement for a few more
details.

4. The nuclear magneton e0/(2mpc) is smaller than the Bohr magneton e0/(2mec)
by a factor me/mp ' 1/1836 ∼ 10−3.

5. The magnetic hyperfine interaction Hamiltonian isHhf,mag = −~µnucleus· ~Belectrons,
where the electronic magnetic field is evaluated at the nuclear position. Us-
ing the Wigner-Eckart theorem, I showed that the expectation value of this
Hamiltonian in states of definite |FIJmF 〉 is equal to the expectation value
of ~I · ~J , times two factors that depend only on I and J . (Here I and J are
the nuclear and electronic total angular momenta, and F is the overall total
angular momentum of the atom.) The first factor is the nuclear gyromagnetic
ratio. The second factor depends on the electronic state. (The key observation
behind the argument is that ~µnucleus is a nuclear vector operator and ~Belectrons

is an electronic vector operator. Using this, we may invoke the aspect of the
Wigner-Eckart theorem that states that matrix elements of any two tensor
operators of the same rank are proportional to each other.)

6. When treating the hyperfine interaction as a perturbation, we face the fact
that the states labeled by different mI & mJ are degenerate, so we must
find the eigenvectors and eigenvalues of the hyperfine Hamiltonian truncated
to the degenerate (IJ) subspace. In view of point 5., this is easy, because
~I · ~J = (F 2 − I2 − J2)/2 = [F (F + 1) − I(I + 1) − J(J + 1)]/2, i.e., ~I · ~J is
already diagonal in the |FIJmF 〉 basis. The level shifts thus have the form
A(I, J)[F (F + 1)− I(I + 1)− J(J + 1)].

7. The most fundamental example is the ground state of the hydrogen atom. The
unperturbed electronic orbital state is 1s, and the spin state is arbitrary, while
the nuclear spin state is also arbitrary. Both the electron and the proton have
spin-1/2, so I = 1/2 and J = 1/2, hence the possible values of F are 1 and
0, the triplet and singlet. The corresponding values of [F (F + 1)− I(I + 1)−
J(J+1)] are 1/2 and −3/2. It turns out that the coefficient A here is positive,
so the ground state is the singlet, which is depressed three times as much as
the triplet is raised. The frequency of this transition (i.e. the energy difference
divided by hbar) is around 1.4 GHz, and the wavelength is the famous “21 cm
line”.

8. A super important example to physics is the ground state of Cesium-133. Ce-
sium is an alkalai atom, with a 6s valence electron. All the other electrons
make up closed shells, which are exactly rotationally invariant, and so con-
tribute nothing to the magnetic moment of the electrons. The nuclear spin
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is I = 7/2, so the possible values of F are 4 and 3. The energy difference
between these is radiation with a frequency around 10 GHz. In fact the SI
unit of the second is defined to be exactly 9,192,631,770 periods corresponding
to this frequency.

9. And now what about electric quadrupole moments? See the Supplement for
the definition. The key thing is that the quadrupole moment operator is
a rank 2 irreducible tensor operator. Hence the selection rule aspect of the
Wigner-Eckart theorem tells us that a spin-1/2 nucleus cannot have an electric
quadrupole moment: 〈12 |Q2|12〉 = 0, because 1

2 is not in 2 ⊗ 1
2 . Any nuclear

spin greater than 1/2 however does support an electric quadrupole, and in
particular the Cs-133 nucleus does. So why don’t we need to consider how
that affects the fine structure of the ground state of Cs-133? Why can we
conclude it is only split into a doublet, corresponding to F = 4 and F = 3?

The answer, again, comes from the selection rule. To understand this, we
should first write down the interaction energy between the nuclear quadrupole
moment and the electronic field. I gave an only partly true explanation of this
in class, so let me try to fix it here: The electrostatic interaction energy of a
charge distribution ρ and an electrostatic field Φ is

∫
ρΦdV . This leads to a

quadrupole interaction energy 1
2Q

ijΦ,ij(0) (see below for a derivation). Since
Qij is traceless, the trace part of Φ,ij(0) doesn’t contribute here, so we may
replace this by

1
2Q

ijWij , where Wij = (Φ,ij − 1
3∇

2Φδij)(0). (8)

Wij is an operator on the electronic Hilbert space, since Φ is generated by the
electron(s), and in fact it is an irreducible tensor operator of rank 2. Hence
its expectation value vanishes in electronic states with J = 0 or J = 1/2. In
particular, in the case of Cs-133, 〈6s|Wij |6s〉 = 0. All of which is to say that,
although the cesium-133 nucleus has a reasonably large electric quadrupole
moment, it can’t “feel” the electric field generated by the 6s electron!

Derivation of the quadrupolar interaction energy

Let’s expand Φ around the origin, taken to be the center of mass of the nucleus,
viz,

Φ(x) = Φ(0) + Φ,i(0)xi + 1
2Φ,ij(0)xixj + . . . (9)

The i and j indices are the cartesian coordinate indices, the comma indicates
partial derivative, and repeated indices are summed over. Now we can carry
out the interaction energy integral with this expansion, and we get

QΦ(0) + piΦ,i(0) + 1
2Q

ijΦ,ij(0) + 1
6(
∫
ρx2dV )∇2Φ(0) + . . . (10)

The last term is needed because in order to express
∫
ρxixjdV in terms of

the quadrupole moment Qij we must subtract and then add back in the trace
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part: ∫
ρxixjdV =

∫
ρ(xixj − 1

3x
2δij)dV + 1

3δ
ij
∫
ρx2dV. (11)

The first term in this expansion (10) corresponds to the Coulomb interaction,
the second term is the EDM discussed above, which nearly vanishes, and the
third term is the electric quadrupole interaction. The last term is a second
moment of the charge distribution, multiplied by the Laplacian of the poten-
tial evaluated at the origin. According to Maxwell’s equations, the latter is
proportional to the electron charge density at the origin. This term represents
a nuclear finite size correction to the Coulomb potential, and is a scalar, so it
doesn’t break the degeneracy among the mI ,mJ states.
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