HW#11 — Phys410—Fall 2011

www.physics.umd.edu/grt/taj/410a/

Prof. Ted Jacobson Room 4115, (301)405-6020 jacobson@umd.edu

# S11.1 Harmonic oscillator using complex phase space coordiantes

The Hamiltonian for a simple harmonic oscillator is  $H = p^2/2 + \omega^2 x^2/2$  in units where the mass m = 1. Let *a* be the complex phase space coordinate  $a = \sqrt{\omega/2}(x + ip/\omega)$ , and let  $a^*$  be its complex conjugate. (a) Express *H* in terms of *a* and  $a^*$ . (b) Evaluate the Poisson bracket  $\{a, a^*\}$ , and use that to evaluate  $\{a, H\}$  and  $\{a^*, H\}$ . (c) Write and solve the equations of motion for *a* and  $a^*$  using the Poisson bracket form of Hamilton's equations.

## S11.2 Particle in a box with moving wall

A particle of mass m moves in one dimension x between rigid walls at x = 0 and  $x = \ell$ . (a) Using elementary mechanics, show that the average (outward) force on one of the walls is  $2E/\ell$ , where E is the (kinetic) energy of the particle. (b) Suppose now that the wall at  $x = \ell$  is moved adiabatically. The energy of the particle then changes as a result of its collisions with the moving wall. Find the relation between  $\delta E$  and  $\delta \ell$ , and use this to show that  $E\ell^2$  is an adiabatic invariant. (c) Derive the same result instead using adiabatic invariance if  $\oint p \, dx$ . (Note that you could also find the invariant by dimensional analysis: there is a unique combination of E,  $\ell$  and m with dimensions of action.)

## S11.3 Adiabatic changes of a monomial potential

Consider a particle of mass m moving in one dimension in a potential  $\lambda x^n$ , where  $n \ge 2$  is an even integer, and  $\lambda = \lambda(t)$  is a slowly varying function of time.

- a) Write out the condition for  $\lambda(t)$  to be an adiabatic change, in terms of  $\dot{\lambda}$ ,  $\lambda$ , and some given period T. This defines an "adiabatic parameter" a, proportional to  $\dot{\lambda}$ , that must satisfy  $a \ll 1$  if the adiabatic condition is to hold.
- b) Using dimensional analysis, or writing out  $\oint dt = \oint dx/v(E, x)$ , show that the period is given by  $T(E, \lambda) \propto E^{\frac{1}{n} \frac{1}{2}}/\lambda^{\frac{1}{n}}$ .
- c) Using dimensional analysis, or writing out  $\oint p \, dq$ , show that the combination  $E^{\frac{1}{n} + \frac{1}{2}} / \lambda^{\frac{1}{n}}$ , is an adiabatic invariant. Show that this also implies that  $E / \lambda^{\frac{2}{2+n}}$  is invariant.
- d) Assuming that  $\lambda$  changes adiabatically and the energy changes accordingly, show that the period satisfies  $T \propto 1/E \propto \lambda^{-\frac{2}{2+n}}$ .

continued on next page...

#### S11.4 Numerical study of adiabatic change

Consider a particle of mass m = 1 in a potential  $V = \lambda x^n$ , with  $n \ge 2$  an even integer, and  $\lambda(t) = (1 - bt)^{-(1 + \frac{n}{2})}$ . Thus  $\lambda(0) = 1$  and  $\lambda(1/b) = \infty$ , so your simulation should stop before t = 1/b, say at t = 0.9/b. This form for  $\lambda(t)$  is chosen because it will satisfy the adiabatic condition with a constant adiabaticity parameter  $a \propto b$ , assuming the period evolves adiabatically. Smaller b corresponds to slower changes of  $\lambda$ .

Write a computer code, using any software you like, to evolve the particle from initial conditions, plot the trajectory in phase space, and plot the would-be adiabatic invariant  $E/\lambda^{\frac{2}{2+n}}$  you found in the previous problem, for adjustable values of b. Consider at least the two cases n = 2 (harmonic oscillator) and n = 4 (quartic potential), and produce at least one set of plots for each of these.

Feel free to ignore this, but if you want to find the n dependence of a/b you'll need:

$$\int_{-1}^{1} \frac{ds}{\sqrt{1-s^n}} = 2\sqrt{\pi} \frac{\Gamma(1+\frac{1}{n})}{\Gamma(\frac{1}{2}+\frac{1}{n})} \in (2,\pi] \quad \text{for} \quad n=2,4,6,\dots.$$

#### S11.5 Cosmological redshift

In S10.3 you worked out the redshift of light or photons climbing out of a gravitational potential well. In cosmology there is also a redshift, due to expansion of the universe, which stretches wavelengths and dilates time intervals. To see how this works, let's adopt the line element

$$ds^{2} = dt^{2} - a(t)^{2}(dx^{2} + dy^{2} + dz^{2})$$

(see Nov. 10 notes), where a(t) is some function that grows in time and I use units with c = 1. (Suggestion: Draw spacetime diagrams to visualize this situation.)

- 1. Consider two wavecrests of light, traveling at the speed of light in the x direction and passing points  $x_1$  and  $x'_1$  respectively at time  $t_1$ . Show that the difference  $x'_2 x_2$  of the x coordinates of the two wavecrests when they arrive at time  $t_2$  is equal to  $x'_1 x_1$ . (This conservation law results from spatial translation symmetry.)
- 2. The proper wavelength at  $t_1$  is  $\lambda_1 = a(t_1)(x'_1 x_1)$ . If  $\lambda_2$  is the proper wavelength when the two wavecrests arrive at time  $t_2$ , what is  $\lambda_2/\lambda_1$ ? What is the ratio of proper frequencies  $f_2/f_1$ ?
- 3. Now let's derive the result in a different way, using time instead of length. Suppose a light pulse is emitted at  $t_1$  in the x direction and travels from x to x', where it arrives at time  $t_2$ . (i) Write an equation, involving an integral, showing how the time  $t_2 = t_2(\Delta x, t_1)$  is determined by  $t_1$  and  $\Delta x = x' - x$ . (ii) By taking the derivative of this integral equation with respect to  $t_1$ , holding  $\Delta x$  fixed, show that  $dt_2/dt_1 = a(t_2)/a(t_1)$ . (iii) Show how this recovers the result for the frequency found in part (b), by interpreting  $dt_1$  as the period of an oscillation of a wave emitted around the time  $t_1$ . [Note that this also implies a cosmological time dilation: a process that lasts a proper time  $dt_1$  appears to last a proper time  $dt_2$  when viewed with radiation that travels from  $t_1$  to  $t_2$ . This effect has been observed, for example, in flaring light from distant supernovae.]