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1 Energy

1.1 Potential energy

The concept of potential energy arises by considering forces that are (minus)
the gradient of a function, the ”potential”. For such forces, if the potential is
time independent, the force is said to be ”conservative”, and the work along
a path is just minus the change of the potential, thanks to the fundamental
theorem of calculus applied to line integrals. The work for such a force is
therefore independent of the path that connects two given endpoints. By
Stokes’ theorem, this is related to the fact that the curl of such a force is
zero, since the curl of the gradient of anything is zero.

Central forces F = f(r)r̂ are derivable from a potential. The key is that
∇r = r̂, which I explained both computationally and in terms of the geomet-
rical interpretation of the gradient: it points in the direciton of greatest rate
of change of the function, and has magnitude equal to that rate of change.
Thus we can write

f(r)r̂ = f(r)∇r = ∇
(∫ r

dr′f(r′)

)
(1)

which shows that the potential for this radial force is U(r) = U(r) =
−
∫ r
f(r′)dr′.
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2 Variational calculus

2.1 Euler-Lagrange equations

I explained the nature of a “functional” and what it means for that to be
stationary with respect to variations of the function(s) that form its argu-
ment. As an alternative to the method described in the book, I re-derived the
Euler-Lagrange equations without introducing any particular path variation
eta.

- Examples: soap film stretched between hoops, length of a curve in the
Euclidean plane. We solved this three ways:

1) paths y(x) [could instead take x(y)]

2) parametrized paths x(t), y(t)

3) parametrized paths r(t), θ(t)

using the E-L equations. In the second case, we noted that the path param-
eter has not been specified, so there is no reason why ẋ(t) and ẏ(t) should be
constant. But we found that ẋ(t)/ẏ(t) is constant, which implies that dx/dy
(or dy/dx) is constant. In the 3rd case, the eqns are complicated, but if we
use the translation symmetry to place the origin of the coordinate system on
the curve, we see that the theta equation implies θ̇ = 0, which is certainly
the description of a straight line through the origin.

3 Lagrangian Mechanics

Pulled out of a hat the definition of the Lagrangian, L = T − U , and the
action S =

∫
Ldt, also called Hamilton’s principal function. Showed that for

a particle in 1d the condition that S be stationary under all path variations
that vanish at the endpoints is equivalent to Newton’s second law. This is
called “Hamilton’s principle”. Then generalized this to a particle in 3d, then
to two particles in 3d interacting with each other via a potential. It general-
izes to any number of particles.

- It’s quite remarkable that the collection of vector equations of a system
of a system of particles all come from Hamilton’s principle, which refers to
the variation of the integral of a scalar. Adding more particles or dimensions
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increases the number of functions that the action depends on, but it’s still
the integral of a scalar.

- Although it looks arbitrary at first, the action approach is actually the
deeper approach to mechanics. The action approach also governs relativistic
mechanics, and even field theory. For example Maxwell’s equations and even
Einstein’s field equations of gravitation are all governed by an action princi-
ple. In the case of fields, the Lagrangian is an integral over space. Moreover,
it is via the action that the role of symmetries is best understood and ex-
ploited. Also, as a practical matter, one of the most powerful things about
the Lagrangian formalism is the flexibility of the choice of variables, since by
using variables adapted to a system one can simplify the equations. Choice
of variables can also be useful in exploiting approximation schemes.

- The significance of the action and Hamilton’s principle can be under-
stood from the viewpoint of quantum mechanics. In Feynman’s path
integral formulation, each path is assigned the amplitude exp(iS/h̄), where
h̄ is Planck’s constant. (It only makes sense to exponentiate a dimensionless
quantity. S has dimensions of action = (energy)× (time) = (momentum)×
(length), the same as h̄.) The total amplitude is the sum over all paths.
Destructive interference occurs when the action of two paths differs by some-
thing comparable to h̄ or greater. This is how h̄ sets the scale of quantum
effects. At the classical path, the variation of S vanishes, so nearby paths
interfere constructively. In the classical limit, the path is thus determined by
the condition that S be stationary. You can read about this in the Feynman
lectures, for instance.

- What is action? For a free particle motion the action is S =
∫

1
2
mv2 dt,

which is the average kinetic energy times the total time interval. On the
classical path (solution to the equation of motion) v = v0 = const. We can
easily show this is the minimum for all paths. In the presence of a potential,
the action is still a minimum on the classical path, provided the two times
are close enough. For a harmonic oscillator, ”short enough” means less than
half the period.

- Can change variables freely in describing the configuration of the sys-
tem. Example: change from (x1, x2) to (xcm, xrel).
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3.1 Constraints

When the configuration coordinates of a system are constrained by physical
conditions, then one can just impose the constraint in the the Lagrangian,
eliminating a constrained degree of freedom and omitting the potential that
enforces the constraint. This is correct because after imposing the constraint,
although the variations of the original coordinates are restricted, they are
all valid variations, so the action must be stationary with respect to them,
so the corresponding E-L equations must hold. If there are enough E-L
equations to determine the time evolution of the remaining coordinates, then
the description is complete.

Let’s illustrate this with the example of a simple pendulum hanging from
a string of fixed length. In terms of spherical coordinates based at the vertex,
the mass can move freely in θ and φ, but the r degree of freedom is constrained
to be equal to a fixed length r0 by some constraining potential Uconst(r)
arising from the microscopic structure of the string. If r is set equal to r0 in
the Lagrangian, the θ and φ equations remain valid and they determine the
evolution of these coordinates.

A more explicit argument goes as follows. The full Lagrangian is

L = 1
2
m(ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2) +mgr cos θ − Uconst(r). (2)

The Lagrange equation for r is

mr̈ = mg cos θ − U ′const(r). (3)

If we know that the constraint is satisfied at r = r0, then we can just omit
Uconst(r) and set r equal to r0 in the Lagrangian. It’s that simple!

Note that if we solve the same problem with Newton’s second law, the
unknown string tension is one of the forces, so it must be found or at least
eliminated by combining the components of Newton’s law. The Lagrangian
method never introduces the tension in the first place. Nevertheless, if we
want to know the tension, we can still find it using the Lagrangian: if r = r0,
the r-equation (3) implies that the force of constraint is

− U ′const(r0) = −mg cos θ. (4)

That is, the force of constraint is equal to whatever it must be in order for
the r-equation to be satisfied when r = r0. All this generalizes to any system.
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To further illustrate the ideas, let’s re-do the oscillator problem using
Cartesian coordinates (x, y, z). The Lagrangian before the constraint is L =
1
2
m(ẋ2 + ẏ2 + ż2) − mgz. Then the constraint is x2 + y2 + z2 = r2

0, which
can be solved for any one of the three coordinates. Let’s solve it for z, viz.
z = (r2

0 − x2 − y2)1/2. Then ż = −(xẋ+ yẏ)(r2
0 − x2 − y2)−1/2, so we have

L = 1
2
m(ẋ2 + ẏ2) + 1

2
m

(xẋ+ yẏ)2

r2
0 − x2 − y2

−mg(r2
0 − x2 − y2)1/2 (5)

Notice that φ doesn’t appear in the Lagrangian (2). It is said to be an
ignorable coordinate. The reason it does not appear is that φ translation is
a symmetry of the system. Correspondingly, pφ ≡ ∂L/∂φ̇, the “generalized
momentum conjugate to φ”, is conserved. This is nothing but the angular
momentum about the vertical axis.

- Planar pendulum (φ = const) in harmonic oscillator approximation:
in the equation of motion, θ̈ = −(g/r0) sin θ, one may expand sin θ =
θ − (1/6)θ3 + . . . and drop all but the linear term to get the harmonic
oscillator eqn. for an oscillator with frequency ω =

√
g/r0. The correc-

tion term in the equation of motion has relative size (1/6)θ2, which for
θ = π/4 (45◦) is only about 0.1, i.e. it’s a 10% correction. Alterna-
tively, one make the small angle approximation in the Lagrangian, expanding
cos θ = 1 − (1/2)θ2 + (1/4!)θ4 − . . . . (Note that the correction in the La-
grangian has relative size (1/12)θ2, which is half as large as the correction in
the equation of motion.)

- Circular pendulum motion (θ = const): The θ-equation with θ̇ = 0 im-
plies that the angular frequency is

√
g/(r0 cos θ). At θ = 0 this is the same

as for the planar pendulum, which makes sense because the circular oscil-
lation is the superposition of two planar oscillations, a quarter cycle out of
phase. As θ approaches π/2 the frequency goes to infinity. This makes sense
because the tension must go to infinity in order for the vertical component
of the tension force to balance the vertical gravitational force.

- Pendulum with sliding pivot point: consider a standard planar pen-
dulum, but with the pivot point at the top free to slide in the horizontal
direction. Then the configuration is described by two coordinates, e.g. the
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horizontal position of the pivot point and the angle of the pendulum from
the vertical. We wrote out the Lagrangian for this system.

- Extended bodies: can think of this as a huge number of particles, con-
strained by atomic forces so that the whole system has only a few degrees
of freedom. As an example I considered a “physical pendulum”, i.e. a solid
body pivoting around a fixed axis in a gravitational field. The kinetic energy
can be written as a sum over all the mass elements of the body, T =

∑
1
2
miv

2
i .

If ri is the distance of the ith mass element from the axis, its speed is riθ̇.
So T = 1

2
Iθ̇2, where I =

∑
mir

2
i is the moment of inertia. Similarly, the

potential energy can be written as a sum U =
∑
migyi, where yi is the

vertical component of the position vector of the ith mass element. Now∑
miyi = Mycm, where M is the total mass and ycm is the vertical compo-

nent of the center of mass position. Moreover, ycm = `(1− cos θ), where ` is
the distance from the axis to the center of mass. So the Lagrangian for the
pendulum is L = 1

2
Iθ̇2 −Mg`(1 − cos θ). By comparison with a harmonic

oscillator Lagrangian, we can read off the oscillation frequency of this pen-
dulum, ω =

√
Mg`/I. For example, for a uniform rod of length R, the CM

is in the center, so we have ` = R/2. Also, I = (M/R)
∫ R

0
dx x2 = 1

3
MR3, so

ω =
√

3g/2R.

3.2 Effective potential; example of spherical pendulum

How to set up the problem if there is motion in both the θ and φ directions.
Write out both equations of motion. The φ equation will be the the angular
momentum conservation law, and enables one to solve for φ̇ in terms of the
conjugate momentum pφ and θ. Then this can be used to eliminate φ̇ from
the θ equation, reducing the θ motion to a one dimensional problem with
an effectve potential Ueff(θ). Since the energy is conserved, it’s simpler to
just eliminate φ̇ from the expression for the total mechanical energy, and to
identify the effective potential by its appearance in the energy expression.
Setting the time derivative of the energy to zero we can always recover the θ
equation of motion. Important note1 : you cannot substitute for φ̇ in terms
of pφ in the Lagrangian before finding the θ equation. This would introduce θ
dependence that is different from what was in the Lagrangian. It’s incorrect,
because this extra θ dependence comes from the relation between φ̇ and pφ,
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treating the arbitrary conserved pφ as a constant. Important note2 : Another
way an effective potential can arise is if the φ coordinate is constrained to
rotate at a given angular velocity by an external agent. Then the angular
part of the kinetic energy behaves like a term in the effective potential of the
form −1

2
mΩ2r2.

- small oscillations of the spherical pendulum: We showed before that for
any fixed θ0 there is a circular motion, with some associated angular momen-
tum. Now you can perturb that motion to introduce an oscillation, whose
frequency will be determined by ω2 = U ′′eff(θ0).

3.3 Spinning hoop

Made several points about this.

1) The mass drops out of the equations of motion. It affects the forces of
constraint, but as the Lagrangian is proportional to m, not the equa-
tions of motion. This derives from the fact that both the inertia and
the force of gravity are proportional to m. This is of course a special
property of gravity.

2) We can choose units with m = g = R = 1. This simplifies the equa-
tions, but you loose the ability to check your algebra with dimensional
analysis. You put the m, g, R back in at the end using dimensional
analysis.

3) Went over the solution of the problem of small oscillations about the
equilibrium points in detail. Showed how the evaluation of U ′′eff(θ0)
is simplified by writing Ueff(θ) as a product of factors, one of which
vanishes at each equilibrium point. Only the derivative of the latter
factor survives when evaluating U ′′eff(θ0).

4 Hamiltonian and Conservation of energy

Momentum and angular momentum conservation derive from space trans-
lation and rotation symmetry respectively. Energy conservation arises from
time translation symmetry. We derived the conserved quantity that arises
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from time translation symmetry of the Lagrangian. If there is no explicit t
dependence in L, then the “Hamiltonian”,

H = piq̇
i − L, (6)

is conserved. Here the index i appears twice, once on pi and once on q̇i. We
use the Einstein summation convention according to which repeated indices
appearing in the same term (i.e. on multiplied objects) are summed over
all their values. What is the meaning of H? For a Lagrangian of the form
L = 1

2
Aij(q)q̇

iq̇j − U(q) we find H = 1
2
Aij(q)q̇

iq̇j + U(q). So if the kinetic
energy is T = 1

2
Aij(q)q̇

iq̇j, then H = T + U is the total mechanical energy.

Index gymnastics: In deriving the form of H in the previous paragraph,
we went through some index gymnastics.

We considered a relatively simple example where H is not the total me-
chanical energy: the bead sliding on a hoop driven by an external torque to
rotate at constant angular frequency ω. The Lagrangian is

L = 1
2
mR2θ̇2 + 1

2
mω2R2 sin2 θ −mgR(1− cos θ).

The second term is the azimuthal part of the kinetic energy, but it contains
no time derivatives of the generalized coordinate θ, so shows up as a con-
tribution to the effectve potential Ueff(θ). This means that H is not the
total mechanical energy, but rather the total mechanical energy minus twice
the azimuthal kinetic energy. It makes sense that mechanical energy is not
conserved, since the driver of the rotation of the hoop puts energy into the
particle motion. And the orientation of the constraint forces is imposed by
external time dependence, so the system really has time dependence, even
though the Lagrangian for the generalized coordinate does not. Also, angular
momentum is not conserved, since the hoop at each instant is an external
constraint that violates rotational invariance. So what is H, this conserved
quantity. Is there a symmetry that it corresponds to??

5 Properties of the action

Free particle at rest: v = 0 path has the minimum action, S = 0.
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Freely falling particle in uniform gravitational field: minimum action neg-
ative, from up and down motion. If particle goes up a height h, both v and
U scale proportional to h, but T scales as h2. So for small enough h, the
Lagrangian T − U will be negative. The h that gives minimum for constant
velocity up and down happens to be the same as the h that gives the height
of the classical path. (Can you find an argument showing that this must be
the case?)

If you bring in circular orbits then, for a sufficiently long time interval,
there is a second path, the circular orbit. The action on that path is a saddle
point of the action, not the minimum.

Ambiguity of the Lagrangian: You can add a total time derivative
without changing the equations of motion, because the action for L+ df/dt
is the action for L plus [f(t2) − f(t1)]. With fixed endpoints, these actions
differ by a constant (asuuming f = f(q, t) depends on q and t but not on time
derivatives of q), so they have the same stationary points. A nice example is
in the homework, of the pendulum in an accelerating elevator.

Change of inertial frame (Galilean transformation): What is the
change of the action when you change inertial reference frames? The defini-
tion of kinetic energy changes: the velocity wrt the new frame is v′ = v− v0,
where v0 is the velocity of the new frame wrt the old one. The kinetic energy
in the new frame is therefore

1
2
mv′2 = 1

2
mv2 −mv0v + 1

2
mv2

0.

The difference of the two definitions of kinetic energy is a total time deriva-
tive: T ′ = T+df/dt, with f = −mv0x(t)+ 1

2
mv2

0t). The definition of potential
energy doesn’t change since it is just a function U(x, t) of position in space
and time, which makes no reference to a particular frame. (Of course the
formula for it would look different when written using the new coordinate.)
So the Lagrangian changes by a total time derivative, so the action changes
by a constant, for fixed endpoints.

Using this we can argue that the free particle motion at constant velocity
minimizes the action: go into the reference frame where the velocity is zero,
where clearly the action is minimized.
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6 Electromagnetic field

Lorentz force:
F = q(E + v ×B). (7)

Maxwell’s equations (in SI units):

∇ · E = ρ/ε0 Gauss’ law (8)

∇×B− 1
c2
∂tE = µ0j Ampere-Maxwell law (9)

∇ ·B = 0 no magnetic monopoles (10)

∇× E + ∂tB = 0 Faraday’s law (11)

6.1 Scalar and vector potentials

For static magnetic fields we have ∇× E = 0, hence there exists a scalar V
such that E = −∇V . The electrostatic potential energy of a charge is then
qV , which can be used in the Lagrangian to get the equation of motion. But
if the electric field has a part that is induced by a changing magnetic field,
then ∇ × E 6= 0, so E is not the gradient of a scalar. Moreover, how is a
static magnetic field, incorporated into the Lagrangian?

The absence of magnetic poles (10) implies that there exists a vector
potential A such that B = ∇×A. In terms of the vector potential, Faraday’s
law (11) becomes ∇× E + ∂t∇×A = 0. Since the partial derivatives in ∂t
and ∇ commute, this can also be expressed as ∇ × (E + ∂tA) = 0. This
implies that there exists a scalar potential V such that E + ∂tA = −∇V .
Thus the fields can be written in terms of potentials as

B = ∇×A, E = −∇V − ∂tA. (12)

To arrive at this we used the homogenous Maxwell equations (10,11) that
do not involve the charge and current density source terms. Conversely, if
E and B are defined in terms of potentials via (12) then the homogenous
Maxwell equations hold automatically.

The potentials are not unique: one can make a gauge transformation
to new potentials

A′ = A +∇f, V ′ = V − ∂tf (13)

which yield the same B and E for any function f . This is called gauge
invariance of the fields.
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6.2 Lagrangian for charge in an electromagnetic field

What about the action? The electromagnetic coupling term should be

1) a scalar - the action is a scalar

2) linear in the potentials - since the Lorentz force is linear in the fields

3) gauge invariant - since the Lorentz force (7) involves only the fields,
not the potentials

There must be a term in the Lagrangian like in the electrostatic case, −qV .
This is a scalar and linear in V . However it is not gauge invariant: V changes
by −∂tf (13), so the Lagrangian changes by q∂tf . If this were a total time
derivative it would not change the equations of motion, because it would only
change the action by a constant independent of the path. However, it is only
the partial derivative. It doesn’t include the derivative wrt the t-dependence
in the x argument of f(x(t), t):

d

dt
f(x(t), t) =

∂

∂t
f +

dx

dt
· ∇f. (14)

So this can’t be the whole story.
Something else in the Lagrangian must generate the second term on the

right hand side of (14), so that the action will be gauge invariant. In fact,
a vector potential term q(dx/dt) · A is just what the doctor ordered, since
under a gauge transformation (13) A changes by ∇f ! So we seem to have
no choice but to define the electromagnetic part of the Lagrangian as

Lem = q(v ·A− V ), (15)

where v = dx/dt is the charge’s velocity vector. Note that the action defined
by (15) satisfies the three conditions listed above. And, indeed, the Euler-
Lagrange equations for a particle with L = T + Lem are equivalent to the
Lorentz force law (7). It’s quite remarkable that the requirement of gauge
invariance is so powerful. This sort of reasoning, applied to a notion of gauge
invariance where the fields are matrix-valued, is what guided physicists to
the structure of the standard model of particle physics.

13



7 Lagrange multipliers and constraints

8 Tidal force and potential

One can understand the form of the tidal force once and for all, in terms of
the Taylor expansion of the potential. The gravitational force is F = −∇U ,
where U is the gravitational potential energy of the particle. Tides are caused
by the variation of this force from place to place. The rate of variation at
a point is given by the gradient of the force, but the force is a vector, so
this really means the gradient of each of the components of F. But then this
gradient is a vector whose components are vectors...i.e. it is a tensor. This
may sound obscure, but it is really simple if we use Cartesian coordinates
and the index notation.

Since we are talking about gravity, it’s nice to work instead with the local
gravitational acceleration field g = F/m, since that’s the same for all test
masses on which the force may act. Correspondingly, let’s denote Ũ = U/m.
Then g = −∇Ũ , which in index notation is

gj = −∂jŨ . (16)

The gradient of the acceleration is then just the tidal tensor

∂igj = −∂i∂jŨ , (17)

i.e. just the second partial derivatives of the potential.
To evaluate the lunar tidal force on the Earth, we need to know how the

gravitational force or acceleration differs at different points on the Earth.
Since these points are all close to the center of the Earth, compared to the
Earth-Moon distance, it makes sense to expand the potential around a point
at the center of the Earth in a Taylor series. Let’s call the vector from the
Moon to the Earth d0. The Taylor expansion is then

Ũ(d0 + s) = Ũ(d0) + [∂iŨ(d0)]si + 1
2
[∂i∂jŨ(d0)]sisj + . . . (18)

and the corresponding expansion for the acceleration is

gi(d0 + s) = −∂iŨ(d0)− [∂i∂jŨ(d0)]sj + . . . . (19)

The first term is constant, like a uniform gravitational field. This is what
we subtract out when working in the local freely falling, accelerating frame.
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The remainder is linear in the dispacements sj, and depends on direction.
To evaluate the derivatives of the 1/r potential all we need is ∂jr = rj/r,
and ∂ir

j = δji . Thus ∂jr
−1 = −r−3rj, and so

∂i∂j
1

r
= r−3(3r̂ir̂j − δij). (20)

Note that the trace of the left hand side is the Laplacian of 1/r which van-
ishes, and indeed the trace of the right hand side vanishes. Up to a coefficient,
this is the tidal potential of the field of a point mass, and it is a good approx-
imation to the tidal potential of the Moon at the location of the Earth. The
next term in the Taylor expansion is smaller by a factor ∼ Re/d0 ∼ 1/60.

The tidal potential of the Moon at the Earth is thus

Utidal(d0 + s) = −GMmm

2d3
0

(3d̂i0d̂
j
0 − δij)sisj (21)

which for points on the surface of the Earth evaluates to

Utidal(d0 + s) = −GMmmR
2
e

2d3
0

[3(d̂0 · ŝ)2 − 1] (22)

For s along the Earth-Moon line the factor in the square bracket is equal
to 2, while for s perpendicular to that line it is −1. This agrees with the
expressions in (9.16) and (9.17) of Taylor (though those include the potential
at the center of the Earth as well).

9 Velocity in a rotating frame

Let’s see how to describe motion in a rotating frame, and how that is related
to the description in an inertial frame. To keep the formulas simple and
explicit, let’s assume the rotation is fixed around the z-axis, Ω = Ωẑ. The
inertial orthonormal basis vectors are x̂0, ŷ0, and the rotating basis vectors
are x̂, ŷ. The latter satisfy

˙̂x = Ω× x̂ = Ωŷ (23)
˙̂y = Ω× ŷ = −Ωx̂. (24)

The position vector r0 = r can be expressed using either the inertial or the
rotating basis vectors x̂, ŷ:

r0 = x0x̂0 + y0ŷ0 = xx̂ + yŷ. (25)
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The velocity vector in the inertial frame is by definition

v0 = ṙ0 = ẋ0x̂0 + ẏ0ŷ0. (26)

What one means by the velocity vector in the rotating frame is

v = ẋx̂ + ẏŷ (27)

Note here the important fact that although the unit vectors are not constant
in time, they are not differentiated in the definition of v. In fact if they
were, then v would be identical to v0. Hence the relation between the two
velocities is

v0 = v + x ˙̂x + y ˙̂y = v + Ω× r. (28)

Note there is an inconsistency in the notation: since r = r0, it must be
that ṙ = ṙ0. However, the notation ṙ is used for what I’ve called v above,
and v 6= v0. The upshot is that the notation ṙ is, according to me, being
used inconsistently, if the dot means the same thing in both equations. The
point of course is that the dot does not mean the same thing... oh well. It’s
potentially confusing and you have to be careful...

10 Special Relativity

To write the Lagrangian or Newton’s second law we use certain structures
that are assumed present in space and time in order to define velocity, speed,
and the action:

1) absolute time function,
2) metric of spatial distance at one time,
3) family of inertial frames.

In place of 3), Newton introduced an absolute standard of rest, but Newto-
nian physics depends only on the family of inertial frames, not on which one
of those frames is used as the standard of rest. The reason he did this is
that it is much simpler, in fact trivial, to specify mathematically. The math
needed to define a family of inertial frames without selecting one of them as
preferred is much more subtle in Newtonian physics and was not available to
Newton. In special relativity, all of these structures are unified into one, the
spacetime interval. Before we get to the quantitative aspects of relativity,
let’s discuss the qualitative aspects...
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The key fact giving rise to special relativity theory, historically, is that
the speed of light as described by electrodynamics, and measured by exper-
iments, does not depend on the speed of the source. This alone could have
been accounted for by supposing that there is a preferred frame, the rest
frame of the aether, in which the light is propagating. However, nothing
else in electromagnetism suggested that the theory has a preferred frame,
and in fact the symmetry group of Maxwell’s equations is the Lorentz group,
consisting of rotations and “boosts”, i.e. velocity changes. Moreover, noth-
ing in Newtonian mechanics indicated the existence of a preferred frame.
And when people looked both experimentally and theoretically for preferred
frame effects in electrodynamics, they found none. As we’ll see, the apparent
contradiction between the relativity of inertial motion and the absoluteness
of the speed of light is reconciled in special relativity.

Since the speed of light is independent of the source, the paths followed by
light rays is space and time trace out an absolute structure that is a property
of spacetime. This can be visualized as a lightcone at each spacetime event.
Instead of an absolute time slicing of spacetime like in Newtonian physics,
we have an absolute family of light cones. At an event p, the inside of one
half of the lightcone is the future, the inside of the other half is the past,
and the rest is the elsewhere. Points in the future or past of p are timelike
related to p, points in the elsewhere are spacelike related to p, and points on
the cone are lightlike related. The point p can only be influenced by events
inside or on its past lightcone, and can only influence events inside or on its
future lightcone. So the lightcones define the causal structure of spacetime.
In Newtonian physics, the causal structure is defined by the absolute time
function.

In Newtonian spacetime, events at the same absolute time are simulta-
neous. In relativity, there is no absolute meaning of simultaneity. A given
observer can use radar to define a notion of simultaneity, but that notion
will depend on the observer. Since all inertial observers are equivalent, there
is no preferred definition of simultaneity. Spacelike related points are always
“simultaneous” as defined by some observers and not by others. Timelike or
lightlike related points are never simultaneous as defined by any observer.

Diagrams illustrating the relativity of simultaneity, and contrasting New-
tonian and relativistic spacetimes are at
http://www2.physics.umd.edu/%7Ejacobson/171c/simul.jpg
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10.1 Spacetime interval

10.1.1 Proper time

In special relativity (SR), the elapsed time between two events in itself is not
defined. Elapsed time is a property of a timelike path in spacetime. It should
be thought of as “arc length” along a timelike curve. It is called the proper
time along that curve. Different paths connecting the same pair of events in
general have different elapsed proper times. This is called the twin “paradox”,
but it is only paradoxical from a Newtonian absolute time perspective. From
the SR point of view it is perfectly natural. The analogy with path length
in Euclidean geometry is perfect: there is nothing paradoxical about the
fact that different curves connecting the same two points can have different
lengths.

10.1.2 Pythagorean theorem of spacetime

The spacetime interval, or just “interval”, is the thing that determines the
structure or “geometry” of spacetime. It defines the lightcone, proper times,
lengths, and the inertial structure as well. Logically, one should just postulate
it, and derive consequences. But we can also infer its form and its properties,
just by appealing to the postulates of relativity and applying them to what
are assumed to be inertial motions, which are a preferred class of timelike
paths in spacetime. We also call these paths “inertial observers”. We assume
that spacetime has the same properties at any location.

Consider two inertial observers O1 and O2 who pass through the same
event E and are moving relative to each other (see Figure 1). Let the zero
of proper time (hereafter often just called “time”) correspond to the event E
for both O1 and O2. At time t1 from E along his worldline, O1 sends a light
pulse to O2. The pulse is received at event F at time t0 on O2’s worldline, and
the reflected pulse arrives back to O1 at t2. Then the principle of relativity
implies that

t0/t1 = t2/t0. (29)

The reason is that each pair of times, (t1, t0) and (t0, t2), is defined by a sim-
ilar protocol: the relative motion is the same, and the events are connected
by a light pulse. The only thing that changed is the length of the initial
time interval, t1, or t0. Since no observer is preferred or distinguished, and
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Figure 1: Two inertial worldlines exchanging lightrays. t0 is the time along O2
from E to F. t1 and t2 are the times along O1 from E to the sending of the light
ray and to the receiving of the return light ray, respectively. The assumptions that
all inertial motions are equivalent, that the speed of light is independent of the
source, and that spacetime is homogeneous, imply that t20 = t1t2.

spacetime looks the same everywhere1 it must be that these times have the
same ratio, otherwise one of the observers could be distinguished as the one
with the smaller ratio. The ratio characterizes the relative motion. (It is
the reciprocal of the Doppler shift factor for light, as shown in a homework
problem.)

Using the equivalence of the ratios (29), we can infer the “radar relation”
between the time measurements of O1 and O2, namely,

t20 = t1t2. (30)

From the radar relation we can deduce how the time and space separations
assigned to the events E and F by O1 are related to O2’s proper time interval

1I need to do a more complete job of explaining how this implies that the length of the
initial time interval cannot affect the ratio. I will revise the notes later.
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t0. O1 would define the “time separation” ∆t of the events E and F to be
the time at the event G that lies halfway in between t1 and t2, i.e.

∆t = (t1 + t2)/2. (31)

Similarly, O1 would define the “distance” ∆x from himself to F, when he is
at G, by the light travel time (t2 − t1)/2 times the speed of light c, i.e.

∆x = c(t2 − t1)/2. (32)

We can invert these definitions to find t1 = ∆t−∆x/c and t2 = ∆t+ ∆x/c,
so (30) implies

t20 = ∆t2 − (∆x/c)2. (33)

Thus the proper time t0 of O2 along the direct path from E to F can be
expressed in terms of the ∆t and ∆x coordinate increments, conventionally
defined by O1, by a kind of spacetime Pythagorean theorem.

10.1.3 Time dilation and the twin effect

According to (33), the proper time t0 measured by O2 along his own path is
shorter than the time ∆t assigned to that path by O1. This is the called the
time dilation effect. Note that there is nothing paradoxical about the fact
that the two observers come up with different times, since they are measuring
different things : O2 measures the proper time along his path from E to F,
while O1 measures the proper time along his path from E to G.

Suppose now that O2 suddenly fires a rocket at F and returns to the
inertial path of O1 at H, having travelled along a new inertial path. On this
return path O2 will again measure less proper time than O1 assigns, so the
total round trip proper time for O2 along the path EFH will be less than the
proper time for O1 along EH. This this the twin effect, which is often called
the “twin paradox”. It is not a paradox however, because the two proper
times refer to different paths.

10.1.4 Spacetime geometry

There is of course nothing special about O1. Another inertial observer O3
would define different coordinate increments ∆t′ and ∆x′ to the displacement
from E to F, but must get the same combination for the right hand side of
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(33), since it must be again equal to the square of O2’s proper time, t20. That
is,

∆t′2 − (∆x′/c)2 = ∆t2 − (∆x/c)2. (34)

This invariant combination of coordinate increments is called the “(squared)
spacetime interval”. Its meaning is the proper time along the direct path
between E and F.

Sometimes the spacetime interval is just called the “interval”, and some-
times the “invariant interval”. Sometimes it is defined with the opposite
sign, and sometimes multiplied by c2 (hence given in length rather than time
units), or both. For timelike displacements the squared interval is positive
as I’ve defined it, while it is negative for spacelike and zero for lightlike ones.
For spacelike displacements, the meaning of the interval is −c−2 times the
square of the spacelike distance, as assigned by an observer for whom the
time separation is zero.

The interval defines the geometry of spacetime in special relativity. It is
quite remarkable and deep that the structure defining time and length in rel-
ativity is one and the same structure. In Newtonian spacetime, by contrast,
time intervals are defined by the universal time function, and space intervals
are defined by a completely distinct structure, namely a Euclidean geometry
on each constant time surface. However, although they are interconnected,
time and length are not on an equivalent footing in relativity. Time intervals
are primary, and directly measurable by a single clock, while space intervals
are calculated from radar time measurements. The unification of space and
time geometry comes about by reducing spatial intervals to temporal ones.2

A lightlike displacement can be seen either as a limit of timelike displace-
ments, or a limit of spacelike ones, so it would make no sense for it to have
either an associated proper time or a length. In fact, a lightlike displacement
has ∆x = c∆t, so the interval along it is zero, which is the only value that
can consistently refer to both a time and a length!

For infinitesimal displacements, and including all three dimensions of
space, the spacetime interval takes the form

ds2 = dt2 − dl2/c2, (35)

where ds2 denotes the squared interval, and dl denotes the the spatial dis-
placement distance, which could be in any spacelike direction. The assump-

2A better name for spacetime might therefore be “timespace”, but I only know one
physicist who uses this term (from whom I learned it): David Finkelstein.
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tion that the properties of spacetime are invariant under translations as well
as rotations around any point implies that the spatial line element dl2 de-
termines a flat, Euclidean geometry. This in turn implies that there exist
coordinates x, y, z in terms of which the interval takes the form

ds2 = dt2 − (dx2 + dy2 + dz2)/c2. (36)

The coordinates {t, x, y, z} are called Minkowski coordinates, and are analo-
gous to the Cartesian coordinates of Euclidean geometry. A different inertial
observer would construct a different set of Minkowski coordinates. The re-
lation between the different inertial coordinates is given by a Lorentz trans-
formation.

10.1.5 Velocity and time dilation

So far the word “velocity” has not figured in anything I said. O1 would
define the velocity of O2 as v = ∆x/∆t. In terms of v, the square root of
(33) becomes

t0 = ∆t
√

1− v2/c2, (37)

which is the famous relativistic time dilation formula: the proper time t0
measured by O2 along his own path is shorter than the time ∆t assigned to
that path by O1.

Notice something quite shocking that emerges from this analysis: for a
fixed ∆t, t0 goes to zero as v approaches the speed of light. This means in
particular that the proper time on the path EFH in the twin effect discussion
can be arbitrarily close to zero. Also, no proper time passes along the path
of a light ray.

10.2 Inertial motion

So far I’ve treated the notions of “inertial motion” and “proper time” in an
axiomatic way, like the “straight line” and “length” of axiomatic Euclidean
geometry. In the geometry setting, you know that a straight line is the
shortest path between two points, so the concept of straight line can be
taken as secondary, being defined in terms of its length property. Similarly
in spacetime, an inertial motion can be defined in terms of its proper time
property.
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The twin effect discussed in section (10.1.3) shows that the inertial path
taken by O1 from E to H has greater proper time than the broken path EFH
taken by O2. This can be generalized to the statement that the inertial path
has longer proper time than any other path. The inertial motions can thus be
characterized as those that maximize the inertial time between two events.
So no extra structure is needed to characterize inertial motion, since it is
already determined by the spacetime interval. This makes even more striking
the economy of structure in relativity compared to Newtonian mechanics,
where not only are time and space determined by entirely separate structures,
but inertial structure is yet another independent ingredient. In relativity,
everything needed for mechanics comes from the interval. It seems that an
essential aspect of the progress of physics is the economizing of structure.

Since the proper time between two events is maximized on an inertial
path, the variation of the proper time must be zero when the path is varied
away from an inertial path. This variational principle leads us to the rela-
tivistic action and Lagrangian for a free particle, which allows us to identify
the relativistic notion of energy. Let’s see how this works.

The proper time along an arbitrary smooth path in spacetime is the
integral of the proper time increment ds =

√
ds2,

proper time =

∫
ds (38)

In terms of a particular Minkowski coordinate system {t, x, y, z}, the interval
is given by (36), so the proper time can be expressed as an integral over the
coordinate time t,

proper time =

∫
dt

√√√√1−

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]

1

c2
, (39)

with the spacetime path specified by the three coordinate functions {x(t), y(t), z(t)}.
Stationarity of the proper time with respect to path variations implies the
Euler-Lagrange equations. These equations imply

γ
dxi

dt
= const. (40)

where xi ↔ {x1, x2, x3} = {x, y, z} labels the three coordinates, and

γ =
1√

1− v2/c2
(41)
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is the relativistic gamma factor, with v2 = vivi, and

vi = dxi/dt. (42)

Eq. (40) implies that all three components of the coordinate velocity are
constant. This establishes that inertial motions have constant Minkowski
coordinate velocity components.

10.3 Action

What can the action for a relativistic free particle be? It should be a rela-
tivistic invariant, and the Lagrange equation should imply that the motion is
inertial. We have just seen that the proper time functional has both of these
properties. However, the proper time does not have dimensions of action.

There is another reason the proper time cannot be the correct action: it
does not depend on the mass of the particle. We know that the action in
non-relativistic mechanics does depend on the particle mass, via the kinetic
energy term 1

2
mv2, and this kinetic energy term must arise in a slow motion

limit of the relativistic theory. Both of these problems are solved if we define
the relativistic action to be −mc2 times the proper time:

S = −mc2

∫
ds. (43)

The action as just written does not refer to any particular inertial frame,
because the interval ds is a “manifestly invariant” quantity. Nonetheless, we
may express the action in terms of the time and distance measurements in a
particular inertial frame by using (36). This yields

S =

∫
Ldt, L = −mc2

√
1− v2/c2, (44)

where L is the Lagrangian in the given inertial frame.
To discover the relation to the non-relativistic action, we should expand

the square root in powers of v2/c2:√
1− v2

c2
= 1− 1

2

v2

c2
− 1

8

v4

c4
+ . . . (45)

The expansion of the relativistic Lagrangian (44) is thus

L = −mc2 + 1
2
mv2 + 1

8
mv4/c2 + . . . . (46)
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The non-relativistic kinetic energy appears as the lowest order velocity de-
pendent term, and the higher powers of velocity are relativistic corrections.
The velocity independent term −mc2 can only be interpreted as minus a
constant potential energy associated with the mass of the particle. That is,
just for showing up, a particle of mass m has an energy mc2. And this really
is potential energy: if the particle decays to other particles, or annihilates
with its antiparticle, some or all of this energy can be liberated as kinetic
energy, for example. This is called the rest energy. Often m is called the rest
mass.

10.4 Energy and momentum

The momentum conjugate to xi is

pi =
∂L

∂vi
= γmvi, (47)

where γ is the “gamma factor” defined in (41). When the speed of the
particle is much less than the speed of light, this reduces to the nonrelativistic
momentum mvi, and when the speed approaches the speed of light this goes
to infinity.

The energy can be computed as the value of the Hamiltonian,

H =
∂L

∂vi
vi − L = γmv2 +mc2/γ = γmc2(v2/c2 + 1/γ2) = γmc2, (48)

hence
E = γmc2. (49)

When the velocity is zero this is just the rest energy, and when the velocity
approaches the speed of light this diverges. To identify the non-relativistic
limit we should expand γ in powers of v2/c2:

γ =
1√

1− v2/c2
= 1 +

1

2

v2

c2
+

3

8

v4

c4
+ . . . . (50)

Note that all the terms in the series have positive coefficients. Thus

E = mc2 + 1
2
mv2 + 3

8
mv4/c2 + . . . . (51)

The usual kinetic energy is recovered as the lowest order v-dependent term,
and the relativistic correction terms are all positive. The relativistic kinetic
energy T is everything but the rest energy,

T = E −mc2 = (γ − 1)mc2. (52)
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10.4.1 Relation between energy and momentum

Just as the non-relativistic kinetic energy can be expressed in terms of the
momentum as E = p2/2m, it follows from (47) and (49) that the relativistic
energy and momentum are related in a simple way:

E2 − p2c2 = m2c4 (mass shell formula) (53)

Note that while the values of E and p depend on the inertial reference frame,
the mass m, which we introduced in the action as an invariant, can always
be computed from them using the mass shell formula. This is closely analo-
gous to the situation with the proper time: while dt and dxi depend on the
reference frame, the squared proper time ds2 = dt2− dx2/c2 has an invariant
meaning and can be computed from dt and dx in any reference frame.

Another useful relation between momentum and energy that follows im-
mediately from (47) and (49) is

pi = (E/c2)vi. (54)

In the non-relativistic limit we can replace E by the leader order term, mc2,
so this reduces to pi = mvi. It is sometimes useful to use this to express the
velocity directly in terms of the energy and momentum,

vi = pic2/E. (55)

10.4.2 Massless particles

As the mass m approaches zero, the energy and momentum vanish unless the
speed approaches the speed of light, so that the product γm remains finite.
In this limit, the mass shell formula reduces to

E = |p|c, (56)

so that energy and momentum are proportional. In this limit, (54) becomes

pi = (E/c)v̂i, (57)

where v̂i is a unit vector in the direction of the velocity.
Since massless particles always travel at speed c, their speed cannot de-

termine their energy. A photon is a massless particle. According to quantum
mechanics, the energy of a photon with frequency ω is h̄ω, and its momentum
is h̄k, where k is the wave vector. The 4-momentum is thus

p = h̄k, (58)

where k = (ω, ck) is the wave 4-vector.
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10.5 4-vectors and the Minkowski scalar product

The set of spacetime displacements forms a four dimensional real vector
space. These vectors are called 4-vectors. Shortly we will consider other 4-
vectors, but the displacements are the prototype 4-vectors so let’s start with
these.

In a given inertial frame, a displacement can be specified by giving its
time component and its spatial components. An infinitesimal displacement
can thus be written in a given frame as

ds = (dt, dx/c), (59)

where dt is the time displacement and x is the spatial displacement. In or-
der for all the components of the vector to have the dimensions of time, the
spatial displacement is here divided by c. (It’s not essential that we give all
components the same dimension, but it allows us to define the Minkowski
scalar product below without any factors of 1/c.) The line under ds is in-
cluded to distinguish the displacement 4-vector from the scalar ds =

√
ds2.

Any finite displacement can be built up by adding infinitesimal displace-
ments. This is just as in three Euclidean spatial dimensions, with an addi-
tional dimension for time tacked on. More generally, a 4-vector A can be
specified in a given frame by its temporal and spatial components,

A = (At,A), (60)

where At is a spatial scalar (i.e. it is invariant under spatial rotations of the
frame) and A is a spatial vector.

The object A qualifies as a bona fide 4-vector if, under a coordi-
nate transformation, its components change in the same way as
the components of a displacement vector.

Note that this implies in particular that any linear combination of 4-vectors
with invariant scalar coefficients is a 4-vector.

The spacetime (squared) interval ds2 = dt2 − (dx · dx)/c2 is a scalar
associated with the displacement 4-vector, and it is invariant, that is, it has
the same value whatever inertial frame is used. It motivates the definition of
a scalar product between 4-vectors, the Minkowski scalar (or dot) product,

A ·B = AtBt −A ·B. (61)
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With this notation, the squared interval can be written as the scalar product
of the displacement (59) with itself,

ds2 = ds · ds = dt2 − dx · dx/c2. (62)

We have already seen that the interval is invariant, but how about the
scalar product A ·B between two displacement 4-vectors A and B? That is,
if we evaluate the right hand side of (61) in two different inertial frames, will
we get the same result? Indeed we will. We know that A·A is invariant for all
displacements A. Thus in particular, (A+B) · (A+B) is invariant. But the
dot product defined by (61) is distributive over addition, and commutative,
so (A+B) · (A+B) = A ·A+B ·B + 2A ·B. That is, A ·B = 1

2
[(A+B) ·

(A+ B)− A · A− B · B]. All terms on the right hand side are invariant, so
evidently A ·B is invariant. More generally,

Invariance of the scalar product holds for any pair of 4-vectors.

10.5.1 Conventions

There are different conventions about 4-vectors. Taylor prefers to write the
spatial vector first, and he defines the inner product with the opposite sign
from (61). That is, Taylor would write A = (A, A4), and for him A · B =
A·B−A4B4 (15.50, Taylor). Also, he likes to give the 4-vector the dimensions
one would naturally have assigned to the spatial 3-vector. For example, for
an infinitesimal spacetime displacement he would write (dx, c dt).

10.5.2 “Look Ma, no Lorentz transformations”

Just as we rarely use rotations explicitly in non-relativistic mechanics, but
instead make wise choices of coordinate systems and use rotational invariant
quantities like magnitudes of vectors and angles between vectors, we rarely
need to use Lorentz transformations to relate the components of 4-vectors in
different reference frames. To simplify our lives, and focus on the most useful
things, I may completely skip any discussion of Lorentz transformations.

10.6 4-momentum and 4-velocity

Energy and momentum together form the components of the 4-momentum,
which is sometimes called the energy-momentum 4-vector,

p = (E,pc). (63)

28



It is convenient to use the letter p for the 4-momentum. When I want to refer
to the magnitude of the 3-momentum and there could be some confusion, I
will write |p|. The scalar product of p with itself is

p · p = E2 − p · p c2. (64)

For a single particle of mass m, the 4-momentum is given by

p = (γmc2, γmcv). (65)

It is revealing to express this directly in terms of spacetime displacements.
The key step is to note that the gamma factor is the derivative of coordinate
time with respect to proper time:

dt

ds
=

dt√
dt2 − dx · dx/c2

=
1√

1− v2/c2
= γ. (66)

It follows that
dx

ds
=
dt

ds

dx

dt
= γv. (67)

That is, the velocity with respect to proper time is γ times the velocity with
respect to coordinate time. The 4-momentum of a particle (65) can therefore
be expressed as

p = mc2 u, (68)

where u is the 4-velocity,

u = ds/ds = (
dt

ds
,
dx/c

ds
) = γ(1,v/c). (69)

The 4-velocity is proportional to the infinitesimal displacement ds, with pro-
portionality factor given by the scalar quantity 1/ds, so it is a 4-vector. The
4-momentum is proportional to the 4-velocity, with scalar coefficient mc2, so
it too is a 4-vector.

According to the mass shell formula (53) for a single particle together
with (64), we have

p · p = m2c4. (70)

The mass shell formula could also be derived directly from (68), since the
4-velocity is a unit 4-vector:

u · u = (ds/ds) · (ds/ds) = (ds · ds)/ds2 = ds2/ds2 = 1. (71)
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The name “mass shell” comes from the fact that the set of vectors p satisfying
(70) forms a shell in momentum space. In one space dimension we have E2 =
p2c2 +m2c4, which is the equation of a hyperbola in E-p space. Including the
other spatial dimensions this becomes a 3-d hyperboloid, whose graph looks
like a bowl or “shell”.

10.6.1 Pesky factors of c

The best way to handle the ubiquitous, pesky factors of c is to ignore them!
We can always choose our unit of length to be c times our unit of time, and
in such a system of units we have c = 1. If we want to express things in
some other system of units we can always use dimensional analysis to insert
the appropriate factors of c where they belong. Hence from here on I will
usually set

c = 1. (72)

10.6.2 Example: Relativistic Doppler effect

Suppose a source S moving with speed v in the x direction emits an electro-
magnetic wave, or photon, which is received by an observer O who for whom
the radiation propagates at an angle θ from the x direction. What is the
observed freqency ωO if the frequency in the source frame is ωS?

If θ is 0 or π, then the analysis you did in homework problem S8.1 gives
the answer. Let’s see how it works in general. The wave 4-vector is k =
ωO(1, cos θ, sin θ, 0) written in the observer frame. Now I claim that the
frequency in the source frame can be expressed as

ωS = k · uS, (73)

where uS = γ(1, v, 0, 0) is the 4-velocity (69) of the source. To see why,
note that the right hand side of (73) is an invariant, since k and u are 4-
vectors.3 It can therefore be evaluated in any frame. In the rest frame
of S we have uS = (1, 0, 0, 0). Hence ωS is just the time component of k
in the frame of S, which is what we mean by the frequency in that frame.

3If we think of k as a 4-momentum h̄k (58) we may invoke the fact that 4-momenta are
4-vectors. Alternatively, k = (ω,k) determines the phase ωt− k · x of a wave, which can
be expressed as a scalar product of k with a displacement, (ω,k) · (t,x). Since the wave
phase is an invariant, and the displacement is a 4-vector, k must also be a 4-vector.
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On the other hand, expressed in components in the frame of O we have
ωS = k · us = ωγ(1− v cos θ). It follows that

ω =
ωS

γ(1− v cos θ)
. (74)

In the homework you show that this agrees with what you found before when
θ is 0 or π. Note that when θ = π/2 there is a redshift. This is called the
transverse Doppler effect, and is just a reflection of the time dilation effect
relating the period measured in the source frame to that measured in the
observer frame.

10.7 Zero momentum frame

In non-relativistic mechanics, the center of mass position xcm of a system
is defined by

∑
mi(xi − xcm) = 0. The time derivative of this equation

states that the total momentum relative to the center of mass vanishes, hence
the center of mass frame is also the zero momentum frame. In relativistic
mechanics, the zero momentum frame is a very useful concept...but how do
we know such a frame exists? Well, the 4-momentum of a particle is a future
pointing timelike or lightlike vector, and the sum of any number of such
vectors is timelike (unless they are all lightlike and parallel). Thus there
exists an observer with 4-velocity parallel to the total 4-momentum P , and
for that observer the total spatial momentum vanishes. The frame of that
observer is the zero momentum frame, also called the “center of momentum”
frame, or even the “center of mass” frame, just so we can use the notation
CM instead of ZM.

In the CM frame, the total 4-momentum has the form P = (ECM , 0), so

P · P = E2
CM . (75)

This is very useful. Because P · P is invariant, we may compute it in any
frame, and the result will always be the square of the energy in the CM
frame. Sometimes ECM is called the “invariant mass” of the system.

10.7.1 Example: Head-on vs. fixed target collision energy

At the LHC, protons of energy 4 TeV collide head-on. The lab is the CM
frame of this collision, and ECM = 8 TeV. All of this energy is available
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to create particles. Now suppose instead that one proton is a fixed target
at rest and the other is moving in the lab frame. Then the system has
3-momentum, which must be conserved, so after the collision some of the
incoming energy will just be in translational kinetic energy of the collision
products. In this case, how much energy E must the other proton come in
with if the CM energy, i.e. the energy available to create particles, is to be
8 TeV? To answer this we can find the total 4-momentum as a function of
E and the proton mass mp, set P · P = E2

CM = (8 TeV2), and solve for
E. The proton at rest has 4-momentum (mp, 0), and the moving proton has
4-momentum (E, p), so the total 4-momentum is P = (E +mp,p). Thus

P · P = (E +mp)
2 − p2 (76)

= E2 − p2 + 2Emp +m2
p (77)

= 2Emp + 2m2
p (78)

= E2
CM , (79)

so

E =
E2
CM − 2m2

p

2mp

. (80)

For the example at hand, ECM is 8 TeV which is about 8000 times as large
as the proton mass mp, so we can neglect the second term in the numerator,
and write E ≈ E2

CM/2mp. That is, the incoming energy must be a factor
ECM/2mp ∼ 4000 times larger than ECM ! It would take 32,000 TeV to
achieve the same CM energy 8 TeV as in the head-on collision. So to achieve
8 TeV CM energy it’s absolutely essential that the LHC has head-on collisions
rather than fixed target ones.

It’s interesting to compare this with the corresponding Newtonian result.
If the moving proton has speed v, then in the CM frame it has speed v/2.
Thus its kinetic energy in the lab frame is 4 times larger than it is in the CM
frame, where it is ECM/2. Hence E = 2ECM , that is, the incoming proton
would have to have energy 16 TeV. In relativistic mechanics, it needs 2000
times more energy than it would need in Newtonian mechanics!

10.7.2 Example: GZK cosmic ray cutoff

A proton is accelerated to very high energy somewhere far away in the uni-
verse, and travels towards the earth. On the way it encounters photons form
the cosmic microwave background (CMB). The background is thermal with a
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temperature T = 2.7 K, so the typical photon energy in the CMB is of order
2.5 × 10−4 eV. If the proton has enough energy, the collision can produce a
pion of mass mπ = 135 MeV, robbing the proton of some of its energy. This
process limits the energy of cosmic ray protons that can be received at earth
coming from far away. Let’s estimate the energy of this “GZK cutoff”.

The cutoff lies at the threshold for a head-on collision creating a pion at
rest with respect to the proton, so corresponds to a CM energy

ECM = mp +mπ. (81)

If the proton 4-momentum is p = (E, p), and the photon 4-momentum is
k = (ω,−ω) (dropping the two irrelevant spatial components that are zero),
then the total 4-momentum is P = p + k = (E + ω, p − ω), so E2

CM =
(E + ω)2 − (p− ω)2 = m2

p + 2ω(E + p). Thus at threshold we have

E + p =
(mp +mπ)2 −m2

p

2ω
=
mpmπ +m2

π/2

ω
. (82)

Now let’s get specific about numbers. We have p =
√
E2 −m2

p, but it would
be foolish to keep track of the m2

p term in the square root, because mπ/ω ∼
5 × 1011, so the equation implies E ∼ 1011mp. The m2

p term thus makes a
contribution of order only ∼ 10−22 relative to the E2 term! Hence we can
set p = E, and solve for E. Also, mπ is about 7 times smaller than mp, so
the m2

π/2 term is smaller than the mpmπ term by a factor of about 14. So
to better than 10% accuracy we have

E =
mpmπ

2ω
≈ 2.5× 1011mp ≈ 2.3× 1020eV. (83)

This is eight orders of magnitude greater than the LHC collision energy.

10.8 Electromagnetic coupling

The action for the coupling of a charge needs no “relativistic correction”, its
already perfectly consistent with relativity, which is no accident, since after
all it was the properties of electromagnetism that led Einstein to discover
relativity. The EM coupling action is given by −q

∫
A·ds, where A = (V,Ac)

is the electromagnetic 4-vector potential, and ds = (dt, dx/c) is the spacetime
translation and the dot is the Minkowski dot product. [I didn’t say this yet
in class, but actually an even better way to say this is that the action is
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−q
∫
Aµdx

µ, where there is a summation over the four values of µ, dxµ are
the components of ds, and Aµ = (V,−cAi), the index i being just the spatial
part.

11 General relativity

I’ll place here for now my rough notes from last year on general relativity. I
haven’t had a chance to rewrite them yet. I touch on GR in the class because
it’s so fundamental and so interesting, but we’re not spending more than one
and a half classes on it (3 hours)...

Background: Newtonian spacetime structure assumes 1) absolute time
t, 2) spatial distance at constant time, 3) absolute rest or family of inertial
frames. Instead spacetime in special relativity is fully characterized by the
Minkowski line element which determines the proper time along any displace-
ment. This encodes time, distance, and inertial structure all in one spacetime
geometry. (The inertial motions maximize the proper time.) Now where does
gravity fit in to this?

Gravity and inertial force: Einstein focused on the extremely well known
fact that the gravitational force is proportional to the mass of the object it
is acting on: F = mg, where g(x, t) is the gravitational field. This means
that the effects of gravity can be locally removed by using a ”freely falling”
reference frame with acceleration g relative to what a Newtonian would con-
sider an inertial frame. But Einstein proposed that we should think of it
the other way around: the freely falling frame is the inertial one, and then
one interprets the gravitational force as an inertial force, due to working in
a reference frame with acceleration −g. So, for example, sitting in my chair,
I am in a frame accelerating upwards relative to the local inertial frames.

Gravity as tidal field: While the local inertial frames can be identified
with the freely falling frames, we must face the fact that these frames are not
the same everywhere. For example, at different points near the surface of
the earth the free-fall frames are falling inward radially, and the radial direc-
tion depends on where you are. Also the acceleration is greater closer to the
earth than farther. This is reflected in the simple fact that the derivatives
of g are not zero, so that nearby freely falling particles have slightly differ-
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ent accelerations. You could recognize this in a falling elevator: if release a
spherical cluster of particles, as the cluster falls it will deform to an ellipsoid,
compressed in the transverse direction and stretched in the falling direction.
The true essence of gravity is this ”tidal deformation”. If it weren’t for that,
we could just cancel off gravity once and for all by changing the reference
frame.

Spacetime curvature and the tidal field: Given that the inertial structure
of spacetime is determined in special relativity by the line element, it must
be that a spatially varying inertial structure is described by a spatially vay-
ing line element, that is, by a deformation of the geometry of spacetime. In
fact, the curvature of the spacetime geometry captures the notion of varying
inertial structure. As a concrete example, freely falling paths can start out
parallel in spacetime, and be pulled together by the gravitational tidal field.
That parallel lines do not remain parallel is a sign of curvature. The motion
of a test particle in such a spacetime is determined by maximizing the proper
time, using the line element of the curved geometry.

Cosmological line element: A simpler example of a curved spacetime is an
expanding universe. If we average over the lumpiness this can be described
as a homogeneous, isotropic spacetime, with line element

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2)/c2 (84)

The function a(t) is called the scale factor, and it determines how much phys-
ical distance corresponds to a given coordinate displacement dx, for example.
Before the acceleration of the universe today was discovered, it was believed
that a(t) was ∝ t2/3, so that the scale factor was increasing with time with
a rate ∝ t−1/3 that was decreasing in time. This would be “decelerated ex-
pansion”. Now it appears that infact the expansion rate is increasing. The
simplest such increase, that would be caused by a cosmological constant,
would be exponential, a ∝ eHt for some constant H, in which case the ex-
pansion rate would be exponentially increasing as well.

Spacetime geometry outside a spherical gravitating mass: Einstein’s field
equation for spacetime geometry has a unique spherically symmetric, vac-
uum solution, up to one parameter corresponding to the mass M. That
Schwarzschild metric can be expressed using so-called Schwarzschild coor-
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dinates as

ds2 = F (r)dt2 − (1/F (r))dr2/c2 − (r/c)2(dθ2 + sin2θ dφ2) (85)

where F (r) = 1−rg/r, and rg = 2GM/c2 = 3km(M/Msun) is the Schwarzschild
radius. IfM = 0 then F (r) = 1, and this is just the flat spacetime, Minkowski
line element in spherical coordinates. At r = rg something goes wrong with
the coordinates, but the spacetime is fine there. This line element describes a
black hole event horizon at r = rg. For a star, the stellar surface lies outside
rg, and the line element inside the star is not given by the Schwarzschild
metric.

Newtonian limit of particle motion in the Schwarzschild field: The action
for a particle of rest mass m is −mc2

∫
ds. For the Schwarschild geometry

this gives

S = −mc2

∫
ds (86)

= −mc2

∫ √
Fdt2 − (1/F )dr2/c2 − (r/c)2(dθ2 + sin2 θ dφ2) (87)

= −mc2

∫
dt

√√√√F − 1

Fc2

(
dr

dt

)2

− r2

c2

((
dθ

dt

)2

+ sin2 θ

(
dφ

dt

)2
)
(88)

If we restrict attention to values of r such that rg/r � 1, and values of the
velocity that a much less than the speed of light, we may expand the square
root and drop all but the leading order terms in rg/r and v/c, in which case
the action becomes

= −mc2

∫
dt[1−GM/(c2r)− 1

2
v2/c2 + ...] (89)

=

∫
dt[−mc2 +GMm/r + 1

2
mv2 + ...]. (90)

This shows that the Lagrangian is a constant −mc2 plus the Newtonian La-
grangian, plus corrections.

Gravitomagnetism: This is not something I addressed in class, but it
seems worth mentioning for those who are interested. I just showed that for
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slow motion in a weak field we recover Newtonian gravity. Now we can see
that for weak gravitational fields there is a phenomenon that looks like a
gravitational version of magnetism. If we denote the Minkowski metric by
ηµν and the metric perturbation by hµν , the proper time becomes

ds =
√

(ηµν + hµν)dxµdxν . (91)

If we expand this in hµν and assume low velocities it becomes

ds =
√
ηµνdxµdxν + Aµdx

µ + . . . , withA0 = 1
2
h00 andAi = h0i. (92)

So the 0i off-diagonal components of the metric perturbation act like magnetic
vector potential. Why would we have such components? If the source mass is
moving relative to a given frame, then such components arise. For example,
a spinning body like the earth produces a gravitomagnetic vector potential.

12 Hamiltonian formalism

Lagrange’s equations are n coupled second order ODEs for the n generalized
coordinates qi. We could always rewrite this as 2n coupled first order equa-
tions, by defining new variables vi by q̇i = vi, and replacing all q̈i by v̇i. But
there is a much better way to proceed in general, which is to use not vi but
rather the conjugate momenta pi = ∂L/∂q̇i. Better in what sense?

Well, there are numerous potential advantages: (i) the form of the equa-
tions may be simpler, (ii) the conservation laws are simpler to exploit, (iii) the
resulting flow in the phase space of (qi, pi) coordinates is volume preserving
(this is Liouville’s theorem), which is a powerful piece of information about
time evolution, (iv) there is a general solution method (Hamilton-Jacobi),
(v) it can sometimes provide an convenient approximation method because
of certain approximate conserved quantities that are easy to get your hands
on, (vi) it has a larger symmetry generalized coordinate changes, under which
coordinates and momenta can be mixed, which is sometimes useful in solv-
ing problems, (vii) it is characterized by a simple and elegant mathematical
structure, namely Poisson brackets, that turn out to provide the deepest link
between classical mechanics and the corresponding “quantized” systems.
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12.1 Hamilton’s equations and the Hamiltonian

First let’s recall a mathematical fact that deserves to be marveled over: If
f = f(x, y) is a function of two variables, then

df =
∂f

∂x
dx+

∂f

∂y
dy. (93)

Conversely, if df = a dx+ b dy, then a = ∂f/∂x and b = ∂f/∂y.
Now the idea is to find a way to express the content of Lagrange’s equa-

tions in terms of derivatives of a function of q and the momentum p = ∂L/∂q̇.
For this to work, it must be possible to invert the definition of p and solve
for q̇ in terms of q and p, i.e. q̇ = q̇(q, p, t).

The strategy is to start with dL and massage it until it’s expressed in
terms of dq and dp instead of dq and dq̇. Let’s assume for simplicity at first
that L does not depend explicitly on t. Then we have

dL =
∂L

∂q
dq +

∂L

∂q̇
dq̇ (94)

=
∂L

∂q
dq + p dq̇ (95)

=
∂L

∂q
dq − q̇ dp+ d(pq̇). (96)

(In the last step I used d(pq̇) = p dq̇ + q̇ dp.) In terms of the Hamiltonian

H = pq̇ − L, (97)

this can be re-expressed as

dH = q̇ dp− ∂L

∂q
dq. (98)

We can now regard q and p as the independent variables, viewing H = H(q, p)
as a function of them, provided p(q, q̇) can be inverted to solve for q̇(q, p).
The final step is to invoke Lagrange’s equation of motion, ∂L/∂q = ṗ, so
that (98) becomes

dH = q̇ dp− ṗ dq. (99)

We’ve now arrived at Hamiltonian form of the equations of motion. The
coefficients of dp and dq in (99) are the partial derivatives of H with respect
to p and q, hence

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (100)
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These are called Hamilton’s equations, or the canonical equations. Their
simple and symmetric structure leads to much magic.

The time derivative of the Hamiltonian is

dH

dt
=
∂H

∂q
q̇ +

∂H

∂p
ṗ =

∂H

∂q

∂H

∂p
− ∂H

∂p

∂H

∂q
= 0, (101)

so the Hamiltonian is conserved when the equations of motion hold, provided
it has no explicit time dependence. Allowing for t dependence in the above
general derivation, there would be a (∂L/∂t) dt term in dL and dH, and we
would infer that

dH

dt
=
∂H

∂t

∣∣∣∣
q,p

= − ∂L

∂t

∣∣∣∣
q,q̇

. (102)

(The subscripts q, p and q, q̇ on the partial derivatives indicate which variables
are held fixed when the partial t derivative is taken.)

If there are multiple coordinates qi, then everything just said goes through
with summation over repeated indices. In particular, Hamiltonian is then

H = piq̇
i − L, (103)

and Hamilton’s equations read

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (104)

The generalized coordinates qi define the configuration of a system. Config-
uration space is the collection of all configurations. The space of coordinates
and momenta {qi, pi} is called phase space. A point in phase space is a
complete set of initial conditions for Hamilton’s first order equations (104).
Given a Hamiltonian, there is a “velocity” vector (q̇i, ṗi) at each point in
phase space. If the Hamiltonian is time-independent, there is a unique tra-
jectory through each point, and the collection of all these trajectories is called
the flow. The Hamiltonian is then conserved along the flow, so the flow lines
are contours of constant H. An example will be given in the next section.

12.2 Example: Bead on a rotating circular hoop

Let’s illustrate all these things with the system of a bead of mass m in a
gravitational field g on a circular hoop of radius R. We’ll first consider the
case where the hoop is driven at fixed angular velocity Ω, and then consider
the case where the hoop has moment of inertia I and spins freely.
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12.2.1 Driven hoop

Using the angle θ from the bottom of the hoop as the generalized coordinate,
the Lagrangian is

L = 1
2
m(R2θ̇2 + Ω2R2 sin2 θ)−mgR(1− cos θ). (105)

To simplify the formulas and to better see the essence of the system, let’s
choose units with m = R = g = 1 (you should check that this is possible), in
terms of which the Lagrangian becomes

L = 1
2
(θ̇2 + Ω2 sin2 θ) + cos θ − 1. (106)

At small angles sin θ ≈ θ and cos θ ≈ 1− 1
2
θ2, so this takes the approximate

form
L = 1

2
θ̇2 + 1

2
(Ω2 − 1)θ2, (107)

where the constant term has been dropped. For Ω < 1 =
√
g/R this is a

harmonic oscillator around θ = 0, but for Ω > 1 it is unstable around θ = 0
and two new stable equilibrium points develop. For Ω = 1 the coefficient of
θ2 vanishes, so the system is marginally stable. We have to go back to the
exact Lagrangian to see what happens at the next order. Up through order
θ4 we have sin2 θ = (θ − θ3/3!)2 = θ2 − θ4/3, and cos θ − 1 = −θ2/2 + θ4/4!,
hence

L = 1
2
θ̇2 − 1

8
θ4 +O(θ6). (108)

Thus the system is indeed stable at θ = 0, but only very weakly.
Now let’s consider the Hamiltonian. The momentum conjugate to θ is

pθ = ∂L/∂θ̇ = θ̇, so the Hamiltonian is

H = 1
2
p2
θ + Ueff,Ω(θ). (109)

with the effective potential

Ueff,Ω(θ) = −1
2
Ω2 sin2 θ − cos θ. (110)

The equilibrium points lie where

U ′eff,Ω(θ) = sin θ(1− Ω2 cos θ) = 0. (111)

Hamilton’s equations are θ̇ = p and ṗ = −U ′eff,Ω = sin θ(Ω2 cos θ − 1). The
flow in phase space is illustrated in the Figure, for the three values Ω = 0, 1, 2.
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Missing from these “phase portraits” are the arrows showing which direction
the flow goes in. (The reason is that they are generated as contour plots
of the Hamiltonian. Mathematica has a function called StreamPlot that
produces the arrows, but the plots don’t show the unstable critical points of
the flow as well.) The circulation is clockwise around the closed contours, as
you can infer from the fact that θ increases when p = θ̇ > 0, for example. At
the crossing points, the velocity goes to zero. These are unstable equilibria,
and are called hyperbolic points. There are stable equilibria in the centers
of the closed orbits, called elliptic points. When Ω > 1, their is sensitive
dependence on initial conditions near the origin, in the following sense: if
initially pθ = 0 and θ is small and positive, then the bead will oscillate
around the equilibrium at positive θ. If instead initially θ = 0 and pθ is
small and positive, then the bead will oscillate on an orbit spanning both the
positive and negative equilibrium points.

12.2.2 Freely rotating hoop

The bead on the driven hoop has just one degree of freedom, the angular
position of the bead on the hoop. Let’s now consider the case where instead
of being driven the hoop is freely rotating about the vertical axis. We can use
the azimuthal angle φ for the second generalized coordinate. The Lagrangian
for this system is

L = 1
2
θ̇2 + 1

2
(I + sin2 θ)φ̇2 + cos θ − 1, (112)

where I is the moment of inertia of the hoop, and as before we take units
with m = R = g = 1. The momentum conjugate to φ is

pφ = (I + sin2 θ)φ̇ (113)
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and (dropping the constant 1) the Hamiltonian is

H = 1
2
p2
θ + 1

2
p2
φ/(I + sin2 θ)− cos θ. (114)

The phase space for this system is four dimensional, but has rotational sym-
metry about the vertical axis, so φ doesn’t appear in the Hamiltonian (it’s
called an “ignorable coordinate”), and therefore pφ is conserved. For a fixed
pφ, dynamics of θ can be studied on its own, and from (114) we see that it
is governed by the effective potential

Ueff,pφ
(θ) = 1

2
p2
φ/(I + sin2 θ)− cos θ. (115)

If the moment of inertia is much greater than 1, i.e. much greater than the
maximum moment of inertia of the bead mR2, then the system behaves much
like the driven hoop. To see this explicitly, we can expand the potential
in powers of I−1 and drop all but the first order term. Up to an additve
constant, the effective potential then becomes identical to the driven case,
with Ω → pφ/I. To see the small θ behavior in the general case we can
expand the effective potential around θ = 0,

Ueff,pφ
(θ) = const.+ 1

2
(1− p2

φ/I
2)θ2 + . . . . (116)

This is identical to the case of a driven hoop, with Ω replaced by pφ/I. There
will still be a stable equilibrium at θ = 0 if pφ/I < 1.

12.3 Example: Charged particle in an electromagnetic
field

The Lagrangian for a particle of mass m and charge e in an electromagnetic
field is L = 1

2
mẋiẋi + e(Aiẋ

i − V ), so the momentum conjugate to xi is
pi = mẋi + eAi. Note that this is gauge dependent. We can solve for the
velocity, ẋi = (pi − eAi)/m, and thus the Hamiltonian is

H =
1

2m
(p− eA) · (p− eA) + eV. (117)

As an illustration consider a uniform electric field, described in two different
ways: (i) by a linear scalar potential V = −E0x, and (ii) by a time-dependent
vector potential A = −E0tx̂. In the first gauge, the Hamiltonian is H =
p2/2m−eE0x. The Hamiltonian is time independent, so that it is conserved,
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and it is equal to the kinetic plus potential energy. There is no x translation
symmetry, and the canonical momentum in the x direction is not conserved.
In the second gauge, the Hamiltonian is H = [(px + eE0t)

2 + p2
y + p2

z]/2m.
This is x translation invariant, so that now the (canonical) momentum is
conserved, even though of course the velocity is not conserved. It is not time
translation invariant however, so the Hamiltonian is not conserved. This is
no surprise, since the numerical value of this Hamiltonian is just the kinetic
energy.

12.4 Phase space volume and Liouville’s theorem

A measure of volume in phase space is defined by the canonical coordinates,
as if they were Cartesian coordinates, i.e. by one factor of dq dp for each pair
of canonical coordinates. Since p = ∂L/∂q̇, each such factor has dimensions
of energy times time. So the volume in a 2N dimensional phase space has
dimensions [action]N .

Liouville’s theorem states that the volume of any region is preserved by
the Hamiltonian flow. For example, consider a free particle H = p2/2, so
q̇ = p and ṗ = 0. A rectangle in phase space flows to a parallelogram with
the same area. Liouville’s theorem in the general case follows from the fact
that the flow vector has vanishing divergence, as I’ll now explain.

Consider a two dimensional flow determined by a possibly time depen-
dent vector field V(q, p, t). After an infinitesimal time dt, each point on the
boundary of a region is displaced by Vdt, and the change of area of the en-
closed region is the area of the strip formed by the new boundary and the
original one. This is given by the integral of dln̂ · V dt around the bound-
ary, where n̂ is the unit outward normal vector from the boundary. By the
two dimensional version of the divergence theorem, this boundary integral
is equal to the integral of divV over the enclosed area, times dt. Thus if
the flow vector has zero divergence, the flow is area preserving. The same
argument works in any dimension.

Now let’s examine the divergence of the Hamiltonian flow. For a single
canonical pair the flow vector is given by

V = (V q, V p) = (q̇, ṗ) = (∂pH,−∂qH), (118)

and if there are more canonical pairs there are simply more components of
the same form. The contribution to the divergence from each canonical pair

43



is

divV =
∂

∂q
V q +

∂

∂p
V p (119)

=
∂

∂q

∂H

∂p
+

∂

∂p

(
−∂H
∂q

)
(120)

= 0. (121)

The last line follows from the most important mathematical fact in physics:
mixed partial derivatives commute. The flow in phase space is therefore
divergence free, hence it is volume preserving.

12.5 Phase space and quantum mechanics

The Heisenberg uncertainty relation, applied to generalized coordinates and
their conjugate momentum, states that the product of “uncertainties” in
q and in p can be no smaller than something of order Planck’s constant of
action, h̄. More precisely, if the uncertainties are rms variances, their product
can be no smaller than h̄/2 = h/4π. So, roughly speaking, a quantum system
cannot be localized in phase space more than a certain minimum volume, and
the number of distinguishable quantum states is proportional to the volume
in phase space. More precisely, in a two dimensional phase space the area
corresponding to one quantum state is h = 2πh̄. In a phase space of 2N
dimensions, the volume corresponding to one quantum state is hN .

Let’s illustrate this with a particle in a box. A quantum particle in a one
dimensional box on the interval [0, a] has energy eigenstate wavefunctions
of the form ∼ sin(px/h̄). Since the wave function must vanish at the box
boundaries, the allowed values of p are pn = nπh̄/a. As n increases by 1, p
increases by πh̄/a, corresponding to a phase space area of a∆p = πh̄ = h/2.
But actually the particle with this wavefunction is really a superposition of
a particle moving to the right and to the left, with both signs of momentum,
so there is another h/2 area associated with the negative momentum part of
the motion. The total area per state is thus h.4

4For a more generic argument, consider that the canonical commutation relations be-
tween x and p are [x, p] = ih̄, which implies that the momentum operator is −ih̄ d/dx, so
a state with momentum p has the form exp(ipx/h̄). In order to completely distinguish
two of these in a region of length a, the phase should differ by 2π, so the minimum gap in
momentum ∆p to make a distinct state satisfies a∆p/h̄ = 2π, i.e. a∆p = h.
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Another simple example is a harmonic oscillator. The Hamiltonian in
units with m = ω = 1 is H = 1

2
p2 + 1

2
q2, and the quantum energy levels are

En = (n + 1
2
)h̄ω, for n = 0, 1, 2 . . . . The classical orbits conserve H and so

are circles in phase space. The area of one of these circles is π(p2 + q2) =
2πH = 2πE = 2πE/ω. (The factor of ω in the denominator is restored by
dimensional analysis, as the phase space are has dimensions of action.) The
difference in areas for two energies separated by ∆E is therefore 2π∆E/ω.
Two adjacent quantum energy levels are separated by ∆E = h̄ω, so again an
area 2πh̄ = h corresponds to one quantum state.

If we think of the classical phase space flow as a classical limit of a quan-
tum evolution, then Liouville’s theorem is the classical limit of the property
of quantum evolution (unitarity) that ensures the preservation of distinctions
between quantum states.

Note that the classical state of, for example, a two-particle system is a
point in a twelve dimensional phase space (each particle has 3 q’s and 3 p’s).
In quantum mechanics, the “state” of a two particle system is a wave function
of six variables (for example, the positions or momenta of the two particles).

12.6 Entropy and phase space

Boltzmann proposed in the 1870’s that entropy be identified with a constant k
times the logarithm of the number of microstates compatible with the macro-
scopic configuration, S = k lnW . Think of a box of gas. The huge number
of molecules in the box live in a very high dimensional phase. One config-
uration of the positions and momenta of all of the molecules corresponds
to a point in the phase space. There are an infinite number of such points
in phase space compatible with the macroscopic properties of the gas (e.g.
temperature and volume), so an infinite number of “microstates”. But one
can regulate this with the idea that the infinity is proportional to the phase
space volume occupied by all these points. [I think Boltzmann described
this in terms of “cells” in phase space.] The infinite proportionality factor
becomes an additive constant after the logarithm is taken, so the entropy is
well-defined up to an ambiguous additive constant. In quantum mechanics,
the number of independent states is finite, and the volume is measured in
units of hN , which removes the ambiguity of the additive constant.

Let’s illustrate this with expansion of a gas. In free expansion, the phase
space volume compatible with the macrostate increases, since the available
spatial volume increases and the energy and therefore momentum distribu-
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tion (assuming an ideal gas) stays the same. The entropy therefore goes
up. For example if the volume of the container is doubled, the compatible
phase space volume increases by a factor of 2N , so the entropy goes up by
a factor N ln 2. The apparent violation of Liouville’s theorem arises because
of the “coarse graining”: the original volume of phase space does not evolve
to fill the final volume, unless you “blur” it out by coarse graining.) This
process of free expansion is irreversible in practice, and the coarse graining
involves loss of information, which accounts for the N ln 2 entropy increase.
If the expansion is instead adiabatic, a slow process pushing against a slowly
moving piston, with no heat transfer in or out of the gas, then then the gas
remains in equilibrium at each step. The gas does work against the piston,
transferring energy to it, decreasing the momenta (and lowering the temper-
ature), which compensates the increased available volume, and the (coarse
grained) phase space volume remains unchanged. This process is reversible,
and entropy does not increase.

12.7 Adiabatic invariants

When the Hamiltonian is time dependent, energy is not conserved. But if the
change of the Hamiltonian is very slow compared to the period of a closed
orbit, then there can be an approximate conservation law, for a quantity
called an adiabatic invariant. The name implies that when the Hamiltonian
changes very slowly, i.e. adiabatically, the quantity is unchanged.

Examples of adiabatic changes are: a pendulum with a slowly varying
length, an oscillator with slowly varying mass and/or spring constant, a
particle in a box whose size is slowly varying, a charged particle in a slowly
changing magnetic field. In each of these examples there is one or more
parameters λi(t) that are changing slowly. For the process to be adiabatic,
their fractional change over one period T should be small:

λ̇iT � λi, equivalently λ̇i/λi � ω. (122)

In this case, since the energy is changing only because of the parameter
changes, it is plausible that the energy will change at a rate depending ap-
proximately linearly on these quantities, and therefore there will be some
function of E and λi that does not change. This is the adiabatic invariant.
As we’ll see the adiabatic invariant has dimensions of action. If there is a
unique way to form a quantity with dimensions of action with the quantities
in the system, then dimensional analysis furnishes the adiabatic invariant.
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Consider first the case of a system described by one generalized coor-
dinate, whose phase space is two dimensional. Suppose the system starts
somewhere on a closed orbit O1, and adiabatically evolves to another closed
orbit O2 over a time ∆t. Then, since many cycles are completed before any
appreciable change in the Hamiltonian occurs, all initial points on O1 have
approximately the same “experience”, hence we expect any other initial point
on O1 would have evolved to some other point on O2. In other words, the
Hamiltonian flow takes O1 to O2 as a whole. But then Liouville’s theorem
says that the area of the phase space region enclosed by the initial and final
orbits must be the same! That’s the adiabatic invariant.

In two dimensional phase space, the area enclosed by a closed curve is
equal to the integral

∮
pdq. To see this, slice the region up into strips by

dividing the q range into intervals of width dq. Since the curve at top and
bottom of a strip hits the boundary going in opposite directions, the contri-
bution of these two segments to the loop integral is the area of that strip. So
another way to write the adiabatic invariant is as this integral.

In higher dimensions a closed orbit does not bound a volume, so we can’t
use Liouville’s theorem to identify adiabatic invariants. However, like the
volume, the integral∮

pidq
i Poincaré integral invariant (123)

around any closed loop is conserved under any Hamiltonian flow. This is
called Poincaré’s integral invariant. As discussed above, in a two dimensional
phase space it is just the area of the enclosed region, but in higher dimensions,
it is something else.

To show that the integral invariant is indeed unchanged, we evaluate its
time derivative:

d

dt

∮
pidq

i =

∮
ṗidq

i + pidq̇
i (124)

=

∮
ṗidq

i − q̇idpi + d(piq̇
i) (125)

=

∮
d(piq̇

i −H) (126)

= 0. (127)

The second to last expression is the integral of a total differential around a

47



closed loop, so it vanishes. (It happens to be the integral of dL, where L is
the Lagrangian, as a function of phase space.)

12.7.1 Example: Oscillator with slowly varying m(t) and k(t)

Consider an oscillator with Hamiltonian

H =
p2

2m(t)
+

1

2
k(t)x2. (128)

Because of the time dependent mass and spring constant, the energy is not
conserved. The energy is the Hamiltonian, and dH/dt = ∂H/∂t (as shown
earlier, Hamilton’s equations imply that the time dependence of x and p has
no effect on H), so we have

Ė = −ṁ
m

(
p2

2m

)
+
k̇

k

(
1

2
kx2

)
, (129)

where the time dependence of m and k is now suppressed in the notation.
Now suppose that the parameters are changing only very slowly, in the

sense that
ṁ

m
� ω and

k̇

k
� ω, (130)

where ω = ω(t) =
√
k/m is the “instantaneous” angular frequency. That is,

m and k change by very little during one period of the oscillator. Then we
can get a good approximation to the average of Ė over a cycle by replacing
the kinetic and potential energy terms in (129) each by half the energy. Then
dividing both sides by E yields

Ė

E
≈ − ṁ

2m
+

k̇

2k
, (131)

which implies
Em1/2k−1/2 = E/ω ≈ constant. (132)

This combination of E, m, and k is in fact the unique combination with
dimensions of action, so its adiabatic invariance could have been surmised
without calculation. Note that, as explained above in Sect. 12.5, E/ω is
indeed proportional to the phase space area enclosed by the orbit.
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12.7.2 Adiabatic invariance and quantum mechanics

It was noted in the early days of quantum theory that the quantization of
oscillator energies E = (n + 1

2
)h̄ω requires that E/ω can only take discrete

values, whereas in classical physics this ratio can vary continuously. The
fact that classically E/ω is an adiabatic invariant was viewed as a necessary
compatibility condition. Otherwise it would be impossible to change ω, even
infinitely slowly, without changing the quantum number n. Ehrenfest took
this particularly seriously and proposed an “adiabatic principle” which enun-
ciated that all quantities subject to quantization rules should be adiabatic in-
variants. He showed in 1916 that this was in fact the case for all the successful
quantization rules of the old quantum theory. (See this talk for details: http:
//scholar.google.com/scholar?cluster=3114216431842117235&hl=en&as_

sdt=0,21)

12.7.3 Example: Cyclotron orbits and magnetic mirror

Another example of an adiabatic invariant is the magnetic flux Bπr2 through
a cyclotron orbit in a slowly changing magnetic field (as shown in a homework
problem). This has an interesting implication for the component of motion
of a charge along the field lines of a static but inhomogeneous field. The
kinetic energy of the transverse, cyclotron motion can be found from the
Lorentz force balance law: qv⊥B = mv2

⊥/r, so 1
2
mv2
⊥ = q2B2r2/2m. Since

the flux is invariant, we have 1
2
mv2
⊥ = αB for some positive constant α. This

transverse kinetic energy acts as an effective potential for the motion along
the field lines, and the charge is repelled from a region of stronger field. (The
origin of this repulsion is the component of Lorentz force due to the radial
component of the magnetic field.) For a given energy, the charge may reach
a turning point where the longitudinal motion comes to rest, and all the
kinetic energy is transverse. The charge bounces off the turning point, hence
the name “magnetic mirror”. Charges in the earth’s magnetic field do exactly
this, bouncing back and forth along the field lines in the Van Allen radiation
belts (http://en.wikipedia.org/wiki/Van_Allen_radiation_belt).

12.8 Poisson brackets

We won’t cover the material of this section in Phys 410 this year (2012). It
is included here in case you want to get a quick introduction to these topics.
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Poisson brackets are a formal development that establishes the link with
quantum mechanics, and also reveals more about the structure of the Hamil-
tonian formulation of mechanics and symmetries. Consider the time depen-
dence of a function A(q, p) on phase space:

dA

dt
=
∂A

∂q
q̇ +

∂A

∂p
ṗ =

∂A

∂q

∂H

∂p
− ∂A

∂p

∂H

∂q
=: {A,H}, (133)

where the last step defines the Poisson bracket { , }. If A has explicit time
dependence then of course a term ∂A/∂t must be added.

In general, the Poisson bracket between two phase space functions is
defined as

{A,B} =
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
(Poisson bracket) (134)

In a higher dimensional phase space, each qp pair contributes a pair of terms
like these. We can express this by decorating q and p with an index i, and
summing over repeated indices. Canonically conjugate pairs of coordinates
have unit Poisson bracket with each other, and zero Poisson bracket with the
other coordinates:

{qi, pj} = δij. (135)

The formal properties of the Poisson bracket are that it is bilinear, anti-
symmetric, and satisfies the Liebniz (product) rule and the Jacobi identity :

{A, λB + µC} = λ{A,B}+ µ{A,C} (136)

{A,B} = −{B,A} (137)

{A,BC} = {A,B}C +B{A,C} (138)

0 = {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}}, (139)

where λ and µ are constants.
Conserved quantities have vanishing Poisson bracket with the Hamilto-

nian (assuming they have no explicit time dependence). If A and B are
conserved, the Jacobi identity implies that A,B is also conserved. Exam-
ple: if Lx, Ly, and Lz are the components of angular momentum, then
{Lx, Ly} = Lz, so conservation of Lx and Ly implies conservation of Lz. This
corresponds to the fact that rotations about the z axis can be expressed as
combinations of rotations about the x and y axes. [Note { , } has dimensions
of 1/[qp] = 1/[angular momentum], so the dimensions do work out.]
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12.8.1 Canonical Quantization

The formal properties of the Poisson bracket are all shared by matrix commu-
tators. This suggested to Dirac the idea that the recently discovered matrix
mechanics of Heisenberg, then with Born and Jordan, could be directly re-
lated to the corresponding classical mechanics via replacement of functions
on phase space by matrices (generally, infinite dimensional matrices, i.e. “op-
erators”) whose commutators are ih̄ times the corresponding classical Poisson
brackets,

[Â, B̂] = ih̄{A,B}. (140)

Here for example Â is the operator corresponding to the classical observable
A. The eigenvalues of Â correspond to classical values of A.

Only a small subset of all the operators can satisfy this simple quan-
tization condition. In particular, in the usual formulation, the canonically
conjugate quantum coordinates and momenta have simple Heisenberg com-
mutation relations,

[q̂, p̂] = ih̄. (141)

This makes the phase space coordinates into non-commuting operators. The
classical phase space coordinates correspond to the eigenvalues of these op-
erators.

12.8.2 Canonical transformations

In the Lagrangian formalism, any generalized coordinates can be used. The
Lagrangian is just expressed in terms of the new coordinates, and Lagrange’s
equations take the same form in terms of the new coordinates as they did in
the old coordinates.

The coordinate freedom is even greater in the Hamiltonian formalism.
A phase space coordinate change that preserves the form of the Poisson
brackets of the coordinates is called a canonical transformation. That is,
new coordinates (Qi, Pi) are related to the original canonical coordinates by
a canonical transformation if

{Qi, Pj}q,p = δij, and {Qi, Qj}q,p = 0 = {Pi, Pj}q,p. (142)

If this holds, then all Poisson brackets have the same value whether com-
puted using q, p or Q,P as the canonical coordinates: {f, g}q,p = {f, g}Q,P ,
where the subscripts indicate which coordinates enter in the partial deriva-
tives defining the Poisson bracket. In particular, if the coordinate change is
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time-independent, Hamilton’s equations take the same form in terms of the
new coordinates, with the same Hamiltonian.

Examples of canonical transformations

• Q = 5q, and P = p/5

• More generally, Q = Q(q), and P = p(∂q/∂Q). This is the Hamil-
tonian version of an arbitrary change of generalized coordinate in the
Lagrangian,

L[q, q̇] = L[q(Q), (∂q/∂Q)Q̇]. (143)

P can be found directly from the definition of the canonical momentum:
P = ∂L/∂Q̇ = (∂L/∂q̇)(∂q/∂Q) = p(∂q/∂Q).

• Even more generally, the previous example works with multiple gener-
alized coordinates, with ∂q/∂Q replaced by the Jacobian ∂qi/∂Qj.

• In the previous examples the new Q’s depend only on the old q’s, not
on the old p’s. In general, however, a canonical transformation can mix
up the q’s and p’s. The simplest example of this is Q = p, and P = −q.

• A juicier example of mixing up q’s and p’s is to use the Hamiltonian
itself as a coordinate. More specifically, consider a harmonic oscillator
with Hamiltonian H = p2/2m + mω2x2/2, and define I = H/ω and
θ = tan−1(mωq/p) (which is the angle measured clockwise from the p
axis in units with m = ω = 1). Then {θ, I} = 1 (and of course {θ, θ} =
0 = {I, I}), so this coordinate change on phase space is a canonical
transformation. Hamilton’s equations take a very simple form in these
coordinates: H = ωI, so θ̇ = ∂H/∂I = ω, and İ = −∂H/∂θ = 0.
These are a special case of what are called action-angle variables.

13 Continuum mechanics

So far we’ve treated systems with a finite number of generalized coordinates,
either point particles or rigid bodies. Motion of flexible macroscopic bodies
can very well be approximated as continuous, and this can be done using
functions as generalized coordinates. Also fundamental fields like the elec-
tromagnetic field or the spacetime metric are (at least in current formulations
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of physics) strictly continuous, and their dynamics is described by continuum
mechanics as well.

This section is going to be sketchy for the moment...

13.1 String

Lagrangian for small transverse displacements with of a stretched (non-
relativistic) string:

L =

∫
[1
2
µ(∂y/∂t)2 − 1

2
T (∂y/∂x)2]dx, (144)

where y(x, t) specifies the string displacement, assumed in a fixed plane, away
from a straight equilibrium, µ is the mass per unit length, T is the tension.
This is derived under the assumption that the slope ∂y/∂x is always much
smaller than 1. For such small displacements, we can treat the mass density
and tension as constant. We neglect longitudinal (compression type) distur-
bances of the string as well as any restoring force due to stiffness (resistance
to bending the string). Only the potential energy associated with changing
the length of the string due to transverse displacement is taken into account.

Let’s see how to get that Lagrangian. A segment dx of string has a mass
µ dx and a velocity ∂y/∂t, hence a kinetic energy 1

2
µ(∂y/∂t)2 dx. Integrating

this yields the kinetic energy term in (144). As for the potential energy, it
is equal to the work it takes to stretch the string. The work to stretch a
segment dx to a length dl is T (dl − dx). We have

dl =
√
dx2 + dy2 = dx

√
1 + (∂y/∂x)2 = dx[1 + 1

2
(∂y/∂x)2 +O((∂y/∂x)4)].

(145)
To lowest order in the slope, the change in length of the displaced segment is
thus 1

2
(∂y/∂x)2dx. The potential energy of displacement is then the integral

of this times T , which is the potential energy term in (144). The next order
term is quartic in the slope, so would add a term cubic in y to the equation
of motion. This would be a nonlinear equation. If that term is very small,
its effect could be taken into account using perturbation theory.

Lagrange equation and boundary conditions
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Normal modes Method 1) Solve directly for normal modes. Method 2)
Fourier transform y(x, t) =

∑
n yn(t) sin knx, find that Lagrangian becomes

sum of an infinite number of oscillator Lagrangians. Works for fixed (Dirich-
let) or free (Neumann) or mixed boundary conditions.

Loaded string An interesting variation is to attach a mass m at one end
of the string. Then no boundary condition is needed on that end, since the
dynamics of the mass plays that role. Then one cannot use a Fourier decom-
position in advance, since one doesn’t know what the allowed wavevectors
are. Instead one must (I think) solve directly for the normal modes. In a
homework problem you show that the allowed wavevectors and frequencies
are determined by a transcendental equation.

String with bending modulus Another interesting variation is to take
into account the stiffness of a string, which is important for thick piano
strings. That is, besides the potential energy of stretching associated with
the string tension, there is a potential energy of bending. At lowest order,
the bending energy density is proportional to the square of the curvature
y′′(x) of the string, so the bending energy has the form

∫
dx 1

2
β(y′′)2, where

the constant β is the bending modulus. This term preserves linearity of the
equation of motion, but it produces a y′′′′ term that is fourth order in the
x derivative. This is worked out in a homework problem. More boundary
conditions are needed to kill off the boundary terms in the variation of the
action, and that matches the fact that more boundary conditions are needed
to determine a solution to the fourth order mode equation. Different bound-
ary conditions correspond to different physical conditions on the boundary,
for instance a clamped end (y′ = 0) vs. an end that is free to rock on a
fulcrum, held down by a material with no bending modulus (y′′ = 0). A
piano string lies in between these extremes, and can (I think) be described
by including a term in the potential energy proportional to the angle of the
string at the endpoint.

The normal modes are easy to find using the boundary condition y′′ = 0,
since it is simultaneously satisfied with the fixed end condition y = 0 by
sin functions. The boundary condition y′ = 0 is trickier to implement and
involves other solutions of the fourth order mode equation. (This is an extra
credit homework problem.)
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13.2 Electromagnetic field

13.3 Elastic solids
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