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S11.1 Harmonic oscillator using complex phase space coordiantes

The Hamiltonian for a simple harmonic oscillator is H = p2/2 + ω2x2/2 in units where
the mass m = 1. Let a be the complex phase space coordinate a =

√
ω/2(x + ip/ω),

and let a∗ be its complex conjugate. (a) Express H in terms of a and a∗. (b) Evaluate
the Poisson bracket {a, a∗}, and use that to evaluate {a,H} and {a∗, H}. (c) Write and
solve the equations of motion for a and a∗ using the Poisson bracket form of Hamilton’s
equations.

S11.2 Particle in a box with moving wall

A particle of mass m moves in one dimension x between rigid walls at x = 0 and x = `.
(a) Using elementary mechanics, show that the average (outward) force on one of the walls
is 2E/`, where E is the (kinetic) energy of the particle. (b) Suppose now that the wall
at x = ` is moved adiabatically. The energy of the particle then changes as a result of
its collisions with the moving wall. Find the relation between δE and δ`, and use this to
show that E`2 is an adiabatic invariant. (c) Derive the same result instead using adiabatic
invariance if

∮
p dx. (Note that you could also find the invariant by dimensional analysis:

there is a unique combination of E, ` and m with dimensions of action.)

S11.3 Adiabatic changes of a monomial potential

Consider a particle of mass m moving in one dimension in a potential λxn, where n ≥ 2 is
an even integer, and λ = λ(t) is a slowly varying function of time.

a) Write out the condition for λ(t) to be an adiabatic change, in terms of λ̇, λ, and some
given period T . This defines an “adiabatic parameter” a, proportional to λ̇, that must
satisfy a� 1 if the adiabatic condition is to hold.

b) Using dimensional analysis, or writing out
∮
dt =

∮
dx/v(E, x), show that the period

is given by T (E, λ) ∝ E
1
n
− 1

2 /λ
1
n .

c) Using dimensional analysis, or writing out
∮
p dq, show that the combination E

1
n

+ 1
2 /λ

1
n ,

is an adiabatic invariant. Show that this also implies that E/λ
2

2+n is invariant.

d) Assuming that λ changes adiabatically and the energy changes accordingly, show that
the period satisfies T ∝ 1/E ∝ λ−

2
2+n .

continued on next page...



S11.4 Numerical study of adiabatic change

Consider a particle of mass m = 1 in a potential V = λxn, with n ≥ 2 an even integer,
and λ(t) = (1 − bt)−(1+n

2
). Thus λ(0) = 1 and λ(1/b) = ∞, so your simulation should

stop before t = 1/b, say at t = 0.9/b. This form for λ(t) is chosen because it will satisfy
the adiabatic condition with a constant adiabaticity parameter a ∝ b, assuming the period
evolves adiabatically. Smaller b corresponds to slower changes of λ.

Write a computer code, using any software you like, to evolve the particle from initial
conditions, plot the trajectory in phase space, and plot the would-be adiabatic invariant
E/λ

2
2+n you found in the previous problem, for adjustable values of b. Consider at least the

two cases n = 2 (harmonic oscillator) and n = 4 (quartic potential), and produce at least
one set of plots for each of these.

Feel free to ignore this, but if you want to find the n dependence of a/b you’ll need:∫ 1

−1

ds√
1− sn

= 2
√
π

Γ(1 + 1
n)

Γ(1
2 + 1

n)
∈ (2, π] for n = 2, 4, 6, . . . .

S11.5 Cosmological redshift

In S10.3 you worked out the redshift of light or photons climbing out of a gravitational
potential well. In cosmology there is also a redshift, due to expansion of the universe, which
stretches wavelengths and dilates time intervals. To see how this works, let’s adopt the line
element

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2)

(see Nov. 10 notes), where a(t) is some function that grows in time and I use units with
c = 1. (Suggestion: Draw spacetime diagrams to visualize this situation.)

1. Consider two wavecrests of light, traveling at the speed of light in the x direction and
passing points x1 and x′1 respectively at time t1. Show that the difference x′2 − x2 of
the x coordinates of the two wavecrests when they arrive at time t2 is equal to x′1−x1.
(This conservation law results from spatial translation symmetry.)

2. The proper wavelength at t1 is λ1 = a(t1)(x′1 − x1). If λ2 is the proper wavelength
when the two wavecrests arrive at time t2, what is λ2/λ1? What is the ratio of proper
frequencies f2/f1?

3. Now let’s derive the result in a different way, using time instead of length. Suppose
a light pulse is emitted at t1 in the x direction and travels from x to x′, where it
arrives at time t2. (i) Write an equation, involving an integral, showing how the time
t2 = t2(∆x, t1) is determined by t1 and ∆x = x′ − x. (ii) By taking the derivative
of this integral equation with respect to t1, holding ∆x fixed, show that dt2/dt1 =
a(t2)/a(t1). (iii) Show how this recovers the result for the frequency found in part
(b), by interpreting dt1 as the period of an oscillation of a wave emitted around the
time t1. [Note that this also implies a cosmological time dilation: a process that lasts
a proper time dt1 appears to last a proper time dt2 when viewed with radiation that
travels from t1 to t2. This effect has been observed, for example, in flaring light from
distant supernovae.]


