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We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of
sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order
equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices,
the eigenfrequencies are determined and their n2 dependency is discussed for the clamped, hinged, and intermediate cases.
On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion
of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Know-
ing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by
Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a
nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum
warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dis-
persive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fun-
damental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evalu-
ated.

Keywords and phrases: physical models, dispersive waveguides, frequency warping.

1. INTRODUCTION
Interest in digital audio synthesis techniques has been rein-
forced by the possibility of transmitting signals to a wider au-
dience within the structured audio paradigm, in which algo-
rithms and restricted sets of data are exchanged [1]. Among
these techniques, the physically inspired models play a privi-
leged role since the data are directly related to physical quan-
tities and can be easily and intuitively manipulated in order
to obtain realistic sounds in a flexible framework. Applica-
tions are, amongst the others, the simulation of a “physical
situation” producing a class of sounds as, for example, a clos-
ing door, a car crash, the hiss made by a crawling creature, the
human-computer interaction and, of course, the simulation
of musical instruments.

In the general physical models technique, continuous-
time solutions of the equations describing the physical sys-

tem are sought. However, due to the complexity of the real
physical systems—from the classic design of musical in-
struments to the molecular structure of extended objects—
solutions of these equations cannot be generally found in an
analytic way and one should resort to numerical methods or
approximations. In many cases, the resulting approximation
scheme only closely resembles the exact model. For this rea-
son, one could better define these methods as physically in-
spired models, as first proposed in [2], where the mathemat-
ical equations or solutions of the physical problem serve as
a solid base to inspire the actual synthesis scheme. One of
the advantages of using physically inspired models for sound
synthesis is that they allow us to perform a “selection” of the
physical parameters actually influencing the sound so that a
trade-off between completeness and particular goals can be
achieved.
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In the following, we will focus on stiff vibrating systems,
including rods and stiff strings as encountered in pianos.
However, extensions to two- or three-dimensional systems
can be carried out with little effort.

Vibrating physical systems have been extensively studied
over the last thirty years for their key role in many musi-
cal instruments. The wave equation can be directly approxi-
mated by means of finite difference equations [3, 4, 5, 6, 7],
or by discretization of the wave functions as proposed by
Jaffe and Smith [8, 9] who reinterpreted and generalized the
Karplus-Strong algorithm [10] in a wave propagation setting.
The outcome of the approximation of the time domain solu-
tion of the wave equation is the design of a digital waveg-
uide simulating the string itself: the sound signal simulation
is achieved by means of an appropriate excitation signal, such
as white noise. However, in order to achieve a more realistic
and flexible synthesis, the interaction of the excitation sys-
tem with the vibrating element is, in turn, physically mod-
eled. Digital waveguide methods for the simulation of physi-
cal models have been widely used [11, 12, 13, 14, 15, 16]. One
of the reasons for their success is that they are appropriate for
real-time synthesis [17, 18, 19, 20]. This result allowed us to
change our approach to model musical instruments based on
vibrating strings: waveguides can be designed for modeling
the “core” of the instruments, that is, the vibrating string, but
they are also suitable for the integration of interaction mod-
els, for example, for the excitation due to a hammer [21] or
to a bow [9], the radiation of sound due to the body of the
instrument [22, 23, 24, 25], and of different side-effects in
plucked strings [26]. It must be pointed out that the interac-
tions being highly nonlinear, their modeling and the deter-
mination of the range of stability is not an easy task.

In this paper, we will review the design of a digital waveg-
uide simulating a vibrating stiff system, focusing on stiff
strings and treating bars as a limit case where the tension
in negligible. The purpose is to derive a general framework
inspiring the determination of a discrete numerical model.
A frequency domain approach has been privileged, which
allows us to separate the fourth-order differential equation
of stiff systems into two second-order equations, as shown
in Section 2. This approach is also useful for the simula-
tion of two-dimensional (2D) systems such as thin plates.
By enforcing proper boundary conditions, we obtain the
eigenfrequencies and the eigenfunctions of the system as
found, for the case of strings, in the classic works by Fletcher
[27, 28]. Once the exact solutions are completely charac-
terized, their numerical approximation is discussed [29, 30]
together with their justification based on physical reason-
ing. The discretization of the continuous-time domain so-
lutions is carried out in Section 3, which naturally leads to
dispersive waveguides based on a long chain of all-pass fil-
ters. From a different point of view, the derived structure can
be described in terms of Laguerre expansions and frequency
warping [31]. In this framework, a stiff system can be shown
to be equivalent to a nonstiff (Karplus-Strong like) system,
whose solutions are frequency warped, provided that the ini-
tial and the possibly moving boundary conditions are prop-
erly unwarped [32, 33]. As a side effect, this property can be

exploited in order to perform an analysis of piano sounds
by means of pitch-synchronous frequency warped wavelets
in which the excitation can be separated from the resonant
sound components [34].

The models presented in this paper provide at least two
entry points for the synthesis. If the physical parameters and
boundary conditions are completely known, or if it is de-
sired to specify them to model arbitrary strings or rods, then
the eigenfunctions, hence the dispersion curve, can be deter-
mined. The problem is then reconducted to that of finding
the best approximation of the continuous-time dispersion
curve with the phase response of a suitable all-pass chain us-
ing the methods illustrated in Section 3. Another entry point
is offered if sound samples of an instrument are available.
In this case, the parameters of the synthesis model can be
determined by finding the warping curve that best fits the
data given by the frequencies of the partials, together with
the length of the dispersive delay line. This is achieved by
means of a regularization method of the experimental dis-
persion data, as reported in Section 4.

The physical entry point is to be preferred in those sit-
uations where sound samples are not available, for example,
when we are modeling a nonexisting instrument by extension
of the physical model, such as a piano with unusual speak-
ing length. The other entry level is best for approximating
real instrument sounds. However, in this case, the synthesis
is limited to existing sources, although some variations can
be obtained in terms of the warping parameters, which are
related to, but do not directly represent, physical factors.

2. PHYSICAL STIFF SYSTEMS

In this section, we present a brief overview of the stiff
string and rod equations of motion and of their solution.
The purpose is twofold. On the one hand, these equations
give the necessary background to the physical modeling of
stiff strings. On the other hand, we show that their fre-
quency domain solution ultimately provides the link between
continuous-time and discrete-time models, useful for the
derivation of the digital waveguide and suitable for their sim-
ulation. This link naturally leads to Laguerre expansions for
the solution and to frequency warping equivalences. Further-
more, enforcing proper boundary conditions determines the
eigenfrequencies and eigenfunctions of the system, useful for
fitting experimentally measured resonant modes to the ones
obtained by simulation. This fit allows us to determine the
parameters of the waveguide through optimization.

2.1. Stiff string and bar equation

The equation of motion for the stiff string can be determined
by studying the equilibrium of a thin plate [35, 36]. One ob-
tains the following 4th-order differential equation for the de-
formation of the string y(x, t):

−ε ∂
4y(x, t)
∂x4

+
∂2y(x, t)
∂x2

= 1
c2

∂2y(x, t)
∂t2

,

ε = EI

T
, c =

√
T

ρS
,

(1)
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featuring the Young modulus of the material E, the inertia
moment I with respect to the transversal axis of the cross-
section of the string (for a circular section of radius r, I =
πr4/4 as in [36]), the tension of the string T , and the mass
per unit length ρS. Note that for ε → 0, (1) becomes the well-
known equation of the vibrating string [35]. Otherwise, if the
applied tension T is negligible, we obtain

−ε′ ∂
4y(x, t)
∂x4

= ∂2y(x, t)
∂t2

, ε′ = EI

ρS
, (2)

which is the equation for the transversal vibrations of rods.
Solutions of (1) and (2) are best found in terms of the Fourier
transform of y(x, t) with respect to time:

Y(x,ω) =
∫ +∞

−∞
y(x, t) exp(−iωt)dt, (3)

where ω is the angular velocity related to frequency f by the
relationship f = 2πω.

By taking the Fourier transform of both members of (1)
and (2), we obtain

ε
∂4Y(x,ω)

∂x4
− ∂2Y(x,ω)

∂x2
− ω2

c2
Y(x,ω) = 0 (4)

for the stiff string and

ε′
∂4Y(x,ω)

∂x4
− ω2Y(x,ω) = 0 (5)

for the rod.
The second-order −∂2/∂x2 spatial differential operator is

defined as a repeated application of the L2 space extension of
the−i(∂/∂x) operator [37]. To the purpose, we seek solutions
whose spatial and frequency dependency can be factored, ac-
cording to the separation of variables method, as follows:

Y(x,ω) =W(ω)X(x). (6)

Substituting (6) in (4) and (5) results in the elimination of
the W(ω) term, obtaining ordinary differential equations,
whose characteristic equations, respectively, are

ελ4 − λ2 − ω2

c2
= 0 (stiff string),

ε′λ4 − ω2 = 0 (rod).
(7)

The elementary solutions for the spatial part X(x) have the
form X(x) = C exp(λx). It is important to note that in both
cases, the characteristics equations have the following form:

(
λ2 − ξ2

1

)(
λ2 − ξ2

2

) = 0, (8)

where ξ1 and ξ2 are, in general, complex numbers that de-
pend on ω. Equation (8) allows us to factor both equations
in (4) and (5) as follows:

[
∂2

∂x2
− ξ2

1

]
·
[
∂2

∂x2
− ξ2

2

]
Y(x,ω) = 0. (9)

The operator −∂2/∂x2 is selfadjoint with respect to the L2

scalar product [37]. Therefore, (9) can be separated into the
following two independent equations:

[
∂2

∂x2
− ξ2

1

]
Y1(x,ω) = 0,

[
∂2

∂x2
− ξ2

2

]
Y2(x,ω) = 0,

(10)

where

Y(x,ω) = Y1(x,ω) + Y2(x,ω). (11)

As we will see, (10) justifies the use, with proper modifica-
tions, of a second-order generalized waveguide based on pro-
gressive and regressive waves for the numerical simulation of
stiff systems.

2.2. General solution of the stiff string
and bar equations

In this section, we will provide the general solution of (8).
The particular eigenfunctions and eigenfrequencies of rods
and stiff strings are determined by proper boundary condi-
tions and are treated in Section 2.3. From (7), it can be shown
that

ξ±1 = ±
√
−
√

1 + 4ω2ε/c2 − 1
2ε

ξ±2 = ±
√√

1 + 4ω2ε/c2 + 1
2ε

(stiff string),

ξ±1 = ±
√
− ω√

ε′

ξ±2 = ±
√

ω√
ε′

(rod).

(12)

Note that in both cases, the eigenvalues ξ±1 are complex num-
bers, while ξ±2 are real numbers. It is also worth noting that

ξ2
1 + ξ2

2 =
1
ε

(stiff string),

ξ2
1 + ξ2

2 = 0 (rod),
(13)

where ξ1 corresponds to the positive choice of the sign in
front of the square root in (12) and ξ2 = |ξ±2 |. As expected, if
we let T → 0, then both sets of eigenvalues of the stiff string
tend to those found for the rod. Using the equations in (12),
we then have for both strings and rods

Y1(x,ω) = c+
1 exp

(
ξ1x
)

+ c−1 exp
(− ξ1x

)
,

Y2(x,ω) = c+
2 exp

(
ξ2x
)

+ c−2 exp
(− ξ2x

)
,

(14)

where c±1 , c±2 are, in general, functions of ω. Note that
Y1(x,ω) is an oscillating term, while, since ξ2 is real, Y2(x,ω)
is nonoscillating. For finite-length strings, both positive and
negative real exponentials are to be retained.
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From (12), we see that the primary effect of stiffness is
the dependency on frequency of the argument (from now on,
phase) of the solutions of (4) and (5). Therefore, the propa-
gation of the wave from one section of the string located at x
to the adjacent section located at x+∆x is obtained by multi-
plication of a frequency dependent factor exp(ξ1∆x). Conse-
quently, the group velocity u, defined as u ≡ (dξ1/dω)−1, also
depends on frequency. This results in a dispersion of the wave
packet, characterized by the function ξ1(ω), whose modulus
is plotted in Figure 1 for the case of a brass string using the
following values of the physical parameters r, T , ρ, and E:

r = 1 mm,

T = 9 · 107 dyne,

ρ = 8.44 g cm−3,

E = 9 · 1011 dyne cm−2.

(15)

Clearly, the previous example is a very crude approximation
of a physical piano string (e.g., real-life piano strings in the
low register are built out of more than one material and a
copper or brass wire is wrapped around a steel core). For the
sake of completeness, we give the explicit expression of |u| in
both the cases we are studying. We have

|u| = 2c
√(
c2 + 4ω2ε

)
√(

2c2 ± 2c
√(
c2 + 4ω2ε

)) (stiff string),

|u| = 2
√
ω
√
ε′ (rod).

(16)

If T → 0, the two group velocities are equal. Moreover, if in
the first line in (16), we let ε → 0, then u → c, which is the
limit case of the ideally flexible vibrating string. These facts
further justify the use of a dispersive waveguide in the nu-
merical simulation. With respect to this point, a remark is in
order: the dispersion introduced by stiffness can be treated as
a limiting “nonphysical” consequence of the Euler-Bernoulli
beam equation:

d2

dx2

[
EI
d2y

dx2

]
= p, (17)

where p is the distributed load acting on the beam. It is “non-
physical” in the sense that u → ∞ as

√
ω. However, in the

discrete-time domain, this “nonphysical” situation is avoided
if we suppose all the signals be bandlimited.

2.3. Complete characterization of stiff string
and rod solution

Boundary conditions for real piano strings lie in between the
conditions of clamped extrema:

Y
(
− L

2
,ω
)
= Y

(
L

2
,ω
)
= 0,

∣∣∣∣∂Y(x,ω)
∂x

∣∣∣∣
−L/2

=
∣∣∣∣∂Y(x,ω)

∂x

∣∣∣∣
L/2
= 0,

(18)
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Figure 1: Plot of the phase module of the stiff model equation so-
lution for ε = π/4 cm2 and c ≈ 2∗ 104 cm s−1.

and of hinged extrema [5, 16, 31, 35, 36]:

Y
(
− L

2
,ω
)
= Y

(
L

2
,ω
)
= 0,

∣∣∣∣∂2Y(x,ω)
∂x2

∣∣∣∣
−L/2

=
∣∣∣∣∂2Y(x,ω)

∂x2

∣∣∣∣
L/2
= 0.

(19)

Before determining the conditions for the eigenfrequencies
of the considered stiff systems, we find a more compact way
of writing (18) and (19). Starting from the factorized form of
the stiff systems equation (see (10)), and using the symbols
introduced in Section 2.2, we have

Y1(x,ω) = ψ+
1 (x,ω) + ψ−1 (x,ω),

Y2(x,ω) = ψ+
2 (x,ω) + ψ−2 (x,ω),

(20)

where we let

ψ±1 (x,ω) = c±1 exp
(
ξ±1 x

)
,

ψ±2 (x,ω) = c±2 exp
(
ξ±2 x

)
.

(21)

Conditions (18) can then be rewritten as follows:

Y1

(
− L

2
,ω
)
= −Y2

(
− L

2
,ω
)

,

Y1

(
L

2
,ω
)
= −Y2

(
L

2
,ω
)

,

∣∣∣∣∂Y1(x,ω)
∂x

∣∣∣∣
−L/2

= −
∣∣∣∣∂Y2(x,ω)

∂x

∣∣∣∣
−L/2

,

∣∣∣∣∂Y1(x,ω)
∂x

∣∣∣∣
L/2
= −

∣∣∣∣∂Y2(x,ω)
∂x

∣∣∣∣
L/2
.

(22)

At the terminations of the string or of the rod, we have

ψ+
1 + ψ−1 = −

(
ψ+

2 + ψ−2
)
,

ξ+
1 ψ

+
1 + ξ−1 ψ

−
1 = −

(
ξ+

2 ψ
+
2 + ξ−2 ψ

−
2

)
,

(23)
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which can be rewritten in matrix form:[
1 1
ξ+

1 ξ+
2

][
ψ+

1

ψ+
2

]
= −

[
1 1
ξ−1 ξ−2

][
ψ−1
ψ−2

]
. (24)

By left-multiplying both members of (24) for the inverse of
the

[ 1 1
ξ+

1 ξ+
2

]
matrix, we have

[
ψ+

1

ψ+
2

]
= Sc

[
ψ−1
ψ−2

]
, (25)

where we let

Sc ≡



−
(
ξ+

2 + ξ+
1

)
ξ+

2 − ξ+
1

−2
ξ+

2

ξ+
2 − ξ+

1

2
ξ+

1

ξ+
2 − ξ+

1

ξ+
2 + ξ+

1

ξ+
2 − ξ+

1


 . (26)

The matrix Sc relates the incident wave with the reflected
wave at the boundaries. Independently of the roots ξi, it has
the following properties:

∣∣Sc∣∣ = −1,

S2
c =

[
1 0
0 1

]
.

(27)

In the case of a hinged stiff system (see (19)) at both ends, we
have

ψ+
1 + ψ−1 = −

(
ψ+

2 + ψ−2
)
,(

ξ+
1

)2
ψ+

1 +
(
ξ−1
)2
ψ−1 = −

((
ξ+

2

)2
ψ+

2 +
(
ξ−2
)2
ψ−2
) (28)

which, in matrix form, becomes
[

1 1(
ξ+

1

)2 (
ξ+

2

)2

][
ψ+

1

ψ+
2

]
= −

[
1 1(
ξ−1
)2 (

ξ−2
)2

][
ψ−1
ψ−2

]
. (29)

By taking the inverse of matrix
[ 1 1

(ξ+
1 )2 (ξ+

2 )2

]
, we obtain

[
ψ+

1

ψ+
2

]
= Sh

[
ψ−1
ψ−2

]
, (30)

where

Sh = −
[

1 0
0 1

]
. (31)

The Sh matrix for the hinged stiff system is independent of
roots ξi. The matrices Sh and Sc are related in the following
way:

∣∣Sh∣∣ = −∣∣Sc∣∣,

S2
h = S2

c .
(32)

In conclusion, the boundary conditions for stiff systems
can be expressed in terms of matrices that can be used in
the numerical simulation of stiff systems. Moreover, since the
real-life boundary conditions for stiff strings in piano lie in

between the conditions given in (18) and (19), we can com-
bine the two matrices Sc and Sh in order to enforce more
general conditions, as illustrated in Section 3. In the follow-
ing, we will solve (4) and (5) applying separately these sets of
boundary conditions.

2.3.1. The clamped stiff string and rod

In order to characterize the eigenfunctions in the case of con-
ditions (18), in (12) we let

ξ1 = iξ′1 (33)

for both the stiff string and the rod solution. By definition,
ξ′1 is a real number. Moreover, for the rod, we have ξ′1 = ξ2.
With this position, it can be shown that conditions (18) for
the stiff string lead to the equations [35, 38]




tan
(
ξ′1
L

2

)
tanh

(
ξ2
L

2

)

tanh
(
ξ2
L

2

)
− tan

(
ξ′1
L

2

)


[
ξ′1
ξ2

]
=
[

0
0

]
, (34)

while, for the rod, we have

cos
(
ξ′1L
)

cosh
(
ξ2L
) = 1. (35)

Equations (34) and (35) can be solved numerically. In partic-
ular, taking into account the second line in (12), solutions of
(35) are [35]

ωn = π2

4

(
3.0112, 52, 72, . . . , (2n + 1)2)α′2,

α′ =
4
√
ε′

L
.

(36)

A similar trend can be obtained for the stiff string. In view
of their historical and practical relevance, we here report the
numerical approximation for the allowed eigenfrequencies of
the stiff string given by Fletcher [27]:

ωn �
(
nπ

c

L

)√(
1 + n2π2α2

)(
1 + 2α + 4α2),

α =
√
ε

L
.

(37)

If we expand the above expression in a series of powers of
α truncated to second order, we have the following approxi-
mate formula valid for small values of stiffness:

ωn �
(
nπ

c

L

)[
1 + 2α +

(
1 +

1
8
n2π2

)
(2α)2

]
. (38)

The last approximation does not apply to bars. For ε = 0, we
have α = 0 and the eigenfrequencies tend to the well-known
formula for the vibrating string [35]:

ωn = nω1. (39)

Typical curves of the relative spacing χn ≡ ∆ωn/ω1, where
∆ωn ≡ ωn+1 − ωn, of eigenfrequencies for the stiff string are
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Figure 2: Typical eigenfrequencies relative spacing curves of the
clamped stiff string for different values of the radius r of the sec-
tion S.

shown in Figure 2 with variable r, where values of the other
physical parameters are the same as in (15).

Due to the dependency on the frequency of the phase of
the solution, the eigenfrequencies of the stiff string are not
equally spaced. For a small radius r, hence for low degree
of the stiffness of the string (see (1)), the relative spacing is
almost constant for all the considered order of eigenfrequen-
cies. However, for higher stiffness, the spacing of the eigen-
frequencies increases, in first approximation, as a linear func-
tion of the order of the eigenfrequency. The above results are
summarized by the typical “warping curves” of the system,
shown in Figure 3, in which the quantity ωn−ωn, which rep-
resents the deviation from the linearity, is plotted in terms of
spacing ∆ωn between consecutive eigenfrequencies.

In the stiff string case, we have two sets of eigenfunctions,
one having even parity and the other one having odd parity,
whose analytical expressions are respectively given by [38]

Y(x,ω)=C(ω) cos
(
ξ′1
L

2

)[
cos
(
ξ′1x
)

cos
(
ξ′1(L/2)

)− cosh
(
ξ2x
)

cosh
(
ξ2(L/2)

)
]

,

Y(x,ω)=C(ω) sin
(
ξ′1
L

2

)[
sin
(
ξ′1x
)

sin
(
ξ′1(L/2)

)− sinh
(
ξ2x
)

sinh
(
ξ2(L/2)

)
]

,

(40)

where C(ω) is a constant that can be calculated imposing the
initial conditions.

2.3.2. Hinged stiff string and rod

Conditions (19) lead to the following sets of equations for
the stiff string:

sin
(
ξ′1L
)

sinh
(
ξ2L
) = 0,

ξ′1
2 + ξ2

2 = 0,
(41)
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Figure 3: Typical warping curves of the clamped stiff string for dif-
ferent values of the radius r of the section S.

and for the rod:

sin
(
ξ′1L
)

sinh
(
ξ2L
) = 0. (42)

The second line in (41) has no solutions since both ξ′1
2 and

ξ2
2 are real functions. It follows that hinged stiff systems are

only described by (42). In this equation, sinh(ξ2L) = 0 has
no solution, hence the eigenfrequencies are determined by
the condition

ξ′1 =
nπ

L
. (43)

Using the parameters α′ and α respectively defined in (36)
and (37), the eigenfrequencies for the hinged stiff string are
exactly expressed as follows:

ωn =
(
nπ

c

L

)√(
n2π2α2 + 1

)
, (44)

while for the rod, we have

ωn = n2π2α′2. (45)

As the tension T → 0, (44) tends to (45). Figure 4 shows
the relative spacing of the eigenfrequencies in the case of the
hinged stiff string.

Relative eigenfrequencies spacing curves are very similar
to the ones of the clamped string and so are the “warping
curves” of the system, as shown in Figure 5.

Using (45), we can give an analytic expression for the rel-
ative spacing of the eigenfrequencies of the hinged rod. We
have

π2α′2(2n + 1). (46)

Equation (43) leads to the following set of odd and even
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Figure 4: Typical eigenfrequencies relative spacing curves of the
hinged stiff string for different values of the radius r of the section
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Figure 5: Typical warping curves of the hinged stiff string for dif-
ferent values of the radius r of the section S.

eigenfunctions for the stiff string [38]:

Yn(x,ω) = 2D(ω) sin
(

2nπ
L

x
)

,

Yn(x,ω) = 2D(ω) cos
(

(2n + 1)π
L

x
)

,

(47)

whereD(ω) must be determined by enforcing the initial con-
ditions. It is worth noting that both functions in (47) are in-
dependent of the stiffness parameter ε. In Section 3, we will
use the obtained results in order to implement the dispersive
waveguides digitally simulating the solutions of (4) and (5).

Finally, we need to stress the fact that the eigenfrequen-
cies of the hinged stiff string are similar to the ones for the
clamped case except for the factor (1 + 2α + 4α2). Therefore,
for small values of stiffness, they do not differ too much. This

X(z) Y(z)
2P delays

z−2P

G(z)
(low-pass)

Figure 6: Basic Karplus-Strong delays cascade.

can also be seen from the similarity of the warping curves ob-
tained with the two types of boundary conditions.

Taking into account the fact that real-piano strings
boundary conditions lie in between these two cases, we can
conclude that the eigenfrequencies of real-piano strings can
be calculated by means of the approximated formula [27, 28]:

ωn � An
√
Bn2 + 1, (48)

whereA and B can be obtained from measurements. Approx-
imation (48) is useful in order to match measured vibrating
modes against the model eigenfrequencies.

3. NUMERICAL APPROXIMATIONS OF STIFF SYSTEMS

Most of the problems encountered when dealing with the
continuous-time equation of the stiff string consist in de-
termining the general solution and in relating the initial
and boundary conditions to the integrating constants of the
equation. In this section, we will show that we can use a sim-
ilar technique also in discrete-time, which yields a numerical
transform method for the computation of the solution.

In Section 2, we noted that (1) becomes the equation of
vibrating string in the case of negligible stiffness coefficient ε.
It is well known that the technique known as Karplus-Strong
algorithm implements the discrete-time domain solution of
the vibrating string equation [8], allowing us to reach good
quality acoustic results. The block diagram of the adopted
loop circuit is shown in Figure 6.

The transfer function of the digital loop chain can be
written as follows:

H(z) = 1
1− z−2PG(z)

, (49)

where the loop filter G(z) takes into account losses due to
nonrigid terminations and to internal friction, and P is the
number of sections in which the string is subdivided, as ob-
tained from time and space sampling. Loop filters design
can be based on measured partial amplitude and frequency
trajectories [18], or on linear predictive coding (LPC)-type
methods [9]. The filter G(z) can be modelled as IIR or FIR
and it must be estimated from samples of the sound or from
a model of the string losses, where, for stability, we need
|G(e jω)| < 1. Clearly, in the IIR case or in the nonlinear phase
FIR case, the phase response of the loop filter introduces a
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Figure 7: First-order all-pass phase plotted for various values of u.

limited amount of dispersion. Additional phase terms in the
form of all-pass filters can be added in order to tune the
string model to the required pitch [13] and contribute to fur-
ther dispersion.

Since the group velocity for a traveling wave for a stiff sys-
tem depends on frequency (see (16)), it is natural to substi-
tute, in discrete time, the cascade of unit delays with a chain
of circuital elements whose phase responses do depend on
frequency. One can show that the only choice that leads to
rational transfer functions is given by a chain of first-order
all-pass filters [39, 40]. More complex physical systems, for
example, as in the simulation of a monaural room, call for
substituting the delays chain with a more general filter as il-
lustrated in [41]:

A(z,u) = z−1 − u
1− uz−1

(50)

whose phase characteristic is

θ(Ω)= Ω + 2 arctan
u sin(Ω)

1− u cos(Ω)
. (51)

The phase characteristics in (51) are plotted in Figure 7 for
various values of u.

A comparison between the curve in Figure 1 and the ones
in Figure 7 gives more elements of plausibility for the approx-
imation of the solution phase of the stiff model equations,
given in (12), with the all-pass filter phase (51). Adopting a
similar circuital scheme as in the Karplus-String algorithm
[10] in which the unit delays are replaced by first-order all-
pass filters, the approximation is given by

ξ′1
(
Ω fs

) � P

L
θ(Ω), (52)

X(z) Y(z)
2P all-pass cascade

A(z)2P

G(z)
(low-pass)

Figure 8: Dispersive waveguide used to simulate dispersive systems.

where fs is the sampling frequency. Note that, by definition,
both members of (52) are real numbers. Therefore, in the z-
domain, a nonstiff system can be mapped into a stiff system
by means of the frequency warping map

z−1 −→ A(z). (53)

The resulting circuit is shown in Figure 8. Note, that the feed-
back all-pass chain results in delay-free loops. Computation-
ally, these loops can be resolved by the methods illustrated in
[34, 42, 43]. Moreover, the phase response of the loop filter
G(z) contributes to the dispersion and it must be taken into
account in the global model.

The circuit in Figure 8 can be optimized in order to take
into account the losses and the coupling amongst strings
(e.g., as in piano). In the framework of this paper, we con-
fined our interest to the design of the stiff system filter. For a
review of the design of lossy filters and coupling models, see
[17].

3.1. Stiff system filter parameters determination

Within the framework of the approximation (52) in the case
of dispersive waveguide, the integer parameter P can be ob-
tained by constraining the two functions to attain the same
values at the extrema of the bandwidth. Since θ(π) = π, we
have

P = ξ1
(
π fs
)
L

π
. (54)

As we will see, condition (54) is not the only one that can be
obtained for the parameter P. The deviation from linearity
introduced by the warping θ(Ω) can be written as follows:

∆(Ω) ≡ θ(Ω)−Ω = 2 arctan
u sin(Ω)

1− u cos(Ω)
. (55)

The function ∆(Ω) is plotted, for different values of u, in
Figure 9.

One can see that the absolute value of ∆(Ω) has a max-
imum which corresponds to the maximum deviation from
the linearity of θ(Ω). It can be shown that this maximum oc-
curs for

Ω = ΩM = arccos(u) (56)
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Figure 9: Plot of the deviation from linearity of the all-pass filter
phase for different values of parameter u.

for which the maximum deviation is

∆
(
ΩM ,u

) = 2 arcsin(u). (57)

Substituting (56) in (51), we have

θ
(
ΩM

) = π

2
+ arcsin(u). (58)

Since the solution phase ξ1 is approximated by θ(Ω), it has to
satisfy the condition

ξ1

(
ΩM

T

)
L

P
� π

2
+ arcsin(u) (59)

and therefore, we have the following bound on P:

P � Lξ1
(
fs arccos(u)

)
π/2 + arcsin(u)

. (60)

For higher-order Q all-pass filters, (60) can be written as fol-
lows:

P � 1
Q

Q∑
i=1

ξ1
(
fs arccos

(
ui
))
L

π/2 + arcsin
(
ui
) . (61)

An optimization algorithm can be used to obtain the vector
parameter u. Based on our experiments, we estimated that
an optimal order Q is 4 for the piano string. Therefore, us-
ing the values in (15) for the 58 Hz tone of an L = 200 cm
brass string, we obtain P = 209. Although this is not a model
for a real-life wound inhomogeneous piano string, this ex-
ample gives a rough idea of the typical number of the re-
quired all-pass sections. The computation of this long all-
pass chain can be too heavy for real-time applications. There-

fore, an approximation of the chain by means of a cascade of
an all-pass of order much smaller than 2P with unit delays is
usually sought [13, 29, 30]. A simple and accurate approach
is to model the all-pass as a cascade of first-order sections
with variable real parameter u [38]. However, a more gen-
eral approach calls for including in the design second-order
all-pass sections, equivalent to a pair of complex conjugated
first-order sections [29]. In Section 4, we will bypass this esti-
mation procedure based on the theoretical eigenfunctions of
the string to estimate the all-pass parameters and the number
of sections from samples of the piano.

3.2. Laguerre sequences

An invertible and orthogonal transform, which is related to
the all-pass chain included in the stiff string model, is given
by the Laguerre transform [44, 45]. The Laguerre sequences
li[m,u] are best defined in the z-domain as follows:

Li(z,u) =
√

1− u2

1− uz−1

[
z−1 − u

1− uz−1

]i
. (62)

Thus, the Laguerre sequences can be obtained from the z-
domain recurrence

L0(z,u) =
√

1− u2

1− uz−1
,

Li+1(z,u) = A(z)Li(z,u),
(63)

where A(z) is defined as in (50). Comparison of (62) with
(50) shows that the phase of the z transform of the Laguerre
sequences is suitable for approximating the phase of the solu-
tion of the stiff model equation. A biorthogonal generaliza-
tion of the Laguerre sequences calling for a variable u from
section to section is illustrated in [46]. This is linked to the
refined approximation of the solution previously shown.

3.3. Initial conditions

Putting together the results obtained in Section 1, we can
write the solution phase of the stiff model Y(Ω, x) as follows
(see (11) and (14)):

Y(ω, x) = c+
1 (ω) exp

(
iξ′1x

)
+ c−1 (ω) exp

(− iξ′1x). (64)

We are now disregarding the transient term due to ξ2 since it
does not influence the acoustic frequencies of the system. In
discrete time and space, we let x = m(L/P) as in [10]. With
the approximation (52), (64) becomes

Y(m,Ω) � c+
1 (Ω) exp

(
imθ(Ω)

)
+ c−1 (Ω) exp

(− imθ(Ω)
)
.

(65)
Substituting (63) in (65), we have

Y(Ω,m) � c+
1 (Ω)

Lm(Ω,u)
L0(z,u)

+ c−1 (Ω)
L−m(Ω,u)
L0(z,u)

, (66)

where we have used the fact that

A
(
eiΩ,u

) = e−iΩ − u
1− ue−iΩ = exp

(
iθ(Ω)

)
. (67)
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By defining

V+(Ω) ≡ c+
1 (Ω)

L0(z,u)
, V−(Ω) ≡ c−1 (Ω)

L0(z,u)
, (68)

(66) can be written as follows:

Y(m,Ω) � V+(Ω)Lm(Ω,u) +V−(Ω)L−m(Ω,u). (69)

Taking the inverse discrete-time Fourier transform (IDTFT)
on both sides of (69), we obtain

y[m,n] � y+[m,n] + y−[m,n], (70)

where

y+[m,n] =
∞∑

k=−∞
v+[n− k]lm[k,u],

y−[m,n] =
∞∑

k=−∞
v−[n− k]l−m[k,u],

(71)

and the sequences v±(n) are the IDTFT of V±(Ω). For the
sake of conciseness, we do not report here the expression of
v±[n] in terms of constants c±1 . For further details, see [31,
38]. The expression of the numerical solution y[m,n] can be
written in terms of a generic initial condition

y[m, 0] = y+[m, 0] + y−[m, 0]. (72)

In order to do this, we resort to the extension of Laguerre
sequences to negative arguments:

lm[n,u] =

lm[n,u], n ≥ 0,

lm[−n,u], n < 0,
(73)

and to the property

lm[n,u] = ln[m,−u]. (74)

If we introduce the quantity

y±k [u] =
∞∑
m=0

y±[m, 0]l
k [±m,u],

l
k [±m,u] = l±m[k,u],

(75)

with a simple mathematical manipulation, (71) can be writ-
ten as follows:

y+[m,n] =
∞∑

k=−∞
y+
k [u]lm[k + n,u],

y−[m,n] =
∞∑

k=−∞
y−k [u]lm[k + n,u].

(76)

Therefore, the numeric solution becomes

y[m,n] =
∞∑

k=−∞
y+
k lm[k + n,u] +

∞∑
k=−∞

y−k lm[k + n,u]. (77)

We have just shown that the solution of the discrete-time
stiff model equation can be written as a Laguerre expansion
of the initial condition. At the same time, this shows that the
stiff string model is equivalent to a nonstiff string model cas-
caded by frequency warping obtained by Laguerre expansion.

3.4. Boundary conditions

In Section 1, we discussed the stiff model equation bound-
ary conditions in continuous time (see (18) and (19)). In
this section, we will discuss the homogenous boundary con-
ditions (i.e., the first line in both (18) and (19)) in the
discrete-time domain. Using approximation (52) and letting
the number of sections of the stiff system P be an even integer,
we can write the homogenous conditions as follows (see also
(69)):

Y
(
− P

2
,Ω
)
= 0

=⇒ V+(Ω)L−P/2(Ω,u) +V−(Ω)LP/2(Ω,u) = 0,

Y
(

+
P

2
,Ω
)
= 0

=⇒ V+(Ω)LP/2(Ω,u) +V−(Ω)L−P/2(Ω,u) = 0.

(78)

Like (34), (78) can be expressed in matrix form:

[
LP/2(Ω,u) L−P/2(Ω,u)
L−P/2(Ω,u) LP/2(Ω,u)

][
V+(Ω)
V−(Ω)

]
=
[

0
0

]
. (79)

As shown in Section 3.3, the functionsV±(Ω) are determined
by means of Laguerre expansion of the initial conditions se-
quences through (71) and (76). For any choice of these initial
conditions, the determinant of the coefficients matrix in (79)
must be zero, obtaining the following condition:

[
LP/2(Ω,u)

]2 − [L−P/2(Ω,u)]2 = 0. (80)

Recalling the z-transform expression for the Laguerre se-
quences, we have

sin
[
θ(Ω)P

] = 0, θ(Ω) = kπ

P
, k = 1, 2, 3, . . . . (81)

In the stiff string case, the eigenfrequencies of the system are
not harmonically related. In our approximation of the phase
of the solution with the digital all-pass phase, the harmonic-
ity is reobtained at a different level: the displacement of the
all-pass phase values is harmonic according to the law writ-
ten in (81). The distance between two consecutive values of
this phase is π/P. Due to the nonrigid terminations, the real-
life boundary conditions can be given in terms of frequency
dependent functions, which are included in the loop filter.
In mapping the stiff structure to a nonstiff one, care must be
taken into unwarping the loop filter as well.

4. SYNTHESIS OF SOUND

In order to implement a piano simulation via the physical
model, we need to determine the design parameters of the
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Figure 10: Computed all-pass optimized parameters u.

dispersive waveguide, that is, the number of all-pass sections
and the coefficients ui of the all-pass filters. This task could be
performed by means of lengthy measurements or estimation
of the physical variables, such as tension, Young’s module,
density, and so forth. However, as we already remarked, due
to the constitutive complexity of the real-life piano strings
and terminations, this task seems to be quite difficult and to
lead to inaccurate results. In fact, the given physical model
only approximately matches the real situation. Indeed, in
order to model and justify the measured eigenfrequencies,
we resorted to Fletcher’s experimental model described by
(48). However, in that case, we ignore the exact form of the
eigenfunctions, which is required in order to determine the
number of sections of the waveguide and the other param-
eters. A more pragmatic and effective approach is to esti-
mate the waveguide parameters directly from the measured
eigenfrequencies ωn. These can be extracted, for example,
from recorded samples of notes played by the piano under
exam. Fletcher’s parameters A and B can be calculated as
follows:

A = 1
2n

√
16ω2

n − ω2
2n

3
,

B = 1
n2

4γ2 − 1
1− 16γ2

, γ = ωn
ω2n

.

(82)

In practice, in the model where the all-pass parameters
ui are equal throughout the delay line, one does not even
need to estimate Fletcher’s parameters. In fact, in view of the
equivalence of the stiff string model with the warped non-
stiff model, one can directly determine, through optimiza-
tion, the parameter u that makes the dispersion curve of the
eigenfrequencies the closest to a straight line, using a suitable
distance. A result of this optimization is shown in Figure 10.
It must be pointed out that our point of view differs from
the one proposed in [29, 30], where the objective is the min-

0 20 40 60 80

Partial number

20

40

60

80

100

120

140

160

180

Sp
ac

in
g

of
th

e
pa

rt
ia

ls
(H

z)

Figure 11: Warped deviation from linearity.
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Figure 12: Optimized all-pass parameters u for A#3 tone.

imization of the number of nontrivial all-pass sections in the
cascade.

Given the optimum warping curve, the number of sec-
tions is then determined by forcing the pitch of the cascade
of the nonstiff model (Karplus-Strong like) with warping to
match the required fundamental frequency of the recorded
tone. An example of this method is shown in Figure 11,
where the measured warping curves pertaining to several pi-
ano keys in the low register, as estimated from the resonant
eigenfrequencies, are shown. In Figure 12, the optimum se-
quence of all-pass parameters u for the examined tones is
shown. Finally, in Figure 13, the plot of the regularized dis-
persion curves by means of optimum unwarping is shown.
For further details about this method, see [47, 48, 49]. Fre-
quency warping has also been employed in conjunction with
2D waveguide meshes in the effort of reducing the artificial
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Figure 13: Optimum unwarped regularized dispersion curves.

dispersion introduced by the nonisotropic spatial sampling
[50]. Since the required warping curves do not match the
first-order all-pass phase characteristic, in order to overcome
this difficulty, a technique including resampling operators
has been used in [50, 51] according to a scheme first in-
troduced in [33] and further developed in [52] for the
wavelet transforms. However, the downsampling operators
inevitably introduce aliasing. While in the context of wavelet
transforms, this problem is tackled with multichannel filter
banks, this is not the case of 2D waveguide meshes.

5. CONCLUSIONS

In order to support the design and use of digital dispersive
waveguides, we reviewed the physical model of stiff systems,
using a frequency domain approach in both continuous and
discrete time. We showed that, for dispersive propagation in
the discrete-time, the Laguerre transform allows us to write
the solution of the stiff model equation in terms of an or-
thogonal expansion of the initial conditions and to reob-
tain harmonicity at the level of the displacement of the all-
pass phase values. Consequently, we showed that the stiff
string model is equivalent to a nonstiff string model cas-
caded with frequency warping, in turn obtained by Laguerre
expansion. Finally, we showed that due to this equivalence,
the all-pass coefficients can be computed by means of opti-
mization algorithms of the stiff model with a warped nonstiff
one.

The exploration of physical models of musical instru-
ments requires mathematical or physical approximations in
order to make the problem treatable. When available, the
solutions will only partially reflect the ensemble of mechan-
ical and acoustic phenomena involved. However, the phys-
ical models serve as a solid background for the construc-
tion of physically inspired models, which are flexible nu-
merical approximations of the solutions. Per se, these ap-
proximations are interesting for the synthesis of virtual in-

struments. However, in order to fine tune the physically in-
spired models to real instruments, one needs methods for
the estimation of the parameters from samples of the instru-
ment. In this paper, we showed that dispersion from stiff-
ness is a simple case in which the solution of the raw phys-
ical model suggests a discrete-time model, which is flexible
enough to be used in the synthesis and which provides real-
istic results when the characteristics are estimated from the
samples.
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[42] M. Karjalainen, A. Härmä, and U. K. Laine, “Realizable
warped IIR filters and their properties,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
vol. 3, pp. 2205–2208, Munich, Germany, April 1997.
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