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6.8.3 Poincaré Integral Invariants . . . . . . . . . . . . . . . . . . . . . 729
6.8.4 Connection between Surface and Line Integrals . . . . . . . . . . 731
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29.5 Poincaré Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1985

29.6 Manifolds, and Homoclinic Points and Tangles . . . . . . . . . . . . . . . 1998
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tial direction ŝi, and terminates at P f with final location rf and final
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Preface

John Wallis (1616-1703), Savilian Professor of Geometry at Oxford, was a mathematician
and predecessor of Isaac Newton. His most important book, published in 1656, was Arith-
metica Infinitorum. It introduced, among others, the concepts of negative and fractional
exponents, and considered the problem of finding the areas under curves described by func-
tions involving such exponents. He also introduced the symbol ∞. In 1685 he published
Algebra.

His contemporary Thomas Hobbes (1588-1679), a philosopher and political theorist, read
(or perhaps only paged through) this 1656 book, and described it as a “a scab of symbols
as if a hen had been scraping there.” Apparently taken by this simile, on another occasion
he wrote of Wallis: “And for (your book) on Conic Sections, it is covered over with a scab
of symbols that I had not the patience to examine whether it be well or ill demonstrated.”
He goes on to say: “Symbols, though they shorten the writing, yet do not make the reader
understand it sooner than if it were written in words. · · · (with the use of symbols) there is
a double labour of the mind, one to reduce your symbols to words, which are also symbols,
another to attend to the ideas which they signify.”

But, according to Leibniz (1646-1716), “In symbols one observes an advantage in discov-
ery which is greatest when they express the exact nature of a thing briefly and, as it were,
picture it; then indeed the labor of thought is wonderfully diminished.”1 Laplace (1749-1827)
was even more enthusiastic when he wrote “Such is the advantage of a well-constructed lan-
guage that its simplified notation often becomes the source of profound theories.” And,
according to Whitehead (1861-1947), “Civilization advances by extending the number of

1Leibniz invented much of modern calculus notation. He also introduced the term dynamick for what
Newton (1642-1727) had previously called rational mechanics. But Newton objected to this name, not
because of its “inadequacy to describe the subject matter”, but rather because Leibniz had “set his mark
upon the whole science of forces calling it Dynamick, as if he had invented it himself & is frequently setting
his mark upon things by new names & new Notations”. Leibniz was kinder to Newton when he wrote
“Taking mathematics from the beginning of the world to the time of Newton, what he has done is much the
better half.” For a history of how Leibnizian notation came to be used in Great Britain, see the Web site
https://en.wikipedia.org/wiki/Analytical_Society.

To Descartes (1596-1650) we owe the use of the symbols a, b, c · · · as constants, the symbols x, y, z · · ·
as variables, writing xx as x2 etc., and, of course, honor for forging the connection between algebra and
geometry (to create analytic geometry) by the use of Cartesian coordinates including making graphs of
functions. To add to the list: Robert Recorde in 1540 introduced the + and − symbols for addition and
subtraction and in 1557 introduced the equal sign =, William Oughtred in 1631 introduced the multiplication
sign × and the trigonometric function symbols sin and cos, Johann Rahn in 1659 introduced the division
sign ÷ and the therefore sign ∴, and William Jones in 1706 introduced use of the Greek letter π to denote
the value that is the ratio of the circumference to the diameter for any circle and use of a dot above a letter
to denote differentiation with respect to time.

lxv
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important operations which we can perform without thinking of them.”
The purpose of this book is to explore and illustrate how Lie-algebraic/map methods and

Lie-algebraic concepts/symbols are broadly applicable to many areas of Nonlinear Dynamics
including Accelerator Physics.

Reference

J. Mazur, Enlightening symbols: a short history of mathematical notation and its hidden
power, Princeton University Press (2014).
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Figure 0.0.1: The Ancient of Days. “If the doors of perception were cleansed, everything
would appear to man as it is: Infinite.” William Blake (1757-1827)



Chapter 1

Introductory Concepts

This book is devoted to the subject of Nonlinear Dynamics and the use of Lie Methods for
the description and study of Nonlinear Dynamics. Where appropriate, special attention will
be given to the application of these methods to the field of charged-particle electro-magnetic
optics in general and Accelerator Physics in particular.1 The purpose of this chapter is to
provide introductory background material that will be needed throughout the book. The
first four sections of this chapter provide an introduction to the history and use of maps,
and their relation to differential equations, Hamiltonian dynamics, and Lie theory. Some
terms in these sections may not be completely familiar. (If they are, perhaps you need not
read further save as a cure for insomnia.) They will be explained and/or properly referenced
subsequently. The remaining three sections treat some required aspects of Hamiltonian
dynamics.

1.1 Transfer Maps

The use and analysis of maps now plays a major role in nonlinear dynamics and accelerator
physics. Much of the material of this book will be dedicated to a map approach. The current
use of maps arises from the confluence of two mathematical/physical streams of thought.
The first of these streams originates in Geometry, and dates back to the ancient Greeks.
The second is related to Dynamics, and originates largely in the discoveries of Isaac Newton
(1642-1727).2

1Lie Methods can also be applied to Light Optics. See Appendix X.
2Newton published his first edition of Philosophiæ Naturalis Principia Mathematica in 1687, and subse-

quent editions in 1713 and 1726. Concerning Newton, Laplace said “There is but one law of the cosmos, and
Newton has discovered it.” Vladimir Arnold was asked: “Mathematics is a very old and important part of
human culture. What is your opinion about the place of mathematics in cultural heritage?” Arnold replied:
“The word ‘mathematics’ means science about truth. It seems to me that modern science (i.e., theoretical
physics along with mathematics) is a new religion, a cult of truth, founded by Newton three hundred years
ago.”

1
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1.1.1 Maps and Dynamics

Prediction is very difficult, especially about the future.

Niels Bohr (1885-1962), Yogi Berra (1925-2015)

Nature and Nature’s laws lay hid in night:
God said, Let Newton be! and all was light.

Alexander Pope (1688-1744)

And from my pillow, looking forth by light
Of moon or favoring stars, I could behold
The antechapel where the statue stood
Of Newton with his prism and silent face,
The marble index of a mind forever
Voyaging through strange seas of thought, alone.

William Wordsworth (1770-1850)

Then ye who now on heavenly nectar fare,
Come celebrate with me in song the name
Of Newton, to the Muses dear; for he
Unlocked the hidden treasuries of Truth:
So richly through his mind had Phoebus cast
The radiance of his own divinity.
Nearer the gods no mortal may approach.

Edmond Halley (1656-1742)

So few went to hear him, and fewer understood him, and ofttimes he did, for
want of hearers, read to the walls. He usually stayed about half an hour; when
he had no auditors he commonly returned in a quarter of that time.

Teaching Evaluation of Professor Newton (circa 1690)

Let us begin with the second stream, the stream of Dynamics. Newton’s basic and most
remarkable discovery was that motion is governed by mathematical laws, and the nature
of these laws is such that the future can be determined/predicted from a knowledge of the
present !3 We illustrate this fact with the sketch in Figure 1.1. Suppose we think of the

3Roger Cotes, Newton’s student, wrote the preface to the second edition of Newton’s Principia. Much
of this preface is devoted to defending the thesis that the ability to generate and respond to gravity in
proportion to its mass is a natural property of every object (Cavendish did his experiment 70 years after
Newton’s death), and not an occult property as many critics complained, and to criticizing Descartes’ rival
theory of vortices. He also writes, with regard to what we call natural laws, “The business of true philosophy
is to derive the nature of things from causes truly existent; and to enquire after those laws on which the
Great Creator actually chose to found this most beautiful Frame of the World; not those by which he might
have done the same, had he so pleased. · · · Without all doubt this World, so diversified with that variety
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present as a set of initial conditions, and regard the future as a set of final conditions. New-
ton’s laws, when appropriately formulated, can be regarded as a set of first-order ordinary
differential equations. Indeed, Newton viewed differential equations and their applicability
to describing nature as one of his fundamental discoveries, so important that he kept it
secret initially by revealing it [in a 1676 letter (via Oldenburg) to his calculus rival Leibniz
(1646-1716)] only in the form of an cypher/anagram/cryptogram:

6accdae13eff7i3l9n4o4qrr4s8t12ux

which Newton’s friend Wallis years later (in his 1693 book Algebra, second edition) disclosed
stood for

of forms and motions we find in it, could arise from nothing but the perfectly free will of God directing and
presiding over all. From this fountain it is that those laws, which we call the laws of Nature, have flowed; in
which there appear many traces indeed of the most wise contrivance, but not the least shadow of necessity.
· · · He who thinks to find the true principles of physics and the laws of natural things by the force alone of
his own mind, and the internal light of his reason must either suppose that the World exists by necessity,
and by the same necessity follows the laws proposed; or if the order of Nature was established by the will of
God, that himself, a miserable reptile, can tell what was fittest to be done. · · · He must be blind who from
the most wise and excellent contrivances of things cannot see the infinite Wisdom and Goodness of their
Almighty Creator, and he must be mad and senseless who refuses to acknowledge them.” Newton himself
wrote (in his book Opticks): “The main Business of natural Philosophy is to argue from Phenomena without
feigning Hypotheses, and to deduce Causes from Effects, till we come to the very first Cause, which certainly
is not mechanical.”

With regard to the concept of necessity, it is interesting that centuries later Einstein (perhaps with his
reptilian brain?) wrote: “What I am really interested in is whether God could have created the world in a
different way; that is, whether the necessity of logical simplicity leaves any freedom at all?· · · I would like
to state a theorem which at present cannot be based on anything more than faith in the simplicity, i.e.,
intelligibility, of nature: there are no arbitrary constants · · · that is to say, nature is so constituted that
it is possible logically to lay down such strongly determined laws that within these laws only rationally
determined constants occur.”

Newton himself wrote the preface to the first edition of the Principia, and laid out his goals as follows: “· · ·
for the whole burden of philosophy seems to consist of this - from the phenomena of motions to investigate
the forces of nature, and then from these forces to demonstrate the other phenomena; and to this end the
general propositions in the first and second Books are directed. In the third Book I give an example of
this in the explication of the System of the World; for by the propositions mathematically demonstrated
in the former books, in the third I derive from the celestial phenomena the forces of gravity with which
bodies tend to the sun and the several planets. Then from these forces, by other propositions which are
also mathematical, I deduce the motion of the planets, the comets, the moon, and the sea. I wish we could
derive the rest of the phenomena of Nature by the same kind of reasoning from mechanical principles, for I
am induced by many reasons to suspect that they may all depend upon certain forces by which the particles
of bodies, by some causes hitherto unknown, are either mutually impelled towards one another, and cohere
in regular figures, or are repelled and recede from one another. These forces being unknown, philosophers
have hitherto attempted the search of Nature in vain; but I hope the principles here laid down will afford
some light either to this or some truer method of philosophy.”

With but a few editorial changes Newton’s words could equally well serve today as justification for the
support of contemporary basic research! If, for the sake of argument, we identify the the aims of “basic
research” with those of High Energy Elementary Particle Physics, at the risk of offending a few colleagues,
then we see that the goal remains the same, and even the subject matter has changed relatively little. Under
the rubric of bound states and scattering theory, we still wonder about fundamental “forces” and “particles”,
and why they “cohere in regular figures, or are repelled and recede form one another.” And as Newton
hoped, his “principles have afforded some light on the truer methods” of Quantum Mechanics, Quantum
Field Theory including the Standard Model of Particle Physics, General Relativity including the Standard
Model of Cosmology, and the mysteries of Dark Matter and Dark Energy.
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Data aequatione quotcunque fluentes quantitates involvente, fluxiones invenire;
et vice versa

and means

Given an equation involving any number of fluent quantities, find the fluxions;
and vice versa.

In effect, Newton said it is useful to formulate and solve differential equations.4

M

�
�
��3
�� Q

Q
QQs
QQ

present future

Figure 1.1.1: In Dynamics the future can be determined by performing a certain operation,
called a mapping M, on the present.

As will be described in Section 1.3, there are mathematical theorems about first-order
ordinary differential equations to the effect that they generally have solutions. (That is,
solutions exist.) Moreover, under quite general circumstances, these solutions are unique
and are completely determined by the initial conditions. Thus there is a rule, or mapping
M, that sends the initial conditions (the present) into the final conditions (the future):
one simply integrates Newton’s equations in first-order form, perhaps numerically on a
computer.5

In the same era, on the continent across the Channel from Newton, Leibniz wrote (in
the context of a problem for which the future depends very sensitively on the present):

That everything is brought forth through an established destiny is just as
certain as that three times three is nine. · · · If, for example, one sphere meets
another sphere in free space and if their sizes and their paths and directions before
collision are known, we can then foretell and calculate how they will rebound
and what course they will take after the impact. Very simple laws are followed

4For the Leibniz-Newton calculus controversy, see the Web link https://en.wikipedia.org/wiki/

Leibniz-Newton_calculus_controversy. With regard to their rivalry, there is equity in the universe.
Most modern calculus notation such as dy/dx and

∫
ydx is due to Leibniz. He also coined the term calculus.

Moreover, there might appear to be parity on the cookie front. There are the Fig Newton (1891) and the
Leibniz Butterkeks (also 1891). But, alas for I. Newton, the Fig Newton is named for a Massachusetts town
whose original name was Newtown.

5Given the final conditions (the future), one can equally well integrate backwards in time to find/retrodict
the initial conditions (the present), or even farther back to find the past. Thus, we may equally well say that
the future determines the present and even the past. The conditions at any instant determine the conditions
at all other instants, both future and past. Mathematically, this means that the transfer mapM associated
with any set of first-order ordinary differential equations is invertible.

https://en.wikipedia.org/wiki/Leibniz-Newton_calculus_controversy
https://en.wikipedia.org/wiki/Leibniz-Newton_calculus_controversy
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which also apply, no matter how many spheres are taken or whether objects
are taken other than spheres. From this one sees then that everything proceeds
mathematically -that is, infallibly- in the whole wide world, so that if someone
could have a sufficient insight into the inner parts of things, and in addition had
remembrance and intelligence enough to consider all the circumstances and to
take them into account, he would be a prophet and would see the future in the
present as in a mirror.

That this concept (in the context of motion) was generally understood in scholarly circles
a generation after Newton and Leibniz is evident from the work of the Serbian Jesuit scholar
Boscovich (1711-1787). In 1763 he wrote:

Any point of matter · · · must describe some continuous curved line, the
determination of which can be reduced to the following general problem. Given
a number of points of matter, and given, for each of them, the point of space that
it occupies at any given instant of time; also given · · · the tangential velocity
· · · ; and given the law of forces · · · ; it is required to find the path of each of the
points, that is to say, the line along which each of them moves. How difficult this
mechanical problem may become, how it may surpass all powers of the human
mind, can be easily understood by anyone who is versed in Mechanics and is not
quite unaware that the motion of even three bodies only, and those possessed
of a perfectly simple law of force, have not yet been completely determined in
general · · · . Now although a problem of such a kind surpasses all the powers of
the human intellect, yet any geometer can easily see thus far that the problem is
determinate · · · . Now, if the law of forces were known, and the position, velocity
and direction of all the points at any given instant (were known), it would be
possible for a mind of this type to foresee all the necessary subsequent motions
and states, and to predict all the phenomena that necessarily followed from them.

Laplace (1749-1827) subsequently stated this concept equally explicitly in 1814 when he
wrote:

We ought then to regard the present state of the universe as the effect of
its anterior state and as the cause of the one which is to follow. Given for one
instant an intelligence which could comprehend all the forces by which nature is
animated and the respective situation of the beings who compose it—an intelli-
gence sufficiently vast to submit these data to analysis—it would embrace in the
same formula the movements of the greatest bodies of the universe and those of
the lightest atom; for it, nothing would be uncertain and the future, as the past,
would be present to its eyes. The human mind offers, in the perfection which it
has been able to give to astronomy, a feeble idea of this intelligence. Its discover-
ies in mechanics and geometry, added to that of universal gravity, have enabled
it to comprehend in the same analytical expressions the past and future states of
the system of the world. Applying the same method to some other objects of its
knowledge, it has succeeded in referring to general laws observed phenomena and
in foreseeing those which given circumstances ought to produce. All these efforts
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in the search for truth tend to lead it back continually to the vast intelligence
which we have just mentioned, but from which it will always remain infinitely
removed. This tendency, peculiar to the human race, is that which renders it
superior to animals; and their progress in this respect distinguishes nations and
ages and constitutes their true glory.

Note the similarity in language!6 The same perception is echoed by Thomasina Coverly in
Tom Stoppard’s 1993 play Arcadia. In Act I she says:

If you could stop every atom in its position and direction, and if your mind
could comprehend all the actions thus suspended, then if you were really, really
good at algebra you could write the formula for all the future; and although
nobody can be so clever as to do it, the formula must exist just as if one could.

In modern terminology, Leibniz, Boscovich, Laplace, and Thomasina (Stoppard) were de-
scribing what we call a transfer map.7

All this would have pleased the ancient Greek Stoic philosophers both in buttressing
their belief in determinism and in addressing their desire to divine the future. As Cicero
explained in his 44 B.C. work On Divination,

Besides, since everything happens by fate, as will be shown elsewhere, if there
could be any mortal who could observe with his mind the interconnection of all
causes, nothing indeed would escape him. For he who knows the causes of things
that are to be necessarily knows all the things that are going to be. But since
no one but God could do this, what is left for man is that he should be aware
of future things in advance by certain signs which make clear what will follow.
For the things which are going to be do not come into existence suddenly, but
the passage of time is like the unwinding of a rope, producing nothing new but
unfolding what was there at first.

Newton showed that what was needed to determine the future was a knowledge of the
initial conditions and the universal force laws (the inverse square law for gravity in his case),
followed by the integration of his equations of motion. And integration of the equations of
motion, particularly when carried out time-step by time-step numerically (see Chapter 2),
does resemble, in some ways, the unwinding of a rope. Whatever is produced is not “new”,
but rather already inherent in the initial conditions.

6Later commentators and philosophers of science sometimes refer to Laplace’s vast intelligence by the
(what might be understood as pejorative) term Laplace’s demon, perhaps in analogy to Maxwell’s demon.
Laplace never used that term, and based on his usage above it could be argued that he was envisioning an
admirable/exalted transcendent/divine being. Actually, Maxwell didn’t use the term demon for his being
either. It was first introduced by Kelvin in 1874, and he implied that he intended the mediating, rather
than malevolent, connotation of the word.

7The use of the terminology transfer map in this context is not to be confused with the use of the same
terminology in other contexts including computer graphics, statistical mechanics, various aspects of group
theory, and the articulation of courses between different universities and colleges. Our usage is motivated
by terminology in (light) ray optics. In ray optics the the linear (paraxial) approximation of what we call a
transfer map is called a transfer matrix.
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Let us continue our historical narrative: Lagrange (1736–1813) and others discovered
that for many systems of physical interest all the differential equations of motion could be
generated by (derived from) a single master function now called the Lagrangian L.8 These
equations of motion were second order. Building on this work, Hamilton (1805–1865) showed
that it was possible to write a related set of first-order equations, and that all these equations
could also be generated by a single master function now called the Hamiltonian H.9

Being well aware of the aforementioned properties of first-order differential equations,
Hamilton made a detailed study of the nature of the relation between initial and final condi-
tions (the transfer map M) for Hamiltonian systems. In modern language, he showed that
such maps must be symplectic (canonical). He also discovered mixed-variable generating
functions, and showed that they can be used at will to produce symplectic maps. Finally, he
and Jacobi (1804-1851) studied how symplectic maps could be used to transform Hamiltoni-
ans with the aim of simplifying them, and thus also the differential equations and flows they
generate. In modern terminology, their work was the beginning of the Theory of Normal
Forms for differential equations, Hamiltonians, and Symplectic Maps.

Poincaré (1854-1912) was the next person to champion the use of maps and explore their
properties: He introduced what we now call stroboscopic maps and Poincaré surface-of-
section maps. He showed that the existence of an infinite number of periodic orbits in the
gravitational 3-body problem would follow from proving the existence of two fixed points for
a certain symplectic map of an annulus (in the plane) into itself.10 He discovered what we
now call the Poincaré invariants and showed that they are preserved by symplectic maps. He
studied normal forms for differential equations and showed that attempts to use symplectic
maps to bring certain classes of Hamiltonians to a certain kind of normal form, which if
successful would prove the existence of integrals of motion, seemed fraught with intractable
difficulties due to the appearance of so-called small denominators that potentially spoil
the convergence of the series designed to construct the desired normal form.11 He also
discovered what are now called homoclinic tangles, emphasized their generic existence, and
demonstrated that their presence destroys integrability and leads to chaos.

Birkhoff (1884-1944), in addition to making other outstanding contributions to mathe-
matics, extended the program of Poincaré. In a celebrated early paper he was able to prove

8Together Lagrange and Euler (1707–1783), and later Hamilton, also developed variational calculus and
showed that Lagrangian and variational formulations are equivalent. Presently it is commonly assumed that
any fundamental theory of nature will be Lagrangian in form. See Section 5.

9The function H, its relation to L by way of a Legendre (1752–1833) transformation, and the resulting
equations of motion were actually introduced earlier by Lagrange when Hamilton was still a child. Lagrange
used the letter H to honor Huygens (1629–1695). Hamilton wrote definitive papers on light optics and
dynamics in which he introduced characteristic (generating) functions and also employed the H of Lagrange.
See Appendix X. To his great fortune, after that H became known as the Hamiltonian. With regard to
Lagrange, Hamilton wrote “Lagrange has perhaps done more than any other to give extent and harmony
to such deductive researches by showing that the most varied consequences . . . may be derived from one
radical formula, the beauty of the method so suiting the dignity of the results as to make his great work a
kind of scientific poem.”

10The conjecture that the symplectic map of the annulus into itself must have two fixed points is called
Poincaré’s last geometric theorem. He in fact knew that the existence of one fixed point already entailed
the existence of two fixed points, and therefore it is only necessary to prove the existence of one fixed point.

11Poincaré was unable to prove either the convergence or divergence of the series in question, but inclined
toward the opinion that such series were generally divergent.



8 1. INTRODUCTORY CONCEPTS

what, despite considerable effort, had eluded Poincaré: the map for the 3-body problem de-
veloped by Poincaré did indeed have two fixed points. (He proved that the assumption that
Poincaré’s annulus map had no fixed point entailed a contradiction.) He also studied the
possibility of using symplectic maps to bring certain classes of Hamiltonians to what is now
called Birkhoff normal form. Again, he found that the appearance of small denominators
potentially destroyed convergence, and left the convergence question unanswered. Finally,
Birkhoff made other significant contributions to Dynamics including fundamental work on
ergodic theory and the areas we now call bifurcation theory and symbolic dynamics.

Siegel (1896-1981) was the first to master the small denominator problem in the con-
text of analytic maps of the complex plane into itself. Subsequently, Moser (1928-1999)
overcame this problem for “twist” and area-preserving (symplectic) maps of the plane into
itself under the assumption of only sufficiently high-order differentiability. Kolmogorov
(1903-1987) and Arnold (1937-2010) handled the small denominator problem for the case
of symplectic maps/Hamiltonian systems in any number of dimensions under the assump-
tion of analyticity. Together their work proved, under suitable assumptions, the existence
of KAM (Kolmogorov-Arnold-Moser) tori for symplectic/Hamiltonian systems. Major ad-
vances/extensions in KAM theory were made subsequently by Aubry, Mather, Nekhoroshev,
Chirikov, and others.

Smale (1930-) greatly extended symbolic dynamics, invented his horseshoe construction
which he described using symbolic dynamics, and showed that Poincaré’s homoclinic tangle
contained a horseshoe.

Recent advances in nonlinear dynamics include bifurcation and chaos theory, symplectic
differential geometry and symplectic topology, and special numerical integration methods
often referred to as geometric/structure-preserving/symplectic integration.

1.1.2 Maps and Accelerator Physics

Let us momentarily turn our attention to accelerator physics. Courant and Snyder pio-
neered the use of matrices to characterize transverse beam behavior in the linear (first-order
or paraxial) approximation. These matrices were enlarged by Penner to include chromatic
(energy dependent) effects.12 In subsequent work Brown made the important step of ex-
tending the linear matrix formalism to include nonlinear effects through second order. From
the perspective of maps, we may view the use of a matrix as making a linear approximation
to the underlying transfer map M, and the inclusion of second-order effects as introducing
the first nonlinear terms that appear in a Taylor expansion of M about some design orbit.
It is now relatively easy to compute the terms in a Taylor expansion of M to very high
order. This computation is made possible by two tools. The first is the use of Lie meth-
ods. The second consists of Truncated Power Series Algebra (TPSA) and/or Automatic
Differentiation (AD) computer programs that manipulate very high-order polynomials and
various other familiar functions in several variables.13 Both these topics will be described
extensively in subsequent chapters.

12Time-dependent effects were first included in the Lie algebraic code MaryLie.
13Some authors refer to AD as Differential Algebra (DA).
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1.1.3 Maps and Geometry

Euclid alone has looked on Beauty bare.
Let all who prate of Beauty hold their peace,
And lay them prone upon the earth and cease
To ponder on themselves, the while they stare
At nothing, intricately drawn nowhere
In shapes of shifting lineage; let geese
Gabble and hiss, but heroes seek release
From dusty bondage into luminous air.

O blinding hour, O holy, terrible day,
When first the shaft into his vision shone
Of light anatomized! Euclid alone
Has looked on Beauty bare. Fortunate they
Who, though once only and then but far away,
Have heard her massive sandal set on stone.

Edna St. Vincent Millay (1892-1950)

We now consider the first stream, the stream of Geometry. A fundamental notion in geome-
try as conceived by Euclid (c. 300 B.C.) is that of congruence. Roughly speaking, we regard
two triangles as congruent if one can be placed over the other with a resulting perfect fit.
From the perspective of maps, we have in mind the operations of translations and rotations
which map Euclidean space into itself. Together these operations form a group, the Eu-
clidean group. Thus, following Felix Klein (1849-1925), we may say that two triangles are
congruent if one can be transformed into the other under the action of the Euclidean group.
And two triangles are similar if one can be transformed into the other under the action of
the Euclidean group augmented by scale transformations.

The concepts underlying the Euclidean group were subsequently broadened by Klein
(as part of his Erlangen program) and others to include the idea of general transformation
groups that map various kinds of spaces or various classes of objects into themselves.14

Sophus Lie (1842-1899), and others both before and after him (including Poincaré), studied
transformation groups for their applications to both geometry and function theory, and (in
what amounts to a systematic procedure for transforming variables) the simplification and
perhaps even solution of certain classes of differential equations.15 Lie studied in particular
the properties of what we now call Lie groups: groups that can be generated by near-
identity operations. The generators of these near-identity operations form algebras which
we now call Lie algebras. For example, in the case of the rotation group (a subgroup of
the Euclidean group) there exist small (infinitesimal) rotations, and any group element

14The importance of groups was not always universally appreciated. In 1910 a board of experts including
Oswald Veblen and Sir James Jeans, upon reviewing the mathematics curriculum at Princeton, concluded
that group theory ought to be thrown out as useless. And, in the early days of Quantum Mechanics, the
work of those physicists/mathematicians who sought to apply group theory to this new field was referred to
as Gruppenpest.

15By developing a theory of continuous groups, Lie aspired to do for differential equations what Galois
had done for algebraic (polynomial) equations using finite groups.
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can be constructed (infinitesimally generated) from these near-identity operations. When
a matrix representation is used (and assuming a three-dimensional space), the generators
of the infinitesimal rotations are three matrices, call them Lx, Ly, and Lz, that obey the
commutation (Lie algebraic multiplication) rules

{Lx, Ly} = LxLy − LyLx = Lz, etc. (1.1.1)

The elements of the set of all continuous and invertible maps of a space into itself
are called homeomorphisms. Topology (another area pioneered largely by Poincaré) is the
study of those properties of spaces, and objects in these spaces, that are invariant under
homeomorphisms. Homeomorphisms that are differentiable are called diffeomorphisms. The
set of all diffeomorphisms forms a group that is a Lie group. Differential geometry is the
study of those properties of spaces, and objects in these spaces, that are invariant under
diffeomorphisms.

The set of all symplectic maps (sometimes called symplectomorphisms) also forms a Lie
group, and this Lie group is a subgroup of the Lie group of diffeomorphisms. In both the
group of all diffeomorphisms and the group of all symplectic maps, Lie transformations are
those group elements produced by a single generator. Hori (1932–) and Deprit (1926–2006)
were the first (in the context of Dynamics) to use Lie transformations for the production
of symplectic maps. They employed these maps to try to bring to normal form various
Hamiltonians that arise in celestial mechanics, and showed that the use of Lie transforma-
tions is often much more convenient than the method of mixed-variable generating functions
developed earlier by Hamilton and Jacobi. As will be described in subsequent chapters, Lie
algebraic methods also have important applications to Accelerator Physics. In this case Lie
transformations, and products of Lie transformations, can be used to represent symplectic
transfer maps, and Lie algebraic formulas (the Baker-Campbell-Hausdorff and Zassenhaus
formulas) can be used to multiply and factorize maps. Lie methods can also be used to
bring transfer maps to normal form. Among other things, normal form theory generalizes
Courant-Snyder theory to the nonlinear regime.

1.2 Map Iteration and Other Background Material

There are important situations where it is desirable to know the effect of a map when it
is applied a large number of times. Consider, for example, the case of a charged-particle
storage ring. Such rings can be characterized by a one-turn map; call this map M. Since
storage rings are intended to hold particles for long periods of time and correspondingly a
large number of turns, we find we are interested in properties of Mn for values of n in the
range 108 to 1010.

We observe that the concept of map iteration, or equivalently the study ofMn for large
n, introduces an infinity into the game. Consequently, we might anticipate that phenomena
arising from the iteration of maps could be very complicated. This is indeed the case.
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1.2.1 Logistic Map

Consider, as a simple example, the biological subject of insect population growth. Let Pn
be the population in year n (of some insect species), and let Pn+1 be the population the
following year. Then we might imagine that there is some kind of rule (or map) M that
relates the population in two successive years as shown schematically in Figure 2.1.

M

�
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Q
QQs
QQ

Pn Pn+1

Figure 1.2.1: The insect populations in two successive years are related by a map M.

The simplest form for the map M is a relation of the kind

Pn+1 = αPn, (1.2.1)

where α is viewed as some fixed growth rate. However, depending on the size of α, the
recursion relation (2.1) has only exponentially damped or exponentially growing solutions;
and both these possibilities are unphysical – the actual insect population is neither dropping
to zero nor growing indefinitely.

An improved model would be to assume that the growth rate itself depends on the current
population. For example, we might imagine that if the population were small, then food
would be plentiful, and the growth rate should be high. Conversely, if the population were
at some maximum value Pmax, then food might be in such short supply that there would be
no reproduction at all. A simple form for α having this property is obtained by writing

α(P ) = β(Pmax − P ). (1.2.2)

With this improved model the map M takes the form

Pn+1 = β(Pmax − Pn)Pn. (1.2.3)

Finally, for mathematical convenience, let us introduce the fractional population x defined
by the rule

x = P/Pmax. (1.2.4)

In terms of this variable the relation (2.3) takes the form known as the logistic map or
Verhulst process,

xn+1 = f(λ, xn) = λxn(1− xn). (1.2.5)

(Here λ = βPmax.) Note that (2.5) has the physically desirable property that xn+1 ∈ [0, 1] if
xn ∈ [0, 1] provided λ ∈ [0, 4].
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Let us solve (2.5) for an equilibrium value (fixed point) xe. By definition, and using map
notation, this value must satisfy the relation

Mxe = xe, (1.2.6)

from which we find the result
xe = λxe(1− xe) (1.2.7)

with the solutions

xe = 0, (1.2.8)

xe = (λ− 1)/λ. (1.2.9)

Suppose we select some value x0 for an initial (fractional) population and apply the map
M repeatedly for a total of m times to find the result

xm =Mmx0. (1.2.10)

That is, we carry out the operation (2.5) for a total of m times. Then we might wonder
what happens in the limit of large m. (The set of all points xm for all integer m is called
the orbit of x0 under the action ofM). For example, do the xm approach xe (in which case
xe is called an attractor), or does something else happen?

Figure 2.2 shows the values xm as a function of m starting with x0 = 1/2 for the
case λ = 2.8. Other starting values of x0 give similar similar results as m becomes large.
Evidently the xm converge to the value xe given by (2.9) as m→∞, and xe is an attractor.
All points (starting values) x0 such that the associated xm converge to xe are said to be in
the basin of attraction of xe. Let xf be an attracting fixed point for some map M,

Mxf = xf . (1.2.11)

In set theoretic language, B(xf ), the basin of xf under the action of M, is defined by the
rule

B(xf ) = {x | lim
n→∞

Mnx = xf}. (1.2.12)

By contrast, Figure 2.3 shows the values xm as a function of m starting with x0 = 1/2 for
the case λ = 3.01. Again other starting values of x0 give similar similar results as m becomes
large. Now we see that xe, while still a fixed point, is no longer an attractor. Instead, as
m becomes large, the successive values of xm settle down to two alternating values; and it
now takes two years for each of these values to repeat itself. We say that period doubling
has occurred so that for λ = 3.01 the map M2 has two attracting fixed points, and M
itself sends each into the other. Insects living in this regime experience alternating fat and
lean years! Since the map M2 has two attracting fixed points, there will be two basins of
attraction for M2, one for each fixed point.

Figure 2.4 shows, as a function of λ, the limiting values, called x∞, that occur as m→∞.
Such a graphic is often called a final-state or Feigenbaum diagram. The calculations for this
graphic were again made using x0 = 1/2, but other choices in the interval (0,1) would have
given the same result. We see that x∞ is unique for 1 < λ < 3, and can be verified to have
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Figure 1.2.2: The values xm as a function m for the case λ = 2.8.
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Figure 1.2.3: The values xm as a function m for the case λ = 3.01.
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the value xe given by (2.9). That is, this fixed point xe is attracting (stable) for 1 < λ < 3.
However, this xe is repelling (unstable) for λ > 3 and, although it still is a fixed point, it no
longer appears in the figure for these λ values.16 (A fixed point is called a repeller if points
near it move away under repeated application ofM.) Instead bifurcation (period doubling)
occurs at λ = 3 so that, as seen in Figure 2.3, M2 has two stable fixed points for λ slightly
larger than 3.

Inspection of Figure 2.4 shows that there is a cascade of period doublings as λ increases
beyond 3. For example, for λ slightly larger than 3.449 · · · , there are four fixed points ofM4.
Application ofM cyclically permutes these points among themselves, and it takes four years
for each of these points to repeat itself. Moreover, further inspection shows that an infinite
number of doublings have occurred by the time λ reaches the critical value λcr ' 3.569. Let
λ1, λ2, . . . denote the λ values at which successive period doublings occur. The first few
values are given by the relations

λ1 = 3, λ2 = 1 +
√

6 = 3.449 · · · , λ3 = 3.544 · · · . (1.2.13)

Let us also write λ∞ = λcr ' 3.569. Then it can be shown that (for sufficiently large j) the
λj converge to λ∞ as j →∞ in the fashion

λj = λ∞ + γδ−j + higher-order terms, (1.2.14)

with

λ∞ = 3.569 · · · ,
γ = −2.66 · · · ,
δ = 4.6692016 · · · . (1.2.15)

The values of λ∞ and γ are specific to the logistic map. However, the quantity δ, called
the Feigenbaum constant, is universal. Examination of a graph of the right side of (2.5)
shows that the logistic map is produced by a function with one hump (an inverted parabola
in this case), and the second derivative of the function does not vanish at the top of the
hump. It can be shown that all maps with this property undergo an infinite cascade of
period doublings as some appropriate parameter is varied, and there is a relation of the
form (2.14) with the same (Feigenbaum’s) value of δ. [Strictly speaking, what is required
is that the Schwarzian derivative of the function be negative. If f is any function, its
Schwarzian derivative, denoted by Sf , is defined by the rule

Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

. (1.2.16)

The condition Sf < 0 is true for the logistic map, for example, since in this case f ′′′ = 0.]
Many systems in nature exhibit a cascade of period doublings, and it is often found

experimentally that these cascades behave according to (2.14), again with Feigenbaum’s

16Sometimes Feigenbaum diagrams are called bifurcation diagrams. However. strictly speaking, bifurca-
tion diagrams should also display the unstable fixed points, and Feigenbaum diagrams generally do not. The
use of the term bifurcation in the context of Dynamics is due to Poincaré.



1.2. MAP ITERATION AND OTHER BACKGROUND MATERIAL 15

value. See, for illustration, the case of the Duffing equation treated in Chapter 23. Finally,
we remark that there are maps for which the Feigenbaum period-doubling cascade begins
as some parameter is varied, but does not complete. Rather, as the parameter is further
increased after some finite number of period doublings have occurred, the cascade undoes
itself. See Appendix J. There are also systems of physical interest that exhibit this kind of
behavior. Again see Chapter 23.
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Figure 1.2.4: Feigenbaum diagram showing limiting values x∞ as a function of λ for the
logistic map.

Yet more can be said. Figure 2.5 shows an enlargement of the bifurcation cascade for the
logistic map. Suppose d is the distance between two forks just as they themselves are about
to bifurcate (d = 0.409 · · · for the first fork in the logistic map, see Exercise 2.2). Then (to
ever better approximation the farther one proceeds in the cascade), the distances between
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the next two forks when they are about to bifurcate are d/α and d/α2 where

α = 2.5029 0787 5 · · · . (1.2.17)

Moreover, there is an explicit splitting rule for determining which distance will be d/α and
which will be d/α2. For example, consider the upper fork after the first bifurcation, and let
dU be the distance between the two new forks produced when this fork bifurcates. Then,
see Figure 2.5, one has the relation dU ≈ d/α2. Similarly, let dL be the corresponding
distance when the lower fork bifurcates. Then one has the relation dL ≈ d/α. Next, let dUL

be the distance for the lower fork of the preceding upper fork. Then one has the relation
dUL ≈ dU/α, etc. Again consult Figure 2.5.

The splitting rule and the scaling factor α are also universal for all one-hump maps (with
negative Schwarzian derivative), and α is sometimes called the second Feigenbaum constant.

How does this universality arise? Feigenbaum found an explanation that involves a study
of certain maps acting on function space. The explanation is deep, and we will only be able
to sketch part of it. Inspired by the observation of scaling, let R be a map that acts on
functions ψ(x) according to the rule

R : ψ → ψ̄ (1.2.18)

with
ψ̄(x) = −aψ(ψ(−x/a)). (1.2.19)

In words,R scales the argument x, lets ψ act twice on this scaled argument, and then rescales
the result. Operations of this kind occur elsewhere in physics, and are called renormalization.
It can be shown that the map R has a “fixed point” in the space of analytic functions if
and only if a has the Feigenbaum scaling value α,

a = α, (1.2.20)

and this fixed point (function) is unique up to a normalization. Specifically, for a = α, there
is a unique analytic function g(x) such that

g(x) = −ag(g(−x/a)) (1.2.21)

provided g is normalized so that
g(0) = 1; (1.2.22)

and there is no analytic function satisfying (2.21) for a 6= α. Indeed, it can be shown that
g has a convergent Taylor expansion of the form

g(x) = 1−(1.5276329 · · · )x2+(0.1048151 · · · )x4+(0.0267056 · · · )x6−(0.0035274 · · · )x8+· · · .
(1.2.23)

We have been informed that the second Feigenbaum constant α is a property of R. We
will next learn that the first Feigenbaum constant δ is also a property of R. Let L be the
linear part of R about the fixed point g. It is defined by the relation

R[g(x) + εh(x)] = g(x) + εL[h(x)] +O(ε2) (1.2.24)
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Figure 1.2.5: An enlargement of Figure 2.4 exhibiting how sucessive bifurcations scale.
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for ε small and h any function. It follows from (2.19) and (2.24) that L is given explicitly
by the relation

L[h(x)] = −αh(g(−x/α))− α[g′(g(−x/α))]h(−x/α). (1.2.25)

It can be shown that L, which evidently and as expected is a linear operator, has eigen-
functions and eigenvalues. Moreover, there is an eigenfunction, call it hδ, that has the
Feigenbaum constant δ as its eigenvalue,

Lhδ = δhδ. (1.2.26)

All other eigenvalues of L (there are an infinite number of them) lie inside the unit circle
of the complex plane. Thus, L has a unique eigenvalue that lies outside the unit circle, and
this eigenvalue is δ. (Note that δ > 1.) Put another way, in language that will become
clearer later, L has one repelling “direction” (eigenfunction) in function space associated
with the eigenvalue δ and all other directions are attracting.

We have learned that both α and δ are properties of R, and have told the part of the
story that is easy to relate, if not to prove. What remains to be shown is that there is a
connection between the set of maps that exhibit infinite period doubling cascades as some
parameter is varied and the operator R. For example, if f(λ, x) is a function that produces
any such map by the rule

x̄ = f(λ, x), (1.2.27)

and the parameter λ has the critical value λ∞ for which an infinite period doubling cascade
has just occurred, then it can be shown that (with a = α)

lim
n→∞

Rn[f(λ∞, x)] = g(x). (1.2.28)

For the whole story, the reader is referred to the references at the end of this chapter.
Let us, having made this pleasant detour through function space, return to a further

discussion of the logistic map. We have sketched the behavior of M as λ approaches λcr.
For λ slightly beyond λcr the set of x∞ points is infinite, and the action of M on these
points is chaotic. Then, remarkably, as λ is increased still further, there are occasional
windows of stability again followed by period doublings and subsequent chaotic regimes. For
example, there is a period-three window (a regime having three values for x∞) beginning at
λ = 1+

√
8 = 3.828 · · · . Note that, by construction, only stable periodic orbits are displayed

in Figures 2.4 and 2.5. Thus, as mentioned earlier, the xe given by (2.9) no longer is shown
for λ > 3. It can be demonstrated that, while there are only a finite number of stable
periodic orbits in the windows of stability (as Figures 2.4 and 2.5 indicate), there are an
infinite number of unstable periodic orbits. (By the way, all this behavior is also universal.)

1.2.2 Complex Logistic Map and the Mandelbrot Set

According to Paul Painlevé (1863-1933) and popularized by Jacques Hadamard (1865-1963),

The shortest path between two truths in the real domain passes though the
complex domain.
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In a similar vein, Gaston Julia (1893-1978) frequently instructed the students in his class,
one of whom was Benoit Mandelbrot (1924-2010),

To simplify, you should ‘complexify’. That is, when you have a complicated
problem and wish to simplify it, it is a good idea to replace all reals by complex
numbers.

For example, the behavior of power series is understood more simply using complex variables
rather than real variables.

With this lesson in mind, and following Mandelbrot, suppose we extend both x and λ in
(2.5) to complex values. Then the map M takes the form

zn+1 =Mzn = f(γ, zn) = γzn(1− zn) (1.2.29)

where z is the complex extension of x, and γ is the complex extension of λ. (See Exercise
2.5.) Associated with the map (2.29) are two complex planes. One of these, the z plane,
will be called the mapping plane since the map sends this plane into itself. The other, the
γ plane, will be called the control plane.

The nature of what happens in the mapping plane under repeated iteration depends
sensitively on where γ is in the control plane. For example, Figure 2.6 shows the nature of
the map for γ = 2.55268− 0.959456i. Points in the black area of the mapping plane remain
there indefinitely under repeated application of (2.29). By contrast, any point launched in
the white area eventually iterates away to infinity. (We may view the point z = ∞ as an
attractor for M. See Exercise 2.6.) In Accelerator Physics language, we would call the
black area the dynamic aperture. (Mathematicians call it the filled Julia set.17) It can be
shown that the boundary of the dynamic aperture (the Julia set) is fractal. Remarkably, it
is nevertheless possible to name in a precise way every point on the boundary.

If γ is changed, the dynamic aperture also is changed. Figure 2.6 shows what is called
Douady’s rabbit; for some other values of γ the dynamic aperture disintegrates into a cloud
of isolated points called Fatou dust.18 Since the nature of what happens under repeated
iteration in the mapping plane depends sensitively on the location of γ in the control plane,
we may turn the matter around. That is, we may characterize points in the γ plane by the
behavior (under repeated iteration) of points in the mapping plane. Suppose we consider
those points M in the control plane for which the dynamic aperture in the mapping plane is
a connected set. This set M in the control plane is called the Mandelbrot set.19 It is shown
in Figure 2.7.

There is another definition of the Mandelbrot set that is more computationally tractable,
and which can be shown to be equivalent to that just given. The function f(γ, z) has a critical
point (a point where ∂f/∂z = 0) at z = 1/2. Now consider the pointsMn(1/2). They form
the orbit of (1/2) under the action of M. If, for a particular value of γ, this orbit goes to

17Gaston Julia (1893-1978) and Pierre Fatou (1878-1929) began the study of complex dynamics during
the early 20th century.

18Adrien Douady (1935-2006) made significant contributions to the fields of analytic geometry and dy-
namical systems.

19Elsewhere in this book the symbol M will commonly be used to denote the linear part of a map M.
But here it is used to honor Mandelbrot.



20 1. INTRODUCTORY CONCEPTS

eR z

mI z

0.0 0.2 0.4 0.6 0.8 1.0
-0.4

-0.2

0.0

0.2

0.4

Figure 1.2.6: Douady’s rabbit, the dynamic aperture in the mapping plane z for the case
γ = 2.55268− 0.959456i.
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Figure 1.2.7: The Mandelbrot set M in the control plane γ.
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infinity, then γ is not in the Mandelbrot set M . If the orbit of (1/2) does not go to infinity
for a particular value of γ, then this value of γ is in the Mandelbrot set. Technically, we say
that (1/2) is in the basin of attraction for the attractor z = ∞ if its orbit goes to infinity.
Thus, γ is in the Mandelbrot set if (1/2) is not in the basin of z = ∞; and γ is not in the
Mandelbrot set if (1/2) is in the basin of z =∞. Finally, we remark that it is not necessary
to follow an orbit to infinity by iterating infinitely often. See Exercise 2.6 to learn that a
point z is in the basin of infinity, i.e. will go to infinity under infinite iteration, if z lies
outside the disk specified by |z| = 1 + 1/|γ]. See (2.109). Therefore, if any point on the
orbit of (1/2) falls outside this disk, it is not necessary to iterate further to determine the
ultimate fate of points on the orbit.

When viewed from a distance, the Mandelbrot set M appears to be a mainland consisting
of two back-to-back discs with sprouts. The discs are tangent at the point γ = (1, 0), and
M has reflection symmetry about both the lines Re γ = 1 and Im γ = 0. Closer examination
reveals the presence of what appear to be very small islands around the mainland. (In fact
these islands, when suitably magnified, resemble the mainland, and the whole structure of
the Mandelbrot set is fractal.) Since γ is the complexification of λ, one can see that λ values
in the range (1, λcr) correspond to real γ values lying in the right disc and its sprouts and
its subsprouts. In addition, it can be shown that λ values for the windows of stability seen
in Figure 2.4 correspond to real γ values lying in small islands on the real γ axis to the
right of the mainland. Finally, contrary to superficial appearances, it can be shown that the
Mandelbrot set is connected (and, indeed, simply connected). There are thin filiments, too
small to be seen in Figure 2.7, that connect the visible apparent islands to the mainland.
Thus, there is really only a mainland (and this mainland has no holes)!

Consider the value of γ for Douady’s rabbit. It lies in the sprout located at the five-
o’clock position of the right disc in Figure 2.7. For this value of γ the complexified version
of (2.8) and (2.9) yields for M the fixed points zf = 0 and zf = .656747− .129015i. These
fixed points are both repellers. Also, there is a fixed point at ∞, and it is attracting. See
Exercises 2.6 and 2.11. See also Exercise 5.5 of Chapter 22 where the machinery is developed
to deal with the nature of fixed points in 2-dimensional maps.

Moreover, it can be shown that for this γ value the map (2.29) has three attracting
complex period-three fixed points. Indeed, Douady’s rabbit turns out to be the basins of
attraction for these fixed points. The three attracting fixed points ofM3 have the locations

z1 = 0.499997032420304− (1.221880225696050E−006)i (red), (1.2.30)

z2 = 0.638169999974373− (0.239864000011495)i (green), (1.2.31)

z3 = 0.799901291393262− (0.107547238170383)i (yellow). (1.2.32)

The action of M on these fixed points is given by the relations

Mz1 = z2, (1.2.33)

Mz2 = z3, (1.2.34)

Mz3 = z1. (1.2.35)

Figure 2.8 shows Douady’s rabbit again, this time in color. The red, green, and yellow
points lie in the basins B(z1), B(z2), and B(z3) ofM3, respectively. The white points lie in
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the basin B(∞) of M. Corresponding to the relations (2.33) through (2.35) there are the
results

MB(z1) = B(z2) or M red ⊆ green, (1.2.36)

MB(z2) = B(z3) or M green ⊆ yellow, (1.2.37)

MB(z3) = B(z1) or M yellow ⊆ red. (1.2.38)

Note the marvelous fractal structure at the basin boundaries.
In addition to the attracting fixed points of M3, there exist another three repelling

complex period-three fixed points that lie on the boundary of the rabbit. Now continuously
vary the value of γ until it enters the island for the period-three window, and eventually
takes on a real value corresponding to a λ value lying in the period-three window of Figure
2.4. As γ varies, the period-three fixed points move. They may change their nature, (e.g.
they all become repellers when γ leaves the sprout), but they cannot disappear. (See, for
example, Exercise 2.2.) It can be shown that in this case, as γ changes from the Douady-
rabbit value in the sprout to a real value in the period-three window, all the associated
period-three fixed points of Douady’s rabbit move from their original complex values to the
real line. Furthermore, the three period-three fixed points that begin as repellers when γ lies
in the sprout become the three attractors x∞ when γ reaches the island. The other three
period-three fixed points, which begin as attractors when γ lies in the sprout and become
repellers when γ leaves the sprout, remain repellers when γ reaches the island. Thus, by
extending the logistic map to the complex domain, we have learned that seemingly isolated
phenomena are in fact related.
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Figure 1.2.8: Douady’s rabbit in color. The white points lie in the basin of ∞ under the
action ofM. The origin is a repelling fixed point ofM. The other repelling fixed point has
the location zf = .656747− .129015i. Under the action ofM3, red points lie in the basin of
z1, green points lie in the basin of z2, and yellow points lie in the basin of z3.



24 1. INTRODUCTORY CONCEPTS

1.2.3 Simplest Nonlinear Symplectic Map

The complex logistic map (2.29) may be viewed as the simplest nonlinear two-dimensional
analytic map. In the same spirit, the simplest nonlinear two-dimensional symplectic map is
the Hénon map.20 It, too, is a quadratic map. We take the opportunity here to describe it
in Lie algebraic terms. To do this, we will need to introduce some Lie algebraic tools. These
tools will be described briefly below. Their full exposition is given in subsequent chapters.

We begin by redefining the symbol z; it will now stand for a canonically conjugate pair
of position and momentum variables q and p,

z = (q, p). (1.2.39)

Next, let f(z) denote any function of q, p. We will associate with each such function a
differential operator, called a Lie operator and denoted by the symbol :f :, by making the
definition

:f :
def
= (∂f/∂q)(∂/∂p)− (∂f/∂p)(∂/∂q). (1.2.40)

Then if g is any other function of the phase-space variables z, we have the result

:f : g = (∂f/∂q)(∂g/∂p)− (∂f/∂p)(∂g/∂q) = [f, g], (1.2.41)

where [∗, ∗] denotes the familiar Poisson bracket. (See Section 1.7.) Powers of :f : are defined
by repeated application of (2.40) or (2.41),

:f :2 g = [f, [f, g]],

:f :3 g = [f, [f, [f, g]]], etc.
(1.2.42)

Finally, we define :f :0 to be the identity operator,

:f :0 = I ⇔ :f :0 g = g. (1.2.43)

Now that powers of Lie operators have been defined, we can also define power series. Of
particular interest is the power series for the exponential function,

exp(:f :) =
∞∑
k=0

:f :k /k!. (1.2.44)

This object is referred to as a Lie transformation, and :f : (or f) is called its generator.
Specifically, if g is any function, we have the result/action

exp(:f :)g = g + [f, g] + [f, [f, g]]/2! + · · · . (1.2.45)

With regard to its action on the phase-space coordinates q and p, it can be shown that any
Lie transformation produces a symplectic map. See Section 7.1.

20Michel Hénon (1931-2013), a French mathematician and astronomer, invented this map to model a
Poincaré map.
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At this point the reader should verify the results

exp(:q3:)q = q, (1.2.46)

exp(:q3:)p = p+ 3q2. (1.2.47)

In Accelerator Physics terminology, the Lie transformation exp(:q3:) produces the phase-
space mapping associated with a thin sextupole kick. See Section 13.10.

Similarly, the reader should verify the results

exp
(
−(φ/2) :p2 + q2:

)
q = q cosφ+ p sinφ, (1.2.48)

exp
(
−(φ/2) :p2 + q2:

)
p = −q sinφ+ p cosφ. (1.2.49)

This verification requires the summation of an infinite series. In Accelerator Physics termi-
nology, the Lie transformation exp[−(φ/2) :p2 + q2:] produces the phase-space mapping for
a simple phase advance (rotation in phase space) of amount φ.

With this background in mind, let us consider the map M given by the product

M(θ) = exp
(
−(θ/4) :p2 + q2:

)
exp(:q3:) exp

(
−(θ/4) :p2 + q2:

)
. (1.2.50)

The map consists of a θ/2 phase advance, followed by a sextupole kick, followed again by
a θ/2 phase advance. Figure 2.9 illustrates this map schematically. In Accelerator Physics
terminology, it may be viewed as describing horizontal betatron motion in an idealized
storage ring with a single thin sextupole insertion S, and an observation point O (Poincaré
surface of section) located diametrically across the ring from the sextupole insertion. As seen
from (2.46) through (2.49), the map (2.50) does indeed consist of linear and quadratic terms,
as advertised. Since Lie transformations produce symplectic maps when acting on phase-
space coordinates, and symplectic maps form a group, it follows that (2.50) is a symplectic
map. Finally, it can be shown that this map is a variant of the usual Hénon map, and differs
from it only by a linear change of variables. See Chapter 29 for a study of general quadratic
maps in two dimensions. We also remark that, unlike the logistics map (real or complex),
the Hénon map, like all symplectic maps, is invertible.

The Hénon map has been studied in detail. As simple as it appears, it is known to have
very complicated properties: these include homoclinic points, chaotic behavior, and period
bifurcations. Figure 2.10 shows the dynamic aperture for our variant of the Hénon map for
the case θ/2π = 0.22. Points in the black area of the q, p (mapping) plane remain there
under repeated application of the map. [Actually, the points shown remain there for at least
10,000 iterations (Mn with n ≤ 10, 000).]21 By contrast, any point launched in the white
area eventually iterates away to infinity. Inspection of the figure suggests, and it can in
fact be proved, that the dynamic aperture for our variant of the Hénon map is symmetrical
about the q axis.

Figure 2.11 illustrates how the size and shape of the dynamic aperture for our variant
of the Hénon map depend on the total phase advance θ. As is evident from examination

21We remark that the dynamic aperture is not known for the Hénon map, or any other nontrivial symplectic
map for that matter, when n =∞. See Section 20.10.
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SO

Figure 1.2.9: Schematic representation of the map (2.50).

of (2.46) through (2.50) and Figure 2.11, the dynamic aperture shrinks to the phase-space
origin as θ goes to zero. By contrast, when θ = π, one has the results

M(π)q = −q + 3p2, (1.2.51)

M(π)p = −p, (1.2.52)

M2(π) = I . (1.2.53)

Correspondingly, the dynamic aperture in this case is all of phase space. For general θ it
can be shown that the dynamic aperture for the map M(−θ) is the same as that for the
map M(θ) save for a 180◦ rotation about the phase-space origin. Moreover, the dynamic
aperture for the map M(π + φ) is the same as that for M(π − φ). Finally, the dynamic
aperture forM(θ) is periodic in θ with period 4π. It follows that the information presented
in the figure is sufficient to deduce the dynamic aperture for all (real) values of θ.

The study of phenomena arising from the iteration of symplectic maps is still in its
infancy, and much remains to be done in even the very simplest of cases. For example,
in analogy with what has been learned in the case of the logistic map, one might wonder
if further insight could be gained by complexifying the Hénon map, i.e. by making both
q and p complex. Then (2.50) would become a mapping of C2 (the space of two complex
variables) into itself. Also, the control parameter θ could be made complex. By such a
study one might hope, for example, to better understand the boundary of the dynamic
aperture. Hubbard and Oberste-Vorth have begun this exploration, and results to date
indicate that the complex Hénon map is a remarkably complicated object. This should
be a sobering thought to accelerator physicists, because they are interested in knowing
the behavior of far more complicated symplectic maps in more (four and six) dimensions.
When complexified, four- and six-dimensional phase spaces become C4 and C6. Thus it is
no wonder that questions of dynamic aperture for realistic accelerators are so complicated.
Nor, in analogy to the properties of the Mandelbrot set, should we be surprised that the
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Figure 1.2.10: The dynamic aperture of the Hénon map for the case θ/2π = 0.22.

dynamic aperture depends sensitively on the choice of accelerator parameters such as tunes,
local phase advances, multipole strengths, etc. What we are observing in all these instances
is that complicated properties can arise as a result of an infinite process, namely that of
indefinite iteration.

1.2.4 Goal for Use of Maps in Accelerator Physics

In some areas of nonlinear dynamics, e.g. celestial/galactic dynamics, the Hamiltonian is
dictated by Nature and the goal is to understand/predict the dynamics arising from this
Hamiltonian. In Accelerator Physics, the Hamiltonian can, more or less, be engineered; and
the goal is to engineer the Hamiltonian in such a way that particles will be accelerated, stored,
and directed to achieve various desired ends. In particular, in the context of Accelerator
Physics, the long-term goal of map methods is to be able to describe, predict, and control
nonlinear properties with the same facility with which we now handle linear properties. Much
has been accomplished in this direction, particularly with regard to single-pass systems and
short-to-moderate-term behavior in circulating systems.

It is known that once-differentiable symplectic maps (and probably even analytic sym-
plectic maps) generically have simultaneously hyperbolic fixed points, elliptic fixed points,
and homoclinic points that are all everywhere dense in phase space. (The meaning of the
terms hyperbolic, elliptic, and homoclinic will be defined subsequently.) Consequently, the
detailed long-term behavior of most symplectic maps under repeated iteration must be com-
plicated beyond comprehension.22 However, there is still the hope that it may be possible to

22Thus, the properties of the Hénon map are vastly more complicated than those of the already very
complicated complex logistic map. For example, apart from the behavior of the Julia set which is sent
into itself in a complicated way, the behavior at most points in the mapping plane for the complex logistic
map is governed by a few attractors. By contrast, we will see in Chapter 3 that symplectic maps have no
attractors (and also no repellers). Therefore the orbits produced by a symplectic map never settle down,
and something new should always be expected. But this “newness” would not be surprising to the vast
intelligence described by Laplace. It is surprising only to those who have not done enough computation to
see how results depend on the initial conditions and the number of iterations.
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Figure 1.2.11: Stereographic view of the dynamic aperture of the Hénon map as a function
of the parameter θ. The region shown is q ∈ [−.8, .8], p ∈ [−.7.7], θ/2π ∈ [0, .5].
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compute gross long-term properties: the rough size of the dynamic aperture, approximate
(but useful) lower bounds on the life time for some sizable fraction of a circulating beam,
etc.

We now know that generically Hamiltonian motion is chaotic in the sense that final
conditions (in the long-term) generally depend very sensitively on initial conditions. (And,
we know that final conditions can also depend very sensitively on parameter values.)23 This
possibility was already envisioned by Maxwell, and subsequently by Poincaré. In 1873
Maxwell wrote:

When the state of things is such that an infinitely small variation of the present
state will alter only by an infinitely small quantity the state at some future time,
the condition of the system · · · is said to be stable; but when an infinitely small
variation in the present state may bring about a finite difference in the state of
the system in a finite time, the condition of the system is said to be unstable.
It is manifest that the existence of unstable conditions renders impossible the
prediction of future events, if our knowledge of the present state is only approx-
imate, and not accurate · · · It is a metaphysical doctrine that from the same
antecedents follow the same consequences. No one can gainsay this.24 But it is
not of much use in a world like this, in which the same antecedents never occur,
and nothing ever happens twice.

Strictly speaking, if continuity holds as we know it does for solutions of differential equations
under quite general circumstances, Maxwell was not correct in the assertion that infinitesimal
changes in initial conditions could produce (in finite time) a finite change in final conditions.
But his ideas were correct in spirit. In 1903, in the same spirit and with more precision,
Poincaré wrote:

If we knew exactly the laws of nature and the situation of the universe at some
initial moment, we could predict exactly the situation of that same universe at
a succeeding moment. But even if it were the case that the natural laws had no
longer any secret for us, we could still only know the initial situation approx-
imately. If that enabled us to predict the succeeding situation with the same
approximation, that is all we require, and we should say that the phenomenon
had been predicted, that it is governed by laws. But it is not always so: it may
happen that small differences in the initial conditions produce very great ones in
the final phenomena. A small error in the former will produce an enormous error
in the latter. Prediction then becomes impossible, and we have the fortuitous
phenomenon.

23The word chaotic can have a variety of meanings. The least stringent is sensitive dependence on initial
conditions. A more stringent definition is to require in addition that for a mapM to exhibit chaotic behavior
in some domain D it must be transitive in D in the sense that if E and F are any two subdomains in D,
then there is some point in E such that applying M enough times to this point yields some point in in F .
Finally, we require that the set of periodic points ofM and its powers be dense in some subdomain G of D.
According to Exercise 2.9 the logistic map is chaotic, following this more stringent definition, when λ = 4
and for some λ < 4.

24Note that quantum mechanics does gainsay this.
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One of the goals of accelerator design is to minimize chaotic behavior and its effects, and to
minimize sensitive dependence on parameter values.25

For the most part we will restrict our attention to single-particle dynamics. To the
extent that multiparticle dynamics is considered, we will generally assume that interactions
between individual particles can be neglected, or that we are interested only in single-particle
dynamics occurring in the presence of an already specified multiparticle background. That
is, we will not attempt a self-consistent treatment of many-particle effects such as wake
fields, space-charge forces, and strong-strong beam-beam interactions. As Newton already
realized, the self-consistent inclusion of even relatively few -particle effects raises a whole new
set of complications:

The orbit of any one planet depends on the combined motion of all the planets,
not to mention the actions of all these on each other. To consider simultaneously
all these causes of motion and to define these motions by exact laws allowing
of convenient calculation exceeds, unless I am mistaken, the forces of the entire
human intellect.

In the case of the solar system, the “forces that exceed those of the entire human intellect”
have recently been provided by special-purpose super computers running special-purpose
integration algorithms (based, as it turns out, on map methods). And, by following orbits
for sufficiently long times, it has been found that solar-system dynamics is chaotic.26 Routine

25In the context of chaotic behavior,“sensitive dependence on initial conditions” is now generally taken to
mean that, to achieve a given accuracy in the final conditions after a given time or, in the case of maps, a
given number of map iterations, the required accuracy in the initial conditions ultimately grows exponentially
in time or the number of map iterations. Since parameter values may also be viewed as dynamical variables
and therefore as initial conditions, see Section 10.12, the same is also possibly true of parameter values. See
Exercise 2.9 for an example of how sensitive dependence on initial conditions can occur in the case of the
logistic map.

26Under the assumption of an inverse square gravitational force law for point masses, Newton was able
to show that the gravitational forces between rigid extended (macroscopic) spherical distributions of point
masses (assuming they do not collide) are the same as as if they were point masses with the mass of each
distribution (body) concentrated at its center. Next, Newton was able to show for two point masses that,
under their mutual gravitation, their center of mass would move with constant velocity, and the motion of
each about their center of mass would be an ellipse (more generally a conic section). This conclusion of
Newton [about what is now called the Kepler (1571-1630) problem] had to be extracted from him by Edmond
Halley (of cometary fame) after Robert Hooke (of spring-force law fame) had failed to deliver on a promised
proof that an inverse square force law led to Kepler’s laws of planetary motion. When subsequently asked
by Halley, Newton claimed that he had proved it four years earlier, but then, because he had apparently lost
his notes, was able to produce a new and improved proof only after three months delay. Although Newton
had invented the basics of calculus, his actual armamentarium of mathematical concepts and tools was quite
limited by modern standards. After this, and at the urging of Halley, Christopher Wren (of architectural
fame), and others, he began to work in earnest on writing his Principia. When completed, it was edited by
Halley and published at Halley’s expense.

In the approximation that all the planets have very small masses compared to that of the sun, and
with neglect of mutual interactions among the planets, the orbits of all the planets would be ellipses.
Correspondingly, in this approximation, the solar system would be stable for all time. But what happens
if the very small mass approximation is not made for the planets and if mutual planetary interactions are
included? This so-called gravitational N-body problem is difficult for two reasons: First, the consideration of
arbitrarily long times introduces an infinity into the problem. Second, the idealization of treating extended
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detailed treatment of long-term many-particle effects awaits the advent of readily accessible
super computers routinely operating at or exceeding petaFLOPS speed.

macroscopic bodies as point masses means that bodies can become arbitrarily close with their associated
gravitational potential energies possibly supplying an unbounded amount of energy to other bodies that
could lead to their ejection from the system. (In fact, in some cases even relatively close encounters might
provide enough energy for the ejection of others.) Thus, the singular nature of the 1/r2 gravitational force
introduces additional possible infinities.

We remark in passing that there are exotic “solutions” to the gravitational N -body problem for which
some body escapes to infinity in finite time with infinite velocity. Such “solutions”, constructed with great
ingenuity, exploit the singular nature at r = 0 of the 1/r2 idealized model for the gravitational force in that
they require arbitrarily close encounters and thereby entail arbitrarily large forces. But in so doing they
violate the “finiteness” conditions to be presented in Theorem 3.1. For example they do not occur if 1/r2

in the gravitational force law is replaced by 1/(r2 + a2) for any nonzero but arbitrarily small value of a, for
then there are no infinite forces and the conditions of Theorem 3.1 are met. These exotic “solutions” are
sometimes cited as evidence for instances in which determinism in classical mechanics is violated. This is a
misunderstanding. Their true nature is that they are instances where singularities arising from idealizations
are allowed to play a hidden but nonetheless decisive role. They have no deep philosophical significance.
They are, however, of great mathematical interest because they clarify/prove some long-open conjectures
about the nature of singular ”solutions” in the gravitational N-body problem. Moreover, they have heuristic
value, for they suggest that there may be nearby true solutions for which no infinities arise (forces remain
bounded) but for which large (but finite) excursions may occur. Thus, for example, there are instances
in which it is possible to employ relatively close encounters to achieve deep-space satellite missions with
a minimum expenditure of fuel. Finally we remark that even in the two-body problem and in the case of
elliptic orbits so that all body coordinates are well defined for all real time, the “virtual possibility” of a
two-body collision (thus bringing the 1/r2 singularity into evidence) appears in the form of singularities in
the complex time plane. If the orbits are highly elliptic/eccentric so that very close encounters are possible,
these complex singularities lie very close to the real time axis thereby making numerical integration very
difficult near times of close encounters. This problem is generally treated by regularization of the equations
of motion prior to numerical integration.

Let us return to the main discussion. As indicated by the quotation above, Newton apparently viewed the
N -body gravitational problem as humanly intractable. Nevertheless he attempted to estimate the effects of
mutual interactions and concluded that they would rapidly become noticeable and detrimental to stability.
Since he believed that the solar system had and should continue to exhibit regular motion for a long period
of time (based on his Biblical studies, to which he devoted more time than to physics, he believed that
the world would last at least until 2060), he concluded that divine intervention/reformation was required
from time to time to correct the effect of these mutual interactions: “· · · . By the help of these principles,
all material things seem to have been composed of the hard and solid particles above-mentioned, variously
associated in the first creation by the counsel of an intelligent agent: for it became Him who created them
to set them in order. And if He did so, it is unphilosophical to seek for any other origin of the world,
or to pretend that it might arise out of chaos by the mere laws of Nature; though, being once formed, it
may continue by these laws for many ages. For while comets move in very eccentric orbs in all manner of
positions, blind fate could never make all the planets move one and the same way in orbs concentric, some
inconsiderable irregularities excepted, which may have arisen from the mutual actions of comets and planets
on one another, and which will be apt to increase, till this system wants a reformation. Such a wonderful
uniformity in the planetary system must be allowed the effect of choice; · · · ”

With regard to the solar system itself and God, Newton (in the General Scholium that appears as an
appendix to the second edition of the Principia) wrote: “This most beautiful system of the sun, planets,
and comets, could only proceed from the counsel and dominion of an intelligent and powerful Being. And if
the fixed Stars are the centers of other like systems, these, being form’d by the like wise counsel, must be all
subject to the dominion of One; especially since the light of the fixed Stars is of the same nature with the
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1.2.5 Maps from Hamiltonian Differential Equations

There is one last set of motivational remarks to be made. Often, as already described and to
be illustrated subsequently in Section 1.4 and later, we are interested in maps produced by
integrating differential equations. In the case that these differential equations arise from a

light of the Sun, and from every system light passes into all the other systems. And lest the systems of the
fixed Stars should, by their gravity, fall into each other mutually, he hath placed these Systems at immense
distances from one another.· · · This Being governs all things, not as the soul of the world, but as Lord over
all; and on account of his dominion he is wont to be called Lord God παντoκρατωρ, or Universal Ruler
· · · .· · ·He is eternal and infinite, omnipotent and omniscient; that is, his duration reaches from eternity to
eternity; his presence from infinity to infinity; he governs all things, and knows all things that are or can be
done.”

In the terminology of the philosophy of religion or natural theology, Newton’s invoking divine action
to “reform” (adjust) from time to time the solar system is an early example of God of the gaps: When
something is not understood or a theory appears to fail, direct action by God is invoked as an explanation.
For further discussion of Newton’s Biblical and historical studies see the book of Jed Z. Buchwald and
Mordechai Feingold and the book of Rob Iliffe cited in the Bibliography at the end of this chapter.

Kepler’s discoveries of elliptical planetary orbits also posed unanswered questions. Like his contemporaries
he initially believed, based on philosophical grounds dating back to Greek/Platonic ideas, that circular
motion was the most perfect of all motions, and therefore the planets might naturally be expected to
move in circular orbits. What then is the explanation for the small transverse deviations from circular
motion associated with elliptical motion? Rather then invoking supernatural agents or unphysical powers,
he eventually came to the physical hypothesis that both the underlying circular motions and the deviations
from it arose from magnetic effects associated with a rotating sun. Of course, with Newton’s discovery that
the orbits associated with an inverse-square force law must be conic sections, the need for further explanation
vanished, and one need not think that circular motion is the most perfect of all motions.

We also digress to note that Kepler made other scientific/mathematical contributions in addition to his
laws of planetary motion. He discovered that the eye has a lens, and that the action of this lens forms
an (inverted) image on the back of the eye. He also studied sphere packing, and calculated the packing
fraction for a particular configuration that has since been conjectured to be optimal (the so called Kepler
conjecture). In 2014 Thomas Hales, leader of the Flyspeck Team, announced that this conjecture was finally
proved. The proof involved 300 pages of text, about 3 gigabytes of computer programs and data, and about
5000 processor-hours.

With much improved mathematical tools and a century later Laplace, in his books Exposition du Système
du Monde and Mécaniqué Céleste, claimed to show that the effects of mutual interactions of the planets
and the sun essentially average to zero over large times, and therefore no “reformation” is required. He also
studied solar system formation mechanisms for which the planets would be expected to orbit in essentially
the same plane and in the same direction. Laplace’s claims might actually have pleased Newton because
Newton also maintained that, “No more causes of natural things should be admitted than are both true,
and sufficient to explain their phenomena.”

There is a story, perhaps apocryphal/embellished, to the effect that Napoleon met Laplace and said, “I
understand you have written a large book on the system of the universe and have not mentioned its creator.”
To this comment Laplace replied, “I had no need of that hypothesis.” Napoleon, greatly amused by this
response, later related this interchange to Lagrange. Lagrange reportedly replied, “Ah, it is a beautiful
hypothesis; it explains many things.” Subsequent versions of the Laplace-Napoleon event claim that Laplace
was not denying the existence of God or his ability to intervene should he so desire, but only denying that
it was necessary for God to intervene from time to time to set the planets back on a regular course. [In
Exposition du Système du Monde, Laplace quotes Newton’s assertion that “This most beautiful system
of the sun, planets, and comets, could only proceed from the counsel and dominion of an intelligent and
powerful Being.” This, says Laplace, is a “thought in which he (Newton) would be even more confirmed, if
he had known what we have shown, namely that the conditions of the arrangement of the planets and their
satellites are precisely those which ensure its stability”. Laplace originally trained for the priesthood before
taking up mathematics, and received last rites at his death. But there are also indications that Laplace was
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time-independent Hamiltonian H, the associated mapM(tf , ti) that takes initial conditions
qi, pi at time ti to final conditions qf , pf at time tf can formally be written as the Lie
transformation

M(ti, tf ) = exp
(
−(tf − ti) :H(qi, pi):

)
. (1.2.54)

This result is proved in Section 7.4. How to capitalize on this result, and what to do in
the time-dependent case, are discussed in subsequent sections. There are related results for
non-Hamiltonian differential equations. One can then work with exponentials of what are
called non-Hamiltonian vector fields.

Exercises

1.2.1. The purpose of this exercise is to examine the stability of the fixed points xe given
by (2.8) and (2.9). Re-express the logistic map (2.5) by using the notation

x̄ =Mx = f(λ, x) = λx(1− x). (1.2.55)

very skeptical about the occurrence of miracles in general and transubstantiation in particular.] In effect,
there was no gap that needed special filling.

Leibniz had thought, from the beginning and on philosophical grounds, that Newton’s view was ill con-
ceived because surely God could and therefore necessarily would create a universe that did not constantly
require maintenance. In fact, Leibniz held, this world (universe) is the best of all possible worlds: “In
whatever manner God created the world, it would always have been regular and in a certain general order.
God, however, has chosen the most perfect, that is to say, the one which is at the same time the simplest in
hypothesis and the richest in phenomena.”

It is now known that Laplace’s stability calculations are inconclusive for long-term stability (although
presumably satisfactory to show stability through the year 2060) because in his perturbative method he
neglected some important high-order terms. Moreover, he did not consider the possibility, now known to be
generically likely, that the perturbative series he was generating would ultimately be divergent and therefore
useless for determining stability.

Early in his career Poincaré also crossed swords with the N -body gravitational problem in the form of
determining stability in the restricted 3-body approximation. His work won the King Oscar II of Sweden
prize. But when it came time for publication a year later, Poincaré found he had made a major error, stopped
the presses, paid for the printing costs himself, and wrote a corrected manuscript that was published yet a
year later. See the book by June Barrow-Green cited in the Bibliography at the end of this chapter. The
question of 3-body stability and solar-system stability remained unresolved.

It is now believed possible that one or more planetary ejections from the solar system may have indeed
occurred in the distant past. (Numerical and analytical studies of the gravitational N -body problem indicate
that there are indeed solutions for which one or more bodies escape to infinity. Moreover, numerical simu-
lations of stellar globular clusters indicate that they routinely “boil off” individual stars.) Thus, in its early
history, the solar system may have been unstable. However, long-term numerical integrations indicate that
the solar system we now observe should survive far into the future. (It takes approximately 50 million years,
when integrating forward or backward in time, for the uncertainties in orbital positions to grow to substan-
tial values due to chaotic sensitivity to initial condition and parameter value uncertainties.) Of course, such
calculations do not rule out collisions with small unknown objects such as asteroids. But, as locally dam-
aging as such collisions might be to various planets and moons, they would not seriously perturb the solar
system as a whole. Google solar system stability or stability of the solar system and look for, among others,
the Web sites http://www.scholarpedia.org/article/Stability_of_the_solar_system and https://

www.ias.edu/about/publications/ias-letter/articles/2011-summer/solar-system-tremaine. See
also the book of Dumas on The KAM Story cited in the Classical/Celestial · · · section of the bibliography
at the end of this chapter.

http://www.scholarpedia.org/article/Stability_of_the_solar_system
https://www.ias.edu/about/publications/ias-letter/articles/2011-summer/solar-system-tremaine
https://www.ias.edu/about/publications/ias-letter/articles/2011-summer/solar-system-tremaine
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Introduce deviation variables δ and δ̄ about the fixed point xe by the relations

x = xe + δ, x̄ = xe + δ̄. (1.2.56)

Show that in terms of these deviation variables the logistic map (2.44) takes the form

δ̄ = µδ − λδ2 (1.2.57)

where
µ = λ(1− 2xe). (1.2.58)

The first term on the right side of (2.57) is called the linear part of M about xe, and µ is
called the eigenvalue of the linear part. Evidently, unless µ = 0, the behavior of (2.57) under
repeated iteration, and for δ sufficiently small, is governed by the linear part, which in turn
is described by µ. That is, we may neglect the δ2 term in (2.57). Show that if |µ| < 1, then
xe is stable; and if |µ| > 1, then xe is unstable. In particular, suppose (2.57) is rewritten in
the form

δn+1 = µδn − λ(δn)2 (1.2.59)

and assume |µ| < 1 but µ 6= 0. Show that, for sufficiently small δ0, (2.59) yields the
asymptotic behavior

δn ' µnδ0. (1.2.60)

Show that if xe is given by (2.8), then µ is given by the relation

µ = λ. (1.2.61)

Show that if xe is given by (2.9), then µ is given by the relation

µ = 2− λ. (1.2.62)

For λ ∈ (0, 1), verify that the fixed point given by (2.8) is stable, and that given by (2.9)
is unstable. Show that their stability roles are reversed for λ ∈ (1, 3). Show that when
λ = 1, µ = 1 for both values of xe, and show that the two fixed points then also coincide.
Show that the xe given by (2.9) is especially attractive when λ = 2. You will have to retain
the δ2 terms in (2.57) because now µ = 0. In particular, show that (2.59) now yields the
asymptotic behavior

δn ' −(1/λ)(−λδ0)2n . (1.2.63)

When µ = 0, the associated fixed point xe is called super attractive or super stable. For λ > 2
show that µ as given by (2.62) is negative, µ < 0. Use this fact to explain the behavior of
the xm in Figure 2.2. Show that µ as given by (2.62) has the value µ = −1 when λ = 3, and
that the fixed point given by (2.9) is unstable for λ > 3. Verify from Figures 2.4 and 2.5
that period doubling occurs when λ = 3. See also Exercise 2.2. That is, period doubling for
a fixed point occurs when the associated value of µ passes through the value µ = −1.

1.2.2. For λ ≥ 3 the maps M and hence M2 continue to have the xe given by (2.8) and
(2.9) as fixed points. Show that, for λ > 3,M2 also has the two additional fixed points 2x±e
given by

2x±e = [(λ+ 1)/(2λ)]± [(λ− 3)(λ+ 1)]1/2/(2λ), (1.2.64)
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and that these points are mapped into each other under the action ofM. (In point of fact,
M2 also has these fixed points for λ ≤ 3, but then they are complex. For an analytic map
fixed points cannot be created or destroyed.) Verify that xe as given by (2.9) and 2x±e agree
when λ = 3. Verify also that

∂(2x±e )/∂λ = ±∞ at λ = 3. (1.2.65)

Thus the curves 2x±e (λ) have infinite slope at λ = 3. See Figure 2.5. Finally, verify that

d = (2x+
e − 2x−e )|λ=3.449··· = 0.409 · · · . (1.2.66)

Again see Figure 2.5.

1.2.3. It has already been mentioned, and in Section 1.4 we will see in more detail, that
differential equations produce maps. Moreover, in Chapter 10 and Section 24.12 we will
learn how to compute these maps, how to find their fixed points, and how to expand them
in deviation variables (see Exercise 2.1). Suppose a map has been expanded up to some order
in deviation variables about a fixed point. Can this expansion be used to predict period
doubling and other bifurcation phenomena? If so, to what order must the map be expanded
to make such predictions? The purpose of this exercise is to explore these questions for the
simplest case of one-dimensional maps.

Let M be a one-dimensional map and suppose [in analogy to (2.57)] that it has an
expansion, in deviation variables about a fixed point, of the form

δ̄ = aδ + bδ2 + cδ3 + dδ4 + eδ5 + · · · . (1.2.67)

Suppose we employ the notation
δ̄ =Mδ (1.2.68)

and
¯̄δ =Mδ̄. (1.2.69)

Show that M2, the square of M, then has an expansion about the same fixed point of the
form

¯̄δ = αδ + βδ2 + γδ3 + σδ4 + τδ5 + · · · , (1.2.70)

where

α = a2, (1.2.71)

β = ab+ a2b = ab(1 + a), (1.2.72)

γ = 2ab2 + ac+ a3c, (1.2.73)

σ = b3 + 2abc+ 3a2bc+ ad+ a4d, (1.2.74)

τ = 2b2c+ 3ab2c+ 3a2c2 + 2abd+ 4a3bd+ ae+ a5e. (1.2.75)

Evaluate α, β, γ, σ, and τ for the logistic map, see (2.57), and show that in this case
the terms beyond order 4 in (2.70) vanish. Now let δe be a fixed point ofM2. According to
(2.70) it must satisfy the equation

δe = αδe + βδ2
e + γδ3

e + σδ4
e + τδ5

e + · · · . (1.2.76)
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One solution to (2.76), which we already know about because it is also a fixed point of M,
is δe = 0. Upon dividing both sides of (2.76) by δe, we see that any nonvanishing solution
must satisfy the relation

1− α = βδe + γδ2
e + σδ3

e + τδ4
e + · · · . (1.2.77)

Show for the logistic map that the terms beyond order 3 in (2.77) vanish. Show in fact that,
for the logistic map, (2.77) becomes the relation

Q(δe)
def
= δ3

e − (2µ/λ)δ2
e + [µ(µ+ 1)/(λ2)]δe − [(µ2 − 1)/(λ3)] = 0. (1.2.78)

For the logistic map we also know from (2.57) that

δe = (µ− 1)/λ (1.2.79)

is a second fixed point of M. Verify this assertion. The quantity δe given by (2.79) is
therefore also a fixed point of M2, and consequently is also a solution of (2.78). Indeed,
verify that

P (δe)
def
= Q(δe)/[δe − (µ− 1)/λ] = δ2

e − [(1 + µ)/λ]δe + (1 + µ)/(λ2). (1.2.80)

Solve the equation P (δe) = 0 and use (2.62) to find the results

δ±e = (3− λ)/(2λ)± (1/2λ)[(λ− 3)(λ+ 1)]1/2. (1.2.81)

Check that these results agree with (2.64).
At this point it is convenient to introduce the quantity ε defined by the relation

ε = −(µ+ 1). (1.2.82)

Evidently ε will be small when µ ' −1, namely when µ is near the bifurcation value µ = −1.
Show that in terms of the quantity ε, see (2.62), the relation (2.81) has the expansion

δ±e = ± (1/3)(ε)1/2 − (1/6)(ε) ∓ (5/72)(ε)3/2 + (1/18)(ε)2 + · · · . (1.2.83)

For the general one-dimensional map (2.67), we do not have at our disposal a second
fixed point besides the first fixed point δe = 0. Therefore we cannot solve (2.77) directly
by factorization. However, we may still proceed as follows: We see from (2.83) that for
the logistic map the δe of interest are small when ε is small. We might therefore try to
solve (2.77) perturbatively under the assumption that in the general case the desired δe are
small near a bifurcation, and consequently sufficiently high powers of δe may be neglected.
Suppose we neglect all powers of δe in (2.77) beyond the first. Then (2.77) has the tentative
solution

δe
?
=(1− α)/β = (1− a2)/[ab(1 + a)] = (1− a)/ab. (1.2.84)

Here we have used (2.71) and (2.72). However, since the parameter a in (2.67) plays the
role of µ in (2.57), near a bifurcation we expect that a ' −1. Therefore (2.84) does not
produce a solution near 0, and our assumption about being able to neglect terms in (2.77)
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beyond the first is unjustified. The quantity (1 − α = 1 − a2) is small, which is expected
and desirable, but the quantity [β = ab(1 + a)] that multiplies δe is also small. Therefore
the product βδe is not large compared to higher powers of δe.

We need to make a careful expansion in small quantities. To do so, in analogy with the
case of the logistic map, now define ε by the relation

ε = −(a+ 1). (1.2.85)

Presumably the quantities a, b, · · · in (2.67), and correspondingly the quantities α, β,
· · · in (2.70), depend analytically on some common parameter, and it is the change in this
parameter that causes bifurcation. Without loss of generality, we may replace this parameter
with the quantity ε using (2.85). The quantities α, β, · · · may then be expanded in terms
of ε to yield relations of the form

α− 1 = a2 − 1 = 2ε+ ε2, (1.2.86)

β = ab(1 + a) = β1ε+ β2ε
2 + · · · , (1.2.87)

γ = γ0 + γ1ε+ · · · , (1.2.88)

σ = σ0 + σ1ε+ · · · , (1.2.89)

τ = τ0 + τ1ε+ · · · , etc. (1.2.90)

Here we have made explicit use of (2.71) and (2.72).
Now we are ready to proceed. Write (2.77) in the form

δ2
e = (1− α)/γ − (β/γ)δe − (σ/γ)δ3

e − (τ/γ)δ4
e + · · · . (1.2.91)

Suppose now we neglect all powers of δe in (2.91) beyond the second. Then (2.91) has the
tentative solution

δ±e
?
=− β/(2γ) ± (1/2)[(β/γ)2 − 4(α− 1)/γ]1/2. (1.2.92)

Verify (2.92) and show that inserting (2.86) through (2.88) into it yields the expansion

δ±e
?
= ± [2/(−γ0)]1/2(ε)1/2 + [β1/(−2γ0)](ε) + · · · . (1.2.93)

According to (2.93), δe is now of order (ε)1/2. Assuming this to be true, let us examine the
orders of the various terms on the right side of (2.91): The term (1−α)/γ is of order ε. See
(2.86) and (2.88). The term (β/γ)δe is of order (ε)3/2. See (2.87) and (2.88). Moreover, the
term (σ/γ)δ3

e is also of order (ε)3/2. See (2.88) and (2.89). Finally, the terms (τ/γ)δ4
e etc.

are of order ε2 and higher.
With these estimates in mind, we will now seek to solve (2.91) by iteration. For the

zeroth iteration we will first write

(δ(0)
e )2 = (1− α)/γ (1.2.94)

with the solution

δ0
e = [(1− α)/γ]1/2 = ± [2/(−γ0)]1/2(ε)1/2 ± (1/4)[2/(−γ0)]1/2[1− 2(γ1/γ0)](ε)3/2 + · · · .

(1.2.95)
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More simply, for our purposes, it suffices to start with the approximation

δ0
e = ± [2/(−γ0)]1/2(ε)1/2. (1.2.96)

For subsequent iterations we will rewrite (2.91) in the form

(δ(n+1)
e )2 = (1− α)/γ − (β/γ)δ(n)

e − (σ/γ)(δ(n)
e )3 − (τ/γ)(δ(n)

e )4 + · · · . (1.2.97)

Verify that carrying out this iterative solution yields the expansion

δ±e = ± [2/(−γ0)]1/2(ε)1/2 + [(σ0)/(γ2
0)− (β1)/(2γ0)]ε ± (∗∗)(ε)3/2 + · · · . (1.2.98)

As a sanity check on this procedure, verify that (2.98) yields (2.83) for the case of the
logistic map.

We conclude that finding the leading behavior of δ±e , the coefficient of (ε)1/2 in (2.98),
requires a knowledge of γ0. This knowledge in turn, according to (2.73), requires a knowledge
of the quantities a through c in (2.67). We see thatM must be known through third order,
that is through terms of order δ3, to find the leading bifurcation behavior. And finding
subsequent terms in the expansion of δ±e requires knowingM to successively higher orders.
For example, finding the order ε term in (2.98) requires a knowledge of σ0, which in turn
according to (2.74) requires a knowledge of the fourth-order coefficient d.

This is the result for the case of one-dimensional maps. Since one-dimensional maps
can be parts of many-dimensional maps, we conclude that a necessary condition to find the
leading bifurcation behavior of a many-dimensional map is also that we know its expansion
in deviation variables (about a fixed point) through third order. We speculate that this
information is also sufficient. See Section 24.12.

1.2.4. Assuming that (2.14) is asymptotically correct, show that δ can be determined by
the limiting process

lim
j→∞

[(λj − λj−1)/(λj+1 − λj)] = δ. (1.2.99)

Suppose a map is reparameterized by introducing the parameter µ = g(λ), where g is any
invertible differentiable function. Show that the µj = g(λj) also satisfy (2.99).

1.2.5. For the complex logistic map in the form (2.29), write

z = x+ iy, (1.2.100)

γ = α + iβ. (1.2.101)

Show that in terms of these quantities the complex logistic map in the form (2.29) is equiv-
alent to the two-dimensional real quadratic map given by the relations

xn+1 = αxn − βyn − α(x2
n − y2

n) + 2βxnyn, (1.2.102)

yn+1 = βxn + αyn − β(x2
n − y2

n)− 2αxnyn. (1.2.103)
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1.2.6. Consider the transformation

z = 1/w or w = 1/z, (1.2.104)

which interchanges the origin and the point at infinity. Show that under this change of
variables the logistic map (2.29) takes the form

wn+1 = −(1/γ)(wn)2/(1− wn). (1.2.105)

Evidently w = 0 is a fixed point. Suppose that wn is sufficiently close to the origin so that

|wn| = τ |γ|/(1 + |γ|) with τ < 1. (1.2.106)

Show that then there is the inequality

|wn+1| ≤ τ |wn|. (1.2.107)

Thus, w = 0 is an attractor, and its basin, at the very least, contains the open disk

|w| < |γ|/(1 + |γ|). (1.2.108)

Show, in fact, that w = 0 is super attractive. See Exercise 2.1. Show that all points z that
satisfy

|z| > 1 + 1/|γ| (1.2.109)

iterate to ∞ under the action ofM as given by (2.29). We remark that this exercise shows
that the complex logistic map can better be viewed as a mapping into itself of the Riemann
sphere rather than the complex plane. We also remark that the Julia set may be viewed as
the boundary of the basin of attraction for the attractor z =∞. That the Julia set is fractal
is an instance of the theorem that basin boundaries are generally fractal.

1.2.7. Show that under the change of variables

z = −(w/γ) + (1/2) (1.2.110)

and the parameter change

µ = (γ2/4)− (γ/2) = (γ − 1)2/4− (1/4), (1.2.111)

the logistic map (2.29) takes the form

wn+1 = w2
n − µ. (1.2.112)

Show that the logistic map is two-to-one, and therefore not globally invertible. Show that it
is, however, locally invertible in the neighborhood of each fixed point. Verify the symmetry
claimed for the Mandelbrot set shown in Figure 2.7. Figure 2.12 shows the Mandelbrot set
in the complex µ plane. Verify that µ is unchanged under the substitution γ → 2−γ. Verify
that (2.111) maps the two disks in Figure 2.7 into a cardioid. See Figure 2.12. Verify that
the point γ = 1 in Figure 2.7 corresponds to the point µ = −(1/4) in Figure 2.12, and that
this point is at the cusp of the cardioid. Verify that the points γ = 2, γ = 3, γ = λcr, and
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γ = 4 correspond to the points µ = 0, µ = (3/4), µ = µcr ' 1.40, and µ = 2. Find µ for
Douady’s rabbit, and describe the location of this µ value in Figure 2.12. Show that the
map (2.112) has the equilibrium (fixed) points

w±e = (1/2)± [µ+ (1/4)]1/2, (1.2.113)

and relate these points to the xe given by (2.8) and (2.9). Show that w−e is stable for µ real
and in the interval (−1/4, 3/4), and w+

e is unstable.
Figure 2.13 is the analog of Figure 2.4 for µ real and in terms of the variable w. Only the

trail of w−e , as µ is varied, is shown because w+
e is unstable. However, if both were shown

and according to (2.113), verify that the trails w±e (µ) would together comprise a parabola
lying on its side and extending to the right with vertex µ = −(1/4), w = (1/2). Note that
since w±e (µ) are complex for µ < −(1/4), these fixed points do not appear in Figure 2.13.
Thus, from the perspective of one living in the real world, two fixed points have appeared
“out of the blue” at µ = −(1/4). There are no (real) fixed points for µ < −(1/4) and there
are two, one stable and one unstable, for µ > −(1/4). This appearance of two fixed points
out of nowhere is an example of a blue sky or saddle-node bifurcation. Finally, verify that
this behavior is not manifest when x is used as a variable and λ is used as a parameter, see
(2.5), because according to (2.111) γ and hence λ is complex when µ < −(1/4).
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Figure 1.2.12: The Mandelbrot set in the µ plane. The “plate” has been somewhat “over-
exposed” compared to Figure 2.7 to bring out the island chains.

1.2.8. The general one-variable analytic quadratic map is of the form

zn+1 = a+ bzn + cz2
n (1.2.114)



1.2. MAP ITERATION AND OTHER BACKGROUND MATERIAL 41

-0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

w
∞

µ

Figure 1.2.13: The analog of Figure 2.4 for µ real and the variable w.

with c 6= 0. Show that, under the change of variables

z = w/c− b/(2c), (1.2.115)

this map takes the form (2.112) with

µ = b2/4− b/2− ac. (1.2.116)

1.2.9. The behavior of the real logistic map (2.5) can be analyzed fully in the case λ = 4.
This analysis also provides a simple example of symbolic dynamics.

Suppose x0 is some number in the interval [0, 1],

x0 ∈ [0, 1]. (1.2.117)

Define a related angle φ0 by the rule

x0 = (1/2)− (1/2) cosφ0. (1.2.118)

Show that (2.118) has a unique solution satisfying

φ0 ∈ [0, π]. (1.2.119)

Now define a sequence {x0, x1, x2, · · · } by the rule

xn = (1/2)− (1/2) cos(2nφ0). (1.2.120)

Show that these points satisfy the recursion relation (2.5). Define α0 by the rule

α0 = φ0/π (1.2.121)

and verify that
α0 ∈ [0, 1]. (1.2.122)

Next define a map B, called the Bernoulli shift, that acts on a sequence {α0, α1, α2, · · · }
by the rule

αn+1 = Bαn
def
= 2αn mod 2. (1.2.123)
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Show that this recursion relation, with the intial condition α0, has the solution

αn = 2nα0 mod 2. (1.2.124)

Verify that, because of the periodicity of the cosine function, we may rewrite (2.120) in the
form

xn = (1/2)− (1/2) cos(παn). (1.2.125)

If we call the points αn the orbit of α0 under the action of the Bernoulli shift, and call the
points xn the orbit of x0 under the action of the logistic map, then we see that the logistic
orbit is the image of the Bernoulli orbit under the relation (2.125). Show, by drawing a
suitable graph, that the relation (2.125) is two to one.

Suppose αn for some n is written in binary form. Then we get an expression of the form

αn = a1.a2a3a4 · · · (1.2.126)

where the entries ai are 0 or 1. For example, there are the relations

0 = 0.000 · · · ,

3/2 = 1.100 · · · ,

1 = 1.000 · · · = 0.11111 · · · ,

1/2 = 0.1000 · · · ,

1/4 = 0.01000 · · · ,

2/5 = 0.0110011001100 · · · . (1.2.127)

Show that αn+1 then has the binary expansion

αn+1 = a2.a3a4 · · · . (1.2.128)

That is, the binary sequence for αn+1 is gotten by shifting the binary sequence for αn one
entry to the left and then discarding the first term. In the language of symbolic dynamics,
the quantities 0 and 1 are called symbols (or letters from an alphabet if letters are used in
place of digits) and the sequences (2.126) are called words. The Bernoulli map is an example
of a dynamical operation on symbols.

By using (2.126) and (2.128) one can show that the Bernoulli map has many more or
less evident properties that are reflected, in turn, in the behavior of the logistic map (when
λ = 4). As a simple example, suppose α′n is a number whose binary expansion is the same
as that given for αn in (2.127) save that the first entry, the one before the binary point, is
different from a1. Then, according to (12.128), the result of B acting on α′n is the same as
the result of B acting on αn. We immediately see that B, and hence M, is two to one.

Next consider some more complicated examples. To begin, suppose α0 has a repeating
binary expansion. Then B acting repeatedly on α0 produces a periodic orbit, and so willM
acting repeatedly on x0. Verify that, when α0 has the value

α0 = .0100100100 · · · = 2/7, (1.2.129)
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the map B has a 3-cycle (period three orbit) consisting of the values 2/7, 4/7, 8/7. Cor-
respondingly, the map M has a 3-cycle when acting on the associated x0 given by the
relation

x0 = (1/2)− (1/2) cos(2π/7) = .188255099 · · · . (1.2.130)

Verify that when α0 has the value 2/5, the map B has the 4-cycle 2/5, 4/5, 8/5, 16/5 = 6/5
mod 2. See the expansion given for 2/5 in (2.127). Correspondingly, one might expect that
M has a 4-cycle when acting on the associated x0 = .345491503 · · · . However, it actually
has a 2-cycle because the relation (2.125) is two to one.

Conversely, if α0 does not have a binary expansion that eventually repeats, then the
αn will never repeat and the corresponding xn given by (2.125) will never repeat. As a
special case of this circumstance, suppose the successive aj in the binary expansion for α0

are determined by tossing a coin with aj = 1 if the jth toss gives a head, and aj = 0 if the
jth toss is tails. Then we may say that α0 is a random number, and the successive αn and
their corresponding xn will also relect this randomness. Thus, in this sense we can say that
the long-term behavior of some orbits of M is as random as a coin toss.

Next, suppose xa and xb are any two points in [0, 1]. Let the asociated αa and αb have
the binary expansions a1.a2a3 · · · and b1.b2b3 · · · . Define a number αξ by the rule

αξ = a1.a2a3 · · · aNb1b2b3 · · · . (1.2.131)

Note that in (2.131) the sequence for αa has been truncated after N terms and the full
sequence for αb has been appended at the end. Let xξ be the point associated with αξ using
(2.125). Show that xξ can be made arbitrarily near xa by making N large enough. That is,
study how |xa − xξ| goes to 0 for large N . Next show that

MNxξ = xb. (1.2.132)

Thus, in any vicinity of an arbitary point xa there are points xξ, and these points can be
sent to any other point xb by a sufficiently high power of M.

This construction also illustrates that the long-term behavior of an orbit generated by
M depends very sensitively on the initial condition x0. Indeed, we see that to determine the
effect ofMN on x0 we must know at least the first few digits beyond the first N digits of the
binary expansion of α0. Thus, to achieve a given accuracy in the final conditionMNx0, the
required accuracy in α0, and hence also in x0, grows exponentially in N . Verify this claim.
Moreover, this construction reveals that chaotic behavior in the orbit xn, if any, arises from
random behavior, if any, in the binary expansion of α0.

Extend the construction just given to an arbitrary sequence of points xa, xb, xc, · · · and
show that there are points arbitrarily near xa which, when taken as initial conditions, have
orbits that pass arbitrarily near (and in sequence) the remaining points xb, xc · · · . You have
demonstrated that there are orbits of M that are ergodic.

As one last observation, suppose αd is the number having the binary expansion

αd = .{[0][1]} {[00][01][10][11]} {[000][001][010][011][100][101][110][111]} {[· · · . (1.2.133)

Here the curly and square brackets {} and [ ] are to be removed. They simply guide the eye
to indicate that αd consists first of all one-letter words, then all two-letter words, then all
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three-letter words, etc., with the words for each fixed length listed, when viewed as binary
numbers, in ascending order.27 Evidently, under sufficiently many Bernoulli shifts acting on
αd, it will happen that any finite string will eventually occur as the leading string in the
shifted αd. Let xd be the point associated with αd using (2.125). Show that the orbit of xd

under the action of M is dense on the interval [0, 1]. That is, it comes arbitrarily close to
any point in the interval. In fact, show that it does so infinitely often. Show that If one
wishes to minimize (to any finite degree) the effect, on a word, of nearby words, one can
separate adjacent words by strings of 0’s of any desired (but finite) lengths so that αd is of
the general form (2.133) except for strings of 0’s inserted between the words.

Remark: When λ = 4 you have shown that the logistic orbit is the image of the Bernoulli
orbit. Let (2.125) define a map T so that we may write

xn = T αn. (1.2.134)

Then the relation between the two orbits is equivalent to the equation

MT αn = T Bαn (1.2.135)

or, more abstractly,
MT = T B. (1.2.136)

We say that M is conjugate to B under the action of T . (See Section 19.2.) Thus, you
have shown that the logistic map is conjugate to the Bernoulli map when λ = 4. The same
can be proved (although with considerable more difficulty) for some λ values less than 4. Of
course, when λ 6= 4, the conjugating map T is no longer given by (2.125).

1.2.10. Show that it follows from the fixed-point property (2.21) and the normalization
condition (2.22) that

g(1) = −1/α. (1.2.137)

Evaluate the series (2.23) at x = 1 and compare your result with (2.137).

1.2.11. Verify (2.25) using (2.19) through (2.21) and (2.24).

1.2.12. This exercise studies the complex logistic map (2.29). The complexified version of
(2.8) gives

zf = 0 (1.2.138)

as a fixed point of M. Locate this point in Figure 2.8. Let z′ be the point

z′ = 1. (1.2.139)

Locate it in Figure 2.8. Show analytically that

Mz′ = zf . (1.2.140)

Find points z′′ such that
Mz′′ = z′ (1.2.141)

27Constructions of this kind were first made by D. G. Champernowne.
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and hence
M2z′′ = zf . (1.2.142)

Can you find points z′′′ such that
Mz′′′ = z′′, (1.2.143)

and hence
M3z′′′ = zf , etc.? (1.2.144)

Verify that the complexified version of (2.9) gives (for Douady’s γ value) the second fixed
point

zf = 1− 1/γ = .656747− .129015i. (1.2.145)

To an uninformed botanist, Douady’s rabbit, particularly in color, might look more like
a cactus.28 Again see Figure 2.8. Adopting this terminology, verify, by examining Figure
2.8, that this fixed point zf is located at the point where the three lobes containing the
period-three fixed points z1, z2, and z3 meet. Define a point z′ by the relation

z′ = 1/γ = .343253 + .129015i. (1.2.146)

Verify, again by examination, that three lobes also meet at this point. Show analytically
that

Mz′ = zf . (1.2.147)

Can you again find points z′′, z′′′, etc., such that (2.141) through (2.144), etc. hold for zf
given by (2.145)?

Next consider the yellow lobe containing the point zin = .2 + .1i. View zin as an ini-
tial condition. Find the successive lobes that the orbit of zin belongs to under successive
applications of M, and list their colors. Carry out the same exercise for the green point
zin = .05+ .08i and the red point zin = .08+ .15i. Suggestion: Study Exercise 2.5, and write
and execute a suitable computer program.

1.2.13. Verify (2.46) and (2.47).

1.2.14. Verify (2.48) and (2.49).

1.2.15. Verify (2.51) through (2.53).

1.2.16. Show that the dynamic aperture for the map (2.50) is periodic in θ with period 4π.

28In fact, it is sometimes called a cactus fractal.
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1.3 Essential Theorems for Differential Equations

Among all the disciplines of mathematics, the theory of differential equations is
the most important one. All areas of physics pose problems which lead to the
integration of differential equations. In fact, it is the theory of differential equa-
tions which shows the way to understanding all time-dependent phenomena. If,
on the one hand, the theory of differential equations has extreme practical signifi-
cance, then, on the other hand, it attains a corresponding theoretical importance
because it leads in a rational way to the study of new functions or classes of
functions.

Sophus Lie (1894)

In this book we shall be concerned primarily with processes and maps that are described
by or arise from differential equations. When all is said and done, the Laws of Motion for a
Newtonian Dynamical System, however formulated, reduce to a set of second-order ordinary
differential equations of the form

q̈1 =h1(q1, q2, . . . ; q̇1, q̇2, . . . ; t),

q̈2 =h2(q1, q2, . . . ; q̇1, q̇2, . . . ; t), (1.3.1)

etc.

where the quantities qj(t) refer directly or indirectly to the instantaneous coordinates of
various particles, and (following William Jones’ and Newton’s convention) a dot above a
letter denotes differentiation with respect to time.29 Do differential equations such as (3.1)
actually contain information about trajectories? If so, how much? To these questions
mathematicians have given answers in the form, as is their custom, of theorems. Actually,
their theorems apply to sets of first-order differential equations. But that is no problem. We
can easily convert a set of n second-order equations such as (3.1) into a set of 2n first-order
equations. We define 2n variables yj(t) by the rule

y1(t) = q1(t)

...

yn(t) = qn(t),

yn+1(t) = q̇1(t)

...

y2n(t) = q̇n(t). (1.3.2)

The equations (3.1) are then equivalent to the first-order set

ẏj = yn+j, j ≤ n

29Surprisingly, nowhere in Newton’s Principia does Newton’s second law of motion appear in the familiar
equation forms F = ma or a = F/m, not to mention in the then unavailable concise vector notation form
a = F /m. He writes no equation, but employs only the words “A change in motion is proportional to the
motive force impressed and takes place along the straight line in which that force is impressed”.
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ẏj = hj−n(y1, · · · y2n, t) n < j ≤ 2n. (1.3.3)

Alternatively, if the original equations (3.1) arose from a Lagrangian, they can also be
converted into a first-order set by passing to a Hamiltonian formulation. See Sections 1.5
and 1.6.

Now hear the pronouncements of mathematicians. They provide definitive results for
what is called the Cauchy (or initial value) problem:

Theorem 1.3.1. Consider any set of m first-order differential equations of the form

ẏj = fj(y1, . . . , ym; t), j = 1, . . . ,m. (1.3.4)

Here m may be even or odd. Assume that the right sides of (3.4), which define the set of
differential equations, are sufficiently well behaved. In particular, assume that the fj and the
partial derivatives ∂fj/∂yk exist and are continuous in the yk and in t within some region
R of the m-dimensional space y1, . . . , ym and for t in some interval T about a fixed value t0.
Let (y0

1, · · · y0
m) be a point in R. Then there exists a unique solution

yj(t) = gj(y
0
1 · · · y0

m; t0; t), j = 1, . . . ,m (1.3.5)

of (3.4) with the property

yj(t
0) = gj(y

0
1 · · · y0

m; t0; t0) = y0
j , j = 1, . . . ,m. (1.3.6)

This solution is guaranteed to exist for a finite interval of time about the point t0, and can
be extended forward or backward in time as long as the fj are continuous in the yk and t,
and the yj(t) remain within a region R′ where the ∂fj/∂yk exist and are continuous in the
yk and t. Furthermore, the solution (3.5) is continuous (and bounded) in all the variables
y0
j , t

0, and t. See Figure 3.1. The quantities y0
j are called initial conditions and t0 is called

the initial time. To put the matter naively, we may think of first-order differential equations
as a set of “marching orders” instructing us how to move at each instant of time. Once the
initial starting time t0 and the initial starting point (the initial conditions y0

j ) for the march
are specified, the whole march is completely determined.

Theorem 1.3.2. Suppose the fj also depend on a set of parameters λ1 · · ·λn. Assume that
all ∂fj/∂λk are continuous. Then the solution (3.5) will also be continuous in the parameters
λk.

Theorem 1.3.3. Suppose the fj are analytic in the variables yj, λk, and t. (A function
is analytic in some variable if it has a convergent Taylor series expansion in that variable
when all other variables are held fixed. For more detail, see Sections 38.1 and 38.2.) Then
the solution (3.5) will also be analytic in the variables y0

j , λk, t
0, and t.

The proofs of these theorems may be found in most reasonably complete books on dif-
ferential equations. Including possible parameter dependence, the m differential equations
to be solved are of the form

ẏj = fj(y1 · · · ym;λ1 · · ·λn; t), j = 1, . . . ,m, (1.3.7)
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and are equivalent to the integral equations,

yj(t) = y0
j +

∫ t

t0
fj[y1(τ) · · · yp−1

m (τ);λ1 · · ·λn; τ ]dτ. (1.3.8)

(Note that these integral equations automatically incorporate the initial conditions y0
j .)

In turn, these integral equations are usually analyzed by showing that successive Picard
iterations ypj of (3.8) defined by

ypj (t) = y0
j +

∫ t

t0
fj[y

p−1
1 (τ) · · · yp−1

m (τ);λ1 · · ·λn; τ ]dτ, p ≥ 1, (1.3.9)

converge to gj as p→∞, and that the limit has the stated properties.30

We should also mention that Theorem 3.1 can be proved under weaker conditions than
the existence of various partial derivatives. For example, Peano proved existence under
the assumption of simple continuity of the fj in t and the yj (however, as illustrated in
the Exercises for this section, in this case there are examples for which uniqueness fails);
simple continuity in t and Lipschitz continuity in the yj are sufficient for both existence and
uniqueness.31 Usually, however, the results we have stated are adequate.

Next a few words about the content of the theorems themselves. Theorem 3.1, when
applied to the second-order equations (3.1), says that these equations have a unique solution
providing we specify the initial coordinates

qj(t
0) = q0

j

and the initial “velocities”
q̇j(t

0) = q̇0
j .

[Alternatively, in a Hamiltonian formulation, these equations have a unique solution pro-
viding we specify the initial coordinates q0

j (as before) and the initial momenta p0
j .] Again

we call these quantities, when taken together, a set of initial conditions. Thus, in general
there is a unique trajectory for each set of initial conditions, and each trajectory varies con-
tinuously with the initial conditions, their time of imposition t0, and the time t. Needless
to say, this continuity is in accord with our physical intuition of motion. However, the fact
that initial coordinates and velocities alone are enough to completely specify a trajectory,
i.e. that the physical equations of motion (3.1) are of second order, is not at all obvious.
Or, put another way, it is not obvious that all effects of past history are in fact subsumed
in a knowledge of present positions and velocities. Rather, this fact should be regarded as
one of the greater discoveries of our ancestors.

Theorem 3.2, and particularly Theorem 3.3, are often of practical computational use.
First, parameters often occur either quite naturally or can be introduced into problems of
physical interest. Consider the motion, for example, of the sun-earth-moon system. There
the mass ratios λ1 = Mmoon/Msun and λ2 = Mearth/Msun appear in a natural way. Their

30Picard was a son-in-law of Hermite.
31Hadamard, a student of Picard, defined a problem to be well posed if a solution exists, is unique, and

depends continuously on initial conditions and parameters. Thus, the assumptions of Theorems 3.1 through
3.3 assure that the problem of computing trajectories is well posed.
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Figure 1.3.1: An illustration of Theorem 3.1 in the case that “y” space is two dimensional.
The solution y exists, is unique, and is continuous in t as long as it remains within the
large cylinder of base R where f is continuous and the ∂f/∂yj are continuous. If the point
y0 is varied slightly, the solution also changes only slightly so that nearby solutions form a
bundle.
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smallness suggests the possibility of making a power series expansion of the equations of
motion in terms of λ1 and λ2, and then solving the resulting equations term by term. The
success of such a perturbation technique is intimately related to the contents of Theorem
3.3. The use of perturbative power series was first systematically studied by Poincaré. In
fact, Theorem 3.3 is often called Poincaré’s holomorphic lemma or its results are referred
to as Poincaré analyticity.32 Second, as will be seen later, it is often useful to expand a
solution as a power series in the initial conditions. Finally, analyticity in t, or at least the
existence of several derivatives in t, is supposed in carrying out numerical integration. See
Chapter 2.

We also note that the conditions for Theorem 3.3 can be relaxed. Suppose the fj are
analytic in the yj and the λk, but only have n derivatives in t. Remarkably, the final
conditions will still be analytic functions of the initial conditions and the parameters, and will
have n+1 derivatives in t. If the fj are analytic in the yj and the λk, but are only continuous
in t, then the final conditions will still be analytic functions of the initial conditions and the
parameters, and will have first derivatives in t. If the fj are analytic in the yj and the λk, but
are only piece-wise continuous in t, then the final conditions will still be analytic functions
of the initial conditions and the parameters, and will be piece-wise (first) differentiable in t.
Finally, as it stands, the notation (3.6) indicates that the initial conditions are assumed to
be independent of any parameters. All conclusions concerning analyticity continue to hold
if the initial conditions are allowed to depend on parameters providing this dependence is
analytic.

As an application of these relaxed conditions, suppose the time axis is broken up into
a finite number of intervals and that the fj are analytic in the yj, the λk, and at least
continuous in t for each interval. Then the final conditions will be piece-wise differentiable
in t and will still be analytic functions of the initial conditions and the parameters. In the
context of Accelerator Physics, where some coordinate related to path length plays the role
of time, this situation arises in the idealization that an accelerator is treated as a sequence of
discrete beam-line elements with a separate Hamiltonian, and therefore a separate transfer
map, for each element. See Subsection 2.4 and Sections 4 and 6. Each such transfer map
will be analytic in the initial conditions and parameters, and their product will then also be
analytic in these quantities.

Finally, we remark that Poincaré’s holomorphic lemma has important applications out-
side of Classical Mechanics. It is used in advanced Quantum Mechanics, for example, to show
that solutions to the Schrödinger equation are analytic in energy, angular momentum, and
coupling constant. This analyticity is in turn used to suggest that various processes involv-
ing elementary particles at high energies obey certain integral conditions called dispersion
relations.

32The terms analytic and holomorphic are commonly used interchangeably, particularly in the context of
several complex variables. (The definitions of analytic and holomorphic are different, but can be proven to
be mathematically equivalent. See Sections 38.1 and 38.2.) Poincaré derived his analyticity results on a
case-by-case basis as needed using Cauchy’s method of majorants.
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Exercises

1.3.1. Consider the differential equation

t3ẏ = 2y

with the initial condition y(0) = 0. Show that it has two solutions: y(t) = e−(1/t)2
, y(0) = 0;

and y(t) = 0 for t ≤ 0, y(t) = e−(1/t)2
for t > 0. Does this lack of uniqueness violate Theorem

3.1? Are there even more solutions?

1.3.2. Consider the differential equation

ẏ = −(1− y)1/2

with the initial condition y(0) = 1. Show that it has the two solutions

y(t) ≡ 1 and y(t) = 1− t2/4.

What causes this lack of uniqueness?

1.3.3. Consider the differential equation

ẏ = (1− y)−1

with the initial condition y(0) = 0. Find the solution and show that it cannot be extended
arbitrarily far forward in time. In view of Theorem 3.1, what went wrong?

1.3.4. Consider the growth of a crystal in a supersaturated solution. Let V be the volume
of the crystal and A its surface area. We assume the growth rate is proportional to the
surface area, that is,

V̇ = k1A

where k1 is some constant. But for a regular geometric figure there is a definite relation
between A and V of the form

A = k2V
2/3.

For example, k2 = (36π)1/3 for a sphere and k2 = 6 for a cube. Thus, for a regular figure we
have a growth law of the form

V̇ = kV 2/3.

Show that with the initial condition V (0) = 0, one has the family of solutions

V (t) = 0 , 0 ≤ t ≤ τ

= [(k/3)(t− τ)]3 , t ≥ τ

for any positive τ . What causes this lack of uniqueness mathematically? Physically, τ is the
time that elapses before random fluctuations form a “seed” which initiates crystal growth.
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1.3.5. Consider one-dimensional motion with position coordinate x. Let f(x) be a position
dependent but time independent force defined by the rule

f(x) = 0 for x ≤ 0; f(x) = +12x1/2 for x ≥ 0. (1.3.10)

Note that f(x) is continuous and satisfies f(x) ≥ 0. Consider the equation of motion

ẍ = f(x) (1.3.11)

with the initial conditions
x(0) = ẋ(0) = 0. (1.3.12)

Let c be any constant satisfying c ≥ 0. Verify that (3.11) with the initial conditions (3.12)
has the solution

x(t) = 0 for t ≤ c and x(t) = (t− c)4 for t ≥ c. (1.3.13)

That is, verify that both (3.11) and (3.12) are satisfied. Note that x(t) is continuous. How
many continuous derivatives does it have? Why is the solution not unique? Are there still
more solutions? What are the solutions to (3.11) for other initial conditions?

1.3.6. In computing and managing the trajectory of a space craft, one is obliged to use
tracking data that inevitably contain at least some small errors. Also various parameters,
such as anomalies in the gravitational field, the mass of the space ship, and the impulses
provided by various rockets and thrusters, are not exactly known. Comment on the effect
of these errors in view of Theorems 3.1 through 3.3.

1.3.7. Consider a set of differential equations of the form (3.4), and assume that the existence
and uniqueness conditions of Theorem 3.1 are met. Show that no two different trajectories in
(y, t) space can ever join or intersect in finite time. Suppose the quantities fj are independent
of the time t. Then the set of differential equations is called autonomous. Show that in this
case no trajectory in y space can cross itself in finite time. (We say that a trajectory crosses
itself if the two tangent lines to the two portions of the trajectory at the point of intersection
have a finite angle between them.) Show that if a trajectory does intersect itself in finite
time, it must join itself smoothly to form a periodic trajectory.

1.4 Transfer Maps Produced by Differential

Equations

Suppose we rewrite the set of first-order differential equations (3.4) in the more compact
vector form

ẏ = f(y; t). (1.4.1)

Then, according to Theorem 3.1 and again using vector notation, their solution can be
written in the form

y(t) = g(y0; t0; t). (1.4.2)

That is, the quantities y(t) at any time t are uniquely specified by the initial quantities y0

given at the initial time t0.
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We capitalize on this fact by introducing a slightly different notation. First, use ti instead
of t0 to denote the initial time, and similarly use yi to denote initial conditions by writing

yi = y0 = y(ti). (1.4.3)

Next, let tf be some final time, and define final conditions yf by writing

yf = y(tf ). (1.4.4)

Then, with this notation, (4.2) can be rewritten in the form

yf = g(yi; ti; tf ). (1.4.5)

We now view (4.5) as a map that sends the initial conditions yi to the final conditions yf .
This map will be called the transfer map between the times ti and tf , and will often be
denoted by the symbol M. What we have learned is that a set of first-order differential
equations of the form (4.1) can be integrated to produce a transfer mapM. We express the
fact that M sends yi to yf in symbols by writing the equation

yf =Myi, (1.4.6)

and illustrate this relation by the picture shown in Figure 4.1. Finally, as noted earlier, M
is always invertible: Given yf , tf , and ti, we can always march (integrate) backward in time
to the moment ti and thereby find the initial conditions yi.

y
i

y
f

Figure 1.4.1: The transfer mapM sends the initial conditions yi to the final conditions yf .

1.4.1 Map for Simple Harmonic Oscillator

To fix these ideas more clearly in the mind, we consider three examples. The first is a
one-dimensional harmonic oscilator described by the Hamiltonian

H = p2/(2m) + (k/2)q2. (1.4.7)

In this case the equations of motion are

q̇ = ∂H/∂p = p/m,

ṗ = −∂H/∂q = −kq. (1.4.8)
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(See Section 1.5 for a review of Hamilton’s equations of motion.) These equations can be
solved easily enough. However, for future use, it is convenient to make the (canonical)
change of variables

Q = (km)1/4q,

P = (km)−1/4p. (1.4.9)

In these new variables the equations of motion become

Q̇ = ωP,

Ṗ = −ωQ, (1.4.10)

where
ω =

√
(k/m). (1.4.11)

It is easily verified that the equations of motion (4.10) are produced by the new Hamiltonian
K given by the relation

K = (ω/2)(P 2 +Q2). (1.4.12)

The equations (4.10) are easily integrated to give the transfer map M described by the
relations

Qf = Qi cos[ω(tf − ti)] + P i sin[ω(tf − ti)],
P f = −Qi sin[ω(tf − ti)] + P i cos[ω(tf − ti)]. (1.4.13)

We see that for this example the transfer map is a linear relation between the initial and
final conditions and (in the Q,P variables) simply consists of a (clockwise) rotation in phase
space by the angle [ω(tf − ti)].

In view of the assertion (2.43), the map described by (4.13) can also be written formally
as

M = exp{−(tf − ti) : (ω/2)[(P i)2 + (Qi)2] :}. (1.4.14)

Note that this claim is consistent with (2.37) and (2.38).

1.4.2 Maps for Monomial Hamiltonians

The second example of a transfer map is somewhat more complicated, and leads to a nonlin-
ear relation between initial and final conditions. It too will be useful in the future. Consider,
for the case of a two-dimensional phase space, the monomial Hamiltonian

H = λqrps. (1.4.15)

Here λ is a parameter, and r and s are integers. The Hamiltonian (4.15) produces the
equations of motion

q̇ = λsqrps−1, (1.4.16)

ṗ = −λrqr−1ps. (1.4.17)

Since H has no explicit time dependence, we conclude that H must be a constant of motion.
If you doubt this, see (5.14) in the next section. Let us solve (4.15) for p. Doing so gives
the result

p = (H/λ)
1
s q−

r
s . (1.4.18)
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Next substitute (4.18) into (4.16) to get the relation

q̇ = λs(H/λ)
s−1
s q

r
s . (1.4.19)

Assume for the moment that r 6= s. Then (4.19) can be integrated immediately to give the
result

(qf )
s−r
s − (qi)

s−r
s = λ(s− r)(tf − ti)(H/λ)

s−1
s . (1.4.20)

Also, since H is a constant of motion, we may write

H = λ(qi)r(pi)s. (1.4.21)

Equations (4.20) and (4.21) can now be combined and solved for qf in terms of qi and pi.
Finally, (4.17) can be integrated in a similar manner. The net result is the transfer map
relations

qf = qi[1 + λ(s− r)(tf − ti)(qi)r−1(pi)s−1]
s
s−r , (1.4.22)

pf = pi[1 + λ(s− r)(tf − ti)(qi)r−1(pi)s−1]
r
r−s , (1.4.23)

when r 6= s.
The equations of motion for the case r = s can also be solved. In this case (4.18) can be

integrated in terms of logarithms. Also, (4.17) can be integrated similarly. The net result is
the transfer map relations

qf = qi exp[λr(tf − ti)(qipi)r−1], (1.4.24)

pf = pi exp[−λr(tf − ti)(qipi)r−1], (1.4.25)

when r = s.
Note that the relations (4.22) through (4.25) are indeed nonlinear. The transfer maps

for monomial Hamiltonians in higher dimensional phase spaces can also be found exactly.
See Exercise 4.3. Also, we remark that the relations (4.22) and (4.23) can become singular
in finite time. That is, the solutions to the equations of motion (4.16) and (4.17) cannot
always be extended arbitrarily far forward and backward in time. See Exercise 4.4.

Again because of (2.43), the maps described by (4.22) through (4.25) can formally be
written as

M = exp{−(tf − ti) : λ(qi)r(pi)s :}. (1.4.26)

And summation of the exponential series (4.26), when acting on the initial conditions, will
produce the maps (4.22) through (4.25).

1.4.3 Stroboscopic Maps and Duffing Equation Example

For a last example of a transfer map produced by a differential equation, we will begin a
study of the behavior of a periodically driven damped nonlinear oscillator described by the
equation of motion

ẍ+ aẋ+ bx+ cx3 = d cos(Ωt+ ψ). (1.4.27)
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This equation, or sometimes a variant with x3 replaced by x2, is commonly called Duffing’s
equation. Here ψ is an arbitrary phase factor that is often set to zero. For our purposes it
is more convenient to set

ψ = π/2. (1.4.28)

Evidently any particular choice of ψ simply results in a shift of the origin in time, and this
shift has no physical consequence since the left side of (4.27) is independent of time.

We assume b, c > 0, which is the case of a positive hard spring restoring force.33 We
make these assumptions because we want the Duffing oscillator to behave like an ordinary
harmonic oscillator when the amplitude is small, and we want the motion to be bounded
away from infinity when the amplitude is large. Then, by a suitable choice of time and
length scales that introduces new variables q and τ , the equation of motion can be brought
to the form

q̈ + 2βq̇ + q + q3 = −ε sinωτ, (1.4.29)

where now a dot denotes d/dτ and we have made use of (4.28). See Exercise 4.10. In this
form it is evident that there are 3 free parameters: β, ε, and ω.

Unlike the previous examples, this problem is dissipative (assuming β > 0) and time
dependent. There is, however, the simplifying feature that the driving force is periodic with
period

T = 2π/ω. (1.4.30)

Let us convert (4.29) into a pair of first-order equations by making the definition

p = q̇, (1.4.31)

with the result

q̇ = p,

ṗ = −2βp− q − q3 − ε sinωτ. (1.4.32)

Let q0, p0 denote initial conditions at τ = 0, and let q1, p1 be the final conditions resulting
from integrating the pair (4.32) one full period to the time τ = T . Let M denote the
transfer map that relates q1, p1 to q0, p0. Then, using the definition (2.39) and the notation
(4.6), we may write

z1 =Mz0. (1.4.33)

Suppose we now integrate for a second full period to find q2, p2. Since the right side of
(4.32) is periodic, the rules for integrating from τ = T to τ = 2T are the same as the rules
for integrating from τ = 0 to τ = T . Therefore we may write

z2 =Mz1 =M2z0, (1.4.34)

and in general

zn+1 =Mzn =Mn+1z0. (1.4.35)

33Other authors consider other cases, particularly the ‘double well’ case b < 0 and c > 0.
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We may regard the quantities zn as the result of viewing the motion of the Duffing oscillator
by the light provided by a stroboscope that flashes at the times34

τn = nT. (1.4.36)

Because of the periodicity of the right side of the equations of motion, the rule for sending
zn to zn+1 over the intervals between successive flashes is always the same, namely M. For
these reasons M is called a stroboscopic map. Despite the explicit time dependence in the
equations of motion, because of periodicity we have been able to describe the long-term
motion by the repeated application of a single fixed map. A moment’s reflection shows that
what we have done here for the Duffing oscillator is quite general. The behavior of any
periodically (not necessarily sinusoidally) driven system can be described by a stroboscopic
map.35

It follows from (4.35) that the long-term behavior of the driven Duffing oscillator is
equivalent to the behavior of the Duffing stroboscopic mapM under repeated iteration. As
we have seen from the examples of Section 1.2, the iteration of maps generally leads to enor-
mous complications. Correspondingly, the driven Duffing oscillator displays an enormously
rich behavior that varies widely with the parameter values β, ε, ω. This richness is typical
of the long-term behavior of damped driven nonlinear systems. Indeed, without editorial
restraint, the detailed study of any one of them could fill this entire book. However, rich
as it is, the behavior of the driven Duffing oscillator, since it is governed by relatively few
attracting (due to the presence of damping) fixed points, is trivial compared to that of most
nonlinear Hamiltonian systems where fixed points are numerous and none are attracting.

Because even providing an overview of what can happen under repeated iteration of the
stroboscopic Duffing map requires considerable work, at least an entire chapter is required
for this purpose. Such an overview is provided in Chapter 28 where the subject is studied
numerically and Section 29.12 where the behavior of polynomial approximations to the
stroboscopic Duffing map is explored. See also Sections 10.12.7 and 10.12.8 and Appendix
S.4.

Exercises

1.4.1. Verify equations (4.8) through (4.13) and all assertions made about them.

34Note that, with the choice (4.28) for ψ, the driving term described by the right side of (4.29) vanishes
at the stroboscopic times τn.

35Consider a set of n second-order differential equations of the form (3.1) with the further assumption
that the hj do not depend on the time. We will say that such a set of equations (which is equivalent to
a set of 2n autonomous first-order differential equations) describes a system having n autonomous degrees
of freedom. Suppose next that the hj do depend on the time, and in an arbitrary way. By choosing a
new independent variable, it is possible to convert such a set of second-order differential equations into
(2n + 2) first-order autonomous differential equations. (See Exercise 6.5 for a discussion of how this can
be done in the Hamiltonian case.) Thus, when t is present in the equations (3.1), we may say that these
2n nonautonomous equations describe a system having (n + 1) autonomous degrees of freedom. As the
discussion of this section shows, the case where the hj depend on the time in a periodic way lies somewhere
in between. Such systems are sometimes said to have (n+ 1/2) autonomous degrees of freedom. Thus, the
Duffing oscillator may be said to have 3/2 = 1 and 1

2 degrees of freedom.
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1.4.2. Verify equations (4.16) through (4.25). Suppose s = 0 and r 6= 0. Show that in this
case

qf = qi,

pf = pi − λr(tf − ti)(qi)r−1. (1.4.37)

Suppose s 6= 0 and r = 0. Show that in this case

qf = qi + λs(tf − ti)(pi)s−1,

pf = pi. (1.4.38)

1.4.3. Consider, for the case of a four-dimensional phase space, the monomial Hamiltonian

H = λqr11 p
s1
1 q

r2
2 p

s2
2 . (1.4.39)

Define “sub” Hamiltonians H1 and H2 by the relations

Hj = q
rj
j p

sj
j , j = 1 and 2. (1.4.40)

With these definitions (4.43) can be rewritten in the form

H = λH1H2. (1.4.41)

Show that both H1 and H2 are constants (in fact, integrals) of motion. [Hint: If you are
having trouble, use (7.4) and (7.7) of Section 1.7.] Show that the equations of motion
generated by H can be integrated and (when rj 6= sj) have solutions of the form

qf1 = qi1[1 + λ(s1 − r1)(tf − ti)(qi2)r2(pi2)s2(qi1)r1−1(pi1)s1−1]
s1

s1−r1 , etc. (1.4.42)

Find complete results for all qfj , pfj and for all cases of the exponents rj, sj.

1.4.4. Consider the solution to (4.16) and (4.17) as given by (4.22) and (4.23) for the case
r = 1 and s = 4. Show that the solution has a branch point in t at a finite time. Find other
integer values of r, s for which the solution (4.22) and (4.23) has singularities for finite time.
Conversely, given any neighborhood of the origin in the initial conditions qi and pi, show
that (for suitable r, s values) the solution (4.22) and (4.23), when viewed as a function of
the initial conditions, has singularities in this neighborhood for t finite (and real) providing
t is sufficiently large. In view of Theorems 3.1 and 3.3, what is going wrong?

1.4.5. From the general discussion of transfer maps it is clear that non-Hamiltonian systems
also can be described in terms of maps. All that is required is that the set of differential
equations be written in the first-order form (4.1). Consider the one-dimensional motion of
an object moving vertically and subject to gravity and viscous drag. Newton’s equation of
motion for such an object can be written in the form

mz̈ = −mg − γż. (1.4.43)

Here m is the mass of the particle, g is the acceleration due to gravity, and γ (with γ > 0)
is some measure of the viscous drag. Convert (4.47) into a first-order set of differential
equations, and find the associated transfer map.
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1.4.6. LetM be a map of an m-dimensional space into itself as in (4.6). What happens to
the final conditions when small changes are made in the initial conditions? From calculus
we have the differential relation

dyfj =
∑
k

(∂yfj /∂y
i
k)dy

i
k, (1.4.44)

which can be written in the form

dyfj =
∑
k

Mjk(y
i)dyik (1.4.45)

where M(yi) is the m×m matrix

Mjk(y
i) = ∂yfj /∂y

i
k. (1.4.46)

This matrix is called the Jacobian matrix ofM. According to (4.81) it describes how small
changes in the initial conditions yi produce small changes in the final conditions yf . Note
that generally the Jacobian matrix depends on the initial conditions, and therefore we write
M(yi).

In the case thatM is a transfer map arising from a differential equation as in (4.1), the
associated Jacobian matrix can be found by integrating the variational equations derived
from (4.1). Here, as before, we assume y has m components. Let yi be a set of initial
conditions and let yd(t) be the trajectory (sometimes called the design trajectory) that has
these initial conditions,

yd(ti) = yi. (1.4.47)

Because it is a trajectory, it satisfies the differential equation

ẏd = f(yd; t). (1.4.48)

Next consider nearby trajectories of the form

y(t) = yd(t) + εη(t) (1.4.49)

where ε is small. Insertion of (4.49) into (4.1) gives the equation

ẏd + εη̇ = f(yd + εη; t). (1.4.50)

Now take components of both sides of (4.50) and expand in powers of ε to find the relation

ẏdj + εη̇j = fj(y
d; t) +

∑
k

[(∂fj/∂yk)
∣∣∣y=yd ]εηk +O(ε2) . (1.4.51)

Define the m×m matrix A(t) by the rule

Ajk(t) = (∂fj/∂yk)
∣∣∣y=yd . (1.4.52)

Use (4.48), (4.51), and (4.52) and equate powers of ε to show that η satisfies the set of
equations

η̇ = A(t)η. (1.4.53)
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These are the variational equations associated with (4.1) around the trajectory yd.36 Note
that there are m such (usually coupled) equations because η is m dimensional, and that
they are linear even if (4.1) is nonlinear.

Let L(t) be the m ×m matrix defined by the matrix differential equation (a collection
of m2 ordinary differential equations)

L̇ = A(t)L (1.4.54)

with the initial condition
L(ti) = I (1.4.55)

where I denotes the m×m identity matrix. Show that the solution to (4.53) with the initial
condition ηi is given by the prescription

η(t) = L(t)ηi. (1.4.56)

Show that the desired Jacobian matrix is given in terms of L(t) by the relation

M = L(tf ). (1.4.57)

The solution of the differential equations (4.48) for the design trajectory, which is re-
quired to determine A using (4.52), generally requires numerical integraton. Solution of the
variational equations (4.53), or their matrix counterpart (4.54), even though they are linear,
also generally requires numerical integration because they are coupled and A is usually time
dependent. However, assuming A is known, it is possible to calculate the determinant of M
analytically. Use (4.54) to write the Taylor expansion

L(t+ dt) = L(t) + L̇(t)dt+O[(dt)2]

= L(t) + dtA(t)L(t) +O[(dt)2]

= [I + dtA(t)]L(t) +O[(dt)2]. (1.4.58)

Take determinants of both sides of (4.58) to get the result

det[L(t+ dt)] = det{[I + dtA(t)][L(t)]}+O[(dt)2]

= {det[I + dtA(t)]}{det[L(t)]}+O[(dt)2]

= {1 + dt tr[A(t)]}{det[L(t)]}+O[(dt)2]. (1.4.59)

Here use has been made of (3.7.132). Show that (4.59) produces the differential equation

(d/dt) det[L(t)] = {tr[A(t)]}{det[L(t)]} (1.4.60)

and, in view of (4.55), that this equation has the explicit solution

det[L(t)] = exp{
∫ t

ti
dt′ tr[A(t′)]}. (1.4.61)

36We could more accurately call them the first-variation equations or lowest-order variational equations.
For what we call the complete variational equations, see Section 10.12.
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In particular, there is the result

det(M) = exp{
∫ tf

ti
dt tr[A(t)]}. (1.4.62)

Subsequently, this result will be related, in the context of Hamiltonian dynamics, to what
is called Liouville’s theorem. The result itself, in the context of linear differential equations,
which is what the variational equations are, is sometimes called the Abel-Liouville-Jacobi-
Ostrogradski formula.

From this result show that the determinant of the Jacobian matrix associated with any
transfer map arising from a real differential equation must satisfy the condition

det(M) > 0. (1.4.63)

Geometrically, this condition means thatM preserves orientation. For example, in the case
m = 3, the M arising from any real differential equation cannot send a right-handed triad
into a left-handed triad. Comment: There is also a simpler but more subtle topological
argument that leads to the result (4.63). Since a transfer map arising from integrating a
differential equation evolves in a continuous way starting from the identity map, it can be
written as a product of several transfer maps, all of which are near the identity map. See
Section 6.4.1. Since each of these maps is near the identity, by continuity the determinant of
the Jacobian matrix of each must be positive. But, by the chain rule, the Jacobian matrix
of a product of maps must be the product of the Jacobian matrices of the individual factors.
Finally, the determinant of a product of matrices is the product of the determinants of the
individual factors.

The determinant of the Jacobian matrix also has further geometrical significance. For
the purpose of this exercise, let us refer to the m-dimensional space we have been considering
as variable space. This variable space need not be phase space because the dimension may
be odd, and even if m is even the equations of motion need not be Hamiltonian in form and
the coordinates may not necessarily come in canonically conjugate pairs. The equations of
motion and the coordinates can be completely general.

Consider a particular trajectory with initial conditions given by (4.47) and also all other
trajectories whose initial conditions lie within a small volume dV i about the initial conditions
for the particular trajectory. Then at some final time tf the final conditions for these
trajectories will lie within a small volume dV f about the final conditions for the particular
trajectory. From standard advanced calculus lore the initial and final volumes are related
by the equation

dV f = {det[M(yi)]}dV i. (1.4.64)

Thus, the determinant of M specifies the evolution of volume elements in variable space.

1.4.7. For the case of the complex logistic map in the form (2.112), write

w = u+ iv (1.4.65)

and show that the Jacobian matrix is given by the relation

M(wn) = 2

(
un −vn
vn un

)
. (1.4.66)
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See Exercise 4.6. Thus for this map

det[M(wn)] = 4(u2
n + v2

n) = 4|wn|2, (1.4.67)

and the map preserves orientation except at the origin. Verify that the map is not invertible
in the neighborhood of the origin. Consider any map of the form

wn+1 = f(wn) (1.4.68)

where f is an analytic function. Show that

det[M(wn)] = |f ′(wn)|2. (1.4.69)

Thus, all analytic maps are orientation preserving.

1.4.8. Consider the Hénon map in the product form (2.23). Compute the Jacobian matrix
for each factor. See Exercise 4.6. Verify that the Jacobian matrix for each factor has
determinant one and therefore, by the chain rule, the determinant of the Jacobian matrix
for the full map also has determinant one. It follows, as will be described in detail later,
that the Hénon map is area preserving.

1.4.9. Let δper(t) denote the 2π periodic delta function defined by the relation

δper(t) =
∞∑

n=−∞

δ(t+ 2nπ). (1.4.70)

Show that the mapM(θ) given by (2.39) is the stroboscopic map resulting from integrating
from ti = 0 to tf = 2π the motion arising from the 2π periodic Hamiltonian

H = [θ/(4π)](p2 + q2)− δper(t− π)q3. (1.4.71)

1.4.10. Choose appropriate time and length scales by writing x = λq and t = στ to convert
(4.27) into (4.29).

1.5 Lagrangian and Hamiltonian Equations

It is a remarkable discovery that all the known fundamental dynamical laws of Nature
are expressible in Lagrangian or Hamiltonian form, and therefore also in variational form.
Indeed, as Euler wrote in his (and the first by any author) publication on variational calculus,

Because the shape of the whole universe is most perfect and, in fact, designed by
the wisest Creator, nothing in all of the world will occur in which no maximum
or minimum rule is somehow shining forth.

Since the construction of the entire universe is absolutely perfect and is due to
a Creator with infinite knowledge, nothing exists in the world which does not
exhibit some property of maximum or minimum. Therefore, there cannot be any
doubt whatsoever about the possibility that all the effects are determined by
their final aims with the help of the maxima method, in the same way in which
they are also determined by the initial causes.
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The last three sections of this chapter are devoted to needed aspects of Lagrangian and
Hamiltonian dynamics.

Since much of this book concerns the motion of charged particles in electromagnetic
fields, we recall that the relativistic Lagrangian for the motion of a particle of mass m and
charge q in an electromagnetic field is given by the expression

L(r,v, t) = −mc2(1− v2/c2)1/2 − qψ(r, t) + qv ·A(r, t). (1.5.1)

Here ψ and A are the scalar and vector potentials defined in such a way that the electro-
magnetic fields E and B are given by the standard relations

B = ∇×A,

E = −∇ψ − ∂A/∂t. (1.5.2)

We note that this formulation ignores spin, radiation reaction (synchrotron radiation), and
quantum effects.37

1.5.1 The Nonsingular Case

Lagrange’s equations of motion for a system having n degrees of freedom are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (1.5.3)

where (q1 · · · qn) is any set of generalized coordinates. [Note that in general L is a function
of the qi, q̇i, and t; L = L(q, q̇, t).] According to Section 1.3, what we ultimately need are
equations of the form (3.1). By the chain rule there are the relations

d

dt

∂L

∂q̇j
=

∂2L

∂t∂q̇j
+
∑
i

[
∂2L

∂q̇i∂q̇j
q̈i +

∂2L

∂qi∂q̇j
q̇i

]
(1.5.4)

so that Lagrange’s equations can also be written in the form∑
i

∂2L

∂q̇i∂q̇j
q̈i =

∂L

∂qj
− ∂2L

∂t∂q̇j
−
∑
i

∂2L

∂qi∂q̇j
q̇i. (1.5.5)

37We also note that the Lagrangian L given by (5.1), while relativistically correct, it is not manifestly
Lorentz invariant. The connection between this Lagrangian and a manifestly Lorentz invariant formulation
is explored in Exercises 6.7 and 6.8. It is assumed that the reader already has some background in Special
Relativity. For further discussion of the Lorentz group and related material, see Exercises 6.17, 6.18, 6.2.6,
6.2.7, 6.2.12, 6.2.13, 7.3.26 through 7.3.36, and 8.2.14 through 8.2.21.

Poincaré, in a 1905 paper, coined the terms Lorentz transformation and Lorentz group. Hendrik Lorentz
(1853-1928) was a Dutch physicist who made many contributions to Physics including the discovery and
theoretical explanation of the Zeeman effect for which they jointly shared the 1902 Nobel Prize in Physics.
For a video of Lorentz’s funeral procession, which included Einstein, see https://www.youtube.com/watch?
v=H2VtrJD0xJk. Pieter Zeeman (1865-1943) was a student and subsequent colleague of Lorentz. Hendrik
Lorentz is not to be confused with the Danish physicist Ludvig Lorenz (1829-1891) for whom the Lorenz
gauge/condition is named or with the meteorologist Edward Norton Lorenz (1917-2008) who was a pioneer
in chaos theory.

https://www.youtube.com/watch?v=H2VtrJD0xJk
https://www.youtube.com/watch?v=H2VtrJD0xJk
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The quantity [∂2L/∂q̇i∂q̇j] is called the Hessian (matrix) of L. In order to solve the re-
lations (5.5) for the q̈i to obtain equations of the form (3.1), the Hessian of L must be
invertible/nonsingular and therefore must satisfy the condition

det(∂2L/∂q̇i∂q̇j) 6= 0. (1.5.6)

We call this the nonsingular or regular case; and, when (5.6) fails to hold, we call this the
singular case.38

The momentum pi canonically conjugate to the variable qi is defined by the relation

pi = pi(q, q̇, t) = ∂L/∂q̇i, (1.5.7)

and the Hamiltonian H associated with the Lagrangian L is defined by the Legendre trans-
formation

H(q, p, t) =
∑
i

piq̇i − L(q, q̇, t). (1.5.8)

(For a study of Legendre transformations, see Exercise 6.2.9.) Note that as it stands, and
in view of (5.7), the right side of (5.8) is a function of the variables q, q̇, t. However the
left side describes H as a function of the variables q, p, t. That is, the variables q̇ are to be
eliminated in terms of the p’s. According to the inverse function theorem, this is possible if
and only if the determinant of the associated Jacobian matrix is nonzero,

det(∂pi/∂q̇j) 6= 0. (1.5.9)

From (5.7) there is the relation

∂pi/∂q̇j = ∂2L/∂q̇j∂q̇i = ∂2L/∂q̇i∂q̇j. (1.5.10)

Here we have used the equality of mixed partial derivatives.39 Thus, the conditions (5.6)
and (5.9) are the same.

Hamilton’s equations of motion for the 2n canonical variables (q1 · · · qn) and (p1 · · · pn)
are given in terms of the Hamiltonian H(q, p, t) by the rules

q̇i = ∂H/∂pi , ṗi = −∂H/∂qi. (1.5.11)

There is also the additional relation

∂H/∂t = −∂L/∂t. (1.5.12)

For later use, it is convenient to append yet one more equation to the set (5.11) and (5.12).
Consider the total time rate of change of the Hamiltonian H along a trajectory in q, p space.
Using the chain rule, one finds the result

dH/dt = ∂H/∂t+
∑
i

[(∂H/∂qi)q̇i + (∂H/∂pi)ṗi]. (1.5.13)

38Abraham and Marsden call the nonsingular case hyperregular if the the map q, q̇, t ↔ q, p, t is a diffeo-
morphism; that is, it is a differentiable map with a differentiable inverse. See (5.6) through (5.10). (For
our purposes we are happy to assume differentiability, or even analyticity.) They call the singular case
degenerate. Some other authors call the singular case irregular.

39The Clairaut-Schwarz theorem.
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However, the quantity under the summation sign vanishes because of (5.11). It follows that
the Hamiltonian has the special property

dH/dt = ∂H/∂t = −∂L/∂t. (1.5.14)

Suppose that H (or L) does not depend explicitly on the time (∂H/∂t = 0 or ∂L/∂t = 0).
A system that does not explicitly depend on the independent variable (the time) is called
autonomous. We see from (5.14) that if a Hamiltonian system is autonomous, then the
Hamiltonian H must be a constant of motion, and conversely. Moreover, because it has
no explicit time dependence, such an H is also an integral of motion. For a discussion of
constants and integrals of motion see Section 5.2.

1.5.2 A Common Singular Case

We end this section by noting that there is a fairly frequently encountered case in which
(5.6) and (5.9) fail to hold, namely when L is homogeneous of degree one in the q̇i,

L(q, λq̇, t) = λL(q, q̇, t). (1.5.15)

See, for examples, Exercises 5.15, 6.5, 6.9, and 6.16. In this case the pi are homogeneous of
degree zero in the q̇i and, according to Euler’s relation, there will be the result∑

j

(∂pi/∂q̇j)q̇j = 0. (1.5.16)

See Exercise 5.12. The quantities (∂pi/∂q̇j) may be viewed as the entries in a matrix, and
the quantities q̇j may be viewed as the entries in a vector. Since (5.16) must hold for any
value of the q̇j, we conclude that the matrix (∂pi/∂q̇j) has a nonzero vector as an eigenvector
with eigenvalue 0. It follows that in this case

det(∂pi/∂q̇j) = det(∂2L/∂q̇i∂q̇j) = 0. (1.5.17)

Moreover, since L is assumed homogeneous of degree 1 in the q̇i, Euler’s relation also gives
the result ∑

i

piq̇i =
∑
i

(∂L/∂q̇i)q̇i = L, (1.5.18)

and hence, according to (5.8), the Hamiltonian associated with L vanishes identically.
Finally, suppose A is the action functional associated with L and that L does not ex-

plicitly depend on the time,

A[q(t)] =

∫ t2

t1
L(q, dq/dt)dt. (1.5.19)

Let τ(t) be any monotonic function of t so that we may also write t = t(τ). Here we view τ
as a parameter. Given a path q(t), we will define a related path Q(τ) by the rule

Qi(τ) = qi(t(τ)). (1.5.20)
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Assign an action to any such path using the same functional (5.19),

A[Q(τ)] =

∫ τ2

τ1

L(Q, dQ/dτ)dτ. (1.5.21)

By the chain rule we have the relations

dτ = (dτ/dt)dt, (1.5.22)

dQi/dτ = (dqi/dt)(dt/dτ). (1.5.23)

Therefore, upon changing integration variables, there is the result

A[Q(τ)] =

∫ t2

t1
L{q, (dq/dt)(dt/dτ)}(dτ/dt)dt. (1.5.24)

Under the assumption that L is homogeneous of degree one in the q̇i, there is also the relation

L{q, (dq/dt)(dt/dτ)} = L(q, dq/dt)(dt/dτ). (1.5.25)

See (5.15). Inserting (5.25) into (5.24) gives the final result

A[Q(τ)] =

∫ t2

t1
L(q, dq/dt)(dt/dτ)(dτ/dt)dt =

∫ t2

t1
L(q, dq/dt)dt = A[q(t)]. (1.5.26)

We have learned that in this case A[Q(τ)] is independent of the parameterization employed.
That is, there are an infinite number of paths Q(τ), corresponding to the infinite number of
parameterizations t(τ), all of which have the same action. This independence implies that we
should not expect to find a unique solution that extremizes A since any reparameterization
also gives a solution.

Is all lost when L is homogeneous of degree one in the q̇i? The answer is no. What
we may expect in this case is that additional information beyond Hamilton’s principle (or
Lagrange’s equations) will be required to specify a trajectory. Some further information has
to be provided about the parameterization. Again see, for examples, Exercises 5.15, 6.5, 6.9,
and 6.16.

Exercises

1.5.1. For the Lagrangian (5.1), show that the canonical momenta in Cartesian coordinates
are given by the equation

pcan = mv/(1− v2/c2)1/2 + qA. (1.5.27)

Here we have used the superscript can to emphasize that we are deriving the canonical
momenta. Note that the first term in (5.27) is just the relativistic mechanical momentum,

pmech = mv/(1− v2/c2)1/2 = γmv (1.5.28)
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where γ is the standard relativistic factor

γ = 1/(1− v2/c2)1/2. (1.5.29)

Consequently, the relation (5.27) can also be written in the forms

pcan = pmech + qA and pmech = pcan − qA. (1.5.30)

1.5.2. The purpose of this exercise is to derive and study the equations of motion associated
with the Langrangian L given by (5.1). Begin by reviewing Exercise 5.1. Let pmech denote
the mechanical momentum given by (5.28). In the case that the generalized coordinates
are taken to be the usual Cartesian coordinates, verify that Lagrange’s equations for the
Lagrangian (5.1) produce for the mechanical momentum the equation of motion

ṗmech = dpmech/dt = F = q(E + v ×B). (1.5.31)

Here F is the Lorentz force.
For reasons that will become clear shortly, let us calculate the quantity (dγ/dt). Rewrite

(5.28) in the form
v = pmech/(γm). (1.5.32)

Verify that squaring and inverting both sides of (5.29), and use of (5.32), produce the chain
of relations

1/γ2 = 1− v2/c2 = 1− (pmech · pmech)/(γmc)2, (1.5.33)

from which it follows that

γ2 = 1 + (pmech · pmech)/(mc)2. (1.5.34)

Next differentiate both sides of (5.34) to find that

γ(dγ/dt) = [1/(mc)2](pmech · ṗmech) = [γ/(mc2)](v · ṗmech), (1.5.35)

from which it follows that
dγ/dt = [1/(mc2)](v · ṗmech). (1.5.36)

Now use (5.31) to show that

v · ṗmech = v · F = qv ·E, (1.5.37)

and thereby verify that

dγ/dt = [1/(mc2)](v · F ) = [q/(mc2)](v ·E). (1.5.38)

Define the relativistic energy E by the rule

E = γmc2. (1.5.39)

Show from (5.36) that it obeys the equation of motion

dE/dt = v · F = q(v ·E). (1.5.40)
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Note that v ·F is simply the rate at which work is being done by the Lorentz force. Indeed,
verify that (5.40) is equivalent to the differential relation

dE = F · dr = q(E · dr). (1.5.41)

As a particle moves, its change in energy equals the work done by the Lorentz force, more
specifically by the electric part of the Lorentz force.

Verify from (5.34) and (5.39) that there is the relation

E2 = m2c4 + (pmech · pmech)c2. (1.5.42)

Show that (5.40) also follows from (5.31) and (5.42).
Solve (5.32) and (5.34) for v to find the relation

ṙ = v = pmech/(m2 + pmech · pmech/c2)1/2. (1.5.43)

Show that (5.31) can be rewritten in the form

ṗmech = q(E + v ×B) = q{E + [pmech/(m2 + pmech · pmech/c2)1/2]×B}. (1.5.44)

Taken together, (5.43) and (5.44) provide equations of motion for the quantities r and pmech

in terms of r, pmech, and t. Note that these equations only involve the fields E and B, and
not the vector and scalar potentials A and ψ. They are therefore gauge independent.

Suppose we seek equations of motion for the quantities (r;v) with t taken to be the
independent variable. That is, what are desired are equations for the quantities r̈ in terms
of the variables r, v, and t. Verify that differentiating (5.32) yields the result

r̈ = v̇ = ṗmech/(mγ)− pmech[1/(mγ2)](dγ/dt) = ṗmech/(mγ)− (v/γ)(dγ/dt). (1.5.45)

For the first term on the far right side of (5.45), namely the term involving ṗmech, we will
use (5.31). For the second term involving the dγ/dt factor we will use (5.38). Verify that
use of (5.31) and (5.38) in (5.45) yields, in the form desired, the result

r̈ = [q/(γm)](E + v ×B)− [q/(γmc2)]v(v ·E). (1.5.46)

Equivalently, there is the coupled pair of first-order equations

ṙ = v, (1.5.47)

v̇ = r̈ = [q/(γm)](E + v ×B)− [q/(γmc2)]v(v ·E). (1.5.48)

1.5.3. Show that the Hamiltonian associated with the Lagrangian (5.1) is given in Cartesian
coordinates by the expression

H = [m2c4 + c2(pcan− qA) · (pcan− qA)]1/2 + qψ = [m2c4 + c2(pcan− qA)2]1/2 + qψ. (1.5.49)

Verify, using (5.27) through (5.30), that there is the result

H = [m2c4 + c2(pmech · pmech)]1/2 + qψ = γmc2 + qψ. (1.5.50)

Here we have used the superscripts can and mech to emphasize the distinction between
canonical and mechanical momenta.
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1.5.4. Let x, y, z denote the usual Cartesian coordinates. In the x, z plane introduce polar
coordinates ρ, φ by the relations

x = ρ cos φ, (1.5.51)

z = ρ sin φ.

View the triplet ρ, y, φ as a cylindrical coordinate system, and let eρ, ey, eφ be the associ-
ated right-handed orthonormal triad. See Figure 5.1. (Note that this choice of cylindrical
coordinates differs from the usual choice ρ, φ, z.) The purpose of this exercise is to find
the canonical momenta and the Hamiltonian associated with the Lagrangian (5.1) when the
cylindrical coordinates ρ, y, φ are used as generalized coordinates.

Verify that there are the relations

r = xex + yey + zez = ρ cos φ ex + yey + ρ sin φ ez, (1.5.52)

and
eρ = cos φ ex + sin φ ez, (1.5.53)

eφ = − sin φ ex + cos φ ez,

so that there is also the relation
r = ρeρ + yey. (1.5.54)

Note that the directions of eρ and eφ depend on φ, and hence on x and z. For example,
the pair eρ and eφ appearing in Figure 5.1 are shown pointing in the direction they would
have at the x, z location where they are displayed. Verify that eρ, ey, eφ do indeed form a
right-handed orthonormal triad.

x

φ

ρ
y-axis out of

plane of paper

z

eρ

eφ

Figure 1.5.1: Illustration of the ρ, y, φ cylindrical coordinate system and a sample unit-vector
pair eρ and eφ.

Answer: It is easily verified from (5.52) and (5.53) that eρ and eφ satisfy the equations

eρ =
∂r

∂ρ
/ ‖ ∂r

∂ρ
‖, (1.5.55)
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eφ =
∂r

∂φ
/ ‖ ∂r

∂φ
‖,

and therefore are properly defined. Moreover, it is easily checked that eρ, ey, and eφ are
orthonormal and satisfy the relation

eρ × ey = eφ. (1.5.56)

They therefore form a right-handed triad.
Verify that it also follows from (5.54) or the second part of (5.52) that

dr · dr = (dρ)2 + (dy)2 + ρ2(dφ)2. (1.5.57)

Consequently, the line element squared can be written in the standard form

dr · dr = h2
1(dq1)2 + h2

2(dq2)2 + h2
3(dq3)2, (1.5.58)

where
h1 = 1 , h2 = 1 , h3 = ρ, (1.5.59)

and
q1 = ρ , q2 = y , q3 = φ. (1.5.60)

Correspondingly, the unit vectors are numbered in the order

e1 = eρ , e2 = ey , e3 = eφ. (1.5.61)

With the above prescription, the curl of an arbitrary vector A is given by the relation

(∇×A)1 =
1

h2h3

[
∂(h3A3)

∂q2

− ∂(h2A2)

∂q3

], (1.5.62)

and the relations obtained from it by cyclic permutations of the coordinate indices. Here
the components Ai of A are defined by the relations

Ai = ei ·A. (1.5.63)

Verify that in terms of the coordinates (5.51 there are the relations

ẋ = ρ̇ cos φ− ρφ̇ sin φ, (1.5.64)

ż = ρ̇ sin φ+ ρφ̇ cos φ.

Show from (5.51) and (5.64) that consequently there are the relations

v = dr/dt = ẋex + ẏey + żez

= ρ̇(cosφ ex + sinφ ez) + ẏey + ρφ̇(cosφ ez − sinφ ex)

= ρ̇eρ + ẏey + ρφ̇eφ, (1.5.65)

v2 = ẋ2 + ẏ2 + ż2 = ρ̇2 + ẏ2 + ρ2φ̇2, (1.5.66)

v ·A = ẋAx + ẏAy + żAz = ρ̇Aρ + ẏAy + ρφ̇Aφ, (1.5.67)
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where

Aρ = cos φ Ax + sin φ Az = eρ ·A, (1.5.68)

Aφ = − sin φ Ax + cos φ Az = eφ ·A.

Using these results, show that the Lagrangian (5.1) can also be written in the form

L = −mc2[1− (ρ̇2 + ẏ2 + ρ2φ̇2)/c2]1/2 − qψ + q(ρ̇Aρ + ẏAy + ρφ̇Aφ). (1.5.69)

The Hamiltonian H corresponding to the Lagrangian L given by (5.69) can now be found
by the usual procedure. Show that for the conjugate momenta there are the results

pρ =
∂L

∂ρ̇
=

mρ̇√
1− (ρ̇2 + ẏ2 + ρ2φ̇2)/c2

+ qAρ,

py =
∂L

∂ẏ
=

mẏ√
1− (ρ̇2 + ẏ2 + ρ2φ̇2)/c2

+ qAy,

pφ =
∂L

∂φ̇
=

mρ2φ̇√
1− (ρ̇2 + ẏ2 + ρ2φ̇2)/c2

+ qρAφ. (1.5.70)

Finally, verify that H is given by the relation

H = ρ̇pρ + ẏpy + φ̇pφ − L (1.5.71)

= {m2c4 + c2[(pρ − qAρ)2 + (py − qAy)2 + (pφ/ρ− qAφ)2]}1/2 + qψ.

Here is a cautionary note: Let p be the momentum vector as defined by (5.27). Then,
from (5.65) and (5.70), verify that there are the results

pρ = p · eρ, (1.5.72)

py = p · ey, (1.5.73)

but

pφ = ρp · eφ 6= p · eφ. (1.5.74)

1.5.5. Show that a uniform electric field in the z direction can be derived from the scalar
and vector potentials

ψ = 0, (1.5.75)

A = −Etez.

1.5.6. Show that a uniform electric field in the z direction can be derived from the scalar
and vector potentials

ψ = −Ez, (1.5.76)

A = 0.



72 1. INTRODUCTORY CONCEPTS

1.5.7. Show that a uniform vertical magnetic field B = Bey, such as that produced by
an idealized (normal) dipole bending magnet, can be derived from the scalar and vector
potentials

ψ = 0, (1.5.77)

A = −Bxez.

Assuming the magnet has iron pole faces, sketch the pole faces and windings required to
produce such a field, and label the pole faces N and S. Also sketch the magnetic field lines
and the directions the current must flow in the windings.

1.5.8. Show that when cylindrical coordinates ρ, y, φ are used, a uniform magnetic field in
the y direction can be derived from the scalar and vector potentials

ψ = 0, (1.5.78)

A = −(ρ/2)Beφ.

Answer: See Figure 5.1. From (5.62) one has the results

Bρ = (∇×A)ρ =
∂Aφ
∂y
− 1

ρ

∂Ay
∂φ

= 0, (1.5.79)

By = (∇×A)y =
1

ρ

∂Aρ
∂φ
− 1

ρ

∂

∂ρ
(ρAφ) =

1

ρ

∂

∂ρ
(
ρ2B

2
) = B,

Bφ = (∇×A)φ =
∂Ay
∂ρ
− ∂Aρ

∂y
= 0.

1.5.9. Review Exercises 5.1 and 5.2. Suppose there is a uniform static magnetic field given
by

B = Bey with B > 0, (1.5.80)

and no electric field. Consider charged-particle motion in this simple case. Show that a
possible trajectory is uniform motion on a circle of radius ρ in the y = 0 plane, and show
that p = ||pmech|| = ||γmv||, the magnitude of the mechanical momentum given by (5.28),
is related to B and ρ by the equation

Bρ = p/|q|. (1.5.81)

The product Bρ is called the magnetic rigidity. In Accelerator Physics it is common to
characterize the mechanical momentum of a particle by its equivalent magnetic rigidity.

Show that, in the case of uniform circular motion, the circle is traced out with angular
velocity ω given by the relation

ω = |q|B/(γm). (1.5.82)

The quantity ω, particularly in the nonrelativistic limit γ ' 1, is called the cyclotron fre-
quency.
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1.5.10. Show that a magnetic quadrupole field with midplane (±y) symmetry can be derived
from the scalar and vector potentials

ψ = 0, (1.5.83)

A = −(Q/2)(x2 − y2)ez.

Answer:
Bx = Qy, (1.5.84)

By = Qx, (1.5.85)

Bz = 0. (1.5.86)

Assuming the quadrupole magnet has iron pole faces, sketch the pole faces and windings
required to produce such a field, and label the pole faces N and S. Also sketch the magnetic
field lines and the directions the current must flow in the windings.

1.5.11. Show that a magnetic sextupole field with midplane (±y) symmetry can be derived
from the scalar and vector potentials

ψ = 0, (1.5.87)

A = −(S/3)(x3 − 3xy2)ez.

Assuming the sextupole magnet has iron pole faces, sketch the pole faces and windings
required to produce such a field, and label the pole faces N and S. Also sketch the magnetic
field lines and the directions the current must flow in the windings.

1.5.12. Let f be a function of the ` variables z1, · · · z`. The function f is said to be homo-
geneous of degree m if it satisfies the relation

f(λz) = λmf(z) (for λ > 0). (1.5.88)

Evidently homogeneous polynomials provide examples of homogeneous functions. However,
a function need not be polynomial to be homogeneous. Verify, for example, that the function

f = (ax2 + bxy + cy2)1/2 (1.5.89)

is homogeneous of degree 1. Show that if f is homogeneous of degree m, then the functions
(∂f/∂zj) are homogeneous of degree (m− 1). Show that if f is homogeneous of degree m,
then it satisfies Euler’s relation ∑

a

za(∂f/∂za) = mf, (1.5.90)

and conversely.

1.5.13. Given a Lagrangian L, one can find the associated Hamiltonian H by a Legendre
transformation provided (5.6) is satisfied. Consider the inverse question. Given H, show
that one can find an associated L using the inverse Legendre transformation provided by
rewriting (5.8) in the form

L(q, q̇, t) =
∑
i

piq̇i −H(q, p, t) (1.5.91)
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with the proviso that
q̇i = ∂H/∂pi. (1.5.92)

Show, as required, that the variables p can be eliminated in terms of the q̇’s, provided

det(∂q̇i/∂pj) 6= 0. (1.5.93)

Verify that
∂q̇i/∂pj = ∂2H/∂pi∂pj (1.5.94)

so that (5.93) is equivalent to the condition

det(∂2H/∂pi∂pj) 6= 0. (1.5.95)

In analogy to (5.6), when (5.95) holds we will call this the nonsingular Hamiltonian case.
Suppose, as is true in these kinds of calculations, that the variables q are held fixed.

Show that then, by the chain rule, there is the differential relation

dq̇i =
∑
j

(∂q̇i/∂pj)dpj (1.5.96)

which can be written in the matrix-vector form

dq̇ = Tdp (1.5.97)

where T is the matrix
Tij = (∂q̇i/∂pj). (1.5.98)

Show, in view of (5.93), that (5.97) may be solved for the dp to yield the relation

dp = T−1dq̇. (1.5.99)

Argue, on the other hand, that there is the relation

dp = Udq̇ (1.5.100)

where U is the matrix
Uij = (∂pi/∂q̇j). (1.5.101)

Verify that comparison of (5.99) and (5.100) gives the result

U = T−1. (1.5.102)

Finally, show that there is the two-directional logical implication

det(∂2L/∂q̇i∂q̇j) 6= 0 ⇔ det(∂2H/∂pi∂pj) 6= 0. (1.5.103)

Thus, if a Legendre transformation can be made in one direction, it can also be made in the
reverse direction. The nonsingular Lagrangian case leads to the nonsingular Hamiltonian
case, and vice versa.
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1.5.14. Review Subsection 5.2 and Exercise 5.13. Show that if the Hamiltonian H(q, p, t) is
homogeneous of degree one in the pi, then (5.95) fails to hold, and we are dealing with the
singular Hamiltonian case. Make an analysis of this case similar to that which was done for
the Lagrangian case of Subsection 5.2. Show, in particular, that the Lagrangian associated
with H vanishes identically.

1.5.15. Review Exercises 5.3 and 5.13. Show, by making an inverse Legendre transforma-
tion, that the Lagrangian associated with the Hamiltonian (5.49) is the Lagrangian (5.1).

1.5.16. Let x(τ), y(τ) be a parameterized path in two-dimensional space. Let A be the
distance functional defined by

A =

∫
ds =

∫
(ds/dτ)dτ =

∫
(ẋ2 + ẏ2)1/2dτ (1.5.104)

where

(ds)2 = (dx)2 + (dy)2 (1.5.105)

and a dot denotes d/dτ . Specifically, consider all paths for τ ∈ [0, 1] with the end points

x(0) = y(0) = 0, (1.5.106)

x(1) = y(1) = 1. (1.5.107)

Then we may write

A =

∫ 1

0

L(ẋ, ẏ)dτ (1.5.108)

with

L = (ẋ2 + ẏ2)1/2. (1.5.109)

Verify that L is homogeneous of degree one in the quantities ẋ, ẏ, and verify by direct cal-
culation that (5.6) fails. Visualize the paths x(τ), y(τ) as curves in the three-dimensional
x, y, τ space. Show that there are an infinity of curves (corresponding to different parame-
terizations) that extremize A. Show that all of these curves, when projected onto the x, y
plane, fall on the straight line joining (0, 0) to (1, 1). Specifically, consider all curves of the
form

x(τ) = τ + f(τ), (1.5.110)

y(τ) = τ + f(τ), (1.5.111)

where f is any function satisfying

f(0) = f(1) = 0, (1.5.112)

|f ′(τ)| ≤ 1. (1.5.113)

Show that all these curves extremize A. Show that for all these curves A has the value

A =
√

2. (1.5.114)
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1.5.17. Review Exercise 5.16. Instead of using the parameterization x(τ), y(τ), simply write

y = y(x), (1.5.115)

which is equivalent to taking the coordinate x to be the parameter,

τ = x, (1.5.116)

and thereby providing information about the parameterization.
Verify that in this case the distance functional takes the form

A =

∫
ds =

∫
(ds/dx)dx =

∫
[1 + (y′)2]1/2dx (1.5.117)

where a prime denotes d/dx. Specifically, consider all paths y(x) with the end points

y(0) = 0, (1.5.118)

y(1) = 1. (1.5.119)

Show that now we may write

A =

∫ 1

0

L(y′)dx (1.5.120)

with
L = [1 + (y′)2]1/2. (1.5.121)

Verify that this L is not homogeneous of degree one in the quantity y′. Show that

py = ∂L/∂y′ = y′/[1 + (y′)2]1/2, (1.5.122)

and verify that this relation can be solved for y′ in terms of py to give the result

y′ = py/(1− p2
y)

1/2. (1.5.123)

Therefore, we are dealing with the nonsingular case. Verify that, in fact,

∂2L/(∂y′)2 6= 0. (1.5.124)

so that (5.6) holds. Show that the Hamiltonian associated with the Lagrangian (5.121) is
given by the relation

H = −(1− p2
y)

1/2. (1.5.125)

Show that the solution to Lagrange’s (or Hamilton’s) equations in this case takes the
form

y(x) = ax+ b (1.5.126)

where a and b are constants to be determined by the end-point conditions (5.118) and
(5.119). Show that imposition of the end-point conditions yields the unique solution

y(x) = x, (1.5.127)

the straight line between the end points. Verify that for this path A has the value (5.114).
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1.5.18. Exercises 5.16 and 5.17 treated a simple example of finding geodesics, the shortest
paths between two points, in terms of the distance functional. It involved the Lagrangians
(5.109) and (5.121). Consider as before the parameterized path x(τ), y(τ), but now employ
instead the Lagrangian

L̂ = (1/2)(ẋ2 + ẏ2) (1.5.128)

and seek to extremize what is called the energy functional Â defined by

Â =

∫
L̂dτ. (1.5.129)

The solution to this goal is an example of an affine geodesic. For a further description of
geodesics and affine geodesics, see Exercise 6.16.

Verify that the Hessian of L̂ is invertible so that we are dealing with the nonsingular
case. Show that the Lagrange equations associated with L̂ have, for the end-point conditions
(5.106) and (5.107), the unique solution

x(τ) = τ, (1.5.130)

y(τ) = τ. (1.5.131)

Note that the extremizing path is again the straight line between the end points. Show that
for this path Â = 1.

1.5.19. This problem concerns fluid flow in two dimensions and its relation to Hamiltonian
dynamics. Consider a fluid flowing in two dimensions and let vx(x, y, t) and vy(x, y, t) be the
components of the velocity v of a small portion of the fluid at the point with coordinates x
and y. (It is assumed that there is no motion/velocity in the z direction and that v does not
depend on z.) We are interested in the solutions to the coupled pair of differential equations

ẋ = vx(x, y, t), (1.5.132)

ẏ = vy(x, y, t). (1.5.133)

Moreover assume that the flow is divergence free (which follows from the assumption
that the fluid density remains constant, i.e., the flow is incompressible) so that

∇ · v = ∂xvx + ∂yvy = 0. (1.5.134)

Define an associated two-dimensional vector field u(x, y, t) by the rule

ux = −vy, (1.5.135)

uy = vx. (1.5.136)

Verify that(5.134) through (5.136) imply the relation

∂xuy = ∂xvx = −∂yvy = ∂yux. (1.5.137)



78 1. INTRODUCTORY CONCEPTS

That is, the differential form associated with the vector field u(x, y, t) is closed. Consequently
there is a function ψ(x, y, t) defined by

ψ(x, y, t) =

∫ x,y

[ux(x
′, y′, t)dx′ + uy(x

′, y′, t)dy′] (1.5.138)

such that
ux = ∂xψ, (1.5.139)

uy = ∂yψ. (1.5.140)

See Exercise 6.1.1.
Verify that the results obtained so far can be combined to yield the differential equation

pair
ẋ = ∂yψ, (1.5.141)

ẏ = −∂xψ. (1.5.142)

Evidently these are Hamilton’s equations with ψ playing the role of the Hamiltonian and x
and y playing the roles of q and p.

In the case that v is time independent, u and therefore ψ will have no explicit time
dependence. Then, because ψ is a Hamiltonian, there will be the relation

ψ{x(t), y(t)} = constant (1.5.143)

on any solution of the pair (5.132) and (5.133). Call the pair x(t) and y(t) a flow line.
According to (5.143), lines of constant ψ (level lines of ψ) are flow lines. For this reason
(and the fact that Lagrange first arrived at this result in 1781) ψ is called a (Lagrange)
stream function.

It is also possible to set up a steam function in three dimensions in the case of axial
symmetry. The result is called a Stokes (1819-1903) stream function. Let ρ,φ,z be the usual
choice of cylindrical coordinates with associated unit vectors eρ,eφ,ez. See (15.2.12) through
(15.2.14), (15.2.20) through (15.2.25), and Exercise 15.2.2. Suppose the fluid velocity has
only eρ and ez components and does not depend on φ,

v(ρ, z, t) = vρ(ρ, z, t)eρ + vz(ρ, z, t)ez. (1.5.144)

Recall that in general there is the relation

v = dr/dt = ρ̇eρ + ρφ̇eφ + żez (1.5.145)

so that we are then interested in the solutions to the coupled pair

ρ̇ = vρ(ρ, z, t), (1.5.146)

ż = vz(ρ, z, t). (1.5.147)

Again assume the flow is divergence free so that

∇ · v = (1/ρ)∂ρ(ρvρ) + ∂zvz = 0. (1.5.148)
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Multiply the last two pieces of (5.148) by ρ to get the result

∂ρ(ρvρ) + ∂z(ρvz) = 0. (1.5.149)

Define a vector u(ρ, z, t) by the rule

uρ = −(ρvz), (1.5.150)

uz = (ρvρ). (1.5.151)

Verify from (5.149) through (5.151) that there is the relation

∂ρuz = ∂ρ(ρvρ) = −∂z(ρvz) = ∂zuρ. (1.5.152)

That is, the differential form associated with the vector field u(ρ, z, t) is closed. Consequently
there is a function ψS(ρ, z, t) defined by

ψS(ρ, z, t) =

∫ ρ,z

[uρ(ρ
′, z′, t)dρ′ + uz(ρ

′, z′, t)dz′] (1.5.153)

such that

uρ = ∂ρψS, (1.5.154)

uz = ∂zψS. (1.5.155)

Here we have added a subscript S to ψ to distinguish it from Lagrange’s stream function
and to honor Stokes.

Verify that the results obtained so far for the case of axial symmetry can be combined
to yield the differential equation pair

ρ̇ = (1/ρ)∂zψS, (1.5.156)

ż = −(1/ρ)∂ρψS. (1.5.157)

Because of the (1/ρ) factor these are not Hamilton’s equations. Nevertheless we will be able
to draw from them similar conclusions.

In the case that v is time independent, u and therefore ψS will have no explicit time
dependence. For this case let us compute the change in ψS along a flow line. Verify that so
doing yields, with the aid of (5.156) and (5.157), the result

dψS/dt = ∂ρψS ρ̇+ ∂zψS ż = −ρżρ̇+ ρρ̇ż = 0. (1.5.158)

Thus ψS, which is called the Stokes stream function, has the property that lines of constant
ψS (level lines of ψS) are flow lines.
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1.6 Hamilton’s Equations with a Coordinate as an

Independent Variable

In the usual Hamiltonian formulation (as in the usual Lagrangian formulation) the time
t plays the distinguished role of an independent variable, and all the q’s and p’s are de-
pendent variables. That is, the canonical variables are viewed as functions q(t), p(t) of the
independent variable t.

In some cases, it is more convenient to take some coordinate to be the independent
variable rather than the time. So doing may facilitate the use of maps. For example, consider
the passage of a collection of particles through a rectangular magnet such as is shown in
Figures 6.1 and 6.2. In such a situation, particles with different initial conditions will require
different times to pass through the magnet. If the quantities of interest are primarily the
locations and momenta of the particles as they leave the exit face of the magnet, then it
would clearly be more convenient to use some coordinate that measures the progress of a
particle through the magnet as an independent variable. With such a choice, the relation
between entering coordinates and momenta and exiting coordinates and momenta could be
treated as a transfer map.

In the case of a magnet with parallel faces as shown in Figures 6.1 and 6.2, a convenient
independent variable would be the z coordinate. In the case of a wedge magnet as shown in
Figure 6.3, a convenient independent variable would be the angle φ of a cylindrical coordinate
triad ρ, y, φ. See Exercise 5.4.

ez

ey

ex

Figure 1.6.1: Typical choice of a Cartesian coordinate system for the description of charged-
particle trajectories in a magnet.

Suppose some coordinate is indeed chosen to be the independent variable. Is it then
still possible to have a Hamiltonian (or Lagrangian) formulation of the equations of motion?
The answer in general is yes as is shown by the following theorem:

Theorem 1.6.1. Suppose H(q, p, t) is a Hamiltonian for a system having n degrees of free-
dom. Suppose further that q̇1 = ∂H/∂p1 6= 0 for some interval of time T in some region
R of the phase space described by the 2n variables (q1, . . . , qn) and (p1, . . . , pn). Then in
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ey out of paper

ex

ez

Figure 1.6.2: Top view of a particle trajectory in a rectangular magnet.

ey out of paper

eρ

θ
eφ

Figure 1.6.3: Top view of a particle trajectory in a wedge magnet. The trajectory is conve-
niently described using the cylindrical coordinates ρ, y, φ. See Figure 5.1.
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this region and time interval, q1 can be introduced as an independent variable in place of
the time t. Moreover, the equations of motion with q1 as an independent variable can be
obtained from a Hamiltonian that will be called K.

Proof. Consider the 2n − 2 quantities (q2, . . . , qn) and (p2, . . . , pn). They obey Hamilton’s
equations of motion

q̇i = ∂H/∂pi, i = 2, . . . , n,

ṗi = −∂H/∂qi, i = 2, . . . , n.
(1.6.1)

Denote total derivates with respect to q1 by a prime. Then, applying the chain rule to
equations (6.1), one finds the relations

q′i = dqi/dq1 = (dqi/dt)(dt/dq1) = (∂H/∂pi)(∂H/∂p1)−1,

p′i = dpi/dq1 = (dpi/dt)(dt/dq1) = −(∂H/∂qi)(∂H/∂p1)−1.
(1.6.2)

To these 2n−2 relations it is convenient to add two more. First, suppose the time t is added
to the list of coordinates as a dependent variable. Then one immediately has the relation

t′ = dt/dq1 = (dq1/dt)
−1 = (∂H/∂p1)−1. (1.6.3)

Second, suppose the quantity pt defined by writing pt = −H is formally added to the list of
momenta. Then, using (5.11) and (5.14), one finds the relation

p′t = dpt/dq1 = (dpt/dt)(dt/dq1) = −(∂H/∂t)(∂H/∂p1)−1. (1.6.4)

Equations (6.2) through (6.4) are the desired equations of motion for the 2n variables
(t, q2, . . . , qn) and (pt, p2, . . . , pn) with q1 as an independent variable. What remains to be
shown is that the quantities on the right sides of these equations can be obtained by applying
the standard rules to some Hamiltonian K.

Look once again at the defining relation for pt,

pt = −H(q, p, t). (1.6.5)

Suppose that this relation is solved for p1 to give a relation of the form

p1 = −K(t, q2, . . . , qn; pt, p2, . . . , pn; q1). (1.6.6)

Such an inversion is possible according to the inverse function theorem because ∂H/∂p1 6=
0 by assumption. Then, as the notation is intended to suggest, K is the desired new
Hamiltonian.

To see that this is so, compute the total differential of (6.5) to find the relation

dpt = −(∂H/∂t)dt−
∑
i

(∂H/∂qi)dqi −
∑
i

(∂H/∂pi)dpi. (1.6.7)

Now solve (6.7) for dp1 to get the relation

dp1 =

(
∂H

∂p1

)−1 [
−dpt − (∂H/∂t)dt−

∑
i

(∂H/∂qi)dqi −
∑
i 6=1

(∂H/∂pi)dpi

]
. (1.6.8)
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Also, compute the total differential of (6.6) to find the relation

dp1 = −(∂K/∂pt)dpt − (∂K/∂t)dt−
∑
i

(∂K/∂qi)dqi −
∑
i 6=1

(∂K/∂pi)dpi. (1.6.9)

Upon comparing (6.8) and (6.9), and looking at equations (6.1–6.4), one obtains the adver-
tised result:

∂K/∂pt = (∂H/∂p1)−1 = t′,

∂K/∂pi = (∂H/∂pi)(∂H/∂p1)−1 = q′i, i = 2, . . . , n,

∂K/∂t = (∂H/∂t)(∂H/∂p1)−1 = −p′t,
∂K/∂qi = (∂H/∂qi)(∂H/∂p1)−1 = −p′i, i = 2, . . . , n. (1.6.10)

That is, the indicated partial derivates of K do indeed produce the required right sides of
equations (6.2) through (6.4). Note that according to equations (6.10), the quantity pt may
be viewed as the momentum canonically conjugate to the time t.

How might one have guessed that (6.6) gives the desired Hamiltonian? One way is
to employ (a modified) Hamilton’s principle. According to this principle, the action A
associated with a path in phase space should be defined by the relation

A =

∫
dt(

n∑
i=1

piq̇i −H) =

∫
(
n∑
i=1

pidqi −Hdt); (1.6.11)

and the equations of motion (5.11) through (5.14) follow from requiring that A be an ex-
tremum,

δA = 0, (1.6.12)

and use of the calculus of variations. Now introduce the notation

qn+1 = t , pn+1 = −H = pt. (1.6.13)

With this notation the action (6.11) takes the symmetrical form

A =

∫ n+1∑
i=1

pidqi. (1.6.14)

In this form it is evident that we may regard any of the pi as being related to some Hamil-
tonian. Suppose we choose p1, and then write (6.6). When this is done, A takes the form

A =

∫ n+1∑
i=2

pidqi −Kdq1 =

∫
dq1[

n+1∑
i=2

pi(dqi/dq1)−K]

=

∫
dq1(

n+1∑
i=2

piq
′
i −K). (1.6.15)

Since the requirement (6.12) is intrinsic in nature and therefore coordinate independent,
it must also hold when A is written in the form (6.15). (An extremum is an extremum
independent of parameterization.) But then use of (6.12), and application of the calculus of
variations to (6.15), give (6.10).
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Exercises

1.6.1. Find the Hamiltonian K corresponding to the Hamiltonian H given by (5.49) when
the z coordinate is taken to be the independent variable. Assume that ż > 0 for the
trajectories in question. Answer:

K = −[(pt + qψ)2/c2 −m2c2 − (px − qAx)2 − (py − qAy)2]1/2 − qAz. (1.6.16)

Here the quantities px and py denote canonical momenta. Note that according to (6.5), pt
is usually negative. Show, using (5.50), that

pt = −[m2c4 + c2(pmech · pmech)]1/2 − qψ = −γmc2 − qψ. (1.6.17)

1.6.2. Find the Hamiltonian K corresponding to the Hamiltonian H given by (5.71) when
the coordinate φ is taken to be the independent variable. Assume that φ̇ > 0 for trajectories
of interest. Answer:

K = −ρ[(pt + qψ)2/c2 −m2c2 − (pρ − qAρ)2 − (py − qAy)2]1/2 − qρAφ. (1.6.18)

Here the quantities pρ and py denote canonical momenta. Verify that (6.17) continues to
hold.

1.6.3. The derivation of (6.10) based on the modified Hamilton’s principle, Equations (6.11)
through (6.15), is a bit heuristic. Make the derivation more precise by indicating exactly
what changes of variables are being made; what the limits of integration are in (6.11), (6.14),
and (6.15); what (6.12) means; etc. Begin your discussion by reviewing exactly how (5.11)
and (5.14) follow from (6.11) and (6.12). Hint: To derive (5.14) from Hamilton’s principle,
consider variations in t as well as those in the qi and pi. That is, introduce a new independent
variable τ such that the dependent variables are parameterized in the form qi(τ), pi(τ), t(τ).

1.6.4. How might one have guessed that pt should be defined as in (6.5)? According to
Hamilton’s principle stated in Lagrangian terms, the action A associated with a path in
configuration space is given by the relation

A =

∫ t2

t1
L(q, q̇, t)dt. (1.6.19)

Suppose we introduce a new independent variable τ such that the time t and the other
dependent variables are parameterized in the form t(τ), qi(τ). Then, using a prime to
denote differentiation with respect to τ , we have the relation

dt = (dt/dτ)dτ = t′dτ, (1.6.20)

q̇i = dqi/dt = (dqi/dτ)(dτ/dt) = q′i/t
′. (1.6.21)

Correspondingly, the action (6.18) takes the form

A =

∫
Ldt =

∫
Lt′dτ =

∫
[L(q, q′/t′, t)t′]dτ, (1.6.22)
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and we see that in terms of τ there is an effective Lagrangian Leff given by the expression

Leff(q, t; q′, t′) = L(q, q′/t′, t)t′. (1.6.23)

Justify this assertion by treating all the necessary details. (See the analogous case of Exercise
6.3.) Following the standard procedure (5.7), the momentum pt canonically conjugate to
the variable t is defined by the relation

pt = ∂Leff/∂t′. (1.6.24)

By using (6.23) and (6.24) and the chain rule show that

pt = L−
∑
i

piq̇i = −H. (1.6.25)

The Lagrange equation for the t coordinate is

d

dτ

∂Leff

∂t′
− ∂Leff

∂t
= 0. (1.6.26)

Show that pt is conserved if L (and therefore Leff) does not explicitly contain the time t.
In view of (6.25), we may say that energy (the Hamiltonian) is conserved if the time is an
ignorable coordinate. Use (5.14) to obtain the same result.

1.6.5. Review Exercise 6.4. Suppose we wish to find the Hamiltonian Heff associated with
Leff. To do so we must first compute all the conjugate momenta peff

i . Using (6.23), show
that

peff
i = ∂Leff/∂q′i = ∂L/∂q̇i = pi. (1.6.27)

Next, following the rule (5.8), find the result

Heff = ptt
′ +
∑
i

peff
i q
′
i − Leff = ptt

′ +
∑
i

piq̇it
′ − Lt′

= t′(pt +H). (1.6.28)

At this stage, two complications arise: First, in view of (6.25) and (6.27), it is evident that
pt does not depend on t′, and therefore the Jacobian determinant (5.9) vanishes. Verify this
assertion. Second, because of (6.25), we see from (6.28) that Heff vanishes identically.

These complications should not surprise us. Review Subsection 5.2. Show that Leff as
given by (6.23) is homogeneous of degree one in the velocities and does not explicitly depend
on τ . Therefore, these complications must occur.

What to do? Some further information has to be provided about the parameterization.
Suppose we make the dependence of t on τ a bit more explicit by writing a relation of the
form

dτ = f(q, p, t)dt (1.6.29)

where f is a function to be specified. Then, by the chain rule, we have the relations

q′j = (dqj/dt)(dt/dτ) = (1/f)(∂H/∂pj),
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t′ = (1/f),

p′j = (dpj/dt)(dt/dτ) = −(1/f)(∂H/∂qj),

H ′ = (dH/dt)(dt/dτ) = (1/f)(∂H/∂t). (1.6.30)

In the last of these equations use has been made of (5.14). Is there a Hamiltonian that will
produce these equations?

There is. Inspired by (6.28), define an effective Hamiltonian H̄eff [on the extended (2n+
2)-dimensional phase space consisting of the variables q1, q2, · · · qn, t and p1, p2 · · · pn, pt] by
writing

H̄eff(q, t; p, pt) = (1/f)(pt +H) (1.6.31)

where the relation (6.25) is to be ignored (but soon recovered as a special case).40 Then,
taking partial derivatives, we find the results

∂H̄eff/∂pj = (1/f)(∂H/∂pj) + (pt +H)[∂(1/f)/∂pj]

= q′j + (pt +H)[∂(1/f)/∂pj],

∂H̄eff/∂pt = (1/f) = t′,

∂H̄eff/∂qj = (1/f)(∂H/∂qj) + (pt +H)[∂(1/f)/∂qj]

= −p′j + (pt +H)[∂(1/f)/∂qj],

∂H̄eff/∂t = (1/f)(∂H/∂t) + (pt +H)[∂(1/f)/∂t]

= H ′ + (pt +H)[∂(1/f)/∂t]. (1.6.32)

Here, we have also used (6.30). Next observe that H̄eff does not depend on the independent
variable τ , and therefore must be constant on each trajectory it generates. Consider those
trajectories on which H̄eff = 0. Then for those trajectories (6.25) holds and the relations
(6.32) take the form

q′j = ∂H̄eff/∂pj,

t′ = ∂H̄eff/∂pt,

p′j = −∂H̄eff/∂qj,

p′t = −∂H̄eff/∂t. (1.6.33)

Thus, a special class of trajectories generated by H̄eff, namely those for which H̄eff = 0, gives
q(τ), t(τ), p(τ), and pt(τ).

A particularly simple case is to set f = 1 so that

t′ = (1/f) = 1. (1.6.34)

In this case find the result

H̄eff(q, t; p, pt) = pt +H(q, p, t). (1.6.35)

40The transformation (6.31) is sometimes called a Poincaré transformation, is useful for regularization,
but should not be confused with the Poincaré transformations of Relativity Theory. See Section 2.7.4.
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Show, by one of Hamilton’s equations, that there is now the relation

t′ = ∂H̄eff/∂pt = 1, (1.6.36)

which is consistent with the requirement (6.34).
Suppose, for any choice of f , we consider trajectories in q, t, p, pt space generated by

H̄eff for which the initial conditions happen to satisfy the relation

pt = −H (1.6.37)

at some initial value of τ . Then H̄eff = 0 at this value of τ . But since H̄eff is constant on
trajectories, (6.37) must then hold all along such trajectories.

One moral of this exercise is that a nonautonomous Hamiltonian system can always be
converted into an autonomous one in an extended phase space (with the two additional
phase-space variables t, pt) by use of (6.35) or, more generally, (6.31). Another is that
the time t can be replaced by a new independent variable τ , while remaining within a
Hamiltonian framework, such that a relation of the form (6.29) holds. Such a replacement
may be useful for regularization. See Section 2.7 and the regularization references at the end
of Chapter 2.

1.6.6. Read Exercise 6.4. Let K be the Hamiltonian defined by (6.6). By reversing the
Legendre transformation that relates a Lagrangian and a Hamiltonian, see (5.8), show that
the Lagrangian LK associated with K is given by the relation

LK = ptt
′ +

n∑
i=2

piq
′
i −K = (q̇1)−1L. (1.6.38)

Suppose we rewrite (6.19) in the form

A =

∫
Ldt =

∫
L(dt/dq1)dq1 =

∫
Leffdq1, (1.6.39)

with
Leff = L(dt/dq1). (1.6.40)

Verify the relation
LK = Leff. (1.6.41)

Conversely show that, starting with the Lagrangian LK defined by (6.40), one arrives at the
Hamiltonian K defined by (6.6).

1.6.7. Review Exercises 5.2 and 5.3. The expression (5.1) for the Lagrangian L and the
expression (5.49) for the Hamiltonian H do not seem particularly aesthetically pleasing
because they contain a square root and because they are not manifestly Lorentz invariant.
The purpose of this exercise and the next is to explore another possible Lagrangian, and
to show that the particular forms of the Lagrangian (5.1) and the Hamiltonian (5.49) come
about because of a decision to treat time as an independent variable, and the coordinates
as dependent variables. We will also find other interesting results along the way. Finally,
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in this exercise and what follows we will take special care to deal properly with “down”
(covariant) and “up” (contravariant) indices.41

In the spirit of relativity, and following the insight of Hermann Minkowski (1864-1909), it
is reasonable to try to treat space and time on a similar footing. Suppose the world line of a
particle through space-time is parameterized in terms of some parameter τ by specifying four
functions xµ(τ) that, taken together, form a vector with four contravariant components xµ.
We adopt the convention that the first three components of xµ are the spatial coordinates
of the particle, and the fourth (with a factor of c) is its temporal coordinate. Specifically,
we write µ = 1, 2, 3, 4 with x4 = ct. That is, we write

xµ = (x, y, z, ct) = (r, ct). (1.6.42)

Also, let (x′)µ denote the four quantities defined by the equations

(x′)µ = dxµ/dτ. (1.6.43)

Under the assumption that the parameterization is unchanged by a Lorentz transformation,
(x′)µ is evidently also a 4-vector, which will be called the 4-velocity. The 3-velocity v of a
particle is given by the ratio v = (dr/dτ)/(dt/dτ). Since the speed of a massive particle
must be less than c, ||v|| < c, verify that the 4-velocity must satisfy the condition

x′ · x′ = (x′)µ(x′)νgµν > 0. (1.6.44)

Here gµν denotes the metric tensor, and we have employed the usual Einstein convention that
repeated indices are to be summed over. In Cartesian coordinates and for flat space-time,
only the diagonal entries of g are nonzero, and we take them to have the values

g11 = g22 = g33 = −1,

g44 = 1. (1.6.45)

That is, the space-time interval ds is taken to be given by the relation

ds2 = gµνdx
µdxν = c2dt2 − (dr)2. (1.6.46)

We remark that the notation ds2 appearing in (6.46), although universally employed, can
be misleading since, depending on circumstances, ds2 can be negative, zero, or positive, and
therefore is not necessarily the square of anything. But note that ds2 > 0 for time-like
displacements. Space-time endowed with the metric (6.45) is sometimes called Minkowski
space.42

41Is there an easy way to remember the association between down/up and covariant/contravariant? Here
is one way: The third letter from the left of the word covariant is a v, which may be viewed as the tip of a
downward pointing arrow. Correspondingly, covariant components have down indices. And the third letter
from the left in the word contravariant is an n, which, with somewhat more imagination, may be viewed as
the tip of a blunted upward pointing arrow. Correspondingly, contravariant components have up indices.

42Many authors adopt the convention µ = 0, 1, 2, 3 with x0 = ct and the remaining xµ being the spatial
coordinates. Accordingly, they would write xµ = (ct, x, y, z) = (ct, r) and g = diag(1,−1,−1,−1). The
definition (6.46) holds in either case.
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For future use we also define quantities gµν by the rule

gµν = (g−1)µν . (1.6.47)

For the choice (6.45) there is the immediate relation

gµν = gµν . (1.6.48)

The metric tensor can be used to raise and lower indices. For example there are the relations

xµ = gµνx
ν , (1.6.49)

xµ = gµνxν , (1.6.50)

g σ
µ = gµνg

νσ = δσµ . (1.6.51)

In particular, xµ has the entries

xµ = (−x,−y,−z, ct) = (−r, ct). (1.6.52)

We will also define a 4-potential Aµ with entries

Aµ = (Ax, Ay, Az, ψ/c) = (A, ψ/c). (1.6.53)

We will soon need the antisymmetric tensor F µν and its lowered counterpart Fµν defined by
the relations

F µν = ∂µAν − ∂νAµ,
Fµν = ∂µAν − ∂νAµ. (1.6.54)

Here we have used the notation

∂µ = ∂/∂xµ = (−∂/∂x,−∂/∂y,−∂/∂z, c−1∂/∂t) = (−∇, c−1∂/∂t),

∂µ = ∂/∂xµ = (∂/∂x, ∂/∂y, ∂/∂z, c−1∂/∂t) = (∇, c−1∂/∂t), (1.6.55)

which reminds us, for example, that the derivative of a scalar with respect to a covariant
variable yields a contravariant result, and vice versa. (See Exercise 6.18.) Verify that the
entries of F µν are the components of B and E/c arranged in the form

F µν =


0 −Bz By Ex/c
Bz 0 −Bx Ey/c
−By Bx 0 Ez/c
−Ex/c −Ey/c −Ez/c 0

 , (1.6.56)

so that F 12 = −Bz, etc. Recall (5.2).
Consider the relativistic Lagrangian LR defined by the relation

LR = (1/2)mc(x′)µ(x′)νgµν + q(x′)µAνgµν . (1.6.57)



90 1. INTRODUCTORY CONCEPTS

It has the pleasing property that it is algebraically simple and treats space and time on a
similar footing. In particular, LR is evidently a scalar. That is, it is invariant under Lorentz
transformations.43

We will now find the equations of motion that LR produces and will also find the asso-
ciated Hamiltonian HR.

a) Show that the canonical momenta pµ are given by the relation

pµ = ∂LR/∂(x′)µ = mc(x′)µ + qAµ, (1.6.58)

which can also be written in the form

pµ = pmech
µ + qAµ (1.6.59)

where the mechanical momenta are given by

pmech
µ = mc(x′)µ. (1.6.60)

Note again that the derivative of a scalar (in this case a Lagrangian) with respect to a
contravariant (“up” index) variable yields a covariant (“down” index) result. 44 Verify
that there are the results

pµ = mc(x′)µ + qAµ = (pmech)µ + qAµ (1.6.61)

where
(pmech)µ = mc(x′)µ. (1.6.62)

43The quantity (x′)µAνgµν is a scalar under Lorentz transformations providing the 4-potential Aν actually
transforms as a 4-vector. This can be shown to be the case if the E and B fields described by Aν arise from
an external current jνext that vanishes sufficiently rapidly at infinity. But in some cases, such as that of an
electromagnetic plane wave or wave packet, the associated 4-potential Aν is sourceless and does not transform
like a 4-vector under Lorentz transformations. Instead the new 4-potential is the Lorentz transformation
of the old (as if it were a 4-vector) plus a gauge transformation term. However, the additional gauge
transformation term, when combined with the term arising from (x′)µgµν , forms a total τ derivative. As
discussed in standard Classical Mechanics texts, such total derivatives, when added to the Lagrangian, have
no effect on the equations of motion. Moreover, they do not contribute to the variation of the action A
associated with the Lagrangian when the path is varied with fixed end points. They may therefore be
dropped. Thus, Lorentz invariance is again restored, even in those cases in which the 4-potential Aν does
not transform as a 4-vector.

A similar discussion of Lorentz invariance is required in the case of the Lagrangian (classical or quantal) for
the combined system of electromagnetic fields and charged particles. In this case, the charge conservation
relation ∂νj

ν = 0 again allows conversion of possibly non Lorentz invariant terms into total derivatives
that may be dropped. Note that in the single particle case, the quantities (x′)ν may be viewed as being
proportional to the single-particle current 4-vector. Thus, the single particle case is a special instance of the
general case.

44We also remark that, according to (6.62), the mechanical momentum transforms like a 4-vector under
Lorentz transformations because (x′)µ transforms like a 4-vector. From (6.61) we see that the canonical
momentum also transforms like a 4-vector to the extent that the 4-potential does so. If a gauge transforma-
tion is also involved in the transformation of the 4-potential, then this same additional term appears in the
transformation of the canonical momentum. According to Exercise 6.2.8 this additional term may be viewed
as the result of a symplectic map. Finally, we remark that a Lorentz transformation is itself a symplectic
map. See Exercise 6.2.6.
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b) Verify that

∂2LR/∂(x′)µ∂(x′)ν = mcgµν , (1.6.63)

and therefore (5.6) is satisfied if m 6= 0.

c) Show that differentiating and rearranging both sides of (6.59) produces the relation

dpmech
µ /dτ = dpµ/dτ − q(dAµ/dτ), (1.6.64)

and verify by the chain rule that

q(dAµ/dτ) = q
∑
ν

(∂Aµ/∂x
ν)(dxν/dτ). (1.6.65)

Show from Lagrange’s equations that the canonical momenta obey the equations of
motion

p′µ = dpµ/dτ = ∂LR/∂x
µ = q

∑
ν

(x′)ν(∂Aν/∂x
µ). (1.6.66)

d) Work out Lagrange’s equations of motion, with τ as an independent variable, for the
Lagrangian LR. Show, in view of (6.54), (6.60), and (6.64) through (6.66), that they
yield for the mechanical momenta and coordinates the equations of motion

d(pmech)µ/dτ = qF µνgνσ(dxσ/dτ) = qF µν(dxν/dτ), (1.6.67)

d2xµ/dτ 2 = [q/(mc)]F µνgνσ(dxσ/dτ) = [q/(mc)]F µν(dxν/dτ). (1.6.68)

The equations of motion, when written in the forms (6.67) and (6.68), are manifestly
Lorentz invariant.45 Indeed, this is an ideal opportunity to reiterate the meaning of
Lorentz invariance: Lorentz invariance, as embodied by (6.68), states that if the world
line xµ(τ) is a solution of the equations of motion, then so is its Lorentz transformed
world line x̄µ(τ) provided F µν is replaced by F̄ µν where F̄ µν is the tensor composed
of Ē and B̄, the Lorentz transformed electric and magnetic fields. We note that this
happy circumstance comes about because, as we have already seen, the variation of
the action A associated with LR is unchanged by a Lorentz transformation. Therefore
if xµ(τ) with its specified endpoints extremizes A, so will x̄µ(τ) with its transformed
end points. Finally, we observe that the equations of motion (6.67) and (6.68) do not
involve the vector potential, but only the fields E and B. They are therefore gauge
independent.

45Some authors would say instead that the equations of motion (6.67) and (6.68) are covariant. We prefer
not to use such terminology because we wish to reserve the use of the term covariant, and the complementary
term contravariant, to refer to the “down” and “up” index components of vectors and tensors. Perhaps even
better would be to say that the equations of motion (6.67) and (6.68) are form invariant; they have the
same form in every inertial frame.
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e) Suppose we wish to use (6.67) to compute a world line (trajectory). Verify that
inverting (6.62) yields the relations

dxµ/dτ = [1/(mc)](pmech)µ. (1.6.69)

Use (6.69) to rewrite (6.67) in the form

d(pmech)µ/dτ = [q/(mc)]F µνgνσ(pmech)σ. (1.6.70)

Verify that taken together the relations (6.69) and (6.70) constitute a (coupled) set of
first-order differential equations for the variables xµ and (pmech)µ.

f) suppose we wish to use (6.68) to compute a world line. Introduce auxiliary variables
uµ by the rule

uµ = dxµ/dτ. (1.6.71)

Verify that (6.68) and (6.71) can be rewritten in the form

dxµ/dτ = uµ, (1.6.72)

duµ/dτ = [q/(mc)]F µνgνσu
σ (1.6.73)

to yield a (coupled) set of first-order differential equations for the variables xµ and uµ.

g) Show that the equation of motion (6.67) has the constant and integral of motion

(pmech)µpmech
µ = const, (1.6.74)

and the equation of motion (6.68) has the constant and integral of motion

(x′)µ(x′)µ = const. (1.6.75)

Whatever values these quantities have for some initial value of τ , they retain these
same values for all values of τ .

h) Define the associated relativistic Hamiltonian HR by the rule

HR = {
∑
µ

[∂LR/∂(x′)µ](x′)µ} − LR

= {
∑
µ

pµ(x′)µ} − LR. (1.6.76)

Show that HR is given by the relation

HR = (1/2)mc(x′)µ(x′)νgµν = [1/(2mc)](pµ − qAµ)(pν − qAν)gµν
= [1/(2mc)](pµ − qAµ)(pν − qAν)gµν

= [1/(2mc)](pµ − qAµ)(pµ − qAµ). (1.6.77)

Note that HR, like LR, is Lorentz invariant.
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i) If HR is viewed as a function of the variables xµ, pµ, and τ , it has the total differential

dHR = {
∑
µ

(∂HR/∂x
µ)dxµ + (∂HR/∂pµ)dpµ}+ (∂HR/∂τ)dτ. (1.6.78)

On the other hand, if it is viewed as a function of the variables xµ, (x′)µ, and τ , HR

has [using (6.76)] the total differential

dHR = {
∑
µ

[pµ − ∂LR/∂(x′)µ]d(x′)µ + (x′)µdpµ − (∂LR/∂x
µ)dxµ} − (∂LR/∂τ)dτ

= {
∑
µ

(x′)µdpµ − (p′)µdx
µ} − (∂LR/∂τ)dτ. (1.6.79)

Here we have also used (6.58) and (6.66). By comparing (6.77) and (6.78), deduce the
equations of motion.

(x′)µ = ∂HR/∂pµ, (1.6.80)

(p′)µ = −∂HR/∂x
µ, (1.6.81)

∂HR/∂τ = −∂LR/∂τ. (1.6.82)

j) Let us check that use of the Lorentz invariant Hamiltonian HR given by (6.77), and
the associated equations of motion (6.80) through (6.82), reproduces some previous
results. Verify that use of (6.80) yields (6.62). Also work out the consequences of
(6.81) and compare your results with those produced by use of (6.67). Show that
(6.68) is a consequence of the Hamiltonian equations (6.80) and (6.81).

k) Verify that LR as given by (6.57) does not depend explicitly on τ ,

∂LR/∂τ = 0. (1.6.83)

It follows, see (5.14), that

dHR/dτ = ∂HR/∂τ = −∂LR/∂τ = 0. (1.6.84)

That is, HR is a constant and integral of motion and therefore the quantity [ds2/(dτ)2]
defined by

ds2/(dτ)2 = gµν(x
′)µ(x′)ν = (x′)µ(x′)µ = x′ · x′ (1.6.85)

is a constant and an integral of motion,

ds2/(dτ)2 = const. (1.6.86)

Note that this result agrees with (6.75).

l) Suppose we restrict our attention to those solutions that satisfy the relation

x′ · x′ = λ (1.6.87)
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where λ is a constant that can have any value including negative and zero values as
well as positive values. Show that for these solutions (pmech)µ, as given by (6.62),
satisfies the mass-shell condition

pmech
µ (pmech)µ = λm2c2. (1.6.88)

Thus there are solutions for which the quantity pmech
µ (pmech)µ can have any value includ-

ing negative and zero values as well as positive values. Show that for these solutions
HR has the values

HR = λ(mc/2). (1.6.89)

Thus HR can also have any value including negative and zero values as well as positive
values.

m) Suppose we restrict our attention to those solutions that satisfy the relation

x′ · x′ = λ = 1. (1.6.90)

Show that for these solutions the particle has mass m,

pmech
µ (pmech)µ = m2c2, (1.6.91)

and HR has the value
HR = mc/2. (1.6.92)

n) For those solutions that satisfy (6.90) verify that ds2 > 0 and therefore we may select,
in accord with (6.46), (6.85), and (6.90), a parameterization such that

ds/dτ = 1. (1.6.93)

Show that these solutions satisfy the equations

d(pmech)µ/ds = qF µν(dxν/ds), (1.6.94)

d2xµ/ds2 = [q/(mc)]F µν(dxν/ds). (1.6.95)

o) Again restrict attention to those solutions that satisfy (6.90). Show that for these
solutions there is the result

x′ = dx/dτ = (dx/dτ)(dτ/ds) = dx/ds = (dx/dt)(dt/ds) = ẋ(dt/ds). (1.6.96)

Verify from (6.42) that

ẋµ = dxµ/dt = (dr/dt, c) = (v, c). (1.6.97)

Also verify, starting with (6.46), that there is the relation

ds/dt = c(1− v2/c2)1/2 = c/γ, (1.6.98)
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and therefore
dt/ds = γ/c. (1.6.99)

Recall the definition (5.29). Conclude that

(x′)µ = (γ/c)(v, c), (1.6.100)

and therefore, by the definition (6.62), there is the relation

(pmech)µ = mc(x′)µ = (mγ)(v, c) = (pmech, E/c) (1.6.101)

with
pmech = γmv = (pmech

x , pmech
y , pmech

z ) (1.6.102)

and
E = γmc2. (1.6.103)

Recall (5.28) and (5.39). Verify that combining (6.91) and (6.101) yields the relation

E2 = m2c4 + (pmech · pmech)c2. (1.6.104)

Verify also that

p4 = (pmech)4 + qA4 = E/c+ qψ/c = (1/c)(γmc2 + qψ) = −(1/c)pt. (1.6.105)

Recall Exercise 6.1.

p) Show for the solutions of the equations of motion that satisfy (6.90) there is the relation

pµ = {pcan,−(1/c)pt} (1.6.106)

with
pt = −qψ − γmc2 = −qψ − E (1.6.107)

and
pcan = pmech + qA = γmv + qA. (1.6.108)

q) Multiply both sides of (6.94) by ds/dt to find the intermediate result

[d(pmech)µ/ds](ds/dt) = qF µν(dxν/ds)(ds/dt). (1.6.109)

Verify the relations
[d(pmech)µ/ds](ds/dt) = d(pmech)µ/dt, (1.6.110)

(dxν/ds)(ds/dt) = dxν/dt, (1.6.111)

and conclude that (6.94) can be rewritten in the form

d(pmech)µ/dt = qF µν(dxν/dt). (1.6.112)

Verify using (6.52) that
dxν/dt = (−v, c). (1.6.113)

Use this result to show that (6.109) yields and is equivalent to the relations

dpmech/dt = q(E + v ×B), (1.6.114)

dE/dt = qv ·E. (1.6.115)

Recall (5.31) and (5.40).
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1.6.8. With the preparation provided by Exercise 6.7, the purpose of this exercise is to
relate the Lagrangian LR given by (6.57) and the Hamiltonian HR given by (6.77) to the
Lagrangian L given by (5.1) and the Hamiltonian H given by (5.49).

a) Review the machinery of Section 1.6. Start with the Hamiltonian HR given by (6.77),
for which τ is the independent variable, and make the definition

pτ = −HR. (1.6.116)

Verify that (6.116) can be rewritten in the form

(p4 − qA4)2 = (p4 − qA4)2 = [−2mcpτ + (pcan − qA) · (pcan − qA)]

= [−2mcpτ + (pcan − qA)2], (1.6.117)

from which it follows that

p4 − qA4 = ±[−2mcpτ + (pcan − qA)2]1/2. (1.6.118)

Here we have made the definition

pcan = pmech + qA. (1.6.119)

Observe that (6.59) and (6.60) can be combined and rewritten rewritten in the form

p4 − qA4 = pmech
4 = mc(x′)4 = mc2(dt/dτ). (1.6.120)

Require that the parameterization of the world line be such that dt/dτ > 0. Verify
that, upon taking into account this requirement, (6.118) can be rewritten in the form

p4 = qA4 + [−2mcpτ + (pcan − qA)2]1/2. (1.6.121)

b) Let K be the new Hamiltonian for which x4 is the independent variable. Recall that
x4 and p4 are canonically conjugate. See also Exercise 7.6 for further discussion of this
point. Verify that there is the result

K(r, τ,pcan, pτ ;x
4) = −p4 = −qA4 − [−2mcpτ + (pcan − qA)2]1/2. (1.6.122)

c) Note that HR and hence K are, in fact, independent of τ . Therefore pτ is a constant
of motion. Relate this constant to equation (6.89). That is, verify the relation

pτ = −λ(mc/2). (1.6.123)

d) Since K is independent of τ , and pτ is a constant, suppose attention is restricted to the
remaining variables in K. Moreover, let us assign to pτ the value it has for trajectories
of interest, namely those with λ = 1. That is, we restrict our attention to the case
where

pτ = −mc/2. (1.6.124)

Verify that there is then the result

K(r, τ,pcan,−mc/2;x4) = −qA4 − [m2c2 + (pcan − qA)2]1/2. (1.6.125)

Upon comparing (5.49) and (6.125), verify that there must be the relation

K(r, τ,pcan,−mc/2;x4) = −(1/c)H. (1.6.126)
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e) Does (6.126) agree with what we already know? Suppose K, as given by (6.125), is
used to produce equations of motion. Then, in view of (6.79) and (6.80), show that
we expect the results

(1/c)(dxµ/dt) = dxµ/dx4 = ∂K/∂pµ for µ = 1, 2, 3; (1.6.127)

(1/c)(dpµ/dt) = dpµ/dx
4 = −∂K/∂xµ for µ = 1, 2, 3. (1.6.128)

But, there are the relations

pµ = −pµ for µ = 1, 2, 3. (1.6.129)

Verify that, consequently, (6.127) and (6.128) can be rewritten in the form

(1/c)(dxµ/dt) = −∂K/∂pµ for µ = 1, 2, 3; (1.6.130)

(1/c)(dpµ/dt) = +∂K/∂xµ for µ = 1, 2, 3. (1.6.131)

But, as we already know, we wish to have the relations

(1/c)(dxµ/dt) = (1/c)(∂H/∂pµ) for µ = 1, 2, 3; (1.6.132)

(1/c)(dpµ/dt) = −(1/c)(∂H/∂xµ) for µ = 1, 2, 3. (1.6.133)

Verify that (6.130) through (6.133) are consistent with (6.126).

Let us summarize our results. In Exercise 6.7 you showed that use of the manifestly
Lorentz invariant Lagrangian LR given by (6.57) leads to the manifestly Lorentz invariant
Hamiltonian HR given by (6.77). Subsequently, in this exercise you showed that deciding
to treat the time as the independent variable, and restricting attention to the variables xµ

and pµ (with µ = 1, 2, 3), leads from HR to the Hamiltonian K given by (6.122) and then
to the Hamiltonian H given by (5.49). Finally, see Exercise 5.13, by an inverse Legendre
transformation the Hamiltonian H yields the Lagrangian L given by (5.1).

1.6.9. Review Exercise 6.7. Some texts claim that the equations of motion for relativistic
charged-particle motion can also be derived from the action functional A[x] given by

A[x] =

∫
mcds+

∫
qgµνA

µdxν (1.6.134)

with ds2 given by (6.46). Since this A can also be written in the form

A[x] =

∫
[mc(ds/dτ) + qgµνA

µ(x′)ν ]dτ (1.6.135)

where τ parameterizes the world line xµ(τ), show that the use of this action is equivalent to
using the Lagrangian L given by the rule

L = mc[gµν(x
′)µ(x′)ν ]1/2 + q(x′)µAνgµν . (1.6.136)

Evidently this Lagrangian, like (6.57), is also invariant under Lorentz transformations pro-
vided the parameterization is Lorentz invariant.
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a) Show that L is homogeneous of degree one in the velocities and does not explicitly de-
pend on τ . Verify directly that A[x] is independent of the parameterization employed.
This independence implies that we should not expect to find a unique solution that
extremizes A since any reparametrization also gives a solution. See the discussion at
the end of Subsection 5.2. Consequently, as expected, additional information will be
required. By contrast, show that the action AR[x] associated with the Lagrangian LR
given by (6.57) is not parameterization independent.

b) Show that for the Lagrangian (6.136) the canonical momenta pcan
µ are given by the

relations
pcan
µ = ∂L/∂(x′)µ = pmech

µ + qAµ (1.6.137)

where
pmech
µ = mc(x′)µ/(x

′ · x′)1/2. (1.6.138)

Here, consistent with (6.44), the parameterization and the sign of the square root are
selected in such a way that both (x′)4 and (pmech)4 are positive. Show that both pmech

and pcan are independent of the choice of parameterization τ . Verify that the quantities
pmech
µ comprise a 4-vector, and that there is the Lorentz invariant relation

pmech
µ (pmech)µ = m2c2. (1.6.139)

c) Show that Lagrange’s equations of motion yield the result

d(pmech)µ/dτ = qF µν(dxν/dτ). (1.6.140)

The equations of motion, when written in the form (6.140), are manifestly Lorentz
invariant. However note that, while superficially similar, (6.140) is not the same as
(6.67) because the definitions of pmech in (6.62) and (6.138) are not the same.

Show that the form of the equations of motion (6.140) is unchanged if the world-line
parameterization is changed. Show that the equations of motion (6.140) preserve the
relation (6.139).

d) Verify that, as it stands, L as given by (6.136) is not a very promising Lagrangian
because it has the property

det[∂2L/∂(x′)µ∂(x′)ν ] = 0. (1.6.141)

That is, the requirement (5.6) is violated. [Compare (6.141) with the analogous result
in Exercise 6.7.] Also, because L is homogeneous of degree one in the variables (x′)µ,
it satisfies the relation ∑

µ

[∂L/∂(x′)µ](x′)µ = L. (1.6.142)

See Exercise 5.12. Consequently, verify that the Hamiltonian associated with L van-
ishes identically! By contrast, the Lagrangian LR given by (6.79) satisfies (5.6), has
a well-defined Hamiltonian counterpart HR, and also automatically provides the sup-
plementary condition (6.86).
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e) In point of fact the equations (6.140), in the absence of further information, do not pro-
vide equations of motion in the form (3.1) as is required in order to specify trajectories.
To see this, compute d(pmech)µ/dτ using the chain rule,

d(pmech)µ/dτ =
∑
ν

[∂(pmech)µ/∂(x′)ν ](x′′)ν . (1.6.143)

Show that
det[∂(pmech)µ/∂(x′)ν ] = 0 (1.6.144)

so that (6.140) and (6.143) cannot be solved for the (x′′)ν to produce equations of
motion of the form (3.1). Hint: Either verify (6.144) directly by brute force using
(6.138) or, more elegantly and following the discussion in Subsection 5.2, show that
each (pmech)µ is a homogeneous function of degree zero. It then follows from Euler’s
relation, see Exercise 5.12, that there is the result∑

ν

[(x′)ν ][∂(pmech)µ/∂(x′)ν ] = 0. (1.6.145)

This result shows that the matrix [∂(pmech)µ/∂(x′)ν ] has the (generally nonzero) vector
x′ as an eigenvector with eigenvalue zero. Therefore (6.144) must hold.

f) Nevertheless, as we will see, the equations of motion provided by L give satisfactory
results when supplemented by additional information. As might be expected, what is
required is some information about how the parameter τ is to be selected. Suppose,
for example, that τ is selected in such a way that

x4 = cτ or t = τ. (1.6.146)

(Alternatively, we may proceed as in Exercise 6.10.) Note that this parameterization
is not Lorentz invariant. However, since both pmech and pcan do not depend on the
choice of parameter, they continue to be 4-vectors. With the parameter choice (6.146)
there is the additional information

(x′)4 = c, (1.6.147)

and the equations of motion (6.140) take the form

d(pmech)µ/dt = qF µν(dxν/dt). (1.6.148)

Show that if (6.147) holds, then there is the relation

x′ · x′ = c2(1− v2/c2) = c2/γ2, (1.6.149)

and therefore there is the relation

(x′ · x′)1/2 = c/γ. (1.6.150)

Consequently, verify using (6.138) and (6.150) that (pmech)µ now takes the form

(pmech)µ = (px, py, pz, E/c) = (p, E/c) (1.6.151)
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with the relativistic momentum p given the by the relation

p = γmv (1.6.152)

and the relativistic energy E given by the relation

E = γmc2. (1.6.153)

Show that, when written out in component form, the equations of motion (6.145)
become

dp/dt = q(E + v ×B), (1.6.154)

dE/dt = qv ·E. (1.6.155)

Recall (5.31) and (5.40).

Let us summarize our results. We have seen that, because it is homogeneous of degree 1
in the variables (x′)µ, the Lagrangian (6.136) has no Hamiltonian counterpart. It is therefore
of limited interest if we wish, as we do in this book, to exploit the symplectic symmetries
associated with Hamiltonian formulations. However, with the aid of additional information
specifying the parameterization, it is possible to obtain the equations of motion (6.154) and
(6.155).

1.6.10. This exercise is a continuation of Exercise 6.9. We have explored some consequences
of using the parameterization (6.146). Another attractive possibility (which is Lorentz in-
variant) is to select τ in such a way that there is the relation

dτ = ds (1.6.156)

with (ds)2 given by (6.46). That is, the world line is parameterized by the space-time path
length. Show that in this case there is the additional (Lorentz invariant) information

(x′) · (x′) = 1 for all τ (1.6.157)

so that now
(pmech)µ = mc(x′)µ, (1.6.158)

and the equations of motion (6.140) take the (Lorentz invariant) form

d(pmech)µ/ds = qF µν(dxν/ds),

d2xµ/ds2 = [q/(mc)]F µν(dxν/ds) = [q/(mc)]F µνgνσ(dxσ/ds). (1.6.159)

Verify that these equations of motion preserve the conditions (6.139) and (6.157). Moreover,
observe that they are of the desired form (3.1).

Since the equations of motion (6.159) agree with those given by (6.94) and (6.95), verify
that one can use them to derive the remaining results in items o through q in Exercise 6.7

1.6.11. Review Exercises 6.7 and 6.8. Starting with the Hamiltonian HR, as given by (6.77)
and for which τ is the independent variable, find a new Hamiltonian (call it K) for which
x3 = z is the independent variable. Use (6.105) and show that it is correct to make the
identification pt = −p4c = −p4c. Compare your result with (6.16).
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1.6.12. Exercise 5.2 determined the equations of motion for the mechanical variables r
and p with the time t as the independent variable. See (5.43) and (5.44). The purpose of
this exercise is to determine the equations of motion for mechanical variables when some
coordinate is taken to be the independent variable. Specifically, suppose that the coordinate
z is taken to be the independent variable. Introduce the notation

D = [(pt + qψ)2/c2 −m2c2 − (px − qAx)2 − (py − qAy)2]1/2. (1.6.160)

From (6.16) derive the equations of motion

x′ = ∂K/∂px = (px − qAx)/D, (1.6.161)

y′ = ∂K/∂py = (py − qAy)/D, (1.6.162)

t′ = ∂K/∂pt = −(1/c2)(pt + qψ)/D, (1.6.163)

p′x = −∂K/∂x
= q[(px − qAx)(∂Ax/∂x) + (py − qAy)(∂Ay/∂x) + (1/c2)(pt + qψ)(∂ψ/∂x)]/D

+q∂Az/∂x, (1.6.164)

p′y = −∂K/∂y
= q[(px − qAx)(∂Ax/∂y) + (py − qAy)(∂Ay/∂y) + (1/c2)(pt + qψ)(∂ψ/∂y)]/D

+q∂Az/∂y, (1.6.165)

p′t = −∂K/∂t
= q[(px − qAx)(∂Ax/∂t) + (py − qAy)(∂Ay/∂t) + (1/c2)(pt + qψ)(∂ψ/∂t)]/D

+q∂Az/∂t, (1.6.166)

where a prime denotes d/dz. Next employ (6.161) through (6.163) in (6.164) through (6.166)
to find the results

p′x = q[x′(∂Ax/∂x) + y′(∂Ay/∂x)− t′(∂ψ/∂x)] + q∂Az/∂x, (1.6.167)

p′y = q[x′(∂Ax/∂y) + y′(∂Ay/∂y)− t′(∂ψ/∂y)] + q∂Az/∂y, (1.6.168)

p′t = q[x′(∂Ax/∂t) + y′(∂Ay/∂t)− t′(∂ψ/∂t)] + q∂Az/∂t. (1.6.169)

The relations (6.160) through (6.169) involve canonical momenta. Since we are interested
in employing mechanical variables, introduce the notation

p̃x = px − qAx, (1.6.170)

p̃y = py − qAy, (1.6.171)

p̃t = pt + qψ. (1.6.172)
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From (5.30) we see that p̃x and p̃y are mechanical momenta, and from (6.107) we conclude
that

p̃t = pt + qψ = −γmc2 = −E = −Emech. (1.6.173)

(See also Exercise 7.10.) In terms of these variables the equations of motion (6.161) through
(6.163) for the coordinates take the form

x′ = p̃x/D̃, (1.6.174)

y′ = p̃y/D̃, (1.6.175)

t′ = −(1/c2)p̃t/D̃, (1.6.176)

where
D̃ = [p̃2

t/c
2 −m2c2 − p̃2

x − p̃2
y]

1/2. (1.6.177)

The remaining task is to find the equations of motion for the mechanical momenta.
Differentiate and apply the chain rule to (6.170) through (6.172) to find the results

p̃′x = p′x − qA′x
= p′x − q[(∂Ax/∂x)x′ + (∂Ax/∂y)y′ + (∂Ax/∂z) + (∂Ax/∂t)t

′], (1.6.178)

p̃′y = p′y − qA′y
= p′y − q[(∂Ay/∂x)x′ + (∂Ay/∂y)y′ + (∂Ay/∂z) + (∂Ay/∂t)t

′], (1.6.179)

p̃′t = p′t + qψ′

= p′t + q[(∂ψ/∂x)x′ + (∂ψ/∂y)y′ + (∂ψ/∂z) + (∂ψ/∂t)t′]. (1.6.180)

Now combine (6.167) and (6.178) to obtain the result

p̃′x = p′x − qA′x
= q[x′(∂Ax/∂x) + y′(∂Ay/∂x)− t′(∂ψ/∂x)] + q∂Az/∂x

−q[(∂Ax/∂x)x′ + (∂Ax/∂y)y′ + (∂Ax/∂z) + (∂Ax/∂t)t
′]

= q[y′(∂Ay/∂x− ∂Ax/∂y) + (∂Az/∂x− ∂Ax/∂z)]

−qt′[(∂ψ/∂x) + (∂Ax/∂t)]

= q[y′Bz −By] + qt′Ex. (1.6.181)

Here we have used (5.2). Similarly, verify that

p̃′y = q[Bx − x′Bz] + qt′Ey. (1.6.182)

Next, combine (6.169) and (6.180) to find the result

p̃′t = p′t + qψ′

= q[x′(∂Ax/∂t) + y′(∂Ay/∂t)− t′(∂ψ/∂t)] + q∂Az/∂t

+q[(∂ψ/∂x)x′ + (∂ψ/∂y)y′ + (∂ψ/∂z) + (∂ψ/∂t)t′]

= q[x′(∂ψ/∂x+ ∂Ax/∂t) + y′(∂ψ/∂x+ ∂Ax/∂t) + (∂ψ/∂z + ∂Az/∂t)]

= −q[x′Ex + y′Ey + Ez]. (1.6.183)
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Verify that the relations (6.181) through (6.183) are what one would expect in view of (6.114)
and (6.115).

There is one final step. We would like the right sides of (6.181) through (6.183) to involve
only the coordinates and mechanical momenta, and not the quantities x′, x′, and t′. This
can be accomplished with the aid of (6.174) through (6.177). Show that the net results are
equations of motion for the mechanical momenta in the form

p̃′x = q[(p̃y/D̃)Bz −By]− q[(1/c2)p̃t/D̃]Ex, (1.6.184)

p̃′y = q[Bx − (p̃x/D̃)Bz]− q[(1/c2)p̃t/D̃]Ey, (1.6.185)

p̃′t = −q[(p̃xEx + p̃yEy)/D̃ + Ez]. (1.6.186)

Taken together, the relations (6.174) through (6.177) and (6.184) through (6.186) provide
equations of motion in mechanical variables when z is taken to be the independent variable.
That is, the dependent variables are (x, y, t; p̃x, p̃y, p̃t), and z is the independent variable.
Note that these equations of motion, like their similar counterparts in Exercises 5.2, 6.7, 6.9,
and 6.10, involve only the fields E and B and make no reference to the vector and scalar
potentials A and ψ.

1.6.13. Review Exercise 6.12. It formulated equations of motion for the dependent variables
(x, y, t; p̃x, p̃y, p̃t) with z taken to be the independent variable. Your task for this exercise is
to formulate equations of motion for the dependent variables (x, y, t;x′, y′, t′) with z taken
to be the independent variable. What are desired are equations for the quantities (x′′, y′′, t′′)
in terms of the variables (x, y, t;x′, y′, t′) and z. Here a prime denotes (d/dz).

1.6.14. Consider charged-particle motion in the case of a static magnetic field B(r) and no
electric field. (Note that, according to Maxwell’s equations, there must be an electric field if
B is not static.) Show from (5.40) that in this case the energy E is constant and, by (5.39),
γ is constant. Next show from (5.48) that the equations of motion take the form

m∗d2r/dt2 = q(v ×B) (1.6.187)

where

m∗ = γm. (1.6.188)

Thus, in the case of a static magnetic field and no electric field, the only difference between
relativistic and nonrelativstic motion is that m must be replaced by m∗. To be more precise,
suppose m∗ (with m∗ ≥ m) and hence γ are specified numbers. The equations of motion
(6.187) have solutions for any set (rin,vin) of initial conditions. Those solutions for which
vin satisfies

[1− (vin/c) · (vin/c)]−1/2 = m∗/m = γ (1.6.189)

will also be solutions of the relativistic equations of motion.

Review Exercise 5.9. Show that the results in that exercise are consistent with the results
of this exercise.
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1.6.15. Review Exercise 6.14. Again view m∗ as a specified number. Show that the equa-
tions of motion (6.187) follow from the “nonrelativistic” Lagrangian

L = (m∗/2)v · v + qv ·A(r). (1.6.190)

Show that the canonical momentum p is given by the relation

p = m∗v + qA, (1.6.191)

and that the Hamiltonian H associated with L is given by

H = (p− qA) · (p− qA)/(2m∗). (1.6.192)

Finally show that for trajectories of physical interest, namely those that satisfy (6.189), H
has the constant value

H = (1/2)mc2(γ2 − 1)/γ = (1/2)mc2[(m∗/m)− (m/m∗)] = (1/2)m∗v2. (1.6.193)

1.6.16. This exercise describes geodesics and affine geodesics. As background, review Exer-
cises 5.16 through 5.18. They treat the problem of finding shortest paths in two-dimensional
Euclidean space. Two-dimensional Euclidean space is a simple example of a Riemannian
manifold for which the metric tensor is constant and equal to the identity matrix. Roughly
speaking, an n-dimensional manifold is a set that locally at each point looks like an n-
dimensional space with local coordinates x1, · · · , xn. When equipped with a (possibly posi-
tion dependent) metric tensor g(x), it becomes a Riemannian manifold.

Now consider a general Riemannian manifold with local coordinates xi and metric tensor
g(x). We assume that g is invertible. This manifold is called proper Riemannian if g is
positive definite, and pseudo Riemannian if g is not positive (or negative) definite. [Thus
for example, according to (6.45), space-time in the theory of special relativity (Minkowski
space) is a pseudo Riemannian manifold.] Let y and z be any two nearby points in the
manifold, and consider all paths x(τ) joining y and z such that

x(0) = y,

x(1) = z. (1.6.194)

Let a dot denote (d/dτ). If the manifold is proper Riemannian, we may define a distance
functional D[x] by the rule

D[x] =

∫ 1

0

dτ

[∑
ij

gij(x)ẋiẋj

]1/2

. (1.6.195)

If the manifold is either proper or pseudo Riemannian, we may define an energy functional
E[x] by the rule

E[x] = (1/2)

∫ 1

0

dτ
∑
ij

gij(x)ẋiẋj. (1.6.196)
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A path that extremizes D is called a geodesic, and a path that extremizes E is called an
affine geodesic. Note that the functional D[x] may not be defined for all paths in a pseudo-
Riemannian space because in that case the argument of the square root appearing in (6.195)
may be negative. Correspondingly, geodesics do not necessarily exist between all y, z pairs
in a pseudo-Riemannian space. By contrast, the functional E[x] is well defined for all paths
in both the proper and pseudo-Riemannian cases. (Note that in this simplified discussion
we have assumed that the topology of the manifold is that of Euclidean space since we
have assumed global coordinates in defining D and/or E. A more general discussion would
involve the use of overlapping local coordinate patches.)

Is there a relation between geodesics and affine geodesics?

a) Let us begin with the geodesic case. Show that the functional D[x] does not depend
on the parameterization of x. That is, one may replace x(τ) by x(σ(τ)) where σ(τ) is
any function satisfying

σ(0) = 0,

σ(1) = 1. (1.6.197)

Therefore, as described in Subsection 5.2 and illustrated in Exercises 5.16, 5.17, 6.5,
and 6.9, there will eventually be a need for further information.

b) The condition for a geodesic is δD = 0. Verify, by the standard calculus of variations,
that this condition is equivalent to Lagrange’s equations for the Lagrangian LD given
by

LD = (gijẋ
iẋj)1/2 = ds/dτ. (1.6.198)

Here, and in what follows, we again employ the Einstein summation convention. Show
that LD has the (unpromising) property

det(∂2LD/∂ẋ
i∂ẋj) = 0, (1.6.199)

and that this property arises from the fact that LD is homogeneous of degree one
in the ẋi, which is why D[x] is parameterization independent. Also show that the
Hamiltonian HD associated with LD vanishes identically.

c) Nevertheless, let us push on. As a first step, show that

∂LD/∂ẋ
i = gijẋ

j/(gk`ẋ
kẋ`)1/2 = gijẋ

j/(ds/dτ). (1.6.200)

Next verify the relations

d

dτ

(
∂LD
∂ẋi

)
=

[
d(gijẋ

j)

dτ

](
ds

dτ

)−1

+ (gijẋ
j)
d(ds/dτ)−1

dτ
, (1.6.201)

d(gijẋ
j)/dτ = gijẍ

j + (∂gij/∂x
k)ẋjẋk, (1.6.202)

d(ds/dτ)−1

dτ
= −

(
ds

dτ

)−2
d2s

dτ 2
, (1.6.203)
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∂LD/∂x
i = (1/2)(gjkẋ

jẋk)−1/2(∂gjk/∂x
i)ẋjẋk = (1/2)(ds/dτ)−1(∂gjk/∂x

i)ẋjẋk.
(1.6.204)

Also verify the identity

∂gij/∂x
k = (1/2)(∂gij/∂x

k + ∂gik/∂x
j) + (1/2)(∂gij/∂x

k − ∂gik/∂xj), (1.6.205)

which decomposes (∂gij/∂x
k) into symmetric and antisymmetric parts under the in-

terchange of j and k. Note that only the symmetric part contributes to the sum
(∂gij/∂x

k)ẋjẋk that occurs in (6.202) and (6.204). Thus, show that Lagrange’s equa-
tions (5.3) for LD produce the relations

gijẍ
j(ds/dτ)−1 + (ds/dτ)−1(1/2)(∂gij/∂x

k + ∂gik/∂x
j)ẋjẋk

−(gijẋj)(ds/dτ)−2(ds2/dτ 2) = (1/2)(ds/dτ)−1(∂gjk/∂x
i)ẋjẋk. (1.6.206)

d) Next multiply through by (ds/dτ) and group terms to get the result

gijẍ
j = gijẋ

j(ds/dτ)−1(ds2/dτ 2) + (1/2){(∂gjk/∂xi)
− [(∂gij/∂x

k) + (∂gik/∂x
j)]}ẋjẋk. (1.6.207)

Since g is invertible, it appears that we may solve (6.207) for the ẍj. Indeed, multiply
both sides of (6.207) by g`i, where g`i is defined by the rule

g`i = (g−1)`i, (1.6.208)

and sum over i to get the intermediate results

g`igijẍ
j = g`igijẋ

j(ds/dτ)−1(d2s/dτ 2)− Γ`jkẋ
jẋk. (1.6.209)

Here the Γ`jk are the Christoffel symbols/coefficients defined by the rule

Γ`jk = (1/2)g`i{[(∂gij/∂xk) + (∂gik/∂x
j)]− (∂gjk/∂x

i)}. (1.6.210)

Note that they are symmetric under the interchange of the two lower indices. Show
that carrying out the indicated sums in (6.209) and using (6.208) yield the final results

ẍ` = ẋ`(ds/dτ)−1(d2s/dτ 2)− Γ`jkẋ
jẋk. (1.6.211)

e) Have we, contrary to (6.199), succeeded in solving for the ẍj? The answer is no,
because in general the quantity (d2s/dτ 2) also involves the ẍj. What is needed is some
information about the parameterization. One possibility, also discussed in Exercise
5.17, is to take one of the xj as the parameter. Another, more democratic, approach
is to select the parameterization in such a way that

d2s/dτ 2 = 0. (1.6.212)

Verify that (6.212) implies relations of the form

ds/dτ = const = a,
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s = aτ + b, (1.6.213)

where a and b are constants. Moreover, it is natural to set b = 0 so that s = aτ and
s = 0 when τ = 0. Finally, since both sides of (6.211) are homogeneous of degree 2 in
a when (6.213) holds, verify that we may as well set a = 1 so that

s = τ. (1.6.214)

When this is done, verify that the equations (6.211) for a geodesic become

d2x`/ds2 + Γ`jk(dx
j/ds)(dxk/ds) = 0, (1.6.215)

and on this geodesic, according to (6.214), there is the relation

(ds/dτ)2 = gijẋ
iẋj = 1. (1.6.216)

f) There is a consistency check that may dispel any lingering doubts about the correctness
of what we have done. Suppose we solve the equations

d2x`/dτ 2 + Γ`jk(dx
j/dτ)(dxk/dτ) = 0. (1.6.217)

What can be said about LD = ds/dτ for such solutions? Show, by undoing some of
the previous steps, that (6.217) is equivalent to the relation

gijẍ
j + [(∂gij/∂x

k)− (1/2)(∂gjk/∂x
i)]ẋjẋk = 0. (1.6.218)

Next, show that multiplying (6.218) by ẋi and summing over i yields the result

gijẋ
iẍj + (1/2)(∂gij/∂xk)]ẋ

iẋjẋk = 0. (1.6.219)

According to (6.198) there is the relation

L2
D = gijẋ

iẋj. (1.6.220)

Show that (6.220) implies the relation

LD(dLD/dτ) = gijẋ
iẍj + (1/2)(∂gij/∂x

k)ẋiẋjẋk, (1.6.221)

and that (6.219) and (6.221, when combined, yield the relation

dLD/dτ = 0. (1.6.222)

Therefore, the relation

ds/dτ = const (1.6.223)

is a consequence of (6.217), and hence is consistent with (6.217).
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g) Having discussed geodesics at some length, let us now turn to affine geodesics. Show
that, unlike D[x], the functional E[x] does depend on parameterization. Evidently the
Lagrangian LE for an affine geodesic is given by

LE = (1/2)gijẋ
iẋj. (1.6.224)

Show that in this case
det(∂2LE/∂ẋ

i∂ẋj) 6= 0. (1.6.225)

Show that
pi = ∂LE/∂ẋ

i = gijẋ
j = ẋi, (1.6.226)

and that the Hamiltonian HE associated with LE is given by

HE = piẋ
i − LE = (1/2)gijẋ

iẋj = (1/2)gijpipj. (1.6.227)

Show that HE is a constant of motion, and hence

HE = (1/2)gijẋ
iẋj = (1/2)(ds/dτ)2 = const. (1.6.228)

Show that
dpi/dτ = gijẍ

j + (∂gij/∂x
k)ẋjẋk, (1.6.229)

∂LE/∂x
i = (1/2)(∂gjk/∂x

i)ẋjẋk, (1.6.230)

and hence Lagrange’s equations of motion yield the relations

gijẍ
j + [(∂gij/∂x

k)− (1/2)(∂gjk/∂x
i)]ẋjẋk = 0. (1.6.231)

Show that these relations can be solved for the ẍj to yield the results

ẍ` + Γ`jkẋ
jẋk = 0. (1.6.232)

You have demonstrated that an affine geodesic satisfies (6.228) and (6.232). Comparison
of (6.217) and (6.232) shows that a geodesic, when it exists and is parameterized to satisfy
τ = s/a, is also an affine geodesic. Conversely, an affine geodesic always exists, is always
automatically parameterized to satisfy (6.228), and yields a geodesic parameterized to satisfy
τ = s/a when such exists. Thus, there is no loss of generality in working with affine geodesics,
and they have the advantage of being defined even when the metric is not positive definite.

There is yet one more set of remarks of interest. Let x0 be some point and consider
some affine geodesic through x0 parameterized in such a way that x(τ) = x0 when τ = 0.
Let us see what can be said about the quantity (1/2)gijẋ

iẋj at this point. Since the metric
tensor gij(x

0) at this point, when regarded as a matrix, is a real symmetric matrix, it can be
diagonalized by a similarity transformation employing a real orthogonal matrix. Moreover,
all its eigenvalues will be real. Next, by proper scaling of the coordinates, gij at this point
can be brought to a diagonal form where each of its eigenvalues are either +1, 0, or −1;
and the numbers of each kind are invariants.46 Since we have assumed that gij is invertible,
we will exclude from our discussion the case where any of the eigenvalues vanish. Then, in
the case that gij is positive definite, all the eigenvalues (after diagonalization and suitable
coordinate scaling) may be taken to be +1. Correspondingly, the value of (1/2)gijẋ

iẋj at
this point will be positive, and (after suitable rescaling of the parameter τ) we may confine
our attention to the case for which it has the value 1/2.47 Similarly, if gij is negative definite,

46This result is called Sylvestor’s law of inertia for quadratic forms.
47Note that (6.232) is invariant under rescaling of τ .
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all the eigenvalues may be taken to be −1. In this case the value occurring (1/2)gijẋ
iẋj at

this point will be negative, and we may confine our attention to the case for which it has
the value −1/2. Finally, in the pseudo-Riemannian case, some of the eigenvalues will be
positive and some will be negative.48 In this circumstance we may confine our attention to
three classes of cases: those for which (1/2)gijẋ

iẋj has the value +1/2, those for which it
has the value 0, and those for which it has the value −1/2.

All these considerations apply to the possible values of (1/2)gijẋ
iẋj at the point x0

for affine geodesics through the point x0. But now, according to (6.228), the value of
(1/2)gijẋ

iẋj remains constant all along an affine geodesic. Therefore in the positive definite
case we may restrict our attention to affine geodesics for which the constant appearing on
the right side of (6.228) has the value 1/2; and in the negative definite case we may restrict
our attention to affine geodesics for which the constant has the value −1/2. Finally, in the
pseudo Riemannian case, we may restrict our attention to those affine geodesics for which
the constant has the values 1/2, 0, and −1/2.

1.6.17. This exercise examines how a Lorentz transformation acts on the electromagnetic
field tensor Fαβ as given by (6.56), which we repeat below:

F µν =


0 −Bz By Ex/c
Bz 0 −Bx Ey/c
−By Bx 0 Ez/c
−Ex/c −Ey/c −Ez/c 0

 , (1.6.233)

so that F 12 = −Bz, etc. Let us review some background information: A Lorentz transfor-
mation, when acting on space-time, is a linear transformation described by a matrix which
we will call Λ. See (6.2.49). Its action on the four-vector (6.42) is given by the relation

x̄α =
∑
µ

Λαµxµ. (1.6.234)

Its action on a tensor Fαβ is given by the relation

F̄αβ =
∑
µν

ΛαµΛβνF µν . (1.6.235)

See Exercise 6.2.6. The matrix Λ satisfies the relation

ΛgΛT = g. (1.6.236)

See (6.2.51). Verify, if we view F as a matrix, then (6.235) can be written in the form

F̄ = ΛFΛT . (1.6.237)

[Note that the left side of (6.236) and the right side of (6.237) have an identical structure.
That is because both g and F are rank two tensors, and therefore are acted upon by a

48For example, in the case (6.45), one of the eigenvalues is +1 and three are −1.
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Lorentz transformation Λ in the same fashion. But the difference between g and F is that
g is invariant under this action, and F is not.]

Watch as we now perform some trickery: Define a matrix G by the rule

G = F − λg (1.6.238)

where λ is a parameter. Define a transformed matrix Ḡ by the rule

Ḡ = ΛGΛT . (1.6.239)

Show that there is the result
Ḡ = F̄ − λg. (1.6.240)

Define polynomials P (F, λ) and P (F̄ , λ) by the rules

P (F, λ) = det(G), (1.6.241)

P (F̄ , λ) = det(Ḡ). (1.6.242)

For the identity component of the Lorentz group the Lorentz transformation matrix Λ has
the property

det(Λ) = 1. (1.6.243)

See Exercise 7.3.27. Show, using (6.239), that

det(Ḡ) = det(G) (1.6.244)

and consequently
P (F̄ , λ) = P (F, λ). (1.6.245)

It therefore behooves us to compute P (F, λ).
Show, because F is antisymmetric, only even powers of λ can occur in P (F, λ). Indeed,

show that

P (F, λ) = −λ4 + λ2[B ·B − (1/c2)E ·E] + (1/c2)(E ·B)2. (1.6.246)

Define functions I1 and I2 of F (the electromagnetic fields E and B) by the rules

I1(F ) = B ·B − (1/c2)E ·E, (1.6.247)

I2(F ) = (1/c)(E ·B). (1.6.248)

Then, by (6.245) and upon equating powers of λ, we find using (6.246) that

I1(F̄ ) = I1(F ), (1.6.249)

and
[I2(F̄ )]2 = [I2(F )]2 (1.6.250)

where F̄ is the field tensor composed of Ē and B̄, the fields resulting from applying the
Lorentz transformation Λ to the fields E and B. That is, the field functions I1 and [I2]2 are
Lorentz invariant.



1.6. HAMILTON’S EQUATIONS WITH A COORDINATE AS AN . . . 111

In fact, the function I2 itself, and not just its square, is Lorentz invariant,

I2(F̄ ) = I2(F ). (1.6.251)

Evidently, (6.250) follows from (6..251). But can (6.251) be proved from (6.250)? It can, by
continuity : First, suppose F is such that I2(F ) = 0. Then we have the chain of reasoning

I2(F ) = 0⇒ [I2(F )]2 = 0⇒ [I2(F̄ )]2 = 0⇒ I2(F̄ ) = 0, (1.6.252)

which establishes (6.251) in this case. But what about the case I2(F ) 6= 0? In this case,
without further reasoning, we may only conclude from (6.250) that

I2(F̄ ) = I2(F ) or I2(F̄ ) = −I2(F ). (1.6.253)

We wish to rule out the second possibility.
Let Λ̂(τ) be a continuous path in the identity component of the Lorentz group that

connects the identity element I to the element Λ. Such a path is easily specified using,
in Lie form, a polar decomposition for elements in the identity component of the Lorentz
group. For details, see Exercise 7.3.27. There it is shown that Lorentz group elements Λ in
the identity component can be written in the form

Λ(λ,m; θ,n) = exp(λm ·N ) exp(θn ·L) (1.6.254)

where N and L are Lie generators for boosts and rotations, respectively.49 We now define a
path Λ̂(τ) with the desired properties by the rule

Λ̂(τ) = exp(τλm ·N ) exp(τθn ·L). (1.6.255)

By construction, this path satisfies the relations

Λ̂(0) = I and Λ̂(1) = Λ. (1.6.256)

Next define a sequence of field tensors F̂ (τ) by the rule

F̂ (τ) = Λ̂(τ)F Λ̂T (τ) (1.6.257)

with the results that

F̂ (0) = F and F̂ (1) = F̄ . (1.6.258)

Finally, define a function Î2(τ) by the rule

Î2(τ) = I2[F̂ (τ)]. (1.6.259)

Verify that Î2(τ) is a continuous function, and has the properties

Î2(0) = I2(F ) and Î2(1) = I2(F̄ ). (1.6.260)

49Note that the parameters λ appearing in (6.238) and (6.254) are not the same.
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We now have all the required ingredients to complete our argument. We have already
assumed I2(F ) 6= 0. Next assume that the second option in (6.253) holds,

I2(F̄ ) = −I2(F ). (1.6.261)

Show that then

Î2(1) = I2(F̄ ) = −I2(F ) = −Î2(0). (1.6.262)

That is, the function Î2(τ) changes sign as τ goes from τ = 0 to τ = 1. At this point
Bernard Bolzano (1781-1848) would exclaim, based on his intermediate value theorem, that
Î2(τ) must vanish for some τ value somewhere in the interval τ ∈ (0, 1). Let τ0 ∈ (0, 1) be
a/the τ value for which Î2(τ) takes on the intermediate value 0,

Î2(τ0) = 0. (1.6.263)

Now we may make the reasoning chain

Î2(τ0) = 0⇒ [Î2(τ0)]2 = 0⇒ [Î2(τ0)]2 6= [I2(F )]2, (1.6.264)

which shows that [I2]2 is not Lorentz invariant. We have reached a contradiction, and
therefore the first option in (6.253) must hold. That is, I2 itself must be Lorentz invariant,
as claimed.

There is also an alternate proof that I1 and I2 are Lorentz invariant and, in fact are
manifestly Lorentz invariant. Begin by recalling some standard definitions: The tensor Fµν ,
the lower-index/covariant version of Fαβ, is defined by the rule

Fµν =
∑
αβ

gµαgνβF
αβ. (1.6.265)

Verify that

Fµν =


0 −Bz By −Ex/c
Bz 0 −Bx −Ey/c
−By Bx 0 −Ez/c
Ex/c Ey/c Ez/c 0

 , (1.6.266)

so that F12 = −Bz, etc. Evidently the elements of Fµν are obtained from those of F µν by
making the substitution E → −E. The tensor ∗F µν , the tensor dual to Fαβ, is defined by
the rule

∗F µν = (1/2)
∑
αβ

εµναβFαβ. (1.6.267)

Here εαβγδ is the completely antisymmetric tensor with ε1234 = 1. Verify that a particular
application of the rule (6.267) yields the relation ∗F 12 = F34. Verify the general result

∗F µν =


0 −Ez/c Ey/c −Bx

Ez/c 0 −Ex/c −By

−Ey/c Ex/c 0 −Bz

Bx By Bz 0

 , (1.6.268)
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so that ∗F 12 = −Ez/c, etc. Evidently the elements of ∗F µν are obtained from those of F µν

by making the substitutions E/c→ −B and B → E/c.
With these definitions in hand, employ them to show that there are the relations

I1(F ) = (1/2)
∑
αβ

FαβFαβ, (1.6.269)

I2(F ) = (1/8)
∑
αβγδ

εαβγδFαβFγδ = (1/4)
∑
αβ

∗FαβFαβ. (1.6.270)

Finally, for future use in Exercise 8.2.12, note from (6.246) that there is the result

det(F ) = P (F, 0) = (1/c2)(E ·B)2 = [I2(F )]2. (1.6.271)

You have shown that (6.249) and (6.251) comprise a necessary condition for a field pair
Ē,B̄ and E,B to be related by a Lorentz transformation. It can be shown that (6.249) and
(6.251) also comprise a sufficient condition. See Exercise 6.2.12. That is, if for a given pair
F̄ ,F (6.249) and (6.251) hold, then there must a Lorentz transformation Λ such that (6.237)
holds.

Since it has been established that (6.249) and (6.251) comprise a necessary and suffi-
cient condition, it follows that any Lorentz invariant electromagnetic field function must be
expressible as some function of I1 and I2.

1.6.18. The purpose of this exercise is to study vector and tensor transformation properties.
Recall that under a Lorentz transformation the contravariant components of a four vector
transform according to the rule (2.34), which we repeat below:

x̄α =
∑
µ

Λαµxµ. (1.6.272)

See Exercise 6.17. The covariant components of the same four vector are given by the
relation

xµ =
∑
ν

gµνx
ν . (1.6.273)

See (6.49). Your first task is to determine how the covariant components transform under
the same Lorentz transformation.

Begin with some preparatory steps. Observe that (6.272) implies the differential relations

dx̄α =
∑
µ

Λαµdxµ. (1.6.274)

If we view the x̄α as functions of the xµ there are also the differential relations

dx̄α =
∑
µ

(∂x̄α/∂xµ)dxµ. (1.6.275)

Upon comparison of (6.274) and (6.275) we see that there are the partial differential relations

∂x̄α/∂xµ = Λαµ. (1.6.276)
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Consequently (6.272) can also be written in the form

x̄α =
∑
µ

(∂x̄α/∂xµ)xµ. (1.6.277)

Next show that (6.274) can be inverted. Multiply both sides of (6.274) by (Λ−1)να and sum
over α to find the result∑

α

(Λ−1)ναdx̄α =
∑
α

(Λ−1)να
∑
µ

Λαµdxµ =
∑
µ

∑
α

(Λ−1)ναΛαµdxµ

=
∑
µ

(Λ−1Λ)νµdxµ =
∑
µ

(I)νµdxµ = dxν . (1.6.278)

(That Λ−1 exists follows from Exercise 7.3.27.) If we view the xν as functions of the x̄α there
are also the differential relations

dxν =
∑
α

(∂xν/∂x̄α)dx̄α. (1.6.279)

Upon comparison of (6.278) and (6.279) we see that there are the partial differential relations

∂xν/∂x̄α = (Λ−1)να. (1.6.280)

We are now ready to proceed with the first task. From (6.48) through (6.50) there are
the relations

x̄α =
∑
β

gαβx̄
β =

∑
β

gαβx̄β, (1.6.281)

xµ =
∑
ν

gµνxν . (1.6.282)

Use these relations and a relation of the form (6.272) to show that

x̄α =
∑
β

gαβ
∑
µ

Λβµ
∑
ν

gµνxν , (1.6.283)

which can be rewritten in the matrix form

x̄α =
∑
β

gαβ
∑
µ

Λβµ
∑
ν

gµνxν =
∑
ν

(gΛg)ανxν . (1.6.284)

Next show from (6.236) that there is the relation

gΛg = (ΛT )−1 (1.6.285)

so that (6.284) can also be rewritten in the form

x̄α =
∑
ν

Kανxν (1.6.286)
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where
K = (ΛT )−1 = (Λ−1)T . (1.6.287)

Show for comparison that (6.272), upon a suitable relabeling of indices, takes the form

x̄α =
∑
ν

Λανxν . (1.6.288)

Evidently (6.286) and(6.288) take the same form with K given in terms of Λ by the relation
(6.287). At this point we remark that it can be shown that K is a Lorentz transformation
matrix if Λ is, and vice versa. See Exercise 6.2.6. For a further discussion of the relation
(6.287), see Exercise 3.7.37 and (3.7.241).

You have completed the first task. You have shown that the covariant components
of a four vector transform according to the rule given by (6.286) and (6.287). But now
somewhat more can be said. Show that (6.286), (6.287), and (6.280) can be combined to
give the relation

x̄α =
∑
ν

Kανxν =
∑
ν

(KT )ναxν =
∑
ν

(Λ−1)ναxν =
∑
ν

(∂xν/∂x̄α)xν . (1.6.289)

You have shown that the covariant components of a four vector transform according to the
rule

x̄α =
∑
ν

(∂xν/∂x̄α)xν . (1.6.290)

Show for comparison that (6.277), upon a suitable relabeling of indices, takes the form

x̄α =
∑
ν

(∂x̄α/∂xν)xν . (1.6.291)

Evidently, (6.290) and (6.291) are related by the symbol interchange ∂xν ↔ ∂x̄α. Note also
that comparison of (6.286) and (6.290) gives the relation

∂xν/∂x̄α = Kαν . (1.6.292)

It should be compared with (6.276), which we rewrite in the form

∂x̄α/∂xν = Λαν . (1.6.293)

Note that again there is the symbol interchange ∂xν ↔ ∂x̄α.
Your second task is to apply what you have learned about the transformation properties

of four vectors to the case of general tensors. To begin, suppose there are quantities Bµ

which obey the four vector contravariant transformation rule

B̄α =
∑
µ

ΛαµBµ =
∑
µ

(∂x̄α/∂xµ)Bµ, (1.6.294)

and suppose there are quantities Cµ which obey the four vector covariant transformation
rule

C̄α =
∑
µ

KαµCµ =
∑
µ

(∂xµ/∂x̄α)Cµ. (1.6.295)



116 1. INTRODUCTORY CONCEPTS

Verify immediately from (6.48) through (6.51) the result∑
α

BαCα =
∑
α

BαC
α, (1.6.296)

that this result is independent of the transformation rules, and that analogous results hold
for the B̄ and C̄ components. Next verify that there is the more subtle result∑

α

B̄αC̄α =
∑
αµν

ΛαµKανBµCν =
∑
αµν

(ΛT )µαKανBµCν =

=
∑
µν

(ΛTK)µνBµCν =
∑
µν

IµνBµCν =
∑
ν

BνCν . (1.6.297)

[Here we have used the dummy index principle to replace (6.295) by the equivalent statement
C̄α =

∑
ν K

ανCν =
∑

ν(∂x
ν/∂x̄α)Cν .] That is, the quantity

∑
α B̄

αC̄α is invariant (has the
value

∑
ν B

νCν) no matter what Lorentz transformation Λ may be. Indeed, Λ need not even
be a Lorentz transformation. Evidently the invariance relation (6.297) holds for any (but
nonsingular) matrix Λ in any number of dimensions. Finally, the invariance relation (6.297)
holds for al l (invertible) maps M, including possibly nonlinear maps, that send quantities
xν to quantities x̄α because the B̄α and C̄α can also be defined in terms of the Bµ and Cµ
using only partial derivatives of M and its inverse. See the far right sides of (6.294) and
(6.295). Therefore, although our discussion began in the context of Special Relativity, the
results we have found may also be applicable in other contexts.

The invariance principle that the four-vector contravariant and covariant transformation
properties compensate each other so that (6.297) holds can be extended to general tensors.
For example, let T µν•τ••σ• be a quantity that depends on the contravarient indices µντ and the
covariant index σ. Here, to keep track of index positions, we have placed • symbols below
contravarient indices and above covariant indices to indicate where these indices would go if
they were lowered or raised, respectively. The quantities T µν•τ••σ• are said to comprise a (mixed
rank 4) tensor if they transform according to the rule

T̄αβ•δ••γ• =
∑
µνστ

ΛαµΛβνKγσΛδτT µν•τ••σ• . (1.6.298)

That is, Λ matrices are used for contravariant indices and K matrices are used for covariant
indices.50 Now pick a pair of indices associated with T , one being contravariant and one
being covariant. For example, the pair could be the first contravariant index (which in this
example would be µ or α) and the only covariant index (which in this example would be the
third index and therefore would be σ or γ). Form the rank 2 objects Sντ•• and S̄βδ•• by the
rules

Sντ•• =
∑
θ

T θν•τ••θ• , (1.6.299)

50Some authors write relations such as (6.288) in the form x̄α =
∑
ν Λα••νx

ν and would also use both
contravariant and covariant indices on the Λ and K appearing in expressions such as (6.298). Although
doing so appears to neatly marry indices, we do not think such notation is a good idea because it makes Λ
and K look like tensors, which they are not. They are transformation coefficients.
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S̄βδ•• =
∑
θ

T̄ θβ•δ••θ• . (1.6.300)

Verify that employing (6.298) in (6.300) and then using (6.299) yields the result

S̄βδ•• =
∑
θ

T̄ θβ•δ••θ• =
∑
θµνστ

ΛθµΛβνKθσΛδτT µν•τ••σ•

=
∑
θµνστ

(ΛT )µθΛβνKθσΛδτT µν•τ••σ• =
∑
θµνστ

Λβν(ΛT )µθKθσΛδτT µν•τ••σ•

=
∑
µνστ

Λβν(ΛTK)µσΛδτT µν•τ••σ• =
∑
µνστ

Λβν(I)µσΛδτT µν•τ••σ•

=
∑
µντ

ΛβνΛδτT µν•τ••µ• =
∑
ντ

ΛβνΛδτ
∑
µ

T µν•τ••µ•

=
∑
ντ

ΛβνΛδτSντ•• . (1.6.301)

You have shown that the quantities Sντ•• comprise a second rank contravariant tensor. The
process you have executed is called contraction. Evidently contraction can be carried out as
often as desired or possible, thereby yielding tensors of successively lower ranks by decre-
ments of 2, until only contravariant or covariant indices remain (depending on which were
more abundant initially) or no indices remain if contravariant and covariant indices were
equally abundant initially. Also, if there are multiple ways of choosing contravariant and co-
variant pairs (as there are in this example), the net result generally depends on the choice(s)
of pairs. Finally, to put our findings another way, we may say that the operations of tensor
transformation and tensor contraction commute. That is, we may first contract one or some
index pairs and then transform using the remaining indices, or we may first transform using
all indices and then contract. Both operation orders yield the same result.

We have seen that contravariant and covariant components of vectors and tensors are
characterized by their transformation properties. Your last task in this exercise is to apply
this concept to the relations (6.55). Consider the differential operators ∂/∂x̄α and ∂/∂xβ.
According to the chain rule they are related by the equation

∂/∂x̄α =
∑
β

(∂xβ/∂x̄α)(∂/∂xβ). (1.6.302)

As in (6.55), make the definitions and index assignments/placements

∂̄α = ∂/∂x̄α, (1.6.303)

∂β = ∂/∂xβ. (1.6.304)

Also verify that, by relabeling indices, (6.292) can be rewritten in the form

Kαβ = ∂xβ/∂x̄α. (1.6.305)

Finally, using (6.303), (6.304), and (6.302), verify that (6.302) can be rewritten in the form

∂̄α =
∑
β

Kαβ∂β. (1.6.306)
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Observe, by comparing (6.295) and (6.306), that (6.306) is the expected transformation rule
for covariant components, and therefore the index placements in (6.303) and (6.304) are
correct.

1.7 Definition of Poisson Bracket

In subsequent chapters we will learn that Hamiltonian dynamics can be placed in a Lie-
algebraic context. Key to this placement is the Poisson bracket.51 In this section we will
review its definition and some of its properties.

Let H(q, p, t) be the Hamiltonian for some dynamical system and let f be any dynamical
variable. That is, let f(q, p, t) be any function of the phase-space variables q, p and the time
t. Consider the problem of computing the total time rate of change of f along a trajectory
generated by H. According to the chain rule, this derivative is given by the expression

df/dt = ∂f/∂t+
∑
i

{(∂f/∂qi)q̇i + (∂f/∂pi)ṗi}. (1.7.1)

However, the q̇’s and ṗ’s are given by Hamilton’s equations of motion (5.11). Consequently,
the expression for df/dt can also be written in the form

df/dt = ∂f/∂t+
∑
i

{(∂f/∂qi)(∂H/∂pi)− (∂f/∂pi)(∂H/∂qi)}. (1.7.2)

The second quantity appearing on the right side of (7.2) occurs so often that it is given
a special symbol and a special name in honor of Poisson. Let f and g be any two functions
of the variables q, p, t. Then the Poisson bracket of f and g, denoted by the symbol [f, g], is
another function defined by the equation

[f, g] =
∑
i

{(∂f/∂qi)(∂g/∂pi)− (∂f/∂pi)(∂g/∂qi)}. (1.7.3)

With this new notation, (7.2) can be written in the compact form

df/dt = ∂f/∂t+ [f,H]. (1.7.4)

The Poisson bracket operation has three important and obvious properties that are easily
checked from its definition:

1. Distributive property,
[(af + bg), h] = a[f, h] + b[g, h] (1.7.5)

for arbitrary constants a, b.

2. Antisymmetry condition,
[f, g] = −[g, f ]. (1.7.6)

51Poisson (1781-1840) was a student of Lagrange and Laplace and, at age 25, succeeded Fourier as a
professor at the École Polytechnique.
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3. Derivation with respect to multiplication,

[f, gh] = [f, g]h+ g[f, h]. (1.7.7)

(For those unfamiliar with the term, a derivation is an operation that behaves like “dif-
ferentiation” in the sense that it obeys a product rule analogous to the product rule for
differentiating a product in ordinary calculus.) From the definition one also easily finds the
so-called fundamental Poisson brackets,

[qi, qj] = 0,

[pi, pj] = 0,

[qi, pj] = δij. (1.7.8)

At this point it is convenient to introduce a more compact notation for the phase-space
variables (q1 · · · qn), (p1 · · · pn). To do this, introduce the 2n variables (z1, . . . , z2n) by the
rule

z = (z1, . . . , zn; zn+1, . . . , z2n) = (q1, . . . , qn; p1, . . . , pn). (1.7.9)

That is, the first n z’s are the q’s and the last n z’s are the p’s. We will also adopt the
convention of using lower case latin letters near the beginning of the alphabet to denote
indices that range from 1 to 2n.

With the definition (7.9), it is easily verified that the fundamental Poisson brackets (7.8)
can also be written in the form

[za, zb] = Jab. (1.7.10)

Here J is a 2n× 2n matrix defined in block form by the equation

J =

(
0 I
−I 0

)
, (1.7.11)

where each entry in J is an n× n matrix, I denotes the n× n identity matrix, and all other
entries are zero. The matrix J is sometimes called the Poisson matrix.

Suppose functions f and g of the variables q, p, t are written more compactly as f(z, t),
g(z, t). Then the general Poisson bracket (7.3) can be written more compactly in the form

[f, g] =
∑
a,b

(∂f/∂za)Jab(∂g/∂zb). (1.7.12)

Suppose further that the 2n quantities (∂f/∂za) are viewed as the components of a vector
conveniently written as ∂zf , and similarly for the quantities (∂g/∂zb). Then the right side
of (7.12) can be viewed as a combination of two vectors and a matrix that can be written
even more compactly using matrix and scalar product notation,

[f, g] = (∂zf, J∂zg). (1.7.13)
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Exercises

1.7.1. Verify the relations (7.5) through (7.7).

1.7.2. Derive (5.14) using (7.4) and (7.6). Show that if H does not explicitly depend on
time, then it is a constant of motion and an integral of motion. See Section 5.2 for the
definitions of constants and integrals of motion.

1.7.3. Verify (7.8) and (7.10).

1.7.4. Verify (7.12) and (7.13).

1.7.5. Review Exercise 6.7. Recall the Lorentz invariant Hamiltonian HR given by (6.77)
and the associated equations of motion (6.80) through (6.82). The purpose of this exercise
is to study Poisson brackets in the context of a manifestly Lorentz invariant Hamiltonian
formulation of the equations of motion.

a) Using the xµ and pµ as phase-space variables, suppose f(xµ, pµ, τ) is any dynamical
variable. Repeat the steps (7.1) through (7.4) to show that in this case the Poisson
bracket should be defined by the rule

[f, g] =
∑
µ

[(∂f/∂xµ)(∂g/∂pµ)− (∂f/∂pµ)(∂g/∂xµ)]. (1.7.14)

As a consequence of this rule, show that

[xµ, xν ] = 0, [pµ, pν ] = 0, [xµ, pν ] = δµν (1.7.15)

where δµν is defined, as expected, by the equations

δµν = 0 for µ 6= ν,

= 1 for µ = ν. (1.7.16)

Thus, the xµ and pν are canonically conjugate variables. Next, show that

[xµ, pν ] = gµν . (1.7.17)

b) Also show, based on (6.54), (6.59), (6.61), and (7.14), that in the presence of an
electromagnetic field there are the Poisson bracket relations

[pmech
µ , pmech

ν ] = qFµν and [(pmech)µ, (pmech)ν ] = qF µν . (1.7.18)

As a special case of (7.18), show that there are the relations

[pmech
x , pmech

y ] = [(pmech)1, (pmech)2] = qF 12 = −qBz, etc. (1.7.19)

We see that the mechanical momenta are not canonical variables because, unlike the
corresponding relation in (7.15), the right sides in (7.18) are nonzero. It follows that
the equations of motion (6.67) and (6.69), although first order, are not canonical
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because they involve mechanical momenta. That is, these equations of motion do not
arise from any Hamiltonian. Similarly, show that converting the second-order set of
equations (6.68) or (6.95) into an associated first-order set using the method of Section
1.3 yields noncanonical equations. Thus these equations of motion are not particularly
useful if one wishes to exploit the symplectic (canonical) symmetry associated with
Hamiltonian systems. See Exercise 6.4.11.

c) From (6.42) there is the relation
t = x4/c. (1.7.20)

Define pt by the rule
pt = −cp4 = −cp4. (1.7.21)

Then, from (7.15) with µ = ν = 4, show that there is the result

[t, pt] = [x4/c,−cp4] = [x4,−p4] = −1. (1.7.22)

Also, again from (7.15), show that there are the results

[xµ, pν ] = −[xµ, pν ] = −δµν for µ, ν = 1 · · · 3 (1.7.23)

where, as again expected, δµν is defined for µ, ν = 1 · · · 3 by the equations

δµν = 0 for µ 6= ν,

= 1 for µ = ν. (1.7.24)

Evidently the quantities xµ, pν for µ, ν = 1 · · · 3 and t, pt behave like canonical variables
save for an annoying/alarming minus sign. We would, in fact, like to use the variables
xµ, pν for µ, ν = 1 · · · 3 because then all indices are up so that we do not have to
distinguish between up and down indices, and can eventually even forget about their
position. Also, up index quantities are directly related to variables of interest without
any additional minus signs. Contrast, for example, (6.42) and (6.52).

d) What to do? Suppose we define a new Hamiltonian ĤR by the rule

ĤR = HR/(−1) = −HR. (1.7.25)

With this definition in mind, check that the equations of motion (6.80) and (6.81)
yield for the variables xµ, pν for µ, ν = 1 · · · 3 and t, pt the results

(x′)µ = ∂HR/∂pµ = −∂HR/∂p
µ = ∂ĤR/∂p

µ for µ = 1 · · · 3, (1.7.26)

t′ = (1/c)(x′)4 = (1/c)∂HR/∂p4 = (1/c)∂HR/∂p
4 = −∂HR/∂pt = ∂ĤR/∂pt; (1.7.27)

(p′)µ = −(p′)µ = ∂HR/∂x
µ = −∂ĤR/∂x

µ for µ = 1 · · · 3, (1.7.28)

(pt)
′ = −c(p′)4 = c∂HR/∂x4 = ∂HR/∂t = −∂ĤR/∂t. (1.7.29)

Upon examining the far left and far right sides of (7.26) through (7.29) verify that,
if we agree to use the Hamiltonian ĤR instead of HR, then we may redefine the
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fundamental Poisson brackets for the variables xµ, pν (with µ, ν = 1 · · · 3) and t, pt to
be the standard ones:

[xµ, t] = 0 for µ = 1 · · · 3, (1.7.30)

[xµ, xν ] = 0 for µ, ν = 1 · · · 3; (1.7.31)

[pµ, pt] = 0 for µ = 1 · · · 3, (1.7.32)

[pµ, pν ] = 0 for µ, ν = 1 · · · 3; (1.7.33)

[t, pµ] = 0 for µ = 1 · · · 3, (1.7.34)

[xµ, pt] = 0 for µ = 1 · · · 3, (1.7.35)

[t, pt] = 1, (1.7.36)

[xµ, pν ] = δµν for µ, ν = 1 · · · 3. (1.7.37)

Note that the relation between H and K given by (6.126) contains a minus sign just
like the relation (7.25) between ĤR and HR. We also observe that the replacement of
−1 by 1 in the Poisson bracket rules and the replacement of HR by ĤR = −HR in the
equations of motion is a special case of what we may call a scaling transformation.
See Subsection 13.1.5.

e) Suppose there is no electromagnetic field so that all the components Aµ vanish. For
the identifications (6.42), (6.101), and (6.102) show that (7.36) and (7.37) imply the
relations

[x, px] = [y, py] = [z, pz] = [t,−E ] = 1. (1.7.38)

Observe that these relations are consistent with (7.8) and (6.105).

1.7.6. Suppose we employ the Hamiltonian H given by (5.49). Note that in this case there
is no mention of up and down index quantities. There are simply the components of the
vectors r and pcan. That is, there are the dynamical variables (x, y, z; pcan

x , pcan
y , pcan

z ), and
the time t is treated as the independent variable. For this Hamiltonian follow the recipe of
Section 1.7 to define Poisson brackets. Show that doing so yields the result that all Poisson
brackets involving only components of r and pcan vanish save for

[x, pcan
x ] = [y, pcan

y ] = [z, pcan
z ] = 1. (1.7.39)

Show that for this definition of the Poisson bracket there are the results

[pmech
x , pmech

y ] = qBz, etc. (1.7.40)

Note that (7.19) and (7.40) differ by a sign. This difference occurs because the definition of
the Poisson bracket depends on what Hamiltonian is being employed.

1.7.7. Suppose we employ the Hamiltonian K given by (6.16). In this case the dynamical
variables are (x, y, t; px, py, pt) and z is the independent variable. Note that, although not
indicated by our imprecise notation, the quantities (px, py, pt) are canonical and not me-
chanical momenta. For this Hamiltonian follow the recipe of Section 1.7 to define Poisson
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brackets. Show that doing so yields the result that all poisson brackets among the dynamical
variables (x, y, t; px, py, pt) vanish save for

[x, px] = [y, py] = [t, pt] = 1. (1.7.41)

Show that for this definition of the Poisson bracket there is the result

[pmech
x , pmech

y ] = qBz. (1.7.42)

Note that (7.19) and (7.42) differ by a sign. This difference occurs because the definition of
the Poisson bracket depends on what Hamiltonian is being employed

1.7.8. Suppose that
ψ = 0 (1.7.43)

in (5.1), (5.49), and (6.16) so that K takes the form

K = −[(pt/c)
2 −m2c2 − (px − qAx)2 − (py − qAy)2]1/2 − qAz. (1.7.44)

Show from (5.27) through (5.30), (6.5), and (7.43) that there are the relations

[(pmech)2]1/2 = pmech = γmv = γβmc, (1.7.45)

pt = −[m2c4 + (pmechc)2]1/2 = −γmc2, (1.7.46)

p2
t = m2c4 + (pmechc)2, (1.7.47)

v = c[1− (mc2/pt)
2]1/2. (1.7.48)

Here β and γ are the usual relativistic factors,

β = v/c, (1.7.49)

γ = (1− β2)−1/2. (1.7.50)

The quantity pt obeys the equation of motion

dpt/dz = −∂K/∂t. (1.7.51)

See (6.10). Therefore if A is time independent (which amounts to the case of motion in a
static magnetic field), there are the relations

∂K/∂t = 0, (1.7.52)

pt = constant. (1.7.53)

From (7.46) and (7.48) through (7.50) show that in this case β, γ, and v are also constants
of motion.

In Accelerator Physics, when studying orbits in a magnetic field, it is common to intro-
duce the quantity δ by the definition

pmech = (1 + δ)pmech
0 (1.7.54)
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where pmech
0 = ||pmech

0 || is the magnitude of some reference or design mechanical momentum
and pmech = ||pmech|| is the magnitude of the actual mechanical momentum. The quantity δ
is called the momentum deviation. By combining (7.47) and (7.54) show that there are the
relations

p2
t = m2c4 + (1 + δ)2(pmech

0 c)2, (1.7.55)

δ = [(p2
t −m2c4)1/2/(pmech

0 c)]− 1. (1.7.56)

Consider the quantity ` defined by

` = (pmech
0 c)[1− (mc2/pt)

2]1/2t. (1.7.57)

Show from (7.48) that ` can also be written in the form

` = (pmech
0 )vt. (1.7.58)

Evidently, if v is constant (which will be the case for motion in a static magnetic field), the
quantity ` is proportional to path length with proportionality constant pmech

0 . Note that the
quantity ` is still defined by (7.57) in the time-dependent case, but then it has no such simple
physical interpretation. Show, however, that in the extreme relativistic limit −pt � mc2

where v ' c there is the relation

` ' (pmech
0 )ct (1.7.59)

so that in this limit the interpretation of ` as being proportional to path length is regained
even in the time-dependent case.

Show, starting from the known Poisson bracket relation

[t, pt] = 1, (1.7.60)

that there is the relation

[δ, `] = 1. (1.7.61)

Also show that there are the relations

[x, δ] = [y, δ] = [px, δ] = [py, δ] = 0,

[x, `] = [y, `] = [px, `] = [py, `] = 0. (1.7.62)

Thus, δ and ` are canonically conjugate with δ being “coordinate like” and ` being “mo-
mentum like”. See (7.8). We may therefore view the quantities x, px; y, py; δ, ` as a set of
canonical coordinates obtained from the set x, px, ; y, py; t, pt by a canonical transformation.
(Recall that a canonical transformation is a transformation that preserves the fundamental
Poisson brackets. See Section 6.1.2.)

Show that there are the inverse relations

pt = −[m2c4 + (1 + δ)2(pmech
0 c)2]1/2, (1.7.63)

t = [`/(pmech
0 c)]{1−m2c4/[m2c4 + (1 + δ)2(pmech

0 c)2]}−1/2. (1.7.64)
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If a canonical transformation does not depend explicitly on the independent variable (the
quantity z in the case), then the new Hamiltonian K̄ equals the old Hamiltonian K expressed
in terms of the new variables,

K̄{x, px, y, py, δ, `; z} = K{x, px, y, py, t(δ, `), pt(δ, `); z}. (1.7.65)

(See Appendix D.) Show, using (7.55) and (7.65), that

K̄ = −[(1 + δ)2(pmech
0 )2 − (px − qĀx)2 − (py − qĀy)2]1/2 − qĀz (1.7.66)

where

Ā{r, δ, `} = A{r, t(δ, `)}. (1.7.67)

If all is well, there should be the relation

d`/dz = [`, K̄] = −∂K̄/∂δ. (1.7.68)

See (7.4). Show, from (6.10) and (7.65), that the right side of (7.68) is given by the relation

∂K̄/∂δ = (∂K/∂t)(∂t/∂δ) + (∂K/∂pt)(∂pt/∂δ) = −(dpt/dz)(∂t/∂δ) + (dt/dz)(∂pt/∂δ).
(1.7.69)

Evaluate the partial derivatives on the right side of (7.69) using (7.63) and (7.64) to find
the results

(∂t/∂δ) = −(pmech
0 )t/(mcβγ3), (1.7.70)

(∂pt/∂δ) = −(pmech
0 )v. (1.7.71)

Evaluate the left side of (7.68) using (7.57), and verify that (7.68) is correct. Similarly, verify
that

dδ/dz = [δ, K̄]. (1.7.72)

Sometimes it is convenient to introduce scaled variables Px, Py, and ˆ̀ by the rules

Px = px/p
mech
0 , (1.7.73)

Py = py/p
mech
0 , (1.7.74)

ˆ̀= `/pmech
0 = c[1− (mc2/pt)

2]1/2t = vt. (1.7.75)

See Section 13.1.5. Note that Px and Py are dimensionless. Also now, when v is constant, ˆ̀

is the path length. If we now regard the pairs x, Px; y, Py; and δ, ˆ̀ as canonically conjugate,

their evolution will be governed by the Hamiltonian K̂ given by

K̂ = (1/pmech
0 )K̄ = −[(1 + δ)2 − (Px − qÂx)2 − (Py − qÂy)2]1/2 − qÂz (1.7.76)

where

Â{r, δ, ˆ̀} = (1/pmech
0 )A{r, t(δ, ˆ̀)}. (1.7.77)

(Again see Appendix D.)
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1.7.9. Review Exercise 7.6. It treated the Cartesian-coordinate Hamiltonian (6.16). Show
that the cylindrical-coordinate Hamiltonian (6.18) can be treated analogously. Conclude
that in this respect there is nothing special about the use of Cartesian coordinates.

1.7.10. Review Exercise 5.1 that related mechanical and canonical momentum. Show that
the mechanical energy Emech is given by the relation

Emech = γmc2 = [m2c4 + c2(pmech)2]1/2 = [m2c4 + c2(p− qA)2]1/2. (1.7.78)

Review Exercise 5.3. Using the definition (6.5), show that

pt = −Emech − qψ. (1.7.79)

Make the definition
pmech
t = −Emech, (1.7.80)

in which case
pt = pmech

t − qψ = −γmc2 − qψ, (1.7.81)

which is a relation analogous to those in Exercise 5.1. Also compare the above results with
(6.59), those of Exercise 6.11, and (7.21). Note, using (6.45) and (6.53), that there are the
relations

A4 = A4 = ψ/c. (1.7.82)
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[48] J. Hubbard, “The Hénon mapping in the complex domain”, published in Chaotic
Dynamics and Fractals, M. Barnsley and S. Demko, Eds., p. 101, Academic Press
(1986).



130 BIBLIOGRAPHY

[49] J. H. Hubbard and R. W. Oberste-Vorth, Hénon Mappings in the Complex Domain I:
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lished as Les Méthodes nouvelles de la Méchanique céleste.) American Institute of
Physics History of Modern Physics and Astronomy, Volume 13, D. L. Goroff, Edit.,
American Institute of Physics (1993). See page 145 of the Editor’s Introduction for
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Chapter 2

Numerical Integration

Nature laughs at the difficulties of integration.
Laplace

The differential equations of motion for many systems of physical interest cannot be com-
pletely solved in terms of familiar functions. For example, there are precious few problems
in Plasma Physics, Space Mechanics, or Accelerator Design that have closed-form analytical
solutions. Generally, a differential equation, or a set of differential equations, should be
viewed as the source of some new transcendental function. This fact was realized shortly
after the discovery of Classical Mechanics and Differential Equations. Consequently, over
the past centuries and particularly in Celestial Mechanics, considerable effort has been put
into the possibility of expressing solutions not in terms of known functions, but rather in
terms of infinite series of known functions. For example, elaborate series expansions have
been worked out for the motion of the planets and their moons, and these series have been
used to compute their trajectories to high precision.

The contemporary approach is somewhat different. Usually a complete knowledge of
every possible “trajectory” or motion of a system is not necessary. Rather, it often suffices
to have a qualitative description of the types of allowed motion supplemented by a detailed
knowledge of a few representative “orbits”. Detailed knowledge of specific orbits is today
most easily obtained by numerical integration using digital computers.1 The types of allowed
orbits can usually be determined best by analytical and topological methods, although even
here numerical studies often precede and suggest later analytical results. Contemporary
mechanics is thus an interplay between both analytical and numerical methods.

Even a survey of numerical methods is outside the scope of this text. It would require a
text in itself. However, we hope that the brief discussion we are about to give will impart
some of the flavor of numerical techniques, and perhaps entice the reader to explore further
on his or her own. We hasten to add that numerical methods are also important outside
classical mechanics, and that the techniques learned here can be applied to other situations
in which ordinary differential equations arise. They also serve as a background for related
methods in the numerical treatment of partial differential equations.

1Recently, however, there has been renewed interest in series expansions with the new twist that these
expansions are produced by computers programmed to perform algebraic manipulations. In some cases it
is advantageous to use series expansions to transform the equations of motion, and then to integrate these
transformed equations numerically.
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2.1 The General Problem

2.1.1 Integrating Forward in Time

Consider a set of first-order differential equations of the form (1.3.4). For compactness of
notation we shall group together the quantities (y1 · · · ym) and (f1 · · · fm), and regard them
as the components of two m-dimensional vectors: y and f . Thus, we rewrite (1.3.4) in the
form

ẏ = f(y, t). (2.1.1)

Suppose t0 is some initial time and we wish to integrate forward to the time t0 + T . Divide
up the time axis into N equal steps, each of duration h, so that

Nh = T. (2.1.2)

Define successive times tn by writing2

tn = t0 + nh. (2.1.3)

See Figure 1.1 below. The time step, h, is taken to be small compared to the characteristic

t
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t
(1)

t
(2)

t
(3)

t
(4)

t
(N)
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(0)

+T

h

T= Nh

Figure 2.1.1: The Time Axis

time scale or period of the physical system we are studying. For example, in solving a
pendulum problem, h should be much less than the period of oscillation. Our goal is to
compute the vectors yn, where

yn = y(tn), (2.1.4)

starting from the vector y0. The vector y0 is assumed given as a set of definite numbers,
i.e. the initial conditions at t0. To complete our notation, we make the definition

fn = f(yn, tn). (2.1.5)

2.1.2 Integrating Backwards in Time

In the next several sections we will describe various methods for integrating forward in time
to times later than t0. Suppose we instead wish to integrate backwards to times earlier
than t0 so that T < 0. According to Theorem 1.3.1 this should be possible. After a few
moments reflection we see that this problem has already been solved if we have found how
to integrate forward. To integrate backward, we simply change the sign of h. That is, once
an integration method has been selected, execute it with h < 0.

2Warning! Here n is a superscript, not an exponent. Sometimes, however, n will be an exponent. There
should be enough clues from the context for you to decide what is meant.
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2.2 A Crude Solution Due to Euler

2.2.1 Procedure

Theorem 1.3.1 guarantees that the solution vectors yn exist and are uniquely specified by
y0. The question is how to find them. Proceed one step at a time! By Taylor’s theorem,

y1 = y(t1) = y(t0 + h) = y0 + hẏ0 +O(h2) (2.2.1)

or
y1 = y0 + hf 0 +O(h2). (2.2.2)

(Here, and in what follows, we assume analyticity in t, or at least the existence of several
derivatives, as guaranteed by the theorems and discussion of Section 1.3.) Since y0 and t0

are definite numbers, f 0 is explicitly computable. Let us ignore the O(h2) error in (2.2) for
the moment and accept (2.2) as an exact result for y1. Then using this y1 we can compute
f 1, and from that y1 and f 1 proceed in similar fashion to compute y2 and f 2, etc. In
summary, we march forward step by step using the rule

yn+1 = yn + hfn. (2.2.3)

Suppose we march to the time t0 + T . This requires N = T/h steps. At each step we
make a local error of order h2. Consequently the cumulative error, barring cancellations
that could only reduce it, is of order3

Nh2 = Th. (2.2.4)

We see that if the step size h is made sufficiently small and correspondingly the number of
steps N sufficiently large, the error made in computing y(t0 + T ) using (2.3) can be made
arbitrarily small.

2.2.2 Numerical Example

Consider the differential equation
ẍ+ x = 2t (2.2.5)

with the initial conditions
x(0) = 0 and ẋ(0) = 1. (2.2.6)

We convert (2.5) into a first-order set by writing

y1 = x, y2 = ẋ, (2.2.7)

and find
f1(y, t) = ẏ1 = y2, (2.2.8)

f2(y, t) = ẏ2 = 2t− y1. (2.2.9)

3By “order Th” we mean proportional to Th with a bounded but unspecified proportionality constant.
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The simple computer program diagramed, listed, and annotated in Exhibit 2.1 below im-
plements the Euler method (2.3) to integrate this set. The step size is h = 1/10. The
differential equation we have selected is sufficiently simple that it also can be integrated
analytically to give the exact result

y1 = x(t) = 2t− sin t, (2.2.10)

y2 = ẋ(t) = 2− cos t. (2.2.11)

Note that the characteristic period of the solution is 2π so that the choice h = 1/10 is
considerably smaller than the period as required. For comparison, both the Euler result and
the exact result are tabulated.



2.2. A CRUDE SOLUTION DUE TO EULER 149

Exhibit 2.2.1: Crude Euler Integration

Block Diagram of Main Program

Print heading

End

Call Crude

Set up initial conditions

and parameters

c This is the main program for illustrating the crude Euler method

c of numerical integration.

c

c Print heading.

c

write(6,100)

100 format

& (1h ,’time’,4x,’y1comp’,10x,’y2comp’,10x,’y1true’,10x,’y2true’,/)

c

c Set up initial conditions and parameters. n is the number of integration

c steps we wish to make.

c

t=0.

h=.1

n=15

y1=0.

y2=1.

c

call crude(t,h,n,y1,y2)

c

end
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Block Diagram of Integration Routine

Store initial time

Compute f

Print results

y
n+1

=y
n
+hf

n

Print results

Return

Loop

back 

N

times

t
n
=t

0
+nh

c This is the crude Euler integration subroutine

c

subroutine crude(t,h,n,y1,y2)

c

c Store initial time.

c

tint=t

c

c Printing and integration loop.

c

do 100 i=1,n

call prints(t,y1,y2,y1true(t),y2true(t),0)

c

c Compute f, the right side of the differential equation.

c

call eval(y1,y2,t,f1,f2)

c

c Make integration step and update time.

c
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y1=y1+h*f1

y2=y2+h*f2

t=tint+float(i)*h

c

100 continue

c

c Print final results.

c

call prints(t,y1,y2,y1true(t),y2true(t),0)

c

return

end
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Auxiliary Programs

c This subroutine evaluates f, the right side of the

c differential equation.

c

subroutine eval(y1,y2,t,f1,f2)

c

f1=y2

f2=2.*t-y1

c

return

end

c

c Function for computing the exact value of y1.

c

function y1true(t)

y1true=2.*t-sin(t)

return

end

c

c Function for computing the exact value of y2.

c

function y2true(t)

y2true=2.-cos(t)

return

end

c

c Subroutine to handle printing. It need not concern the reader.

c

Subroutine prints(t,y1,y2,y1t,y2t,iflag)

c

if (iflag .eq. 0) then

write(6,100) t,y1,y2,y1t,y2t

100 format (1h ,f6.4,2x,4(e14.8,2x))

return

endif

c

if (iflag .ne. 0) then

write(6,200) y1,y2

200 format (1h ,8x,2(e14.8,2x))

return

endif

c

end
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Numerical Results

time y1comp y2comp y1true y2true

0.0000 0.00000000E+00 0.10000000E+01 0.00000000E+00 0.10000000E+01

0.1000 0.10000000E+00 0.10000000E+01 0.10016658E+00 0.10049958E+01

0.2000 0.20000000E+00 0.10100000E+01 0.20133068E+00 0.10199335E+01

0.3000 0.30100000E+00 0.10300000E+01 0.30447981E+00 0.10446635E+01

0.4000 0.40400001E+00 0.10598999E+01 0.41058168E+00 0.10789391E+01

0.5000 0.50999004E+00 0.10994999E+01 0.52057445E+00 0.11224174E+01

0.6000 0.61994004E+00 0.11485009E+01 0.63535756E+00 0.11746644E+01

0.7000 0.73479015E+00 0.12065070E+01 0.75578231E+00 0.12351578E+01

0.8000 0.85544086E+00 0.12730279E+01 0.88264394E+00 0.13032933E+01

0.9000 0.98274368E+00 0.13474839E+01 0.10166732E+01 0.13783901E+01

1.0000 0.11174921E+01 0.14292095E+01 0.11585290E+01 0.14596977E+01

1.1000 0.12604131E+01 0.15174602E+01 0.13087927E+01 0.15464039E+01

1.2000 0.14121591E+01 0.16114190E+01 0.14679611E+01 0.16376423E+01

1.3000 0.15733010E+01 0.17102031E+01 0.16364419E+01 0.17325013E+01

1.4000 0.17443212E+01 0.18128730E+01 0.18145503E+01 0.18300328E+01

1.5000 0.19256085E+01 0.19184409E+01 0.20025051E+01 0.19292628E+01

We conclude that with h = 1/10, the Euler method integrates (2.5) over the range t = 0
to t = 1.5 with an accuracy of somewhat less than two signficant figures.

Exercises

2.2.1. Consider the differential equation

ẍ+ x = 0. (2.2.12)

a) Show that in this case Euler’s method amounts to solving the set of difference equations

yn+1
1 = yn1 + hyn2 , (2.2.13)

yn+1
2 = yn2 − hyn1 . (2.2.14)

b) Show that the difference equations have the solution

yn = Mny0 (2.2.15)

where M is the matrix

M =

(
1 h
−h 1

)
. (2.2.16)
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c) Show by explicit computation that M has two linearly independent eigenvectors a and
b with eigenvalues α and β. Expand y0 in terms of a and b. That is, write

y0 = Aa+Bb (2.2.17)

where A and B are expansion coefficients. Show that

yn = αnAa+ βnBb. (2.2.18)

d) Study how y(t0 + T ), as computed by Euler’s method, converges to the exact result
as h→ 0.

e) Show that when h 6= 0, the length of yn grows (exponentially) without bound as
n→∞! What happens to the length of the true solution as t→∞?

f) Make a similar analysis for the differential equation (2.5). (Hint: find a particular
solution, and then use the solution of the homogeneous equation to fit the initial
conditions.)

2.2.2. Consider the differential equation

dx/dt = A+Bx+ Cx2, (2.2.19)

which is a variant of the logistic/Verhulst differential equation. See (1.2.114). Solve this
differential equation exactly.

Show that applying Euler’s method to this differential equation produces the quadratic
difference equation

xn+1 = xn + hA+ hBxn + hC(xn)2, (2.2.20)

which is a quadratic map of the form (1.2.114). Compare the behavior of the solutions of the
differential equation (2.19) to that of the quadratic difference equation (2.20). Consider the
cases of both small and large step size h. At what value of h does chaotic behavior set in?
Chaotic behavior would be a bad thing because you should have found that the solutions to
(2.19) are well behaved. How small must h be to avoid period doubling? Period doubling
would also be a bad thing because you should have found that the solutions to (2.19) are
not periodic.

2.3 Runge-Kutta Methods

2.3.1 Introduction

Now that we have the general idea, let us see what improvements can be made. The obvious
need is to improve the accuracy of the stepping formula (2.3). One procedure would be to
invoke the use of the first few additional derivatives. Higher derivatives are computable, and
could in principle be used. For example, differentiating (1.1) and substituting it back into
its derivative gives the result

ÿi = ∂fi/∂t+
∑
j

(∂fi/∂yj)ẏj
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or
ÿi = ∂fi/∂t+

∑
j

(∂fi/∂yj)fj. (2.3.1)

This procedure can be effective for differential equations whose right sides are polynomial in
the yi. However it is evident that for most systems of differential equations the expressions
for the higher derivatives become quite lengthy, and their use may be a bit cumbersome.
What is needed is a stepping procedure that only involves evaluations of f .

2.3.2 Procedure

Such procedures were originally studied by Runge and Kutta, and now generally bear their
names.4 Many are available, and we shall be only able to quote a few without derivation.
The general idea is to evaluate f at several different points and to add the results together
in such a way that yn+1 is correctly estimated up to some error that is proportional to a
large power of h, and thus quite small. (Exactly what points to use in evaluating f and how
to weight the results is a complicated matter. We refer the interested reader to Exercises
3.1 and 3.10 through 3.12, and then to the references.) A method called RK3, that makes
local errors only of order h4, i.e. is locally correct through order h3, is given by

yn+1 = yn +
1

6
(a+ 4b+ c), (2.3.2)

where at each step
a = hf(yn, tn), (2.3.3)

b = hf(yn +
1

2
a, tn +

1

2
h),

c = hf(yn + 2b− a, tn + h).

Higher-order methods are also available. The higher the order, of course, the more work
is involved. One of several fourth-order methods, and called RK4, is given by

a = hf(yn, tn), (2.3.4)

b = hf(yn +
1

2
a, tn +

1

2
h),

c = hf(yn +
1

2
b, tn +

1

2
h),

d = hf(yn + c, tn + h),

yn+1 = yn +
1

6
(a+ 2b+ 2c+ d). (2.3.5)

4Ernest Courant, who co-invented the use of matrices to approximate transfer maps as described in
Section 1.1.2, is the son of the mathematician Richard Courant of Courant and Hilbert and Courant Institute
fame. Ernest Courant’s mother was the daughter of Runge, and thus Ernest Courant is also a grandson of
Runge. Runge was very athletic, and entertained his grandchildren at his 70th birthday by doing handstands,
which Ernest Courant remembers.
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This method is locally correct through order h4, and makes local errors of order h5.5

The reader should note that when we say that either local or cumulative error is of order
h`, we mean that it is proportional to h` with an unspecified constant of proportionality.
Unfortunately, an analytic estimation of the proportionality constant for Runge-Kutta is
very complicated. See, for example, Exercises 3.1 and 5.1.

To see the advantage of higher-order methods over (2.3), suppose we use the third-order
method (3.2) to integrate from t0 to t0 +T . This time the cumulative error is proportional to
Nh4 = Th3, which is an improvement over the earlier error by a factor of h2. Of course, each
integration step now requires about three times as much work since f must be evaluated
three times for each step. But the integration error is reduced by considerably more than a
factor of three. It is possible now to use a much larger step size thus actually reducing the
total work required to remain within a specified error.

The error we have been discussing so far can in principle be made arbitrarily small by
letting h → 0 and N → ∞. In actual practice using digital computers, the ideal is not
quite realizable. This is because computers only work with a finite number of significant
figures, and hence each step involves a certain unavoidable “round-off” error. If the sign
of each round-off error is nearly random, their cumulative effect increases approximately as√
N . (The IEEE hardware standard with regard to round-off procedures is designed with

this goal in mind.) If the sign is systematic, their cumulative effect may grow like N . In any
case, if N is made too large, not only the cost of computation increases. The total error,
after reaching a certain minimum, also increases! To see how this can work out in a specific
case, look over the next example and then study Figure 3.1.

2.3.3 Numerical Example

We show below in Exhibit 3.1 a simple program that uses the third-order Runge-Kutta
method (3.2) to integrate the problem of Section 2.2.2. The step size is again h = 1/10.
We list only the main program and the subroutine RK3. The other subprograms are the
same as those used in Section 2.2.2. Note that the numerical solution is now accurate to
five significant figures.

In order to illustrate how the total cumulative error depends upon step size, we have
also made calculations with other values of h. Figure 3.1 shows the results. Note that the
cumulative error first decreases roughly as h3 as expected, and then rises again because of
round-off error.

5You will observe that we label a method by the order of the local accuracy. That is, an mth order
method is locally correct through order hm, and makes local errors of order hm+1.
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Exhibit 2.3.1: Third-Order Runge Kutta Integration

Main Proram

Print heading

Print last line

Call RK3

Set up initial conditions

and parameters

End

RK3 Integration Routine

Store initial time

Compute a, b, and c

Print results

1
6y

n+1
=y

n
+   (a+4b+c)

Return

Loop

back 

N

times

t
n
=t

0
+nh

c This is the main program for illustrating a Runge Kutta method

c for numerical integration.

c

c Print heading.

c

write(6,100)

100 format

& (1h ,’time’,4x,’y1comp’,10x,’y2comp’,10x,’y1true’,10x,’y2true’,/)

c

c Set up initial conditions and parameters. n is the number of integration

c steps we wish to make.

c

t=0.

h=.1

n=15

y1=0.

y2=1.

c

call rk3(t,h,n,y1,y2)
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call prints(t,y1,y2,y1true(t),y2true(t),0)

c

end

c

c This is a third-order Runge Kutta integration subroutine.

c

subroutine rk3(t,h,n,y1,y2)

c

c Store initial time.

c

tint=t

c

c Printing and integration loop.

c

do 100 i=1,n

call prints(t,y1,y2,y1true(t),y2true(t),0)

c

c Set up for integration step.

c

call eval(y1,y2,t,f1,f2)

a1=h*f1

a2=h*f2

y1t=y1+a1/2.

y2t=y2+a2/2.

tt=t+h/2.

call eval(y1t,y2t,tt,f1,f2)

b1=h*f1

b2=h*f2

y1t=y1+2.*b1-a1

y2t=y2+2.*b2-a2

tt=t+h

call eval(y1t,y2t,tt,f1,f2)

c1=h*f1

c2=h*f2

c

c Make integration step and update time.

c

y1=y1+(a1+4.*b1+c1)/6.

y2=y2+(a2+4.*b2+c2)/6.

t=tint+float(i)*h

c

100 continue

c

return

end
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Numerical Results

time y1comp y2comp y1true y2true

0.0000 0.00000000E+00 0.10000000E+01 0.00000000E+00 0.10000000E+01

0.1000 0.10016667E+00 0.10050000E+01 0.10016658E+00 0.10049958E+01

0.2000 0.20133168E+00 0.10199417E+01 0.20133068E+00 0.10199335E+01

0.3000 0.30448255E+00 0.10446757E+01 0.30447981E+00 0.10446635E+01

0.4000 0.41058692E+00 0.10789548E+01 0.41058168E+00 0.10789391E+01

0.5000 0.52058297E+00 0.11224364E+01 0.52057445E+00 0.11224174E+01

0.6000 0.63536996E+00 0.11746861E+01 0.63535756E+00 0.11746644E+01

0.7000 0.75579929E+00 0.12351816E+01 0.75578231E+00 0.12351578E+01

0.8000 0.88266593E+00 0.13033184E+01 0.88264394E+00 0.13032933E+01

0.9000 0.10167006E+01 0.13784157E+01 0.10166732E+01 0.13783901E+01

1.0000 0.11585623E+01 0.14597230E+01 0.11585290E+01 0.14596977E+01

1.1000 0.13088318E+01 0.15464280E+01 0.13087927E+01 0.15464039E+01

1.2000 0.14680060E+01 0.16376641E+01 0.14679611E+01 0.16376423E+01

1.3000 0.16364928E+01 0.17325199E+01 0.16364419E+01 0.17325013E+01

1.4000 0.18146069E+01 0.18300474E+01 0.18145503E+01 0.18300328E+01

1.5000 0.20025671E+01 0.19292722E+01 0.20025051E+01 0.19292628E+01

We close this subsection by remarking that the form of the Runge-Kutta program above
was largely dictated by pedagogical considerations. A more compact version of this program
using vector arrays and suitable for integrating any number of coupled equations is given
in Appendix B. We commend this appendix to the reader who is considering more serious
numerical work.
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Step Size h

Error, ||y(1.5)–ye(1.5)||

10
–3

10
–4

10
–7

10
–6

10
–5

10
–4

10
–2

10
–1

Figure 2.3.1: The result of integrating with RK3 the set (2.7) through (2.9) to t = 1.5 with
several different step sizes to illustrate how the cumulative error depends on h. The error
is measured by ‖ y(1.5)− ye(1.5) ‖ where ye is the exact solution. The dashed line on the
right has a slope of +3 showing that the global truncation error at first decreases as h3. The
dashed line on the left has a slope of −1 showing that in this example the global round-off
error increases as the number of steps N . These calculations were made on a computer that
had an accuracy of about 8 1/2 significant figures.



2.3. RUNGE-KUTTA METHODS 161

2.3.4 Nomenclature

Runge-Kutta methods have been studied extensively. In this subsection, as an aid to further
reading, we will present briefly some of the nomenclature used to describe various Runge-
Kutta concepts and methods.

Butcher Tableaux

Let b and c be s-dimensional vectors with real entries, and let a be an s× s matrix with real
entries. Consider stepping formulas of the form

yn+1 = yn + h
s∑
i=1

biki (2.3.6)

where at each step

ki = f(yn + h
s∑
j=1

aijkj, t
n + cih). (2.3.7)

Observe that the integration methods RK3 and RK4 given by (3.2) through (3.5) are of
this kind. The number s is called the number of stages. Evidently s is equal to the number
of evaluations of the function f required to compute the ki and thereby carry out one
integration step using (3.6).

Before continuing on, it is sometimes useful to rewrite the relations (3.6) and (3.7) in a
somewhat different form. At each step introduce intermediate times ti and coordinates yi
by the rules

ti = tn + cih, (2.3.8)

yi = yn + h
s∑
j=1

aijkj. (2.3.9)

With this convention (3.7) can be rewritten in the form

ki = f(yi, ti). (2.3.10)

Finally we copy (3.6) and place it last,

yn+1 = yn + h

s∑
i=1

biki. (2.3.11)

Evidently the relations (3.8) through (3.11) are equivalent to the relations (3.6) and (3.7),
but in this expanded form it is clear that the ki are the values of f at the intermediate
points, and the stepping rule (3.11) resembles the rule (2.3) for crude Euler except that it
involves a weighted sum of these f values rather than a single f value.

Continue on. The problem now is to impose various conditions on the vectors b and c
and the matrix a so that the integration method will be of some particular order m, and
perhaps have other desirable properties. For purposes of visualization, it is convenient to
arrange the vectors b and c and the matrix a in a tableau, called a Butcher tableau after its
author, as shown below:
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c1 a11 · · · a1s

...
...

...
cs as1 · · · ass

b1 · · · bs

(2.3.12)

The Butcher tableau for RK3 is

0 0 0 0
1/2 1/2 0 0
1 −1 2 0

1/6 4/6 1/6

. (2.3.13)

The Butcher tableau for RK4 (often called classic RK4) is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 2/6 2/6 1/6

. (2.3.14)

There is another possible fourth-order method, also known to Kutta, sometimes called the
3/8 rule.6 It is given by the Butcher tableau

0 0 0 0 0
1/3 1/3 0 0 0
2/3 −1/3 1 0 0
1 1 −1 1 0

1/8 3/8 3/8 1/8

. (2.3.15)

Two features should be noticed about the Butcher tableaux (3.13) through (3.15): The
first is that the matrix a is strictly lower triangular. That is, all entries on or above the
diagonal vanish. This feature makes these methods explicit. That is, each ki is computable
in terms of the kj with j < i. Runge-Kutta methods without this property are called
implicit.7 The second feature is that the vector c is related to the matrix a by the rule

ci =
s∑
j=1

aij. (2.3.16)

6Although both classic RK4 and the 3/8 rule are fourth order (make local errors of order h5), it can be
shown that the 3/8 rule is somewhat more accurate because its local error terms proportional to h5 have
smaller coefficients. However, even though both classic RK4 and the 3/8 rule require the same number of
function evaluations per step (namely, 4), the 3/8 rule is somewhat slower because its matrix a is somewhat
more dense than that for RK4. Therefore, see (3.9), more additions and multiplications are required per
step for the 3/8 rule than for RK4.

7Explicit Runge-Kutta methods are sometimes called ERK methods; and implicit Runge-Kutta methods
are sometimes referred to as IRK methods. In the same spirit, if the matrix a has strictly lower triangular
entries plus some nonzero diagonal entries but no entries above the diagonal, then the associated integration
methods are called diagonally implicit Runge-Kutta (DIRK).
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Pictorially, each ci is the sum of the a’s in its row. This relation is called the consistency
condition and is, for convenience, generally required of all Runge-Kuttta methods. See
Exercise 3.10. Exercise 3.9 briefly describes what further order conditions are required to
achieve local accuracy through orders m = 1, m = 2, and m = 3.

Relation Between Number of Stages and Achievable Order

It is tempting to conjecture that with s stages it should be possible to find an explicit
Runge-Kutta method whose order m satisfies m = s. This conjecture is true for m = 1, 2, 3,
and 4, but it fails for m ≥ 5. Table 3.1 below lists the minimum s value required to achieve
order m with explicit Runge-Kutta methods. As can be seen, s ≥ 6 is needed to achieve
an explicit Runge-Kutta method with m = 5. Thus, there are diminishing returns in going
beyond order 4, which gives fourth-order methods such as RK4 a preferred status.

Table 2.3.1: Minimum Number of Stages s Required for Explicit Runge Kutta to Achieve
Order m.

m 1 2 3 4 5 6 7 8
s 1 2 3 4 6 7 9 11

With implicit Runge-Kutta methods it is possible for the order to even exceed the number
of stages. Consider the one-stage method specified by the Butcher tableau

Gauss2

1/2 1/2
1

. (2.3.17)

It corresponds to the implicit midpoint rule

yn+1 = yn + hf [(yn + yn+1)/2, tn + h/2], (2.3.18)

which is known to be of order 2.8 See Exercise 3.7. It is also related to Gaussian quadrature.
See Subsection T.1.3. For this reason, and because it is second order, it is given the name
Gauss2.

In fact, there are implicit Runge-Kutta methods for which m = 2s, and this order is the
best that can be hoped for with s stages.9 Butcher tableaux for two such methods, for the
cases of two and three stages and also based on Gaussian quadrature, are given below. They
have orders 4 and 6, respectively.

8This stepping procedure, particularly in the context of partial differential equations, is also referred to
as Crank-Nicolson.

9Strictly speaking, an s-stage explicit Runge-Kutta integrator requires s function evaluations per step.
Implicit Runge-Kutta methods require many more since the implicit equations involved are generally solved
by multiple iteration.
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Gauss4

1/2−
√

3/6 1/4 1/4−
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4
1/2 1/2

, (2.3.19)

Gauss6

1/2−
√

15/10 5/36 2/9−
√

15/15 5/36−
√

15/30

1/2 5/36 +
√

15/24 2/9 5/36−
√

15/24

1/2 +
√

15/10 5/36 +
√

15/30 2/9 +
√

15/15 5/36
5/18 8/18 5/18

. (2.3.20)

Butcher tableaux for Gauss8 and Gauss10 are also available. See the book of Sanz-Serna
and Calvo listed in the Bibliography for this chapter. For further discussion of implicit
Runge-Kutta methods, see Section 12.4.

Interpolation and Dense Output

There are some situations, for example when graphical output is needed, in which one
desires an accurate and efficient method for finding y(tn + θh) for any θ ∈ [0, 1]. There are
procedures that prepare, at each integration step, polynomials in θ for this purpose, and
these procedures utilize the k vectors computed in the course of a Runge-Kutta step. See,
for example, the book of Hairer, Nørsett, and Wanner cited at the end of this chapter.

First Same As Last

There is one final comment worth making. It is possible to construct Runge-Kutta methods
for which the Butcher tableaux take the form

0 0 0 · · · 0 0
c2 a2,1 0 · · · 0 0
...

...
...

...
...

cs−1 as−1,1 as−1,2 · · · 0 0
1 b1 b2 · · · bs−1 0

b1 b2 · · · bs−1 0

(2.3.21)

Comparison of (3.21) with (3.12) shows that we have imposed the conditions

aij = 0 for j ≥ i, (2.3.22)

asj = bj, (2.3.23)

bs = 0, (2.3.24)

cs = 1. (2.3.25)

The condition (3.22) makes the associated integration method explicit. The condition (3.24)
must hold if (3.22) and (3.23) are to be enforced. The condition (3.25) follows from the



2.3. RUNGE-KUTTA METHODS 165

consistency condition (3.16) and the desire that the method be at least of order 1. See
(3.42).

What is the virtue of the condition (3.23)? Let us compute ks when the Butcher tableau
has the form (3.21) and we are making the integration step from t = tn to t = tn+1. From
(3.7), (3.22), and (3.23) we find the result

ks|t=tn = f(yn + h
s∑
j=1

asjkj, t
n + csh)

= f(yn + h
s∑
j=1

bjkj, t
n + h) = f(yn+1, tn+1). (2.3.26)

Here we have used (3.6). Now let us compute k1 when the Butcher tableau has the form
(3.21) and we are making the integration step from t = tn+1 to t = tn+2. From (3.7) and
(3.22) we find the result

k1|t=tn+1 = f(yn+1, tn+1). (2.3.27)

We conclude that
k1|t=tn+1 = ks|t=tn , (2.3.28)

the first k for a successive step is the same as the last k from the previous step. For this
reason, a Butcher tableau of the form (3.21) is said to have a First Same As Last (FSAL)
structure. We see that for a FSAL Runge-Kutta method, once an initial integration step has
been completed, successive steps only require s − 1 function evaluations and are therefore
the method effectively has s− 1 stages.10 However, the price to be paid for FSAL turns out
to be a reduction in order.

For example, the Butcher tableau

0 0 0 0 0 0 0 0

1
5

1
5

0 0 0 0 0 0

3
10

3
40

9
40

0 0 0 0 0

4
5

44
45

−56
15

32
9

0 0 0 0

8
9

19372
6561

−25360
2187

64448
6561

−212
729

0 0 0

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

0 0

1 35
384

0 500
1113

125
192

−2187
6784

11
84

0

35
384

0 500
1113

125
192

−2187
6784

11
84

0

(2.3.29)

10Note also that, because bs = 0, the final operation (3.6) is also already carried out in the evaluation of
ks, which results in an additional savings.
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describes a FSAL Runge-Kutta method that has s = 7 stages but acts like a 7− 1 = 6 stage
method after the first step since 6 function evaluations are required for each subsequent step.
It is a 5th order method (m = 5). From Table 3.1 we see that this method has the optimal
order that can be achieved with a 6 stage method, and has an order that is one less than
the optimal order that can be achieved with a 7 stage method. Section 2.5.1 and Appendix
B describe how this method can be used as part of an embedded Runge-Kuttta pair called
Dormand-Prince 5(4).

Exercises

2.3.1. Consider the second-order Runge-Kutta method (sometimes called the improved Eu-
ler method or the second-order Heun method)

a = hf(yn, tn), (2.3.30)

b = hf(yn + a, tn + h),

yn+1 = yn +
1

2
(a+ b). (2.3.31)

Verify that the local truncation error is of the form eh3 + O(h4) and find a formula for e.
Finding error estimates for Runge-Kutta methods is not easy! Hint: Use a Taylor series
to write yn+1

true = yn + hẏn + h2ÿn/2! + h3
...
y
n
/3! + O(h4). Now expand the Runge-Kutta

formula in a Taylor series and compare terms. You should find the result

e = −(
...
y −3

∑
ÿi∂f/∂yi)/(12). (2.3.32)

2.3.2. Review Exercise 3.1. Consider the so called explicit midpoint rule Runge-Kutta
method

a = hf(yn, tn), (2.3.33)

b = hf(yn + a/2, tn + h/2),

yn+1 = yn + b. (2.3.34)

Show that this method is also second order. That is, verify that the local truncation error
is of the form ch3 +O(h4). Find a formula for e.

2.3.3. Show that the Euler method (2.3) is a Runge-Kutta method with Butcher tableau

0 0
1
. (2.3.35)

2.3.4. Show that the Runge-Kutta method of Exercise 3.1 above has the Butcher tableau

0 0 0
1 1 0

1/2 1/2
. (2.3.36)
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Show that the Runge-Kutta method of Exercise 3.2 above has the Butcher tableau

0 0 0
1/2 1/2 0

0 1
. (2.3.37)

2.3.5. Verify that (3.13) and (3.14) are the Butcher tableaux for RK3 and RK4, respectively.

2.3.6. Show that the Runge-Kutta method with Butcher tableau

1 1
1

(2.3.38)

describes the rule

yn+1 = yn + hf(yn+1, tn + h) = yn + hf(yn+1, tn+1). (2.3.39)

This method might properly be called the implicit endpoint rule, but is more commonly
called backward Euler or, simply, implicit Euler. Verify that this method has order 1 and
find an estimate for the local truncation error.

2.3.7. Show that the Butcher tableau (3.17) corresponds to the implicit midpoint rule (3.18).
Review Exercises 3.1 and 3.2. Verify by direct computation of Taylor series that (3.18) is of
order 2, and find an estimate for the local truncation error.

2.3.8. Show that the Butcher tableau

0 0 0
1 1/2 1/2

1/2 1/2
. (2.3.40)

corresponds to the Runge-Kutta formula

yn+1 = yn + (h/2)[f(yn, tn) + f(yn+1, tn + h)]. (2.3.41)

This method is known as the trapezoidal rule. What is its order? It is interesting to note
that the Butcher tableaux (3.36) and (3.40) have the same bi and ci, but different matrix
parts a.

2.3.9. Verify, for RK3 and RK4, that there are the Butcher tableau relations

Order 1: ∑
i

bi = 1, (2.3.42)

Order 2: ∑
i

bici = 1/2, (2.3.43)
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Order 3: ∑
i

bic
2
i = 1/3, (2.3.44)

∑
ij

biaijcj = 1/6. (2.3.45)

These relations are called order conditions.
Verify that (3.42) is necessary for a Runge-Kutta method to at least be of order 1. It

can be shown that (3.42) and (3.43) are necessary for a Runge-Kutta method to at least be
of order 2. Finally, all the conditions (3.42) through (3.45) are required for a Runge-Kutta
method to at least be of order 3.

Verify that (3.42) holds for the Butcher tableaux (3.35) and (3.38), but (3.43) does not.
Verify that (3.42) and (3.43), but not (3.44) and (3.45), hold for the Butcher tableaux (3.17),
(3.36), (3.37), and (3.40).

2.3.10. Runge-Kutta methods, particularly those of high order, are difficult to discover.
To simplify the problem, it is convenient to begin with the autonomous case of differential
equations of the form

ż = g(z), (2.3.46)

and search for stepping formulas of the form

zn+1 = zn + h
s∑
i=1

bi`i (2.3.47)

where at each step

`i = g(zn + h
s∑
j=1

aij`j). (2.3.48)

In this case there is no vector c so that the Butcher tableau takes the simpler form

a11 · · · a1s

...
...

as1 · · · ass
b1 · · · bs

. (2.3.49)

Suppose that such a Runge-Kutta method of some desired order has been found for the
autonomous case. We will now see that it can be parlayed into a Runge-Kutta method of
the same order for the non-autonomous case (1.1).

To accomplish this feat, we will convert (1.1), which is a set of m non-autonomous
equations, into a set of m+ 1 autonomous differential equations of the form (3.46). We will
then apply the method of (3.49) to these equations thereby producing an associated method
for (1.1).

With reference to the set (1.1), let τ be a new independent variable and treat t as a
dependent variable by adding the differential equation

dt/dτ = 1 (2.3.50)
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to the set. That is, introduce a new set of (m+ 1) variables z by the rule

first m components of z = first m components of y, (2.3.51)

(m+ 1)th component of z = t; (2.3.52)

and define an m+ 1-dimensional vector of functions g(z) by the rule

first m components of g(z) = first m components of f(y, t), (2.3.53)

(m+ 1)th component of g(z) = 1. (2.3.54)

So doing produces a set of m+ 1 autonomous (τ independent) equations of the form (3.46)
where a dot now indicates d/dτ . A solution of this autonomous set, after making the
identification t = τ , evidently produces a solution of the non-autonomous set (1.1).

Let us now apply the method (3.49) to (3.46) and examine the values of t at each stage.
By the construction (3.53) and (3.54), the (m+1)th component of g is always 1. Next, using
(3.48), show that the (m+ 1)th component of every `i is also 1. Conclude that the (m+ 1)th

component of the argument of g in (3.48) will be

(m+1)th component of (zn+h
s∑
j=1

aij`j) = [(m+1)th component of zn]+h
s∑
j=1

aij. (2.3.55)

Moreover, if the integration method is at least of order 1, it will have integrated the equation
(3.50) exactly so that

(m+ 1)th component of zn = tn. (2.3.56)

Thus, verify the result

(m+ 1)th component of (zn + h
s∑
j=1

aij`j) = tn + h
s∑
j=1

aij. (2.3.57)

Verify that the corresponding temporal argument on the right side of (3.7) is tn + cih.
Therefore, for consistency, verify that there must be the relation

tn + cih = tn + h
s∑
j=1

aij, (2.3.58)

from which the consistency condition (3.16) follows.

2.3.11. As already mentioned in Exercise 3.10, Runge-Kutta methods, particularly those
of high order, are difficult to discover. The purpose of this exercise is to explore some
of the relations between Runge-Kutta formulas and quadrature formulas. For a review of
quadrature formulas, see Section T.1.

Suppose the general Runge-Kutta method given by (3.6) and (3.7) is applied to the
differential equation (1.1) in the special case that the right side is independent of y. That
is, consider differential equations of the special form

ẏ = g(t). (2.3.59)



170 2. NUMERICAL INTEGRATION

Show that in this case the relations (3.7) become

ki = g(tn + cih), (2.3.60)

and the relation (3.6) becomes the stepping rule

yn+1 = yn + h

s∑
i=1

big(tn + cih). (2.3.61)

Suppose further that t0 = 0 and y0 = 0, and set n = 0 so that (3.61) takes the form

y1 = h

s∑
i=1

big(cih). (2.3.62)

Finally, suppose that g(t) has the special form

g(t) = α`t
` (2.3.63)

where α` is some fixed vector. Then (3.62) becomes

y1 = h
s∑
i=1

biα`(cih)` = h`+1α`

s∑
i=1

bi(ci)
`. (2.3.64)

Next verify that the exact solution to (3.59), with t0 = 0 and y0 = 0 and g given by
(3.63), is

ye(t) = α`t
`+1/(`+ 1), (2.3.65)

and therefore
y1
e = ye(h) = α`h

`+1/(`+ 1). (2.3.66)

Upon comparing (3.64) and (3.66), to the extent that y1 and y1
e are to agree, we see that

we should explore the possibilities

s∑
i=1

bi(ci)
` ?

= 1/(`+ 1) (2.3.67)

for various choices of the bi and ci and various values of `. Evidently the conditions (3.67)
are the conditions for a quadrature formula with the bi playing the role of the weights wi
and the ci playing the role of the sampling points xi. See equation (T.1.2) in Appendix T.
Note that the order conditions (3.42) through (3.44) are special cases of (3.67).

Verify that the bi and ci for the RK3 method (3.13) are those for the Newton-Cotes
Simpson’s rule 1 − 4 − 1 formula, see (T.1.15) and (T.1.16), and therefore (3.67) holds for
` = 1, 2, 3 but not ` > 3. Verify that RK3, although only third-order accurate for differential
equations of the general form (1.1), is fourth-order accurate for differential equations of the
special form (3.59). See (T.1.66).

Verify that the bi and ci for the fourth-order method (3.15) are those for the Newton-
Cotes Simpson’s 3/8 rule, see (T.1.20) and (T.1.21), and therefore (3.67) holds for ` = 1, 2, 3
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but not ` > 3. Verify that this method, which is fourth-order accurate for differential
equations of the general form (1.1), is also fourth-order (and not still higher-order) accurate
for differential equations of the special form (3.59). See (T.1.69).

What about the bi and ci for the classic RK4 method (3.14)? Verify that the the bi and
ci for this case are not those for a Newton-Cotes quadrature. Verify that in this case (3.62)
becomes

y(h) = h
s∑
i=1

bif(cih)

= (1/6)f(0) + (2/6)f(h/2) + (2/6)f(h/2) + (1/6)f(h)

= (1/6)f(0) + (4/6)f(h/2) + (1/6)f(h). (2.3.68)

Show that the right side of (3.68) is the Newton-Cotes quadrature rule corresponding to
Simpson’s 1−4−1 formula, and therefore (3.68) is accurate through order 4, as we would at
least expect since classic RK4 is supposed to be fourth order. See (T.1.66). Correspondingly,
verify that (3.67) holds for ` = 1, 2, 3 but not ` > 3.

What about the bi and ci for the Gaussian Runge-Kutta methods (3.17), (3.19), and
(3.20)? Verify that for these Butcher tableaux the bi and ci satisfy (3.67) through the
advertised order. See Subsection T.1.3.

Finally, verify that the bi and ci for the Butcher tableaux (3.36) and (3.40) correspond
to k = 2 closed Newton Cotes.

2.3.12. This exercise is a continuation of Exercise 3.11, which you should read. We have
found and explored conditions to be satisfied by the bi and the ci. What can be said about
the remaining matrix aij in the Butcher tableau (3.12)?

We will not consider the general case, but will describe a specific case. There is a class
of Runge-Kutta methods that arises from a concept called collocation. For these methods,
collocation is used to provide a stepping rule from yn to yn+1. Remarkably, for these
methods, there is a formula that specifies the matrix aij in terms of the coefficients ci. This
formula makes possible the construction of a class of Runge-Kutta methods of arbitrary
order.

We now describe the use of collocation to provide a stepping rule. Select s distinct
quantities ci with i = 1, 2, · · · s. Let Pn(t) be a vector-valued polynomial in t of degree s
specified by the s+ 1 requirements that

Pn(tn) = yn, (2.3.69)

Ṗn(tn + cih) = f [Pn(tn + cih), tn + cih], i = 1, 2, · · · , s. (2.3.70)

The points tn + cih are called collocation points. According to dictionaries, collocation is
defined as the result of “arranging” together. Here we have required that the time derivative
of Pn(t) and the value of f be equal at the collocation points. Since a polynomial of degree
s requires s+ 1 conditions for its specification, we have indeed specified Pn(t).

Moreover since, according to (3.69) and (3.70), Pn(t) satisfies s+1 relations that are also
satisfied by y(t), we expect that Pn(t) will be a good approximation to y(t). We therefore
make the stepping rule

yn+1 = Pn(tn + h). (2.3.71)
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It can be shown that if s quantities ci and their associated bi can be found such that (3.67)
is satisfied for all ` < m (but not ` = m), then use of (3.69) through (3.71) is equivalent to
an s-stage Runge-Kutta method having order m. In other words,

m = `max + 1. (2.3.72)

The Butcher tableau for this method contains the bi and ci. Moreover, as will be described
shortly, with a knowledge of the ci there is a recipe for constructing the matrix entries aij
in the Butcher tableau. Thus, there is a procedure for constructing a class of Runge-Kutta
formulas of arbitrary order.

Before describing the recipe for the matrix entries aij, we pause to elaborate briefly on
the connection between collocation and Runge-Kutta. Begin with the truism that

yn+1 − yn =

∫ tn+1

tn
dt ẏ(t) =

∫ tn+1

tn
dt f [y(t), t]. (2.3.73)

Next estimate the right side of (3.73) using a quadrature formula that employs the points
tn + cih as sampling points and the bi as weights. So doing gives the approximation

yn+1 ' yn + h
s∑
i=1

bif [y(tn + cih), tn + cih]. (2.3.74)

It can be shown that there is the correspondence

ki ' f [y(tn + cih), tn + cih], (2.3.75)

and therefore

yn+1 ' yn + h
s∑
i=1

biki, (2.3.76)

in agreement with (3.6).
We now describe the recipe for constructing a full Butcher tableau in terms of the ci

and based on the collocation Ansatz. We already know how to construct the bi in terms of
the ci. Given the ci, we form the associated Lagrange polynomials Li(x) and then integrate
them over the interval [0, 1] to find the bi. See (T.1.4) through (T.1.9). It can be shown that
the the matrix entries aij associated with the collocation Ansatz are also given in terms of
integrals of Lagrange polynomials by the rule

aij =

∫ ci

0

dx Lj(x). (2.3.77)

Further work, based on the result (3.77), shows that equivalently the matrix entries aij
can be found from the ci by a matrix algorithm: First, define an s× s matrix u by the rule

ujk = ck−1
j with j, k = 1, · · · , s. (2.3.78)

Next define an s× s matrix v by the rule

vik = cki /k with i, k = 1, · · · , s. (2.3.79)
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Then the matrix a is given by the rule

a = vu−1. (2.3.80)

For a proof of all these results, see the book Geometric Numerical Integration by Hairer
et al. cited in the Bibliography at the end of this chapter.

Evidently there are two possible complications in executing the instructions (3.78) and
(3.80). First it could happen that some cj = 0, in which case use of (3.78) will involve the
ambiguous quantity 00. Indeed, this could well occur because c1 = 0 for closed Newton
Cotes. However, since x0 is taken to represent the function g(x) = 1, we should make the
choice

00 = g(0) = 1. (2.3.81)

Second, one must verify that the matrix u has an inverse, which is equivalent to the condition

det(u) 6= 0. (2.3.82)

The cj violate this condition if they are not all distinct. Note that the cj for the RK4
Butcher tableau (3.14) have c2 = c3. Here we require that the cj be distinct, and it can be
shown that this condition is sufficient to guarantee the existence of u−1.11

In summary, it can be shown that the quantities ci, bi, and aij, with the bi constructed
from the ci using (T.1.5) and (T.1.9) and the matrix a given by (3.77) or (3.80), produce a
Runge-Kutta method of order m provided (3.67) is satisfied for all ` < m (but not ` = m).
Do m values for this procedure, which according to (3.72) and (T.1.11) may be as large as
2s, violate the claim of Table 3.1? The answer is no because the Runge-Kutta methods
produced in this way are implicit.

We emphasize, of course, that not all Runge-Kutta methods are provided by this con-
struction. In particular, the explicit Runge-Kutta methods fall outside this class.

Your task in this exercise is to use the matrix algorithm just described to construct the
Butcher tableaux (3.17) for Gauss2, (3.40) for the trapezoidal rule, and (3.19) for Gauss4.

Consider first the s = 1 case of Gauss2 given by (3.17). In this case both u and v are
1× 1 matrices. For b1 and c1 we use the values b1 = 1 and c1 = 1/2, which corresponds to
the use of k = 1 Legendre Gauss. In this case (3.67) is satisfied for ` = 0 and ` = 1, but not
` = 2. Thus we expect the method to have order m = 2. For c1 = 1/2 show that

u11 = c0
1 = (1/2)0 = 1, (2.3.83)

v11 = c1
1 = (1/2)1 = 1/2, (2.3.84)

from which it follows that

a11 = v11/u11 = 1/2, (2.3.85)

in accord with the matrix entry in (3.17).
Consider next the s = 2 case of the trapezoidal rule given by (3.40). Since s = 2,

we expect that u and v will be 2 × 2. Suppose we use k = 2 Newton Cotes for which

11Verify that det(u) is a Vandermonde determinant. See (17.2.23) and (17.2.29).
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b1 = b2 = 1/2, c1 = 0, and c2 = 1. In this case we have `max = 1, see Table T.1.1, and we
expect m=2. Verify the results

u11 = c0
1 = 00 = 1, (2.3.86)

u12 = c1
1 = 01 = 0, (2.3.87)

u21 = c0
2 = 10 = 1, (2.3.88)

u22 = c1
2 = 11 = 1, (2.3.89)

and therefore

u =

(
1 0
1 1

)
. (2.3.90)

Similarly, show that

v =

(
0 0
1 1/2

)
. (2.3.91)

Use these results to show that

a = vu−1 =

(
0 0

1/2 1/2

)
, (2.3.92)

in agreement with the matrix part of the Butcher tableau (3.40). Verify that the integrals
(3.77) for the aij are easily evaluated in this case again yielding the result (3.92).

Your last challenge is to consider the s = 2 case of Gauss4 given by (3.19). In this case
u and v are again 2 × 2 matrices. For the bi and ci choose values associated with k = 2
Legendre Gauss. That is, make the choice

(b1, b2) = (1/2, 1/2), (2.3.93)

(c1, c2) = (1/2−
√

3/6, 1/2 +
√

3/6). (2.3.94)

For this choice (3.67) is satisfied for ` = 0, 1, 2, and 3, but not ` = 4; and we expect the
order to be m = 4. Verify the results

u11 = c0
1 = (1/2−

√
3/6)0 = 1, (2.3.95)

u12 = c1
1 = 1/2−

√
3/6 (2.3.96)

u21 = c0
2 = (1/2 +

√
3/6)0 = 1, (2.3.97)

u22 = c1
2 = 1/2 +

√
3/6, (2.3.98)

and therefore

u =

(
1 1/2−

√
3/6

1 1/2 +
√

3/6

)
. (2.3.99)

Also verify the results
v11 = c1

1 = 1/2−
√

3/6, (2.3.100)

v12 = c2
1/2 = (1/2−

√
3/6)2/2 = 1/6−

√
3/12, (2.3.101)

v21 = c1
2 = 1/2 +

√
3/6, (2.3.102)
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v22 = c2
2/2 = (1/2 +

√
3/6)2/2 = 1/6 +

√
3/12, (2.3.103)

and therefore

v =

(
1/2−

√
3/6 1/6−

√
3/12

1/2 +
√

3/6 1/6 +
√

3/12

)
. (2.3.104)

Next verify that

u−1 =
√

3

(
1/2 +

√
3/6 −1/2 +

√
3/6

−1 1

)
. (2.3.105)

Finally, show that

a = vu−1 =

(
1/4 1/4−

√
3/6

1/4 +
√

3/6 1/4

)
, (2.3.106)

which agrees with the matrix part of (3.19).

2.4 Finite-Difference/Multistep/Multivalue Methods

2.4.1 Background

Motivation and Terminology

In Runge-Kutta methods, one essentially begins anew at each step, and (apart from the
y value that is already at hand) disregards any previously obtained information about the
trajectory under study. Methods with this property are called single-step methods. This is
fine, of course, when one is beginning a solution since all one has then is the initial conditions.
However, once the integration is sufficiently underway, it clearly would be advantageous to
make use of some of the “information” contained in previously obtained points. We now
explore how this may be done.

Suppose we are willing to store results from k = N + 1 previous integration steps where
N is an integer.12 That is, we are willing to store k previous successive values of y` and
k previous successive values of f `. (Generally N ranges from 3 to 10. For purposes of
the present discussion, N is selected once and for all, and then held fixed throughout the
integration run.) With these values at hand, we consider a relation of the form

αN+1y
n+1 + αNy

n + αN−1y
n−1 + · · ·+ α0y

n−N =

h(βN+1f
n+1 + βNf

n + βN−1f
n−1 + · · ·+ β0f

n−N) (2.4.1)

which we rewrite in the (marching-order) form

yn+1 = −αNyn − αN−1y
n−1 − · · · − α0y

n−N

+h(βN+1f
n+1 + βNf

n + βN−1f
n−1 + · · ·+ β0f

n−N). (2.4.2)

Here, without loss of generality, we have rescaled the α` and the β` so that αN+1 = 1.
The formula (4.2), with fixed h independent coefficients, is to be used to determine yn+1

from the stored yn · · ·yn−N and the stored fn · · ·fn−N . It is explicit if βN+1 = 0, and

12Warning! The symbol N in this context has a different meaning than in Sections 2 and 3.
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implicit otherwise. Methods of the form (4.2) are called multistep methods since they employ
information from k = N + 1 previous steps. More precisely, methods of the form (4.2)
are called k-step methods. They are also called multivalue methods since (4.2) involves k
previous values of y` and the k previous values of f `.13 Sometimes they are also called linear -
multistep or linear -multivalue methods since the relation (4.2) involves a linear combination
of the y` and the f `. Finally, they are also called finite-difference methods because they
can often be conveniently formulated in terms of finite differences.

Maximum Order

Suppose the coefficients in (4.2) are selected to obtain the highest possible local accuracy.
What local accuracy can we hope to achieve? Imagine that y is expanded in a Taylor series
about t = tn and this Taylor series is used to determine yn+1 = y(tn + h). If this series is
to be accurate through terms of order hm, it must contain m+ 1 terms since it begins with
the constant term yn. On the other hand, we have 2k pieces of information available in the
explicit case, and 2k+1 pieces of information in the implicit case. We therefore might hope,
in the explicit case, to achieve a maximal local accuracy mmax given by

mmax = 2k − 1, explicit case; (2.4.3)

and, in the implicit case, a maximum local accuracy of

mmax = 2k, implicit case. (2.4.4)

For example there is the N = 1, and therefore k = 2, two-step explicit formula

yn+1 = −4yn + 5yn−1 + 4hfn + 2hfn−1, (2.4.5)

and the two-step implicit formula

yn+1 = yn−1 + (h/3)fn+1 + (4h/3)fn + (h/3)fn−1. (2.4.6)

Suppose we stipulate that the monomial

y(t) = atj (2.4.7)

(where a is a constant vector) be the exact solution to (1.1), from which it follows that

f(y, t) = jatj−1. (2.4.8)

Upon inserting (4.7) and (4.8) into (4.5) it is easily verified that (4.5) holds exactly for
j = 0, 1, 2, 3 and fails to be exact for j ≥ 4. The formula (4.5) is therefore locally accurate
through terms of order h3, which according to (4.3) is the highest order that might be
expected in the explicit case. Indeed, it is easy to verify that (4.5) is the unique explicit
two-step formula having third-order accuracy. Similarly, it can be verified that (4.6) is exact
for j = 0, 1, 2, 3, 4 and fails for j ≥ 5. The formula (4.6) is therefore locally accurate through
terms of order h4, which according to (4.4) is the highest order that might be expected in
the implicit case.

13Some authors use the term multivalue to refer to the jet formulation described in Subsection 5.3.
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Stability

At this point we can make a simple observation. Consider the polynomial ρ(ζ), which (for
reasons that will become clear later) we call the stability polynomial, defined by the rule

ρ(ζ) =
N+1∑
j=0

αjζ
j = ζN+1 +

N∑
j=0

αjζ
j. (2.4.9)

Suppose that the marching rule (4.2) is exact for the monomial (4.7) with j = 0, in which
case f = 0. That is, we impose the requirement that (4.2) at least integrate the constant
function y = a exactly so that the Ansatz y` = a and f ` = 0 satisfies (4.2) exactly. (This
requirement is called consistency of order zero.) Doing so evidently yields the result

a = −a(αN + αN−1 + · · ·+ α0) (2.4.10)

from which it follows that

1 +
N∑
j=0

αj = ρ(1) = 0. (2.4.11)

Thus, the stability polynomial must have ζ = 1 as a root for the method (4.2) to even be
of minimal interest. In particular, if the method (4.2) has mmax ≥ 1, which are the cases of
actual interest, then (4.11) must be satisfied. At this point, for convenient subsequent use
and in analogy to (4.9), we also define a polynomial σ(ζ) by the rule

σ(ζ) =
N+1∑
j=0

βjζ
j. (2.4.12)

To gain further insight into possible properties of multistep methods, let us now examine
the use of the specific procedure (4.5) in more detail. Suppose it is used to integrate the
scalar differential equation

ẏ = f(y, t) = λy (2.4.13)

with the initial condition
y(0) = 1. (2.4.14)

(We suppose t0 = 0.) The exact solution in this case is evidently

y(t) = exp(λt). (2.4.15)

Let us study how the solution to the marching orders (4.5) approximates this exact solution.
For the case (4.13) we have f ` = λy`, and therefore the marching orders (4.5) become

yn+1 = −4yn + 5yn−1 + 4hλyn + 2hλyn−1 = (−4 + 4hλ)yn + (5 + 2hλ)yn−1. (2.4.16)

Observe that (4.16) is a linear recursion relation. To solve it, try the Ansatz

yn ∝ (ζ)n (2.4.17)
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where the quantity ζ is to be determined and the notation is meant to be suggestive. The
Ansatz (4.17), when inserted into (4.16), yields the characteristic equation

ζ2 + (4− 4hλ)ζ − (5 + 2hλ) = 0. (2.4.18)

It follows that (4.16) has a general solution of the form

yn = A[ζ1(h)]n +B[ζ2(h)]n (2.4.19)

where ζ1 and ζ2 are the roots of (4.18), and the solution is made specific by selecting the
coefficients A,B so that the conditions

y0 = 1 (2.4.20)

and
y−1 = exp(−hλ) (2.4.21)

are satisfied.
The roots of (4.18) are

ζ = −2 + 2hλ±
√

[9− 6hλ+ 4(hλ)2], (2.4.22)

and they have the expansions

ζ1(h) = −2 + 2hλ+
√

[9− 6hλ+ 4(hλ)2]

= 1 + (hλ) + (hλ)2/2! + (hλ)3/3! + (hλ)4/72 + · · ·
= exp(hλ) +O(h4), (2.4.23)

ζ2(h) = −2 + 2hλ−
√

[9− 6hλ+ 4(hλ)2]

= −5 + 3(hλ) +O(h2). (2.4.24)

Note from (4.23) that, as h → 0, the root ζ1 becomes ζ1 = 1. That ζ = 1 is a root in this
limit is to be expected: From (4.2) we see that the characteristic equation (4.18) can be
written in the form

ρ(ζ)− hλσ(ζ) = 0. (2.4.25)

In the limit h = 0 the characteristic equation written as (4.25) becomes the relation

ρ(ζ) = 0, (2.4.26)

and we know from our previous discussion that ζ = 1 is root of (4.26) since the method
(4.5) has mmax = 3 and therefore mmax ≥ 1.

Suppose we set A = 1 and B = 0 in (4.19). Then (4.20) is satisfied exactly, and from
(4.23) we see that (4.21) is satisfied through terms of order h3. Moreover, in this case (4.19)
can be rewritten in the form

yn = (ζ1)n = exp[n log(ζ1)] = exp{n[hλ+O(h4)]} = exp(λtn) exp[nO(h4)]. (2.4.27)
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And, if we follow the marching orders to the time tn = T so that n = T/h, we obtain the
result

y(T ) = exp(λT ) exp[(T/h)O(h4)] = exp(λT ) exp[TO(h3)]. (2.4.28)

Evidently, as comparison with (4.15) reveals, (4.28) becomes exact in the limit h→ 0.
Suppose instead we require (4.20) as before, but now require that (4.21) hold exactly.

This would seem to be desirable because (4.20) and (4.21) are properties of the exact solution
(4.15). Then we find the relations

A+B = 1, (2.4.29)

A[exp(−hλ) +O(h4)] +B[−5 +O(h)]−1 = exp(−hλ), (2.4.30)

from which it follows that
A = 1 +O(h4), (2.4.31)

B = O(h4) 6= 0. (2.4.32)

Correspondingly, (4.19) becomes

yn = A(ζ1)n +B[−5 +O(h)]n. (2.4.33)

And, if we now if we follow the marching orders to the time T, we find the result

y(T ) = [1 +O(h3)] exp(λT ) +O(h4)(−5)T/h. (2.4.34)

We see that the first term in (4.34) becomes the exact solution in the limit h→ 0, but the
second oscillates wildly with ever growing amplitude as h→ 0. For this reason, the method
(4.5) is called unstable. Although the factor B in the second term of (4.33) and (4.34)
vanishes as h4 when h → 0, the second factor grows (in amplitude) very rapidly because
|ζ2| > 1. And this rapid growth dominates the vanishing of B so that their product also
grows rapidly. On the other hand if it had happened that |ζ2| < 1, which might be the case
for some other integration procedure, then both factors would vanish as h→ 0 so that only
the first term would remain thereby producing the exact result for y(T ).

What have we learned from this example? First, the characteristic equation must have
a root that is near +1, and this root produces a “desired” solution of the marching orders
that approximates the exact solution of the associated differential equation. We will call
this root the good root. In addition there are other roots, k − 1 in number because the
characteristic equation is a polynomial of degree k, that produce other solutions. These
solutions are called parasitic solutions. If their associated roots, which we will call parasitic
roots, lie outside the unit circle in the complex plane, these solutions grow without bound
and can eventually swamp the true solution. Finally, the nature of the roots can be found
for small h by examining the roots of the stability polynomial ρ(ζ).

We conclude that a multistep method is generally of little interest if any roots of the
stability polynomial ρ(ζ) lie outside the unit circle. A multistep method is defined to be
strongly stable if its ρ(ζ) has +1 as a root and all other roots lie inside the unit circle. In
general, unless a multistep procedure is initiated “just right”, some or all of the parasitic
solutions will also be present in the result. Also, even when the procedure is initiated “just
right”, the parasitic solutions will continually be “excited” during the march due to round-off
errors. But if a method is strongly stable and h is small enough, then the parasitic-solution
roots of the characteristic equation will lie within the unit circle and the parasitic solutions
will decay to zero thereby leaving behind only the desired solution as h→ 0.
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The First Dahlquist Barrier

What is the maximum local order mmax that can be achieved with a strongly stable k-step
method? It can be shown that if strong stability is required, then there is the result

mmax = k, explicit case; (2.4.35)

mmax = k + 2, implicit case and k even, (2.4.36)

mmax = k + 1, implicit case and k odd. (2.4.37)

This limit is called the first Dahlquist barrier.14 A common practice is to employ order
m = k methods for the explicit case and order m = k or m = k+ 1 methods for the implicit
case.

Strictly speaking, the order given by (4.36) cannot be reached unless all the roots of ρ(ζ)
are on the unit circle, in which case it can be arranged that they are all distinct. By our
definition, methods with this property are not strongly stable, but rather are a borderline
case. However, they may be useful in some circumstances. In general, the first Dahlquist
barrier for the implicit case, for both k even and k odd, is mmax = k + 1.

Convergence

Again speaking strictly, our discussion of convergence so far holds for differential equations
of the form (4.13). However, it can be proved that if a multistep method has local accuracy
through terms of order hm with m ≥ 1 and is strongly stable, then the result of following
the marching orders from t = t0 to t = t0 + T converges to the exact result for y(t0 + T )
as h → 0 for any differential equation provided f(y, t) has sufficiently many continuous
derivatives and the stored starting values are exact.

We also note, still strictly speaking, that the concept of a characteristic equation applies
only to cases of linear differential equations of the general form (4.13). However, if a method
cannot integrate (4.13) well, then it is unlikely to be able to integrate more complicated
nonlinear equations well.

2.4.2 Adams’ Method

Suppose in (4.2) we set
αN = −1 (2.4.38)

and
α` = 0 for ` = 0, 1, · · · , N − 1. (2.4.39)

In this case the stability polynomial becomes

ρ(ζ) = ζk − ζk−1 = (ζ − 1)ζk−1, (2.4.40)

which evidently has the single root ζ1 = 1 and the multiple roots ζ` = 0 for ` = 2, 3, · · · k.
This would seem to be a highly desirable state of affairs because with this choice for the α`

14There is also a second Dahlquist barrier that arises in the integration of so-called stiff equations by
implicit methods. Their treatment is beyond the scope of this text.
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all the parasitic roots of ρ vanish, and one might hope correspondingly that all the parasitic
roots of the characteristic equation would be well within the unit circle providing h is not
too large.

Upon taking into account the Ansatz specified by (4.38) and (4.39), the marching orders
(4.2) take the form

yn+1 = yn + h(βN+1f
n+1 + βNf

n + βN−1f
n−1 + · · ·+ β0f

n−N).

The remaining task is to chose the β` in such a way that the order is maximized to bring
it as close to the first Dahlquist barrier as is conveniently possible. The stepping methods
thereby obtained are variously associated with the names modified Adams, Adams-Bashforth,
or Adams-Moulton. We shall simply call them Adams.

Because the derivation of Adams’ method is fairly involved, we shall begin our discussion
by describing the procedure for its use. Then, with the procedure well understood, we will
give the derivations that justify the method. For convenience of description, we will assume
the required stored starting values are obtain using Runge Kutta executed with a sufficiently
small step size.

As in the cases of Crude Euler and Runge-Kutta, we begin with an initial vector y0, and
our task is to compute the successive vectors y1,y2 etc. The procedure for Adams’ method
is as follows:

1. Adams’ method requires the storage of information about previously obtained points
on a trajectory. In particular, since(4.38) and (4.39) hold but in general β` 6= 0, it
requires storage of the values f(y, t) at these points and the most recent value of y.
As described earlier, let N + 1, where N is an integer, be the number of points whose
“f” values we are willing to store. For purposes of our present discussion, it is selected
once and for all, and then held fixed throughout the integration run. Thus, there is
actually a whole family of Adams’ methods with each member of the family having a
different N . As we expect and will see later, the choice of N governs the accuracy of
the method.

2. Using a Runge-Kutta method, compute the vectors y1,y2, · · ·yN starting with y0.
At each point yn compute the vector fn = f(yn, tn), and store the N + 1 vectors
f 0,f 1, · · ·fN as well as yN . Since the accuracy of these “f” values greatly affects
the accuracy of the solution to be obtained later on, it is worth spending considerable
effort on their accurate computation. One simple method is to run Runge-Kutta with
a fractional step size h/m, where m is an integer, and then use every mth Runge-Kutta
step for computing the desired y’s and f ’s.

3. We are ready to switch to Adams’ method. It consists of two stepping formulas called
the predictor and the corrector. The predictor formula for marching from yn to yn+1

reads

yn+1 = yn + h
N∑
k=0

∼
b
N

k f
n−k. (predictor)

It is an explicit formula. Here the
∼
b
N

k are a set of coefficients whose values will be
derived and tabulated later on. Now, using the predictor formula and the stored f ’s,
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compute yN+1 by putting n = N . This step is called Predicting, or P for short, and its
result is called the predicted value of yN+1. An Adams’ predictor formula is sometimes
called an Adams-Bashforth formula.

4. Using yN+1, compute fN+1 = f(yN+1, tN+1). This step is called Evaluating, or E for
short, since it requires an evaluation of the function f .

5. The corrector formula reads

yn+1 = yn + h

N∑
k=0

∼
a
N

k f
n+1−k, (corrector)

where the
∼
a
N

k are another set of coefficients. It is an implicit formula and will be
solved by iteration. Using the corrector formula, the stored f ’s, and fN+1 from step
4, recompute yN+1 by putting n = N in the corrector formula. This step is called
Correcting, or C for short, since, as we will later see, the corrector formula is more
accurate. Its result is called the corrected value of yN+1. An Adams’ corrector formula
is sometimes called an Adams-Moulton formula.

6. Return to step 4, this time using the corrected value of yN+1. Repeat steps 4 and 5
until successive values of yN+1 differ by less than some preassigned amount (usually
the round-off accuracy of the computer). It can be shown that this iteration procedure
converges if the step size h is small enough. Indeed, the operation EC can be shown to
be a contraction map, and the operation P provides a first guess for the fixed point of
this contraction map.15 In actual practice the sequence PECEC is usually sufficient.
A need for more iterations generally indicates a too large step size.

7. The procedure is finished. We have found yN+1. Now update the table of f ’s by
adding to it the value of fN+1 obtained from the last evaluation step, and discarding
f 0.

8. To compute yN+2, relabel the y’s and f ’s, and return to step 3. In this manner,
proceed to compute yN+2,yN+3, etc. until the integration run is completed. Note
again that, in each case, only the previous value of y and the last N + 1 values of the
f ’s are used.

2.4.3 Numerical Example

We show below in Exhibit 4.1 a program that illustrates the use of Adams’ method with
N = 4 for the differential equation set (2.7) through (2.9). Subsequently we will learn that
N = 4 Adams is of order 5. That is, it is locally exact through terms of order h5 and makes
local errors of order h6. See (4.37) and (4.38). Therefore, it might appropriately be called
Adams5.

15For a discussion of contraction maps, see the first paragraph of Section 29.4.3 and the references at the
end of Chapter 29.
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The time step is again h = 1/10. The program is written in double precision so that
round-off errors are unimportant for this step size. That is, for pedagogical simplicity, we
want to avoid the need to worry about round-off errors for this example. Runge-Kutta
integration, with a step size of h/10 = 1/100, is used as a starting procedure.

The first values in the columns labeled y1comp and y2comp printed for each time in
the Adams’ routine are those found by the predictor. The next three lines are the result
of successive corrector iterations. That is, we have used the sequence PECECEC. The
convergence is good, and the sequence PECEC would have been sufficient. Note that the
solution is now accurate to almost eight significant figures. A more efficient version of this
program using vector arrays is given in Appendix B.

In passing, let us compare the accuracy of RK3 and Adams5, and the effort involved in
each, for this simple example. From Exhibit 3.1 we we saw that RK3 had an accuracy (with
a step size h = 1/10) of five significant figures. And, according to (3.2) and (3.3), three
function evaluations were required per step. By contrast, with the same step size, Adams5
has an accuracy of almost eight significant figures. And, when PECEC is used, only two
function evaluations are required per step. Thus Adams5 is considerably more accurate and
involves less effort than RK3.
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Exhibit 2.4.1: Fifth-Order Adams Integration

Adams Integration Routine

Store initial time

Print

Evaluate

Print

Predict

Correct

Loop

back 

N*

times

Loop

back 

3

times
Print

Update table of f's

Update y

Update time

Return

End

Set up initial f's

using Runge-Kutta

* Here N denotes the
number of steps to
be made.

Main Program

Print heading

End

Call Adams

Set up initial conditions

and parameters



2.4. FINITE-DIFFERENCE/MULTISTEP/MULTIVALUE METHODS 185

Computer Programs

c This is the main program for illustrating an Adams method

c for numerical integration.

c

implicit double precision (a-h,o-z)

c

c Print heading.

c

write(6,100)

100 format

& (1h ,’time’,4x,’y1comp’,10x,’y2comp’,10x,’y1true’,

& 10x,’y2true’,/)

c

c Set up initial conditions and parameters. n is the number of integration

c steps we wish to make.

c

t=0.d0

h=.1d0

n=15

y1=0.d0

y2=1.d0

c

call adams(t,h,n,y1,y2)

c

end

c

c This is a fifth-order Adams integration subroutine.

c

subroutine adams(t,h,n,y1,y2)

implicit double precision (a-h,o-z)

dimension f1(5),f2(5)

c

write(6,*) ’Starting with Runge-Kutta integration’

c

c Set up initial f values.

c

call eval(y1,y2,t,f1(1),f2(1))

call prints(t,y1,y2,y1true(t),y2true(t),0)

do 10 i=2,5

call rk3(t,h/10.d0,10,y1,y2)

call eval(y1,y2,t,f1(i),f2(i))

call prints(t,y1,y2,y1true(t),y2true(t),0)

10 continue

write (6,*) ’Continuing with Adams integration’

hdiv=h/720.d0

n=n-4

t=t+h

tint=t

c

c Printing and integration loop.

c

do 100 i=1,n

c
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c Predictor step.

c

p1=y1+hdiv*(1901.d0*f1(5)-2774.d0*f1(4)+2616.d0*f1(3)

& -1274.d0*f1(2)+251.d0*f1(1))

p2=y2+hdiv*(1901.d0*f2(5)-2774.d0*f2(4)+2616.d0*f2(3)

& -1274.d0*f2(2)+251.d0*f2(1))

c

call prints(t,p1,p2,y1true(t),y2true(t),0)

c

c Corrector steps.

c

do 50 j=1,3

call eval(p1,p2,t,g1,g2)

c1=y1+hdiv*(251.d0*g1+646.d0*f1(5)-264.d0*f1(4)

& +106.d0*f1(3)-19.d0*f1(2))

c2=y2+hdiv*(251.d0*g2+646.d0*f2(5)-264.d0*f2(4)

& +106.d0*f2(3)-19.d0*f2(2))

p1=c1

p2=c2

call prints(t,c1,c2,0.,0.,1)

50 continue

c

c Update

c

do 75 j=1,4

f1(j)=f1(j+1)

f2(j)=f2(j+1)

75 continue

f1(5)=g1

f2(5)=g2

y1=c1

y2=c2

t=tint+float(i)*h

c

100 continue

c

return

end

Numerical Results

time y1comp y2comp y1true y2true

Starting with Runge-Kutta integration

0.0000 0.00000000E+00 0.10000000E+01 0.00000000E+00 0.10000000E+01

0.1000 0.10016658E+00 0.10049958E+01 0.10016658E+00 0.10049958E+01

0.2000 0.20133067E+00 0.10199334E+01 0.20133067E+00 0.10199334E+01

0.3000 0.30447980E+00 0.10446635E+01 0.30447979E+00 0.10446635E+01

0.4000 0.41058166E+00 0.10789390E+01 0.41058166E+00 0.10789390E+01

Continuing with Adams integration

0.5000 0.52057439E+00 0.11224171E+01 0.52057446E+00 0.11224174E+01

0.52057446E+00 0.11224175E+01

0.52057448E+00 0.11224175E+01

0.52057448E+00 0.11224175E+01
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0.6000 0.63535744E+00 0.11746641E+01 0.63535753E+00 0.11746644E+01

0.63535754E+00 0.11746644E+01

0.63535755E+00 0.11746644E+01

0.63535755E+00 0.11746644E+01

0.7000 0.75578220E+00 0.12351576E+01 0.75578231E+00 0.12351578E+01

0.75578234E+00 0.12351579E+01

0.75578235E+00 0.12351579E+01

0.75578235E+00 0.12351579E+01

0.8000 0.88264379E+00 0.13032931E+01 0.88264391E+00 0.13032933E+01

0.88264396E+00 0.13032934E+01

0.88264397E+00 0.13032934E+01

0.88264397E+00 0.13032934E+01

0.9000 0.10166730E+01 0.13783898E+01 0.10166731E+01 0.13783900E+01

0.10166732E+01 0.13783901E+01

0.10166732E+01 0.13783901E+01

0.10166732E+01 0.13783901E+01

1.0000 0.11585289E+01 0.14596975E+01 0.11585290E+01 0.14596977E+01

0.11585291E+01 0.14596978E+01

0.11585291E+01 0.14596978E+01

0.11585291E+01 0.14596978E+01

1.1000 0.13087925E+01 0.15464037E+01 0.13087926E+01 0.15464039E+01

0.13087928E+01 0.15464040E+01

0.13087928E+01 0.15464040E+01

0.13087928E+01 0.15464040E+01

1.2000 0.14679608E+01 0.16376421E+01 0.14679609E+01 0.16376422E+01

0.14679611E+01 0.16376423E+01

0.14679611E+01 0.16376423E+01

0.14679611E+01 0.16376423E+01

1.3000 0.16364417E+01 0.17325011E+01 0.16364418E+01 0.17325012E+01

0.16364420E+01 0.17325013E+01

0.16364420E+01 0.17325012E+01

0.16364420E+01 0.17325012E+01

1.4000 0.18145501E+01 0.18300328E+01 0.18145503E+01 0.18300329E+01

0.18145505E+01 0.18300329E+01

0.18145505E+01 0.18300329E+01

0.18145505E+01 0.18300329E+01

1.5000 0.20025049E+01 0.19292627E+01 0.20025050E+01 0.19292628E+01

0.20025052E+01 0.19292629E+01

0.20025052E+01 0.19292628E+01

0.20025052E+01 0.19292628E+01
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2.4.4 Derivation and Error Analysis

Calculus of Finite Differences

To reiterate, our remaining task is to choose the β` in such a way that the order is maximized
to bring it as close to the first Dahlquist barrier as is conveniently possible. For this purpose
it is useful to employ a constructive method based on the calculus of finite differences.

Let y(t) be any vector-valued function of t. We define a backwards difference operator
∇ by the rule

∇y(t) = y(t)− y(t− h), (2.4.41)

and in particular
∇yn = yn − yn−1. (2.4.42)

Repeated applications of ∇ will be indicated by an exponent with the convention ∇0 = 1.
Thus,

∇2yn = ∇(∇yn) = ∇yn −∇yn−1 = yn − 2yn−1 + yn−2, (2.4.43)

and in general

∇`yn =
∑̀
k=0

(−1)k
(
`
k

)
yn−k, (2.4.44)

where the

(
`
k

)
are the standard binomial coefficients.

Suppose y(t) is a polynomial in t with vector coefficients. Then it is easily checked that
∇y is a polynomial of one order lower. We also have the relations

∇1 = 0, (2.4.45)

∇kt` = 0 if k > `, (2.4.46)

∇`t` = h``!, (2.4.47)

where in this particular case t` denotes a power of t rather than the notation adopted in
(1.2). Finally, we note that for y polynomial in t, not only powers of ∇ are well defined;
infinite series of the form

∑∞
0 ak∇k are also defined since by (4.46) the series must always

terminate when applied to a polynomial.
From Taylor’s theorem we know that

yn−1 = y(tn − h) =
∞∑
k=0

[(−h)k/k!](dkyn/dtk). (2.4.48)

This relation can be written more compactly as

yn−1 = e−hDyn (2.4.49)

where D denotes the differential operator

D = d/dt. (2.4.50)
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That is, if we expand e−hD in a formal power series, we get (4.48). Combining (4.41) and
(4.49), we find the result

∇yn = (1− e−hD)yn. (2.4.51)

Watch closely! Since (4.51) is true for any y whose functional dependence on t is poly-
nomial, and since any continuous function can be approximated arbitrarily closely by poly-
nomials, we can write the symbolic formula

∇ = (1− e−hD) = hD − 1

2
h2D2 + · · · . (2.4.52)

Equation (4.52) should be viewed as a formal relation between two power series: one in ∇
and one in D. It becomes a true equation when applied to any polynomial. In this spirit,
we may solve (4.52) for D to get the result

D = −h−1 log(1−∇). (2.4.53)

Here log(1−∇) denotes the formal series

log(1−∇) = −
∞∑
k=1

∇k/k. (2.4.54)

Again, (4.53) becomes a true equation when applied to any polynomial.

Application of Finite Difference Calculus to Integration of Differential
Equations

We now apply the calculus of difference operators we have just developed to the integration
of differential equations. Observe that the differential equation under study, (1.1), can be
written as

Dyn+1 = fn+1. (2.4.55)

Suppose we knew how to invert the operator D. Then we might try writing

yn+1 ?
= D−1fn+1. (2.4.56)

However, we do not expect D−1 to be well defined since the inverse of differentiation is
integration, and integration always involves the introduction of an arbitrary constant. This
defect can be overcome by observing that the operator ∇D−1 is well defined since by (4.45)
the operator ∇ annihilates any integration constant produced by D−1. Thus we may convert
(4.56) into the integration formula

∇yn+1 = ∇D−1fn+1. (2.4.57)

Now make another daring step. Since (4.53) and (4.54) express D as a formal series in ∇,
we might hope to get ∇D−1 as another series in ∇ by the operation of division. Assuming
this is possible, use of (4.53) in (4.57) gives the result

yn+1 = yn + h[−∇/ log(1−∇)]fn+1. (2.4.58)
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We shall verify shortly that the expression [−∇/ log(1 − ∇)] has a well-defined series
expansion in ∇ so that (4.58) is formally correct, and actually true for polynomials. Before
doing so, we continue on to derive another strange-looking expression. From the definition
of ∇ we have the relation

∇fn+1 = fn+1 − fn. (2.4.59)

Rearranging terms we find
fn = (1−∇)fn+1. (2.4.60)

Let us solve for fn+1. We have symbolically

fn+1 = (1−∇)−1fn. (2.4.61)

Now insert (4.61) into (4.58) to get the result

yn+1 = yn + h{−∇/[(1−∇) log(1−∇)]}fn. (2.4.62)

How are expressions such as (4.58) and (4.62) to be understood? Consider the functions
F (z) and G(z) defined by

F (z) = −z/ log(1− z), (2.4.63)

G(z) = −z/[(1− z) log(1− z)]. (2.4.64)

Near z = 0 we know that log(1− z) = −z + O(z2) so that F (0) and G(0) are well defined.
Furthermore, log(1 − z) and (1 − z)−1 are singular only when z = 1. We conclude that F
and G are analytic in the complex z plane within the unit disk |z| < 1. Consequently, we
may write the series expansions

F (z) =
∞∑
0

akz
k, (2.4.65)

G(z) =
∞∑
0

bkz
k. (2.4.66)

The first few coefficients are listed in Table 4.1 below. The ratio |bk/ak| is also roughly
tabulated for later use. The answer to our question is now clear. We use the series (4.65)
and (4.66) to define the expressions in question, and in so doing obtain relations that are
true for arbitrary polynomials.

Table 2.4.1: Expansion Coefficients for F and G.

k 0 1 2 3 4 5 6 7 8 9
ak 1 −1

2
− 1

12
− 1

24
− 19

720
−3
160

−863
60480

−275
24192

−33953
3628800

−8183
1036800

bk 1 1
2

5
12

3
8

251
720

95
288

19087
60480

5257
17280

1070017
3628800

25713
89600

|bk/ak| 1 1 5 9 ∼ 13 ∼ 17 ∼ 22 ∼ 27 ∼ 32 ∼ 36
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Predictor-Corrector Formulas

With this brief explanation, we return to the problem of numerical integration. Suppose we
wish to proceed from yn to yn+1 on the basis of a polynomial fit in t of order N + 1. That
is, y(t) is approximated by a polynomial of order N + 1, and we are willing to tolerate local
errors of order hN+2. Since f = ẏ,f will be a polynomial of order N , and according to
(4.46) we need to retain only N th and lower differences. Thus, we may replace (4.58) and
(4.62) by the two truncated formulas

yn+1 = yn + h
N∑
0

ak∇kfn+1, (corrector) (2.4.67)

yn+1 = yn + h
N∑
0

bk∇kfn. (predictor) (2.4.68)

As the reader may have guessed, we have given the formulas the names corrector and
predictor in anticipation of their use. We may also write (4.67) and (4.68) in the expanded
form

yn+1 = yn + h
N∑
0

∼
a
N

k f
n+1−k, (corrector) (2.4.69)

yn+1 = yn + h
N∑
0

∼
b
N

k f
n−k (predictor) (2.4.70)

where the coefficients
∼
a
N

k ,
∼
b
N

k are related to the earlier set ak, bk using (4.44). The coefficients
∼
a
N

k and
∼
b
N

k are listed in Tables 4.2 and 4.3 at the end of this section. Note that these
coefficients depend on both k and N .

Error Analysis

Both formulas (4.67) and (4.68) are correct through terms of order hN+1. However, in general
the truncation errors involved in the corrector (4.67) are numerically smaller than those in
the predictor (4.68). To see this, suppose that y(t) is approximated exactly by a polynomial
of order N + 2,

y(t) =
N+2∑

0

cj(t− tn)j. (2.4.71)

Then, using a corrector series with upper summation index (N+1), we would have the exact
result

yn+1
true = yn + h

N+1∑
0

ak∇kfn+1. (2.4.72)

[Note that in general the summation index in (4.72) should extend to infinity. However,
because of the assumption (4.71), it may be cut off as indicated.] By contrast, using (4.67),
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the actual corrector gives the approximate result

yn+1
corr = yn + h

N∑
0

ak∇kfn+1. (2.4.73)

Upon subtracting the two results, we find the relation

yn+1
true − yn+1

corr = haN+1∇N+1fn+1. (2.4.74)

The right side of (4.74) is easily evaluated using f = ẏ, (4.71), (4.46), and (4.47). The
result is the relation

yn+1
true − yn+1

corr = hN+2aN+1(N + 2)!cN+2. (2.4.75)

Finally, we observe that
(N + 2)!cN+2 = (dN+2y/dtN+2), (2.4.76)

so that the local error involved in using the corrector formula is given by

yn+1
true − yn+1

corr ≈ hN+2aN+1(dN+2y/dtN+2)|t=tn . (2.4.77)

Similarly, the predictor formula local error is given by

yn+1
true − yn+1

pred ≈ hN+2bN+1(dN+2y/dtN+2)|t=tn . (2.4.78)

Equations (4.77) and (4.78) are exact for polynomials of order N + 2, and approximate
otherwise. Now look at Table 1. We see that, for N > 2, aN is considerably smaller than
bN and therefore the corrector formula has higher accuracy.

Since the corrector formula is more accurate, why did we bother to develop a predictor
formula? The answer is that (4.67), as is evident from its expanded form (4.69), is an
implicit or closed formula. That is, to employ it to compute yn+1, we need to know fn+1

which itself depends on yn+1! By contrast the predictor formula, although less accurate, is
an explicit or open formula since we already presume to know the vectors fn back through
fn−N from previous integration steps.

Finally, we note that the local orders described by (4.77) and (4.78) are close to the
maximum order consistent with the first Dahlquist barrier. See Exercise 4.13.

Recapitulation of Adams’ Method

At this point the reader should return to the first part of this section to review once again
the procedure for Adams’ method. He or she will see that it exploits the explicit nature of
the predictor and the higher accuracy of the corrector by the following ingenious strategy:

(a) (Step 3.) Suppose the vectors yn and fn,fn−1, · · ·fn−N are known. Use formula
(4.70) to predict a preliminary value for yn+1.

(b) (Step 4.) Insert this yn+1 and tn+1 into f(y, t) to evaluate fn+1.

(c) (Step 5.) With the fn+1 thus obtained, recompute or correct yn+1 using formula
(4.69).
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(d) (Step 6.) Return to (b) and repeat (b) and (c) until convergence is achieved. Generally
(see the discussion at the beginning of this section), the sequence PECEC should be
sufficient. The net result is a value for yn+1 that is correct within a local error given
roughly by (4.77).

(e) (Steps 7 and 8.) Update the table of f ’s, and go back to part (a) to compute yn+2,
etc.

This strategy is often called the predictor-corrector method. Let us summarize what has
been accomplished. Using (4.70) as a predictor and (4.69) as a corrector, we are able to
compute yn+1 through order hN+1 by generally making two and at most three computations
(evaluations) of f plus some simple additions. (That is, PECEC or at worst PECECEC
should be sufficient. In practice it is common to use just PECE, and there are theoretical
reasons to believe that it is best to end with an E operation.) All that is required is the
storage of the previous N + 1 values fn · · ·fn−N and the value yn. By contrast, the Runge-
Kutta method (3.2) involves three evaluations of f , and is correct only through order h3.
Higher order Runge-Kutta schemes involve correspondingly more computations of f . Since
f is usually a complicated function of y and t, multiple computations of f are generally
made at the expense of considerable machine time and round-off error. We conclude that
finite-difference methods give much higher accuracy for much less work, and are generally to
be preferred once a solution is underway. There is, however, a caveat that makes the matter
not quite so simple. One might be tempted, with a high order finite-difference method, to
increase the step size in order to gain speed. That is, one might hope to trade accuracy
for speed. However, as described in Subsection 7.3, finite-difference methods can become
unstable if the step size is too large.16 See also Exercise 4.14. Consequently, Runge-Kutta
may be preferable if only low accuracy is required, while finite-difference methods win if
high accuracy is required.

16That is, if h is too large, some parasitic roots of the characteristic equation may lie outside the unit
circle even when Adams is used to integrate equations of the form (4.13). And if these equations cannot be
integrated well, there is doubt that more complicated nonlinear equations can be integrated well.



194 2. NUMERICAL INTEGRATION

Table 2.4.2: The Adams’ Corrector Coefficients ãNl .

k N 2 3 4 5 6 7 8 9
0 5

12
9
24

251
720

475
1440

19087
60480

36799
120960

1070017
3628800

2082753
7257600

1 8 19 646 1427 65112 139849 4467094 9449717
2 −1 −5 −264 −798 −46461 −121797 −4604594 −11271304
3 1 106 482 37504 123133 5595358 16002320
4 −19 −173 −20211 −88547 −5033120 −17283646
5 27 6312 41499 3146338 13510082
6 −863 −11351 −1291214 −7394032
7 1375 312874 2687864
8 −33953 −583435
9 57281

The denominator of each of the coefficients of the first line is to be repeated for all the
coefficients of the corresponding column.

Table 2.4.3: The Adams’ Predictor Coefficients
∼
b
N

k .

k N 2 3 4 5 6 7 8 9
0 23

12
55
24

1901
720

4277
1440

198721
60480

434241
120960

14097247
3628800

30277247
7257600

1 −16 −59 −2774 −7923 −447288 −1152169 −43125206 −104995189
2 5 37 2616 9982 705549 2183877 95476786 265932680
3 −9 −1274 −7298 −688256 −2664477 −139855262 −454661776
4 251 2877 407139 2102243 137968480 538363838
5 −475 −134472 −1041723 −91172642 −444772162
6 19087 295767 38833486 252618224
7 −36799 −9664106 −94307320
8 1070017 20884811
9 −2082753

Again the denominator of each of the coefficients of the first line is to be repeated for all
the coefficients of the corresponding column.

Exercises

2.4.1. Verify that (4.5) holds exactly for j = 0, 1, 2, 3 and fails to be exact for j ≥ 4. Verify
that (4.5) is the unique explicit two-step formula having third-order accuracy. Find the error
when j = 4. Verify that (4.6) is exact for j = 0, 1, 2, 3, 4 and fails for j ≥ 5.

2.4.2. Review Exercise 4.1. Verify that the accuracy of (4.5) and (4.6) exceeds the limit
specified by the first Dahlquist barrier. But, consistent with this barrier, (4.34) illustrates
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that the method (4.5) is unstable. Verify that, in accord with the first Dahlquist barrier,
the method (4.6) is also unstable.

2.4.3. Suppose that a multistep method has order mmax ≥ 1 so that, in particular, it is able
to treat the case (4.7) and (4.8) exactly when j = 1. Show that then there is the relation

ρ′(1) = σ(1). (2.4.79)

2.4.4. Verify (4.16), (4.18), (4.22), and the expansions (4.23) and (4.24).

2.4.5. Verify the relations (4.44) through (4.47).

2.4.6. Verify (4.67) and (4.68) by direct calculation using Table 4.1 in the case that y(t) = t3.
How large must N be in order to get exact results?

2.4.7. Compute the first few coefficients ak in equation (4.65). [Hint: First try differentiating
F to convince yourself that this is not a good method. Then try synthetic division using
equation (4.54). Can you find any other good method?]

Show that the coefficients bk satisfy the recursion relation

bk − bk−1 = ak, (2.4.80)

and use this relation to compute the first few b’s.

2.4.8. Show that the coefficients
∼
a
N

k obey the relations

∼
a
N

N= (−1)NaN , (2.4.81)

∼
a
N

k = 0 if N < k, (2.4.82)

∼
a
N+1

k =
∼
a
N

k +(−1)k
(
N + 1

k

)
aN+1. (2.4.83)

Compute the first few
∼
a
N

k . Make a similar study of the
∼
b’s.

2.4.9. Use equation (4.77) to estimate the expected local truncation error for Example
(4.1) and compare with the actual error. [Use the solution (2.10) and (2.11) to compute
(dN+2y/dtN+2).] Use both (4.37) and (4.38) to derive a formula for the corrector error
that does not require a knowledge of (dN+2y/dtN+2). Apply it to Example (4.1). [Ans:
ytrue − ycorr ' aN+1(ypred − ycorr)/(aN+1 − bN+1). This strategy is called the Milne device.]

2.4.10. Consider the differential equation set (2.7) through (2.9). You will see below a
table of entries obtained from a very accurate Runge-Kutta starting routine. Using Adams,
complete the table for n = 4. The step size is h = 1/3. Compare your answer with the exact
result. How big do you expect your error to be?

n tn yn1 yn2 = fn1 fn2
0 0 0 1 0
1 1/3 .33947 1.05505 .32719
2 2/3 .71496 1.21412 .61837
3 1 1.15853 1.45970 .84147
4 4/3 ? ? ?
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2.4.11. Show that if one is integrating linear differential equations, then the corrector
formula (4.69) can be made explicit so that it is in principle possible to integrate without
a predictor. Whether or not one should actually do this is a matter of convenience and
economy.

2.4.12. The use of the predictor-corrector method requires at least two evaluations of f
at each step. Explore the merits of integrating with a step size of h/2 and using just the
predictor without correcting. That is, use just PE at each step. Both methods require
the same number of f evaluations to integrate over a given time interval. Which is more
accurate? Answer the question first ignoring round-off error, and then taking it into account.
Do not worry about stability.

2.4.13. Show that with the stored data fn, . . . ,fn−N one can set up the corrector formula

yn+1 = yn + h
N+1∑

0

ak∇kfn+1. (2.4.84)

Verify that (4.84) has the expanded form

yn+1 = yn + h
N+1∑

0

∼
a
N+1

k fn+1−k. (2.4.85)

Show that the error associated with these formulas is given by the relation

yn+1
true − yn+1

corr ≈ hN+3aN+2(dN+3y/dtN+3)|t=tn . (2.4.86)

Comparison of (4.86) and (4.77) shows that use of (4.84), or equivalently (4.85), yields results
of one order higher accuracy; and therefore we will refer to this corrector as a higher-order
corrector.

What accuracy can be achieved if we use the corrector (4.85) in conjunction with the
predictor (4.70)? Both make optimal use of the the stored data fn, . . . ,fn−N . Whether
or not the smaller error associated with the higher-order corrector is achieved in practice
depends on the number of corrector iterations. It can be shown that PEC is not enough,
but PECEC may suffice. If ending on an E step is deemed desirable, then one should use
at least PECECE.

Your next task is to compare the accuracies specified by (4.77), (4.78), and (4.86) with
that specified by the first Dahlquist barrier (4.35) through (4.37). Verify that, according to
(4.78), the Adams predictor (4.70) makes local errors of order hN+2 and therefore is exact
through order hN+1. We also recall that k = N + 1 so that the Adams predictor (4.70)
is exact through order hk. According to (4.35) the highest local error mmax that can be
achieved by a strongly stable explicit k-step method is k. Therefore, the Adams predictor
(4.70) achieves the first Dahlquist barrier limit. With regard to implicit formulas, verify that
(4.77) shows that the corrector formula (4.69) is exact through order hk. But, according
to (4.36), (4.37), and the ensuing discussion, it should be possible, in the implicit case, to
achieve results that are accurate through order hk+1. Verify that, according to (4.86), the
higher-order corrector (4.85) is exact through order hk+1. Therefore in this case the first
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Dahlquist barrier limit is also achieved assuming that the higher-order Adams corrector is
employed.

Your last task is to consider two low-order cases. Show that use of (4.67), (4.68), and
(4.84) for N = 0 gives the formulas

yn+1 = yn + hfn, (predictor) (2.4.87)

yn+1 = yn + hfn+1, (corrector) (2.4.88)

yn+1 = yn + (h/2)(fn+1 + fn), (higher-order corrector). (2.4.89)

Note that (4.87) is just the Euler method (2.3). The procedure (4.88) is sometimes called
backward Euler, and in this context (4.87) is called forward Euler.

Show that use of (4.67), (4.68), and (4.84) for N = 1 gives the formulas

yn+1 = yn + (h/2)(3fn − fn−1), (predictor) (2.4.90)

yn+1 = yn + (h/2)(fn+1 + fn), (corrector) (2.4.91)

yn+1 = yn + (h/12)(5fn+1 + 8fn − fn−1), (higher-order corrector). (2.4.92)

2.4.14. The purpose of this exercise is to study the stability properties of the N = 1 Adams
routine given by (4.90) through (4.92).

Let us begin with the predictor (4.90). Show that applying it to the differential equation
(4.13) produces the characteristic equation

ζ2 − [1 + (3/2)(hλ)]ζ + (1/2)(hλ) = 0, (2.4.93)

and verify that the characteristic equation has the roots

ζ = {[1 + (3/2)(hλ)]±
√

[1 + (hλ) + (9/4)(hλ)2]}/2. (2.4.94)

Show that (4.93) has the good root

ζ1 = {[1 + (3/2)(hλ)] +
√

[1 + (hλ) + (9/4)(hλ)2]}/2
= 1 + hλ+ (hλ)2/2!− (1/4)(hλ)3 + · · ·
= exp(hλ) +O(h3) (2.4.95)

and the parasitic root

ζ2 = {[1 + (3/2)(hλ)]−
√

[1 + (hλ) + (9/4)(hλ)2]}/2
= (hλ)/2− (hλ)2/2 +O(h)3. (2.4.96)

Note that the good root goes to 1 as h goes to 0, as required; and the parasitic root goes to 0
as h goes to 0, as expected for Adams’ method. Verify that the argument of the square root
appearing in (4.95) and (4.96) is always positive when the quantity hλ is real, and therefore
there is no ambiguity involved in the definition of the square root. Show that ζ2 < 1/2
when hλ is real. Verify that ζ2 leaves the unit disk through ζ2 = −1 when hλ = −1, and
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becomes ever more negative than −1 as hλ becomes ever more negative than −1. Verify
that ζ1 = 1/2 when hλ = −1.

Next consider the corrector (4.91). Show that applying it to the differential equation
(4.13) produces the characteristic equation

ζ2 − {[1 + (hλ)/2]/[1− (hλ)/2]}ζ = 0. (2.4.97)

Show that (4.97) has the good root

ζ1 = [1 + (hλ)/2]/[1− (hλ)/2]

= 1 + hλ+ (hλ)2/2! + (1/4)(hλ)3 + · · ·
= exp(hλ) +O(h3) (2.4.98)

and the parasitic root
ζ2 = 0. (2.4.99)

Evidently, in this case, the parasitic root for the corrector has the optimum value of zero for
all values of h! To examine this matter further, show that applying (4.91) to the differential
equation (4.13) produces the recursion relation

yn+1 = ζ1y
n, (2.4.100)

and show that this recursion relation has the unique solution

yn = (ζ1)ny0. (2.4.101)

Finally, consider the higher-order corrector (4.92). Show that applying it to the differ-
ential equation (4.13) produces the characteristic equation

[1− (5/12)(hλ)]ζ2 − [1 + (2/3)(hλ)]ζ + (hλ)/12 = 0. (2.4.102)

Verify that (4.102) has the roots

ζ = {[1 + (2/3)(hλ)]±
√

[1 + hλ+ (7/12)(hλ)2]}/{2[1− (5/12)(hλ)]}. (2.4.103)

Show that (4.102) has the good root

ζ1 = {[1 + (2/3)(hλ)] +
√

[1 + hλ+ (7/12)(hλ)2]}/{2[1− (5/12)(hλ)]}.
= 1 + hλ+ (hλ)2/2! + (hλ)3/3! + (1/12)(hλ)4 + · · ·
= exp(hλ) +O(h4) (2.4.104)

and the parasitic root

ζ2 = {[1 + (2/3)(hλ)]−
√

[1 + hλ+ (7/12)(hλ)2]}/{2[1− (5/12)(hλ)]}.
= (hλ)/12− (7/144)(hλ)2 +O(h3). (2.4.105)

Verify that the argument of the square root appearing in (4.104) and (4.105) is always
positive when the quantity hλ is real, and therefore there is no ambiguity involved in the
definition of the square root. Verify that ζ2 remains within the unit disk when hλ > −6, has
the value ζ2 = −1 when hλ = −6, and becomes ever more negative than −1 (leaves the unit
disk through −1) as hλ becomes ever more negative than −6. Verify that ζ1 = 1/7 when
hλ = −6.
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2.4.15. This exercise extends that work on Finite Difference Calculus presented at the
beginning of this subsection to derive what is called the Euler-Maclaurin formula. This
formula is of use both in evaluating integrals and in summing series.

Suppose f(t) is some function and we wish to calculate the integral I given by

I =

∫ tN

t0

f(t)dt. (2.4.106)

If we subdivide the interval [t0, tN ] into N equal pieces as in Figure 1.1, then we may
approximate the integral (4.106) by the areas of N trapezoids. each of base h, to obtain the
trapezoidal rule result

I ≈ h[(1/2)(f0 + f1) + (1/2)(f1 + f2) + · · ·+ (1/2)(fN−1 + fN)]

= h(1/2)(f0 + fN) + h

N−1∑
i=1

fi = −h(1/2)(f0 + fN) + h

N∑
i=0

fi.

. (2.4.107)

(Here we have employed subscript indices rather than the superscript indices used earlier
in Subsection 4.4 because we will soon need superscript indices for another purpose.) In
summary, the trapezoidal rule yields the approximation∫ tN

t0

f(t)dt ≈ −h(1/2)(f0 + fN) + h
N∑
i=0

fi. (2.4.108)

We will now further develop the calculus of finite differences and employ it to improve on
the accuracy of this approximation.

To begin define, in analogy to (4.4.1), a forward difference operator ∆ by the rule

∆f(t) = f(t+ h)− f(t). (2.4.109)

Next define an operator J by the rule

Jf(t) =

∫ t+h

t

f(t′)dt′. (2.4.110)

[Here the symbol J is not to be confused with the J introduced in (1.7.11). At the expense
of duplication of symbol use, we are trying to follow convention in both the subjects of
Hamiltonian theory and finite difference calculus.] Show that there are the relations

DJf(t) = JDf(t) = f(t+ h)− f(t) = ∆f(t). (2.4.111)

Consequently, there are the operator relations

DJ = JD = ∆. (2.4.112)

Also show, using reasoning similar to that which led to the result (4.52), that there is the
operator relation

∆ = exp(hD)− 1. (2.4.113)
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Verify that (4.112) and (4.113) can be combined to produce the operator relation

h = ∆−1hDJ = {hD/[exp(hD)− 1]}J. (2.4.114)

How can we make sense of the right side of (4.114)? It can be shown that there is the
analytic function result

τ/[exp(τ)− 1] =
∞∑
j=0

(Bj/j!)τ
j (2.4.115)

where the Bk are the Bernoulli numbers.17 These numbers have the property

B3 = B5 = B7 = · · · = 0, (2.4.116)

and the first few nonzero of them have the values

B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/36, B6 = 1/42, B8 = −1/30. (2.4.117)

Consequently verify that, when acting on a function, (4.114) takes the forms

hf(t) = {hD/[exp(hD)− 1]}Jf(t) =
∞∑
j=0

(Bj/j!)(hD)jJf(t)

=

∫ t+h

t

f(t′)dt′ +
∞∑
j=1

(Bj/j!)(hD)jJf(t)

=

∫ t+h

t

f(t′)dt′ +
∞∑
j=1

(Bj/j!)h
jDj−1DJf(t)

=

∫ t+h

t

f(t′)dt′ +
∞∑
j=1

(Bj/j!)h
jDj−1∆f(t)

=

∫ t+h

t

f(t′)dt′ +
∞∑
j=1

(Bj/j!)h
jDj−1[f(t+ h)− f(t)]

=

∫ t+h

t

f(t′)dt′ +
∞∑
j=1

(Bj/j!)h
j[f (j−1)(t+ h)− f (j−1)(t)].

(2.4.118)

(Here a superscript index in parenthesis denotes a derivative of that order.) Note that if
f(t) is a polynomial in t, then the sum on the far right side of (4.118) terminates. Therefore
(4.118) is well defined and exact for any polynomial f because no convergence questions
arise.

Let us further manipulate (4.118). Suppose t in (4.118) is replaced by t+ h. Verify that
so doing yields the result

hf(t+ h) =

∫ t+2h

t+h

f(t′)dt′ +
∞∑
j=1

(Bj/j!)h
j[f (j−1)(t+ 2h)− f (j−1)(t+ h)]. (2.4.119)

17Indeed, (4.115) defines the Bernoulli numbers.
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Next add (4.119) to (4.118). Verify that so doing yields the result

h[f(t) + f(t+ h)] =

∫ t+2h

t

f(t′)dt′ +
∞∑
j=1

(Bj/j!)h
j[f (j−1)(t+ 2h)− f (j−1)(t)]. (2.4.120)

Verify that this process can be generalized to yield the result

h[f(t) + f(t+ h) + · · ·+ f(t+Nh− h)] = h
N−1∑
i=0

f(t+ ih)

=

∫ t+Nh

t

f(t′)dt′ +
∞∑
j=1

(Bj/j!)h
j[f (j−1)(t+Nh)− f (j−1)(t)].

(2.4.121)

To manipulate still further, verify that

(B1/1!)h[f (0)(t+Nh)− f (0)(t)] = −(1/2)h[f (0)(t+Nh)− f (0)(t)]

= −(1/2)h[f(t+Nh)− f(t)] = −hf(t+Nh) + h(1/2)[f(t) + f(t+Nh)].

(2.4.122)

Verify that employing (4.122) in (4.121) yields the result∫ t+Nh

t

f(t′)dt′

= −h(1/2)[f(t) + f(t+Nh)] + h
N∑
i=0

f(t+ ih)

−
∞∑
j=2

(Bj/j!)h
j[f (j−1)(t+Nh)− f (j−1)(t)].

(2.4.123)

Finally set t = t0 and make use of (4.116) to convert (4.123) to the relation∫ tN

t0

f(t)dt =

−h(1/2)(f0 + fN) + h

N∑
i=0

fi −
∞∑
k=1

[B2k/(2k)!]h2k[f
(2k−1)
N − f (2k−1)

0 ].

(2.4.124)

It is also useful to express this result using the initial and final notation

tin = t0, tfin = tN , fin = f0, ffin = fN , (2.4.125)
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so that (4.124) becomes∫ tfin

tin

f(t)dt =

−h(1/2)(fin + ffin) + h
N∑
i=0

fi −
∞∑
k=1

[B2k/(2k)!]h2k[f
(2k−1)
fin − f (2k−1)

in ].

(2.4.126)

We see that the accuracy of the trapezoidal rule(4.108) can be improved if one knows, in

addition to the (N + 1) sampling-point values fi, the end-point derivative values f
(2k−1)
fin and

f
(2k−1)
in .

Let us also introduce the notation

b2k = [B2k/(2k)!][f
(2k−1)
fin − f (2k−1)

in ] = [B2k/(2k)!][f (2k−1)(t)|tfin
tin

] (2.4.127)

so that
∞∑
k=1

[B2k/(2k)!]h2k[f
(2k−1)
fin − f (2k−1)

in ] =
∞∑
k=1

b2kh
2k (2.4.128)

and (4.126) can be written in the form∫ tfin

tin

f(t)dt = −h(1/2)(fin + ffin) + h
N∑
i=0

fi −
∞∑
k=1

b2kh
2k. (2.4.129)

In this form it is manifest that the correction to the trapezoidal rule is a Taylor series in h.
This series will converge within some disc about h = 0 if the coefficients b2k are sufficiently
well behaved. But the convergence radius could also be zero if the coefficients b2k are not
sufficiently well behaved.

We can also infer from the previous discussion that (4.129) is exact when f is a polynomial
in t because the sum over k then terminates. More precisely, as is evident from (4.127), in
this case all the b2k = 0 once k is sufficiently large. If f is not polynomial and the sum over
k is terminated when k = m, then may write∫ tfin

tin

f(t)dt = −h(1/2)(fin + ffin) + h
N∑
i=0

fi −
m∑
k=1

b2kh
2k − Em (2.4.130)

where Em is a remainder/error term. Note that Em is well defined because all the other
terms in (4.130) are well defined (assuming h and N are finite). Define a function Êm(τ) by
the rule

Êm(τ) = (Nh)h2m+2{B2m+2/[(2m+ 2)!]}f (2m+2)(τ)

= (tfin − tin)h2m+2{B2m+2/[(2m+ 2)!]}f (2m+2)(τ). (2.4.131)

It can be shown that
Em = Êm(τ) (2.4.132)
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for some τ ∈ (tin, tfin). Verify that if

max
τ∈[tin,tfin]

|Êm(τ)| → 0 as m→∞, (2.4.133)

then the series over k will converge and (4.129) is well defined and exact. By contrast, verify
that if

min
τ∈[tin,tfin]

|Êm(τ)|

does not approach zero as m→∞, then the series over k is divergent.
Frequently, when f is not polynomial, the relation (4.129) has an asymptotic character:

The Em do not tend to zero as m→∞, but rather there is an optimum value of m for which
|Em| takes on a minimum (but generally nonzero) value. For m values smaller or larger than
this optimum value the remainder/error is larger.

In closing this part of the discussion we note that if f is periodic and analytic, and
integration is to be done over a full period, then, for any k,

f
(2k−1)
fin − f (2k−1)

in = 0 (2.4.134)

from which it follows that b2k = 0 for all k. In this case the only correction to the trape-
zoidal rule is the remainder/error term Em. We then conclude that for this case the error
associated with the trapezoidal rule vanishes as h → 0 and N → ∞ faster than any power
of h. For further discussion of the application of the trapezoidal rule to the integration of
analytic periodic functions see the paragraph on “Performing the Forward φ → m Fourier
Transform” right after (19.1.27) and Exercises 19.1.2 through 19.1.4. See also Section 19.2.4
and Exercises 19.2.2 through 19.2.4. Finally, see the references to “Angular Integrals” at
the end of Chapter 19.

On some occasions it is useful to rewrite (4.124) in the form

N∑
i=0

fi =

(1/h)

∫ tN

t0

f(t)dt+ (1/2)(f0 + fN) +
∞∑
k=1

[B2k/(2k)!]h2k−1[f
(2k−1)
N − f (2k−1)

0 ].

(2.4.135)

If the integral and sum on the right side of (4.135) can be evaluated, then the sum on the
left side has been computed. Even if this cannot be accomplished, verify that (4.124) can
be rewritten in the form

N∑
i=0

fi =

(1/h)

∫ tN

t0

f(t)dt+ (1/2)(f0 + fN) +
m∑
k=1

[B2k/(2k)!]h2k−1[f
(2k−1)
N − f (2k−1)

0 ] + Em/h.

(2.4.136)
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This relation can be used to compute the sum on the left within an error that can be
estimated using (4.132).

If we set N =∞ and keep h finite, and also assume that

f∞ = 0 and all f (2k−1)
∞ = 0, (2.4.137)

show that then (4.136) becomes

∞∑
i=0

fi =

(1/h)

∫ ∞
t0

f(t)dt+ (1/2)f0 −
m∑
k=1

[B2k/(2k)!]h2k−1f
(2k−1)
0 + Em/h.

(2.4.138)

In this case (4.132) cannot be used to estimate Em. However, there are other more compli-
cated estimates that can be used, and their use provides a value for the infinite sum on the
left of (4.138) within a computable error estimate.

2.5 (Automatic) Choice and Change of Step Size and

Order

In our initial discussion concerning the choice of step size h, we were a bit cavalier. We merely
stated that h should be small compared to the characteristic time scale of the physical system
under study. This statement is somewhat vague since the time scale may be different for
different parts of the trajectory. Consider, for example, the orbit of a comet about the
sun. When it is far away from the sun, it nearly moves in a straight line. This part of the
trajectory could be integrated with a large h. By contrast, the trajectory changes rapidly
near the sun and a small time step is required for this part of the orbit.

Ideally, two things are needed: a method for automatically estimating the local trunca-
tion error at each integration step and a procedure for adjusting the step size or the order of
the integration routine (or both) to keep the error within acceptable bounds. These ideals
require some effort to realize in practice. Methods that accomplish at least one of these
ideals are called adaptive.

2.5.1 Adaptive Change of Step Size in Runge-Kutta

In the case of Runge-Kutta, one can carry out a step using a step size h, and also carry
out two steps using a step size h/2. By comparing the results of these two procedures, it is
possible to estimate the local error, and then adjust the step size accordingly. See Exercise
5.1. Alternatively, as first discovered by Fehlberg, there are some pairs of Runge-Kutta
procedures whose orders differ (usually by one) and that, in making one integration step,
share many or all intermediate evaluation points. For these so-called embedded pairs, one can
carry out both procedures simultaneously with little added expense. Then, by subtracting
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the higher-order result from the lower-order result, one can estimate the local error in the
lower-order result, and adjust the step size accordingly. See Appendix B for further detail.

We have seen that it is possible to adjust the Runge-Kutta step size automatically during
the course of an integration run. In principle, with more complicated procedures, it is also
possible to change the order as well. This is not now done in common practice, but is a
subject of current research.

In summary, there are Runge-Kutta routines for which one specifies the initial and final
times (t0 and t0 +T ), the initial conditions y(t0), and the acceptable local error. The routine
then automatically selects and dynamically adjusts the step size to compute y(t0 + T ) with
a minimal number of integration steps and with a global error that can be estimated from
the allowed local error and the number of integration steps.

2.5.2 Adaptive Finite-Difference Methods

In the case of finite-difference methods it is possible, with some effort, to adjust both the
step size and the order. We will now describe how this can be done.

Change of Order

In the Adams’ method we have been discussing, it is easy to raise or lower the order.
Suppose we are at t = tn, and wish to step to tn+1. We have at our disposal yn and the
N + 1 f values fn · · ·fn−N . To lower the order by one, throw away the stored fn−N , and
continue the integration using the N values fn · · ·fn−N+1 with one order lower predictor
and corrector formulas. Suppose we are at t = tn+1 and have just completed a converged
corrector step. Then the N + 2 f values fn+1, fn, · · · fn−N are momentarily available.
To raise the order by one, keep fn−N rather than discarding it, as would normally be done.
Then, after relabeling the f ’s, we have available the N + 2 f values fn · · ·fn−N−1, and can
make all future integration steps using one order higher formulas.

Change of Time Step

Changing the time step is more difficult. The simplest procedure is to stop the finite-
difference routine. Then a Runge-Kutta routine with a different step size is begun using
the previously obtained point as an initial condition. After a few starting values have been
computed, one again returns to a finite-difference method. This finite-difference method
would have the modified step size, and could also have a different order. Thus, a typical
integration run could consist of several finite-difference segments of various step sizes and
orders joined together by short pieces of Runge-Kutta.

Is there a more sophisticated way to change the time step? There is, but it is compli-
cated. Given the fn · · ·fn−N at times tn · · · tn−N separated by h, it is in principle possible
by interpolation to find an equivalent set of f ′ values f ′n · · ·f ′n−N at times t′n · · · t′n−N
separated by h′ in such a way that the current times tn and t′n agree. The interpolated f ′

values can then be used to make Adams’ steps with a step size h′.
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2.5.3 Jet Formulation

Is there a reformulation of the Adams’ method that would facilitate changes in the time
step and, at the same time, still make it easy to change orders? There is, but its description
requires some explanation and discussion. In so doing, we will also learn about jets and
classify all finite-difference/multistep methods.

As described earlier, Adams’ method is a special case of multistep/multivalue methods
where some combination of both previous f values and previous y values are stored. How
much information about a trajectory is contained in these stored values? Take yn as given.
Suppose there are M previously stored values (counting both y and f values). Then from
this information, by suitable Taylor expansions, we might hope to compute ẏn, ÿn, · · · y(M)n

where y(m)n denotes an approximation to the m’th derivative of y evaluated at tn. Arrange
these quantities in an M + 1 dimensional vector ~n in the form

~n =


yn

hẏn

(h2/2)ÿn

...
(hM/M !)y(M)n

 . (2.5.1)

If we wish, we can ensure that the ẏn entry in ~n is exact by using (1.1) to compute ẏ(tn).
The remaining derivatives will be approximate. In keeping with terminology to be employed
in subsequent chapters, we will refer to ~ as a jet. More precisely we will refer to ~n as given
by (5.1) as an M -jet.

Conversion of Adams’ Data into Jet Data

As an example of the procedure just described, let us convert stored Adams’ data into jet
data.18 Consider the case N = 2. Then at tn we have the stored values fn−1 and fn−2. If
we imagine that these values are exact, we may make the Taylor expansions

hfn−1 = hf(tn − h) = hẏ(tn − h)

= hẏ(tn)− h2ÿ(tn) + (h3/2)
...
y (tn) + · · ·

= hẏn − 2(h2/2)ÿn + 3(h3/6)
...
y
n

+ · · · , (2.5.2)

hfn−2 = hf(tn − 2h) = hẏ(tn − 2h)

= hẏ(tn)− 2h2ÿ(tn) + [(2h)3/2]
...
y (tn) + · · ·

= hẏn − 4(h2/2)ÿn + 12(h3/6)
...
y
n

+ · · · . (2.5.3)

Define a vector ~sn by writing

~sn =


yn

hfn

hfn−1

hfn−2

 . (2.5.4)

18There is an alternate approach due to Nordsieck that essentially amounts to the same thing. Instead of
storing Adams’ data, one stores their finite differences.
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We will refer to ~s as spread data (Adams’ in this case) since it refers to data at different
times. Corresponding to (5.4) we expect to have a jet ~n of the form

~n =


yn

hẏn

(h2/2)ÿn

(h3/6)
...
y
n

 . (2.5.5)

Indeed, upon neglecting higher order terms, the relations (5.2) and (5.3) along with (1.1)
can be written in the form

~sn = R~n, (2.5.6)

where R is the matrix

R =


1 0 0 0
0 1 0 0
0 1 −2 3
0 1 −4 12

 . (2.5.7)

The matrix R has the inverse

R−1 =


1 0 0 0
0 1 0 0
0 3/4 −1 1/4
0 1/6 −1/3 1/6

 , (2.5.8)

and therefore we may also write
~n = R−1~sn. (2.5.9)

Jet Version of Adams’ Predictor Formula

The Adams’ predictor formula for N = 2 is

yn+1 = yn + (h/12)(23fn − 16fn−1 + 5fn−2). (2.5.10)

See (4.70) and Table 2.4.3. Let us also find a formula for fn+1 based only on Taylor
expansions. We have the relation

hfn+1 = hf(tn + h) = hẏ(tn + h)

= hẏ(tn) + h2ÿ(tn) + (h3/2)
...
y (tn) + · · ·

= hẏn + 2(h2/2) + ÿn + 3(h3/6)
...
y
n

+ · · · . (2.5.11)

The quantities on the right side of (5.11) are components of ~n. Use (5.9) to re-express them
in terms of components of ~sn. Doing so gives the result

hfn+1 = 3hfn − 3hfn−1 + hfn−2. (2.5.12)

According to (5.4), ~sn+1 has the components

~sn+1 =


yn+1

hfn+1

hfn

hfn−1

 . (2.5.13)
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We see from (5.10), (5.12), and (5.13) that the relation between ~sn and ~sn+1 can be written
in the form

~sn+1 = A(2)~sn (2.5.14)

where A(2), the N = 2 Adams’ matrix, is defined by the relation

A(2) =


1 23

12
−16

12
5
12

0 3 −3 1
0 1 0 0
0 0 1 0

 . (2.5.15)

What does the Adams’ predictor step (5.14) correspond to in terms of jets? Using (5.6)
and (5.9) we may write (5.14) in the equivalent form

R−1~sn+1 = R−1A(2)~sn = R−1A(2)RR−1sn, (2.5.16)

or
~n+1 = T~n, (2.5.17)

where T is the matrix

T = R−1A(2)R. (2.5.18)

From (5.7), (5.8), and (5.15) we find for T the explicit result

T =


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 . (2.5.19)

Jet Version of Adams’ Predictor Formula Is Simply Taylor’s Theorem

Suppose we simply compute ~n+1 from a Taylor series. For yn+1 we have the result

yn+1 = y(tn + h) = y(tn) + hẏ(tn) + (h2/2)ÿ(tn) + (h3/6)
...
y (tn) + · · · . (2.5.20)

Also, from (5.11) we have the expansions

hẏn+1 = hẏn + 2(h2/2)ÿn + 3(h3/6)
...
y
n

+ · · · . (2.5.21)

Similarly, we have the expansions

(h2/2)ÿn+1 = (h2/2)ÿ(tn + h) = (h2/2)ÿ(tn) + (h3/2)
...
y (tn) + · · ·

= (h2/2)ÿn + 3(h3/6)
...
y
n

+ · · · , (2.5.22)

(h3/6)
...
y
n+1

= (h3/6)
...
y
n

+ · · · . (2.5.23)

Upon comparing the coefficients in (5.17), and (5.19) through (5.23), we see that the jet
relation (5.17) is simply Taylor’s theorem. For this reason we will refer to T as the Taylor
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matrix. We note that the entries in T are simply related to the binomial coefficients by the
formula

Tk` =

(
`

k

)
, (2.5.24)

with the understanding that (
`

k

)
= 0 when k > `. (2.5.25)

[Here, for convenience, the matrix elements in T are labeled starting from 0. That is, the
elements (from left to right) in the first row of T are T00, T01, T02, T03, etc.] See Exercise
5.8. Indeed, the upper triangular portion of T is just Pascal’s triangle turned on its side.19

Effect of Evaluation on a Jet

So far we have seen how a jet changes under the operation of simple prediction P , and have
found that the result (5.17) is just Taylor’s theorem in disguise. Suppose we now add the
evaluation operation E as well since it is the operation PE that is required for integration
using only the predictor. See Exercise 4.12. What effect does PE have on a jet?

As before, let us first see what the E operation does to the spread vector ~sn+1. The
E operation requires that we replace the hfn+1 entry in the spread vector (5.13) with
hf(yn+1, tn+1). All other entries are unchanged. For simplicity of notation let us introduce
the definition

hf̃n+1 = 3hfn − 3hfn−1 + hfn−2. (2.5.26)

See (5.12). Also, define a quantity ∆ by the rule

∆(~sn+1, tn+1) = hf(yn+1, tn+1)− hf̃n+1. (2.5.27)

[Note that the vector ∆ defined by (5.27) is not to be confused with the forward-difference
operator ∆ employed in (4.109).] Here it is understood that the yn+1 in (5.27) is given
by the predictor formula (5.10), and consequently also by the first component of ~sn+1 in
the relation (5.14). Note also that hf̃n+1 is the second component of ~sn+1. With these
definitions, we see that under the full PE operation the vector ~sn is sent to the vector ~sn+1

according to the rule

~sn+1 = A(2)~sn + ~e, (2.5.28)

where ~e is the vector

~e =


0
1
0
0

∆. (2.5.29)

We observe that the evaluation vector ~e, as desired, changes the second entry in (5.13) and
leaves all the other entries unchanged.

19Google Pascal’s triangle.
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Now that we know from (5.28) the effect of PE on a spread vector, we are ready to find
the equivalent effect of the operation PE on a jet vector. Using (5.6) and (5.9) as before,
we find that (5.28) takes the form

R−1~sn+1 = R−1A(2)RR−1~sn +R−1~e, (2.5.30)

and consequently we have the relation

~n+1 = T~n + ~r, (2.5.31)

where ~r is given by
~r = R−1~e. (2.5.32)

If we use (5.7) and (5.29), we find that ~r has the explicit form

~r =


0
1

3/4
1/6

∆(~n+1, tn+1). (2.5.33)

Note that in terms of the jet ~n+1, ∆ as given by (5.27) takes the form

∆(n+1, tn+1) = hf(yn+1, tn+1)− hf̃n+1, (2.5.34)

where yn+1 and hfn+1 are given by the relations

yn+1 = yn + ẏn + (h3/2)ÿn + (h2/6)
...
y
n
, (2.5.35)

hf̃n+1 = hẏn + 2(h2/2)ÿn + 3(h3/6)
...
y
n
. (2.5.36)

These relations follow from (5.6) and (5.10), and from (5.6) and (5.26), respectively. Note
also that (5.35) and (5.36) are just the first two components of the predicted ~n+1 given by
(5.17) and (5.19).

Effect of Corrector on a Jet

We have found the effect of Adams’ prediction P and evaluation E on both spread vectors
~s and jets ~. What about the corrector operation C? The N = 2 corrector formula is

yn+1 = yn + (h/12)(5fn+1 + 8fn − fn−1). (2.5.37)

See Table 4.2. As before, use (5.12) for fn+1. Doing so gives the result that the “f” factor
on the right side of (5.37) can be rewritten in the form

5hfn+1 + 8hfn − hfn−1 = 23hfn − 16hfn−1 + 5hfn−2. (2.5.38)

In view of (5.10), (5.37), and (5.38), we see that the spread vector relation (5.14) still holds
with the same matrix A(2) given by (5.15). But now we have to take into account successive E
and C operations. Their effect is to replace the hfn+1 in (5.37) and in the second component
of the spread vector (5.13) by f(yn+1, tn+1), with yn+1 defined by (5.37). Recall that we had
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used (5.12) for fn+1. Define ∆ as before in (5.27) but with the understanding that yn+1 is
now defined by (5.37). Then we see from (5.37) and (5.13) that the first component of sn+1

is altered by (5/12)∆ and the second component, as before, is altered by ∆. Thus, when
the converged correction operation is taken into account, (5.14) is modified to take the form

~sn+1 = A(2)sn + ~c, (2.5.39)

where the correction vector ~c is given by

~c =


5/12

1
0
0

∆. (2.5.40)

We are now ready to determine the effect of correction on jets. As before, we multiply
(5.39) by R−1 to get the results

R−1~sn+1 = R−1A(2)RR−1~sn +R−1~c, (2.5.41)

or
~n+1 = T~n + ~r (2.5.42)

where the vector ~r is now defined by the relation

~r = R−1~c. (2.5.43)

By use of (5.8) and (5.40) we find the explicit result

~r =


5/12

1
3/4
1/6

∆. (2.5.44)

So that there is no possible source of confusion, let us try to be perfectly clear about
what is meant by ∆ in (5.44). With the use of (5.6) we have the relation

(h/12)(8fn − fn−1) = (1/12)[7hẏn + 2(h2/2)ÿn − 3(h3/6)
...
y
n
]. (2.5.45)

Also, we use (5.36). Then, from (5.34) we have the result

∆ = hf(yn+1, tn+1)− hẏn − 2(h2/2)ÿn − 3(h3/6)
...
y
n
, (2.5.46)

where, according to (5.37) and (5.45), yn+1 satisfies the equation

yn+1 = yn + (h/12)f(yn+1, tn+1) + (1/12)[7hẏn + 2(h2/2)ÿn − 3(h3/6)
...
y
n
]. (2.5.47)

We note that (5.47) can be solved by iteration just as was done before in Section 2.4. We
begin by putting the predicted value (5.35) into the right side of (5.47), and then iterate. If
the operations PECE were deemed adequate in the original spread vector variables, then the
same holds true for the jet variables since (5.47) and (5.37) are actually the same equations.
When the iterations have converged and the smoke has cleared, the first two components of
~n+1 are given by yn+1 and hf(yn+1, tn+1), respectively. Now that yn+1 and hf(yn+1, tn+1)
are known, ∆ and ~r can be evaluated using (5.46) and (5.44). Finally, (5.42) can now also
be used. By construction, it gives the same first two components of ~n+1 as found before,
namely yn+1 and hf(yn+1, tn+1). It also determines the remaining components of ~n+1.
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2.5.4 Virtues of Jet Formulation

Overview

What are the virtues of using a jet formulation? First, there is a conceptual or theoretical
advantage. It can be shown that all multistep/multivalue methods can be brought to jet
variable form, and when this is done one always obtains results of the form (5.42). As might
be guessed, the matrix T is universal. The various multistep/multivalue methods differ only
in the choice of ~r. Consequently, multistep/multivalue methods can be classified by their
~r vectors. For example, the N = 2 Adams’ predictor-evaluator method has the ~r given by
(5.33), and the N = 2 Adams’ corrector method has the ~r given by (5.44).

From a programming perspective, it is only necessary to build into a code the required ~r
vectors if it is to be able to run for various orders. (Note that if we program in the ~r vectors
for a variety of methods, the code can then also run for a variety of methods, and can even
switch between methods!) Because of its simple form (5.24), the Taylor matrix can easily
be computed and stored by the code itself as needed.

With regard to speed, the predictor part in the jet formulation consists in computing
the first entry in ~n+1 as given by (5.17), which is just (5.20). This is no more difficult
to compute than its spread-vector counterpart (4.70). As seen earlier, the evaluation and
corrector operations required to compute the first two entries in ~n+1 are essentially the
same in both the spread-vector and jet-vector formulations, and it is these operations that
are the most time consuming. Finally, we need to compare the time required to compute
the remaining entries in the spread vector ~sn+1 with that required for the jet vector ~n+1.
As is evident from (5.15), (5.28), and (5.29), all that is required in the spread-vector case is
a simple relabelling (what we have called updating) of stored f values, which is very fast.
In the jet-vector case inspection of (5.19), (5.42), and (5.44) shows that we must carry out
some matrix-vector multiplies and some vector addition, which is a bit slower.

Change of Order

Changing the order for any method in the jet-vector formulation is also as easy as it was
for the Adams’ method in the spread-vector formulation. Suppose we wish to lower the
order by one in the jet formulation. Simply delete the last component of the jet vector,
and continue the integration by using the lower order version of (5.42) — which amounts to
deleting the right-most column and bottom row from T and selecting the ~r appropriate to
the lower order. Raising the order is not much more difficult. Suppose, before the order is
to be raised, that ~ is an M -jet: the last entry in ~ is (hM/M !)y(M). See (5.1). Store this
entry for two or more successive steps and form the difference. Observe that we have the
relation

[1/(M + 1)](hM/M !)[y(M)(tn)− y(M)(tn − h)] =

[1/(M + 1)](hM/M !)[hy(M+1)(tn)− (h2/2)y(M+2)(tn) + · · · ] '
[hM+1/(M + 1)!]y(M+1)n. (2.5.48)

[If desired, one can use more accurate formulas involving higher order differences and based
on the relations (4.53) and (4.54). For an example of the use of these relations, see Exercise
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5.3.] Equation (5.48) gives a value for [hM+1/(M + 1)!]y(M+1)n which can be appended to
the end of ~n to convert it into an (M +1)-jet. We can now continue the integration by using
the one order higher version of (5.42) — which amounts to enlarging the T matrix using
(5.24) and selecting the ~r appropriate to the higher order.

Change of Step Size

The main virtue of the jet formulation is that it easy to change the step size. Observe that
the step size appears nowhere in the marching orders (5.42) except for a simple dependency
in ∆ as given by (5.46) or (5.34). All the major h dependence occurs in the definition of ~
as given by (5.1). Suppose we wish to change the step size from h to h′. Form the diagonal
scaling matrix S defined by

S =


1

(h′/h)
(h′/h)2

. . .

 . (2.5.49)

Given the jet vector ~ n corresponding to step size h, form the corresponding jet vector ~ ′n

corresponding to step size h′ by the relation

~ ′n = S~ n. (2.5.50)

We are now ready to continue the integration using (5.42) with h′ and the ~ ′ jet vectors.

Interpolation/Dense Output

There is yet another virtue to the jet formulation. As it runs, a numerical integration scheme
only produces y values at discrete points tn. It may happen (particularly if the step size is
being controlled dynamically by the integration program) that we need to know y at some
time τ that lies between two points, say tm and tm+1. This is easily done using the jet vector.
Define a small quantity ε by the relation

τ = tm + ε. (2.5.51)

Also define an (M + 1) component vector ~δ by the rule

~δ =


1

(ε/h)
(ε/h)2

...
(ε/h)M

 . (2.5.52)

Then, by Taylor’s theorem, we have the result

y(τ) = y(tm + ε) =
∑
k

(ε/h)k(hk/k!)y(k)(tm)

' ~δ · ~m. (2.5.53)
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Adaptive Error Control

We have seen how the use of jets makes it possible to change the order and the time step at
will with a fairly modest overhead. The size of the truncation error can also be estimated.
If the jet formulation is based on the Adams’ method, as we have been describing in our
examples, then the error estimates (4.77) and (4.78) still hold. Consequently, if the order
of the predictor and the corrector are the same, the error can be estimated by comparing
predictor and corrector results. See Exercise 4.9. If the corrector is one order higher than
the predictor, see Exercise 4.13, then the predictor error can be estimated directly simply
by subtracting the corrector result from the predictor result. Finally, the error can also be
estimated directly from (4.77) or (4.78) by using finite-difference relations such as (5.48) to
compute the required derivatives.

With an error estimate in hand, it is possible to construct a jet-based code that will auto-
matically select and dynamically adjust both step size and order to achieve a solution within
the allowed error and with a minimal number of integration steps. Like the Runge-Kutta
codes described at the beginning of this section, all it requires in principle is a specification of
initial and final times (t0 and t0 +T ), the initial condition y(t0), and the acceptable error. A
typical strategy is to have the program estimate from time to time the error currently being
made at each step. If the error is too large, or if the error is too small (which means that
too much effort is being spent in achieving unnecessary accuracy), the program computes
what the step size should be for the error to be within the allowed bounds. This calculation
is done both for the current order and for orders one higher and one lower. The program
then shifts to the order that allows the largest step size, adjusts the step size to the largest
value allowed, and continues to run for some time with this order and step size.

Self Starting

We observe that an integration routine having the features just described can be self starting.
That is, unlike the finite-difference methods described in Section 2.4, such a program does
not need a Runge-Kutta or other starting routine. Rather, it can begin with the N = 0
Adams’ procedure (but in jet form) given by (4.85) and (4.86) or (4.87) since all this routine
needs to start is the initial condition y(t0). See Exercise 4.13. It can also automatically
choose the step size to make sure that the accuracy of the first few steps is sufficiently high.
Once the program is underway, it will then automatically adjust the order and step size to
optimal values.

2.5.5 Advice to the Novice

As might be imagined, it is not a simple matter to write a variable order and variable step
size program that will actually run in an optimal fashion for a wide variety of differential
equations. Much time has been spent by professional mathematicians and numerical analysts
in writing such programs. We have presented enough of the theory behind these programs
to make them intelligible to readers and possible users; but they are advised not to try
writing such programs on their own without exploring existing programs and without being
prepared to expend considerable time and effort.
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Exercises

2.5.1. The result of numerically integrating a differential equation from t0 to t0 +T depends
in general on the step size h. We express this fact by writing the result as y(t0 + T ;h).
Neglecting round-off error, we expect y(t0 + T ;h) to approach the exact result as h → 0.
Consider an integration method that has a cumulative truncation error of order hm. To be
more precise, assume (what really requires proof and need not always be true) that we have

y(t0 + T ;h) = ye(t
0 + T ) + chm +O(hm+1), (2.5.54)

where the subscript “e” stands for “exact”, and c is independent of h, but otherwise un-
known. Show that ye can be approximated by the formula

ye(t
0 + T ) = y(t0 + T ;h) + (1− 2−m)−1[y(t0 + T ;h/2)− y(t0 + T ;h)]. (2.5.55)

Show that c can approximated by the formula

chm = −(1− 2−m)−1[y(t0 + T ;h/2)− y(t0 + T ;h)]. (2.5.56)

You see below a line of output for Example 3.1 run with a step size of h = 1/20.

time y1comp y2comp
1.5000 .20025125+01 .19292636+01

What should m be for RK3? Estimate ye(1.5) and compare with the exact result. Devise
a procedure that could be used if one had results for three different step sizes. You are
studying Richardson extrapolation.

2.5.2. Verify (5.6) through (5.9).

2.5.3. Equation (5.7) for R is a direct consequence of Taylor’s theorem as used in (5.2) in
(5.3). Equation (5.8) for R−1 was then found by inverting R. The entries in R−1 can also
be found directly by requiring (5.9). For example, from (1.1) and (4.50) we have the result

ÿn = Dfn. (2.5.57)

Next use (4.53) and (4.54) to get the result

hÿn =
∞∑
k=1

(1/k)∇kfn. (2.5.58)

Discard terms in this series beyond k = 2, and verify that doing so reproduces the third row
in (5.8). Similarly, we may write

...
y
n
= D2fn. Use this result to reproduce the fourth row in

(5.8).

2.5.4. Verify (5.12) using (5.9). See also Exercise 5.11.

2.5.5. Verify (5.14) and (5.15).

2.5.6. Verify (5.16) through (5.19).
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2.5.7. Verify (5.20) through (5.23).

2.5.8. Verify (5.24) for the case (5.19). Let g(t) be any (analytic) function. With D defined
by (4.10), verify the formula

ehDg(t) = g(t+ h). (2.5.59)

Verify the formal power series identity

exp(hD)(hi/i!)Di =
∞∑
j=0

(
j

i

)
(hj/j!)Dj =

∞∑
j=0

Tij(h
j/j!)Dj. (2.5.60)

Apply both sides of (5.60) to y(t) to derive (5.24).

2.5.9. Verify (5.28) and (5.29).

2.5.10. Verify (5.30) through (5.36).

2.5.11. Study Exercise 4.13. Show that the higher corrector corresponding to the predictor
(5.10) and the corrector (5.37) is given by the formula

yn+1 = yn + (h/24)(9fn+1 + 19fn − 5fn−1 + fn−2). (2.5.61)

See Table 2.2. Show that (5.12) can be derived by subtracting (5.10) from either (5.37)
or (5.61). Show that (5.12) can also be dervied by subtracting (5.37) from (5.61). Let α,
β, γ be any three constants satisfying α + β + γ = 0 and 10β + 9γ 6= 0. Form the linear
combination of equations given by the suggestive expression

α(5.10) + β(5.37) + γ(5.61),

and use the result to verify (5.12).

2.5.12. Verify (5.38).

2.5.13. Verify (5.39) through (5.47).

2.5.14. Suppose that (5.10) and (5.61) are used as a predictor-corrector pair. What will
the local truncation error be in this case? Show that (5.39) and (5.40) hold in this case
providing that ~c is the vector

~c =


3/8
1
0
0

∆. (2.5.62)

Suppose this Adams’ method is reformulated in terms of jets. Show that the associated
vector ~r for (5.42) in this case is

~r =


3/8
1

3/4
1/6

∆. (2.5.63)

2.5.15. Verify (5.53). Suppose we wish to estimate the entire jet ~(τ). Let S(h′, h) denote
the matrix (5.49). Verify the result

~(τ) = S(h, ε)TS(ε, h)~m. (2.5.64)
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2.6 Extrapolation Methods

2.6.1 Overview

In the previous section we have learned how it is possible to construct multistep methods
that adjust both the order and the step size dynamically. We also learned how some Runge-
Kutta methods (which are single step) can be modified to include dynamic step size control.
In this section we will describe a single-step method that adjusts both order and step size
dynamically.

The problem we desire to solve is the same: given the differential equation (1.1) with
the initial condition y(t0) at time t = t0 and some acceptable error, we wish to find the
final condition y(t0 + T ) within that error. In the methods described so far we have sought
to achieve this goal by a march composed of many small steps, which we will call micro
steps, of typical size h. In the method to be described now we will try to achieve the same
goal by making fewer but larger steps, which we will call meso steps, whose typical size
will be denoted by the symbol H. The procedure for making each meso step will have the
feature of being self starting in that no information will be needed about the previous step
(save for its ultimate result!); the meso step procedure is therefore a single-step method.
Since the meso step size H will be relatively large, we can anticipate expending considerable
effort in making each such step. The first meso step will take us from y(t0) at time t0 to
y(t0 + H) at time (t0 + H). Subsequent meso steps, perhaps with different sizes, will take
us to subsequent times.

2.6.2 Making a Meso Step

How is such a step to made? We will describe the first meso step. Subsequent meso steps
are made in the same way.

Simple Micro Step Formula

As before, divide up the time axis over the interval [t0, t0 +H] into M equal micro steps of
duration h. Then we have the relations

tm = t0 +mh, h = H/M. (2.6.1)

Refer back to Figure (1.1) with H now playing the role of T and intermediate times labelled
as tm. Next, in this interval, we will construct an apparently simple but actually quite subtle
approximation to the values ym, the values of y(t) at the times tm, that we will call ηm.
For m = 0 and m = 1 we will use the prescription

η0 = y0, (2.6.2)

η1 = η0 + hf(η0, t0). (2.6.3)

Comparison with (2.2) shows that (6.3) is simply an Euler step, and involves a local error
of order h2. With η0 and η1 in hand, we define successive ηm by the midpoint rule

ηm+1 = ηm−1 + 2hf(ηm, tm). (2.6.4)
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It is easily verified that the procedure (6.4) makes local errors of order h3. See Exercise
3.2. Continue the march (6.4) until ηM−1 and ηM have been found. Finally, approximate
y(t0 +H) using ηM−1 and ηM by the formula

y(t0 +H;M) = (1/2)[ηM + ηM−1 + hf(ηM , tM)]. (2.6.5)

A Taylor series expansion of this last step again reveals a possible error of order h2, just
as for the first step. Here we have used the notation y(t0 + H;M) to indicate that (6.5) is
an approximation to y(t0 +H) that naturally depends on the size h of the micro steps and
therefore, assuming that H is held fixed, on the number of micro steps M .

What is the virtue of this process? Let us estimate the global error for the formula (6.5).
As already described, the first and last steps involve errors of order h2. Note that we may
write

h2 = (H/M)2 = H2(1/M)2.

Here we have used (6.1). The intervening (M − 1) midpoint rule steps (6.4) each involve
local errors of order h3, and hence their cumulative effect should behave as

(M − 1)h3 ≈Mh3 ≈ Hh2 ≈ H3(1/M)2.

Thus the total global meso step error should behave as

meso step error ≈ (1/M)2. (2.6.6)

Consequently, if ye(t
0+H) denotes the “exact” solution, we might expect a relation, perhaps

only asymptotic, of the form

y(t0 +H;M)− ye(t0 +H) = c2(1/M)2 + c3(1/M)3 + c4(1/M)4 + · · · (2.6.7)

where the coefficients c2, c3, c4 · · · are hoped to be independent of M . Here we reiterate
that it is to be understood that H is held fixed, but h varies by changing M in (6.1).

Remarkably, it can be shown that the procedure given by (6.2) through (6.5) has the
extraordinary property that the coefficients of the odd powers of (1/M) in (6.7) all vanish!20

Thus, (6.7) actually has the form

y(t0 +H;M)− ye(t0 +H) =
∞∑
k=1

c2k(1/M)2k. (2.6.8)

To be honest, our discussion has been oversimplified. What is actually true is that there are
asymptotic expansions of the form

y(t0 +H;M)− ye(t0 +H) =
∞∑
k=1

d2k(1/M)2k, M odd; (2.6.9)

20The choice of the integration procedure (6.2) through (6.5), called a modified midpoint rule because
of the starting and ending steps (6.3) and (6.5), and the realization that this procedure would lead to the
vanishing of all odd powers in (6.7), are due to Gragg.
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y(t0 +H;M)− ye(t0 +H) =
∞∑
k=1

e2k(1/M)2k, M even. (2.6.10)

That is, the nature of the expansion depends on whether M is odd or even. (In view of this
discovery, the assumption made in Exercise 5.1 requires proof!) The proof of this result is
beyond the scope of this text, as also appears to be the case for many books on numerical
analysis. However, it is proved in the Extrapolation Methods references listed at the end of
the chapter. See also Exercise 6.1, which treats the special case for which f(y, t) is, in fact,
not dependent on y.

Extrapolation

The background has now been provided to present remarkable ideas associated variously
with the names Richardson, Gragg, Bulirsch, and Stoer. According to either (6.9) or (6.10)
we have the result

lim
M→∞

y(t0 +H;M) = ye(t
0 +H), (2.6.11)

as is desired for any integration scheme. But now suppose we evaluate y(t0 + H;M) for a
finite number of M values (all odd or all even), and from these results try to extrapolate
to a limiting result for M = ∞. This process is an example of what is called Richardson
extrapolation. Bulirsch and Stoer originally proposed that the extrapolation be based on the
sequence of (even) M values given by the list

M = 2, 4, 6, 8, 12, 16, 24, · · · , (Mj+2 = 2Mj when j > 1). (2.6.12)

Subsequent work by Deuflhard recommends using simply the even integers

M = 2, 4, 6, 8, · · · , (Mj = 2j). (2.6.13)

In some realizations of the procedure the first few integers near the beginning of either list
are discarded at some stage, and the extrapolation is based on the remaining larger integers.

One possible extrapolation method is to assume a polynomial fit of the form

y(t0 +H;M) = e0 +
K∑
k=1

e2k(1/M)2k (2.6.14)

in the (K + 1) unknowns e0, e2, e4, · · · e2K , which amounts to truncating the sum (6.10)
at k = K. We then evaluate (6.14) for (K + 1) different values of M (and hence h) selected
from (6.12) or (6.13), and use the results to solve e0. Finally, we make the extrapolation

ye(t
0 +H) ' e0. (2.6.15)

According to (6.10) the error involved in this extrapolation should be on the order of
e(2K+2)(1/Mmin)(2K+2) where Mmin is the smallest M value used in the lists (6.12) or (6.13).
Indeed, during the course of the extrapolation we have available (approximate) values for
the coefficients e2, e4 · · · e2K , and from these we can form the quantities e2k(1/Mmin)2k for
k = 1, 2, · · ·K. These quantities should approach zero as k increases, and we can use the
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last few of them to estimate the error in (6.15). Alternatively (and preferably) we can solve
(6.14) for e0 using successive values of K, beginning with K = 1, and observe how these
values of e0 converge as K is allowed to increase.

The polynomial extrapolation method presupposes analyticity in h or, equivalently, an-
alyticity in (1/M). For differential equations whose right sides are analytic we expect, by
Poincaré’s theorem, that there will be analyticity along the real (1/M) axis. However, there
might be singularities somewhere off the real axis in the complex (1/M) plane, and such sin-
gularities could affect the extrapolation process. Another extrapolation method, originally
proposed by Bulirsch and Stoer, consists of using rational function or Padé approximation
fits to y(t0 +H;M) as a function of M rather than the fits of the form (6.14). Such a pro-
cedure should be more effective than polynomial extrapolation if there are pole singularities
in the complex (1/M) plane.21 Describing the use of rational function approximation will
require some additional notation. As in (1.4.4), let yj denote the jth component of y. For
the case of even M , as in either (6.12) or (6.13), we make fits of the form

yj(t
0 +H;M) =

p
(0)
j + p

(2)
j (1/M)2 + p

(4)
j (1/M)4 + · · ·

1 + q
(2)
j (1/M)2 + q

(4)
2 (1/M)4 + · · ·

=

[
L∑
k=0

p
(2k)
j (1/M)2k

]
/

[
1 +

L∑
k=1

q
(2k)
j (1/M)2k

]
. (2.6.16)

These fits are called diagonal rational function approximations because the numerator and
denominator have equal degree. For fixed L the relation (6.16) may be viewed as a fit in

the (2L+ 1) unknowns p
(0)
j , p

(2)
j , p

(4)
j , · · · p(2K)

j , q
(2)
j , q

(4)
j , · · · q(2K)

j . We next evaluate (6.16)

for (2L+ 1) different values of M , selected from (6.12) or (6.13), and solve for p
(0)
j . Finally,

letting p(0) denote a vector with components p
(0)
j , we make the extrapolation

ye(t
0 +H) ' p(0). (2.6.17)

If the rational function (6.16) were to be expanded as a Taylor series in (1/M)2, we
would get an expression whose initial coefficients might be expected to agree with those
of (6.14) thorugh K = 2L. Thus, we may expect the error in (6.17) to be of order
e(4L+2)(1/Mmin)(4L+2). As before we can estimate the error in p(0) directly by solving (6.16)
for successive values of L, beginning with L = 1, and observing how these values of p(0)

converge as L is allowed to increase.
The calculation of p(0) using (6.16) is obviously more work than the calculation of e0

using (6.14). However, the rational function (6.16) might be expected to be a somewhat
better fit to y(t0 + H;M) than the polynomial (6.14) for small values of M , and therefore
the convergence of the p(0) for successive L might be expected to be somewhat better than
that of the e for corresponding K values. This has indeed been observed to be the case
for a variety of differential equations. But is not yet clear whether the extra effort involved
in rational function approximation is generally worth the improved convergence. Several
authors find, for example applications they have examined, that it is not.22

21Padé was a student of Hermite.
22It is interesting to note that in the Kepler problem there are singularities in the complex t plane, but

they are branch points.
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Finally, we observe that in either case the convergence is remarkably fast. Thanks to
the occurrence of only even powers of (1/M) in (6.9) or (6.14), we gain an extra power of
(1/M)2, which is equivalent to two powers of h, for each unit increase in K. When (6.16) is
used, we gain an extra power of (1/M)4, which is equivalent to four powers of h, for each
unit increase in L. Of course, for a given K there are (K + 1) values of M that must be
used in (6.14) while for a given L value there are (2L + 1) values of M that must be used
in (6.16). Thus, apart from more refined considerations concerning behavior at small M
values, the convergence rates of both extrapolation methods are roughly the same.

2.6.3 Summary

Looking back over what has been described so far, we have seen that the order of truncation
in the single meso step that takes us from t0 to (t0 + H) can be adjusted by the choice of
K or L. Also, we clearly have the choice of H at our disposal, and therefore we may also
adjust the macro step size at will. Finally, we have built-in error estimates based on the
observed convergence of the extrapolation procedure. Thus, we have all the ingredients for
a method that can adjust both order and step size dynamically. Typically, one chooses a
macro step size H, and then begins an extrapolation process. The K or L values involved
are successively increased until convergence is achieved within the specified error bounds.
The program has specified maximum values of K or L, call them Kmax or Lmax, that are
not allowed to be exceeded in this process in order to keep the process under control and in
order to avoid excessive round-off error. If satisfactory convergence is not achieved within the
allowed K or L values, the chosen meso step size is rejected, and the extrapolation process is
tried again with a smaller step size. This process is repeated, if necessary, until convergence
is finally achieved. When convergence is achieved, the results of this step are accepted and
stored. Note is also made of the satisfactory meso step size H and the ease of convergence
(the K or L values required to achieve the desired accuracy) of the extrapolation process.
The size of the next meso step to be attempted is then selected based on this information,
and the extrapolation process is begun anew.

2.6.4 Again, Advice to the Novice

As might be imagined (and just as for the case of the jet or multivalue methods described
in the previous section), the procedure for implementing in detail the ideas of the previous
paragraphs are quite involved. For this reason, potential users of extrapolation methods are
advised to begin with existing programs written for this purpose; and then they should make
modifications on these programs, if necessary, only when their algorithms and performance
are well understood.

Exercises

2.6.1. The aim of this exercise is to examine some special cases for which the asymptotic
expansion (6.10) can be verified explicitly. For this purpose we will need the following
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identities:

S(M, 0) =
M∑
n=0

n0 =
M∑
n=0

1 = M + 1, (2.6.18)

S(M, 1) =
M∑
n=0

n1 = M2/2 +M/2, (2.6.19)

S(M, 2) =
M∑
n=0

n2 = M3/3 +M2/2 +M/6, (2.6.20)

S(M, 3) =
M∑
n=0

n3 = M4/4 +M3/2 +M2/4, (2.6.21)

S(M, 4) =
M∑
n=0

n4 = M5/5 +M4/2 +M3/3−M/30. (2.6.22)

These identities can easily be found by the method of undetermined coefficients. Show that
there is the recursion relation

S(M + 1, `) = S(M, `) + (M + 1)` (2.6.23)

with the starting condition
S(0, `) = δ0,`. (2.6.24)

Make, for example, the Ansatz

S(M, 4) = AM5 +BM4 + CM3 +DM2 + EM (2.6.25)

where the coefficients A through E are to be determined. Show that insertion of this Ansatz
into the recursion relation (6.23) determines the coefficients A through E to yield the result
(6.22).

In terms of the notation (1.4), the Gragg micro-step procedure (6.2) through (6.5) reads

h = H/M, (2.6.26)

η0 = y0, (2.6.27)

η1 = η0 + hf 0, (2.6.28)

ηm+1 = ηm−1 + 2hfm, (2.6.29)

y(t0 +H;M) = (1/2)[ηM + ηM−1 + hfM ]. (2.6.30)

For M even, show that the net result of this procedure is the relation

y(t0 +H;M) = y0 − (h/2)(f 0 + fM) + h
M∑
n=0

fn. (2.6.31)

Consider, for simplicity, the case where f is one dimensional and of the simple form

f(y, t) = NtN−1. (2.6.32)
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That is, f is independent of y and has only a monomial dependence on t. When f is of the
form (6.32), show that the exact solution to ẏ = f is

ye(t
0 +H) = y0 when N = 0,

= y0 +HN when N > 0. (2.6.33)

Let us examine the results of using (6.31) in the cases N = 0 and N = 1. When N = 0,
use of (6.32) gives fn = 0 so that (6.31) yields the numerical result

y(t0 +H;M) = y0, (2.6.34)

which agrees with the exact result. When N = 1, verify that use of (6.32) gives fn = 1 and
that use of (6.31) yields the numerical result

y(t0 +H;M) = y0 +Mh = y0 +H, (2.6.35)

which again agrees with the exact result.
To examine the cases N > 1, Suppose further that

t0 = 0. (2.6.36)

Then we have the general result

fn = N(nh)N−1 = N(H/M)N−1nN−1 (2.6.37)

with the particular results

hf 0 = 0 (2.6.38)

and

hfM = (H/M)N(H/M)N−1MN−1 = NHN/M. (2.6.39)

Correspondingly, show that (6.31) then takes the form

y(t0 +H;M) = y0 − (1/2)N(HN/M) + (H/M)N(H/M)N−1

M∑
n=0

nN−1

= y0 − (1/2)N(HN/M) +N(H/M)N
M∑
n=0

nN−1

= y0 +HN [−(1/2)(N/M) +N/MN

M∑
n=0

nN−1]. (2.6.40)

Evaluate (6.40) for the case N = 2 to show that there is again the result

y(t0 +H;M) = ye(t
0 +H). (2.6.41)

We have learned that the numerical solution is exact for all the cases N = 0, 1, 2.
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Now consider the case N = 3. Verify that in this case

N/MN

M∑
n=0

nN−1 = (3/M3)[M3/3 +M2/2 +M/6]

= 1 + 3/(2M) + 1/(2M2). (2.6.42)

Correspondingly, show that

− (1/2)(N/M) +N/MN

M∑
n=0

nN−1 = −3/(2M) + 1 + 3/(2M) + 1/(2M2) = 1 + 1/(2M2).

(2.6.43)
Consequently, show that in this case (6.40) takes the form

y(t0 +H;M) = y0 +H3 +H3/(2M2) = ye(t
0 +H) +H3/(2M2). (2.6.44)

Next, for the cases N = 4 and N = 5, show that (6.40) gives the results

y(t0 +H;M) = y0 +H4 +H4/M2 = ye(t
0 +H) +H4/M2, (2.6.45)

and

y(t0 +H;M) = y0 +H5 +H5[5/(3M2)− 1/(6M4)]

= ye(t
0 +H) + 5H5/(3M2)−H5/(6M4), (2.6.46)

respectively. Observe that (6.44) through (6.46) are of the claimed form (6.10).
Finally, show that the the assumption (6.36) can be dropped and that f can be any

polynomial of degree 4 in t without changing the conclusions of this exercise: the result
(6.10) still holds.

We close this exercise with an important remark. Observe that (6.31) can be rewritten
in the form

y(t0 +H;M) = y0 + (h/2)(f 0 + f 1) + (h/2)(f 1 + f 2) + · · ·+ (h/2)(fM−1 + fM), (2.6.47)

and that each term in parentheses on the right side (6.47) is the result of applying the
trapezoidal rule over an interval of duration h. It is known, say from the Euler-Maclaurin
sum formula (see Exercise 4.15), that the error associated with this extended trapezoidal
rule has the properties (6.10) for any polynomial and, by extension, any analytic function.
Thus, you have explicitly verified specific cases of a general result.

2.7 Things Not Covered

We have given the rudiments of numerical integration, and their mastery should provide
sufficient knowledge to handle most problems. However, there are several additional topics
whose study we commend to the reader who wishes to become truly expert. We list them
below along with brief explanatory paragraphs. Further detail may be found in the books
listed at the end of the chapter.
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2.7.1 Størmer-Cowell and Nyström Methods

The differential equations of classical mechanics often contain only second derivatives with
no first derivatives present. In this case it is possible to work directly with the second-order
equations instead of converting them into a first-order set of twice the dimensionality. The
result can be a saving in computer time and an increase in accuracy. Appendix A describes a
predictor-corrector method due to Størmer and Cowell and modified Runge-Kutta methods
due to Nyström that have this feature.

2.7.2 Other Starting Procedures

In this chapter we have always started Adams’ solutions using Runge-Kutta. Other tech-
niques, such as the use of Taylor series or various iterative processes, are also sometimes
used. Of course, starting procedures are not required for the methods of Sections 2.5 and
2.6.

2.7.3 Stability

An introductory discussion of order, stability, and convergence was given at the beginning
of Section 2.4. Much more can be found on the subject in some of the references listed at
the end of this chapter. The finite-difference equations of Adams and Størmer-Cowell are
special examples of the whole class of multistep/multivalue equations. To recapitulate, in
general a multistep/multivalue equation (when applied to a linear differential equation) has
several solutions, and only one of these solutions approximates the solution of the differential
equation being integrated. It is important to be sure that the other so called parasitic
solutions do not enter the calculation and eventually swamp the main solution. The reader
should be warned that many of the numerical methods described in older books, such as
Milne’s and Nyström’s multistep/multivalue methods, have parasitic solutions that grow
exponentially. Thus, if a small amount of a parasitic solution happens to be introduced
due to round-off errors or improper initial conditions, it will soon grow to the point where
it completely dominates the main solution, and the accuracy of the numerical solution is
completely destroyed. By contrast, the parasitic solutions in Adams and Størmer-Cowell
are exponentially damped (if the step size is small enough) so that even if they happen
to enter a calculation, their effect rapidly dies away. But there is a complication: the
higher the order the smaller this step size must be to guarantee stability. For example,
when integrating the simple harmonic oscillator with unit frequency (x′′ + x = 0) using the
adams10 method given in Appendix B, at least 50 steps per oscillation are required before
stability is safely achieved and the error analysis of Section 2.4.2 becomes relevant. Finally,
if a multistep/multivalue method cannot integrate a linear differential equation well, it is
unlikely to be able to integrate more complicated nonlinear differential equations well.

2.7.4 Regularization, Etc.

We have already discussed in Sections 2.5 and 2.6 something about the choice of step size
h and how it may be varied during the course of integration. An alternative procedure to
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making frequent changes in h is to analytically regularize the equations of motion before
integration by the introduction of a new independent variable in place of the time. This can
often be done while remaining within a Hamiltonian framework.23 See Exercise 1.6.5 and
the regularization references at the end of this chapter. It is known, for example, how to
regularize the Kepler problem and the Størmer problem (the problem of finding the motion
of a charged particle in the external field of a point magnetic dipole, of interest for Van
Allen radiation). We also mention that in some cases it is worthwhile to change rather
radically the form of the differential equation by introducing new dependent variables. For
example, if a solution y(t) is known to be highly oscillatory, one should try making an
eikonal or Madelung transformation by writing y(t) = a(t) sin b(t) and then integrating
the differential equations for a and b.

Differential equations whose solutions contain both rapidly and slowly varying terms are
colorfully referred to by numerical analysts as being stiff. The presence of a rapidly varying
part forces the integration time step to be small when the usual integration methods are
used. But the features of physical interest may reside in the slowly varying part, and thus to
explore these features one may be forced to integrate for many very small steps. In the case
that a stiff equation cannot be regularized easily, it may be possible to use directly certain
integration methods devised especially for stiff equations. These methods are beyond the
scope of this text, but are described in some of the references.

2.7.5 Solutions with Few Derivatives

Our discussion has always assumed that y(t) has a large number of continuous derivatives.
Although this is true for many problems, there are important examples where this is not
the case. Consider a space ship outside the Earth’s atmosphere. As long as it is subject
only to gravitational forces, it can be shown that its trajectory vector r(t) has arbitrarily
many continuous derivatives. However, suppose the space ship’s rocket engine is fired at a
time tf . Then, according to Newton, r̈(t) is discontinuous at tf . To handle this situation
numerically, one possible procedure is to terminate any finite difference scheme slightly
before tf and integrate through tf using Runge-Kutta. The Runge-Kutta routine should be
used in such a way that an integration step is initiated at tf and at any other time at which
the rocket thrust either changes discontinuously or has discontinuous changes in its first few
time derivatives.

2.7.6 Symplectic and Geometric/Structure-Preserving
Integrators

We will see in Chapter 6 that Hamiltonian systems have special properties. Their trans-
fer maps are symplectic. Symplectic integrators are integrators specifically constructed to
preserve these properties. They produce maps that, while still approximations to the ex-
act transfer map, are at least exactly symplectic. Symplectic integrators are an example

23It is also possible in some cases to arrange, by a suitable change of variables, that the final Hamiltonian
will be of the form T (p) + V (q). Sometimes one can also arrange that T (p) = p · p/2. Hamiltonians of this
form are desirable because there are special integration methods for them that are particularly efficient. See
Chapter 12 and Appendix A.
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of so-called geometric integrators. A second example is integration on manifolds. Many
differential equations have the property that their solutions lie on manifolds, often mani-
folds associated with groups. In this case one seeks numerical integration methods that,
despite truncation errors, still guarantee that the numerical solutions they generate also lie
on the these manifolds. Extensive work has been done on both these aspects of geometric
integration. See Chapters 11 and 12.

2.7.7 Error Analysis

In discussing Runge-Kutta errors, we have given only their expected order in h without
any mention of the coefficient multiplying hm. The analysis of the local truncation error
committed in Runge-Kutta is considerably more complicated than in the case of predictor-
corrector methods. Estimates, however, are available. Of course, one may also use the
methods for error estimation described at the beginning of Section 2.5. A more complicated
question with regard to both Runge-Kutta and finite difference methods is how an error
propagates through successive time steps after its initial introduction. This question is
particularly difficult with regard to round-off error, and is still a topic of study.

One way to reduce round-off error with only a small increase in machine time is to use
partial double precision. In this method f is evaluated with the usual number of significant
figures. However, in the Adams’ routine for example, the addition (4.69) is carried out with
additional significant figures and the yn are stored with additional significant figures. (See
Appendix B for an analogous treatment of the Runge-Kutta routine RK3.) Of course even
a further reduction in round-off error is realized if all calculations are carried out in double
precision, i.e. using twice the usual number of significant figures. But the use of full double
precision may require considerably more computer time.

It is often difficult to ascertain rigorously the total error at the end of a long integration
run. However, there are several informal procedures. In the case of fixed step size methods,
one procedure is to make several runs with different values of h, and then study how the
y’s at the end of the trajectory depend upon h. The magnitude of the error should at first
decrease with decreasing h, and then again increase due to round-off error. For variable step
size methods, one can change the specified error to see what effect it has on the solution.
Another procedure is to first integrate a trajectory forward in time, and then reintegrate it
backward to see how close one comes to the original initial conditions.24 In the case that the
differential equations have known constants of motion such as energy or angular momentum,
one can and always should check to see to what extent they are actually preserved by the
numerical solution. Finally, the accuracy of an integration routine always should be checked
on equations whose solutions are known exactly. These equations should include both those
leading to oscillatory functions such as sines and cosines and those leading to growing and
damped exponentials.

24To integrate backwards, simply replace h by −h. Truncation errors associated with forward integration
followed by backward integration are not expected to cancel unless the integration method is symmetric.
See Section 12.1. In any case, round-off errors are not expected to cancel.
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2.7.8 Backward Error Analysis

Suppose x is some input, g is some function, and we wish to compute g(x). If g is a
complicated function, as is often the case, the best that we are able or willing to do is to
compute some approximating function ĝ. What is then called the forward error associated
with such a computation is the difference [ĝ(x)− g(x)]. Turn the situation around. We may
ask if there is a modified input x̄ near x such that g(x̄) gives the result ĝ(x). That is, there is
the requirement that the exact calculation applied to the modified input should agree with
the approximate calculation applied to the original input: g(x̄) = ĝ(x). We would then call
the difference [x̄− x] the backward error.

Somewhat the same philosophy may be applied to the numerical integration of ordinary
differential equations. Suppose, as in Section 2.1, we are given as input the vector f(y, t)
to be used as the right side of an ordinary differential equation, the vector y0 to be used as
an initial condition, and the quantity h to be used as a step size. We wish to compute the
vectors yn. What we actually accomplish, because of truncation error, is the computation
of a set of approximate vectors ŷn. (Here we assume that round-off error is negligible.)
Instead of examining the forward error vectors [ŷn−yn], we might ask if there is a modified
differential equation with right side f̄(y, t;h) (which will in general depend on h) and exact
solution ȳn such that ȳn = ŷn. That is, the exact solution of the modified differential
equation should agree with the approximate solution of the original differential equation
at the times tn. For some integration methods it can be shown that it is indeed possible
to find such a modified differential equation. Moreover, in some cases there is the further
possibility of modifying the original differential equation [its right side becomes f̃(y, t;h)]
so that its approximate solution agrees with the exact solution of the original differential
equation (well, not perfectly, but in principle to any desired finite order in h). That is, the
original differential equation can be modified in such a way as to compensate (at least to
any desired finite order in h) for the errors produced by the integration method.

These considerations are of particular interest for symplectic integrators applied to
Hamiltonian differential equations. In that case it can be shown that the use of a symplectic
integrator produces the exact solution of some modified Hamiltonian differential equation.
Let Sexact be an integrator that solves any differential equation exactly. It could be viewed
as the result of using any integrator in the limit that h→ 0, correspondingly the number of
integration steps becomes indefinitely large, and all results are carried out with unlimited
precision. Also, let Sapprox be some integrator that is correct only through some order in h,
but is exactly symplectic. Then, according to the discussion above, we have the result

Sapprox(H) ≡ Sexact(Hmod). (2.7.1)

Here the notation Sapprox(H) denotes the trajectory that results from integrating the equa-
tions of motion associated with H using the integrator Sapprox, the notation Sexact(Hmod)
denotes the trajectory that results from integrating the equations of motion associated with
Hmod using the integrator Sexact, and the symbol ≡ means equivalent to. If the modified
Hamiltonian Hmod is deemed to be sufficiently close to the original Hamiltonian H in some
sense (small backward error), then the results of symplectic integration might also be deemed
to have some special merit.

Moreover, if H(q, p, t) is the Hamiltonian of interest and some particular symplectic
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integrator is being used, one might try to find a modified Hamiltonian H̃(q, p, t;h) such that
symplectically integrating its equations of motion produces results that are closer to the
exact results for the original Hamiltonian H. That is, if we can master relationships of the
form (7.1), then we might be able to arrange the relation

Sapprox(H̃) ≡ Sexact(H), (2.7.2)

at least through terms of some high order in h.

2.7.9 Comparison of Methods

There is an extensive literature comparing the virtues of various integration methods and
computer codes. The matter is complicated. The criteria for which method is “best” vary
from problem to problem, and may also be machine dependent. Moreover, the manner in
which a particular method is implemented also affects the over-all performance of a computer
code. A typical discussion of such matters is given in the review article of Shampine et al.
For relatively simple problems, those for which the characteristic time scale varies relatively
little over a trajectory or those which can be regularized, the fixed step Adams’ method
started with Runge-Kutta is satisfactory, easy to program, and easy to use. More difficult
problems may well benefit from the use of jet or extrapolation methods as described in
Sections 2.5 and 2.6. In this case one is well advised to begin with professionally written
programs. These programs should, however, be used with care and understanding. Some
may produce unpleasant surprises. (For example, it is not uncommon that programs which
automatically adjust step size have difficulties with some kinds of problems.) At present
there is some indication and fairly widespread opinion that extrapolation methods (at least
when high accuracy is required) may well be the method of choice for a wide variety of
problems. Seek advice from a local Computer Center if it has resident experts. Much work
has gone into writing good integration programs.
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some of what we now call Runge-Kutta methods were, in fact, known much earlier to
Coriolis.



Chapter 3

Symplectic Matrices and Lie
Algebras/Groups

Lie theory is in the process of becoming the most important part of modern
mathematics. Little by little it became obvious that the most unexpected the-
ories, from arithmetic to quantum physics, came to encircle this Lie field like a
gigantic axis.

Jean Dieudonne

We will learn in subsequent chapters that symplectic matrices play an important role in
the advanced treatment of Hamiltonian systems. Briefly put, Hamiltonian motion produces
symplectic maps. Also, symplectic maps preserve the Hamiltonian form of the equations of
motion. Finally, symplectic maps are characterized by symplectic matrices. The purpose
of this chapter is to define symplectic matrices and to explore some of their properties in
preparation for future use. This exploration also provides a context for the discussion of Lie
algebras and Lie groups.

In his youth, and for publishing his first mathematical paper (1869), Sophus Lie received
a travel grant from the Norwegian University of Christiania to visit the mathematical capitals
of Europe. One such capital was Paris where he visited and worked with Klein, who himself
was visiting there from Prussia.

While Lie and Klein thought deeply about mathematics in Paris, the political situation
between France and Prussia deteriorated. The popularity of the French emperor Napoleon
III was declining and he thought war with Prussia, which his advisors said the French army
was sure to win, might change his political fortunes. Bismarck, the Prussian chancellor, saw
a war with France as an opportunity to unite the South German states. With both sides
feeling that a war was to their advantage, the Franco-Prussian war became inevitable. On
July 14, 1870, Bismarck sent a telegram which infuriated the French government. On July
19, France declared war on Prussia. For Klein there was then only one possibility: he had
to return quickly to Berlin.

However, Lie was a Norwegian and he was finding mathematical discussions in Paris very
stimulating. He decided to remain there, but became anxious as the German offensive met
with only ineffectual French response. In August, when the German army trapped part of
the French army in Metz, Lie decided it was also time for him to leave Paris, and he planned
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to hike (on foot!) to Italy. He made as far as Fontainebleau, just south of Paris, when the
French police spotted him as a suspicious-looking young man wandering in lonely places in
the forest, stopping now and then to make notes and drawings in his notebook. “He was of
tall stature and had the classic Nordic appearance. A full blond beard framed his face and
his grey-blue eyes sparkled behind his glasses. He gave the impression of unusual physical
strength” (Élie Cartan). The police searched him and found a map, letters in German, and
papers full of mysterious formulas, complexes, diagrams, and names. He was suspected of
being a German spy and imprisoned.

Lie had to stay in prison in Fontainebleau for 4 weeks before his French colleague Gaston
Darboux learned about the incident and arrived on behalf of the French Academy of Sciences
with a release order signed by the Minister of Home Affairs. Lie himself had taken things
truly philosophically and made good use of his time in prison. For, as he recounted later,
in these forced leisure days he had plenty of peace and quiet to concentrate on his problems
and advance them essentially. In a letter to his Norwegian friend Ernst Motzfeldt, written
directly after his release, Lie remarked: “I think that a mathematician is well suited to be in
prison.”

The French army surrendered on September 2 but, after a September 4 coup d’état
against Napoleon III, France resumed the war on September 6. On September 19 the
German army began to blockade Paris. This time Lie successfully fled to Italy, then from
there he made his way back to Christiania via Germany so that he could again meet and
discuss mathematics with Klein. Thus began the work of Sophus Lie.1

3.1 Definitions

To define symplectic matrices, it is first necessary to introduce a certain fundamental 2n×2n
antisymmetric matrix J . It is defined by the equation

J =

(
0 I
−I 0

)
. (3.1.1)

Here each entry in J is an n× n matrix, I denotes the n× n identity matrix, and all other
entries are zero. The observant reader will recognize this J as the Poisson matrix already
defined in Section 1.7 in connection with Poisson brackets.

With this background, a 2n× 2n matrix M is said to be symplectic if

MTJM = J. (3.1.2)

Here MT denotes the transpose of M . Observe that symplectic matrices must be of even
dimension by definition. Usually we will be interested in real symplectic matrices. However,
in some cases we will also be interested in symplectic matrices with complex entries.

Finally, we remark that the use of the adjective symplectic in this general context is due
to Hermann Weyl (1885-1955). Symplectic, the Greek equivalent of the Latin-based word

1See the Web site http://www-history.mcs.st-andrews.ac.uk/Biographies/Lie.html. See also the
“Overview and History of the Theory of Lie Algebras and Lie Groups” references given at the end of Chapter
27.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Lie.html
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complex, comes from συµπλεκτικȯς, which means intertwined or braided. Weyl had in mind
the symplectic 2-form associated with J when introducing this adjective.2 We may view it
as intertwining the components of two vectors, call them w and z, with the components of
J . See (2.3). We may also view (1.2) as an intertwining of J with MT and M .

Exercises

3.1.1. Show that the matrix J has the following properties:

JT = −J, (3.1.3)

J2 = −I or J−1 = −J, (3.1.4)

det(J) = 1, (3.1.5)

JTJ = JJT = I. (3.1.6)

3.1.2. Suppose that n = 1 (in which case J is 2 × 2) and suppose A is any 2 × 2 matrix.
Write A in the form

A =

(
a b
c d

)
. (3.1.7)

Then A has determinant

det(A) = ad− bc. (3.1.8)

Verify that

A−1 = [1/ det(A)]

(
d −b
−c a

)
, (3.1.9)

and

− JATJ =

(
d −b
−c a

)
. (3.1.10)

Verify that

ATJA = [det(A)]J. (3.1.11)

3.1.3. By taking the determinant of both sides of (1.2), show that any symplectic matrix
M has the property

det(M) = ±1. (3.1.12)

It follows that symplectic matrices are always invertible.
Comment: It will be shown in Sections 3.3, 3.9, and * that det(M) actually always equals
+1 for a symplectic matrix. Also, as is easily seen from (1.11), in the 2×2 case the necessary
and sufficient condition for a matrix to be symplectic is that it have determinant +1.

2Weyl would have preferred to use the Latin-based word complex because the vanishing of the 2-form
defines what is called a line complex, and even did so for a time. However he abandoned this usage because
of the confusion it created with complex numbers. It is also of historical interest to note that the term “Lie
algebra” itself was first introduced in 1934 by Weyl. Prior to that time terms like “infinitesimal group” had
been employed.



240 3. SYMPLECTIC MATRICES AND LIE ALGEBRAS/GROUPS

3.1.4. Show that any symplectic matrix M has the following properties:

M−1 = −JMTJ = J−1MTJ = JMTJ−1, (3.1.13)

MJMT = J, (3.1.14)

(M−1)T = −JMJ. (3.1.15)

3.1.5. Show that the matrices I and J are symplectic.

3.1.6. Suppose M is a symplectic matrix. Show that M−1,MT , and −M are then also
symplectic matrices.

3.1.7. Suppose M and N are symplectic matrices. Show that the product MN is then also
a symplectic matrix. Taken together, Exercises 1.5, 1.6, and this exercise show, among other
things, that the set of all 2n× 2n symplectic matrices forms a group. See Section 3.6.

3.1.8. Show that a symplectic matrix cannot have λ = 0 as an eigenvalue.

3.1.9. Let M be any 2n× 2n matrix. Define its symplectic transpose MS by the rule

MS = JMTJ−1. (3.1.16)

Show that, similar to the case for the ordinary transpose, there are the relations

IS = I, JS = −J, (MS)S = M, (MN)S = NSMS. (3.1.17)

Show that the symplectic condition (1.2) can be written in the form

MSM = MMS = I. (3.1.18)

3.1.10. Here are some things it is assumed you know about matrices: Let A and B be
any two n × n matrices. The determinant function has the properties det(AT ) = det(A)
and det(AB) = det(A) det(B). The trace function has the properties tr(AT ) = tr(A) and
tr(AB) = tr(BA). The matrix A has an inverse, which is unique and is both a left and
right inverse, iff det(A) 6= 0. There is the relation det(A−1) = [det(A)]−1. The transposi-
tion, Hermitian conjugation, and inversion operations have the properties (AB)T = BTAT ,
(AB)† = B†A†, (AB)−1 = B−1A−1. The operations of inversion and transposition, and
inversion and Hermitian conjugation, commute: (AT )−1 = (A−1)T and (A†)−1 = (A−1)†. If
these results are unfamiliar to you, consult the Matrix Theory references provided at the
end of this chapter.

3.2 Variants

There are other possible choices for the form of the matrix J . One important variant is
described in this section. All possible variants are discussed in Section 3.13.

Let x and y be two n-dimensional vectors with real entries. Define a 2n-component real
vector z by the rule

z = (z1 · · · zn, zn+1 · · · z2n) = (x1 · · · xn, y1 · · · yn). (3.2.1)
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Similarly, let u and v be another pair of real n-dimensional vectors, and define the 2n-
component real vector w by the rule

w = (w1 · · ·wn, wn+1 · · ·w2n) = (u1 · · ·un, v1 · · · vn). (3.2.2)

Then one has the relation
(w, Jz) = (u, y)− (v, x). (3.2.3)

This quadratic form is called the fundamental symplectic 2-form.3 Note that the inner
product on the left of (2.3) is that for 2n-dimensional vectors, and those on the right of
(2.3) are for n-dimensional vectors.

Define a 2n-component vector z′ in terms of the vector z by requiring that z′ have the
entries

z′ = (x1, y1, x2, y2, · · ·xn, yn). (3.2.4)

Evidently, z′ is related to z by a linear transformation. Indeed, the entries in z′ are a
permutation of those in z. Consequently, there is a matrix P , with entries 0 and 1, such
that

z′ = Pz. (3.2.5)

See Exercise Let w′ be defined in terms of w by an analogous relation,

w′ = Pw. (3.2.6)

It follows from (2.4) and its counterpart for w′ that one has the relation

(w′, z′) = (u, x) + (v, y) = (w, z). (3.2.7)

But, by (2.5) and (2.6), there is also the relation

(w′, z′) = (Pw, Pz) = (w,P TPz). (3.2.8)

Comparison of (2.7) and (2.8) shows that P is orthogonal,

P TP = I or P T = P−1. (3.2.9)

Let J ′ be the 2n× 2n matrix defined by the equation

J ′ =


J2

J2

. . .

J2

 . (3.2.10)

That is, all the entries of J ′ are zero save for n 2× 2 blocks on the diagonal. These blocks
are identical, and are specified by the equation

J2 =

(
0 1
−1 0

)
. (3.2.11)

3Other authors take (Jw, z) to be the fundamental symplectic 2-form. In view of (1.3), (w, Jz) and
(Jw, z) differ only by a sign. A 2-form is a function that takes as inputs two vectors, is linear in both inputs,
and delivers a number. It is also usually required to be odd under the interchange of the two vector inputs.
See (1.3).
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The matrix J ′ has been defined in such a way as to satisfy the relation

(w′, J ′z′) = (u, y)− (v, x) = (w, Jz). (3.2.12)

By (2.5) and (2.6) there is also the relation

(w′, J ′z′) = (Pw, J ′Pz) = (w,P TJ ′Pz). (3.2.13)

It follows from (2.12) and (2.13) that J and J ′ are related by the orthogonal similarity
transformation

P TJ ′P = J or J ′ = PJP T . (3.2.14)

To complete the story, suppose that M is any symplectic matrix with respect to J . See
(1.2). Consider the matrix M ′ defined by the orthogonal similarity transformation

M ′ = PMP T . (3.2.15)

Then it is easily checked using (1.2) and (2.15) that M ′ is symplectic with respect to J ′,

(M ′)TJ ′M ′ = J ′. (3.2.16)

Indeed, if M and N are any two matrices (not even necessarily symplectic), and M ′ and
N ′ are their counterparts defined by relations of the form (2.15), then it follows from the
orthogonality condition (2.9) that

(MN)′ = PMNP T = PMP TPNP T = M ′N ′. (3.2.17)

The results of this section and the exercises below show that for the most part, mutatis
mutandis, one may use either J or J ′ when defining or working with symplectic matrices.
Generally we shall drop the prime notation, and use the symbol J to denote either J or J ′.
Sometimes, however, a particular choice of J may give simpler or more interesting results.
When this is the case, we shall be more specific.

Exercises

3.2.1. Consider the properties of J given in Exercise (1.1). Show that J ′ has the same
properties.

3.2.2. Show that I and J ′ are symplectic with respect to J ′.

3.2.3. Exercises 1.3, 1.5, 1.6, and 1.7 describe properties of matrices symplectic with respect
to J . Show that matrices symplectic with respect to J ′ have directly analogous properties.

3.2.4. Let M be any matrix. Define the operation of “priming” a matrix by (2.15). Show
that the operations of priming and transposing commute, (MT )′ = (M ′)T . Show that the
operations of priming and inverting also commute, (M−1)′ = (M ′)−1. Finally, show that
inverting and transposing also commute, (M−1)T = (MT )−1.
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3.2.5. Compute P explicitly in the 4 × 4 and 6 × 6 cases. For each case verify that P is
orthogonal, and find its eigenvalues and determinant. You should find det(P ) = −1 in both
cases. In the 4× 4 case you should find the result

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (3.2.18)

and in the 6× 6 case you should find the result

P =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 . (3.2.19)

3.2.6. Recall the definition of the collection of variables z given by (1.7.9). By comparing
(2.1) and (2.4) and identifying xj with qj and yj with pj show that z′ is the collection of
variables

z′ = (q1, p1, q2, p2, · · · qn, pn). (3.2.20)

Verify that the variables z′ obey the Poisson bracket relations

[z′a, z
′
b] = J ′ab. (3.2.21)

3.2.7. Let x and y be a pair of real n-component vectors. Define a real 2n-component vector
z by the rule

z = (z1 · · · zn, zn+1 · · · z2n) = (x1 · · · xn, y1 · · · yn). (3.2.22)

Also define a complex n-component vector w by the rule

w = (w1 · · ·wn) = (x1 + iy1 · · ·xn + iyn) = x+ iy. (3.2.23)

Let w′ = x′ + iy′ be another such vector. Form the complex inner product (w,w′). Obtain
the result

(w,w′) = (x+ iy, x′ + iy′)

= (x, x′) + (y, y′) + i[(x, y′)− (y, x′)]

= (z, z′) + i(z, Jz′). (3.2.24)

You have shown that the symplectic 2-form (z, Jz′) may be obtained as the imaginary part
of a complex inner product. Suppose we make the correspondence

w ↔ z (3.2.25)

as described by (2.22) and (2.23). This correspondence is a bijective mapping between
the complex vector space Cn and the real vector space R2n. Show that there is then the
correspondence

− iw ↔ Jz. (3.2.26)
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Thus, in some ways, J acts like −i. See (1.4) and Exercise 8.1. For this reason, J is said
to provide phase space with an almost complex structure. Suppose one instead defines w by
the rule

w = (w1 · · ·wn) = (y1 + ix1 · · · yn + inn) = y + ix, (3.2.27)

and then again makes the correspondence (2.25). Show that now there is the correspondence

iw ↔ Jz, (3.2.28)

so that now J acts like +i.

3.2.8. Suppose two phase-space points (vectors) w and z are sent under the action of a
linear symplectic map, described by the symplectic matrix M , to the points w′, z′:

w′ = Mw, (3.2.29)

z′ = Mz. (3.2.30)

Show that the fundamental symplectic 2-form (2.3) is preserved under a symplectic trans-
formation. That is, the relation

(w′, Jz′) = (Mw, JMz) = (w, Jz) (3.2.31)

holds for any real symplectic matrix M and any pair of points w,z. It follows that a real
matrix is symplectic if and only if it preserves the fundamental symplectic 2-form.

3.3 Simple Symplectic Restrictions and Symplectic

Factorization

3.3.1 Large-Block Formulation

Suppose M is a 2n× 2n matrix. Then it can be written in the form

M =

(
A B
C D

)
(3.3.1)

where the matrices A through D are n× n blocks. Correspondingly, MT can be written as

MT =

(
AT CT

BT DT

)
. (3.3.2)

Now require that M be symplectic with respect to the J of (1.1). It then follows from (1.2)
that the matrices A through D must satisfy the conditions

ATC = CTA, (3.3.3)

BTD = DTB, (3.3.4)

ATD − CTB = I. (3.3.5)
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If M is symplectic with respect to J , so is MT . See (1.10). From (1.10) it follows that A
through D must also satisfy the conditions

ABT = BAT , (3.3.6)

CDT = DCT , (3.3.7)

ADT −BCT = I. (3.3.8)

3.3.2 Symplectic Block Factorization

Consider matrices having the block forms

M =

(
I B
0 I

)
, (3.3.9)

M =

(
I 0
C I

)
, (3.3.10)

M =

(
A 0
0 D

)
, (3.3.11)

Then it is readily verified from (3.3) through (3.8) that (3.9) and (3.10) are symplectic if

BT = B and CT = C. (3.3.12)

Also, (3.11) is symplectic if
ATD = I or D = (AT )−1. (3.3.13)

Observe that all matrices of the form (3.9) and (3.10) have determinant +1. Moreover the
matrix M given by (3.11) also has determinant +1 if it is symplectic: Simple calculation
and use of (3.13) gives the result

det(M) = det(A) det(D) = det(A) det[(AT )−1]

= det(A) det(A−1) = det(AA−1) = det(I) = 1. (3.3.14)

See Exercise 3.2.
Let M be any matrix written in the form (3.1). Suppose A and/or D are invertible

[det(A) 6= 0 and/or det(D) 6= 0]. Then, as can be easily checked by direct matrix multipli-
cation, M has the block factorizations

M =

(
I 0

CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)
, (3.3.15)

M =

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
. (3.3.16)

Next, suppose that M is symplectic. Then remarkably each of the factors appearing in
(3.15) and (3.16) is separately symplectic. We prove this assertion for the factorization
(3.15). The proof for the factorization (3.16) is similar. Before so doing, we note that
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the three factors appearing in (3.15) and (3.16) are of the forms (3.9) through (3.11) and
therefore, if symplectic, have determinant +1. Therefore M in this case has determinant
+1.

To prove that the factors in (3.15) are symplectic, begin by observing that (3.3) can be
rewritten in the form

CA−1 = (CA−1)T . (3.3.17)

That is, the matrix CA−1 is symmetric. It follows that the first factor in (3.15) is symplectic.
Similarly, observe that (3.6) can be rewritten in the form

A−1B = (A−1B)T , (3.3.18)

and consequently the matrix A−1B is also symmetric. It follows that the third factor in
(3.15) is symplectic. Finally, with the aid of (3.3), the relation (3.5) can be rewritten in the
form

AT (D − CA−1B) = I. (3.3.19)

It follows that the second factor in (3.15) is also symplectic.
Even if a symplectic M cannot be written as a product of three symplectic factors as

in (3.15) and (3.16), it can always be written as a product of a finite number of symplectic
factors of the form (3.9) through (3.11). That is, symplectic matrices of the form (3.9)
through (3.11) generate all symplectic matrices.4

To verify this assertion, suppose M is written in the form (3.1). We distinguish two
cases: either the block A vanishes identically or it does not. Suppose A does vanish. Then
we have the relations (

I I
0 I

)(
0 B
C D

)
=

(
C B +D
C D

)
, (3.3.20)

M =

(
0 B
C D

)
=

(
I −I
0 I

)(
C B +D
C D

)
. (3.3.21)

Moreover, the matrix C must satisfy det(C) 6= 0. For if det(C) = 0, then the n columns
of C must be linearly dependent, which implies that the first n columns of M must be
linearly dependent, which implies det(M) = 0 contrary to the result of Exercise (1.3). [The
same conclusion, det(C) 6= 0, also follows directly from (3.5).] Also, according to Exercise
(1.6), the matrix on the right side of (3.20) is symplectic. It follows that this matrix has a
factorization of the form (3.15), and correspondingly according to (3.21) M can be written
as a product of four factors of the form (3.9) through (3.11).

Next suppose that A does not vanish. Let VW denote the symplectic matrix

VW =

(
W 0
0 W ∗

)
, (3.3.22)

4The word generate has many meanings depending on context. Here it means that any symplectic matrix
can be expressed as a product of a finite number of symplectic matrices having a specific form. In the Lie
algebraic context it happens that some Lie group elements G can be written in the form G = exp(g) where
g is in the associated Lie algebra. See Section 3.7. In that case, but with a different meaning, we also say
that g generates G.
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where
W ∗ = (W T )−1. (3.3.23)

Pre and post multiply M by VX and VY to get the result

M ′ = VXMVY =

(
A′ B′

C ′ D′

)
, (3.3.24)

with A′ given by the relation
A′ = XAY. (3.3.25)

According to a standard result in matrix theory, nonsingular matrices X and Y can be
selected in such a way that A′ takes the block form

A′ =

(
I` 0
0 0n−`

)
. (3.3.26)

Here I` is the `× ` identity matrix (with ` ≥ 1), and 0n−` is a complementary zero matrix.
(The integer ` is the rank of A.) Correspondingly, C ′ can be written in the block form

C ′ =

(
C ′11 C ′12

C ′21 C ′22

)
. (3.3.27)

Then use of the symplectic condition (3.3) when applied to A′ and C ′ gives the result

C ′12 = 0. (3.3.28)

It follows that det(C ′22) 6= 0. For if det(C ′22) = 0, then the (n − `) columns of C ′22 must be
linearly dependent, which implies that (n − `) columns of M ′ must be linearly dependent,
which implies det(M ′) = 0 contrary to Exercises (1.3) and (1.6). Let Tλ, where λ is an
arbitrary real parameter, denote the symplectic matrix

Tλ =

(
I λI
0 I

)
. (3.3.29)

Multiply M ′ by Tλ on the left to get the result

M ′′ = TλM
′ =

(
I λI
0 I

)(
A′ B′

C ′ D′

)
=

(
A′′ B′′

C ′′ D′′

)
(3.3.30)

with A′′ given by the relation

A′′ = A′ + λC ′ =

(
I` + λC ′11 0
λC ′21 λC ′22

)
. (3.3.31)

A little thought shows that λ can be selected in such a way that det(A′′) 6= 0. By inverting
the relations (3.24) and (3.30), we see that M can be written in the form

M = V −1
X T−1

λ M ′′V −1
Y . (3.3.32)

And, according to the previous discussion, M ′′ has a factorization of the form (3.15). Thus,
M can again be written as a product of factors (this time six in number) of the form (3.9)
through (3.11).
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3.3.3 Symplectic Matrices Have Determinant +1

Moreover, as a bonus, we observe that since each factor has determinant +1, the matrix
M itself must have determinant +1. We conclude that every symplectic matrix M (real or
complex) must satisfy the relation

det(M) = +1. (3.3.33)

Here is a topological perspective on the relation (3.33). Suppose it can be established
that symplectic matrices written in the form (3.31) and having det(A) 6= 0 are dense in
the set of all symplectic matrices. That is for any symplectic matrix M ′, written in the
form (3.31) and having det(A) = 0, there is a symplectic matrix M arbitrarily nearby with
det(A) 6= 0. For this matrix we know from the factorization (3.15) that det(M) = 1. But
from (1.8) we know that det(M ′) = ±1. Since the determinant of a matrix is a continuous
function of its entries, it follows from the density hypothesis that det(M ′) = +1.

3.3.4 Small-Block Formulation

Equally interesting are the results of requiring M to be symplectic with respect to the J ′

of (2.10). For simplicity in this case, and for later use, we restrict our discussion to 6 × 6
matrices. Then M can be written in the form

M =

 a b c
d e f
g h i

 (3.3.34)

where the matrices a through i are all 2× 2. Correspondingly, MT can be written as

MT =

 aT dT gT

bT eT hT

cT fT iT

 . (3.3.35)

Now require that M satisfy the condition (1.2) with J replaced by J ′. We find that the
matrices a through i must satisfy the conditions

aTJ2a+ dTJ2d+ gTJ2g = J2, (3.3.36)

bTJ2b+ eTJ2e+ hTJ2h = J2,

cTJ2c+ fTJ2f + iTJ2i = J2,

bTJ2a+ eTJ2d+ hTJ2g = 0, (3.3.37)

cTJ2a+ fTJ2d+ iTJ2g = 0,

cTJ2b+ fTJ2e+ iTJ2h = 0.

Note that because of (1.7), the relations (3.36) can also be written in the form

det a+ det d+ det g = 1, (3.3.38)
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det b+ det e+ deth = 1,

det c+ det f + det i = 1.

As before, M must also satisfy (1.10) with J replaced by J ′. As a consequence, the matrices
a through i must also satisfy the conditions

det a+ det b+ det c = 1, (3.3.39)

det d+ det e+ det f = 1,

det g + deth+ det i = 1,

dJ2a
T + eJ2b

T + fJ2c
T = 0, (3.3.40)

gJ2a
T + hJ2b

T + iJ2c
T = 0,

gJ2d
T + hJ2e

T + iJ2f
T = 0.

Exercises

3.3.1. Verify the relations (3.3) through (3.8).

3.3.2. Verify that M as given by (3.11) can be written in the form

M =

(
A 0
0 D

)
=

(
A 0
0 I

)(
I 0
0 D

)
. (3.3.41)

and therefore
det(M) = det(A) det(D). (3.3.42)

3.3.3. Verify the block factorizations (3.15) and (3.16). Work out in detail the proof that
each factor in (3.15) and (3.16) is separately symplectic if M is symplectic.

3.3.4. Verify in detail all the steps required to show that matrices of the form (3.9) through
(3.11) generate all symplectic matrices.

3.3.5. Verify the relations (3.36) through (3.40).

3.4 Eigenvalue Spectrum

Suppose a mapM acts on some some space with coordinates z and supposeM has a fixed
point zf ,

Mzf = zf .

What can be said about the behavior of points near this fixed point under repeated appli-
cation of M? In lowest approximation, this behavior is controlled by the matrix M that
specifies the linear part of M when it is expanded about zf . It can be shown, in the linear
approximation, that points near zf remain near zf under repeated application of M if all
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the eigenvalues of M are within the unit circle in the complex plane or are on the unit circle
and distinct. In this case zf is said to be stable. On the other hand, if any eigenvalue lies
outside the unit circle, there are points near zf that, again in the linear approximation, are
mapped away from zf exponentially fast under repeated application of M. In this case, zf
is said to be unstable. See Subsection 3.5.8.

By definition, the linear part of a symplectic map is specified by a symplectic matrix.
See Section 6.1.2. We are therefore particularly interested in the eigenvalues of M when M
is symplectic.

Finally, in the context of accelerator physics, suppose M is the one-turn map for a
circular machine (ring). In this case, a fixed point of M corresponds to a closed orbit. In
order to accelerate/store a large number of particles, it is essential that this closed orbit
(fixed point) be stable. That is, if one fails to inject onto the closed orbit, as will be the case
for most of any injected beam, one desires that particles near the closed orbit will remain so
for very large times (in some cases equivalent in terms of the number of oscillations about
the closed orbit to the number of trips of the earth around the sun since the big bang).
Therefore, for successful accelerator design and operation, it is essential to know and control
the eigenvalues of M .

3.4.1 Background

The characteristic polynomial P (λ) of any matrix M is defined by the equation

P (λ) = det(M − λI). (3.4.1)

Evidently P (λ) is a polynomial with real coefficients if the matrix M is real. Also, the
eigenvalues of M are the roots of the equation

P (λ) = 0. (3.4.2)

It follows that if M is a real matrix, then its eigenvalues must also be real or must occur in
complex conjugate pairs λ, λ.

Suppose M is a symplectic matrix. Then it follows from (1.9) that

J−1(MT − λI)J = M−1 − λI = −λM−1(M − λ−1I). (3.4.3)

Since M is symplectic, we also have the relation

det(M) = +1. (3.4.4)

See Section 3.3. Now take the determinant of both sides of (4.3). The result is the relation

P (λ) = λ2nP (1/λ). (3.4.5)

It follows that if λ is an eigenvalue of a symplectic matrix, so is the reciprocal 1/λ. [Note
that according to Exercise 1.7, λ = 0 is not an eigenvalue, so we need not be concerned about
multiplying or dividing by zero.] Consequently, the eigenvalues of a symplectic matrix must
form reciprocal pairs. This property is called reflexivity.
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The symmetry between λ and 1/λ exhibited by (4.5) can be further displayed by rewriting
(4.5) in the form

λ−nP (λ) = λnP (1/λ). (3.4.6)

Now define another function Q(λ) by writing

Q(λ) = λ−nP (λ). (3.4.7)

The functions P and Q evidently have the same zeroes. Moreover, the condition (4.6)
requires that Q have the symmetry property

Q(λ) = Q(1/λ). (3.4.8)

Equation (4.8) shows not only that the eigenvalues of a symplectic matrix must occur
in reciprocal pairs; it shows that they must also occur with the same multiplicity. That is,
if the root λ0 has multiplicity k, so must the root 1/λ0. Indeed, the eigenvalues λ0 and λ−1

0

must have the same Jordan block structure. See Exercise 4.6.
Also, if either +1 or −1 is a root, then this root must have even multiplicity. To see this,

suppose for example that λ = 1 is a root. Introduce the variable µ by writing λ = exp µ.
Then (4.8) shows that Q is an even function of the variable µ and hence near λ = 1 (near
µ = 0) Q must have an expansion of the form

Q =
∞∑
m=0

cmµ
2m. (3.4.9)

Moreover, when λ is near 1, λ and µ are related by the expansion

µ = log λ = log[1 + (λ− 1)] = (λ− 1)[1− (λ− 1)/2 + · · · ]. (3.4.10)

Comparison of (4.9) and (4.10) shows that λ = 1 is not a root unless c0 = 0. If c0 = 0,
then λ = 1 is a root of multiplicity 2. If c1 = 0 as well, then λ = 1 is a root of multiplicity
4, etc. A similar argument holds near λ = −1 upon making the substitution λ = − expµ.

In summary, it has been shown that the eigenvalues of a real symplectic matrix must
satisfy the following properties:

1. They must be real or occur in complex conjugate pairs.

2. They must occur in reciprocal pairs, and each member of the pair must have the same
multiplicity.

3. If either ±1 is an eigenvalue, it must have even multiplicity.

When combined, the conditions just enumerated place strong restrictions on the possible
eigenvalues of a real symplectic matrix. Among them is the fact that the the eigenvalues
cannot all lie inside or all lie outside the unit circle. We will learn in later chapters that,
by definition, the linear part of a symplectic map at a fixed point is a symplectic matrix.
Therefore, fixed points of a symplectic map cannot be attractors or repellers. We will
also learn that Hamiltonian systems produce symplectic maps. It follows that Hamiltonian
systems have neither attractors nor repellers.
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3.4.2 The 2× 2 Case

Consider first the simplest case of a 2 × 2 symplectic matrix (n = 1). Call the eigenvalues
λ1 and λ2. Then, by the reciprocal property, it follows that

λ1λ2 = 1. (3.4.11)

Suppose, now, that λ1 is real, positive, and greater than 1. Then λ2 is real, positive, and
less than 1. Similarly, if λ1 is real, negative, and less than −1, then λ2 is real, negative, and
greater than −1. On the other hand, if λ1 is complex, then λ2 = λ1. This condition, when
combined with (4.11), shows that in this case λ1 and λ2 must lie on the unit circle in the
complex plane. Finally, there are the two special cases λ1 = λ2 = 1 and λ1 = λ2 = −1.

Altogether, there are five possible cases. They are listed below along with names and
designations whose significance will become clear later on. See also Figure 4.1.

1. Hyperbolic case (unstable): λ1 > 1 and 0 < λ2 < 1.

2. Inversion hyperbolic case (unstable): λ1 < −1 and −1 < λ2 < 0.

3. Elliptic case (stable): λ1 = eiφ, λ2 = e−iφ. (Eigenvalues are complex conjugates and
lie on the unit circle).

4. Parabolic case (generally linearly unstable): λ1 = λ2 = +1.

5. Inversion parabolic case (generally linearly unstable): λ1 = λ2 = −1.5

Note that in all cases both eigenvalues cannot lie inside the unit circle nor can both eigen-
values lie outside the unit circle.

3.4.3 The 4× 4 and Remaining 2n× 2n Cases

The next simplest case is that of a 4 × 4 symplectic matrix (n = 2). In this case, one
has to deal with four possible eigenvalues and then apply reasoning analogous to the 2× 2
case. Figures 4.2 illustrate the various possibilities that can occur. Analysis of the possible
spectrum of the 2n eigenvalues for the general 2n× 2n real symplectic matrix proceeds in a
similar fashion. Again, in particular, it can never happen that all the eigenvalues lie inside
the unit circle, nor can it happen that they all lie outside the unit circle. See Exercise 4.1.

5It is easily checked that inversion hyperbolic or inversion parabolic symplectic matrices can be written as
the products of hyperbolic or parabolic symplectic matrices with the negative identity matrix, respectively.
The negative identity matrix (which is also symplectic) acts on phase space to produce inversion through the
origin. Some authors use the terminology reflection hyperbolic and reflection parabolic rather than inversion
hyperbolic and inversion parabolic. This terminology is less precise: Reflection can mean reflection in/about
the origin, in which case it is the same as inversion through the origin. In other contexts, reflections refer
to transformations, like mirror reflections, that change the sign of some components of a vector, but not all
components.
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Case 1.

Hyperbolic (Unstable)

Case 2.

Inversion Hyperbolic (Unstable)

+1

+1

Case 3.

Elliptic (Stable)

Case 4.

Parabolic
Transition between
elliptic and hyperbolic
cases can only occur
by passage through
this degenerate case.
(Generally linearly
unstable.)

Case 5.

Inversion Parabolic
Transition between elliptic and
inversion hyperbolic cases can only
occur by passage through this de-
generate case.  (Generally linearly
unstable.)

–1

–1

Figure 3.4.1: Possible cases for the eigenvalues of a 2× 2 real symplectic matrix.
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Figure 3.4.2: Possible eigenvalue configurations for a 4×4 real symplectic matrix. The mirror
image of each configuration is also a possible configuration, and therefore is not shown in
order to save space. Various authors have given these configurations various names. Notably,
Case 1 is commonly called a Krein quartet.

A. Generic Configurations

All eigenvalues real, off the unit circle, and of
differing sign.  Eigenvalues form reciprocal
pairs.  Unstable. 

Case 3. 

Case 4. Two eigenvalues complex and confined to unit
circle.  Two eigenvalues real.  Eigenvalues form
reciprocal pairs.  Complex eigenvalues are also
complex conjugate.  Unstable.

Case 5. All eigenvalues complex and confined to the unit
circle.  Eigenvalues form reciprocal pairs that
are also complex conjugate.  Stable. 

Case 1. All eigenvalues complex and off the unit circle.
All eigenvalues can be obtained from a single one
by the operations of complex conjugation and
taking reciprocals.  Unstable. 

Case 2. All eigenvalues real, off the unit circle, and of
same sign.  Eigenvalues form reciprocal pairs.
Unstable. 
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B. Degenerate Configurations. Transitions between generic configurations can only oc-
cur by passage through a degenerate configuration. Mirror image configurations are again
possible, but not shown.

Two eigenvalues equal, and two eigenvalues confined
to unit circle.  Occurs in transition between generic
cases 4 and 5.  Generally linearly unstable. 

Case 3. 

Case 4. Two eigenvalues equal  +1 and two equal –1.  Occurs
in transition between generic cases 3 and 5, or 3
and 4, or 4 and 5.  Also occurs in transition between
degenerate cases 2 and 3.  Generally linearly unstable.

Case 5. Two pairs of eigenvalues equal, and confined to unit
circle.  Occurs in transition between generic cases
1 and 5.  Not, however, a sufficient condition to
guarantee that such a transition is possible.  Stability
also undetermined in absence of further conditions.
 

Case 1. (2) 

(2) 

(2) 

(2) 

(2) 

(2) 

(2) 

Two eigenvalues equal, and two eigenvalues real.
All of same sign.  Occurs in transition between
generic cases 2 and 4.  Unstable. 

Case 2. Two eigenvalues equal, and two eigenvalues real.
Signs differ.  Occurs in transition between generic
cases 3 and 4.  Unstable. 

Case 6. Two pairs of eigenvalues equal and real.  Occurs in
transition between generic cases 1 and 2.  Unstable.

Case 7. All eigenvalues equal and have value ±1.  Occurs
in transitions between generic cases 1, 2, 4, and
5 and degenerate cases 1, 3, 5, and 6.  Generally
linearly unstable.

(2) 

(4) 

(2) 
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3.4.4 Further Symplectic Restrictions

Background

We will next see that the symplectic condition not only simplifies the computation of eigen-
values, but also influences how the eigenvalues depend on various parameters. For the
general case of a 2n×2n matrix M , the characteristic polynomial (4.1) is of degree 2n. Cor-
respondingly, one might think that the determination of the eigenvalues from (4.2) would
require finding the roots of a 2n degree polynomial. However, if M is symplectic, we can
use the fact that P and Q have the same zeroes and the symmetry property (4.8) to reduce
the problem to that of finding the roots of an n degree polynomial. Introduce a variable w
by the relation

w = λ+ 1/λ. (3.4.12)

Equation (4.12) can be inverted to give the result

λ = [w ± (w2 − 4)1/2]/2. (3.4.13)

Since P (λ) is a polynomial of degree 2n, it follows from (4.4), (4.7), and (4.8) that Q must
be of the form

Q(λ) = Qr(w) =
n∑

m=0

bmw
m (3.4.14)

with
bn = 1. (3.4.15)

Note that Qr, which we will call the reduced characteristic polynomial of M , has degree n.
The eigenvalues of M can now be determined by finding the n roots of the equation

Qr(w) = 0, (3.4.16)

and substituting these roots into (4.13).
Let us see how the results just described work out in the cases n = 1 and n = 2.

The 2× 2 Case

Suppose n = 1. Then, if M is symplectic, we have the result

P (λ) = λ2 − Aλ+ 1, (3.4.17)

with the coefficient (parameter) A given by the relation

A = tr (M). (3.4.18)

For Qr(w) we find the result
Qr(w) = w − A. (3.4.19)

Evidently the solution to (4.16) in this case is simply w = A, and we find from (4.13) the
eigenvalues

λ = [A± (A2 − 4)1/2]/2. (3.4.20)
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Note that (4.20) gives eigenvalues on the unit circle (stability) when

− 2 < A < 2, (3.4.21)

and real eigenvalues (instability) otherwise. Figure 4.3, which is to be compared with Figure
4.1, illustrates the nature of the eigenvalues λ as a function of A.

0

A

2–2

Figure 3.4.3: Eigenvalues of a 2× 2 real symplectic matrix M as a function of A = tr (M).

The 4× 4 Case

Suppose n = 2. Then, if M is symplectic, the characteristic polynomial has the form

P (λ) = λ4 − Aλ3 +Bλ2 − Aλ+ 1. (3.4.22)

The coefficients (parameters) A and B can be found from the relations

A = [P (−1)− P (1)]/4, (3.4.23)

B = [P (−1) + P (1)]/2− 2. (3.4.24)

They can also be found directly in terms of M using the relations

A = tr (M), (3.4.25)

B = {[tr (M)]2 − tr (M2)}/2. (3.4.26)

See Exercise 3.7.17. For Qr(w) we find the result

Qr(w) = w2 − Aw +B − 2. (3.4.27)

The solutions to (4.16) in this case are

w = [A± (A2 − 4B + 8)1/2]/2. (3.4.28)

These solutions are to be substituted into (4.13). Observe that in general there are four
choices of signs to be made corresponding to the four possible eigenvalues expected for M .
Figure 4.4, which is to be compared with Figure 4.2, illustrates the nature of the eigenvalues
as a function of A and B. We note that the region of stability is the arrow-head shaped
domain in which the following conditions are satisfied simultaneously:

B ≥ 2A− 2 , B ≥ −2A− 2,
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B ≤ A2/4 + 2 , B ≤ 6. (3.4.29)

Transitions from stability to instability through the points λ = ±1 occur across the line
segments

λ = +1 : B = 2A− 2 and B ∈ [−2, 6], (3.4.30)

λ = −1 : B = −2A− 2 and B ∈ [−2, 6]. (3.4.31)

Transitions to instability through Krein collisions, see Case 5 of Figure 4.2B and Section
3.5, occur across the parabolic segment

B = A2/4 + 2, (3.4.32)

with
A ∈ [−4, 4]. (3.4.33)

The 6× 6 Case

The 6 × 6 case can be treated in a manner analogous to the 2 × 2 and 4 × 4 cases. In the
6× 6 case one needs to solve a cubic equation to find the eigenvalues. See Exercise 4.14.

Dimension Counting

We close this subsection with a remark on dimension counting. We see from (4.14) and
(4.15) that the spectrum of a 2n× 2n symplectic matrix is determined by the n parameters
b0, b1, · · · bn−1. We will learn in Section 3.7 that symplectic matrices form a Lie group, and
that the dimensionality of this group is n(2n + 1). Since n(2n + 1) is much larger than
n, it follows that many different symplectic matrices have the same spectrum. This fact
is relevant to accelerator design. As outlined at the beginning of this section, the linear
stability of closed orbits in an accelerator is governed by the spectrum of the linear part
of its one-turn transfer map. It is therefore important to be able to control the spectrum,
and there are typically many knobs in an accelerator control room for this purpose. Despite
these many knobs, accelerator operators often discover to their dismay that they are unable
to adjust the spectrum at will. The dimension counting comparison tells us why. Much of
the possible knob turning simply leads to different symplectic matrices having the same or
nearly the same spectrum.

3.4.5 In Praise of and Gratitude for the Symplectic Condition

We have learned that the symplectic condition guarantees that there are symplectic maps
M whose linear parts M have all their eigenvalues on the unit circle and distinct. Thus, it
is in principle possible to build circular (ring) accelerators and storage rings with a stable
closed orbit.

Moreover, the set of 2n × 2n real symplectic matrices whose eigenvalues lie on the unit
circle and are distinct is open in the set of all 2n × 2n symplectic matrices. By this we
mean that if M is a real symplectic matrix all of whose eigenvalues lie on the unit circle and
are distinct, then the same is true of all real symplectic matrices sufficiently near M . To
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Figure 3.4.4: Eigenvalues of a 4×4 real symplectic matrix M as a function of the coefficients
A and B in its characteristic polynomial.
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see this, suppose that M is changed slightly, but in such a way that it remains symplectic.
The eigenvalues of a matrix are the roots of a polynomial whose coefficients are continuous
functions of the entries in the matrix. See (4.1) and (4.2). Also, the roots of a polynomial
are continuous functions of the coefficients in the polynomial. It follows that the eigenvalues
of a matrix are continuous functions of the entries in the matrix. That is, if the matrix
is slightly changed, its eigenvalues are also only slightly changed. But if the eigenvalues
are initially on the unit circle and distinct, there are no nearby eigenvalue configurations
for a symplectic matrix where the eigenvalues are not all distinct or at least one eigenvalue
is outside the unit circle. Thus, if the change in M is finite but small enough, then the
eigenvalues must remain on the unit circle and must still be distinct.

The fact that this stability cannot be destroyed by small and symplectic perturbations
should be of comfort to accelerator designers and builders because it means that, at least
in the linear approximation, the stability of orbits will not be damaged by small errors in
machine construction and operation. That is, thanks to the symplectic condition, accelerator
performance is robust under small fabrication and control parameter errors.

Even more can be said. In our discussion we have implicitly assumed the existence of
a closed orbit. That is, we have assumed that M has a fixed point zf . It can be shown
that if a symplectic map has a stable fixed point (a fixed point for which M has all its
eigenvalues on the unit circle and distinct), then all nearby symplectic maps will also have
a stable fixed point. See Subsection 29.4.5. Thus, if a circular accelerator or storage ring is
designed to have a stable closed orbit, both the existence and the stability of a closed orbit
for the actual machine are guaranteed even in the presence of small fabrication and control
parameter errors providing these errors are not too large.

Exercises

3.4.1. Verify (4.5) starting with (4.3).

3.4.2. Show, using (3.33), that the eigenvalues of a symplectic matrix cannot all have ab-
solute value less than 1, nor can they all have absolute value greater than 1.

3.4.3. Show that, for a real 4× 4 symplectic matrix M , that all the generic eigenvalue con-
figurations of Figure 4.2 are unchanged by small perturbations of M providing the perturbed
M are also symplectic. That is why these configurations are called generic.

3.4.4. Show that the eigenvalues of J are all ±i.

3.4.5. Suppose M ′ is defined in terms of M by (2.15). Show that M and M ′ have the same
spectrum.

3.4.6. Suppose λ0 is a complex eigenvalue of a real symplectic matrix. Show that the Jordan
block structures for the eigenvalues λ0 and λ0 are the same. Suppose λ0 is an eigenvalue of
a (possibly complex) symplectic matrix. Use (1.9) to show that the Jordan block structures
for the eigenvalues λ0 and λ−1

0 are the same.

3.4.7. Given (4.12), verify (4.13).



3.4. EIGENVALUE SPECTRUM 261

3.4.8. Using (4.4), (4.7), and (4.8), verify (4.14) and (4.15).

3.4.9. Verify (4.17) through (4.21). Let O and F be the matrices

O =

(
1 a
0 1

)
and F =

(
1 0
b 1

)
. (3.4.34)

The matrix O is the 2 × 2 version of the transfer matrix for a drift of length a, and the
matrix F is the 2× 2 version of the transfer matrix for a focusing element with focal length

f = −1/b. (3.4.35)

Therefore we expect that a > 0 and (assuming F is focusing) b < 0. See Chapter 13.
Suppose M is the 2× 2 matrix

M = OFO. (3.4.36)

It is the 2× 2 version of the transfer matrix for an OFO cell. Verify that M and its factors
in (4.37) are symplectic matrices. Verify that

A = tr (M) = 2(1 + ab). (3.4.37)

By referring to Figures 4.1 and 4.3 verify that for M there are the following cases:

hyperbolic when ab > 0,

elliptic when − 2 < ab < 0,

inversion hyperbolic when ab < −2. (3.4.38)

Suppose M ′ is the matrix
M ′ = FOF. (3.4.39)

It is the 2 × 2 version of the transfer matrix for a FOF cell. Verify that M ′ is symplectic.
Verify that

A′ = tr (M ′) = 2(1 + ab). (3.4.40)

Verify that for M ′ there are also the cases (4.38).

3.4.10. Verify (4.22) through (4.24). Verify (4.27) and (4.28).

3.4.11. Study Figure 4.4. Verify the statements made in connection with (4.29) through
(4.33).

3.4.12. Where do the eigenvalues λ lie when A and B are on the portion of the parabola
(4.32) having A > 4 or A < −4? Where do the eigenvalues lie when A and B are on the
portions of the lines B = ±2A− 2 and B 6∈ [−2, 6]? Find where the eigenvalues lie for the
cases A = 4, B = 6; A = −4, B = 6; A = 0, B = −2.

3.4.13. Consider a 4-dimensional phase space. Suppose the phase-space variables are ar-
ranged according to (2.4) rather than (2.1). Verify that doing so makes no difference for
the discussion of the present section. Suppose, with the arrangement (2.4), that a 4 × 4
symplectic matrix M is written in the 2 × 2 block form (3.1), and the blocks B and C are
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identically zero. In this case the x1, y1 space is mapped into itself, and the x2, y2 space is
mapped into itself. See (2.4). With this assumption, show that the characteristic polynomial
for M takes the form

P (λ) = (λ2 − αλ+ 1)(λ2 − δλ+ 1). (3.4.41)

Here α is the trace of the upper left 2× 2 block in M , and δ is the trace of the lower right
2× 2 block in M . Show that, according to (4.21), the quantities α, δ must lie in the square

− 2 < α < 2 ,−2 < δ < 2 (3.4.42)

in order that all eigenvalues ofM lie on the unit circle (stability). Show that, when multiplied
out, (4.41) takes the form

P (λ) = λ4 − (α + δ)λ3 + (2 + αδ)λ2 − (α + δ)λ+ 1. (3.4.43)

Now compare (4.22) and (4.43) to get the results

A = α + δ, (3.4.44)

B = 2 + αδ. (3.4.45)

Show that the interior of the square (4.42) maps into the arrow-head shaped domain (4.29) of
Figure 4.4 under the transformation given by (4.44) and (4.45). Also show that the exterior
of the square maps to points outside the arrow-head shaped domain. Does one get all points
outside the arrow-head shaped domain?

3.4.14. Consider a 6-dimensional phase space. Show that in this case P (λ) for a symplectic
matrix can be written in the form

P (λ) = λ6 − Aλ5 +Bλ4 − Cλ3 +Bλ2 − Aλ+ 1, (3.4.46)

and Qr(w) takes the form

Qr(w) = w3 − Aw2 + (B − 3)w + (2A− C). (3.4.47)

What region of the A, B, C parameter space gives stability (all eigenvalues on the unit
circle)? That is, what is the 3-dimensional analog of the arrow-head shaped domain of
Figure 4.4?

3.4.15. Look at the coefficients appearing in (4.46). Listing them from left to right, we see
that they have the values 1,−A,B,−C,B,−A, 1. This sequence is a palindrome. That is,
when read backwards, the result is the same as reading forwards. Observe that this feature
also appears in (4.17) and (4.22). Also observe that the first and last coefficients always
have the value +1. Prove that these results hold for any phase-space dimension.
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3.5 Eigenvector Structure, Normal Forms, and

Stability

3.5.1 Eigenvector Basis

Let M be a 2n × 2n real symplectic matrix. Suppose its eigenvalues are all distinct. Call
them λ1, λ2, · · ·λ2n, and call the associated eigenvectors ψ1, ψ2, · · ·ψ2n. Then we have 2n
relations of the form

Mψj = λjψj. (3.5.1)

Note that if any λj is complex, the corresponding ψj must also have complex entries. Finally,
since the λj are assumed to be distinct, the 2n vectors ψj must be linearly independent, and
must consequently form a basis.

3.5.2 J-Based Angular Inner Product

Let (,) denote the usual complex scalar product.6 Introduce an angular inner product 〈, 〉
by the rule

〈χ, θ〉 = (χ,Kθ) (3.5.2)

with K defined by the relation
K = −iJ. (3.5.3)

Here χ and θ are any two vectors. We note that K is Hermitian,

K† = K, (3.5.4)

with respect to the standard complex scalar product (,). Consequently, we have the relation

〈θ, χ〉 = 〈χ, θ〉. (3.5.5)

Finally we observe that for real vectors the angular inner product, apart from a factor of
−i, is just the fundamental symplectic 2-form (2.3).7

3.5.3 Use of Angular Inner Product

What is the angular inner product good for? Let ψj and ψk be two eigenvectors. We have
the result

〈ψj,Mψk〉 = (ψj, KMψk) = λk(ψj, Kψk)

= λk〈ψj, ψk〉. (3.5.6)

From the symplectic condition (1.2) we conclude that

KM = (MT )−1K. (3.5.7)

6We adopt the usual physicists’ convention that (αφ, βψ) = ᾱβ(φ, ψ). Mathematicians frequently follow
the convention that (αφ, βψ) = αβ̄(φ, ψ).

7Apart from a factor of −i, the angular inner product (5.2) is sometimes called the Lagrange bracket of
χ̄ and θ.



264 3. SYMPLECTIC MATRICES AND LIE ALGEBRAS/GROUPS

Consequently, the quantity 〈ψj,Mψk〉 can also be written in the form

〈ψj,Mψk〉 = (ψj, KMψk) = (ψj, (M
T )−1Kψk)

= (M−1ψj, Kψk) = λ
−1

j (ψj, Kψk)

= λ
−1

j 〈ψj, ψk〉. (3.5.8)

Here we have used the relation

M−1ψj = λ−1
j ψj, (3.5.9)

which follows from (5.1). Comparison of the relations (5.6) and (5.8) gives the result

(λ
−1

j − λk)〈ψj, ψk〉 = 0. (3.5.10)

Consequently, we have the orthogonality relation

〈ψj, ψk〉 = 0 if λ
−1

j 6= λk. (3.5.11)

The exact consequences of the orthogonality relation depend on the nature of the spec-
trum. Suppose, for the purposes of this section, that all the eigenvalues of M are complex,
distinct, and lie on the unit circle. Then the λj can be written in the form

λj = eiφj (3.5.12)

where the phases φj are real. In this case we have the relation

λ
−1

j = λj. (3.5.13)

Correspondingly, the orthogonality relation (5.11) becomes the relation

〈ψj, ψk〉 = 0 if λj 6= λk. (3.5.14)

Further, we claim that

〈ψk, ψk〉 6= 0 for all k. (3.5.15)

For suppose 〈ψk, ψk〉 did vanish for some k. Then, by (5.14), 〈ψj, ψk〉 would vanish for all j.
Correspondingly, as a result of the definitions (5.2) and (5.3), we would conclude that

(ψj, Jψk) = 0 for all j, (3.5.16)

and consequently

Jψk = 0 (3.5.17)

since the ψj form a basis. But the matrix J is invertible. Thus (5.17) implies that ψk itself
must vanish, which is impossible because the vectors ψj form a basis.
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3.5.4 Definition and Use of Signature

Observe that, according to (5.5), the quantities 〈ψj, ψj〉 must be real. Since they cannot
vanish, they must be positive or negative. Suppose we rephase and renormalize the vectors
ψj to produce new vectors ψ′j defined by the relations

ψ′j = rje
iχjψj. (3.5.18)

Here the rj are real, positive quantities, and the phases χj are arbitary. We then find the
relations

〈ψ′j, ψ′j〉 = r2
j 〈ψj, ψj〉. (3.5.19)

We see that the rj can be selected in such a way that

〈ψ′j, ψ′j〉 = σj (3.5.20)

where σj has the (possible) values
σj = ±1. (3.5.21)

Note that the sign of σj is independent of the phase χj. Thus, the sign is an intrinsic
property of the vector ψj. It is called the signature of ψj. From now on, we drop the prime
notation. With this understanding, and recalling that the λj are assumed to be distinct,
we may require that the ψj be normalized in such a way that they obey the orthogonality
relation

〈ψj, ψk〉 = σjδjk. (3.5.22)

Consider some eigenvalue λk. Since λk is also an eigenvalue, it must be one of the λj.
Let λk′ denote this particular λj. Then, we have the relations

Mψk = λkψk, (3.5.23)

Mψk′ = λk′ψk′ = λkψk′ . (3.5.24)

Complex conjugate (5.23) to get the relation

Mψk = λkψk = λk′ψk. (3.5.25)

We observe from (5.24) and (5.25) that ψk′ and ψk are both eigenvectors of M with the
same eigenvalue λk′ . Consider the vector ψk. By the same argument that led to (5.14), it
must be orthogonal to all ψj with j 6= k′. Since the ψj form a basis, it follows that ψk must
be proportional to ψk′ . Thus, there is a relation of the form

ψk = αkψk′ (3.5.26)

where αk is some proportionality constant yet to be determined. Consider the quantity
σk = 〈ψk, ψk〉. Working it out in component form gives the result

σk = 〈ψk, ψk〉 =
∑
α

ψk,α(Kψk)α =
∑
α,β

ψk,αKαβψk,β. (3.5.27)
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Here the quantities ψk,β are the components of ψk. Next consider the quantity 〈ψk, ψk〉. It
evidently has the value

〈ψk, ψk〉 =
∑
α,β

ψk,αKαβψk,β = −
∑
α,β

ψk,βKβαψk,α

= −〈ψk, ψk〉 = −σk. (3.5.28)

Here use has been made of the antisymmetry of K. But from (5.26) we have the relation

〈ψk, ψk〉 = |αk|2〈ψk′ , ψk′〉 = |αk|2σk′ . (3.5.29)

Comparison of (5.28) and (5.29) gives the result

|αk|2σk′ = −σk. (3.5.30)

Two relations follow from (5.30) and (5.21). First, we have the relation

σk′ = −σk. (3.5.31)

We have learned that if λk′ = λk, then ψk and ψk′ have opposite signature. It follows that
half the ψj have signature +1, and half have signature −1. Second, we also have the relation

|αk|2 = 1. (3.5.32)

Thus, αk must be just a phase factor. Since the vectors ψk and ψk′ are only defined up to
overall phase factors, we may set αk = 1 without loss of generality to get the relation

ψk = ψk′ . (3.5.33)

The preceding discussion makes it possible to improve our notation. Suppose the ψj
are relabeled in such a way that the vectors ψ` with ` = 1, 2, · · ·n have positive signature.
Let the corresponding ψj with negative signature be labeled as ψ−`. That is, arrange the
labeling scheme so that the following relations hold with `,m = 1, 2, · · ·n:

〈ψ`, ψm〉 = δ`,m, (3.5.34)

〈ψ−`, ψ−m〉 = −δ`,m, (3.5.35)

〈ψ`, ψ−m〉 = 〈ψ−`, ψm〉 = 0, (3.5.36)

λ` = λ−`, (3.5.37)

ψ` = ψ−`. (3.5.38)

By their association with the ψ`, the eigenvalues λ` are also said to have positive signature.
Correspondingly, the eigenvalues λ−` are said to have negative signature.
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3.5.5 Definition of Phase Advances and Tunes

Consider the eigenvalues λ` corresponding to the vectors ψ` having positive signature. That
is, consider the eigenvalues with positive signature. Define phases φ` by the relation

λ` = eiφ` . (3.5.39)

Evidently these phases are defined modulo 2π. For the discussion that follows, it is con-
venient to take them to lie in the range (−π, π). The quantities φ` with ` = 1, 2, · · ·n are
called the phase advances of M . Also, define corresponding quantities T` by the relations

T` = φ`/(2π). (3.5.40)

Evidently the T` are defined modulo 1, but our choice of the range (−π, π) for phases places
the T` in the range (−1/2, 1/2). The quantities T` are called the tunes of M .8

Example 5.1: Let M be the 2× 2 matrix

M =

(
cosφ sinφ
− sinφ cosφ

)
. (3.5.41)

Since M is 2×2 and has determinant +1, it must be symplectic. See Exercise 1.3. A simple
calculation shows that M has the eigenvectors

ψ+1 = (1/
√

2)

(
1
i

)
, (3.5.42)

ψ−1 = (1/
√

2)

(
1
−i

)
, (3.5.43)

with eigenvalues e+iφ and e−iφ, respectively. Also, it is easily checked that ψ+1 and ψ−1 have
signatures +1 and −1, respectively. It follows that the phase advance of M is φ, and the
tune is φ/(2π).

3.5.6 The Krein-Moser Theorem and Krein Collisions

The discussion so far has been restricted to the case for which the eigenvalues of M are
distinct and lie on the unit circle. Suppose M is varied in such a way that two eigenvalues
collide. In actuality (when n ≥ 2), two pairs must collide. See Case 5 of the degenerate
configurations of Figure 4.2. Then, as M is varied further, the eigenvalues can pass over
each other to give Case 5 of the generic configurations, or they can leave the unit circle
to give Case 1 of the generic configurations. See Figure 5.1. It can be shown that if the

8In Chapter 30 we will see that if M can be viewed as the product of many symplectic matrices, all of
which are near the identity, then the phase advances and tunes of M can be defined in such a way that they
may lie outside the ranges (−π, π) and (−1/2, 1/2), respectively. However, modulo 2π or 1, respectively,
these phase advances and tunes still agree with those defined above.
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colliding eigenvalues have the same signature, which is the case of nearly equal tunes, then
they cannot leave the unit circle and must pass over each other. Also, when the eigenvalues
do collide, M remains diagonalizable even though its eigenvalues are no longer distinct. This
result is called the Krein-Moser theorem or condition.

The same signature case is the case of nearly equal tunes. By contrast, if the eigenval-
ues have opposite signatures, then there are small perturbations of M that will cause the
eigenvalues to collide and then leave the unit circle thereby forming a Krein quartet. Such
a collision is called a Krein collision. This is the case of nearly equal and opposite tunes.
For a proof of these assertions, see Exercise 3.8.18.

0 1

Figure 3.5.1: Illustration of eigenvalues colliding and then leaving the unit circle to form
what is called a Krein quartet.

The Krein-Moser theorem is a remarkable result. Consider, for example, the case n = 2
corresponding to 4× 4 symplectic matrices M . Suppose M is such that two eigenvalues of
the same signature collide. In this case the values A and B given by (4.25) and (4.26) must
lie on the parabolic segment specified by (4.32) and (4.33). Now consider all symplectic
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matrices near M . They form a 10-dimensional space. See (7.35). Compute the values of
A and B for these matrices. According to the Krein-Moser theorem, all these values must
also lie on the parabolic segment or in the arrow-head shaped domain of Figure 4.4 below
the parabolic segment, and none will be above the parabolic segment. No matter which way
we move in M space (at least locally), we cannot get points in the A,B image space that
lie above the parabolic segment. By contrast, suppose we go to another region of M space
where two eigenvalues again collide, but now have opposite signature. In this case the A,B
values will again lie on the parabolic segment. However, if we now consider all symplectic
matrices near M , we will find that their image in A,B space lies on the parabolic segment, or
in the arrow-head shaped domain, or in the region immediately above the parabolic segment.
Thus in this case, by making a proper move in M space, we can get anywhere (locally) in
A,B space.

Recall that the situation in which all the eigenvalues lie on the unit circle and are distinct
corresponds to stability (in the linear approximation), and the case of any eigenvalue off the
unit circle corresponds to instability. See the discussion in the beginning of Section 3.4
Consequently, to achieve qualitative insensitivity to small perturbations, the case of nearly
equal and opposite tunes should be avoided.9

3.5.7 Normal Forms

The last topic to be discussed in this section is that of a normal form for M . As will be seen,
a normal form for M is a particularly simple form for M achieved by a symplectic similarity
transformation. Recall that we have assumed that all eigenvalues are complex, distinct, and
lie on the unit circle. Thus, we restrict our attention here to this case. (Normal forms are
also known for the other cases, but their discussion is more complicated.) We also assume,
without loss of generality, that M is symplectic with respect to the J of (2.10).

Suppose the eigenvectors ψ` are decomposed into real and imaginary parts by writing
the relations

ψ` = ξ` + iη`, (3.5.44)

where the vectors ξ` and η` are real. From (5.38) we conclude that the ψ−` have the decom-
position

ψ−` = ξ` − iη`. (3.5.45)

Insert the representations (5.44) and (5.45) into (5.34) and (5.36), and equate real and
imaginary parts. Doing so, and use of (5.3), gives the results

(ξ`, Jξm) = 0 , (η`, Jηm) = 0, (3.5.46)

2(ξ`, Jηm) = δ`m , 2(η`, Jξm) = −δ`m. (3.5.47)

Also insert the representation (5.44) into the relation

Mψ` = λ`ψ` = eiφ`ψ`, (3.5.48)

9Instability can also occur if the eigenvalues are on the unit circle but M cannot be diagonalized. This
can occur when the eigenvalues are ±1 and as well as at Krein collisions. Moreover, the eigenvalues can
also leave the unit circle through these degenerate configurations. Therefore, integer and half-integer tunes
should also be avoided.
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and equate real and imaginary parts. Doing so gives the result

Mξ` = (cosφ`)ξ` − (sinφ`)η`, (3.5.49)

Mη` = (sinφ`)ξ` + (cosφ`)η`. (3.5.50)

Consider the matrix A defined by the equation

A =
√

2(ξ1, η1, ξ2, η2, · · · ξn, ηn). (3.5.51)

Here each of the vectors ξ` and η` are to be viewed as column vectors so that the collection
(5.51) forms a real 2n × 2n matrix. Then it is easily verified that the relations (5.46) and
(5.47) are equivalent to the matrix relation

ATJA = J (3.5.52)

providing the form (2.10) is employed for J . Thus, A is a symplectic matrix with respect to
this J .

Finally, consider the matrix N defined by the equation

N = A−1MA. (3.5.53)

The matrix MA can be computed using (5.49), (5.50), and (5.51). One finds the result

MA =
√

2(Mξ1,Mη1, · · ·Mξn,Mηn)

=
√

2(c1ξ1 − s1η1, s1ξ1 + c1η1, · · · cnξn − snηn, snξn + cnηn). (3.5.54)

Here use has been made of the abbreviations

c` = cosφ` , s` = sinφ`. (3.5.55)

Since A is symplectic, the matrix A−1 may be formed using (1.9),

A−1 = −JATJ. (3.5.56)

With this observation, we can continue the calculation. From (5.54) we find that JMA has
the representation

JMA =
√

2(c1Jξ1 − s1Jη1, s1Jξ1 + c1Jη1, · · · cnJξn − snJηn, snJξn + cnJηn). (3.5.57)

The matrix ATJMA can now be computed using (5.46), (5.47), (5.51), and (5.57). The
result is

ATJMA =


B1

B2

. . .

Bn

 . (3.5.58)

That is, all entries are zero save for n 2× 2 blocks on the diagonal. The blocks themselves
are given by the equations

B` =

(
− sinφ` cosφ`
− cosφ` − sinφ`

)
. (3.5.59)
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Finally, N = A−1MA = −JATJMA can be computed by applying −J to (5.58). The result
is

N =


R1

R2

. . .

Rn

 . (3.5.60)

Again, all entries in N are zero save for n 2×2 blocks on the diagonal. The blocks themselves
are given by the equations

R` =

(
cosφ` sinφ`
− sinφ` cosφ`

)
. (3.5.61)

We conclude that, given any (real) symplectic matrix M whose eigenvalues are distinct
and all lie on the unit circle, there is then a real symplectic similarity transformation (5.53)
that brings M to the simple form (5.60). We call N the normal form of M , and say that
M has been brought to normal form by the transforming matrix A. To reiterate, we have
the key relations

N = A−1MA (3.5.62)

and
M = ANA−1. (3.5.63)

We also observe that the normal form is unique up to permutations of the φ`. There is
somewhat more freedom available in the choice of the transforming matrix A. This freedom
will be discussed later in Section 23.*. Finally, if we consider a two-dimensional phase space
z` = (q`; p`) and define the action of R` as

z′` = R`z`, (3.5.64)

then we find the relations
q′` = q` cosφ` + p` sinφ`, (3.5.65)

p′` = −q` sinφ` + p` cosφ`. (3.5.66)

We see that the effect of R` is a clockwise rotation in the (q`; p`) plane by the phase-advance
angle φ`. Evidently, each R`, and therefore also N , is a real orthogonal matrix.

We close this subsection by remarking that there are also normal forms for symplectic
matrices whose eigenvalues lie on the unit circle but are not distinct, or some or all of
whose eigenvalues do not lie on the unit circle. The discussion of the general case is quite
complicated, and falls outside the scope of this book. For a discussion of the 2× 2 case, see
Exercise 5.7. Further information may be found in the references listed at the end of this
chapter. See also Subsection 27.2.2.

3.5.8 Stability

Suppose, as sketched at the beginning of Section 3.4, that a map M acts on some space
with coordinates z and suppose M has a fixed point zf ,

Mzf = zf . (3.5.67)
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In this subsection we will verify some of the claims made in Section 3.4 about the repeated
action of M on points near zf .

A point near zf can be written in the form zf + δ where δ is a small vector. By the
definition of linear part we assume the existence of an expansion of the form

M(zf + δ) = zf +Mδ +O(δ2) (3.5.68)

where the matrix M describes the linear part of M about zf . It follows from repeated
application of (5.68) that

Mm(zf + δ) = zf +Mmδ +O(δ2). (3.5.69)

Therefore, to analyze the stability of zf in the linear approximation, we must examine the
behavior of Mmδ for large m.

It can be shown that if all the eigenvectors of M lie within the unit circle in the complex
plane, then

lim
m→∞

Mm = 0. (3.5.70)

See Exercise 5.10. Therefore in this case, and neglecting terms of order δ2, we find that

lim
m→∞

Mm(zf + δ) = zf . (3.5.71)

Thus, in this case and in linear approximation, zf is an attractor.10

For the case of symplectic maps, we have seen that not all eigenvalues of M can lie within
the unit circle. For symplectic maps we are interested in the next best possibility, the case
where all eigenvalues lie on the unit circle. Suppose all the eigenvalues of M lie on the unit
circle and are distinct. Then, employing (5.63), we may write

Mm = (ANA−1)m = ANmA−1. (3.5.72)

Next, with the aid of vector and matrix norms, we find that

||Mmδ|| = ||ANmA−1δ|| ≤ ||A|| ||Nm|| ||A−1|| ||δ||. (3.5.73)

If we use the Euclidean norm, see Exercise 7.1, and observe that Nm is orthogonal, we find
the result

||Nm|| = (2n)1/2. (3.5.74)

Here we have used the group property that since N is 2n × 2n and orthogonal, then so is
Nm. See Subsection 6.1. Combining (5.73) and (5.74) gives the estimate

||Mmδ||| ≤ (2n)1/2||A|| ||A−1|| ||δ||. (3.5.75)

We conclude that Mmδ remains bounded for all m, and therefore zf is stable in the linear
approximation.11

10According to a theorem of Hartman, in this case zf is also an attractor even if all nonlinear terms are
taken onto account.

11For a discussion of what occurs when the effect of the neglected nonlinear terms is concluded, see Chapter
35.
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One might wonder whether the requirement that the eigenvalues be distinct is essential.
It is. There are unstable counter examples for which the eigenvalues lie on the unit circle
but are not distinct. The simplest 2× 2 case is the matrix

M =

(
1 α
0 1

)
(3.5.76)

where α is any nonzero real number. Since this M is 2 × 2 and has determinant +1, it is
symplectic. Also, it has the non-distinct eigenvalue are +1, and no eigenvalues off the unit
circle. However, it is easily verified that

Mm =

(
1 mα
0 1

)
. (3.5.77)

Therefore, if

δ =

(
0
ε

)
(3.5.78)

where ε is any small number, we have the result

Mmδ =

(
mαε
ε

)
. (3.5.79)

We see that in this case Mmδ has entries that grow linearly in m as m increases, and
therefore we may say that the fixed point zf is linearly unstable.

We close this subsection with a simple example for which one eigenvalue is outside the
unit circle and for which zf is manifestly unstable. Consider the symplectic 2× 2 case

M =

(
λ 0
0 λ−1

)
(3.5.80)

where λ > 1. In this case, if

δ =

(
ε
0

)
, (3.5.81)

we find the result

Mmδ =

(
λmε

0

)
. (3.5.82)

Note that

λm = exp(m log λ) (3.5.83)

and log λ > 0 when λ > 1. Thus, now Mmδ has entries that grow exponentially in m as m
increases, and therefore we may say that the fixed point zf is exponentially unstable.

By the above examples we have demonstrated that there are cases where instability
occurs when the eigenvalues are on the unit circle but not distinct, or some eigenvalue lies
outside the unit circle. These result holds in general, and can be proved with the aid of
normal forms for these cases.
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Exercises

3.5.1. Show that if M is any matrix with distinct eigenvalues, then the corresponding
eigenvectors must form a basis.

3.5.2. Carry out the calculations required for Example (5.1).

3.5.3. Show that if two tunes of a symplectic matrix M , call them T1 and T2, are nearly
equal (modulo the integers), then there are two associated eigenvalues that are nearly equal
and have the same signature, and vice versa. In this case we have a relation of the form

T1 − T2 ' n (3.5.84)

where n is an integer, and say that we are dealing with a potential difference resonance. By
the Krein-Moser theorem, we know that under perturbation M remains diagonalizable and
its eigenvalues remain on the unit circle. Therefore a difference resonance is harmless as far
as stability is concerned.

Show that if two tunes are nearly equal and opposite (again modulo the integers), then
there are two related eigenvalues that are nearly equal and have opposite signatures, and
vice versa. In this case we have a relation of the form

T1 + T2 ' n (3.5.85)

where n is an integer, and say that we are dealing with a potential sum resonance. By the
Krein-Moser theorem, we know that in this case the eigenvalues can leave the unit circle
under perturbation of M , and therefore a sum resonance is likely harmful.

3.5.4. Verify (5.46), (5.47), (5.49), and (5.50).

3.5.5. Verify (5.52)

3.5.6. Verify (5.54) and (5.57) through (5.61).

3.5.7. Suppose M and N are two matrices that are related by an equation of the form (5.53)
where A is yet another matrix. If such a relation exists for some (invertible) matrix A, the
matrices M and N are said to be conjugate, and we write M ∼ N . It can be shown that
conjugacy is an equivalence relation. This equivalence relation can be used to partition the
set of all matrices into disjoint equivalence classes, which in this case are called conjugacy
classes. See Exercise 5.12.7. Suppose M and N are symplectic, and a symplectic A can be
found such that (5.53) holds. Then we will say that M and N are symplectically conjugate.
Consider the case of all 2 × 2 symplectic matrices. Suppose that two such matrices, call
them M and N , have the same Jordan normal form. Show that they are then symplectically
conjugate. Hint: See the comment following Exercises 1.2 and 1.3. Show that the matrices

M =

(
0 1
−1 0

)
, (3.5.86)

N =

(
i 0
0 −i

)
, (3.5.87)

are symplectically conjugate, and find the conjugating matrix A.
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3.5.8. Let χ and θ be any two (possibly complex) vectors, and let M be any real symplectic
matrix. Define transformed vectors χ′ and θ′ by the rule

χ′ = Mχ, (3.5.88)

θ′ = Mθ. (3.5.89)

Show that the inner product 〈 , 〉 defined by (5.2) has the invariance property

〈χ′ , θ′〉 = 〈χ , θ〉. (3.5.90)

3.5.9. Take matrix elements of (1.2) using the eigenvectors (5.1) to obtain the relation

(ψj,M
TJMψk) = (ψj, Jψk). (3.5.91)

Verify the manipulations

(ψj,M
TJMψk) = (Mψj, JMψk) = (λjψj, Jλkψk) = λ̄jλk(ψj, Jψk)

= iλ̄jλk(ψj, Kψk) = iλ̄jλk〈ψj, ψk〉, (3.5.92)

(ψj, Jψk) = i(ψj, Kψk) = i〈ψj, ψk〉. (3.5.93)

Show that (5.91) through (5.93) yield the result

(λ̄jλk − 1)〈ψj, ψk〉 = 0. (3.5.94)

Verify that (5.94) is equivalent to (5.10) and (5.11).

3.5.10. Suppose that M is any matrix all of whose eigenvalues lie inside the unit circle. The
aim of this exercise is to prove (5.70). Begin by assuming the eigenvalues of M are distinct.
In this case there is an invertible matrix A such that

M = ADA−1 (3.5.95)

where D is a diagonal matrix with the eigenvalues of M on its diagonal. Show from (5.95)
that

Mm = ADmA−1. (3.5.96)

Verify that
lim
m→∞

λm = 0 if |λ| < 1, (3.5.97)

and therefore
lim
m→∞

Dm = 0, (3.5.98)

and thus, from (5.96), (5.70) holds.
If the eigenvalues of M are not distinct, it may not be diagonalizable. If M is not

diagonalizable, it may still be brought to Jordan normal form,

M = ANA−1, (3.5.99)
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so that we may write
Mm = ANmA−1. (3.5.100)

Here N is a matrix having all zeroes except for possessing the eigenvalues of M on the
diagonal and possibly ones just above the diagonal. For example, if M is 4 × 4 and not
diagonalizable and all eigenvalues are the same, the most degenerate case would be that for
which N has the form

N =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 . (3.5.101)

In this case write
N = D +K (3.5.102)

where D is diagonal and K is the matrix

K =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 . (3.5.103)

Verify that K is nilpotent, and in particular satisfies the relation

K4 = 0. (3.5.104)

By the binomial theorem for commuting entities, show that

Nm = (D +K)m

= Dm +mDm−1K + [m(m− 1)/2!]Dm−2K2 + [m(m− 1)(m− 2)/3!]Dm−3K3.

(3.5.105)

Verify that each term in (5.105) vanishes in the limit m → ∞ if |λ| < 1, and thus, from
(5.100), (5.70) holds. Proof of (5.70) for the general nondiagonalizable case follows similarly.

3.5.11. Scan Subsection 3.7.1 and Exercise 7.1. Verify (5.74) for the case of the Euclidean
norm. Verify that for the spectral norm

||Nm|| = 1. (3.5.106)

3.6 Group Properties, Dyadic and Gram Matrices,

and Bases

In this section we will describe what a group is, and will show that symplectic and orthogonal
matrices form groups. Closely related to the symplectic and orthogonal groups are special
bases called sympletic and orthonormal bases. The treatment of bases is facilitated by the
introduction of dyadic and Gram matrices. Finally, given some basis, we will explore ways
of specifying associated orthonormal and symplectic bases.



3.6. GROUP PROPERTIES, DYADIC AND GRAM MATRICES, AND BASES 277

3.6.1 Group Properties

Abstract Groups

Arnold once asked and answered

What is a group? Algebraists teach that this is supposedly a set with two
operations that satisfy a load of easily-forgettable axioms· · · .

We will begin with the abstract definition of a group. Then we will define matrix groups.
Abstractly, a group G is a set of elements subject to some rule of combination, usually

called multiplication. For the moment, let us denote multiplication by the symbol ◦. Then
we require the following properties:

1. If M and N are in G, so is the product M ◦N .

2. Multiplication is associative, L ◦ (M ◦N) = (L ◦M) ◦N .

3. G contains a unique identity element I such that I ◦M = M ◦ I = M for all M in G.

4. If M is in G, there is a unique inverse element M−1 that is also in G such that
M ◦M−1 = M−1 ◦M = I.

We remark that requirements 3 and 4 above can be weakened. For example, requirement
3 can be weakened to just require that there are left and right identity elements. These
elements can then be proven to be unique and the same. Also, requirement 4 can be
weakened to just require that there are left and right inverses. These elements can then be
proven to be unique and the same.

A subgroup H of G is a subset of G whose elements also satisfies the above group
properties. Any group G always has the identity element I as a subgroup. Whether it has
any other nontrivial subgroups depends on the nature of G.

Matrix Groups

For matrices (assumed to be n × n) we may take for the combination (multiplication) rule
the ordinary operation of matrix multiplication. This automatically makes multiplication
associative. Also, we may take for the identity element the identity matrix I, and for the
inverse element the inverse matrix. With these provisos, a set of n× n matrices G forms a
group if it satisfies the following properties:

1. If M and N are in G, so is the product MN .

2. The identity matrix I is in G.

3. If M is in G, M−1 exists and is also in G.

Note, in the matrix case, that iff a matrix M satisfies det(M) 6= 0, then there is a unique
matrix denoted by M−1 such that MM−1 = M−1M = I.

Evidently, according to Exercise 1.4, Equation (1.9), and Exercises 1.5 and 1.6, the set of
all 2n× 2n symplectic matrices (for any particular value of n) forms a group. This group is
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often denoted by the symbol Sp(2n). More precisely, if we are working with real symplectic
matrices, they form a group denoted by Sp(2n,R); and if we are working with complex
symplectic matrices, they form a group denoted by Sp(2n,C). Where there is no possibility
of confusion, we will use the notation Sp(2n) to mean Sp(2n,R).12

We remark that the symplectic condition (1.2) is a set of algebraic (polynomial) relations
among the entries in M . For this reason, the symplectic group is an algebraic group.

An n× n matrix O that satisfies the condition

OTO = I (3.6.1)

is called orthogonal. It is easy to check that the set of all such matrices also forms a group
called the orthogonal group, and denoted by the symbols O(n,R) or O(n,C) depending on
the choice of field. Evidently, the orthogonal group is also an algebraic group. From (6.1)
it follows that orthogonal matrices have the property

det(O) = ±1. (3.6.2)

Since the determinant of a matrix is a continuous function of the entries in the matrix,
we conclude that the set of orthogonal matrices consists of two disjoint (and disconnected)
subsets: those orthogonal matrices having determinant +1, and those having determinant
−1. The subset of all orthogonal matrices with determinant +1 (called proper orthogonal
matrices) forms a connected subgroup of the orthogonal group. This subgroup is called the
special orthogonal group, and is referred to by the symbols SO(n,R) or SO(n,C). Note
that the condition (6.1) can be written in the expanded form

OT IO = I, (3.6.3)

and this form is analogous to (1.2) with J replaced by I. Also, compare (6.1) and (3.1.14).
This analogy results in some similarities in the ways that O(n) and Sp(2n) can be analyzed.
However, in another sense, the two groups are polar opposites because I is symmetric and
J is antisymmetric.

We remark for future use that the matrix J is both symplectic and special orthogonal.
That is, J belongs both to Sp(2n,R) and SO(2n,R). See Exercises 1.1 and 1.5.

At this point one might wonder about generality. According to Exercise 2.7, the sym-
plectic group consists of all linear transformations that preserve the fundamental symplectic
2-form (2.3). The matrix J in this 2-form has the property that it is antisymmetric and
nonsingular. What happens if one replaces J by any (but real) antisymmetric nonsingular
matrix? Does one still get a group, and is this group something new, or merely the symplec-
tic group in disguise? Section 3.12 shows that one simply gets a variant of the symplectic
group. It follows that the group Sp(2n,R) is as general as might be desired.

Transformation Groups

We close this subsection with the comment that many groups arise naturally as transforma-
tion groups. Let Z be some set/space and consider mappings/transfomations M of Z into

12Warning! Some authors, particularly Mathematicians, use the notation Sp(2n) to denote USp(2n),
the unitary symplectic group. See Section 5.10. Some other authors use Sp(n) to stand for Sp(2n,R) or
USp(2n).
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itself. Two such mappings may be combined by letting them act on Z successively, and this
composition operation may be taken to be a rule for multiplying mappings. By the nature
of composition, this rule automatically satisfies the associative property, and thus a set of
mappings of Z into itself has the potential of forming a group. Naturally, we will require
that the product of any two mappings in the set will also be in the set. Furthermore, we may
take the identity mapping I, which leaves each element of Z unchanged, to be the identity
element in the potential group. Finally, if require that every mapping in the set have an
inverse, we may regard the set as forming a group.

By this definition we see that all matrix groups are transformation groups because each
group element is also a transformation of some vector space into itself. That is, in this case,
Z is some vector space. Moreover, in Section 5.12, we will learn that the symplectic group
can also be viewed as providing a set of transformations of a generalized upper half plane,
called a Siegel space, into itself. In this case, Z is a generalized upper half plane. And, as
described in Chapter 6, the group of all symplectic maps is a transformation group with Z
being phase space.

Finally, an abstract group G can always be thought of acting on itself by left or right
multiplication or both:

h→ gh, h→ hg−1, h→ ghg−1; g ∈ G, h ∈ Z = G.

Here g is any element in G; and h is any element in Z, where, in fact, Z is also G. Thus, by
any of these constructions, every group can also be viewed as being a transformation group.

3.6.2 Dyadic and Gram Matrices, Bases and Reciprocal Bases

The remaining concern of this section is a study of bases. To do so, we will first develop the
tools of dyadic and Gram matrices, and then apply them in the study of various bases.

Suppose we are given a set of real linearly independent vectors w1, w2, · · · wN . By
definition, such a set constitutes a basis for an N -dimensional vector space. Let e1,e2, · · ·
eN denote the standard column unit vectors

e1 =


1
0
0
0
...

 , e2 =


0
1
0
0
...

 , e3 =


0
0
1
0
...

 , etc. (3.6.4)

Define a linear operator W by the rule

Wej = wj. (3.6.5)

Its matrix elements elements are given by the relation

Wij = (ei,Wej) = (ei, wj) (3.6.6)

where (, ) denotes the usual scalar product but without complex conjugation. (Indeed, in
the following, all vectors and matrices will be assumed to be real. And, in any symplectic
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context, all vector spaces will be assumed to be even dimensional.) In view of (6.4) and
(6.5), W can be written in terms of the wj in the form

W = (w1, w2, w3, · · ·wN) (3.6.7)

where each wj is regarded as a column vector so that the collection (6.7) forms an N × N
matrix. Since the wj are assumed to be linearly independent, we must have the relation

detW 6= 0, (3.6.8)

and we conclude that W−1 exists. Thus, for every real invertible N ×N matrix W there is
a basis of real vectors w1, w2, · · ·wN , and vice versa.

Let us also use the notation |wj) to denote the column vector wj, and let (wj| denote its
dual row vector. With this notation we define the dyadic matrix D(W ) associated with the
wj by the rule

D(W ) =
∑
k

|wk)(wk|. (3.6.9)

Simple matrix manipulation shows that D can also be written in the form

D(W ) = WW T . (3.6.10)

See Exercise 6.3. Next define the Gram matrix G(W ) by the rule

Gij = (wi, wj). (3.6.11)

Matrix manipulation shows that G can also be written in the form

G(W ) = W TW. (3.6.12)

See Exercise 6.4.
We have seen that for every real basis there are associated real dyadic and Gram matrices

D and G. It follows from (6.10) and (6.12) that D and G are conjugate under the action of
W ,

W−1DW = G and WGW−1 = D. (3.6.13)

We also note that D and G are symmetric,

DT = D, GT = G. (3.6.14)

D and G are also invertible, and have positive determinant if W is real,

detD = detG = det(W ) det(W T ) = (detW )2 > 0. (3.6.15)

[We remark that detW is the (oriented) volume V of the parallelepiped with edges wj, and
consequently (6.15) is equivalent to the statement detD = detG = V 2.] Finally, we see
from their forms (6.10) and (6.12) that both D and G are positive definite if W is real. That
is, we have the relations

(v,Dv) > 0, (v,Gv) > 0 (3.6.16)
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for any real nonzero vector v.
We have also seen that a basis wj specifies an associated nonsingular matrix W . Using

this matrix, define the related vectors rwj by the rule

rwj = (W−1)T ej. (3.6.17)

In view of (6.5) we may also write

rwj = (W−1)T (W−1)wj. (3.6.18)

The rwj have the pleasing property

(rwi, wj) = ([W−1]T ei,Wej) = (ei,W−1Wej) = (ei, ej) = δij, (3.6.19)

and are called the reciprocal basis to the original basis. Note that in analogy to (6.5) we
may write

rWej = rwj (3.6.20)

with
rW = (W−1)T . (3.6.21)

That is, the columns of rW are the rwj. Also, since there is the relation

r(rW ) = {[(W−1)T ]−1}T = W, (3.6.22)

it follows that the reciprocal basis of the reciprocal basis is the original basis.
It is easily verified that D and G have the property

D(rW ) = [D(W )]−1, G(rW ) = [G(W )]−1. (3.6.23)

Also suppose U , V , and W are all invertible matrices. Define rU and rV in analogy to
(6.21). Then the relation

W = UV (3.6.24)

implies the relation
rW = rU rV, (3.6.25)

and vice versa. Thus, group properties are preserved under the r operation.
Simple calculation shows that the identity operator I has two dyadic representations in

terms of the original and reciprocal bases,

I =
∑
j

|rwj)(wj|, (3.6.26)

I =
∑
j

|wj)(rwj|. (3.6.27)

See Exercise 6.5. The representations (6.26) and (6.27) can be used to expand an arbitrary
vector v in terms of either the wj basis or the rwj basis. From (6.26) we have the result

v = Iv =
∑
j

|rwj)(wj, v), (3.6.28)
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which is an expansion of v in the reciprocal basis. From (6.27) we have the relation

v = Iv =
∑
j

|wj)(rwj, v), (3.6.29)

which is an expansion of v in the wj basis.
Finally, it is interesting to have dyadic representations for W and W−1. From (6.5) we

find the representation

W =
∑
j

|wj)(ej|. (3.6.30)

Similarly, (6.17) gives the result

(W−1)T =
∑
j

|rwj)(ej|, (3.6.31)

from which it follows that
W−1 =

∑
j

|ej)(rwj|. (3.6.32)

3.6.3 Orthonormal and Symplectic Bases

So far we have been discussing general bases and their associated reciprocal bases. Now we
want to consider two special kinds of bases: orthonormal bases and symplectic bases. A set
of vectors vj is called an orthonormal basis if it has the property

(vi, vj) = δij. (3.6.33)

A set of vectors vj (now necessarily even in number) is called a symplectic basis if it has the
property

(vi, Jvj) = Jij. (3.6.34)

(Note that the basis set ej, assuming the ej are even in number, is both orthonormal and
symplectic.) We shall discuss the properties of these two kinds of bases in turn.

Orthonormal Bases

We begin with orthonormal bases. Suppose a set of real vectors vj satisfies (6.33). Then it
follows that they are linearly independent, and therefore entitled to be called a basis. For
suppose there is a relation of the form ∑

j

αjv
j = 0. (3.6.35)

Then, using (6.33), we find ∑
j

αj(v
i, vj) = αi = 0 for all i. (3.6.36)
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As before, define a linear operator V by writing

vj = V ej. (3.6.37)

Then we find that V has the property

(ei, V TV ej) = (V ei, V ej) = (vi, vj) = δij, (3.6.38)

or, in matrix notation,
V TV = I. (3.6.39)

Thus, V is an orthogonal matrix. Conversely, suppose V is orthogonal, and define vectors
vj using (6.37). Then we find

(vi, vj) = (V ei, V ej) = (ei, V TV ej) = (ei, ej) = δij, (3.6.40)

and conclude that the vj form an orthonormal basis. Put another way, the columns of
an orthogonal matrix are orthonormal, and any matrix whose columns are orthonormal is
orthogonal. Moreover, since the transpose of an orthogonal matrix is also orthogonal, the
rows of an orthogonal matrix are orthonormal; and any matrix whose rows are orthonormal
is orthogonal.

As an immediate consequence of the orthogonality condition (6.40) and the definitions
of D and G we have the results

D(V ) = G(V ) = I. (3.6.41)

Moreover, from (6.18) and (6.39) we see that an orthonormal basis is self reciprocal,

rvj = vj. (3.6.42)

Next suppose R is an orthogonal matrix and that the vj form an orthonormal basis.
Then the vectors uj defined by

uj = Rvj (3.6.43)

also form an orthonormal basis. Indeed, we find

(ui, uj) = (Rvi, Rvj) = (vi, RTRvj) = (vi, vj) = δij. (3.6.44)

Conversely, any two orthonormal bases uj and vj are related by a unique orthogonal trans-
formation R. Indeed, from (6.37) and the analogous relation

uj = Uej, (3.6.45)

we find the result
uj = Uej = UV −1vj = Rvj (3.6.46)

with
R = UV −1. (3.6.47)

Since orthogonal matrices form a group, we conclude that R is also orthogonal. What we
have shown is that the orthogonal group acts transitively on the set of orthonormal bases.
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Symplectic Bases

Now consider symplectic bases (in which case the dimensionality must be even). The discus-
sion in this case has many parallels to the orthonormal case. Suppose a set of real vectors
vj satisfies (6.34). Suppose there is also an alleged linear dependency (6.35). Then use of
(6.34) gives the relation

0 =
∑
j

αj(v
i, Jvj) =

∑
j

Jijαj = (Jα)i for all i. (3.6.48)

Since J is invertible, it must again be the case that all αj vanish, and the vj must be linearly
independent.

In analogy with the orthogonal case, there is a close connection between symplectic bases
and symplectic matrices. Given a symplectic basis vj we define V using (6.37) and find the
relation

(ei, V TJV ej) = (V ei, JV ej) = (vi, Jvj) = Jij, (3.6.49)

and conclude that V is symplectic,
V TJV = J. (3.6.50)

Conversely, if V is symplectic and the vj are defined by (6.37), then the vj comprise a
symplectic basis:

(vi, Jvj) = (V ei, JV ej) = (ei, V TJV ej) = (ei, Jej) = Jij. (3.6.51)

Put another way, the columns of a symplectic matrix form a symplectic basis; and any
matrix whose columns form a symplectic basis is symplectic. Moreover, since the transpose
of a symplectic matrix is also symplectic, the rows of a symplectic matrix form a symplectic
basis; and any matrix whose rows form a symplectic basis is symplectic.

Next suppose R is a symplectic matrix and that the vj form a symplectic basis. Then
the vectors uj defined by (6.43) also form a symplectic basis:

(ui, Juj) = (Rvi, JRvj) = (vi, RTJRvj) = (vi, Jvj) = Jij. (3.6.52)

Conversely, any two symplectic bases are related by a unique symplectic transformation.
Consideration of this matter again leads to (6.45) through (6.47) with U and V now being
symplectic matrices. Since symplectic matrices form a group, we conclude that the R given
by (6.47) is also symplectic. What we have shown now is that the symplectic group acts
transitively on the set of symplectic bases.

There are a few remaining observations to be made about the symplectic case. From the
V analog of (6.17) we see that the rvj form a symplectic basis if the vj form a symplectic
basis. Also, from their definitions and the symplectic group properties, we see that D and
G are both symplectic; and (6.13) shows that they are symplectically conjugate. Finally,
suppose that a basis vj is both orthonormal and symplectic. In this case the V appearing in
(6.37) is both orthogonal and symplectic. It will be shown in Section 3.9 that such V also
form a group, which is in fact the unitary subgroup U(n) of Sp(2n,R).13 It follows that all
bases that are both orthonormal and symplectic are in one-to-one correspondence with the
elements of U(n), and U(n) acts transitively on the set of all such bases.

13Unitary matrices are defined in Subsection 7.6. As illustrated in Section 3.9, there are real matrices
whose group properties are those of U(n).



3.6. GROUP PROPERTIES, DYADIC AND GRAM MATRICES, AND BASES 285

3.6.4 Construction of Orthonormal Bases

The remainder of this section will be devoted to two questions: Given a set of real basis vec-
tors wj, how can one construct from them a set of basis vectors vj that is either orthonormal
or symplectic? Strictly speaking, as just posed, these questions are meaningless. Thanks
to our previous discussion we already know that orthonormal and symplectic bases exist,
and we pretty much know all about them. That is, using the methods to be covered later
in this and subsequent chapters, we are able to manufacture all orthogonal or symplectic
matrices. A better question is this: Given some real basis wj, are there natural or useful
ways of associating particular orthonormal or symplectic bases with the given wj basis? We
will begin with and mostly consider the orthonormal case.

Gram-Schmidt Orthogonalization

Given a set of real basis vectors wj, a common procedure for constructing an orthonormal
basis is to use Gram-Schmidt orthogonalization.14 Starting with w1, we construct interme-
diate vectors, call them uj, and then final normalized vectors vj by the rules

u1 = w1, v1 = u1/ ‖ u1 ‖;
u2 = w2 − (v1, w2)v1, v2 = u2/ ‖ u2 ‖;
u3 = w3 − (v1, w3)v1 − (v2, w3)v2, v3 = u3/ ‖ u3 ‖;
...

uN = wN − (v1, wN)v1 · · · − (vN−1, wN)vN−1, vN = uN/ ‖ uN ‖ . (3.6.53)

Here we employ the usual notation

‖ uj ‖= [(uj, uj)]1/2, (3.6.54)

and note that all the scalar products appearing in (3.6.53) and (33,6,54) are real scalar
products. It is easy to verify that at each step there is the relation ‖ uj ‖6= 0 as is required
for the definition of each vj. In fact, if ‖ uj ‖= 0 for some j, then the vectors w1 to wj

would be linearly dependent contrary to assumption. Finally, it is easy to check that the vj

are orthonormal.
Since the wj are given and the vj have been determined, we have their associated matrices

W and V , both of which are invertible. Because the wj form a basis, the vj can be expanded
in terms of them to given a relation of the form

vi =
∑
j

αijw
j (3.6.55)

Indeed, (6.53) is just such a relation. Using the matrices W and V this relation can be
written in the compact form

V = WAT (3.6.56)

14The method is named after Jørgen Pedersen Gram and Erhard Schmidt, but Laplace had been familiar
with it before Gram and Schmidt.
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where A is the matrix given by the relation

Aij = αij. (3.6.57)

Similarly, by considering rows rather than columns, there is a matrix B such that

V = BW. (3.6.58)

Both A and B are unique and invertible, and satisfy the relations

I = V TV = AW TWAT = AG(W )AT , (3.6.59)

I = V V T = BWW TBT = BD(W )BT . (3.6.60)

We say that G is congruent to I under the action of A, and say that A is the intertwining
transformation or matrix.15 (Note that A is generally not orthogonal, and therefore generally
AT 6= A−1.) Similarly, D is congruent to I under the action of B. Note that there are many
pairs A,B satisfying (6.59) and (6.60) with one such pair for each orthogonalization process.
Indeed, if we replace A and B by

A′ = RA, B′ = RB (3.6.61)

where R is any orthogonal matrix, we find the relations

A′G(A′)T = RAGATRT = RRT = I, (3.6.62)

B′D(B′)T = RBDBTRT = RRT = I. (3.6.63)

Conversely, if A and A′ satisfy (6.59) and (6.62) respectively, then R defined by (6.61) is
orthogonal, etc.

QR Decomposition

Closely related to Gram-Schmidt orthogonalization is what is called QR decomposition.
It can be shown that any square nonsingular matrix W can be written in the factored
form W = QR where Q is orthogonal and R is upper triangular.16 This factorization is
unique if we require that the diagonal entries of R be positive. Evidently (6.56) can be
rewritten in the form W = V (AT )−1. It can be verified that (AT )−1 is upper triangular
with all diagonal entries positive, and we know that V is orthogonal. Thus we may make
the identifications Q = V and R = (AT )−1 to observe that the Gram-Schmidt process is
one way to produce a QR decomposition. Given W there are other ways besides Gram-
Schmidt to produce a QR decomposition (with the diagonal entries in R positive) including
Householder transformations and Givens rotations.17 And, by uniqueness, they all produce
the same matrices Q and R that would be produced by applying Gram-Schmidt to W .
Hence, by setting V = Q, these other ways can be also be used to produce the orthogonal
matrix V that would also have resulted from applying Gram-Schmidt to W .

15If two matrices U and V are related by an equation of the form V = AUA−1, they are said to be similar
or conjugate. If they are related by an equation of the form V = AUAT , they are said to be congruent.
Here A is assumed to be nonsingular.

16Here there is an unfortunate conflict of notation. We have been using the symbol R to denote an
orthogonal matrix. But in this paragraph, since QR is already standard notation in the mathematics
literature, R will denote an upper triangular matrix.

17There are a variety of numerical QR packages.
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Polar Decomposition of Real Matrices

Although Gram-Schmidt orthogonalization is straight forward and often natural, the result
depends on the order in which the wj are labeled, and does not treat all the wj on an equal
footing. For example, v1 is always in the direction of w1, but in general none of the other vj

are in the direction of the wj. Sometimes it is desirable to have a procedure that treats all
the wj democratically. There are many ways to do this. The first uses polar decomposition.18

Let M be any real nonsingular matrix. It can be shown that any such M can be written
uniquely in the form (called a polar decomposition)

M = PO. (3.6.64)

Here P is a real positive-definite symmetric matrix, and O is a real orthogonal matrix.
See Section 4.2. Intuitively, polar decomposition may be regarded as the matrix analog of
expressing a complex number z in the polar form z = r exp(iφ). Assuming the representation
(6.64), we find that

D(M) = MMT = POOTP = P 2. (3.6.65)

Since D(M) is real, symmetric, and positive definite, it has a unique square root that is also
positive definite and symmetric, and we may write

P = [D(M)]1/2. (3.6.66)

With this information we can solve (6.64) for O to find the result

O = [D(M)]−1/2M. (3.6.67)

Apply this result to the case M = W , where W is given by (6.5), to find the orthogonal
matrix

O(W ) = [D(W )]−1/2W. (3.6.68)

Now generate the vj using (6.37) with

V = [D(W )]−1/2W. (3.6.69)

Note that (6.69) treats all the wj on the same footing. It also has the feature (as does the
Gram-Schmidt procedure) that if the wj are already orthonormal, then

vj = wj, (3.6.70)

for in this case D = I. See (6.41). In addition, the prescription (6.69) has the feature that
the V it produces is the orthogonal matrix O that is closest to W in the sense of minimizing
‖ W − O ‖E in the Euclidean matrix norm. See Exercise 7.1 and Section 4.4.2. Therefore
V may be viewed as the solution to a variational problem.

The polar decomposition (6.64) can also be written in reverse order:

M = PO = OO−1PO = OP ′, (3.6.71)

18Polar decomposition was discovered by Cauchy.
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where
P ′ = O−1PO = OTPO. (3.6.72)

Evidently P ′ is also real positive-definite symmetric. Note that the orthogonal factor O is
the same in both orders. Using the representation (6.71), we find

G(M) = MTM = P ′OTOP ′ = (P ′)2. (3.6.73)

Thus, upon setting M = W , we find the equally valid relation

V = W [G(W )]−1/2. (3.6.74)

This relation also follows directly from (6.69) with the use of (6.13). Comparison of (6.50)
and (6.58) with (6.69) and (6.74) shows that for this normalization process there are the
relations

A = {[G(W )]−1/2}T = [G(W )]−1/2, (3.6.75)

B = [D(W )]−1/2. (3.6.76)

For the V defined by (6.69) we find the result

V TD(W )V = W T [D(W )]−1/2D(W )[D(W )]−1/2W = W TW = G(W ). (3.6.77)

Since V T = V −1, this result can also be rewritten in the form

V G(W )V T = D(W ). (3.6.78)

Thus, D and G are also conjugate under the action of the orthogonal matrix V . Compare
(6.77) and (6.78) with (6.13).

Other Democratic Orthogonalizations

Having found one particular pleasing orthogonalization process, let us see if there are others.
Based on the earlier discussion, without loss of generality we may consider all U of the form

U = V R (3.6.79)

where R is any orthogonal matrix. If R is chosen at random, then all correlation of U with
W is lost. However, if R is fixed (R = I in the previous example) or is itself related to W ,
then U will also be related to W . Alternatively, U itself may be related to W in some direct
way.

From (6.77) we find the result

UTD(W )U = RTV TD(W )V R = RTG(W )R. (3.6.80)

Since G is real symmetric, we know there is an orthogonal transformation that diagonalizes
it. Select R to be such a transformation,

R = RG (3.6.81)
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where

RT
GG(W )RG = ∆G. (3.6.82)

Here we have used the notation ∆G to denote a diagonal form of G, and RG to denote
an orthogonal transformation that accomplishes this diagonalization. We remark that ∆G

is unique up to permutations of its diagonal entries, and RG is unique up to (orthogonal)
permutation matrices providing the entries of ∆G (the eigenvalues of G) are distinct. Upon
setting UD = V RG, and using (6.80) and (6.82), we find the result

UT
DD(W )UD = ∆G. (3.6.83)

We see that UD is an orthogonal transformation that diagonalizes D,

UT
DD(W )UD = ∆D, (3.6.84)

and there is the relation

∆D = ∆G. (3.6.85)

It is interesting to recognize that an orthogonal UD that accomplishes (6.84) may also
be viewed as a solution to a variational problem. Let FD be the functional

FD[U ] =
∑
k

[(UTDU)kk]
2. (3.6.86)

(Note that FD is quartic in the uj. See Exercise 6.10.) There is the familiar algebraic result

tr {(UTDU)T (UTDU)} =
∑
ij

[(UTDU)ij]
2. (3.6.87)

See Exercise 6.8. But we also find by direct evaluation the result

tr {(UTDU)T (UTDU)} = tr (UTDTUUTDU) = tr (UTDTDU) = tr (DTD) = tr (D2).
(3.6.88)

Here we have used the facts that U is orthogonal andD is symmetric, and standard properties
of the trace operation. See Exercise 6.7. By combining (6.86) through (6.88) we find the
relation

tr (D2) =
∑
ij

[(UTDU)ij]
2 =

∑
k

[(UTDU)kk]
2 +

∑
i 6=j

[(UTDU)ij]
2, (3.6.89)

and therefore

FD[U ] = tr (D2)−
∑
i 6=j

[(UTDU)ij]
2. (3.6.90)

Evidently the maximum possible value of FD[U ] is tr (D2), and this maximum can be reached
if there is a U ∈ SO(N) such that

(UTDU)ij = 0 for all i, j satisfying i 6= j. (3.6.91)
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According to (6.83) there is such a U , namely U = UD. Thus we have the result

max
U∈SO(N)

FD[U ] = tr (D2), (3.6.92)

and this maximum is achieved when

U = UD = V RG. (3.6.93)

At this point it should be evident that there are several other possibilities for constructing
orthogonal U matrices that are related to W . For example, after any construction, one could
replace U by UT . Or, one could require that U diagonalize G(W ) instead of D(W ). See
Exercise 6.11.

The Complex Case and the Polar Decomposition of Complex Matrices

So far the discussion has been devoted to real vectors and real matrices. Some of it can be
readily extended to the complex case. For example, Gram-Schmidt can be extended to the
complex case simply by replacing the usual real scalar product with the usual complex scalar
product. A second example of extension to the complex case is that there is an analogous
polar decomposition (also simply called polar decomposition) for the case of complex ma-
trices. A factorization of the form (6.64) still holds but now M is complex, P is Hermitian
and positive definite, and O is unitary. See Exercise 4.2.5.

3.6.5 Construction of Symplectic Bases

We close this section with an introduction to the problem of constructing symplectic bases.
Further discussion is given in Sections 4.3 through 4.8.

Darboux Symplectification

We will first describe an analog of the Gram-Schmidt procedure, which we will call Darboux
symplectification. Suppose the wj are a set of 2n linearly independent vectors and we wish
to construct from them a symplectic basis vj. For this purpose it is convenient to use the
form (2.10) for J . Below is an algorithm for constructing the vj:

1. Define v1 by the simple rule

v1 = w1. (3.6.94)

2. Starting with w2, search through the wj with j ≥ 2 to find the first j, call it k, with
the property

(v1, Jwj) 6= 0. (3.6.95)

[Better yet, if one is working numerically and therefore only to finite precision, select j
so that |(v1, Jwj)| is maximized. The analogous choices should also be made in steps
6, 10, etc. below.] Renumber the vectors w2 · · ·w2n so that wk becomes w2.
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3. Define v2 by the rule
v2 = w2/[(v1, Jw2)]. (3.6.96)

We then have the result
(v1, Jv2) = 1 = J12. (3.6.97)

And, since J is antisymmetric, at this stage we have the result

(vi, Jvj) = Jij for i, j = 1 to 2. (3.6.98)

4. Using the remaining vectors w3 · · ·w2n, define new vectors 1wj with j ≥ 3 by the rule

1wj = wj + (v2, Jwj)v1 − (v1, Jwj)v2. (3.6.99)

As a result of this rule there are the relations

(vi, J 1wj) = 0 for i = 1, 2 and j = 3, 4, · · · 2n. (3.6.100)

5. Define v3 by the rule
v3 = 1w

3
. (3.6.101)

6. Starting with 1w4, search through the 1wj with j ≥ 4 to find the first j, call it k, with
the property

(v3, J 1wj) 6= 0. (3.6.102)

Renumber the vectors 1w4 · · · 1w2n
so that 1wk becomes 1w4.

7. Define v4 by the rule
v4 = 1w

4
/[(v3, J 1w4)]. (3.6.103)

At this stage we have the results

(vi, Jvj) = Jij for i, j = 1 to 4. (3.6.104)

8. Using the remaining vectors 1w5 · · · 1w2n
, define new vectors 2wj with j ≥ 5 by the

rule
2wj = 1w

j
+ (v4, J 1wj)v3 − (v3, J 1wj)v4. (3.6.105)

Now we have the relations

(vi, J 2wj) = 0 for i = 1 to 4 and j = 5, 6, · · · 2n. (3.6.106)

9. Define v5 by the rule
v5 = 2w

5
. (3.6.107)

10. Starting with 2w6, search through the 2wj with j ≥ 6 to find the first j, call it k, with
the property

(v5, J 2wj) 6= 0. (3.6.108)

Renumber the vectors 2w6 · · ·2w2n so that 2wk becomes 2w6.
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11. Define v6 by the rule

v6 = 2w
6
/[(v5, J 2w6)]. (3.6.109)

At this stage we have the results

(vi, Jvj) = Jij for i, j = 1 to 6. (3.6.110)

12. Proceed with the obvious extension of the above process to construct v7, v8, · · · v2n−2.
Then at the last stage we have

v2n−1 = mw2n−1, (3.6.111)

v2n = mw2n/[(v2n−1, J mw2n)], (3.6.112)

with

m = n− 1. (3.6.113)

At this point several comments are in order. First, if we are working only with two,
four, or six-dimensional phase space, as is the case for accelerator physics, then we may
terminate the algorithm at steps 3, 7, or 11. Second, how does one know that the required
vectors mwk described in steps 2, 6, 10, etc. exist? Finally, how does one know that the
vectors v3, v5, · · · v2n−1 given in steps 5, 9, etc. are nonzero? As was the case with the
Gram-Schmidt orthogonalization process, we are saved from such embarrassment because
the wj are assumed to be linearly independent and J is invertible. See Exercise 6.12.

Transitive Action of Sp(2n) on Phase Space

There is also an observation that is worth making. Suppose α and β are any two nonzero
vectors. Let Mα be a symplectic matrix whose first column is the vector α. We know that
such a matrix exists exists because we may set w1 = α in (6.94). Then we have the relations

α = Mαe1 and e1 = (Mα)−1α. (3.6.114)

Similarly, let Mβ be a symplectic matrix whose first column is the vector β. Now define a
matrix M by the rule

M = Mβ(Mα)−1. (3.6.115)

By the group property this matrix will be symplectic, and by construction it will have the
property

Mα = Mβ(Mα)−1α = Mβe1 = β. (3.6.116)

We have found the remarkable result that, with the exception of the origin, any point in
phase space can be sent into any other point by a symplectic matrix. (The origin is obviously
sent into itself.) Following the terminology elaborated on in Section 5.12, we say that, with
the exception of the origin, Sp(2n) acts transitively on phase space.
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Other Symplectifications

Let us now explore briefly additional methods for constructing symplectic bases. One of
them makes use of “symplectic” polar decomposition, and is the subject of Sections 4.3 and
4.4. To consider others introduce, in imitation of the orthogonal case, analogous dyadic and
Gram matrices by the definitions

DJ(W ) = WJW T . (3.6.117)

GJ(W ) = W TJW. (3.6.118)

Note that both DJ and GJ are antisymmetric. It is easy to see that there are again unique
nonsingular matrices A and B such that the relations (6.56) and (6.57) hold. Then, from
(6.56) and (6.58) and the requirement that V be symplectic, we find the results

J = V TJV = AW TJWAT = AGJ(W )AT , (3.6.119)

J = V JV T = BWJW TBT = BDJ(W )BT . (3.6.120)

We see that GJ is congruent to J under the action of A, and DJ is congruent to J under
the action of B.

We already know that (6.119) and (6.120) have a full infinity of solutions for A and
B. One simply solves (6.56) or (6.58) for A or B using any symplectic V . This matter is
considered from a broader perspective in Section 3.13.

Finally we remark that, since both D and G as given by (6.10) and (6.12) are symmetric
and positive definite, it can be shown there are symplectic matrices U and V such that

UD(W )UT = Williamson diagonal form, (3.6.121)

V G(W )V T = Williamson diagonal form. (3.6.122)

Moreover, since J is orthogonal, the matrices JD(W )JT and JG(W )JT are also symmetric
and positive definite. Therefore there are also symplectic matrices, again call them U and
V , such that

UJD(W )JTUT = Williamson diagonal form, (3.6.123)

V JG(W )JTV T = Williamson diagonal form. (3.6.124)

See Section 33.6.3. The columns (or rows) of these symplectic matrices may also be regarded
as symplectic bases related in a specific way to W .

Exercises

3.6.1. Show that orthogonal matrices, matrices satisfying (6.1), have the property (6.2).

3.6.2. Suppose that O is an orthogonal matrix. Show that O and OT commute, OTO =
OOT . Show that −O, OT , and O−1 are also orthogonal matrices. Show that orthogonal
matrices form a group.
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3.6.3. Verify (6.10) by showing that D has the matrix elements

Dij =
∑
k

(ei, wk)(wk, ej) =
∑
k

(ei, wk)(ej, wk)

=
∑
k

WikWjk =
∑
k

Wik(W
T )kj = (WW T )ij. (3.6.125)

3.6.4. Verify (6.12) by showing that G can be written in the form

G(W ) =
∑
k`

|ek)(wk, w`)(e`|, (3.6.126)

and has the matrix elements

Gij =
∑
k`

(ei, ek)(wk, w`)(e`, ej) = (wi, wj) = (Wei,Wej) = (ei,W TWej). (3.6.127)

3.6.5. Verify (6.26) and (6.27). Note that (6.5) implies the relation

(wj| = (ej|W T . (3.6.128)

3.6.6. Verify that the vj given by (6.53) are orthonormal.

3.6.7. Show that the trace operation has the properties

tr(A) = tr(AT ), [tr(A)]∗ = tr(A†), (3.6.129)

tr(AB) = tr(BA). (3.6.130)

Here a ∗ denotes complex conjugation.

3.6.8. Verify the relations

tr(ATA) =
∑
ij

(Aij)
2, tr(A†A) =

∑
ij

|Aij|2. (3.6.131)

3.6.9. Verify (6.88) through (6.90).

3.6.10. Verify that FD has the explicit form

FD[U ] =
∑
k

{
∑
`

[(uk, w`)]2}2. (3.6.132)

3.6.11. As an alternative to (6.81), consider the option of writing

U = RV, (3.6.133)

and then working with (6.80). Show that one can require that UT diagonalize G(W ), and
find an associated variational problem.
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3.6.12. This exercise studies the Darboux (Gram-Schmidt like) method of constructing a
symplectic basis. Assume that the wj are linearly independent and recall that J is invertible.
Show that the vectors mwk exist and the vectors v3, v5, · · · v2n−1 are nonzero. For example,
at step 2 of the algorithm, show that the possibility

(v1, Jwj) = 0 for all j (3.6.134)

would imply that the wj are linearly dependent. Similarly, at steps 5 and 6, show that the
vectors v1, v2, 1w3, 1w4, · · ·1w2n, are linearly independent and the vector v3 is nonzero.
Continue on to show that steps 9, 13, · · · and steps 10, 14, · · · succeed. Alternatively, verify
by induction on n that the Darboux construction is always possible:

a) Verify the case of dimension 2.

b) Assume the result holds in dimension (2n− 2). Consider the case of dimension 2n as
in Section 3.6.5. Show that a wj can be found that satisfies (6.95) because the wi are
assumed to be linearly independent.

c) Verify that the (2n− 2) vectors 1wj defined by (6.99) satisfy (6.100) and are linearly
independent. Therefore, by the induction hypothesis, a symplectic basis can be found
for this set of vectors. Show that these (2n − n) symplectic basis vectors, along with
v1 and v2, then form a set of 2n symplectic basis vectors.

3.6.13. Suppose M is a 2n× 2n matrix. Regard M as a collection of column vectors ma so
that it can be written in the form

M =


M1,1 M1,2 M1,3 · · · M1,2n

M2,1 M2,2 M2,3 · · · M2,2n

M3,1 M3,2 M3,3 · · · M3,2n

...
...

... · · ·
...

M2n,1 M2n,2 M2n,3 · · · M2n,2n

 = (m1,m2,m3, · · ·m2n). (3.6.135)

Verify that, with this convention, the column vectors ma will have entries ma
c given by the

relations
ma
c = Mca. (3.6.136)

Correspondingly, verify that there is the relation

ma = Mea. (3.6.137)

Next, suppose M is a real symplectic matrix that satisfies (1.1) with J specified by (1.2).
Verify that, in terms of matrix elements, (1.1) takes the form

(ea,MTJMeb) = (ea, Jeb) = Jab, (3.6.138)

from which it follows that

Jab = (ea,MTJMeb) = (Mea, JMeb) = (ma, Jmb). (3.6.139)
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Thus, as expected from the discussion of Section 3.6.3, the vectors ma form a symplectic
basis. Verify that if

a = i with i ∈ [1, n] (3.6.140)

and
b = i+ n, (3.6.141)

then
(ma, Jmb) = Jab = Ji,i+n = 1. (3.6.142)

Verify that

(ma,ma) =
∑
c

(Mca)
2. (3.6.143)

Suppose that instead M is symplectic with respect to the J ′ defined by (2.10). Show
that the general discussion of this exercise goes through as before except that we should now
set

a = i with i = 1, 3, 5, · · · (3.6.144)

and
b = i+ 1 (3.6.145)

so that
(ma, J ′mb) = J ′ab = J ′i,i+1 = 1. (3.6.146)

3.6.14. Show that for a symplectic basis and a J of the form (2.10) there are the relations

rv1 = Jv2, rv2 = −Jv1; rv3 = Jv4, rv4 = −Jv3; etc. (3.6.147)

3.6.15. Here is a curiosity: Given a set of 2n linearly independent vectors wj, can one find
a set of vectors srwi such that

(srwi, Jwj) = Jij? (3.6.148)

The answer is yes. Such a set will be called a symplectic reciprocal basis. Let the vectors
rwi denote the ordinary reciprocal basis to the wj. See (6.18). Define a related basis w̃i by
the rule

w̃i = J rwi. (3.6.149)

This basis has the property

(w̃i, Jwj) = (J rwi, Jwj) = (rwi, JTJwi) = (rwi, wj) = δij. (3.6.150)

Now it is convenient to work with the J given by (2.10). With this choice in mind, define
the srwi by the rule

srw1 = w̃2,

srw2 = −w̃1,

srw3 = w̃4,

srw4 = −w̃3,

etc. (3.6.151)

Verify that these vectors satisfy (6.148).
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3.6.16. Review the discussion of transformation groups at the end of Section 3.6.1. For
each of the realizations of a group acting on itself introduce the notation

h→ Tgh = gh, h→ Tgh = hg−1, h→ Tgh = ghg−1; g ∈ G, h ∈ Z = G. (3.6.152)

Verify that in each realization there is the relation

Tg2Tg1 = Tg2g1 , (3.6.153)

which shows that in each realization the transformations Tg form a group.

3.7 Lie Algebraic Properties

3.7.1 Matrix Exponential and Logarithm

Let B be any matrix. The exponential of a matrix, written variously as eB or exp(B), is
defined by the exponential series

eB = exp(B) = I +B +B2/2! + · · · =
∞∑
n=0

Bn/n!. (3.7.1)

(Here we adopt the usual convention that B0 = I for any matrix B.) Similarly, the logarithm
of a matrix A (sufficiently near the identity) is defined by the logarithm series

log(A) = log[I − (I − A)] = −
∞∑
n=1

(I − A)n/n. (3.7.2)

As might be expected, the exponential and logarithmic functions are related. Specifically, if
one has

B = log(A), (3.7.3)

then it follows that
A = exp(B), (3.7.4)

and vice versa. Put another way, one has the relations

A = exp[log(A)] for A sufficiently near the identity matrix, (3.7.5)

B = log[exp(B)] for B sufficiently near the zero matrix. (3.7.6)

If a matrix A can be written in the form (7.4), we say that B generates A. It can be
shown that there is the identity

[exp(B/n)]n = exp(B) (3.7.7)

for any integer n. See Exercise 7.5. Thus, if A is generated by B, we may also write

A = [exp(B/n)]n. (3.7.8)
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From (7.1) we see that

exp(B/n) = I +B/n+O(1/n)2.

Consequently, for sufficiently large n, B/n is near the zero matrix and exp(B/n) is near the
identity matrix. Since B/n is near the zero matrix, we may regard it as an infinitesimal
matrix. Correspondingly, in view of (7.8), we say that A is infinitesimally generated in
that it can be written as the product of a large number of identical near identity matrices.
Finally, like the ordinary exponential function, it can be verified that

lim
n→∞

(I +B/n)n = exp(B) (3.7.9)

for any matrix B.
In some cases there may be several linearly independent matrices B1, B2, · · · , Bk and we

consider elements of the form

A = exp(s1B1 + s2B2 + · · ·+ skBk).

Here the sj are scalars. We would then say that the Bj generate such matrices A. Even
more generally, we might consider matrices that are finite products of matrices of the form
A,

G = exp(s1B1 + s2B2 + · · ·+ skBk) exp(t1B1 + t2B2 + · · ·+ tkBk) · · · .

We would again say that the Bj generate such matrices G. However, it might not be possible
to write such matrices in the form

G = exp(B) (3.7.10)

where B is some linear combination of the Bj. Consequently, if (7.10) is not possible, we
would say that G is generated by the Bj, but not infinitesimally generated as defined above.
Alternatively, we might broaden our definition of “infinitesimally generated” to include finite
products of matrices that are themselves infinitesimally generated.

Vector and Matrix Norms

To make our discussion more precise, it is useful to introduce the concepts of vector and
matrix norms. We will use the same notation ‖‖ to refer to either norm with the under-
standing that the exact meaning of the notation depends on whether it is being applied to
a vector or a matrix.

A vector norm is a rule that assigns to any vector v a real non-negative number ‖v‖,
called the norm of v, in such a way that the following properties are satisfied:

‖v‖ ≥ 0 , and ‖v‖ = 0⇔ v = 0; (3.7.11)

‖av‖ = |a|‖v‖ , a any scalar; (3.7.12)

‖u+ v‖ ≤ ‖u‖+ ‖v‖. (3.7.13)

Here the notation ⇔ is used to denote logical implication in both directions.
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Similarly, a matrix norm is a rule that assigns to any matrix A a real non-negative number
‖A‖, called the norm of A. The matrix norm is required to satisfy properties analogous to
those for a vector norm plus a property associated with matrix multiplication:

‖A‖ ≥ 0 , and ‖A‖ = 0⇔ A = 0; (3.7.14)

‖aA‖ = |a|‖A‖ , a any scalar; (3.7.15)

‖A+B‖ ≤ ‖A‖+ ‖B‖; (3.7.16)

‖AB‖ ≤ ‖A‖‖B‖. (3.7.17)

Finally, a matrix norm is said to be consistent with a vector norm if the following
condition is satisfied for any matrix A and vector v (assuming that A is m×m and v is m
dimensional):

‖Av‖ ≤ ‖A‖‖v‖. (3.7.18)

Note that the norm indicated in the left side of (7.18) is a vector norm since the quantity
Av is a vector. By contrast, the norms on the right side of (7.18) are matrix and vector
norms, respectively.

There are several ways of defining consistent matrix and vector norms. One of the more
useful is to take for the matrix norm the maximum column sum norm. It is defined by the
rule

‖A‖ = max
k

(
∑
j

|Ajk|). (3.7.19)

[Sum over j while holding k fixed to add together the values of |Ajk| for column k. Then, for
the various columns (values of k), report the largest result found.] It can be shown that this
norm satisfies the requirements (7.14) through (7.17). Furthermore, it can be shown that
this norm is consistent with the component moduli sum vector norm defined by the rule

‖v‖ =
∑
j

|vj|. (3.7.20)

The strongest matrix norm is the spectral norm defined by

‖A‖spct = +(maximum eigenvalue of A†A)1/2. (3.7.21)

Note that for any matrix A the eigenvalues of A†A are guaranteed to be real and nonnegative
so that (7.21) is well defined. The spectral norm is strongest in the sense that for any matrix
A there is the inequality

||A||spct ≤ ||A|| (3.7.22)

where ||A||spct denotes the spectral norm and ||A|| denotes any other matrix norm. How-
ever, to compute the spectral norm generally requires considerable work, and therefore it is
sometimes more of theoretical value rather than suitable for frequent computation.

It can be shown that the matrix spectral norm is consistent with the Euclidean vector
norm. Let v be a possibly complex m-dimensional vector and let (∗, ∗) denote the usual
complex inner product. The Euclidean vector norm ||v||E is defined by the rule

(||v||E)2 = (v, v) =
∑
j

|vj|2. (3.7.23)

There are also other ways of defining vector and matrix norms. See Exercise 7.1 for the
definition of the Euclidean matrix norm.
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Convergence of Series

With the aid of the concept of a matrix norm, it can be shown that the series (7.1) converges
for any matrix B, and that one has the relations

‖ exp(B)‖ ≤ e‖B‖, (3.7.24)∥∥[exp(B)− I]
∥∥ ≤ e‖B‖ − 1. (3.7.25)

[There is a theorem to the effect that if a matrix power series
∑

n cnB
n converges in norm

(i.e., if the series converges with all coefficients cn replaced by |cn| and with Bn replaced by
‖B‖n), then it also converges for each individual matrix element.] By contrast, it can be
shown that in general the series (7.2) converges only when ‖(A − I)‖ < 1 for some norm,
and that then one has the relation

‖ log(A)‖ ≤ − log
[
1− ‖(A− I)‖

]
. (3.7.26)

3.7.2 Application to Symplectic Matrices

With this background in mind, suppose that M is a real symplectic matrix near the identity.
We start our analysis in a heuristic fashion by assuming that M can be written in the form

M = exp(εB) (3.7.27)

where ε is small so that εB is near the zero matrix. We then have the expansions

M = I + εB +O(ε2), (3.7.28)

MT = I + εBT +O(ε2).

Upon inserting these expansions into the symplectic condition (1.2) and equating powers of
ε, we find the result

BTJ + JB = 0. (3.7.29)

The relation (7.29) is a key result that we will now prove rigorously for ε = 1 provided
B itself is sufficiently small. Specifically, assume that M and M−1 are sufficiently near the
identity so that log(M) and log(M−1) can be computed using (7.2). That is, suppose the
following two series converge:

B = log(M) = −
∞∑
n=1

(I −M)n/n, (3.7.30)

−B = log(M−1) = −
∞∑
n=1

(I −M−1)n/n. (3.7.31)

Use the series (7.30) to compute the quantity J−1BTJ . Doing so gives the result

J−1BTJ = −
∞∑
n=1

(I − J−1MTJ)n/n

= −
∞∑
n=1

(I −M−1)n/n

= −B. (3.7.32)
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Here use has also been made of (7.31) and (1.9). Now compare the beginning and end of
(7.32) to get the equivalent results

J−1BTJ = −B or JBTJ−1 = −B or BTJ + JB = 0 or JBT +BJ = 0. (3.7.33)

Note that (7.29) is among these equivalent results. A matrix B that satisfies (7.33) is
sometimes called Hamiltonian or infinitesimally symplectic.19

To understand the implications of the condition (7.33), suppose that B is written in the
form

B = JS. (3.7.34)

[Reader, verify that given any matrix B, because J is nonsingular, there is always a well-
defined S such that (7.34) is satisfied.] Upon inserting (7.34) into (7.33), one finds the
equivalent condition

− STJJ + JJS = 0 or ST = S. (3.7.35)

That is, S must be a symmetric matrix. Parenthetically, we note that any Hamiltonian
matrix (any matrix of the form JS with S symmetric) must be traceless. Verify this claim!
It follows that any matrix M of the form M = exp(JS) must have unit determinant. See
Exercise 7.10.

We have learned that any real symplectic matrix M sufficiently near the identity can be
written in the form

M = eB = eJS, (3.7.36)

with S small, real, and symmetric. Conversely, suppose that B is any matrix of the form
(7.34) with S real and symmetric. Then, the matrix M given by (7.36) is symplectic. To
verify this assertion, simply compute! One finds the results

M = exp(JS), (3.7.37)

MT = exp(−SJ),

MTJM = exp(−SJ)J exp(JS) (3.7.38)

= JJ−1 exp(−SJ)J exp(JS)

= J exp(−J−1SJ2) exp(JS)

= J exp(−JS) exp(JS)

= J.

What has been shown is that any symplectic matrix M sufficiently near the identity can
be written in the form (7.36) with S small and symmetric, and vice versa.20 Note that the

19This usage of the adjective Hamiltonian should not be confused with its usage in Quantum Mechanics
where a Hamiltonian matrix would be a matrix formed by taking the matrix elements of a Hamiltonian
operator with respect to an orthonormal basis. Such a matrix would generally have complex entries and
would be Hermitian.

20Here we see the beginning of a grand theme: There is a close relation between symplectic and symmetric
matrices. This theme will be developed fully in Sections 3.11, 5.13, and 6.7. We also note that in the
calculation (7.38) we have used the results of Exercises 7.5 and 7.11.
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symplectic condition as expressed by (1.2) is a set of quadratic relations among the matrix
elements of M . By contrast, the conditions (7.33) or (7.35) are linear relations among the
matrix elements of B or S, respectively. We see that the use of an exponential representation
has converted a set of quadratic relations, which are generally more difficult to work with
due to their nonlinearity, into a set of simple linear relations.

Finally, we remark that not every symplectic matrix can be written in single exponential
form. See Exercise 7.12.

3.7.3 Matrix Lie Algebra and Lie Group: The
Baker-Campbell-Hausdorff (BCH) Multiplication Theorem

The stage is now set for the introduction of a central discovery of Sophus Lie, the concept
of a Lie algebra. We will first introduce this concept in a concrete matrix setting, and then
place it in a more general abstract setting.

A set A of m×m matrices forms a Lie algebra if it satisfies the following properties:

i. If the matrix A is in the Lie algebra, then so is the matrix aA where a is any scalar.

ii. If two matrices A and B are in the Lie algebra, then so is their sum.

iii. If two matrices A and B are in the Lie algebra, then so is their commutator [A,B].
The commutator is defined by the relation

[A,B] = AB −BA. (3.7.39)

Note that the commutator symbol [, ] is the same as that used earlier for a Poisson bracket.
This is somewhat awkward, but unfortunately there are not always enough convenient sym-
bols to go around. Later, when there is greater chance of confusion, we will use the symbols
{, } to denote a commutator.

At this point the reader should take pen in hand and verify that the set of matrices of
the form JS with S symmetric is a Lie algebra. That is, Hamiltonian matrices form a Lie
algebra.

That Hamiltonian matrices form a Lie algebra is no accident. It is a remarkable fact that
there is a close connection between the concept of a Lie algebra and that of a group. The
connection arises from a deep property of the exponential function that generally bears the
names Baker-Campbell-Hausdorff (BCH). Their result, in a matrix setting, may be stated
as follows: Let A and B be any two matrices (square and of the same dimension). Form
the matrices exp(sA) and exp(tB) where s and t are parameters. Next form their product.
Then, for s and t sufficiently small, it is possible to write

exp(sA) exp(tB) = exp(C), (3.7.40)

where C is some other matrix. The remarkable fact is that C is a member of the Lie algebra
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generated by A and B.21 That is, C is a sum of elements formed only from A and B and
their multiple commutators. Specifically, one has the relation

C(s, t) = sA + tB + (st/2)[A,B] + (s2t/12)[A, [A,B]] (3.7.41)

+ (st2/12)[B, [B,A]]

− (s2t2/24)[A, [B, [A,B]]] +O(s4t, s3t2, s2t3, st4).

No isolated terms of the form A2, B2, AB, [A2, B2], etc. occur! Although stated in terms
of matrices, this result can be extended to the case of linear operators.

In general, the series for C (called the BCH series) contains an infinite number of terms
and may converge only for sufficiently small s and t. It may not converge at all if the
Lie algebra generated by A and B is infinite dimensional and A and B are unbounded
operators.22

The proof of this theorem is difficult and is given in Appendix C.23 For present purposes,
it shows that given any Lie algebra L of matrices, there exists a corresponding Lie group G.
Furthermore, the rules for multiplying any two group elements are contained within the Lie
algebra. To see the truth of this assertion, consider all matrices of the form g(s) = exp(s`)
with ` contained in L. According to the previous result, one has

exp(s`) exp(t`′) = exp `′′

with `′′ given by a relation of the form (7.41) for s, t sufficiently small. Also

g(0) = I and g−1(s) = g(−s).

Thus these matrices, at least those sufficiently near the identity, form a group. Once the
group has been obtained near the identity, it can be extended to a global group by succes-
sively multiplying the different g’s already obtained. We remark that if the Lie algebras of
two sets of matrices are the same, it does not necessarily follow that the two correspond-
ing groups constructed in this way are globally the same. They may only be related by a
homomorphism. The groups SU(2) and SO(3,R) provide an example of this possibility.24

Information about the matrices beyond their Lie algebra is needed to determine the global
properties of the group.

It has already been shown that symplectic matrices form a group. Furthermore, it has
been shown that symplectic matrices near the identity can be written as the exponentials of

21Here is another, and different, use of the word generate. Suppose one has a collection of n× n matrices
Bi. Form their commutators to produce possibly new linearly independent matrices. Next, join the set of
these matrices to the original set of the Bi. Now form the commutators of all these matrices, and join these
matrices to the set already obtained. Repeat this process ad infinitum until no new linearly independent
matrices are obtained. In the matrix case this process must terminate because there are only n2 linearly
independent n×n matrices. The net result of this procedure is a Lie algebra, which is referred to as the Lie
algebra generated by the Bi. Although we have been talking about matrix Lie algebra, the same construction
can be carried out for any collection of Lie elements drawn from some Lie algebra with the commutator
replaced by the abstract Lie product.

22The BCH series can be summed in the case of sp(2,C) = s`(2,C) which includes su(2) and sp(2,R).
See Subsection 8.7.1. For an example of divergence in the infinite-dimensional case, see Section 38.7.

23Also see Appendix C for a discussion of the converse Zassenhaus formula.
24The groups SU(n) will be defined in Subsection 7.6.
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elements of a Lie algebra. It follows that Sp(2n), the group of symplectic matrices, is a Lie
group. The Lie algebra associated with Sp(2n), the Lie algebra of Hamiltonian matrices, is
denoted by sp(2n). More specifically, the Lie algebra associated with Sp(2n,R) is denoted
by sp(2n,R), and that associated with Sp(2n,C) is denoted by sp(2n,C). Where there is
no possibility of confusion, we will use the notation sp(2n) to mean sp(2n,R).

Properties 1 and 2 of a Lie algebra indicate that the elements of a Lie algebra form a
linear vector space. It is therefore natural to speak of the dimension of a Lie algebra. For
the case of the symplectic group, elements of the Lie algebra are of the form (7.34) where
S is any symmetric matrix. The dimension of the Lie algebra in this case, therefore, is
just the dimensionality of the set of all 2n× 2n symmetric matrices. This number is easily
computed. There are 2n independent entries on the diagonal of a 2n×2n symmetric matrix,
and [(2n)2− 2n]/2 independent entries above the diagonal. Finally, all the entries below the
diagonal are given in terms of the entries above the diagonal by the symmetry condition.
Therefore, the dimension of the symplectic group Lie algebra, which will be written as
dim sp(2n), is given by the relation

dim sp(2n) = 2n+ [(2n)2 − 2n]/2 = n(2n+ 1). (3.7.42)

For example, the dimensions of sp(2), sp(4), and sp(6) are 3, 10, and 21, respectively. See
Table 7.1 below.

Table 3.7.1: Dimension of sp(2n).

n 2n dim sp(2n) n 2n dim sp(2n)
1 2 3 5 10 55
2 4 10 6 12 78
3 6 21 7 14 105
4 8 36 8 16 136

Let M be some element of Sp(2n) that can be written in the exponential form (7.36).
To the extent that the elements of Sp(2n) in some neighborhood of M can also be written
in exponential form, we may say that the dimension of this neighborhood is also given by
(7.42). However, in a while we will see that not all elements of Sp(2n) can be written in
exponential form. See Exercise 7.12 and Subsection 8.7.2. What about the general case? In
Subsection 8.2 it is shown that every symplectic matrix can be written as the product of
two symplectic matrices, each of which can be written in exponential form. And the total
dimension count of the two of them together is again given by (7.42). See Exercise 9.10.
Consequently we may say that su(2n) as a vector space and Sp(2n) as a manifold have the
same dimension.

3.7.4 Abstract Definition of a Lie Algebra

For future use, it is essential to put the concept of a Lie algebra, as just defined in a matrix
context, into a more general setting. We will begin by defining the concept of an algebra.
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Algebra

Naively speaking, algebra has to do with the concepts of addition and multiplication. The
concept of addition can be generalized to yield the concept of a linear vector space. The
concept of multiplication has several possible generalizations. Formally, an algebra A over a
field of numbers F is defined as a linear vector space supplemented by a rule for multiplying
two vectors to yield a third vector. This multiplication rule must satisfy certain conditions
having to do jointly with vector space properties and multiplication properties. Indicating
multiplication by the symbol ◦, we require that to every ordered pair of elements x, y ∈ A
there corresponds a third unique element of A, denoted by x ◦ y, and called the product of
x and y. The product should satisfy the following requirements:

1. (cx) ◦ y = x ◦ (cy) = c(x ◦ y) (3.7.43)

2. (x+ y) ◦ z = x ◦ z + y ◦ z (right distributive) (3.7.44)

3. x ◦ (y + z) = x ◦ y + x ◦ z (left distributive) (3.7.45)

for any x, y, z ∈ A and c ∈ F .

Associative Algebra

An example of an algebra is the set of all m ×m matrices. The set of all m ×m matrices
forms an m2 dimensional vector space. It also forms an algebra if we use for the ◦ operation
ordinary matrix multiplication. Note that in this case multiplication is associative, that is,
the multiplication rule satisfies the property

(x ◦ y) ◦ z = x ◦ (y ◦ z). (3.7.46)

Lie Algebra

A second example of an algebra is the set of all 3-vectors with the multiplication rule given
by the relation

a ◦ b = a× b. (3.7.47)

Here × denotes the usual cross product. This algebra is not associative,

(a× b)× c 6= a× (b× c).

A Lie algebra L is an algebra for which the multiplication rule (sometimes now called a
Lie product) satisfies two further properties. For convenience, multiplication of x and y will
now be denoted by the symbol [x, y],

[x, y] = x ◦ y.

In using this customary notation, however, it should be understood that the bracket [,] does
not necessarily refer to a commutator (or a Poisson bracket). Rather, in this context, it
refers to the Lie product abstractly, and independently of any particular realization. The
two additional properties for a Lie product are the following:

4. [x, y] = −[y, x] (antisymmetry) (3.7.48)

5. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi condition or identity) (3.7.49)
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We note that a Lie algebra is not associative. Instead, the associativity condition (7.46)
has been replaced by the Jacobi condition (7.49). We also remark, because Lie algebras are
often realized in terms of matrices, two elements in a Lie algebra are said to commute if
their Lie product vanishes.

A subalgebra K of a Lie algebra L is a subset of L whose elements also satisfy the above
properties 1 through 5. Let ` be any element of L. Then the set of all scalar multiples of `,
which by definition includes the zero element, evidently forms a subalgebra of L. Whether
L has any other nontrivial subalgebras depends on the nature of L.

To settle these concepts into the mind, the reader is invited to verify that the set of all
3-vectors with the multiplication rule (7.47) forms a Lie algebra. Next, she or he should
verify that the set of all m×m matrices forms a Lie algebra if the Lie product is taken to be
the commutator. In both cases, it is necessary to verify that properties 1 through 5 above
are satisfied for the particular Lie product involved.

3.7.5 Abstract Definition of a Lie Group

At this point we should make a side comment. We have defined, and will define, various Lie
groups in the context of matrix groups. However, Lie groups can also be defined abstractly.
Abstractly, a Lie group is a set G with the following properties:

1. G is a manifold. Roughly speaking this means that G, at and near each point, looks like
Euclidean space of some fixed dimension m, and there are local coordinates described
by m quantities x1, · · · , xm. For example, consider the set of all real 2 × 2 matrices.
Since each such matrix has 4 entries, this set can be viewed as being identical to
E4, 4-dimensional Euclidean space. Within this space is the set of 2 × 2 matrices
M that satisfy (1.2), the set Sp(2) of symplectic matrices. Since (1.2) constitutes a
collection of algebraic equations among the entries in M , the set of symplectic matrices
forms a manifold within E4. Elements of Sp(2) sufficiently near the identity can be
written in the form (7.37), and we know that the dimension m of the set of 2 × 2
matrices of the form JS is 3. See (7.42). Let B1 through B3 be a basis for this set.
See (7.66) through (7.68) for one possibility. Then, near the identity, we may write
M = exp(x1B1 + x2B2 + x3B3).

2. G is also a group. See the definition of an abstract group in Section 3.6.1. Moreover,
the multiplication and inversion operations are required to be continuous. Suppose
M and N are any two group elements. Continuity means that the coordinates of
the product MN are continuous functions of the coordinates of M and N , and the
coordinates of M−1 are continuous functions of the coordinates of M .

From these assumptions it can be proved that the group operations can actually be made
analytic.25 That is, there is a choice of coordinates such that the coordinates of the product
MN are analytic functions of the coordinates of M and N , and the coordinates of M−1 are
analytic functions of the coordinates of M . Based on this analyticity, one can differentiate
group elements with respect to their coordinates. Next, from the group elements and their

25See Chapter 38 for a discussion of analyticity.
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derivatives, one can construct entities (vector fields) that can be shown to form a Lie algebra
of dimension m. Also, the process can be turned around to reconstruct the group elements
from the Lie algebra. Among other things, it can be shown that the Jacobi identity for the
Lie algebra is a consequence of the associativity property assumed for the operation of group
multiplication. See Appendix R.

3.7.6 Classification of Lie Algebras

Let us return to the main discussion. One of the key discoveries of modern physics is that
Lie groups are important for the description of Nature. (Mathematicians already knew
earlier that they were important on aesthetic grounds.) Since Lie groups are important, it
would be nice to classify them. Because of the close connection between Lie groups and Lie
algebras, a natural starting point is to try to classifiy Lie algebras. This classification has
been substantially carried out, initially by Wilhelm Killing (1847-1923), and subsequently
by Élie Cartan (1869-1951) and others. Once Lie algebras/Lie groups have been classified,
a next important step is to find representations for them in terms of matrices or possibly
nonlinear transformations acting on some space. For examples, matrix representations of
su(2) are familiar from the Quantum Mechanical theory of angular momentum, matrix
representations of su(3) are described in Section 5.8, and matrix representations of sp(2)
through sp(6) are described in Chapter 27. Finally, Section 5.12 describes the nonlinear
action of Sp(2n) on Siegel space.

The first step in the classification, or even description, of Lie algebras is the introduction
of the concept of structure constants. Suppose L is a Lie algebra. Since a Lie algebra is a
vector space, it must have a basis. Suppose some basis is selected, and let the various basis
elements be denoted as B1, B2, · · · , Bk where k is the dimension of L. Now consider the
Lie product of any two basis elements. Since the Lie product is again an element in the Lie
algebra, it must be expandable in the terms of the basis elements. Consequently, there must
be a set of coefficients cγαβ, called structure constants, such that one has the relations

[Bα, Bβ] =
∑
γ

cγαβBγ. (3.7.50)

Note that once the Lie product has been specified for the basis elements as in (7.50), then the
Lie product for all other elements in L follows from the right and left distributive properties
2 and 3.26

Simple observation shows that, as a consequence of the antisymmetry condition (7.48),
the structure constants must obey the relations

cγαβ = −cγβα. (3.7.51)

26Strictly speaking, what has been defined in Subsection 7.4 is a free Lie algebra. That is, no restrictions
have been placed on the Lie product save antisymmetry and the Jacobi condition. [As an example of this
kind of reasoning/terminology, we may say that the BCH series (7.41) is a free Lie algebraic result because
it holds for all Lie algebras no matter what the structure constants may be.] By contrast, once a basis and
structure constants have been selected/determined, the Lie algebra is no longer “free” in that it is then
completely specified.
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Somewhat lengthier analysis shows that, as a consequence of the Jacobi condition (7.49),
the structure constants must also obey the relations∑

σ

(cσαβc
τ
γσ + cσβγc

τ
ασ + cσγαc

τ
βσ) = 0. (3.7.52)

Evidently, the problem of classifying all Lie algebras is equivalent to finding all sets of
structure constants satisfying (7.51) and (7.52).

Of course, the structure constants depend on the choice of basis elements. Suppose
B̃1, B̃2, · · · is another set of basis elements. Associated with this basis set there will be a set
of structure constants c̃ γαβ with the property

[B̃α, B̃β] =
∑
γ

c̃ γαβB̃γ. (3.7.53)

Also, since both the Bα and B̃β are sets of basis elements, the Bα can be expanded in terms
of the B̃β, and vice versa. That is, there must be an invertible matrix T with the property

B̃α =
∑
β

TαβBβ, (3.7.54)

Bα =
∑
β

(T−1)αβB̃β. (3.7.55)

By using (7.50), (7.53), (7.54), and (7.55), we find that the structure constants cγαβ and c̃ γαβ
are connected by the relations

c̃ γαβ =
∑
µστ

TαµTβσ(T−1)τγ c
τ
µσ, (3.7.56)

cγαβ =
∑
µστ

(T−1)αµ(T−1)βσ(T )τγ c̃
τ
µσ. (3.7.57)

Often two Lie algebras are deemed to be equivalent if their structure constants are related
by a change of basis. Sometimes it is important to consider the field from which the entries
of T are taken. For example, two Lie algebras may be equivalent if the entries of T are
allowed to be complex, but may be inequivalent if T is required to be real. Finally we
remark that, in the classification or description of a Lie algebra, it is often convenient to
choose a basis in such a way that the structure constants become as neatly organized as
possible. For example, one might like to arrange that all the structure constants be real (or
purely imaginary). This is possible for all the so-called simple Lie algebras.27 One might
also like to have as many of them vanish as possible, and to have those that do not vanish

27Here is a wonderful definition: A Lie algebra is called simple if it has no ideals. See Section 8.9. A
Lie algebra is called semisimple if it is the direct sum of simple Lie algebras. (For the purposes of this
definition, these simple Lie algebras must have dimension greater than one.) By direct sum it is meant
that linear combinations can be formed of the elements in the various Lie algebras, but the Lie products
of elements in different Lie algebras are defined to be zero. For example, su(2) is simple. And, because
so(4) = su(2)⊕ su(2), so(4) is semisimple.



3.7. LIE ALGEBRAIC PROPERTIES 309

satisfy some geometric properties. As will be illustrated by examples in Section 5.8 and
Chapter 27, so doing for the simple Lie algebras was one of the accomplishments of Killing
and Cartan.

The classification of all Lie algebras and Lie groups is a difficult task that lies beyond the
scope of our discussion. We shall be primarily interested in the symplectic group and, as will
be seen in Chapters 5 and 6, the group of all symplectic maps. However, there are certain
Lie groups that arise naturally as subgroups of the symplectic group, and are therefore of
direct interest to us. We close this section with a brief discussion of these groups.

Consider the set of all invertible n × n matrices. It is easily verified that this set of
matrices forms a group. This group is called the general linear group, and is denoted by
the symbols GL(n,R) or GL(n,C) depending on the choice of the field to be employed (real
or complex). We also use the notation GL(n,R,+) to indicate the subgroup of GL(n,R)
consisting of matrices with positive determinant. Next consider the set of all n×n matrices
with determinant +1. This set of matrices also forms a group, called the special linear
group. It is denoted by the symbols SL(n,R) or SL(n,C). Evidently, the special linear
group is a subgroup of the linear group. The groups GL(n,R), GL(n,C), SL(n,R), and
SL(n,C) are all Lie groups. Their associated Lie algebras are denoted by the symbols
g`(n,R), g`(n,C), s`(n,R), and s`(n,C), respectively.28

We have already learned in Section 3.6 about the orthogonal group and its connected
subgroups. The groups SO(n,R) and SO(n,C) are Lie groups. Their associated Lie algebras
are denoted by the symbols so(n,R) and so(n,C).

An n× n matrix U that satisfies the condition

U †U = I (3.7.58)

is called unitary. The set of all such matrices forms a group, called the unitary group, and
is denoted by the symbol U(n). (Here the field is naturally taken to be the complex field.)
Next consider the subset of all n× n unitary matrices having determinant +1. This subset
also forms a group [a subgroup of U(n)] called the special unitary group (or sometimes the
unitary unimodular group), and is denoted by the symbols SU(n). The groups U(n) and
SU(n) are Lie groups. Their associated Lie algebras are denoted by the symbols u(n) and
su(n), respectively.

The groups SU(n), Sp(2n), SO(n) and their related Lie algebras su(n), sp(2n), so(n)
have been studied extensively. In the mathematics literature they are referred to as the
classical groups and are given the symbols A`, B`, C`, D`.

29 To facilitate entrée to this
literature, Table 7.2 below summarizes the notation and a few key properties for these
groups.30 [Contrary to what might be expected, the groups/algebras so(2` + 1) and so(2`)
have different structures, and hence are given the different symbols B` and D`.] These
groups/algebras form infinite families since they exist for each integer value of ` = 1, 2, · · · .
Here, as in the table, the subscript denotes the rank ` of the Lie algebra. The concept of rank

28It is customary for special to be denoted by the symbols S or s where special means having determinant
+1; and G or g means general, i.e. having determinant possibly 6= 1. The exceptions to this convention are
the notations Sp and sp, where S and s stand for symplectic.

29The term classical groups is due to Weyl.
30We note that some authors identify Am with s`(m+ 1,R). It can be shown that su(n) and s`(n,R) are

equivalent over the complex field. See Exercise 7.29.
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is defined in Sections 5.8 and 17.4. It is the dimension of the so called Cartan subalgebra of
the full Lie algebra, which is a particular subalgebra having ` mutually commuting elements

By their definitions, the classical Lie algebras/groups can be realized in terms of certain
matrices. These realizations are called the fundamental or defining representations. What is
meant by a representation in this context is described in Subsection 7.7. (See also Exercise
7.36.) For a given classical Lie algebra, the dimension of the vector space on which the
matrices for the fundamental representation act is given within the parentheses associated
with its name. For example, the fundamental representation of sp(2`) employs 2` × 2`
matrices.

In addition there are a finite number, namely 5, exceptional groups/algebras called
G2(14), F4(52), E6(78), E7(133), E8(248). [We remark that the exceptional Lie algebras
are nested as subalgebras according to the relations G2(14) ⊂ F4(52) ⊂ E6(78) ⊂ E7(133) ⊂
E8(248).] Taken together, the classical and exceptional Lie algebras comprise all the simple
Lie algebras.

The naming convention for the exceptional Lie algebras/groups is somewhat different.
Here the number within the parentheses associated with the name of such a Lie algebra is its
dimension and, as done for A` through D`, the subscript is its rank `. For example, E6(78)
has dimension 78 and rank 6.

The exceptional Lie algebras/groups can also be realized in terms of matrices, and the
smallest such matrices for any given exceptional Lie algebra/group provide its fundamental
representation. The construction of these matrices is quite difficult and beyond the scope
of our discussion. For examples, the fundamental representation of G2(14) involves 7 × 7
matrices, and the fundamental representation of E8(248) involves 248× 248 matrices.

Finally, for the classical Lie algebras/groups, there is some redundancy for low values of
`. There are the equivalencies su(2) = so(3) = sp(2), sp(4) = so(5), and su(4) = so(6).31

In mathematical notation, these equivalencies are A1 = B1 = C1, B2 = C2, and A3 = D3.
Moreover, so(2) is one dimensional; and so(4) is not simple, but rather is the direct sum of
two commuting su(2) algebras: so(4) = su(2)⊕ su(2).32

It has been discovered that all Lie algebras can be constructed by putting together in
various ways the simple and the so-called solvable and nilpotent Lie algebras. The solvable
and nilpotent Lie algebras have more or less all been classified. And, as we have just seen,
all the simple Lie algebras have been classified. Thus, after over a century of work since the
time of Lie, all finite-dimensional Lie algebras and their associated Lie groups are reasonably
well classified and their properties reasonably well understood. For our purposes, we are
primarily interested in simple Lie algebras and the Lie algebras made out of them.

31The equivalence su(2) = so(3) is discussed in Exercise 3.7.31. The equivalence sp(2) = su(2) is treated
in Exercise 7.3.24. For the equivalences sp(4) = so(5) and su(4) = so(6) see Exercises 27.5.4 and 8.2.12,
respectively.

32See Exercises 4.3.19 and 4.3.20.
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Table 3.7.2: Cartan Catalog of the Classical and Exceptional Lie Groups/Algebras.

Classical Lie Groups/Algebras, infinite families with an entry for each integer value of `:

Symbol Lie Algebra Dimension Rank

A` su(`+ 1) `(`+ 2) `

B` so(2`+ 1) `(2`+ 1) `

C` sp(2`) `(2`+ 1) `

D` so(2`) `(2`− 1) `

Exceptional Lie Groups/Algebras:

E6(78), E7(133), E8(248), F4(52), G2(14)

3.7.7 Adjoint Representation of a Lie Algebra

We close this section with a brief discussion of the subject of representations of Lie algebras
and, in particular, the adjoint representation. Suppose we are given a Lie algebra L. That
is, we are told that there are k basis elements (where k is the dimension of L) and we are
given a set of structure constants satisfying (7.51) and (7.52). A representation of L is a set
of m×m matrices B̂α that, in analogy to (7.50), obeys the rules

{B̂α, B̂β} =
∑
γ

cγαβB̂γ (3.7.59)

where here, to be perfectly explicit, {, } denotes the matrix commutator,

{B̂α, B̂β} = B̂αB̂β − B̂βB̂α. (3.7.60)

This representation is said to be of dimension m since the matrices B̂α act on an m-
dimensional vector space.

At this point some clarifying comments are in order. The first comment concerns defini-
tions. The classical Lie algebras are specified by certain matrix properties associated with
their initial specifications. For example, the initially defining matrices for sp(2n) obey the
relation (7.29). Upon verifying that these matrices form a Lie algebra, a basis can be chosen
and the structure constants associated with this basis can be found. Once the structure
constants have been specified, one can search for other sets of matrices which also form a
Lie algebra with the same structure constants. However, these other matrices need not sat-
isfy the the matrix properties associated with the initial specification. For example, general
representation matrices for sp(2n) need not satisfy (7.29).

The second comment has to do with dimensionality. Note that the dimension m of a
representation is not to be confused with the dimension k of the underlying Lie algebra.
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They may be different.33 However, since the set of m × m matrices may be viewed as a
vector space of dimension m2, there must be the relation k ≤ m2 if we require that the B̂α

be linearly independent.34

As already described, by their specification, the Classical Lie algebras su(n), so(n), and
sp(2n) have natural matrix representations which are called the fundamental or defining
representations. We also remarked that the Exceptional Lie algebras have fundamental
matrix representations, but that their construction is complicated. The existence of a matrix
representation for an arbitrary Lie algebra is even less obvious. The purpose of the present
discussion is to observe that every Lie algebra L has a matrix representation, called the
adjoint representation, which is constructed from the structure constants. This construction
turns out to be quite elementary. [According to a much more difficult theorem of Ado,
which is far beyond the scope of our discussion, every Lie algebra over the complex field
is isomorphic to some matrix Lie algebra. That is, every (finite-dimensional) abstract Lie
algebra may be viewed as (is isomorphic to) a subalgebra of some g`(n,C). However, it is
not the case that every finite-dimensional Lie group is isomorphic to a subgroup of some
GL(n,C). The metaplectic group is a counter example.]

After some trial and error in the search for a representation, we hit upon the matrices
B̂α defined in terms of the structure constants by the rules

(B̂α)µν = cµαν . (3.7.61)

Note that these matrices are k × k where k is the dimension of L. (They are also real if
the structure constants are real.) So, in this case, we have m = k.35 Let us verify that the
prescription (7.61) works. Using (7.60) and the rules for matrix multiplication, we write

{B̂α, B̂β}µν = (B̂αB̂β)µν − (B̂βB̂α)µν =
∑
µ′

(B̂α)µµ′(B̂β)µ′ν − (B̂β)µµ′(B̂α)µ′ν . (3.7.62)

Inserting the definition (7.61) into (7.62) gives the result

{B̂α, B̂β}µν =
∑
µ′

(cµαµ′c
µ′

βν − c
µ
βµ′c

µ′

αν)

=
∑
µ′

(cµ
′

βνc
µ
αµ′ − c

µ′

ανc
µ
βµ′) =

∑
µ′

(cµ
′

βνc
µ
αµ′ + cµ

′

ναc
µ
βµ′). (3.7.63)

33We also note that the word representation can have different meanings depending on context. Here,
and in Section 5.8.5 and Chapter 27 and perhaps elsewhere, it means a set of matrices having some desired
commutation rules. Another possibility, as in Sections 3.8 and 3.12, is that it may mean that some matrix
may be written (represented) in a useful way as some function of some other matrix or matrices.

34For example, the fundamental representation of sp(2) involves 2×2 matrices, and the dimension of sp(2)
is 3.

35Look at Table 7.2. For the Classical Lie algebras compare the dimension m of the fundamental represen-
tation with the dimension k of the Lie algebra. For example, in the case of su(`+1), compare m = `+1 with
k = `(`+ 2). One finds that m < k save for the cases of so(2) and so(3). That is, with these two exceptions,
for the Classical Lie algebras the dimension of the fundamental representation is less than the dimension
of the adjoint representation. In the case of so(2), the fundamental representation is two-dimensional, and
the Lie algebra is one-dimensional. In the case of so(3), m = k = 3, and it turns out that the fundamental
representation is the adjoint representation. See Exercise 7.30. It can be shown that m < k for the Ex-
ceptional Lie algebras as well save for E8(248). For E8(248) the fundamental representation is the adjoint
representation.
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Here we have also used (7.51). But, from (7.52) with a change of indices, we find the relation∑
µ′

(cµ
′

βνc
µ
αµ′ + cµ

′

ναc
µ
βµ′) = −

∑
µ′

cµ
′

αβc
µ
νµ′

=
∑
µ′

cµ
′

αβc
µ
µ′ν =

∑
γ

cγαβc
µ
γν . (3.7.64)

Here we have again used (7.51). Upon combining (7.63), (7.64), and (7.61) we find the final
result

{B̂α, B̂β}µν =
∑
γ

cγαβc
µ
γν =

∑
γ

cγαβ(B̂γ)µν , (3.7.65)

and hence (7.59) is satisfied.
As a concrete example, let us construct the adjoint representation of sp(2,R). To begin,

there is the 2 × 2 representation of sp(2,R) which we have agreed to call the defining or
fundamental representation. According to (7.34) the Lie algebra of sp(2,R) in the defining
representation consists of 2× 2 matrices of the form JS with S real and symmetric. These
matrices form a 3-dimensional vector space and therefore k = 3. See (7.42) evaluated at
n = 1. A convenient basis for this vector space is provided by the matrices B1, B2, and B3

given by the relations

B1 = (1/2)F

= (1/2)

(
0 1
1 0

)
= (1/2)σ1, (3.7.66)

B2 = (1/2)B0

= (1/2)

(
0 1
−1 0

)
= (i/2)σ2, (3.7.67)

B3 = (1/2)G

= (1/2)

(
1 0
0 −1

)
= (1/2)σ3. (3.7.68)

See Section 5.6 where the matrices B0, F , and G are constructed and their commutation
rules are derived. (Here we have also referenced the Pauli matrices σα. See Exercise 3.7.31.
This referencing will be useful later.) Note that B1 and B3 are Hermitian, and B2 is anti-
Hermitian.

From the commutation rules (5.6.18 ) though (5.6.20) and the definitions given by the
first parts of (7.66) through (7.68) it follows that the Bα obey the commutation rules

{B1, B2} = −B3, (3.7.69)

{B2, B3} = −B1, (3.7.70)

{B3, B1} = B2, (3.7.71)
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which are a variant of the commutation rules for sp(2,R). From these rules we see that the
only nonzero structure constants in this case are given by the relations

c3
12 = −c3

21 = −1, (3.7.72)

c1
23 = −c1

32 = −1, (3.7.73)

c2
31 = −c2

13 = 1. (3.7.74)

Correspondingly, according to (7.61), the adjoint representation has the associated elements

B̂1 =

 0 0 0
0 0 −1
0 −1 0

 , (3.7.75)

B̂2 =

 0 0 −1
0 0 0
1 0 0

 , (3.7.76)

B̂3 =

 0 1 0
1 0 0
0 0 0

 . (3.7.77)

The reader should check that the B̂α do indeed satisfy (7.59), i.e., the “hatted” version of
(7.69) through (7.71). Note, in accord with the comments made earlier, these matrices do
not satisfy the original defining relation (7.29).

How could one have guessed the construction (7.61)? There is a way, which at first may
also seem obscure, but which will ultimately prove to be very useful. Suppose A is some
element in the Lie algebra L. We know that a Lie algebra is a vector space. We are going
to associate with A a linear operator, denoted by the symbols (ad A) and called the adjoint
of A, that will send L into itself.36 The action of this operator on any element C in L is
defined by the rule

(ad A)C = [A,C]. (3.7.78)

Since both C and [A,C] are in L, the operator (ad A) does indeed send L into itself. It is
also obviously linear because of the left distributive property (7.45) of the Lie product.

What can be said about these operators? First, they too form a linear vector space. To
see this, suppose (ad B) is the operator associated with the element B in L. Then, from
the definition (7.78) and the right distributive property (7.44), there is the relation

{ad (A+B)}C = [A+B,C] = [A,C] + [B,C] = (ad A)C + (ad B)C. (3.7.79)

Since C is an arbitrary element in L, we may rewrite this relation in the operator form

ad A+ ad B = ad (A+B), (3.7.80)

and take this result to be the definition of operator addition.

36Note that in this context the term adjoint is not to be confused with the concept of Hermitian conjugate.
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Second, these operators also form a Lie algebra with the Lie product taken to be the
commutator. This fact is partly obvious since we know that linear operators may be viewed
as matrices and, as seen earlier, matrices do form a linear vector space and the matrix or
linear operator commutator does satisfy the requirements for a Lie product. However, we
have to verify that the linear operator commutator of two adjoint operators is again the
adjoint operator for some element in L. Let us check. We find the results

(ad A)(ad B)C = (ad A)[B,C] = [A, [B,C]], (3.7.81)

(ad B)(ad A)C = (ad B)[A,C] = [B, [A,C]]. (3.7.82)

It follows that
{(ad A), (ad B)}C = [A, [B,C]]− [B, [A,C]]. (3.7.83)

But, from the Jacobi identity and antisymmetry, we have the result

[A, [B,C]]− [B, [A,C]] = [A, [B,C]] + [B, [C,A]] = −[C, [A,B]]

= [[A,B], C] = ad ([A,B])C. (3.7.84)

[Note that (7.64) is also a result of the Jacobi identity.] Upon combining (7.83) and (7.84)
and recalling that C is any element in L, we may write the operator identity

{(ad A), (ad B)} = ad ([A,B]), (3.7.85)

which shows that the adjoint operators do indeed form a Lie algebra.
Moreover, this Lie algebra has the same structure constants as L. To see this, consider

the operators (ad Bα) and compute:

{(ad Bα), (ad Bβ)} = ad ([Bα, Bβ]) = ad (
∑
γ

cγαβBγ) =
∑
γ

cγαβ(ad Bγ). (3.7.86)

Finally, since the adjoint operators are linear operators, let us compute the matrix ele-
ments for their equivalent matrices. Suppose D is an arbitrary element in L. Since the Bα

form a basis, D has an expansion of the form

D =
∑
ν

dνBν . (3.7.87)

Let (ad Bα) act on D to produce a “transformed” D,

Dtr = (ad Bα)D. (3.7.88)

The transformed element Dtr has an expansion of the form

Dtr =
∑
µ

dtr
µBµ. (3.7.89)

How are the components dtr
µ related to the components dν? From (7.87) through (7.89) we

have the relations∑
µ

dtr
µBµ = Dtr = (ad Bα)D = [Bα, D]

= [Bα,
∑
ν

dνBν ] =
∑
ν

[Bα, Bν ]dν =
∑
νγ

cγανdνBγ. (3.7.90)
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However, since the Bγ form a basis, the relation (7.90) is equivalent to the matrix relation

dtr
µ =

∑
ν

cµανdν . (3.7.91)

Consequently, (7.88) is logically equivalent to (7.91). Moreover, by using the definition
(7.61), the relation (7.91) can be rewritten in the form

dtr
µ =

∑
ν

(B̂α)µνdν . (3.7.92)

We see that B̂α is simply the matrix corresponding to the linear operator (ad Bα); and
the fact that these operators satisfy the commutation rules (7.86) implies that their matrix
representatives must do so as well.

There is one last point to be made. Suppose it happens that there is some nonzero
element in L, call it A, such that the Lie product of A with any element C in L vanishes,

[A,C] = 0 for all C ∈ L. (3.7.93)

Then we have the results
ad A = 0, (3.7.94)

Â = 0. (3.7.95)

Since the Bα form a basis, and A is nonzero, A must have an expansion of the form

A =
∑
α

aαBα (3.7.96)

where at least some of the components aα are nonzero. As a consequence of (7.80), (7.94),
and (7.95) we find the result ∑

α

aαB̂α = Â = 0, (3.7.97)

which shows that the B̂α in this case are linearly dependent. We see that while (by the
definition of a basis) the Bα are linearly independent, it can happen that the B̂α are not.
Therefore, it may happen that the adjoint representation of L provided by the B̂α is not
isomorphic to L. If the Lie algebra provided by the matrices of a representation of a Lie
algebra L is isomorphic to L, then this representation is said to be faithful. We have learned
that the adjoint representation need not be faithful.

Exercises

3.7.1. Show that the Euclidean vector norm defined by (7.23) satisfies all the requirements
for a vector norm. Show that the Euclidean matrix norm defined by the rule

(||A||E)2 = tr(A†A) =
∑
jk

|Ajk|2 (3.7.98)
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satisfies all the requirements for a matrix norm. (The Euclidean matrix norm is also some-
times called the Frobenius norm.) Note that the Euclidean vector and matrix norms are
analogous in that both involve a sum of absolute values squared. Show that the Euclidean
vector and matrix norms are consistent.

The Euclidean matrix norm is easy to compute, but is weaker than the maximum column
sum norm, which is also easy to compute. Show that, for example in the m×m case,

||I|| =
√
m (3.7.99)

for the Euclidean norm, while
||I|| = 1 (3.7.100)

for the maximum column sum and spectral norms.
Show that

||J || =
√

2n (3.7.101)

for the Euclidean norm, while
||J || = 1 (3.7.102)

for the maximum column sum and spectral norms.
Suppose u and v are any two real vectors, and let (u, v) denote the usual real Euclidean

inner product,

(u, v) =
∑
j

ujvj. (3.7.103)

Verify the Schwarz inequality
|(u, v)| ≤ ||u|| ||v|| (3.7.104)

where here the vector norm on the right side of (7.104) is the real Euclidean norm. Verify
an analogous result for complex vectors when the Euclidean complex inner product is used,
in which case

〈u, v〉 =
∑
j

ūjvj = (ū, v). (3.7.105)

Suppose u and v are two real 2n-dimensional vectors that are symplectically conjugate
in the sense that

(u, Jv) = ±1. (3.7.106)

Verify the chain of reasoning

1 = |(u, Jv)| ≤ ||u|| ||Jv|| ≤ ||u|| ||J || ||v|| ≤ ||u|| ||v|| (3.7.107)

where here the matrix spectral norm (which is consistent with the Euclidean vector norm)
has been used for ||J ||. Thus, (7.106) implies the inequality

||u|| ||v|| ≥ 1. (3.7.108)

3.7.2. The Schwarz inequality (7.104) is a relation between the absolute value of an inner
product and the norms of its ingredients. The Lagrange identity is an equality that reveals
what terms have been omitted to make the Schwarz inequality a true inequality. Suppose
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u = (u1, u2, · · · , un) and v = (v1, v2, · · · , vn) are any two n-component vectors, real or
complex. Then, according to the Lagrange identity, they satisfy the relation(∑

j

u2
j

)(∑
k

v2
k

)
−

(∑
j

ujvj

)2

= (1/2)
∑
jk

(ujvk − ukvj)2. (3.7.109)

The relation (7.109) may also be written in the form(∑
j

ujvj

)2

=

(∑
j

u2
j

)(∑
k

v2
k

)
− (1/2)

∑
jk

(ujvk − ukvj)2. (3.7.110)

If the entries in u and v are real, then the last term on the right side of (7.110) can never
be positive. In that case there is the inequality(∑

j

ujvj

)2

≤

(∑
j

u2
j

)(∑
k

v2
k

)
, (3.7.111)

which can be written in the more compact form

(u, v)2 ≤ ||u||2 ||v||2. (3.7.112)

Evidently, the relations (7.104) and (7.112) are equivalent.
Suppose u and v are two real 3-component vectors. For this case, verify the identity

(u · v)2 + (u× v) · (u× v) = (u · u)(v · v), (3.7.113)

and show that this identity is the Lagrange identity for the instance n = 3. How can the
Lagrange identity be verified for the case of general n? Here is one way: Define the matrix
A by the rule

A = |u)(v| − |v)(u| (3.7.114)

where, in the formation of dyads, complex conjugation is not to be employed. Show that,
by this definition, A is antisymmetric and has the matrix elements

Ajk = (ej, Aek) = ujvk − ukvj. (3.7.115)

Show, for any antisymmetric matrix A, that

tr(A2) = −tr(ATA) = −
∑
jk

(Ajk)
2. (3.7.116)

Verify the dyadic relation

A2 = [|u)(v| − |v)(u|] [|u)(v| − |v)(u|]
= |u)(v, u)(v| − |u)(v, v)(u| − |v)(u, u)(v|+ |v)(u, v)(u|. (3.7.117)
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Use this dyadic result to show that

tr(A2) = (v, u)2 − (u, u)(v, v)− (u, u)(v, v) + (u, v)2

= 2(u, v)2 − 2(u, u)(v, v). (3.7.118)

By comparing (7.116) and (7.118), show that

(u, v)2 − (u, u)(v, v) = −(1/2)
∑
jk

(Ajk)
2. (3.7.119)

Verify that (7.110) and (7.119) agree.

Suppose that the usual complex inner product (7.105) is of interest rather than the usual
real inner product (7.103). In this case there is the associated Lagrange identity(∑

j

|uj|2
)(∑

k

|vk|2
)
−

∣∣∣∣∣∑
j

ūjvj

∣∣∣∣∣
2

= (1/2)
∑
jk

|ujvk − ukvj|2. (3.7.120)

The relation (7.120) can also be written in the form∣∣∣∣∣∑
j

ūjvj

∣∣∣∣∣
2

=

(∑
j

|uj|2
)(∑

k

|vk|2
)
− (1/2)

∑
jk

|ujvk − ukvj|2. (3.7.121)

Prove this result as follows: Define A exactly as before using (7.114). Show that

tr(AĀ) = −tr(AA†) = −
∑
jk

|Ajk|2. (3.7.122)

Verify the dyadic relation

AĀ = [|u)(v| − |v)(u|] [|ū)(v̄| − |v̄)(ū|]
= |u)(v, ū)(v̄| − |u)(v, v̄)(ū| − |v)(u, ū)(v̄|+ |v)(u, v̄)(ū|. (3.7.123)

Use this dyadic result to show that

tr(AĀ) = (v̄, u)(v, ū)− (ū, u)(v, v̄)− (u, ū)(v̄, v) + (u, v̄)(ū, v)

= 2|(ū, v)|2 − 2(ū, u)(v̄, v). (3.7.124)

Compare (7.122) and (7.124) to show that

|(ū, v)|2 − (ū, u)(v̄, v) = −(1/2)
∑
jk

|Ajk|2. (3.7.125)

Verify that (7.121) and (7.125) agree.
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3.7.3. Show that the maximum column sum matrix norm defined by (7.19) satisfies the
relation

|Bjk| ≤‖ B ‖ . (3.7.126)

Show that the series (7.1) converges for any matrix B. (Hint: Show that the set of partial
sums forms a Cauchy sequence.) Consider the matrix function F (s) defined by the equation

F (s) = exp(sB). (3.7.127)

Show, by term-by-term differentiation of the power series for F (s), that F (s) satisfies the
differential equation

dF (s)/ds = BF (s) = F (s)B (3.7.128)

with the initial condition
F (0) = I. (3.7.129)

Justify the required interchange of the operations of (infinite) summation and differentiation.

3.7.4. Show that the series (7.2) converges for A sufficiently near the identity matrix I. Note
that when A is near the identity, then log(A) is near the zero matrix. Thus, any matrix A
sufficiently near the identity has a generator, namely log(A). Moreover, from the work of
Section 3.7.1, we know that such an A is infinitesimally generated.

3.7.5. Suppose that Bi and Bj are any two m×m matrices that commute,

{Bi, Bj} = 0. (3.7.130)

Equivalently, we may say that the Lie products of Bi and Bj vanish. Show from the power
series definition (7.1) that in this case there is the relation

exp(siBi) exp(sjBj) = exp(siBi + sjBj), (3.7.131)

where si and sj are any scalars. Verify (7.7) and (7.10). Suppose there are k linearly
independent elements B1, B2, · · · , Bk all of which mutually commute (Lie products mutually
vanish) as in (7.130). Show that these elements span a Lie algebra L. Show that all elements
in L commute. A Lie algebra with this property is called Abelian. Consider all elements
G(s1, · · · , sk) of the form

G(s1, · · · , sk) = exp(s1B1 + s2B2 + · · ·+ skBk).

Show that these elements form a group with the property

G(0, · · · , 0) = I

and the group multiplication rule

G(s1, · · · , sk)G(t1, · · · , tk) = G(s1 + t1, · · · , sk + tk).

Show that all elements in this group commute with respect to group multiplication,

G(s1, · · · , sk)G(t1, · · · , tk) = G(t1, · · · , tk)G(s1, · · · , sk).
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A group for which all elements commute is also called Abelian. We have shown, in the
context of matrices, that exponentiating an Abelian Lie algebra produces an Abelian Lie
group. Conversely, again in the matrix context, the Lie algebra of an Abelian Lie group is
Abelian. The same can be shown to be true for all Lie algebras and their related Lie groups.

Finally, as a special case, consider all elements of the form

G(s) = exp(sB)

where B is some matrix. They evidently form a one-parameter Abelian Lie subgroup of
GL(m).

3.7.6. Verify the relations (7.24) through (7.26).

3.7.7. Verify the relations given by (7.3) through (7.6) using the definitions (7.1) and (7.2).

3.7.8. Verify (7.29) using the expansions (7.28) and the symplectic condition (1.2).

3.7.9. The calculation leading from (7.30) to (7.32) involved interchanges of the operations
of matrix multiplication and transposition, and the operation of summation. Verify that
these interchanges do not affect the convergence of the infinite series involved.

3.7.10. Consider two matrices A and B related by (7.4). The purpose of this exercise is to
show that the determinant of A is related to the trace of B. We will do so by setting up
and solving a differential equation.

Suppose that ε is a small parameter and B is an arbitrary matrix. Verify the expansion

det(I + εB) = 1 + ε tr(B) +O(ε2). (3.7.132)

Let f(λ) be the function
f(λ) = det[exp(λB)].

Verify the expansion

f(λ+ dλ) = det{exp[(λ+ dλ)B]}
= det[exp(λB) exp(dλB)]

= det[exp(λB)] det[exp(dλB)]

= f(λ) det{1 + dλB +O[(dλ)2]}
= f(λ){1 + dλtr(B) +O[(dλ)2]}.

Show that f(λ) obeys the differential equation

df/dλ = f(λ)tr(B)

with the initial condition
f(0) = 1.

Show that this differential equation has the unique solution

f(λ) = exp[λtr(B)].
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Consequently show that if A and B are any two matrices related by (7.4), then

det(A) = det[exp(B)] = f(1) = exp[tr(B)]. (3.7.133)

The relation (7.133), sometimes also called Liouville’s formula, is useful and memorable.
Note that, in view of the differential equation obeyed by f , this formula is a special case of
the Liouville-Ostrogradski formula derived in Exercise 1.4.6.

As an application, first verify that it is always possible to find a matrix S such that
(7.34) is true. Next verify that the matrix JS is traceless if S is symmetric. Finally, show
that any matrix of the form exp(JS) must have determinant +1.

3.7.11. Verify the details of the calculation described in (7.37) and (7.38) using the series
definition of the exponential function as given by (7.1).

3.7.12. This exercise presents two challenges:

• Show that the matrix given by the relation

M =

(
−1 −1
0 −1

)
(3.7.134)

is symplectic, but cannot be written in the form (7.36).

• What happens if the −1 in the upper right corner of (7.134) is replaced by +1? See the
matrix N below. Can the resulting symplectic matrix be written in the form (7.36)?

As preparatory observations, verify the symplectic conjugacy relation (see Exercises 5.7
and 8.13)

N =

(
−1 +1
0 −1

)
=

(
i 0
0 −i

)(
−1 −1
0 −1

)(
−i 0
0 i

)
. (3.7.135)

Note that the conjugating matrix A in this case [see (5.50)] is symplectic, but complex.
Next, suppose M and N are any two 2n × 2n symplectic matrices that are symplectically
conjugate. Suppose also that M can be written in the form (7.36). Show that the same
must then also be true for N .

Hint for meeting the challenges: Take them in opposite order. Now let N again be
the matrix on the left side of (7.135). First prove that that N cannot be diagonalized by a
similarly transformation. Next, suppose N is written in exponential form,

N = exp(E). (3.7.136)

This is possible because N is invertible. Verify this claim! The matrix E also cannot be
diagonalized by a similarity transformation, because if it could be so diagonalized, then so
could N . Therefore both eigenvalues of E must be identical. If we assume that E is of the
form JS, then E must be traceless, and these eigenvalues must both be zero. Consequently,
there is a similarity transformation B that brings E to the Jordan form,

BEB−1 =

(
0 1
0 0

)
. (3.7.137)



3.7. LIE ALGEBRAIC PROPERTIES 323

It follows that N can be written in the form

N = exp(E) = exp

[
B−1

(
0 1
0 0

)
B

]
= B−1

[
exp

(
0 1
0 0

)]
B

= B−1

(
1 1
0 1

)
B. (3.7.138)

But (7.138) is absurd because the eigenvalues of N are both −1 whereas the eigenvalues of
the matrix on the right side of (7.138) are both +1. [Look ahead to Exercise 7.16. Compute
the characteristic polynomial of the matrix product on the right side of (7.138).] Conclude
that our assumption has produced a contradiction, and therefore neither N nor M can be
written in the exponential form (7.36).

Show that the matrix L = −M , with M given by (7.134), is also symplectic, and can be
written in the form (7.36). Find S for this case. See Exercise 5.6.7.

3.7.13. Verify that the set of matrices of the form JS (that is, the set of all Hamiltonian
matrices) is indeed a Lie algebra by showing that properties i through iii are satisfied.

3.7.14. Let B = JS be a real 2n × 2n Hamiltonian matrix. Section 3.4 described the
eigenvalue spectrum of real symplectic matrices. Derive related results for the eigenvalue
spectrum of real Hamiltonian matrices. See (7.33). If P (λ) = det (JS − λI) is the charac-
teristic polynomial of a real Hamiltonian matrix, show that all its coefficients are real, and
hence P (λ) = P (λ). Show that P (λ) = P (−λ) and hence P contains only even powers of
λ. Hint: Verify the chain of relations

det (JS − λI) = det [(JS − λI)T ] = det (−SJ − λI)

= det [J(−SJ − λI)J−1] = det (−JS − λI)

= det [(−I)(JS + λI)] = det (−I)det (JS + λI)

= det (JS + λI).

Here we have used that fact that, because −I is 2n × 2n, det (−I) = 1. Show that if
λ is an eigenvalue, so are λ and −λ. Show that if λ = 0 is an eigenvalue, it must have
even multiplicity. Thus, if α is a real eigenvalue, −α must also be an eigenvalue, and real
eigenvalues must come in ±α pairs. Similarly, if iβ is a pure imaginary eigenvalue, −iβ must
also be an eigenvalue, and pure imaginary eigenvalues must come in ±iβ pairs. Finally, if
α + iβ is a complex eigenvalue, there must be a quartet of complex eigenvalues ±α ± iβ
with all signs taken independently. Section 3.4.4 showed that the problem of finding the
eigenvalues of a 2n× 2n symplectic matrix can be simplified to that of finding the roots of
a polynomial of degree n followed by the solution of a quadratic equation. Show that the
same is true for a Hamiltonian matrix. Show that the eigenvalues can be found in terms of
radicals for the cases n ≤ 4.

3.7.15. Let B be a Hamiltonian matrix. See (7.33). Show that B obeys the relation

KB = −BTK (3.7.139)

with K given by (5.3). Using the angular inner product (5.2), study the eigenvector structure
of real Hamiltonian matrices in a manner similar to that done for symplectic matrices in
Section 3.5. You will need the eigenvalue spectrum results of Exercise 7.14.
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3.7.16. The characteristic polynomial P (λ) of a matrix A is defined by the equation

P (λ) = det(A− λI). (3.7.140)

The solutions of the equation P (λ) = 0 are the eigenvalues of A. Show that the matrices A
and A′ = SAS−1, where S is any invertible matrix, have the same characteristic polynomial
and hence the same eigenvalues. You have verified that the set of eigenvalues is invariant
under similarity transformations.

3.7.17. Suppose A is m×m and let P (λ) be its characteristic polynomial (7.140).

a) Verify that P (λ) has the expansion

P (λ) =
m∑
`=0

a`(−λ)` (3.7.141)

with
a0 = det(A) (3.7.142)

and
am = 1. (3.7.143)

What can be said about the other a`? Using the results (7.1) through (7.4) and the
result of Exercise (7.7), we may write the relations

P (λ) = det(A− λI) = det[(−λI)(I − A/λ)]

= (−λ)m det(I − A/λ)

= (−λ)m det{exp[log(I − A/λ)]}

= (−λ)m det{exp[−
∞∑
`=1

(A/λ)`/`]}

= (−λ)m exp[−
∞∑
`=1

(1/λ)`(1/`)tr(A`)]. (3.7.144)

b) Verify the statement made above. Note that the series employed will certainly converge
for λ large enough, because ‖A/λ‖ is then small.

c) Now expand out the exponential function, and collect powers of λ to get an expression
of the form

P (λ) =
m∑

`=−∞

a`(−λ)`. (3.7.145)

It follows from (7.141) that a` = 0 for ` < 0. Show that this fact gives an infinite
collection of identities. Find the first few coefficients am−1, am−2, · · · and verify the
results

am−1 = tr(A), (3.7.146)

am−2 = {[tr(A)]2 − tr(A2)}/2, (3.7.147)
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am−3 = (1/3) tr(A3)− (1/2)[tr(A)][tr(A2)] + (1/6)[tr(A)]3, (3.7.148)

am−4 = (1/24){[tr(A)]4 − 6[tr(A)]2[tr(A2)] + 3[tr(A2)]2

+ 8[tr(A)][tr(A3)]− 6[tr(A4)]}. (3.7.149)

Show that all the a` are functions of [tr(Aj)]k for various values of j and k. Verify
(4.25) and (4.26). Make a similar study of [1/P (λ)].

d) Show that det(A) is also expressible in terms of [tr(Aj)]k. Verify the results

det(A) = {[tr(A)]2 − tr(A2)}/2 when m = 2, (3.7.150)

det(A) = [tr(A3)]/3− [tr(A)][tr(A2)]/2 + [tr(A)]3/6 when m = 3, (3.7.151)

det(A) = (1/24){[tr(A)]4 − 6[tr(A)]2[tr(A2)] + 3[tr(A2)]2

+ 8[tr(A)][tr(A3)]− 6[tr(A4)]} when m = 4, etc. (3.7.152)

e) As in Exericse 7.10, let ε be a small parameter and C an arbitrary matrix. Verify the
results

(I + εC) = exp[log(I + εC)] = exp[−
∞∑
n=1

(−εC)n/n], (3.7.153)

det(I + εC) = exp[−
∞∑
n=1

(1/n)(−ε)ntr(Cn)]

= 1 + εtr(C) + (ε2/2){[tr(C)]2 − tr(C2)}+ · · · . (3.7.154)

3.7.18. Let A and B be any two m×m matrices. Define matrices C and D by the equations
C = AB,D = BA. Show that C and D have the same eigenvalue spectrum. Hint: Use
Exercise (7.17) to show that they have the same characteristic polynomial.

3.7.19. Given an n×n matrix A, equation (7.140) gives a polynomial P (λ). Show that P (λ)
has the leading term (−λ)n. Consider the inverse problem: given a polynomial P (λ) with
leading term (−λ)n, can one find a matrix A such that P (λ) is the characteristic polynomial
for A? Suppose the roots of P (λ) are known. Call them λj. Find a diagonal A such that
(7.140) holds. Remarkably, one does not need to know the roots to find an A that works.
Show that the matrix A, called the companion matrix for P (λ), given by

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
0 1
b1 b2 · · · bn

 (3.7.155)

has the characteristic polynomial

P (λ) = (−1)n(λn − bnλn−1 − bn−1λ
n−2 − · · · − b1). (3.7.156)
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Show that this A may not always be diagonalizable. Hint: Study the 2 × 2 case. Show
that a general eigenvector is of the form (1, λ)T , and show that there is only one (linearly
independent) eigenvector if the eigenvalues are degenerate. Generalize to the n × n case
and show that there are as many linearly independent eigenvectors as there are distinct
eigenvalues.

3.7.20. Verify that the cross-product algebra given by (7.47) is not associative. Verify that
it is a Lie algebra. In particular, check the Jacobi condition.

There is a theorem in plane Euclidean geometry to the effect that the three altitudes of
a triangle intersect in a common point (called the orthocenter). (This point is in the interior
of the triangle if the triangle is acute. Recall that a triangle is called acute if all its angles
are less than 90 degrees.) It can be shown that the existence of a common intersection
is a consequence of the Jacobi identity for the cross-product Lie algebra. Google “Jacobi
identity altitudes of a triangle”.

3.7.21. Verify that the set of all m × m matrices with the multiplication rule defined by
[A,B] = AB −BA forms a Lie algebra. In particular, check the Jacobi condition.

3.7.22. Given any algebra, define the associator A(x, y, z) of any 3 elements x, y, z by the
rule A(x, y, z) = (x ◦ y) ◦ z − x ◦ (y ◦ z). An algebra is called associative if the associator
vanishes. Show that a Lie algebra is generally not associative. Hint: Use the Jacobi
condition (and antisymmetry) to compute the associator. From this perspective, the Jacobi
condition (along with antisymmetry) may be viewed as a rule that specifies the associator.

3.7.23. Suppose the vectors e1 = ex, e2 = ey, and e3 = ez form a right-handed orthonormal
triad in three-dimensional Euclidean space. Use them to form a basis for the Lie algebra
(7.47). Find the structure constants cγαβ for this Lie algebra and basis. Show that these struc-
ture constants are related to the Levi-Civita tensor εαβγ. Consider a complex “spherical”
basis e−1, e0, e+1 defined by the relations

e+1 = −(1/
√

2)(ex + iey), (3.7.157)

e0 = iez,

e−1 = (1/
√

2)(ex − iey).

Find the structure constants for this choice of basis.

3.7.24. Verify the relations (7.51), (7.52), (7.56), and (7.57). Verify that if (7.51) and (7.52)
hold for some basis set, then the Lie algebraic properties (7.48) and (7.49) (antisymmetry
and Jacobi condition) are satisfied.

3.7.25. Classify all two- and three-dimensional Lie algebras.

3.7.26. Verify that GL(n,R), GL(n,C), SL(n,R), and SL(n,C) are indeed groups. Char-
acterize the Lie algebras g`(n,R), g`(n,C), s`(n,R), and s`(n,R). That is, what properties
are satisfied by such matrices? Find the dimensions of these Lie algebras. In the complex
case, find the dimension over both the real and complex fields. [Hint: Use the relation
(7.133).]
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3.7.27. Verify that O(n,R), O(n,C), SO(n,R), and SO(n,C) are indeed groups. Charac-
terize the Lie algebras so(n,R) and so(n,C). That is, what properties are satisfied by such
matrices? Find the dimensions of these Lie algebras. In the complex case, find the dimension
over both the real and complex fields. [Hint: Use the relation (7.133).]

3.7.28. Show from (7.58) that | det(U)| = 1. Verify that U(n) and SU(n) are indeed groups.
Show that the set of n×n anti-Hermitian matrices forms a Lie algebra. This set is u(n), the
Lie algebra of U(n). Find its dimension. Show that the set of all traceless matrices in u(n)
forms a sub Lie algebra. This sub Lie algebra is called su(n). Find its dimension. Show
that su(n) is the Lie algebra of the group SU(n). [Hint: Use the relation (7.133).]

3.7.29. By construction, because only real matrices are involved in their definitions, there
are basis choices for the Lie algebras so(n,R) and sp(2n,R) for which the structure constants
are real. What about the case of su(n)? Let A be the set of all real n × n antisymmetric
matrices. Since all the diagonal entries in all antisymmetric matrices vanish, every anti-
symmetric matrix is traceless. Show that the dimension of A is (n2 − n)/2. Let S be the
set of all real n × n symmetric and traceless matrices. Show that the dimension of S is
[(n2 − n)/2 + n − 1]. Let the matrices Aj and Sk form bases for the sets A and S, respec-
tively. Show that the matrices Aj and iSk form a basis for su(n). See Exercise 7.28. Verify
that the commutator of any two matrices is traceless. Verify that the commutator of any
two antisymmetric matrices is antisymmetric. Verify that the commutator of an antisym-
metric matrix and a symmetric matrix is symmetric. Verify that the commutator of any
two symmetric matrices is antisymmetric. We can write these relations symbolically in the
form

{A,A′} ∝ A′′, (3.7.158)

{A, S} ∝ S ′, (3.7.159)

{S, S ′} ∝ A. (3.7.160)

Correspondingly, verify that there are also the relations

{A,A′} ∝ A′′, (3.7.161)

{A, (iS)} ∝ (iS ′), (3.7.162)

{(iS), (iS ′)} ∝ A. (3.7.163)

Thus, show that in this basis, which may be viewed as a natural basis for su(n), the structure
constants are all real.

Consider next the Lie algebra s`(n,R). Show that the matrices Aj and Sk form a basis
for this Lie algebra. See Exercise 7.26. Thus show that su(n) and s`(n,R) have the same
dimension. Show, in fact, that su(n) and s`(n,R) are equivalent over the complex field.

3.7.30. Verify that the B̂j given by (7.75) through (7.77) for the sp(2,R) case satisfy com-

mutation rules analogous to (7.69) through (7.71). Verify that in this case the B̂j are linearly
independent.
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3.7.31. This exercise explores the relations between the Lie algebras su(2), so(3,R), and
the cross-product Lie algebra. It presumes that you have worked, or at least read, Exercises
7.23, 7.27, 7.28, and 7.29.

Define the Pauli matrices σα for α = 1, 2, 3 by the rules

σ1 =

(
0 1
1 0

)
, (3.7.164)

σ2 =

(
0 −i
i 0

)
⇔ σ2 = −iJ2 ⇔ J2 = iσ2, (3.7.165)

σ3 =

(
1 0
0 −1

)
. (3.7.166)

[We remark that the Pauli matrices were discovered by Klein some 50 years prior to the
time of Pauli. They came to bear Pauli’s name because he was the first to use them to
describe electron spin. Pauli (1900-1958) died in room 137 ' 1/α of the Red-Cross hospital
at Zurich.] Verify that the Pauli matrices are traceless, Hermitian,

(σα)† = σα, (3.7.167)

and satisfy the relations
(1/2)tr(σασβ) = δαβ. (3.7.168)

Verify also that the Pauli matrices are unitary, (σα)†σα = I. (For further properties of the
Pauli matrices, see Section 5.7 and Exercises 5.7.2 and 5.7.7.)

Let K1 through K3 be the traceless anti-Hermitian matrices

K1 = (−i/2)σ1 = (−i/2)

(
0 1
1 0

)
, (3.7.169)

K2 = (−i/2)σ2 = (−i/2)

(
0 −i
i 0

)
, (3.7.170)

K3 = (−i/2)σ3 = (−i/2)

(
1 0
0 −1

)
. (3.7.171)

In Exercise 7.27 you should have found that the Lie algebra su(n) consists of all n×n traceless
anti-Hermitian matrices. Show that K1 through K3 form a basis for the Lie algebra su(2).
Show that they obey the multiplication and commutation rules

KαKβ = (1/2)Kγ, (3.7.172)

{Kα, Kβ} = Kγ, (3.7.173)

where α, β, γ is any cyclic permutation of 1, 2, 3. Thus, with this choice of basis, the structure
constants for su(2) are the components of the Levi-Civita tensor,

cγαβ = εαβγ. (3.7.174)
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We remark that we have been following what might be called a mathematician’s approach
to su(2) [and so(3,R)] in which basis elements are chosen so that the structure constants
are all real. For a quantum physicist’s approach for which a basis is chosen to make all the
structure constants pure imaginary, see Exercise 7.43.

Verify also that the Kα obey the anticommutation rules

{Kα, Kβ}+ = KαKβ +KβKα = −(1/2)δαβI. (3.7.175)

Let a be a three-component vector with entries (a1, a2, a3). Introduce the notation

a ·K =
∑
α

aαK
α. (3.7.176)

Show that there is the multiplication rule

(a ·K)(b ·K) = −(1/4)(a · b)I + (1/2)(a× b) ·K. (3.7.177)

Compute the matrices (Kα)2. Observe that they are diagonal, and hence mutually commute.
Show that they sum to −(3/4)I.

Let L1 through L3 be the matrices

L1 =

 0 0 0
0 0 −1
0 1 0

 , (3.7.178)

L2 =

 0 0 1
0 0 0
−1 0 0

 , (3.7.179)

L3 =

 0 −1 0
1 0 0
0 0 0

 . (3.7.180)

In Exercise 7.27 you should have found that the Lie algebra so(n,R) consists of all n×n real
antisymmetric matrices. Show that L1 through L3 form a basis for the Lie algebra so(3,R).
Show that they also obey the commutation rules

{Lα, Lβ} = Lγ (3.7.181)

where α, β, γ is any cyclic permutation of 1, 2, 3. Evidently, according to (7.173) and (7.181),
the Lie algebras su(2) and so(3,R) have the the same structure constants, and are therefore
the same. Compute the matrices (Lα)2. Observe that they are diagonal, and hence mutually
commute. Show that they sum to −2I.

Let the matrices K̂α be the adjoint representation matrices associated with the Kα. See
(7.61). Verify the relations

(Lα)βγ = −εαβγ and therefore K̂α = Lα. (3.7.182)
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You have shown that the Lα matrices are those for the adjoint representation of su(2). Since
su(2) and so(3,R) have the same structure constants, show that the adjoint representation
of so(3,R) is the fundamental representation.

Show from (7.177) that there is the relation

{a ·K, b ·K} = (a× b) ·K. (3.7.183)

Define a ·L in an analogous way to (7.176) and show that there is also the relation

{a ·L, b ·L} = (a× b) ·L. (3.7.184)

You have shown that the cross-product Lie algebra (7.47) is intimately related to the Lie
algebra for su(2) and so(3,R). Indeed, let e1 through e3 be the unit vectors of Exercise
7.22. Make the correspondences

eα ↔ Kα ↔ Lα. (3.7.185)

Then, you have shown that there are also the correspondences

(eα × eβ)↔ {Kα, Kβ} ↔ {Lα, Lβ}. (3.7.186)

Finally, in Exercise 7.23 you should have found that the structure constants for the cross-
product Lie algebra are the same as those for su(2) and so(3,R). Therefore the cross-product
Lie algebra is the same as that of su(2) and so(3,R).

We have studied the Lie algebras su(2), so(3,R) and the cross-product Lie algebra. We
now explore the relation between the groups SU(2) and SO(3,R). Begin with the case of
SU(2). Let n be a unit vector. Define SU(2) matrices v(θ,n) by the rule

v(θ,n) = exp(θn ·K). (3.7.187)

Show, in accord with Section 3.8.1, that any SU(2) matrix can be written in the form
(7.187). Show that

(n ·K)2 = −(1/4)I. (3.7.188)

Use this relation to sum the series implied by (7.187) to find the explicit result

v(θ,n) = I cos(θ/2) + 2(n ·K) sin(θ/2). (3.7.189)

Show that
v(2π,n) = −I, (3.7.190)

v(4π,n) = +I. (3.7.191)

Show that SU(2) is covered once and only once when θ ∈ [0, 2π] and n is allowed to be any
unit vector.

As special cases of (7.187), verify the relations

v(θ, e1) = exp(θK1) = exp[(−i/2)θσ1] =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
, (3.7.192)

v(θ, e2) = exp(θK2) = exp[(−i/2)θσ2] =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (3.7.193)
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v(θ, e3) = exp(θK3) = exp[(−i/2)θσ3] =

(
exp(−iθ/2) 0

0 exp(iθ/2)

)
. (3.7.194)

The Euler-angle parameterization of SU(2) is defined by the rule

v(φ, θ, ψ) = exp(φK3) exp(θK2) exp(ψK3). (3.7.195)

Note that K1 does not appear in the formula. Verify that every element in SU(2) can be
written in Euler form. Verify that SU(2) is covered once, and only once, if the Euler angles
lie in the ranges φ ∈ [0, 2π], θ ∈ [0, π], ψ ∈ [0, 4π]. By carrying out the matrix multiplications
implied by (7.195), verify that v(φ, θ, ψ) has the explicit form

v(φ, θ, ψ) =

(
cos(θ/2) exp[−(i/2)(φ+ ψ)] − sin(θ/2) exp[(i/2)(−φ+ ψ)]

sin(θ/2) exp[−(i/2)(−φ+ ψ)] cos(θ/2) exp[(i/2)(φ+ ψ)]

)
. (3.7.196)

The relation (7.189) is a formula for computing the 2 × 2 SU(2) matrix v given θ and
n. Suppose, instead, that one is given v ∈ SU(2) and wants to know θ and n. Show that
there are the formulas

2 cos(θ/2) = tr(v) (3.7.197)

and
4(n ·K) sin(θ/2) = v − v†, (3.7.198)

from which it follows that

nα sin(θ/2) = (i/4)tr[σα(v − v†)]. (3.7.199)

Consider next the case of SO(3,R). Define SO(3,R) matrices R(θ,n) by the rule

R(θ,n) = exp(θn ·L). (3.7.200)

Show, in accord with Section 3.8.1, that any SO(3,R) matrix can be written in this form.
For any to vectors a and b, verify the relation

(a ·L)b = (a× b). (3.7.201)

Use this result to show that R(θ,n) produces a rotation by angle θ about the axis n.
Verify the result

(n ·L)3 = −n ·L. (3.7.202)

Use this relation to sum the series implied by (7.200) to find the explicit results

R(θ,n) = I + (n ·L) sin θ + (n ·L)2(1− cos θ), (3.7.203)

R(2π,n) = I. (3.7.204)

Verify that SO(3,R) is covered once and only once when θ ∈ [0, π] and n is allowed to be
any unit vector.

As special cases of (7.203), verify the relations

R(θ, e1) = exp(θL1) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (3.7.205)
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R(θ, e2) = exp(θL2) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (3.7.206)

R(θ, e3) = exp(θL3) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (3.7.207)

The Euler-angle parameterization of SO(3,R is defined by the rule

R(φ, θ, ψ) = exp(φL3) exp(θL2) exp(ψL3). (3.7.208)

Note that L1 does not appear in the formula. Verify that every element in SO(3,R) can
be written in Euler form. Verify that SO(3,R) is covered once, and only once, if the Euler
angles lie in the ranges φ ∈ [0, 2π], θ ∈ [0, π], ψ ∈ [0, 2π]. By carrying out the matrix
multiplications implied by (7.208), verify that R(φ, θ, ψ) has the explicit form

R(φ, θ, ψ) = cosφ cos θ cosψ − sinφ sinψ − cosφ cos θ sinψ − sinφ cosψ cosφ sin θ
sinφ cos θ cosψ + cosφ sinψ − sinφ cos θ sinψ + cosφ cosψ sinφ sin θ

− sin θ cosψ sin θ sinψ cos θ

 .

(3.7.209)

The relation (7.203) is a formula, sometimes called Rodrigues’ rotation formula, for com-
puting the 3 × 3 rotation matrix R given the rotation angle θ and the axis of rotation n.
Suppose, instead, that one is given R and wants to know the rotation angle θ and the axis
n. First verify the relation

tr[(a ·L)2] = −2a · a. (3.7.210)

for any vector a. Now show that there are the formulas

1 + 2 cos θ = tr(R), (3.7.211)

2(n ·L) sin θ = R−RT . (3.7.212)

Let R be any element of SO(3,R). Show that R must have +1 as an eigenvalue and that
n is the associated eigenvector.37 Show that the other two eigenvalues of R are exp(±iθ).

Since the Lie algebras su(2) and so(3,R) are the same, we may expect a close relation
between the groups SU(2) and SO(3,R). Are they perhaps the same? The answer is no
as can be seen by comparing (7.190) and (7.204). Although the groups have the same Lie
algebra, they are not the same globally. Exercises 8.2.10 and 8.2.11 show that there is a
two-to-one homomorphism between SU(2) and SO(3,R). In fact these exercises show that,
given v ∈ SU(2), there is an R(v) ∈ SO(3,R) specified by the two-to-one homomorphic
map

Rαβ(v) = (1/2)tr(v†σαvσβ). (3.7.213)

There is another way to highlight the distinction between su(2) and so(3,R). For a Lie
algebra realized in terms of matrices, it is useful, when possible, to form the matrix for the

37This result is sometimes called Euler’s theorem for rigid body motion.
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second-order Casimir operator. The second-order Casimir matrix is defined in terms of the
structure constants and the basis matrices for the Lie algebra. See Section 27.11 for details.
In the case of the Kα verify that there is the matrix relation

(K1)2 + (K2)2 + (K3)2 = −(3/4)I. (3.7.214)

In the case of the Lα verify that there is the matrix relation

(L1)2 + (L2)2 + (L3)2 = −(2)I. (3.7.215)

In our case the structure constants are given by (7.174), and it can be shown that the
quantities on the left sides of (7.214) and (7.215) are the Casimir matrices formed from the
Kα and the Lα, respectively. The coefficients in parentheses on the right sides of (7.214)
and (7.215) are of the form j(j+1) with j = 1/2 in the case of the Kα and j = 1 in the case
of the Lα. Analogous relations may be familiar to the reader from the quantum theory of
spin/angular momentum. We see that su(2) corresponds to the case j = 1/2 and so(3,R)
corresponds to the case j = 1.

3.7.32. Suppose that R is a map that sends three-dimensional Euclidean space into itself
and has a cyclic action on the points e1, e2, e3:

Re1 = e2, Re2 = e3, Re3 = e1. (3.7.216)

Extend R to all of three-dimensional Euclidean space by linearity so that its action can be
represented by an associated matrix R. Show that R ∈ SO(3,R). Use the results of Exercise
7.31 to find the axis n and angle θ for R.

3.7.33. Show that the groups Sp(2,R) and SL(2,R) are the same, and therefore their
Lie algebras are the same: Sp(2,R) = SL(2,R) and sp(2,R) = s`(2,R). Show that the
groups Sp(2,C) and SL(2,C) are the same, and therefore their Lie algebras are the same:
Sp(2,C) = SL(2,C) and sp(2,C) = s`(2,C). See Exercises 1.2 and 1.3. [Subsequently it
will be shown that the Lie algebra of the Lorentz group is the same as the Lie algebras
sp(2,C) = s`(2,C). See Exercises 7.3.30 and 8.2.14.] Show that the Lie algebras sp(2,R),
s`(2,R), su(2), and so(3,R) have the same dimension. Show that these Lie algebras are in
fact the same (equivalent) over the complex field. Which of these Lie algebras are equivalent
over the real field?

3.7.34. Show that the Lie algebras sp(4,R) and so(5,R) have the same dimension. See
Exercise 27.5.4 for a demonstration that these Lie algebras are in fact the same (equivalent)
over the complex field, but not the real field.

3.7.35. Show that the Lie algebras su(4) and so(6,R) have the same dimension. In fact,
these Lie algebras are the same (equivalent) over the real field. Moreover, as shown in
Exercise 8.2.12, there is a corresponding two-to-one homomorphism between the groups
SU(4) and SO(6,R) just as there is a two-to-one homomorphism between the groups SU(2)
and SO(3,R). See Exercises 7.29, 8.2.11, and 8.2.12.
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3.7.36. Let cγαβ be a set of structure constants for some Lie algebra L as in (7.50). Let Bα

be a set of m ×m matrices that forms a basis for L thereby providing a representation of
L. That is, the matrices satisfy the commutation rules

{Bα, Bβ} =
∑
γ

cγαβBγ. (3.7.217)

Let E be any m × m invertible matrix, and define matrices B′α by the rule (similarity
transformation)

B′α = EBαE
−1. (3.7.218)

View the B′α as basis elements and show that the B′α also form a representation of L.
That is, the B′α obey commutation rules identical to those of the Bα in (7.217) with the
same structure constants. The representations provided by the B′α and the Bα are called
equivalent, and for many purposes may be viewed as being essentially the same.38 Conversely,
given two sets of m×m representation matrices Bα and B′α that obey the same commutation
rules, one can inquire whether there is an invertible matrix E such that (7.218) holds. If
there is, the two representations are said to be equivalent.

Given the Bα, suppose we define conjugate matrices B̃α by the “tilde” rule

B̃α = −BT
α . (3.7.219)

Note that this tilde rule is an involution. That is, let C̃ denote the tilde conjugacy operator
defined by

C̃(Bα) = B̃α. (3.7.220)

Verify that C̃2 has the property
C̃2(Bα) = Bα (3.7.221)

so that C̃2 = I on every element on which it acts.
Show that the B̃α also form a representation of L. This representation is called a conju-

gate representation. That is, the B̃α obey commutation rules identical to those of the Bα in
(7.217) with the same structure constants. Put another way, show that there is the result

C̃({Bα, Bβ}) = {C̃(Bα), C̃(Bβ)}, (3.7.222)

which displays that C̃ is a homomorphism for the Lie product provided by the commutator
{∗, ∗}.

Whether this conjugate representation is equivalent (in the sense defined three para-
graphs above) to that provided by the Bα depends on the Lie algebra L and the represen-
tation provided by the Bα. If a representation and its conjugate are equivalent in the sense

38Observe that this definition of equivalent need not be the same as that given in Subsection 7.6. There
arbitrary linear invertible transformations on the basis were considered with the aim of modifying the
structure constants, and the structure constants were found to change according to the rules (7.56) and
(7.57). But the new basis elements, being linear combinations of the Bα, are still elements of L. In the
present case the structure constants are required to remain unchanged even though the basis is changed.
And in this case the Bα have to be matrices or linear operators or some such things for (7.218) to make
sense. Finally, unless the Bα form a basis for the set of m × m matrices, the B′α need not be in L. For
example, if we consider the fundamental representation of sp(2n), the Bα are of the form JS. But the same
need not be true of the B′α.
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(7.218), the representations are said to be self conjugate. (We remark that if the Bα are the
matrices for the adjoint representation of L, then the matrices B̃α are sometimes referred
to as the coadjoint representation of L.)

There is a second “conjugacy” possibility. Suppose that for some choice of basis elements
[see (7.56) and (7.57)] the structure constants cγαβ can all be made real. (This can be shown
to be the case, for example, for all the classical and exceptional Lie algebras in Table 7.2.)
Also allow the possibility that at least some of the Bα may have some complex entries. In
this case, define matrices B̆α, again called conjugate matrices, by the “accent breve” rule

B̆α = B̄α (3.7.223)

where a bar indicates complex conjugation. Call the breve conjugacy operator C̆ so that we
may write

C̆(Bα) = B̆α = B̄α. (3.7.224)

Verify that C̆, is also an involution. Show that the B̆α also form a representation of L or,
equivalently, C̆ is also a commutator Lie product homomorphism. Whether this conjugate
representation is equivalent to that provided by the Bα also depends on the Lie algebra L
and the representation provided by the Bα. A representation involving complex matrices
that is equivalent to itself under the breve operation (7.222) is called pseudoreal. In analogy
with the tilde operation case, it may also be called self conjugate.

If the structure constants cannot be made real, show that the B̆α still form a Lie algebra.
Whether or not this Lie algebra is different from the original one, or can be brought to the
same form as the original Lie algebra by a suitable new choice of basis elements as in (7.56)
and (7.57), then requires further investigation.

There is a third conjugacy operator possibility, which we will call the “accent grave”
rule, that is sometimes of use. Denote it by C̀. Given basis matrices Bα for a Lie algebra
L with real structure constants, define matrices B̀α, again called conjugate matrices, by the
rule

C̀(Bα) = B̀α = −B†α. (3.7.225)

Verify that the grave rule is also an involution. Show that the B̀α also form a representation
of L so that C̀ is also a commutator Lie product homomorphism. Show that C̀ consists of
combining the operations of the first two conjugation rules by verifying that

C̀ = C̆C̃ = C̃C̆. (3.7.226)

In summary, we have defined three possible conjugacy rules: tilde ˜, breve ˘, and grave
`. Note that, in all cases and for all three conjugacy rules, a representation and its conjugate
have the same dimension.

Let us now explore conjugacy relations for some of the familiar Lie algebras: Consider
the fundamental/defining representation of sp(2,R) provided by the matrices (7.66) through
(7.68). Find the associated tilde representation given by (7.219) above. Verify that this
representation is equivalent to the fundamental representation using

E = J. (3.7.227)
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Consider the fundamental representation of sp(2n,R) for any n. Using (7.34) show that

B̃ = SJ. (3.7.228)

Verify that
JB̃J−1 = JS = B, (3.7.229)

and therefore the tilde representation is equivalent to the fundamental representation, again
using (7.227), for all n. Put another way, under the tilde operation and for all n, the
fundamental representation of sp(2n,R) is self conjugate.

Suppose that either the breve or grave conjugacy operations are used instead. Show
that, since the fundamental representation of sp(2n,R) consists of real matrices, it is also
self conjugate under both the breve and grave operation for all n.

Consider the adjoint representation of sp(2,R). It is provided by the matrices (7.75)
through (7.77). Find the associated tilde representation given by (7.219) above. Verify that
this representation is equivalent to the adjoint representation using

E =

 1 0 0
0 −1 0
0 0 −1

 . (3.7.230)

In fact, it can be shown that all representations of sp(2n,R) are self conjugate for all n
under all three conjugacy relations tilde, breve, and grave.

Consider the fundamental representation of su(2) provided by the matrices (7.169)
through (7.171). Observe that some of them are complex. Show that the associated breve
representation given by (7.223) above yields the result

K̆1 = −K1, (3.7.231)

K̆2 = K2, (3.7.232)

K̆3 = −K3. (3.7.233)

Verify that this representation is equivalent to the original representation using

E = exp(πK2) = −J2 =

(
0 −1
1 0

)
. (3.7.234)

[Look ahead to see (8.2.338) or (8.2.374) through (8.2.376) if you need help.] Thus the
representation of su(2) provided by the matrices (7.169) through (7.171) is pseudoreal.
Finally, it can be shown that all representations of su(2) are self conjugate under the breve
operation because any representation of su(2) can be obtained by taking suitable real linear
combinations of tensors formed from vectors (actually, spinors) that transform according to
the fundamental representation.

Suppose that instead the tilde operation (7.219) is employed. Show that in this case
there is the result

K̃1 = −K1, (3.7.235)

K̃2 = K2, (3.7.236)
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K̃3 = −K3. (3.7.237)

The tilde and breve operations (7.219) and (7.223), when acting on the fundamental repre-
sentation of su(2), give the same result. Therefore for su(2) the tilde representation is also
equivalent to the fundamental representation again using the E given by (7.234).

Show that the reason the tilde and breve operations give the same result in the case of
su(2) fundamental representation is that the Kα are anti-Hermitian, and that this “same
result” conclusion will also hold for all cases in which the Bα are anti-Hermitian, including
all su(n) cases.

Suppose the grave operation acts on the fundamental representation of su(n). Show that
in this case there is the “no effect” result

B̀α = Bα (3.7.238)

because the Bα are anti-Hermitian.
We remark that the case of su(2) is special. Subsequently we will find that the fun-

damental representation of su(n) for any n > 2 is not equivalent to its complex con-
jugate (breve) representation. Therefore these fundamental representations are not self-
conjugate/pseudoreal.

Consider the orthogonal group Lie algebras so(n,R). In this case the Lie algebra for the
fundamental representation consists of all real antisymmetric matrices A. Correspondingly,
the breve operation has no effect on elements in the fundamental representation. Show that,
because A is real and antisymmetric, the tilde operation (7.219) and the grave operation
(7.225) also have no effect for the fundamental representation. We conclude that the funda-
mental representation of so(n,R) is self conjugate for all three conjugacy definitions. Since
all representations can be obtained from the fundamental representation by suitable linear
combinations of tensor products, all three conjugacy operations will also have no effect on
any representation, and they are therefore all self conjugate for all conjugacy definitions

In summary, the representations of sp(2n), so(n), and su(2) are all self conjugate for all
three conjugacy operations. And for su(n) the tilde and breve conjugacy operations yield
the same result. Finally, for the case of su(n) with n > 2, it can be shown that there are
representations that are not self conjugate. See, for example, Exercise 5.8.29. In particular,
the representations 3 and 3̄ for su(3) are not equivalent.39

Subsequently we will also be interested in the Lorentz group Lie algebra and in s`(2,C),
which will be found to be the Lie algebra for the covering group of the Lorentz group. For
these Lie algebras the three conjugacy operations will again be useful. See Exercises 7.3.27,
7.3.29 through 7.3.31, and 8.2.14.

3.7.37. Review Exercise 7.36 which described tilde, breve, and grave rules for defining
conjugate matrices in Lie algebras. The purpose of this exercise is to extend these rules
to the associated matrix groups. Suppose the Lie algebra L has dimension n and basis
elements Bα. Let b = (b1, b2, · · · bn) be a collection of n real parameters, and consider the
group element

G(b) = exp(
n∑

α=1

bαBα). (3.7.239)

39Here the “bar” notation, which is customary, is used to refer to the use of what we have called the breve
conjugacy operator C̆ because this operator involves complex conjugation. Recall (7.223).
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In the case of the tilde rule, define the group element G̃(b) by the rule

G̃(b) = exp(
n∑

α=1

bαB̃α) = exp(−
n∑

α=1

bαB
T
α ). (3.7.240)

Show that
G̃(b) = [GT (b)]−1. (3.7.241)

[See (7.266).] Show that the tilde operation when acting as defined on group elements is
again an involution. That is, for group elements define a tilde operator, which we will call
D̃, by the rule

D̃G(b) = G̃(b) = [GT (b)]−1, (3.7.242)

and show that
D̃2G(b) = G(b). (3.7.243)

Moreover, verify that it follows from (7.242) and (7.243) that

D̃G̃(b) = G(b) = [G̃T (b)]−1, (3.7.244)

which is the counterpart to (7.242). Show that D̃ is also a group homomorphism. That is,
if G and G′ are any two group elements, then

D̃(GG′) = D̃(G)D̃(G′). (3.7.245)

Comparison of (7.222) and (7.245) shows that we have converted a Lie product (commutator)
homomorphism into a Lie group homomorphism.

In the cases of the breve and grave rules make definitions of their actions on group
elements analogous that for the tilde operation. For these rules show that

Ğ(b) = Ḡ(b) (3.7.246)

and
G̀(b) = [G†(b)]−1. (3.7.247)

[See (7.267).] Let D̆ and D̀ be the breve and grave operators which act on group elements
so that we may write

D̆G(b) = Ğ(b) = Ḡ(b) (3.7.248)

and
D̀G(b) = G̀(b) = [G†(b)]−1. (3.7.249)

Show that D̆ and D̀ are also involutions and group homomorphisms. Observe that if G is a
unitary matrix (G† = G−1) it follows from (7.249) that

G̀(b) = [G†(b)]−1 = G(b). (3.7.250)

Finally, review Exercise 1.6.18. Verify that the relation between K and Λ given by
(1.6.287) is the same as the relation between G̃(b) and G(b) given by (7.241). According to
Exercise 7.36 the Bα and the B̃α obey the same Lie algebra. This fact is consistent with
the result that K must be a Lorentz transformation matrix if Λ is a Lorentz transformation
matrix, and vice versa.
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3.7.38. Suppose g is a (m+n)×(m+n) diagonal matrix with m diagonal entries having value
+1 followed by n diagonal entries having value −1. Show that the set of all (m+n)×(m+n)
matrices O that satisfy the relation

OTgO = g (3.7.251)

forms a group. This group is called the indefinite orthogonal group, and is sometimes
denoted by the symbol O(m,n), or by the symbols O(m,n,R) and O(m,n,C) if the choice
of field needs to be explicit. Note that (7.251) continues to hold if g is replaced by −g,
and therefore there is no distinction between O(m,n) and O(n,m). Show from (7.251) that
there is the result

det(O) = ±1. (3.7.252)

Show that indefinite orthogonal matrices with determinant +1 form a subgroup, called
SO(m,n). Find the Lie algebra so(m,n,R), and show that it is equivalent to the Lie
algebra so(m+ n,R) when working over the complex field.

3.7.39. Review Exercise 7.38 above. Let g be the matrix defined there. Show that the set
of all complex (m+ n)× (m+ n) matrices U that satisfy the relation

U †gU = g (3.7.253)

forms a group. This group is called the indefinite unitary group, and is denoted by the
symbol U(m,n). Here the field is naturally C. Note that (7.253) continues to hold if g is
replaced by −g, and therefore there is no distinction between U(m,n) and U(n,m). Show
from (7.253) that there is the result

| det(U)| = 1. (3.7.254)

Verify that indefinite unitary matrices with determinant +1 form a subgroup. It is called
SU(m,n). Find the Lie algebra su(m,n), and show that it is equivalent to the Lie algebra
su(m+ n) when working over the complex field.

3.7.40. Review Exercise 7.38 above. Also look ahead and review Exercise 6.2.6. The 4× 4
real matrices Λ defined there form a group, generally called the Lorentz group. From (6.2.20)
we see that the Lorentz group is analogous to the rotation group SO(4,R) except the 4× 4
identity matrix I has been replaced by the 4 × 4 diagonal matrix g. Note that g has three
equal diagonal entries with the same sign, and one with the opposite sign. For this reason,
the Lorentz group is also referred to as SO(3, 1,R). Find the Lie algebra so(3, 1,R) and
show that it is equivalent to the Lie algebra so(4,R) when working over the complex field,
and hence also equivalent to su(2)⊕su(2). Since the representations of su(2) are well known,
the finite-dimensional (and nonunitary) representations of the Lorentz Lie algebra and Lie
group are also well understood. See Exercises 4.3.19, 4.3.20, and 7.3.28.

3.7.41. Suppose f and g are two elements of some group G. Using group multiplication,
form the group element h defined by the rule

h = (gf)−1fg = f−1g−1fg. (3.7.255)
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This element is called the group commutator of f and g. Note that if f and g commute,
fg = gf , then h = (gf)−1fg = (fg)−1fg = I.

Suppose that G is a matrix Lie group and consider elements f(s) and g(s) of the form

f(s) = exp(sa), (3.7.256)

g(s) = exp(sb), (3.7.257)

where a and b are in the Lie algebra of G. Let h(s) be the group commutator of f(s) and
g(s),

h(s) = f−1(s)g−1(s)f(s)g(s) = exp(−sa) exp(−sb) exp(sa) exp(sb). (3.7.258)

Show, using the BCH formula (7.41), that there is the relation

h(s) = exp
(
s2{a, b}+O(s3)

)
. (3.7.259)

Thus, for a matrix Lie group, there is a relation between the group commutator and the
Lie algebra commutator. It can be shown that an analogous relation holds for abstract Lie
groups: There is a relation between the group commutator and the Lie product of associated
elements in the Lie algebra.

For extra credit, use through third order the BCH formula (7.41) to show that

h(s) = exp
(
s2{a, b} − (s3/2){(a+ b), {a, b}}+O(s4)

)
. (3.7.260)

3.7.42. Suppose A and B are two n× n matrices that satisfy the relation

AB = I.

Show it follows that

BA = I,

and therefore A and B commute.
Suppose C and D are two commuting n×n matrices and that C is invertible. Show that

then C−1 and D also commute. Show that Cm and D also commute for all integer values
(positive, zero, and negative) of m.

Suppose that a matrix E is a function of C, and specifically is defined in terms of C as
some convergent power series in C (and possibly also powers of C−1 if C is invertible). Show
that then E and C also commute.

3.7.43. Review Exercise 7.31. There it is shown that the generators Kα for su(2) and the
generators Lα for so(3,R) can be selected to be anti-Hermitian and, writing the generators
generically as Jα, satisfy the same commutation rules

{Jα, Jβ} =
∑
γ

εαβγJ
γ (3.7.261)
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with real structure constants εαβγ. Verify that the commutation rules (7.248) are consistent
with the Jα being anti-Hermitian. That is, verify that the commutator of two anti-Hermitian
generators is again anti-Hermitian.

Correspondingly, the associated group elements U are of the form

U = exp(
∑
γ

λγJ
γ) (3.7.262)

with real parameters λγ. Verify that U as given by (7.262) is unitary when the λγ are real.
We might say this treatment of su(2) and so(3,R) is the mathematicians’ approach. By

contrast, in the quantum treatment of angular momentum, physicists work with Hermitian
generators, call them J̃α, that are required to satisfy the commutation rules

{J̃α, J̃β} =
∑
γ

iεαβγ J̃
γ (3.7.263)

with purely imaginary structure constants iεαβγ. Verify that the commutation rules (7.263)
are consistent with the J̃α being Hermitian. That is, verify that the commutator of two
Hermitian generators is anti-Hermitian.

Correspondingly, the associated group elements U are of the form

U = exp(
∑
γ

−iλγJ̃γ) (3.7.264)

with real parameters λγ. Verify that U as given by (7.264) is unitary when the λγ are real.
Verify that the mathematicians’ and quantum physicists’ approaches are connected by

the (complex ) change of basis

Jα = −iJ̃α ⇔ J̃α = iJα. (3.7.265)

That is, the Lie algebras defined by (2.61) and (2.63) are equivalent over the complex field.
Verify also that U as given by (2.62) and (2.64) are unaffected by this change of basis.

Why do quantum physicists insert what would appear to mathematicians to be super-
fluous factors of i? They do so because they wish to associate physical observables with
Hermitian operators in order to ensure that the expectation values and eigenvalues of phys-
ical observables are real numbers.

3.7.44. Suppose A is any n× n matrix. Verify the relations

[exp(A)]T = exp(AT ), (3.7.266)

[exp(A)]† = exp(A†). (3.7.267)

Suppose H is a Hermitian n× n matrix. Verify that then exp(H) is also Hermitian,

[exp(H)]† = exp(H). (3.7.268)

Verify the line of reasoning below to show that exp(H) is positive definite: Let v be any
nonzero n-component vector. Then there is the result

(v, exp(H)v) = (v, exp(H/2) exp(H/2)v) = (exp(H/2)v, exp(H/2)v)

= (w,w) > 0 (3.7.269)
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where we have employed the usual complex scalar product and

w = exp(H/2)v. (3.7.270)

3.7.45. Review Table 7.2 that provides the dimensions of the Classical Lie Algebras for
each integer value of `. Verify that, consistent with the Table, we may define functions A
through D by the rules

A(n) = dim[su(n)] = n2 − 1, (3.7.271)

B(n) = dim[so(n)] = (1/2)n(n− 1), n odd, (3.7.272)

C(n) = dim[sp(n)] = (1/2)n(n+ 1), n even, (3.7.273)

D(n) = dim[so(n)] = (1/2)n(n− 1), n even, (3.7.274)

where dim stands for dimension. Note that B(n) and D(n) may be regarded as odd n and
even n evaluations of a common formula. Recall Exercises 7.27 and 7.28. Suppose this
common formula is evaluated for negative even values of n. Show that

D(−n) = (1/2)(−n)(−n− 1) = (1/2)n(n+ 1) = C(n), n even. (3.7.275)

We also observe that if the right side of (7.271) is taken to define A(n) for all values of n,
then there is the relation

A(−n) = A(n). (3.7.276)

For a discussion of what to make of these results, see the book of P. Cvitanović cited at the
end of this chapter.

3.8 Exponential Representations of Group Elements

Lie group elements that are sufficiently near the identity can be written as exponentials of
elements in the corresponding Lie algebra. This rule which sends a Lie algebra element into
a group element is called the exponential map. Can this be done globally? That is, can
every Lie group element be written as the exponential of some element in the associated Lie
algebra? In this section we will answer this question for the Lie groups SO(n,R), SO(n,C),
U(n), SU(n), and Sp(2n,R).40 The answer for all these groups is yes save for Sp(2n,R)
where the matter is more complicated. Finally, we note that being global is not the same
as being a bijection. As is evident from (7.187) for SU(2), for example, v(θ,n) = v(θ′,n)
whenever θ and θ′ differ by a multiple of 4π. In general, exponentials of various elements in
the Lie algebra may result in the same group element.

40Exercise 8.2.16 shows that for the case of SL(2,C), the covering group of the Lorentz group, not every
element can be written in single exponential form. Nevertheless, every element of the Lorentz group can be
written in single exponential form.
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3.8.1 Exponential Representation of Orthogonal and Unitary
Matrices

Suppose O is an orthogonal matrix with unit determinant. Then it can be shown that there
is an antisymmetric matrix A such that

O = exp(A). (3.8.1)

Conversely, if A is an antisymmetric matrix, then the O given by (8.1) will be orthogonal
and have unit determinant. We conclude that every element O ∈ SO(n) can be written as
the exponent of an element A ∈ so(n). This is true when working over either the real or
the complex field. In particular, if O is real, then there is a real antisymmetric A satisfying
(8.1), and A will be complex if O is complex. Finally, consider all elements of the form

O(s) = exp(sA).

We see that all elements of SO(n) lie on some one-parameter subgroup of SO(n).
Similarly, suppose U is a unitary matrix. Then it can be shown that there is an anti-

Hermitian matrix A such that

U = exp(A). (3.8.2)

And, if U has unit determinant, then there is a traceless anti-Hermitian matrix A such that
(8.2) holds. Conversely, if A is anti-Hermitian, then the U given by (8.2) will be unitary;
and if A is also traceless, then U will have unit determinant as well. We conclude that every
element U ∈ U(n) can be written as the exponent of an element A ∈ u(n), and every element
U ∈ SU(n) can be written as the exponent of an element A ∈ su(n). Finally, consider all
elements of the form

U(s) = exp(sA).

We see that all elements of SU(n) lie on some one-parameter subgroup of SU(n).
In summary, the exponential maps (8.1) and (8.2) for the orthogonal and unitary groups

are global. That is, every orthogonal and every unitary matrix can be written as the expo-
nential of some element in the associated Lie algebra.

3.8.2 Exponential Representation of Symplectic Matrices

The case of Sp(2n,R) is more complicated. Again the discussion so far has shown that
symplectic matrices sufficiently near the identity element can be written as exponentials of
elements in the symplectic group Lie algebra. But what can be said about representing
symplectic matrices in general? Thanks to the work of Exercise 7.12 we know that not every
symplectic matrix can be written in single exponential form. The purpose of this subsection
is to study what can be accomplished.

To proceed, it is useful to employ polar decomposition. See Subsection 6.4 and Section
4.2. Any real nonsingular matrix M can be written uniquely in the form

M = PO, (3.8.3)
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where P is a real positive-definite symmetric matrix and O is a real orthogonal matrix. Now
suppose that M is symplectic. Using (1.9), the symplectic condition can be written in the
form

M = J−1(MT )−1J. (3.8.4)

Then, upon inserting the polar decomposition (8.3) into (8.4), one finds the relation

PO = J−1P−1JJ−1OJ. (3.8.5)

Next, observe that the matrix J−1P−1J is real, symmetric, and positive definite; and observe
that the matrix J−1OJ is real and orthogonal. Consequently, because polar decomposition
is unique, (8.5) implies the relations

P = J−1P−1J, (3.8.6)

O = J−1OJ. (3.8.7)

Using the fact that P is symmetric and O is orthogonal, (8.6) and (8.7) can also be written
in form

P = J−1(P T )−1J, (3.8.8)

O = J−1(OT )−1J. (3.8.9)

It follows that each of the matrices P and O are themselves symplectic.
The next thing to do is to work with the matrices O and P . Consider first the matrix

O. Since O is real orthogonal and has determinant +1 (O is symplectic), it can be written
in the form

O = exp(F ), (3.8.10)

where F is a real antisymmetric matrix,

F T = −F. (3.8.11)

Upon inserting the representation (8.10) into the condition (8.7), we find the condition

O = exp(F ) = exp(J−1FJ). (3.8.12)

Note that the matrix (J−1FJ) is real antisymmetric if the matrix F is. Therefore, in view
of (8.12), it is tempting to assume that F has the property

F = J−1FJ or JF = FJ. (3.8.13)

In general this assumption need not be correct because the logarithm of an orthogonal matrix
is not unique. However, it will be shown in the next section that we may indeed require
(8.13) for the present problem. Using (8.11), the condition (8.13) can also be written in the
form

F TJ + JF = 0. (3.8.14)

Now compare (8.14) with (7.29) or (7.33). According to the argument employed earlier, the
matrix F can be written in the form

F = JSc, (3.8.15)
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where Sc is a real symmetric matrix. Furthermore, since F commutes with J , see (8.13), it
follows that Sc commutes with J ,

ScJ = JSc. (3.8.16)

In summary, it has been shown that O can be written in the form

O = exp(JSc), (3.8.17)

where Sc is a real symmetric matrix that commutes with J .
It remains to see what can be said about the matrix P . Since P is real, symmetric, and

positive definite, it can be written in the form

P = exp(G), (3.8.18)

where G is real and symmetric,
GT = G. (3.8.19)

Moreover, it can be shown that the real and symmetric logarithm of a real symmetric positive
definite matrix is unique. Now insert the representation (8.18) into the condition (8.8) to
obtain the result

P = exp(G) = exp(−J−1GJ). (3.8.20)

Since the matrix (−J−1GJ) is real symmetric if the matrix G is, and since G is unique, it
follows from (8.20) that G has the property

(−J−1GJ) = G or GJ + JG = 0. (3.8.21)

Using (8.19), the condition (8.21) can be re-expressed in the form

GTJ + JG = 0. (3.8.22)

Consequently, G can also be written in the form

G = JSa, (3.8.23)

where Sa is a real symmetric matrix. However, in this case (8.19) implies the condition

JSa + SaJ = 0. (3.8.24)

That is, Sa anticommutes with J . In summary, it has been shown that P can be written in
the form

P = exp(JSa), (3.8.25)

where Sa is a real symmetric matrix that anticommutes with J .
Now combine (8.3), (8.17), and (8.25). The result is that any symplectic matrix can be

written in the form
M = exp(JSa) exp(JSc). (3.8.26)

It has been shown that the most general symplectic matrix can be written as the product of
two exponentials of elements in the symplectic group Lie algebra, and each of the elements
is of a special type.
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It is interesting to examine the properties of commuting and anticommuting with J in a
bit more detail. Let S be any symmetric matrix. Form the matrices Sa and Sc by the rules

Sa = (S − J−1SJ)/2,

Sc = (S + J−1SJ)/2. (3.8.27)

It is easily verified that Sa and Sc are symmetric and anticommute and commute respec-
tively with J as the notation suggests. And, if we wish, we may express the properties of
anticommuting and commuting by the relations

JSaJ−1 = −Sa,
JScJ−1 = Sc. (3.8.28)

Also, it is obvous by construction that

S = Sa + Sc. (3.8.29)

That is, any symmetric matrix can be uniquely decomposed into a sum of two symmetric
matrices that anticommute and commute with J respectively.

We have seen, according to (8.26), that any real symplectic matrix can be written as
the product of two symplectic matrices, each itself written in exponential form with the
exponent being a real Hamiltonian matrix. We also know, according to (7.36), that any
symplectic matrix sufficiently near the identity can be written in single exponential form.
Moreover, the two exponentials appearing in (8.26) can, in principle, be combined into a
single exponential using the Baker-Campbell-Hausdorff formula (7.41) providing the series
converges. Finally, we know from Exercise 7.12 that not every symplectic matrix can be
written as the exponential of a Hamiltonian matrix. Consequently, for Sp(2n,R), there must
be cases in which the Baker-Campbell-Hausdorff series diverges.

We have learned that in the case of Sp(2n,R) the exponential map is not global. It
follows, unlike the case for SO(n) and SU(n), that not every element of Sp(2n,R) lies on a
one-parameter subgroup of Sp(2n,R). Instead, as (8.26) shows, to reach some elements in
Sp(2n,R) from the identity requires taking a dogleg path.

Since the exponential map is not global in the case of Sp(2n,R), it is natural to ask
under what conditions a symplectic matrix can be written in single exponential form. It is
known that any matrix that is invertible (has nonzero determinant, or, equivalently, all its
eigenvalues are nonzero) has a logarithm. But, like the case of numbers, this logarithm may
be complex even if the matrix is real. Since any symplectic matrix has determinant +1, it
must have a logarithm. But this logarithm may be complex. It is known that a sufficient,
but not necessary condition, for a real invertible matrix to have a real logarithm is that
none of its eigenvalues be negative. It is also known that if a real invertible matrix has a
real square root, then it has a real logarithm and vice versa. What we are interested in
for real symplectic matrices is the possibility of the logarithm being real and Hamiltonian.
The analysis required to answer this question is complicated, and beyond the scope of our
present discussion. It is known that if a real symplectic matrix has a real logarithm, then
this logarithm will be Hamiltonian. For an analysis of the 2 × 2 case, see Section 8.7.2.
Basically, as one might guess from Exercise 7.12, problems can occur when −1 appears as a
repeated eigenvalue in Jordan blocks. Further information may be found in the references
listed at the end of this chapter.
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Exercises

3.8.1. Prove the statements made in Section 3.8.1 about orthogonal matrices.

3.8.2. Prove the statements made in Section 3.8.1 about unitary matrices.

3.8.3. Show that
exp(θJ) = I cos θ + J sin θ. (3.8.30)

3.8.4. Show that the matrices J,−I,−J can be written in the form exp(JSc). Find Sc in
each case.

3.8.5. Verify (8.5).

3.8.6. Verify that J−1P−1J is real, symmetric, and positive definite. Verify that J−1OJ is
real and orthogonal.

3.8.7. Verify (8.8) and (8.9), and the claim that O and P are symplectic.

3.8.8. Verify (8.12) using (8.9) and the definition (7.1).

3.8.9. Verify that (J−1FJ) is real antisymmetric if F is.

3.8.10. Verify that (−J−1GJ) is real symmetric if G is.

3.8.11. Verify (8.27) through (8.29).

3.8.12. Show that every matrix of the form M = exp(JSa) is symplectic and has all its
eigenvalues on the positive real axis. Show that every matrix of the form M = exp(JSc)
is symplectic, diagonalizable, and has all its eigenvalues on the unit circle. To prove the
“diagonalizable” claim you may have to read the next section, Section 9.

3.8.13. Let M and A be the symplectic matrices

M =

(
1 1
0 1

)
, A =

(
τ 0
0 1/τ

)
. (3.8.31)

Show that there is the symplectic conjugacy relation

AMA−1 =

(
1 τ 2

0 1

)
. (3.8.32)

3.8.14. Show that
exp(JSc) = cosh(JSc) + sinh(JSc), (3.8.33)

exp(JSa) = cosh(JSa) + sinh(JSa). (3.8.34)

Using the property that J commutes with Sc, show that

cosh(JSc) = I + (JSc)2/2! + (JS
c
)4/4! + · · ·

= I + J2(Sc)2/2! + J4(Sc)4/4! + · · ·
= I − (Sc)2/2! + (Sc)4/4! + · · · = cos(Sc), (3.8.35)
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sinh(JSc) = JSc + (JSc)3/3! + · · ·
= JSc + J3(Sc)3/3! + · · ·
= J [Sc − (Sc)3/3! + · · · ] = J sin(Sc). (3.8.36)

Thus, show that
exp(JSc) = cos(Sc) + J sin(Sc). (3.8.37)

This relation may be viewed as a symplectic Euler formula in which J plays the role of i.
Using the property that J anticommutes with Sa, show that

cosh(JSa) = I + (JSa)2/2! + (JS
a
)4/4! + · · ·

= I − J2(Sa)2/2! + J4(Sa)4/4! + · · ·
= I + (Sa)2/2! + (Sa)4/4! + · · · = cosh(Sa), (3.8.38)

sinh(JSa) = JSa + (JSa)3/3! + · · ·
= JSa − J3(Sa)3/3! + · · ·
= J [Sa + (Sa)3/3! + · · · ] = J sinh(Sa). (3.8.39)

Thus, show that
exp(JSa) = cosh(Sa) + J sinh(Sa). (3.8.40)

3.8.15. Show that N as given by (5.60) and (5.61) is symplectic. Let E` be the matrix
defined by the relation

E` =



01

02

. . .

E
[2]
`

. . .

0n−1

0n


. (3.8.41)

Here each 0` is a 2× 2 null matrix, E
[2]
` is the 2× 2 identity matrix,

E
[2]
` =

(
1 0
0 1

)
, (3.8.42)

and all other entries are zero so that the 2n× 2n identity matrix has the decomposition

I =
n∑
`=1

E`. (3.8.43)

Show that N can be written in the exponential form

N = exp(JSc) (3.8.44)
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with J given by (2.10) and Sc given by

Sc =
n∑
`=1

φ`E
`. (3.8.45)

Note, as the notation is meant to indicate, that Sc commutes with J . Suppose that (5.53)
is solved for M to give the result

M = ANA−1. (3.8.46)

Use this result and (8.44) to show that

M = ANA−1 = A[exp(JSc)]A−1 = exp(AJScA−1). (3.8.47)

Next show that
AJ = J(A−1)T . (3.8.48)

Finally, show that M can be written in the form M = exp(JS) with

S = (A−1)TScA−1. (3.8.49)

3.8.16. This exercise presumes that you have read Exercise 8.15 above. Its purpose is to
describe various invariant quadratic forms.

Suppose a real 2n × 2n symplectic matrix M can be written in the exponential form
(7.30) with S real and symmetric. Let z = (z1, z2, · · · z2n) be the vector formed from the 2n
variables z1 through z2n. Define the quadratic form Q(z) by the rule

Q(z) = (z, Sz) (3.8.50)

where (∗, ∗) denotes the usual real vector inner product. Suppose that z̄ is defined in terms
of M and z by the rule

z̄ = Mz. (3.8.51)

Show that Q is invariant under this action. That is, show that

Q(z̄) = Q(Mz) = Q(z). (3.8.52)

Begin by verifying that

Q(z̄) = (z̄, Sz̄) = (Mz, SMz) = (z,MTSMz). (3.8.53)

Next verify that

MTSM = −MTJJSM = −MTJMJS = −JJS = S, (3.8.54)

from which it follows that

Q(z̄) = (z̄, Sz̄) = (z, Sz) = Q(z). (3.8.55)

Consider the quadratic forms

Qk(z) = (z, J [JS]kz) for k = 1, 2, · · · (3.8.56)
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and

Q′k(z) = (z, [SJ ]kJz) for k = 1, 2, · · · . (3.8.57)

Let a and b be any two possibly non-commuting entities. For all integers k > 0 verify the
identity

(ab)k = a(ba)k−1b. (3.8.58)

Use this identity to verify that

Qk(z) = Q′k(z). (3.8.59)

Show that the Qk(z) are invariant and vanish for even k.
Consider the quadratic forms

Q̃k(z) = (z, JMkz) for k = 1, 2, · · · (3.8.60)

and

Q̃′k(z) = (z, [MT ]kJz) for k = 1, 2, · · · . (3.8.61)

Show from the symplectic condition that Q̃′k(z) can also be written in the form

Q̃′k(z) = (z, JM−kz) for k = 1, 2, · · · (3.8.62)

so that Q̃k and Q̃′k are analogous. Show that Q̃k and Q̃′k are also invariant. Note that the
construction of these invariants does not require that M can be written in exponential form.

Suppose f is some function that sends the 2n × 2n matrix JS to some other 2n × 2n
matrix f(JS), and suppose that JS and f(JS) commute. Suppose also that (7.30) holds.
Show that Qf defined by

Qf (z) = (z, Jf(JS)z) (3.8.63)

is then an invariant function. Similarly, suppose g is some function that sends the 2n× 2n
matrix M to some other 2n × 2n matrix g(M), and suppose that M and g(M) commute.
Show that Qg defined by

Qg(z) = (z, Jg(M)z) (3.8.64)

is then an invariant function. See Exercise 11.4 for an example of such an invariant.

3.8.17. Work Exercises 8.15 and 8.16 above if you have no already done so. One might
wonder whether/how all the invariants found in Exercise 8.16 are related. With what we
know so far, we can study this question for the case in which all the eigenvalues of M lie on
the unit circle and are distinct. In that case we can use the normal-form results of Section
3.5.

Let us begin with the case of Q(z). From (8.49) there is the result

Q(z) = (z, Sz) = (z, [A−1]TScA−1z) = (A−1z, ScA−1z). (3.8.65)

Consider the normalized quadratic form Qnorm(z) defined by writing

Qnorm(z) = (z, Scz). (3.8.66)
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Show from (8.41) and (8.45) that there is the result

Qnorm(z) =
n∑
`=1

φ`(p
2
` + q2

` ). (3.8.67)

Define transformed variables ẑ by writing

ẑ = A−1z. (3.8.68)

With this definition, show that (8.65) can be rewritten in the form

Q(z) = (A−1z, ScA−1z) = (ẑ, Scẑ) = Qnorm(ẑ) =
n∑
`=1

φ`(p̂
2
` + q̂2

` ). (3.8.69)

Let us next consider the Qk. Show from Exercise 8.15 that

JS = AJScA−1, (3.8.70)

from which it follows that
(JS)k = A(JSc)kA−1 (3.8.71)

and
J(JS)k = JA(JSc)kA−1 = (A−1)TJ(JSc)kA−1. (3.8.72)

Consequently, show that

Qk(z) = (z, J(JS)kz) = (z, (A−1)TJ(JSc)kA−1z) = (A−1z, J(JSc)kA−1z). (3.8.73)

Define Qnorm
k (z) by writing

Qnorm
k (z) = (z, J(JSc)kz). (3.8.74)

Then, again using (8.68), show that

Qk(z) = Qnorm
k (ẑ). (3.8.75)

We still have to evaluate Qnorm
k . Since J and Sc commute, we may write

J(JSc)k = Jk+1(Sc)k (3.8.76)

and therefore
Qnorm
k (z) = (z, Jk+1(Sc)kz). (3.8.77)

We already know that we only have to deal with the odd k case, in which case

Jk+1 = (−1)(k+1)/2I. (3.8.78)

Also, show from (8.45) that

(Sc)k =
n∑
`=1

(φ`)
kE`. (3.8.79)
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Show, therefore, that for odd k there is the result

Qnorm
k (z) = (−1)(k+1)/2

n∑
`=1

(φ`)
k(p2

` + q2
` ). (3.8.80)

It follows that

Qk(z) = (−1)(k+1)/2

n∑
`=1

(φ`)
k(p̂2

` + q̂2
` ). (3.8.81)

The last task is to consider Q̃k and Q̃′k. From the representation (8.46) show that

Mk = (ANA−1)k = ANkA−1 (3.8.82)

and consequently

Q̃k(z) = (z, JMkz) = (z, JANkA−1z) = (z, [A−1]TJNkA−1z)

= (A−1z, JNkA−1z) = (ẑ, JNkẑ) = Q̃norm
k (ẑ) (3.8.83)

where
Q̃norm
k (z) = (z, JNkz). (3.8.84)

Let us write N as given by (5.60) in the more explicit form

N(φ1, φ2, · · ·φn) =


R1(φ1)

R2(φ2)
. . .

Rn(φn)

 (3.8.85)

to emphasize that it depends on n angles φ1 through φn. Verify that

[N(φ1, φ2, · · ·φn)]k = N(kφ1, kφ2, · · · kφn) (3.8.86)

so that
Q̃norm
k (z) = (z, JNkz) = (z, JN(kφ1, kφ2, · · · kφn)z). (3.8.87)

Show from (5.60) and (5.61) that there is the result

(z, JNz) = −
n∑
`=1

(sinφ`)(p
2
` + q2

` ), (3.8.88)

and therefore

(z, JN(kφ1, kφ2, · · · kφn)z) = −
n∑
`=1

(sin kφ`)(p
2
` + q2

` ). (3.8.89)

You have shown that

Q̃k(z) = −
n∑
`=1

(sin kφ`)(p̂
2
` + q̂2

` ). (3.8.90)
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Verify also, in view of (8.62), that

Q̃′k(z) =
n∑
`=1

(sin kφ`)(p̂
2
` + q̂2

` ). (3.8.91)

At this point it is evident that all the invariant quadratic forms found above involve the
n quantities (p̂2

` + q̂2
` ). You are now to show that these n quantities themselves are also

invariant under the action of M . In particular, define quadratic forms I`(z) by the rule

I`(z) = (z, [A−1]TE`A
−1z). (3.8.92)

Your task is to show that these n quadratic forms are equal to the (p̂2
` + q̂2

` ), and are also
invariant under the action of M . In so doing, you will have shown that all the (infinite in
number) invariant quadratic forms found above are functions of the n functionally indepen-
dent invariants I`.

Begin by verifying that

I`(z) = (z, [A−1]TE`A
−1z) = (A−1z, E`A

−1z) = (ẑ, E`ẑ) = p̂2
` + q̂2

` . (3.8.93)

Next, as preparatory steps, show that N commutes with each E` and that N is orthogonal.
Finally, verify that the I` are invariant under the action of M by checking that

I`(Mz) = (Mz, [A−1]TE`A
−1Mz) = (ANA−1z, [A−1]TE`A

−1ANA−1z)

= (A−1z,NTAT [A−1]TE`NA
−1z) = (A−1z,NTE`NA

−1z)

= (A−1z,NTNE`A
−1z) = (A−1z, E`A

−1z) = (z, [A−1]TE`A
−1z)

= I`(z). (3.8.94)

Here again you will need to use the representation (8.46).

3.8.18. This exercise is devoted to the Krein-Moser theorem. It presumes that you have
worked Exercises 8.16 and 8.17 above.

Let M be a real symplectic matrix all of whose eigenvalues are distinct, lie on the unit
circle, and are different from ±1. Suppose we compute the quadratic form Q̃1(z) as given
by (8.60). For notational convenience we will simply call it Q. Then we know from (8.90)
that it has the representation

Q(z) = −
n∑
`=1

(sinφ`)(p̂
2
` + q̂2

` ). (3.8.95)

We have agreed to employ the range φ` ∈ (−π, π) and to exclude the possibilities φ` = 0
and φ` = ±π. Show that as a consequence there is the relation

sign(sinφ`) = sign(φ`). (3.8.96)

It follows that Q(z) is a negative-definite quadratic form if all phase advances are positive,
and a positive-definite quadratic form if all phase advances are negative. If some phase
advances are positive and some are negative, then Q(z) is an indefinite quadratic form.
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Now suppose, for example, that all phase advances are positive, and that two of them,
say φ1 and φ2, are nearly equal. Then the eigenvalues λ1 and λ2 associated with each of
them, as given by (5.39), are very nearly equal so that they are likely to collide if M is
perturbed. According to the discussion in Section 3.5, these two eigenvalues will have the
same signature, namely +1. There will be another pair λ−1 and λ−2 given by (5.37). They
will also have the same signature, namely -1, and they will also collide if the first pair collides.
Suppose that each pair does collide under perturbation of M , and afterward, contrary to the
Krein-Moser theorem, each pair leaves the unit circle to form a Krein quartet. See Figure
5.1. Then there will be two eigenvalues, call them λ+ and λ̄+, such that

|λ+| = |λ̄+| > 1. (3.8.97)

Show that, correspondingly, there will then be an initial condition z0 such that the distance
from the origin of the points zk given by

zk = Mkz0 (3.8.98)

grows without bound as k →∞.
Another more delicate situation that we need to consider is that M becomes undiago-

nalizable when some eigenvalues coincide so that they are no longer distinct. Then the best
that can be achieved for M is that it can be brought to Jordan normal form with some
+1’s above the diagonal. Show that there will again be an initial condition z0 such that the
distance from the origin of the points zk given by (8.98) grows without bound as k →∞.

Under the assumptions made, Q is negative definite beforeM is perturbed. By continuity,
it will remain negative definite under perturbation of M . See Appendix O. But now we have
reached a contradiction. Show that if zk grows without bound as k →∞ and Q is negative
definite, then Q(zk) must become ever more negative as k →∞. Indeed, suppose that after
M is perturbed we use the representation (O.7) for Q.41 We know that all the σj will be
negative because Q is negative definite. Let smin be the minimum of the quantities −σj.
Show that

−Q(z) ≥ smin||z||2. (3.8.99)

But, because Q is invariant, we must also have the relation

Q(zk) = Q(z0) (3.8.100)

so that Q(zk) must, in fact, remain constant as k → ∞. It follows that the eigenvalues
associated with φ1 and φ2 cannot leave the unit circle as M is perturbed, nor can M become
undiagonalizable.

Carry out similar reasoning for the case where all phase advances are negative. Finally,
show that Q is indefinite if some phase advances are positive and some are negative so that
the above reasoning cannot be applied in that case. In fact, Exercise 25.2.9 provides an
example for which two pairs of eigenvalues of opposite signature do indeed collide and then
leave the unit circle to become a Krein quartet.

41The representation (8.95) cannot be employed in this case because its construction required that all the
eigenvalues be on the unit circle and distinct.
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Suppose that Q is indefinite before M is perturbed. Suppose also that two pairs of
eigenvalues do come off the unit circle when M is perturbed. Show that Q must then
remain indefinite after M is perturbed. Indeed, show that there is a contradiction if Q
becomes definite.

We have used the invariant quadratic form Q̃1(z) in all our analysis above. Show that
Q̃′1(z), and the Qc(z) described in Exercise 11.4 of Section 3.11, could also have been used.
Note that we need an invariant form that is defined in terms of M itself since, at least
without further work, we cannot presume that a suitable S, as employed to construct the
Qk(z) in Exercise 8.16, can be found after M is perturbed. Recall that in that exercise
our construction of S itself assumed that the eigenvalues of M were on the unit circle and
distinct. What is needed, if we are not sure this is the case, is some other way of constructing
S from M , say by proving the existence of logM and verifying that it has various desired
properties.

3.9 Unitary Subgroup Structure

It is easily verified that the commutator of any two matrices of the form JSc is again a
matrix of the form JSc. Consequently, matrices of the form JSc constitute a Lie algebra all
by themselves. By contrast, the commutator of a matrix of the form JSc with that of the
form JSa is again a matrix of the form JSa. Finally, the commutator of two matrices of the
form JSa is a matrix of the form JSc. We summarize these results by writing the relations

{JSc, JSc′} ∝ JSc′′, (3.9.1)

{JSc, JSa} ∝ JSa′, (3.9.2)

{JSa, JSa′} ∝ JSc. (3.9.3)

Since matrices of the form JSc form a Lie algebra, their exponentials must form a group,
and this group will be a subgroup of the full symplectic group. Let us call this subgroup
H. We know that it is symplectic and, since it arose from polar decomposition [see (8.15)],
it is also orthogonal.42 Therefore H is in the intersection of the orthogonal and symplectic
groups,

H ⊆ [O(2n,R) ∩ Sp(2n,R)]. (3.9.4)

The purpose of this section is to study H. For this study it is useful to employ the form
(1.1) for J . We will find that H is isomorphic to the unitary group U(n).

The most general 2n× 2n real symmetric matrix S can be written in the block form

S =

(
A B
BT C

)
, (3.9.5)

where the matrices A,B, and C are n × n and real, and the matrices A and C are themselves
symmetric,

AT = A, (3.9.6)

42Note also that matrices of the form JSc are antisymmetric and therefore, when exponentiated, must
produce orthogonal matrices.



356 3. SYMPLECTIC MATRICES AND LIE ALGEBRAS/GROUPS

CT = C. (3.9.7)

Requiring that J commute with S gives the restrictions

BT = −B (3.9.8)

C = A. (3.9.9)

Thus, the most general Sc is of the form

Sc =

(
A B
−B A

)
(3.9.10)

with the restrictions (9.6) and (9.8). Correspondingly, JSc is of the form

JSc =

(
−B A
−A −B

)
. (3.9.11)

Let W be the unitary and (complex) symplectic matrix

W =
1√
2

(
I iI
iI I

)
. (3.9.12)

Here each block in W is n × n. Then it is easily verified that the similarity transformation
produced by W brings matrices of the form JSc to block diagonal form. From (9.11) and
(9.12) we find the result

W−1(JSc)W =

(
−B + iA 0

0 −B − iA

)
. (3.9.13)

Here each block is again n × n. Now observe that matrices of the form −B + iA with A
and B real and obeying (9.6) and (9.8) span the space of all n× n anti-Hermitian matrices.
Consequently, upon exponentiation, matrices of the form−B+iA generate the unitary group
U(n). Correspondingly, the matrices −B−iA generate the complex conjugate representation
for which we employ the abusive notation U(n). Therefore, the Lie algebra spanned by the
matrices JSc is reducible, and is a variant of u(n), the Lie algebra of U(n).

To see how this works in more detail, exponentiate both sides of (9.13) to get the result

exp[W−1(JSc)W ] =

(
exp(−B + iA) 0

0 exp(−B − iA)

)
. (3.9.14)

Define a matrix v by the rule
v = exp(−B + iA). (3.9.15)

As described earlier, v is unitary as a result of (9.6) and (9.8),

v† = v−1. (3.9.16)

Also, any unitary matrix can be written in the form (9.15). Next, observe that the left side
of (9.14) can be written in the form

exp[W−1(JSc)W ] = W−1 exp(JSc)W = W−1MW. (3.9.17)
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Finally, solving (9.17) and (9.14) for M gives the result

M(v) = W

(
v 0
0 v

)
W−1. (3.9.18)

Suppose m is an arbitrary n × n matrix with possibly complex entries. Define an asso-
ciated 2n× 2n matrix M(m) by the rule

M(m) = W

(
m 0
0 m

)
W−1. (3.9.19)

Then it is easily verified that there are the relations

M(In) = I2n, (3.9.20)

M(m1m2) = M(m1)M(m2), (3.9.21)

M(m−1) = M−1(m), (3.9.22)

M †(m) = M(m†). (3.9.23)

Here In denotes the n×n identity matrix. Also, if (9.19) is multiplied out explicitly, we find
the result

M(m) =

(
Re(m) Im(m)
−Im(m) Re(m)

)
. (3.9.24)

It follows that M(m) is real for any m. Consequently, we also have the relation

MT (m) = M †(m) = M(m†). (3.9.25)

Use of (9.24) for the case m = iIn gives the result

M(iIn) =

(
0 In
−In 0

)
= J. (3.9.26)

[Note that the matrix (iIn) is unitary. Note also that (9.26) is consistent with J providing
an almost complex structure. See Exercise 2.6.] Suppose we compute MTJM . By using
(9.21), (9.25), and (9.26), we find the result

MT (m)JM(m) = M(m†)M(iIn)M(m) = M [m†(iIn)m]

= M [m†m(iIn)] = M(m†m)M(iIn)

= M(m†m)J. (3.9.27)

However, from (9.24) we also have the result

M(m†m) =

(
Re(m†m) Im(m†m)
−Im(m†m) Re(m†m)

)
. (3.9.28)

Consequently, inspection of (9.27) and (9.28) shows that a necessary and sufficient condition
for M(m) to be symplectic is that m be unitary,

m†m = I. (3.9.29)
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Also, if m is unitary, then use of (9.25) and (9.22) gives the result

MT (m) = M †(m) = M(m†) = M(m−1) = M−1(m). (3.9.30)

Thus M(m) is also orthogonal if m is unitary.
Conversely, suppose M is a real symplectic matrix that is also orthogonal. Write M in

the form

M =

(
a b
c d

)
, (3.9.31)

where the matrices a, b, c, and d are real and n×n. Impose on M the condition (8.7), which
is equivalent to M being both sympletic and orthogonal. See (1.9). Doing so gives the
results

c = −b , d = a. (3.9.32)

Consequently, a real symplectic orthogonal M must be of the form

M =

(
a b
−b a

)
. (3.9.33)

Next, define the n× n matrix m by the relation

m = a+ ib. (3.9.34)

As a result of (9.33) and (9.34), M can be written in the form

M = M(m) (3.9.35)

with M(m) defined by (9.24). Finally, as has been seen, use of the symplectic condition for
M implies that m is unitary, so (9.30) also holds. Thus, we conclude that (9.24), (9.34),
and (9.35) give a one-to-one correspondence between 2n × 2n real symplectic orthogonal
matrices and n × n unitary matrices. Moreover, the relations (9.20) through (9.22) show
that this correspondence is an isomorphism. More precisely, the set of 2n×2n real symplectic
orthogonal matrices forms a group that is the representation U(n)⊕U(n) of U(n). We will
sometimes refer to these matrices, which form the subgroup we have called H, as the U(n)
subgroup of Sp(2n,R).

At this point we can also provide another proof of the fact that symplectic matrices
must have determinant +1. For simplicity, we will restrict our discussion to the case of real
symplectic matrices. Suppose M is written in the polar form (8.3). Then we know from
(8.8) and (8.9) that both factors P and O are symplectic and hence, according to (1.8), must
satisfy the relations

detP = ±1, (3.9.36)

detO = ±1. (3.9.37)

But since P is real positive definite and symmetric, its eigenvalues must be real and positive,
and hence its determinant must be positive. Thus we must have the relation

detP = +1. (3.9.38)
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Next consider the matrix O, which is symplectic and real orthogonal. According to (9.35)
and (9.19), O can be written in the form

O = W

(
m 0
0 m

)
W−1. (3.9.39)

Now take the determinant of both sides of (9.39). Doing so gives the result

det(O) = [det(W )][det(m)][det(m)][det(W−1)]

= [det(m)][det(m)] = | det(m)|2 ≥ 0. (3.9.40)

Comparison of (9.37) and (9.40) gives the result

detO = +1. (3.9.41)

Note that (9.40) and (9.41) are consistent with the fact that | det(m)|2 = 1 for any unitary
matrix m. And from (8.3), (9.38), and (9.41) we conclude that

detM = +1. (3.9.42)

Finally it remains to be shown, as promised, that a real symplectic orthogonal matrix
M can be written in the form (8.10) with F real and satisfying (8.11) and (8.13). As has
been seen, such an M can be written in the form (9.19) with m unitary. Since m is unitary,
there exist real matrices A and B satisfying (9.6) and (9.8) such that m can be written in
the form

m = exp(−B + iA). (3.9.43)

Correspondingly, using (9.43) and (9.19), M can be written in the form

M = W

(
exp(−B + iA) 0

0 exp(−B − iA)

)
W−1. (3.9.44)

However, the right side of (9.44) can be manipulated to take the form

W

(
exp(−B + iA) 0

0 exp(−B − iA)

)
W−1 = W exp(H)W−1 = exp(WHW−1), (3.9.45)

where here H is a matrix defined by the relation

H =

(
−B + iA 0

0 −B − iA

)
. (3.9.46)

Define a matrix F by the relation

F = WHW−1. (3.9.47)

Then, use of (9.44) through (9.47) gives the result

M = exp(F ). (3.9.48)
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Also, explicit calculation using (9.46), (9.47), and (9.12) gives the result

F =

(
−B A
−A −B

)
. (3.9.49)

It is readily verified from (9.6) and (9.8) that F satisfies (8.11) and (8.13). Finally, if this
F is used in (8.15) to solve for Sc, one finds the result (9.10).

We close this section with one last observation. Consider the n × n diagonal unitary
matrix v given by the relation

v(φ1, φ2, · · ·φn) =


exp(iφ1)

exp(iφ2)
. . .

exp(iφn)

 . (3.9.50)

Let V (φ1, φ2, · · ·φn) be the associated real symplectic and orthogonal matrix given by the
relation

V = M(v). (3.9.51)

Explicit calculation gives the result

V =

(
Re(v) Im(v)
−Im(v) Re(v)

)
=

(
C S
−S C

)
. (3.9.52)

Here C and S are n× n diagonal matrices given by the relations

C =


cos(φ1)

cos(φ2)
. . .

cos(φn)

 , (3.9.53)

S =


sin(φ1)

sin(φ2)
. . .

sin(φn)

 . (3.9.54)

Let us seek to write V in exponential form. Since V belongs to the U(n) subgroup of
Sp(2n,R), there must be a matrix Ŝc such that

V = exp(JŜc). (3.9.55)

From Exercise 3.8.14 we know that

V = exp(JŜc) = cos(Ŝc) + J sin(Ŝc). (3.9.56)

But we also see from (9.52) that there is the relation

V =

(
C S
−S C

)
=

(
C 0
0 C

)
+

(
0 S
−S 0

)
=

(
C 0
0 C

)
+ J

(
S 0
0 S

)
. (3.9.57)
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Upon comparing (9.56) and (9.57) we find that

cos(Ŝc) =

(
C 0
0 C

)
(3.9.58)

and

sin(Ŝc) =

(
S 0
0 S

)
. (3.9.59)

It follows that

Ŝc =

(
φ 0
0 φ

)
(3.9.60)

where φ is the diagonal matrix

φ =


φ1

φ2

. . .

φn

 . (3.9.61)

Evidently incrementing any of the angles φ` by 2π brings V (or v) back to itself. Thus
these elements form an n-torus within Sp(2n,R). An n-torus is the topological product of n
circles, has dimension n, and will be denoted by the symbol T n. The n-torus V (φ1, φ2, · · ·φn),
with each φ` ranging over [0, 2π], is called a maximal torus within Sp(2n,R) because there
is no torus within Sp(2n,R) having a dimension larger than n.

By construction, V is symplectic with with respect to the J given by (1.1). Let us find
the corresponding V ′ that is symplectic with respect to the J ′ given by (2.10). According
to (2.15), it is given by the relation

V ′ = PV P T (3.9.62)

where, here, P is the permutation matrix of Section 3.2. Note that, since P is orthogonal,
V ′ will also be orthogonal. It is easily verified that carrying out the calculation (9.62) gives
the result

V ′(φ1, φ2, · · ·φn) = N(φ1, φ2, · · ·φn) (3.9.63)

where N is given by (8.85). Observe that the normal form N given by (8.85), or by (5.60)
and (5.61), is orthogonal and real symplectic for the J ′ given by (2.10). Moreover, from the
work of Section 3.5, we know that any real symplectic M with all eigenvalues distinct and
on the unit circle is conjugate to such an N by a real symplectic similarity transformation.
See also Exercises (8.9) and (8.12). We conclude that all these matrices are related to the
maximal n-torus V (φ1, φ2, · · ·φn).

Exercises

3.9.1. Verify the relations (9.1) through (9.3).
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3.9.2. Consider the matrix M written in the form (8.26). Show that it can also be written
in the form

M = exp(JSc) exp(JSa
′
). (3.9.64)

Find the matrix Sa
′
.

Answer: Sa
′

= [exp(−JSc)]Sa[exp(JSc)]. Show that Sa
′

is symmetric and anticommutes
with J .

3.9.3. Verify that the requirement that J commute with S does indeed give the restrictions
(9.8) and (9.9).

3.9.4. Verify that W as given by (9.12) is unitary. That is, W †W = I. Show also that W
is (complex) symplectic. That is, show that W belongs to Sp(2n,C).

3.9.5. Verify (9.13).

3.9.6. Verify (9.17).

3.9.7. Verify (9.20) through (9.23).

3.9.8. Verify (9.24).

3.9.9. Verify (9.25) and (9.30).

3.9.10. Find the dimension of the Lie algebra generated by all 2n×2n matrices of the form
JSc. Verify that this dimension is the same as that of u(n). See Exercise 7.27. Find the
dimension of the vector space spanned by all 2n× 2n matrices of the form JSa. You should
have found the dimensions n2 and (n2 + n), respectively. Verify, in accord with (8.29), that
their sum is dim sp(2n) as given by (7.42).

3.9.11. Verify (9.49) starting with (9.43) and (9.12). Verify that F satisfies (8.11) and
(8.13).

3.9.12. Use the methods of this section to show that all (real) symplectic matrices of the
form exp(JSc), i.e. all real symplectic orthogonal matrices, can be brought to the normal
form (5.60) and (5.61) even if the eigenvalues are not necessarily distinct. In addition, show
that the transforming matrix A can be taken to be both real symplectic and orthogonal.
Hint: Use the fact that any unitary matrix can be brought to diagonal form by a unitary
similarity transformation.

3.9.13. Suppose M is real orthogonal and symplectic with respect to the J of (1.1). Show
that then M ′ as given by (2.15) is real orthogonal and symplectic with respect to the J ′ of
(2.10), and vice versa.

3.9.14. Show that J belongs to the U(n) subgroup of Sp(2n,R), and also commutes with
all matrices in U(n).

3.9.15. Verify the relations (9.36) through (9.42).

3.9.16. Was the condition detM = +1 used to derive (9.48) and (9.49)? Show that (9.48),
(9.49), (9.8), and (7.104) imply the relation det(M) = +1.
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3.9.17. Verify (9.63).

3.9.18. Refer to Exercise 2.6. Given the real 2n-vector z in (2.18), let w(z) denote the
complex n-vector given by (2.19). Suppose m is a (possibly complex) n× n matrix. Let m
act on w to get the result

mw = [Re(m) + iIm(m)][x+ iy]

= [Re(m)x− Im(m)y] + i[Im(m)x+ Re(m)y]. (3.9.65)

Define a 2n× 2n real matrix N(m) by the rule

N(m) =

(
Re(m) −Im(m)
Im(m) Re(m)

)
. (3.9.66)

Prove the relations

mw(z) = w(N(m)z), (3.9.67)

(mw,mw′) = (Nz,Nz′) + i(Nz, JNz′). (3.9.68)

Suppose m is unitary. Show that N is then both orthogonal and symplectic. Refer to (9.23).
Show that

N(m) = M(m), (3.9.69)

where an overbar denotes the operation of complex conjugation. Show that if m is unitary,
then so is m.

3.9.19. The purpose of this exercise is to understand more about the correspondence re-
lation (9.19). Consider the set of all matrices g ∈ GL(2n,R). Next consider the subset of
such matrices that also commute with J . Show that these matrices form a subgroup H of
GL(2n,R). But, what is this subgroup H?

Write g in the block form

g =

(
a b
c d

)
, (3.9.70)

where the matrices a, b, c, and d are real and n× n. Show that there are the results

Jg =

(
c d
−a −b

)
, (3.9.71)

and

gJ =

(
−b a
−d c

)
. (3.9.72)

Show that requiring that g commute with J yields the restrictions

c = −b (3.9.73)

and

d = a. (3.9.74)
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Thus, g is of the form

g =

(
a b
−b a

)
. (3.9.75)

Show that the dimension of H is 2n2.
Next define matrices A and B by the rules

A =

(
a 0
0 a

)
, (3.9.76)

and

B =

(
b 0
0 b

)
. (3.9.77)

Verify that both A and B commute with J . Show that there is also the relation

JB =

(
0 b
−b 0

)
. (3.9.78)

Therefore, we may also write
g = A+ JB. (3.9.79)

Suppose g1 and g2 are two matrices that commute with J and we use the representation
(9.79) to write

gk = Ak + JBk. (3.9.80)

Then, recalling that the Ak and Bk commute with J and that J2 = −I, show that there is
the product relation

g1g2 = (A1A2 −B1B2) + J(A1B2 +B1A2). (3.9.81)

We see that, in (9.80) and (9.81), the matrix J plays a role analogous to the imaginary
number i. Recall Exercise 2.6 that dealt with almost complex structure.

This analogy can be made explicit using the machinery of this section. An arbitrary
n×n matrix m with possibly complex entries can be written in the form (9.34) where a and
b are real n× n matrices. Let us multiply two such matrices together. Show that so doing
gives the result

m1m2 = (a1a2 − b1b2) + i(a1b2 + b1a2). (3.9.82)

Note the resemblance between the pairs (9.79), (9.34) and (9.81), (9.82). To pursue the
analogy further, verify that there is the relation

g = M(m). (3.9.83)

Next take the determinant of both sides of (9.83). Show that doing so gives the result

det(g) = [det(W )][det(m)][det(m)][det(W−1)]

= [det(m)][det(m)] = | det(m)|2 ≥ 0. (3.9.84)

Matrices of the form (9.34) constitute the group GL(n,C) provided we add the condition

det(m) 6= 0. (3.9.85)



3.9. UNITARY SUBGROUP STRUCTURE 365

In view of (9.20) through (9.22), you have shown that the set of matrices g ∈ GL(2n,R,+)
that also commute with J constitutes a group that is the representation GL(n,C)⊕GL(n,C)
of GL(n,C); and (9.19) is the relation that provides the isomorphism between them. Note,
as a sanity check, that the dimension of GL(n,C) is 2n2, which you have already shown is
also the dimension of H.

Suppose we impose the further condition

det(m) = 1. (3.9.86)

Show that then

det(g) = 1. (3.9.87)

Matrices of the form (9.34) subject to the further condition (9.86) constitute the group
SL(n,C). In view of (9.20) through (9.22) and (9.87), you have shown that the set of
matrices g ∈ SL(2n,R) that also commute with J constitutes a group that is isomorphic
to SL(n,C). More precisely, the set of matrices g ∈ SL(2n,R) that also commute with J
constitutes a group that is the representation SL(n,C)⊕ SL(n,C) of SL(n,C).

3.9.20. This exercise explores some further properties of the matrix W given by (9.12). To
begin, review Exercise 9.4. Next, show that from (9.19) and (9.26) that there is the relation

WJW−1 =

(
iI 0
0 −iI

)
. (3.9.88)

Thus, W provides a similarity transformation that diagonalizes J .43

Suppose a vector w is defined by the rule

w = Wz. (3.9.89)

Show that if z is given by (1.7.9), then w has the entries

w = (1/
√

2)(q1 + ip1, · · · , qn + ipn; iq1 + p1, · · · , iqn + pn). (3.9.90)

Suppose instead a vector w is defined by the rule

w = W−1z. (3.9.91)

Show that then

w = (1/
√

2)(q1 − ip1, · · · , qn − ipn;−iq1 + p1, · · · ,−iqn + pn). (3.9.92)

Let Sa be the symmetric matrix defined by the rule

Sa =

(
−I 0
0 I

)
. (3.9.93)

43In Chapter 27 it will be found that the Lie transformation realization of W diagonalizes all the Lie
operators : (p2

j + q2
j )/2 :.
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Verify that the matrix JSa is given by the relation

JSa =

(
0 I
I 0

)
. (3.9.94)

Verify, as the notation indicates, that Sa anticommutes with J . Let U(θ) be the matrix
defined by the relation

U(θ) = exp(iθJSa). (3.9.95)

Verify that U is (complex) symplectic because Sa is symmetric and U is unitary because
JSa is Hermitian. Verify that there is the relation

(JSa)2 = I. (3.9.96)

Use this relation to sum the series implied by (9.95) to find the relation

U(θ) = I cos(θ) + iJSa sin(θ) =

(
cos(θ) i sin(θ)
i sin(θ) cos(θ)

)
. (3.9.97)

Show that there is the relation

U(π/4) = W. (3.9.98)

Verify that there is the relation

W 4 = U(π) = −I. (3.9.99)

Suppose w is defined by the rule

w = U(θ)z. (3.9.100)

Show that

w = (w1, · · · , wn;wn+1, · · · , w2n) (3.9.101)

with

wa = qa cos(θ) + ipa sin(θ) for a = 1, n (3.9.102)

and

wn+a = iqa sin(θ) + pa cos(θ) for a = 1, n. (3.9.103)

3.10 Other Subgroup Structure

Consider symplectic matrices of the form (3.9) through (3.11). We have seen that they gen-
erate all symplectic matrices. We will now see that, when taken individually, they generate
subgroups.

Consider first matrices of the form (3.9). If M and M ′ are two such matrices, we find
the multiplication rule

M ′M =

(
I B′

0 I

)(
I B
0 I

)
=

(
I B′ +B
0 I

)
. (3.10.1)
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It follows, if the matrices B are taken to be arbitrary n×n matrices, then matrices of the form
(3.9) comprise a group. Moreover, (10.1) shows that the elements of this group commute.
That is, the group is Abelian. (See Exercise 7.5 for the definition of Abelian). Further
thought reveals that this group is isomorphic to the translation group in n2 dimensions.
Finally, if B′ and B satisfy (3.12), so does their sum B′ + B. We conclude that symplectic
matrices of the form (3.9) comprise a subgroup of the symplectic group. Moreover, this
subgroup is isomorphic to the translation group in n(n+ 1)/2 dimensions.

Suppose B satisfies (3.12). Then the matrix S defined by the equation

S =

(
0 0
0 B

)
(3.10.2)

is symmetric and satisfies the relation

JS =

(
0 B
0 0

)
. (3.10.3)

Furthermore, the matrix JS is nilpotent. That is, JS satisfies the relation

(JS)2 =

(
0 B
0 0

)(
0 B
0 0

)
=

(
0 0
0 0

)
= 0. (3.10.4)

Consequently, the exponential of JS is given by the simple relation

exp(JS) = I + JS =

(
I B
0 I

)
= M. (3.10.5)

We conclude that symplectic matrices of the form (3.9) can be written in the exponential
form (10.5) with S given by (10.2).

Similar statements can be made about matrices of the form (3.10). They also form an
Abelian subgroup. They can be written in the form

M = exp(JS) (3.10.6)

with S given by the relation

S =

(
−C 0
0 0

)
. (3.10.7)

Moreover, matrices of the form (3.10) are conjugate to matrices of the form (3.9) under the
action of J . Compute the matrix J−1MJ with M given by (3.9). Matrix multiplication
gives the result

J−1MJ =

(
0 −I
I 0

)(
I B
0 I

)(
0 I
−I 0

)
=

(
I 0
−B I

)
. (3.10.8)

Consider matrices of the form (3.11). Let M and M ′ be two such matrices. We find the
multiplication rule

M ′M =

(
A′ 0
0 D′

)(
A 0
0 D

)
=

(
A′A 0

0 D′D

)
. (3.10.9)
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Also, if D and D′ satisfy (3.13), we have the result

D′D = [(A′)T ]−1[(A)T ]−1 = [(A′A)T ]−1. (3.10.10)

Consequently, matrices of the form (3.11) also form a subgroup. Note that the condition
(3.13) places no restrictions on the matrices A save that they be invertible. Also, once A
is given, D is completely specified by (3.13). This observation, when combined with the
multiplication rule (10.9), shows that the subgroup is isomorphic to GL(n,R), the general
linear group of n× n invertible matrices over the real field.

Suppose the (real) matrix A is sufficiently near the identity. Then there is real matrix a
such that A can be written in the form

A = exp(a). (3.10.11)

From (3.13) we find that D can be written in the form

D = exp(−aT ). (3.10.12)

Let S be the symmetric matrix defined by the relation

S =

(
0 aT

a 0

)
. (3.10.13)

Then the matrix JS is given by the relation

JS =

(
a 0
0 −aT

)
. (3.10.14)

Evidently, matrices M of the form (3.11) with A sufficiently near the identity can be written
as

M = exp(JS) (3.10.15)

with S given by (10.13).
Let M be a symplectic matrix of the form

M =

(
A B
0 D

)
, (3.10.16)

and let M ′ be another such matrix. Then we find the multiplication rule

M ′M =

(
A′ B′

0 D′

)(
A B
0 D

)
=

(
A′A A′B +B′D

0 D′D

)
. (3.10.17)

We conclude that such matrices also form a subgroup. This subgroup is the semi-direct
product of the subgroups of matrices of the forms (3.11) and (3.9). Note that as far as the
subgroup of matrices of the form (3.11) is concerned, the multiplication rule (10.17) is the
same as (10.9). That is, the diagonal blocks of (10.9) and (10.17) are the same. However,
the upper right block of (10.17) is not the same as that of (10.1), but instead involves A′

and D. We see that the subgroup of matrices of the form (3.9) is transformed under the
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action of the subgroup of matrices of the form (3.11). For this reason, the subgroup product
is said to be semi-direct rather than simply direct. Sometimes it is convenient to use the
matrix identity (

A′ 0
0 D′

)(
I B′

0 I

)
=

(
A′ A′B′

0 D′

)
. (3.10.18)

[Observe that the right side of (10.18) has the desired subgroup block form (10.16), and the
matrices on the left have the subgroup block forms (3.11) and (3.9).] When this done, the
only conditions that need to be enforced to ensure symplecticity are of the forms (3.12) and
(3.13).

In a similar fashion it can be shown that symplectic matrices of the form

M =

(
A 0
C D

)
(3.10.19)

also constitute a subgroup. This subgroup is the semi-direct product of the subgroups of
matrices of the forms (3.11) and (3.10). For this subgroup it is sometimes convenient to use
the matrix identity (

A′ 0
0 D′

)(
I 0
C ′ I

)
=

(
A′ 0
D′C ′ D′

)
. (3.10.20)

Exercises

3.10.1. Strictly speaking, (10.1) shows only that the set of matrices of the form (3.9) is
closed under multiplication. Show that the other requirements for a (sub)group are also
satisfied. See Section 3.6. Verify that matrices of the form (3.10) also constitute a subgroup.
Verify (10.6) through (10.8).

3.10.2. Verify the relations (10.2) through (10.5).

3.10.3. Verify the relations (10.6) through (10.8). Also verify that the requirements for a
subgroup are met. [See Exercise (10.1) above.]

3.10.4. Verify the relations (10.9) through (10.15). Also verify that the requirements for a
subgroup are met. [See Exercise (10.1) above.]

3.10.5. Verify that symplectic matrices of the form (10.16) constitute a subgroup. [See
Exercise (10.1) above.] Also verify that symplectic matrices of the form (10.19) constitute
a subgroup.

3.11 Other Factorizations/Decompositions

Sections 3.3.1 and 3.10 demonstrated that usually a symplectic matrix can be written as
a product of three symplectic matrices of the form (3.9) through (3.11), and a product
of six such factors always suffices. Section 3.8 showed that any symplectic matrix has a
polar decomposition, and hence can be written as a product of two symplectic matrices
in the form (8.26). The purpose of this section is to describe other possible factoriza-
tions/decompositions of symplectic matrices that may be of subsequent use.
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3.12 Cayley Representation of Symplectic Matrices

In Sections 3.7 and 3.8 we saw that there is a connection between symplectic matrices
and symmetric matrices, namely the relations (7.36) and (8.26). In this section we will find
another connection, and in Section 5.13 we will see that this connection is but one of a whole
family of such connections.44 The connection to be described here is based on the Cayley
representation/transformation.45 It is a matrix generalization of the hyperbolic function
identity

exp(z) = cosh(z) + sinh(z) = [1 + tanh(z/2)]/[1− tanh(z/2)].

Let M be a (real) symplectic matrix sufficiently near the identity. Then, according to
(7.36), M can be written in the form

M = exp(JS) (3.12.1)

with S real and symmetric. Now watch closely. By algebraic manipulation involving prop-
erties of the exponential function, we may write the following chain of relations:

M = exp(JS) = [exp(
1

2
JS)][exp(−1

2
JS)]−1

= [cosh(
1

2
JS) + sinh(

1

2
JS)][cosh(

1

2
JS)− sinh(

1

2
JS)]−1

= [I + tanh(JS/2)][I − tanh(JS/2)]−1. (3.12.2)

Next, define a matrix W by the equation

W = −J tanh(JS/2). (3.12.3)

Then, we also have the relation

JW = tanh(JS/2). (3.12.4)

Consequently, using (12.2) and (12.4), M can be written in the form

M = (I + JW )(I − JW )−1 = (I − JW )−1(I + JW ). (3.12.5)

We will call this form the Cayley representation of M .46

The alert reader will have observed that, in going from (12.1) to (12.5), no use was
made of the symplectic condition. We now show that M being symplectic implies that W
is symmetric, and vice versa,

W = W T ⇔MTJM = J. (3.12.6)

44And, in Section 6.7, we will see that there is an analogous connection between symplectic maps and
gradient maps.

45Arthur Cayley (1821-1895), in his 1858 “A Memoir on the Theory of Matrices”, was the first to define
matrices abstractly and to describe general matrix algebra including matrix inversion.

46The nomenclature Cayley transform or Cayley trivialization is also used in the literature.
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First, suppose W is symmetric. Then taking the transpose of (12.5) gives the representation

MT = [(I − JW )T ]−1[(I + JW )T ]

= (I +WJ)−1(I −WJ). (3.12.7)

Next use the representations (12.5) and (12.7) to compute the quantity MTJM . Doing so
gives the result

MTJM = (I +WJ)−1(I −WJ)J(I + JW )(I − JW )−1. (3.12.8)

Insert judicious factors of I = J−1J into part of (12.8) to get the simplification

J(I + JW )(I − JW )−1 = J(I + JW )J−1J(I − JW )−1J−1J

= (I +WJ)(I −WJ)−1J. (3.12.9)

Here use has been made of (1.3). Correspondingly, (12.8) now simplifies to the form

MTJM = (I +WJ)−1(I −WJ)(I +WJ)(I −WJ)−1J. (3.12.10)

Observe that the second and third factors in the right side of (12.10) commute. Thus, we
also have the relation

MTJM = (I +WJ)−1(I +WJ)(I −WJ)(I −WJ)−1J

= J, (3.12.11)

which is what we wanted to prove.
Conversely, suppose that M is symplectic. Solve (12.5) for the quantity JW to get the

relation
JW = (M + I)−1(M − I) = (M − I)(M + I)−1. (3.12.12)

Now take the transpose of (12.12) to get the result

−W TJ = (MT − I)(MT + I)−1. (3.12.13)

The symplectic condition can be written in the form

MT = JM−1J−1. (3.12.14)

See (1.9). Consequently, (12.13) can also be written in the form

−W TJ = (JM−1J−1 − I)(JM−1J−1 + I)−1

= J(M−1 − I)(M−1 + I)−1J−1

= J(I −M)M−1[(I +M)M−1]−1J−1

= J(I −M)(I +M)−1J−1

= J(−JW )J−1 = −WJ. (3.12.15)

It follows from (12.15) that W is symmetric,

W T = W. (3.12.16)
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Now consider matrices of the form JW . We know they they are Hamiltonian, that is, they
belong to the Lie algebra sp(2n,R) [or, more generally, sp(2n,C)] if W is symmetric. Since
we have seen that W is symmetric if M is symplectic, we conclude that for M sufficiently
near the identity matrix and for JW sufficiently near the zero matrix there is the relation

M ∈ Sp(2n,R)⇔ JW ∈ sp(2n,R), (3.12.17)

or, more generally,

M ∈ Sp(2n,C)⇔ JW ∈ sp(2n,C). (3.12.18)

Thus, near the identity in group space and near the origin in Lie-algebra space, the Cayley
representation, like the exponential map, provides a local bijection between group elements
and Lie-algebra elements.

Again we note that the symplectic condition as expressed by (1.2) is a set of quadratic
relations, and the use of the Cayley representation converts these quadratic relations into
the simple linear relations (12.16).

We also need to make an important observation. It is easily checked that −I is a symplec-
tic matrix. However, (M + I) is singular for M = −I. Indeed, (M + I) is singular whenever
M has −1 as an eigenvalue. It follows that JW does not exist in these cases. Consequently,
unlike the two-exponentials product representation (8.26), the Cayley representation is not
global.

We note for future use that (12.12) can be solved for W to give the relation

W = (−JM + J)(M + I)−1. (3.12.19)

Finally, we observe that (12.5) and the inverse relation (12.19) stand on their own without
any need of the motivational assumption (12.1).

We close this section by noting that there are also Cayley representations for all the so-
called quadratic matrix groups including orthogonal, unitary, and Lorentz transformation
matrices. See Exercises 12.5 and 12.6.

Exercises

3.12.1. Show that (12.3) and (12.4) have the expansions

W = −J tanh(JS/2) = −J [(JS/2)− (1/3)(JS/2)3 + (2/15)(JS/2)5 − · · · ]
= S/2− SJSJS/24 + SJSJSJSJS/240− · · · . (3.12.20)

JW = tanh(JS/2) = (JS/2)− (1/3)(JS/2)3 + (2/15)(JS/2)5 − · · ·
= JS/2− (JS)3/24 + (JS)5/240− · · · . (3.12.21)

Show directly from (12.20) that W is symmetric if S is. Show from (12.21) that the matrices
JW and JS commute,

{JW, JS} = 0. (3.12.22)
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Show that (12.20) and (12.21) can be inverted to give the relations

JS/2 = tanh−1(JW ) = [JW + (1/3)(JW )3 + (1/5)(JW )5 + · · · ], (3.12.23)

JS = 2 tanh−1(JW ) = 2[JW + (1/3)(JW )3 + (1/5)(JW )5 + · · · ], (3.12.24)

S = −2J tanh−1(JW ) = −2J [JW + (1/3)(JW )3 + (1/5)(JW )5 + · · · ]
= 2W + (2/3)WJWJW + (2/5)WJWJWJWJW + · · · . (3.12.25)

Show from (12.25) that, conversely, S is symmetric if W is.

3.12.2. Derive (12.12) from (12.5).

3.12.3. Find the Cayley representation for the matrix N given by (5.60) and (5.61). That
is, find the matrix W in this case. Show explicitly that the representation is not global, i.e.,
does not hold for all values of φ`.

3.12.4. Read Exercise 8.13. Let W and M be the matrices appearing in the Cayley relations
(12.5) and (12.19). Define what we will call the Cayley quadratic form Qc by the relation

Qc(z) = (z,Wz). (3.12.26)

Verify that W is of the form
W = Jg(M) (3.12.27)

with
g(M) = (−M + I)(M + I)−1 (3.12.28)

and that M commutes with g(M). Show that Qc is invariant under the action of M .
Show, for the case described in Exercise 8.14, that Qc is given by the relation

Qc(z) =
n∑
`=1

[tan(φ`/2)](p̂2
` + q̂2

` ). (3.12.29)

3.12.5. Section 3.12 described the Cayley representation of symplectic matrices. The pur-
pose of this exercise is to explore Cayley representations for other kinds of matrices including
orthogonal, unitary, and Lorentz transformation matrices. Let L be any fixed real nonsin-
gular m×m matrix, and consider all m×m matrices M such that

MTLM = L. (3.12.30)

Show that
detM = ±1, (3.12.31)

and therefore all such matrices are invertible. Indeed, show from (12.30) that

M−1 = L−1MTL. (3.12.32)

Note that, while matrix inversion is usually a computationally intensive task, all that is
required in this case is the inversion of L, which can be done once and for all, the transposing
of M , and two matrix multiplications.
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Verify that all matrices that satisfy (12.30) form a group, call it G. Since the relation
(12.30), is an algebraic one among the entries in M , G is an algebraic group. Indeed, since
(12.30) is a quadratic relation, G is also sometimes called a quadratic group. Thus, for
example, the orthogonal, symplectic, and Lorentz groups are quadratic groups.

Let (∗, ∗) denote the usual real inner product. Define an angular inner product, more
accurately a bilinear form, 〈∗, ∗〉 by the rule

〈u, v〉 = (u, Lv). (3.12.33)

Verify that

〈Mu,Mv〉 = (Mu,LMv) = (u,MTLMv) = (u, Lv) = 〈u, v〉. (3.12.34)

That is, G preserves the bilinear form 〈∗, ∗〉.
Show that G consists of two disconnected components comprised of elements with de-

terminant +1 and elements with determinant −1. [Actually, it can happen, as is the case
for Sp(2n,R), that the component with determinant −1 is empty.] Show that the matrices
M ∈ G such that detM = 1 form a subgroup, call it SG.

Consider matrices in SG that are sufficiently close to the identity so that they can be
written in the exponential form

M = exp(εA) (3.12.35)

where ε is a sufficiently small parameter. Show, by equating powers of ε, that (12.30) and
(12.34) require that A obey the relation

ATL+ LA = 0 (3.12.36)

or, equivalently,
L−1ATL = −A. (3.12.37)

Conversely, show that if A satisfies the relation (12.36), then any M given by (12.34) satisfies
(12.30), and therefore belongs to G. Verify that matrices A that satisfy (12.36) form a Lie
algebra, and therefore G is a Lie group. Show that (12.36) implies the relation

tr A = 0, (3.12.38)

and therefore any M of the form (12.34) belongs to SG. Correspondingly, following our
usual nomenclature, we may define sg to be the Lie algebra of all matrices A that satisfy
(12.36).

Set ε = 1 in (12.34). Following the logic of Section 3.12, show that matrices M sufficiently
near the identity can be written in the form

M = (I + V )/(I − V ) (3.12.39)

where
V = tanh(A/2) = (A/2)− (1/3)(A/2)3 + (2/15)(A/2)5 + · · · (3.12.40)

and
A = 2 tanh−1 V = 2[V + (1/3)V 3 + (1/5)V 5 + · · · ]. (3.12.41)
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Show that if A satisfies (12.36), then so does V , and vice versa,

L−1ATL = −A⇔ L−1V TL = −V. (3.12.42)

[Here it assumed that A is sufficiently small for the series (12.39) and its inverse relation
(12.40) to be convergent.] We conclude that V ∈ sg.

Verify that (12.38) can be solved for V to yield the inverse relation

V = (M − I)/(M + I). (3.12.43)

Verify that, for M sufficiently near the identity matrix and for V sufficiently near the zero
matrix, there is the relation

M ∈ SG⇔ V ∈ sg. (3.12.44)

Consequently, for quadratic groups, (12.38) and (12.42) provide a mapping between SG and
sg, which is a bijection between elements in SG sufficiently near the identity and elements
in sg sufficiently near the origin.

Sometimes it is convenient to define a function that is a variant of the relation (12.38).
Given any matrix X that does not have −1 as an eigenvalue, define a matrix function cay
by the rule

cay(X) = (I −X)/(I +X). (3.12.45)

With this definition, (12.38) becomes

M = cay(−V ) (3.12.46)

and (12.42) becomes

V = −cay(M). (3.12.47)

Show that we may also write

cay(V ) = M−1 (3.12.48)

and

cay(M−1) = V. (3.12.49)

Note that V ∈ sg implies that −V ∈ sg, and vice versa; and M ∈ SG implies that
M−1 ∈ SG, and vice versa. Therefore, in our context, the function cay also provides a
bijection between elements in SG sufficiently near the identity and elements in sg sufficiently
near the origin. A map or operator whose square is the identity is often called an involution.
Show that the map cay is an involution. That is, show that

(cay)2(X) = cay[cay(X)] = X. (3.12.50)

Verify that in the case of SO(m), for which L = I, the matrices A and V are antisym-
metric.

Scan Exercise 6.2.6. Be aware that in this exercise the symbol g is used to denote the
metric tensor. Verify that the Lorentz group is a quadratic group, and therefore has a Cayley
representation.
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Reapply, with necessary modifications, the arguments made so far to the case of matrices
M that satisfy the relation

M †LM = L. (3.12.51)

Show that such matrices form a group G and that there is a Cayley representation that
provides a map between G and its Lie algebra g. Apply your results to the case of U(m),
for which L = I, and show that in this case the matrices A and V are anti-Hermitian. That
is, A ∈ u(m) and V ∈ u(m). Verify that in the quantum-mechanical theory of scattering,
for which M is the unitary scattering matrix S, there is the relation

S = M = (I + iK)/(I − iK) (3.12.52)

where the so called K matrix given by K = −iV is Hermitian. Verify also the inverse
relation

K = −i(S − I)/(S + I). (3.12.53)

The relations (12.51) and (12.52) provide a map between unitary matrices S and Hermitian
matrices K. We remark that if the scattering process is time symmetric, then it can be
shown that K is real, and therefore also symmetric.

Are there familiar examples of groups for which there is no Cayley representation? It
depends what one means by a Cayley representation. If one means that the Cayley relations
are required to supply a bijection between the group and its Lie algebra, then there are are
groups for which there is no Cayley representation in the sense that the Cayley relations
do not provide a bijection between the group and its Lie algebra. The groups SL(m,R) for
m > 2 are examples. In working Exercise 7.25 you should have found that sl(m,R), the Lie
algebra of SL(m,R), consists of all real m×m matrices A that are traceless. Consider the
case of sl(3,R) and the Lie algebraic element

A = ε

 1 0 0
0 1 0
0 0 −2

 (3.12.54)

where ε is small. Verify that V as given by (12.39) is not traceless and therefore does not
belong to sl(3,R). Thus, there is no Cayley representation for SL(3,R). That is, although
the relations (12.38) and (12.42) continue to hold, there are group elements M ∈ SL(3,R),
and arbitrarily near the identity, for which the corresponding V given by (12.42) is not in
sl(3,R).

Verify that SL(3,R) is a subgroup of SL(m,R) for m > 3 and therefore there is no
Cayley representation for SL(m,R) when m > 2. Is SL(m,R) an algebraic group?

3.12.6. The aim of this exercise is to explore in some detail the use of Cayley parameteri-
zations for the cases of SO(3,R) and SU(2).

Assume, for the case of SO(3,R), that group elements are parameterized in exponential
form by the relation

Re(λ) = exp(λ ·L). (3.12.55)

Show that they have an associated Cayley parameterization of the form

Rc(µ) = (I + µ ·L)/(I − µ ·L). (3.12.56)
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Show that if Re(λ) = Rc(µ) = R, then the parameters λ and µ are interconnected by the
relations

µ ·L = tanh(λ ·L/2) (3.12.57)

and
λ ·L = 2 tanh−1(µ ·L). (3.12.58)

Also verify that (12.55) can be inverted to give the relation

µ ·L = [R− I]/[R + I]. (3.12.59)

Verify, for the case of so(3,R), that there is the relation

(ν ·L)3 = (i|ν|)2ν ·L (3.12.60)

for any 3-vector ν. See (7.201). Use this relation to show that (12.56) and (12.57) can be
rewritten in the forms

µ ·L = (λ ·L/|λ|) tan(|λ|/2) (3.12.61)

and
λ ·L = 2(µ ·L/|µ|) tan−1(|µ|). (3.12.62)

Hint: Expand (12.56) and (12.57) in Taylor series, use (12.59) in these series, and then sum
the transformed series to get the advertised results. Show it follows from (12.60) and (12.61)
that

µ = (λ/|λ|) tan(|λ|/2) (3.12.63)

and
λ = 2(µ/|µ|) tan−1(|µ|). (3.12.64)

Verify that both (12.62) and (12.63) imply the relation

|µ| = tan(|λ|/2). (3.12.65)

Observe that (12.64) is singular when |λ| = π. Verify that this singularity is to be expected
because then R has -1 as an eigenvalue, from which it follows that the factor [R + I]−1 in
(12.58) is singular.

Assume, for the case of SU(2), that group elements are parameterized in exponential
form by the relation

ue(λ) = exp(λ ·K). (3.12.66)

In the notation of Exercise 12.5, group elements near the identity have an associated pa-
rameterization of the form

uc = (I + V )/(I − V ). (3.12.67)

Show that setinc ue = uc = u yields the result

V = tanh(λ ·K/2). (3.12.68)

In order for this parameterization to be a Cayley parameterization we must verify that
V ∈ su(2). Check, for the case of su(2), that there is the relation

(ν ·K)3 = (i|ν|/2)2ν ·K (3.12.69)
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for any 3-vector ν. See (7.187). Use this relation in the Taylor series for the right side of
(12.67) to show that (12.67) can be rewritten in the form

V = (λ ·K)(2/|λ|) tan(|λ|/4), (3.12.70)

from which it follows, in particular, that V ∈ su(2), and SU(2) has a Cayley parameteriza-
tion.47 Therefore, we may write (12.66) in the Cayley form

uc(µ) = (I + µ ·K)/(I − µ ·K) (3.12.71)

with
µ ·K = V = (λ ·K)(2/|λ|) tan(|λ|/4). (3.12.72)

From (12.71) show that
µ = 2(λ/|λ|) tan(|λ|/4) (3.12.73)

and
|µ| = 2 tan(|λ|/4). (3.12.74)

Show also that (12.70) can be inverted to give the relation

µ ·K = [u− I]/[u+ I]. (3.12.75)

Note that (12.73) is singular when |λ| = 2π. Verify that this singularity is to be expected
because then u = −I, see (7.189), from which it follows that the factor [u+ I]−1 in (12.74)
is singular. Finally, show that (12.72) and (12.73) can be solved for λ to give the inverse
relation

λ = 4(µ/|µ|) tan−1(|µ|/2). (3.12.76)

Note that both (12.62) and (12.72) yield the relation µ ' λ/2 for small λ and µ. But they
differ in higher order.

3.13 General Symplectic Forms, Darboux

Transformations, Pfaffians, and Variant

Symplectic Groups

3.13.1 General Symplectic Forms

According to Exercise 2.7, the symplectic group consists of all linear transformations that
preserve the fundamental symplectic 2-form (2.3). The matrix J in this 2-form has the
property that it is real, antisymmetric, and nonsingular. We will now see that there is an
endless supply of matrices K with this property; and we will call each (w,Kz) a generalized
symplectic 2-form.

First we assert that such a matrix must be 2n× 2n for some choice of n. For suppose K
is m×m with m odd. Then we find that

detK = detKT = det(−K) = (−1)m detK = − detK, (3.13.1)

47We remark that although U(n) has a Cayley parameterization, SU(n) does not when n > 2.
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from which it follows that detK = 0 and therefore K is singular, contrary to one of our
stipulations about K.

Next, let N be any matrix in GL(2n,R). Define an associated matrix K by the rule

K = NJNT . (3.13.2)

That is, K and J are congruent under the action of N . Evidently K is real. We also find
by direct calculation that

KT = (NJNT )T = NJTNT = −NJNT = −K. (3.13.3)

Moreover,

detK = (detN)(det J)(detNT ) = (detN)2 > 0. (3.13.4)

Therefore K is nonsingular.

The converse is also true. Given any real, antisymmetric, and nonsingular 2n×2n matrix
K, there is a matrix N ∈ GL(2n,R) such that (13.2) holds.

We begin the demonstration of this claim by showing that there is a set of (real) basis
vectors v1, v2, · · · , v2n such that

(vi, Kvj) = J ′ij, (3.13.5)

where J ′ is the matrix given by (2.10). The construction of the vi is very similar to that
used for Darboux symplectification. Let w1, · · · , w2n be any set of 2n real and linearly
independent vectors. For convenience, they might be taken to be the unit vectors e1, · · · ,
e2n given by (6.4). Now follow this algorithm:

1. Define v1 by the simple rule

v1 = w1. (3.13.6)

2. Starting with w2, search through the wj with j ≥ 2 to find the first j, call it k, with
the property

(v1, Kwj) 6= 0. (3.13.7)

[Better yet, if one is working numerically and therefore only to finite precision, select j
so that |(v1, Kwj)| is maximized. The analogous choices should also be made in steps
6, 10, etc. below.] Renumber the vectors w2 · · ·w2n so that wk becomes w2.

3. Define v2 by the rule

v2 = w2/[(v1, Kw2)]. (3.13.8)

We then have the result

(v1, Kv2) = 1 = J ′12. (3.13.9)

And, since K is antisymmetric, at this stage we have the result

(vi, Kvj) = J ′ij for i, j = 1 to 2. (3.13.10)
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4. Using the remaining vectors w3 · · ·w2n, define new vectors 1wj for j ≥ 3 by the rule

1wj = wj + (v2, Kwj)v1 − (v1, Kwj)v2. (3.13.11)

As a result of this rule there are the relations

(vi, K 1wj) = 0 for i = 1, 2 and j = 3, 4, · · · 2n. (3.13.12)

5. Define v3 by the rule

v3 = 1w
3
. (3.13.13)

6. Starting with 1w4, search through the 1wj with j ≥ 4 to find the first j, call it k, with
the property

(v3, K 1wj) 6= 0. (3.13.14)

Renumber the vectors 1w4 · · · 1w2n
so that 1wk becomes 1w4.

7. Define v4 by the rule

v4 = 1w
4
/[(v3, K 1w4)]. (3.13.15)

At this stage we have the results

(vi, Kvj) = J ′ij for i, j = 1 to 4. (3.13.16)

8. Using the remaining vectors 1w5 · · · 1w2n
, define new vectors 2wj for j ≥ 5 by the rule

2wj = 1w
j

+ (v4, K 1wj)v3 − (v3, K 1wj)v4. (3.13.17)

Now we have the relations

(vi, K 2wj) = 0 for i = 1 to 4 and j = 5, 6, · · · 2n. (3.13.18)

9. Define v5 by the rule

v5 = 2w
5
. (3.13.19)

10. Starting with 2w6, search through the 2wj with j ≥ 6 to find the first j, call it k, with
the property

(v5, K 2wj) 6= 0. (3.13.20)

Renumber the vectors 2w6 · · ·2w2n so that 2wk becomes 2w6.

11. Define v6 by the rule

v6 = 2w
6
/[(v5, K 2w6)]. (3.13.21)

At this stage we have the results

(vi, Kvj) = J ′ij for i, j = 1 to 6. (3.13.22)
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12. Proceed with the obvious extension of the above process to construct v7, v8, · · · v2n−2.
Then at the last stage we have

v2n−1 = mw2n−1, (3.13.23)

v2n = mw2n/[(v2n−1, K mw2n)], (3.13.24)

with
m = n− 1. (3.13.25)

As was the case with Darboux symplectification, how does one know that the required
vectors mwk described in steps 2, 6, 10, etc. exist? And how does one know that the vectors
v3, v5, · · · v2n−1 given in steps 5, 9, etc. are nonzero? Again difficulties do not arise because
the wi are assumed to be linearly independent and K is assumed to be invertible. See
Exercise 13.1.

Next, let ej denote the unit column vector with 1 in its j th entry and zeroes elsewhere.
See (6.4). Then (13.5) can be written in the form

(vi, Kvj) = (ei, J ′ej). (3.13.26)

Define a linear transformation L by the rule

vj = Lej. (3.13.27)

It has the matrix elements
Lij = (ei, Lej) = (ei, vj). (3.13.28)

Upon inserting (13.27) into (13.5) we find the relation

J ′ij = (ei, J ′ej) = (Lei, KLej) = (ei, LTKLej), (3.13.29)

which is equivalent to the matrix relation

J ′ = LTKL. (3.13.30)

We also observe that L is invertible. Indeed, taking the determinant of both sides of (13.30)
yields the relation

det J ′ = (detLT )(detK)(detL) = (detK)(detL)2, (3.13.31)

from which we find the result

(detL)2 = (det J ′)/(detK) = 1/(detK) 6= 0 or∞ (3.13.32)

since K is assumed to be invertible.
We are almost done. Since L is invertible, we may also write (13.30) in the form

K = (L−1)TJ ′L−1. (3.13.33)

Now make use of (2.14) to find the result

K = (L−1)TPJP TL−1. (3.13.34)

Finally, define N by the rule
N = (L−1)TP. (3.13.35)

This N is evidently real and in GL(2n,R), and direct calculation shows that it has the
desired property

NJNT = [(L−1)TP ]J [(L−1)TP ]T = (L−1)TPJP TL−1 = K. (3.13.36)
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3.13.2 Darboux Transformations

We have found that K and J are congruent under the action of the intertwining transfor-
mation N . An intertwining congruency transformation, such as N above, that relates two
different antisymmetric matrices is sometimes called a Darboux transformation because he
was the first to study such transformations in the context of Classical Mechanics, and N
can be called a Darboux matrix.48 Darboux transformations and matrices will be essential
for the work of Sections 5.13 and 6.7 and Chapter 34. We note in passing that the relations
(2.14), (6.118), and (6.119) are Darboux relations.

Suppose K and K̂ are two symplectic 2-form matrices of the same dimension. Then we
know that there are Darboux matrices N and N̂ that connect them to the J of this same
dimension by the relations (13.2) and

K̂ = N̂JN̂T . (3.13.37)

Upon combining (13.2) and (13.37), we see that

K̂ = (N̂N−1)K(N̂N−1)T . (3.13.38)

Thus, K̂ and K are connected by the Darboux matrix (N̂N−1).
Given K, what can be said about the N that satisfy (13.2)? Suppose N ′ is another

matrix that satisfies (13.2),
K = N ′J(N ′)T . (3.13.39)

Combining (13.2) and (13.39) yields the relation

NJNT = N ′J(N ′)T , (3.13.40)

from which we conclude that
[N−1N ′]J [N−1N ′]T = J. (3.13.41)

Therefore, if we make the definition

M = N−1N ′, (3.13.42)

we see that M is a symplectic matrix. Moreover, (13.42) can be rewritten in the form

N ′ = NM. (3.13.43)

That is, N ′ and N are related by multiplication on the right by a symplectic matrix. Finally,
suppose that M is any symplectic matrix, and use (13.43) to define N ′. Then we find the
result

N ′J(N ′)T = NMJMTNT = NJNT = K. (3.13.44)

Thus, all Darboux matrices (for any fixed K) are related by multiplication on the right by
symplectic matrices, and this symplectic matrix can be any symplectic matrix.49 It follows

48The reader is warned that the words Darboux transformation are also employed, with a different meaning,
in the context of differential equations.

49Note that (13.43) can be rewritten in the form N = N ′M−1. We know that M−1 is symplectic if M is.
Thus N and N ′ are also related by multiplication on the right by a symplectic matrix.
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that the dimensionality of the space of Darboux matrices (for any fixed K) is the same as
that of Sp(2n,R), namely n(2n+ 1).

Matrices N ′ and N in GL(2n,R) that are related by an equation of the form (13.43)
are said to be in the same (left) coset of GL(2n,R) relative to the subgroup Sp(2n,R).
The collection of these cosets is denoted by the symbols GL(2n,R)/Sp(2n,R). See Section
5.12 for a discussion of cosets. We conclude that the coset space GL(2n,R)/Sp(2n,R) is in
one-to-one correspondence with the set of all symplectic 2-forms on 2n-dimensional space,

GL(2n,R)/Sp(2n,R)↔ {K | K is real, 2n× 2n, antisymmetric, and nonsingular}.
(3.13.45)

Observe, as a sanity check, that the dimension of GL(2n,R) is (2n)2, the dimension of
Sp(2n,R) is n(2n + 1), and the dimension of the space of all real 2n × 2n antisymmetric
matrices is (1/2)[(2n)2 − 2n]. But there is the relation

(1/2)[(2n)2 − 2n] = (2n)2 − n(2n+ 1), (3.13.46)

which verifies that the dimensionality count works out properly. In Section 5.12 we will learn
that the set of all symplectic 2-forms on 2n-dimensional space constitutes a homogeneous
space under the action of GL(2n,R).

Can we restrict our attention to Darboux matrices N that have unit determinant so that
N ∈ SL(2n,R)? Then the 2-form matrices K will also have unit determinant, which we
might like. The answer is no. Consider the 2× 2 case and suppose

K = −J. (3.13.47)

According to (1.7) there is the relation

NJNT = [det(NT )]J = [det(N)]J. (3.13.48)

Thus in this case, for (13.2) and (13.47) to hold, we must have the relation

detN = −1. (3.13.49)

Note also that if we instead impose the condition

detN = ±1, (3.13.50)

then, according to (13.4), we will still have the result

detK = 1. (3.13.51)

There is another interesting feature of Darboux transformations. Let us use the repre-
sentation (13.2) to compute K2. Doing so gives the result

K2 = NJNTNJNT = NJ(NTN)JNT (3.13.52)

Suppose N is orthogonal. Then we find that

K2 = NJ2NT = −NNT = −I. (3.13.53)
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Thus symplectic 2-form matrices K that are related to J by orthogonal Darboux transfor-
mations are those that are most analogous to J . We have already seen an instance of this
fact in the case of the symplectic form matrix J ′ given by (2.10). Since orthogonal matrices
from a group, we see from (13.38) that symplectic-form matrices that are related to J by
orthogonal Darboux matrices are also related to each other by orthogonal Darboux matrices.

Suppose, conversely, that
K2 = −I. (3.13.54)

Then we find from (13.52) and (13.54) that

(NTN)J(NTN)T = J, (3.13.55)

from which it follows that M defined by

M = NTN (3.13.56)

is a symplectic matrix. Also, we see from (13.56) that M is symmetric and positive definite.
Therefore we know, from the work of Section 3.8, that there is a unique symmetric matrix
Sa such that

NTN = exp(JSa). (3.13.57)

Suppose we make a polar decomposition for NT by writing

NT = PO. (3.13.58)

See Section 4.2 for information about polar decomposition. Then we find that

NTN = P 2, (3.13.59)

from which we conclude that
P = exp(JSa/2) (3.13.60)

and
NT = exp(JSa/2)O. (3.13.61)

Taking the transpose of both sides of (13.61) gives the result

N = O′ exp(JSa/2) (3.13.62)

where O′ = OT is also an orthogonal matrix. This is the most general form for N when
(13.54) holds. All such N belong to cosets GL(2n,R)/Sp(2n,R) that contain an orthogonal
matrix. In the case that N is orthogonal, we see that Sa = 0.

Finally, suppose we replace O′ in (13.62) by O′′ where

O′′ = O′ exp(JSc). (3.13.63)

We know that all matrices of the form exp(JSc) are orthogonal and therefore O′′ is also
orthogonal. They are also symplectic, and form a subgroup H of the symplectic group.
Recall the work of Section 3.9. Therefore N ′ defined by

N ′ = O′′ exp(JSa/2) = O′[exp(JSc) exp(JSa/2)] (3.13.64)

produces the same K as N does when used in (13.2). We conclude that what matters in
(13.62) is the coset O(2n,R)/H to which O′ belongs.
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3.13.3 Symplectic Forms and Pfaffians

Let A be a 2n×2n antisymmetric matrix. The Pfaffian of A, denoted by Pf(A), is a certain
polynomial of degree n in the entries of A (with real coefficients). For our present purposes we
need not know all about Pfaffians, but only that the they have certain remarkable properties.

The first of these is that

detA = [Pf(A)]2. (3.13.65)

From (13.65) we see that any real nonsingular antisymmetric matrix must have a positive
determinant. This result can also be proved without the use of Pfaffians. See Exercise 13.2.

Other remarkable Pfaffian properties are given by the relations

Pf(NANT ) = [det(N)]Pf(A), (3.13.66)

Pf(λA) = λnPf(A), (3.13.67)

Pf(J ′) = 1. (3.13.68)

From (2.14), (13.66), and (13.68) we deduce the relation

Pf(J) = (−1)n(n−1)/2. (3.13.69)

As special cases of (13.54) we find the results

Pf(J) = 1,−1,−1 (3.13.70)

for n = 1, 2, 3, respectively.

Upon employing (13.66) in (13.2) and using (13.69), we find the result

Pf(K) = [det(N)](−1)n(n−1)/2. (3.13.71)

We see that symplectic forms can be classified according to the signs of their Pfaffians.
Suppose K and K ′ are two symplectic forms. Then, from (2.38), we know that they are
related by an equation of the form

K ′ = MKMT (3.13.72)

with M ∈ GL(2n,R). If their Pfaffians have the same sign, then M ∈ GL(2n,R,+).
Here GL(2n,R,+) denotes the set of real 2n× 2n matrices with positive determinant. Such
matrices evidently form a subgroup of GL(2n,R). If the Pfaffians of K and K ′ have different
signs, then M ∈ GL(2n,R,−). Here GL(2n,R,−) denotes the set of real 2n× 2n matrices
with negative determinant. They evidently do not form a subgroup of GL(2n,R), but rather
are in a disconnected piece of GL(2n,R) that does not contain the identity matrix I. Given
any element F ∈ GL(2n,R,−), all elements of GL(2n,R,−) can be obtained by multiplying
F (either on the left or right) by all elements of GL(2n,R,+).



386 3. SYMPLECTIC MATRICES AND LIE ALGEBRAS/GROUPS

3.13.4 Variant Symplectic Groups

Consider the general symplectic 2-form (w,Kz), and suppose that R is a real matrix that
preserves this 2-form. Then it follows that R must satisfy the generalized symplectic relation

RTKR = K. (3.13.73)

It is easily verified that all such matrices form a group. One might wonder if this group is
something new or is merely Sp(2n,R) in disguise. We will see that the latter is true. It
follows that the group Sp(2n,R) is as general as might be desired.

Suppose we employ (13.2) in (13.73). Doing so gives the relation

RTNJNTR = NJNT (3.13.74)

from which it follows that
[N−1RTN ]J [N−1RTN ]T = J. (3.13.75)

We conclude that the M now defined by the relation

MT = N−1RTN (3.13.76)

is a symplectic matrix. Upon solving (13.76) for R we find the result

R = NTM(NT )−1. (3.13.77)

Thus, we see that the group of matrices R is related to the group Sp(2n,R) simply by the
similarity transformation (13.77).

Exercises

3.13.1. Review Exercise 6.12. Show that the steps 1 through 12 in Section 3.13.1 can always
be executed. Alternatively, verify by induction on n that the construction of the desired vj

is always possible.

3.13.2. Verify that any real nonsingular antisymmetric matrix must have a positive deter-
minant. Hint: Use (13.4).

3.13.3. In the 2× 2 case verify that using

N = B3 (3.13.78)

in (13.2), with B3 given by (7.61), yields (13.47). Note also that (13.49) holds in this case
as it should.

3.13.4. Verify that (13.52) and (13.54) together imply (13.55).

3.13.5. Verify that the matrices R that satisfy (13.73) form a group.

3.13.6. Take the Pfaffian of both sides of (1.10) or (1.2), and use (13.66) and (13.69), to
show that symplectic matrices always have determinant +1.
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3.13.7. Let N2 be the matrix

N2 =

(
1 0
0 −1

)
. (3.13.79)

Verify that
N2J2N

T
2 = −J2, (3.13.80)

and therefore N2 is a Darboux matrix relating J2 and −J2. Recall (2.11). Use these results
to show that N ′ defined by

N ′ =


N2

N2

. . .

N2

 (3.13.81)

has the property
N ′J ′(N ′)T = −J ′. (3.13.82)

Therefore N ′ is a Darboux matrix relating J ′ and −J ′. Define the matrix N by the rule

N = P TN ′P. (3.13.83)

Verify the relation

NJNT = P TN ′PJP T (N ′)TP = P TN ′J ′(N ′)TP = −P TJ ′P = −J, (3.13.84)

which demonstrates that N is a Darboux matrix relating J and −J . Verify that

detN = det(P TN ′P ) = detN ′ = (−1)n. (3.13.85)

Show that in fact N has the simple block form

N =

(
I 0
0 −I

)
(3.13.86)

so that (13.84) and (13.85) follow immediately.

3.13.8. Suppose a real 2n× 2n matrix M satisfies the condition

MTJM = −J. (3.13.87)

Such a matrix is said to be antisymplectic. (In Section 31.1 it will be shown that antisym-
plectic matrices arise in the study of reversal symmetry.) Show that if M is antisymplectic,
then

detM = ±1, (3.13.88)

and therefore M is invertible. Show that if M is antisymplectic, then so are −M , MT , and
M−1. Show that the product of two antisymplectic matrices is symplectic, and the product
(in either order) of a symplectic and an antisymplectic matrix is antisymplectic. Thus,
antisymplectic matrices do not form a group. For example, the identity matrix is symplectic,
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but not antisymplectic. Show, when taken together, that symplectic and antisymplectic
matrices do form a group. This group does not seem to have have a name, but might be
called the complete symplectic group.

Since, as you have proved, (13.87) implies the relation

MJMT = −J, (3.13.89)

it follows that M is a Darboux matrix connecting J and −J . Take the Pfaffian of both sides
of (13.89) and use (13.67) to conclude that

Pf(MJMT ) = Pf(−J) = (−1)nPf(J). (3.13.90)

But, by (13.66), we also have the relation

Pf(MJMT ) = [det(M)]Pf(J). (3.13.91)

Upon comparing (13.90) and (13.91) you have shown that, in fact,

detM = (−1)n. (3.13.92)

Let N be the Darboux matrix given by (13.83) or (13.86) so that

NJNT = −J. (3.13.93)

Evidently N is antisymplectic. Show that any antisymplectic M can be written in the form

M = LN = NL′ (3.13.94)

where L and L′ are symplectic. Show that (13.92) also follows from (13.94) and (13.85).
Show that the set of antisymmetric matrices is connected. (See Section 5.9.1.) Show that
what we have called the complete symplectic group consists of two disconnected pieces in
GL(2n,R), each of which itself is connected.

As in (1.7.9), write
z = (q1, · · · , qn; p1, · · · , pn). (3.13.95)

Define z̄ by the rule
z̄ = Nz. (3.13.96)

Show that
z̄ = (q1, · · · , qn;−p1, · · · ,−pn) (3.13.97)

so that N leaves the qj in peace and changes the signs of all the pj. Verify that this same
result holds when the N ′ given by (13.81) is used, for which z has the form

z = (q1, p1, q2, p2, · · · , qn, pn). (3.13.98)
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[119] P. Teodorescu and N.-A. Nicorovici, Applications of the Theory of Groups in Mechanics
and Physics, Kluwer (2004).

[120] R. Carter, G. Segal, and I. Macdonald, Lectures on Lie Groups and Lie Algebras,
Cambridge University Press (1995).



396 BIBLIOGRAPHY

[121] S. Sternberg, Lie Algebras, (2004). See the Web site http://www.math.harvard.edu/

~shlomo/docs/lie_algebras.pdf.
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Chapter 4

Matrix Exponentiation and
Symplectification

Matrix Exponentiation

We have learned in Section 3.8 and elsewhere that we need to compute matrices of the form
exp(JS). That is, we need to exponentiate the matrix JS. Sometimes, as will be seen in later
chapters, this exponentiation can be done analytically. However in many cases numerical
methods are required. When numerical methods are used, it is desirable that these methods
be fast and accurate. No completely satisfactory method is known for this purpose, but one
of the better methods available will be described in Section 4.1. This description begins
with the problem of computing the ordinary exponential function, and then moves on to the
computation of the matrix exponential function.

Matrix Symplectification

When numerical methods are used for evaluating exp(JS), it is often desirable that the result
be symplectic to machine precision even if the result is not accurate to machine precision.
One approach is to employ some procedure that takes a matrix that is nearly symplectic and
produces a nearby matrix that is exactly symplectic. We will refer to such a procedure as
matrix symplectification. There are several circumstances in which matrix symplectification
may be useful. Four come to mind:

First, as just described, numerical exponentiation of JS may lead to a result that is not
as symplectic as desired. Second, suppose that over the course of a numerical calculation we
have multiplied together several symplectic matrices. For example, we will learn in Chapter
8 [see (8.4.20)] that such multiplication is required if we wish to concatenate a large number
of maps. Then the net matrix result may not be exactly symplectic due to round-off error.
Although we cannot recover an exact result, we can at least produce a result that is exactly
symplectic (to machine precision) and also near the exact result.

Third, we will see in Section 9.3 that in the treatment of translations it is necessary to
evaluate linear transformations of the form exp(: k2 :) where k2 arises solely from nonlinear
feed-down effects. Since all calculations are carried out within the quotient algebra L0/L`,
k2 in this case is only known up to some order in the size of the translation, and it seems
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pointless to evaluate exp(: k2 :) to any order higher than what is known for k2. However, we
may very well wish to have a result that is exactly symplectic. The meaning of the new no-
tation just employed and the concepts alluded to will becomes evident in Chapter 9. Suffice
it to say that there are cases where JS, while being exactly Hamiltonian, is yet only known
approximately. In these cases we are content with a correspondingly approximate (but, we
hope, rapidly computable) result for exp(JS) which is, nevertheless, exactly symplectic.

Fourth, there are occasions in which we may wish to factor a map into symplectic and
nonsymplectic parts. See Section 29.1. The first step in this process is to factor, in some
standard way, a matrix into symplectic and nonsymplectic parts.

Section 4.2 provides an initial background by describing the completely understood sub-
ject of orthogonal polar decomposition. Then Sections 4.3 and 4.4 provide a theoretical back-
ground for the more complicated subject of matrix symplectification and symplectic polar
decomposition. They also give information concerning how the symplectic group lies within
the general linear group. This information is useful when one considers non-Hamiltonian per-
turbations of Hamiltonian dynamics. Again see Section 29.1. Finally, Sections 4.5 through
4.8 describe four known methods for matrix symplectification.

4.1 Exponentiation by Scaling and Squaring

4.1.1 The Ordinary Exponential Function

The ordinary exponential function exp(z), where z is a complex variable, is defined by the
Taylor series

exp(z) =
∞∑
`=0

z`/`!. (4.1.1)

This series converges everywhere, but is useful for computation only for small z. Consider
computing, for example, exp(20). For z = 20, we find the numerical result

(20)60/60! = 1.4× 10−4. (4.1.2)

Consequently, when z = 20, at least 60 terms must be retained in (1.1) to even begin to get
convergence. And at this stage the convergence is still quite slow since the ratio of successive
terms is only about

(20)/(60) = 1/3. (4.1.3)

Finally, if we want to compute exp(−20) using the Taylor series, we would have to use very
high precision arithmetic to take into account the high degree of cancellation that in this
case must occur between very large terms.

There is a better way to compute the exponential function based on the observation that
it satisfies the functional scaling equation

exp(z) = [exp(z/m)]m. (4.1.4)

Suppose we set m to an integer power of 2,

m = 2n. (4.1.5)
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Then the right side of (1.4) can be calculated by n successive squarings,

exp(z) = {exp[z/(2n)]}2n = {· · · {{exp[z/(2n)]}2}2 · · · }2 (n squarings). (4.1.6)

Next we observe that if [z/(2n)] is small enough, the quantity exp[z/(2n)] can be computed
to good accuracy using a Taylor series truncated at relatively low order,

exp[z/(2n)] ∼
N∑
0

[z/(2n)]`/`!. (4.1.7)

Let tNexp(z) denote the truncated exponential function defined by the relation

tNexp(z) =
N∑
0

z`/`!. (4.1.8)

Suppose we define my exponential function by the rule

myexp(z) = {· · · {{tNexp[z/(2n)]}2}2 · · · }2 (n squarings). (4.1.9)

Then we might hope that for a suitable value of n (which depends on z) we would have to
good accuracy the relation

exp(z) ∼ myexp(z). (4.1.10)

In fact, using Taylor’s formula with remainder, we find the result

myexp(z) = exp(z)− exp(z)z[z/(2n)]N/(N + 1)! + h.o.t. (4.1.11)

where “h.o.t.” denotes still higher order error terms. Thus, the magnitude of the relative
estimated error is given by the relation

estimated error ∼ |z|[|z|/(2n)]N/(N + 1)!. (4.1.12)

We see that to achieve good accuracy what we must do is make N sufficiently large and
[z/(2n)] sufficiently small that the error term above is small. Given moderate values of z,
this can be done with quite small values of N and n. We also observe that the required value
of n only grows as log(|z|), and that for a given |z| and modest N the accuracy increases very
rapidly with increasing n. The tables below show results for N = 6 and 9, −20 < z < 20,
and n selected so that |[z/(2n)]| < (1/10). The error is also shown, and is consistent with
the estimates (1.11) and (1.12). Note that (with N = 9) at most 16 (9 − 1 + 8 = 16)
multiplications are required to achieve full (64 bit) machine precision. Indeed, the errors
listed in Table 1.2 fluctuate in sign, and are mostly the result of working with only 64 bit
arithmetic.
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Table 4.1.1: N = 6; scaling n values chosen to make |[z/(2n)]| < (1/10).

z n myexp(z) error relative error

-20 8 0.206E-08 0.199E-17 0.966E-09
-19 8 0.560E-08 0.377E-17 0.672E-09
-18 8 0.152E-07 0.699E-17 0.459E-09
-17 8 0.414E-07 0.127E-16 0.307E-09
-16 8 0.113E-06 0.225E-16 0.200E-09
-15 8 0.306E-06 0.388E-16 0.127E-09
-14 8 0.832E-06 0.648E-16 0.779E-10
-13 8 0.226E-05 0.105E-15 0.463E-10
-12 7 0.614E-05 0.108E-13 0.175E-08
-11 7 0.167E-04 0.158E-13 0.948E-09
-10 7 0.454E-04 0.219E-13 0.483E-09
-9 7 0.123E-03 0.283E-13 0.229E-09
-8 7 0.335E-03 0.335E-13 0.999E-10
-7 7 0.912E-03 0.355E-13 0.390E-10
-6 6 0.248E-02 0.217E-11 0.877E-09
-5 6 0.674E-02 0.163E-11 0.242E-09
-4 6 0.183E-01 0.915E-12 0.500E-10
-3 5 0.498E-01 0.218E-10 0.439E-09
-2 5 0.135E+00 0.338E-11 0.250E-10
-1 4 0.368E+00 0.460E-11 0.125E-10
0 0 0.100E+01 0.000E+00 0.000E+00
1 4 0.272E+01 -0.304E-10 -0.112E-10
2 5 0.739E+01 -0.165E-09 -0.224E-10
3 5 0.201E+02 -0.748E-08 -0.372E-09
4 6 0.546E+02 -0.245E-08 -0.448E-10
5 6 0.148E+03 -0.313E-07 -0.211E-09
6 6 0.403E+03 -0.300E-06 -0.745E-09
7 7 0.110E+04 -0.388E-07 -0.354E-10
8 7 0.298E+04 -0.267E-06 -0.896E-10
9 7 0.810E+04 -0.164E-05 -0.203E-09
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Table 4.1.1 continued

z n myexp(z) error relative error

10 7 0.220E+05 -0.928E-05 -0.421E-09
11 7 0.599E+05 -0.488E-04 -0.815E-09
12 7 0.163E+06 -0.242E-03 -0.149E-08
13 8 0.442E+06 -0.187E-04 -0.423E-10
14 8 0.120E+07 -0.852E-04 -0.708E-10
15 8 0.327E+07 -0.374E-03 -0.114E-09
16 8 0.889E+07 -0.159E-02 -0.179E-09
17 8 0.242E+08 -0.659E-02 -0.273E-09
18 8 0.657E+08 -0.266E-01 -0.406E-09
19 8 0.178E+09 -0.105E+00 -0.590E-09
20 8 0.485E+09 -0.409E+00 -0.843E-09
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Table 4.1.2: N = 9; scaling n values chosen to make |[z/(2n)]| < (1/10).

z n myexp(z) error relative error

-20 8 0.206E-08 -0.773E-22 -0.375E-13
-19 8 0.560E-08 0.108E-21 0.193E-13
-18 8 0.152E-07 -0.586E-21 -0.385E-13
-17 8 0.414E-07 -0.242E-20 -0.585E-13
-16 8 0.113E-06 0.132E-20 0.118E-13
-15 8 0.306E-06 -0.116E-20 -0.381E-14
-14 8 0.832E-06 -0.392E-20 -0.471E-14
-13 8 0.226E-05 0.775E-19 0.343E-13
-12 7 0.614E-05 0.110E-19 0.179E-14
-11 7 0.167E-04 0.146E-18 0.872E-14
-10 7 0.454E-04 -0.854E-18 -0.188E-13
-9 7 0.123E-03 -0.239E-17 -0.193E-13
-8 7 0.335E-03 0.195E-17 0.582E-14
-7 7 0.912E-03 -0.217E-17 -0.238E-14
-6 6 0.248E-02 0.217E-17 0.875E-15
-5 6 0.674E-02 -0.633E-16 -0.940E-14
-4 6 0.183E-01 0.555E-16 0.303E-14
-3 5 0.498E-01 0.208E-16 0.418E-15
-2 5 0.135E+00 0.194E-15 0.144E-14
-1 4 0.368E+00 0.278E-15 0.754E-15
0 0 0.100E+01 0.000E+00 0.000E+00
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Table 4.1.2 continued

z n myexp(z) error relative error

1 4 0.272E+01 0.488E-14 0.180E-14
2 5 0.739E+01 0.258E-13 0.349E-14
3 5 0.201E+02 0.355E-13 0.177E-14
4 6 0.546E+02 0.384E-12 0.703E-14
5 6 0.148E+03 -0.568E-13 -0.383E-15
6 6 0.403E+03 0.142E-11 0.352E-14
7 7 0.110E+04 -0.432E-11 -0.394E-14
8 7 0.298E+04 0.414E-10 0.139E-13
9 7 0.810E+04 -0.236E-10 -0.292E-14
10 7 0.220E+05 -0.182E-10 -0.826E-15
11 7 0.599E+05 0.800E-10 0.134E-14
12 7 0.163E+06 0.114E-08 0.697E-14
13 8 0.442E+06 0.827E-08 0.187E-13
14 8 0.120E+07 -0.978E-08 -0.813E-14
15 8 0.327E+07 0.118E-06 0.362E-13
16 8 0.889E+07 0.248E-06 0.279E-13
17 8 0.242E+08 -0.110E-05 -0.455E-13
18 8 0.657E+08 -0.380E-06 -0.579E-14
19 8 0.178E+09 0.149E-04 0.833E-13
20 8 0.485E+09 -0.715E-06 -0.147E-14

4.1.2 The Matrix Exponential Function

So far we have been discussing the ordinary exponential function. The matrix exponential
function (3.7.1) has similar properties. Again its Taylor series may be only very slowly
convergent, and again scaling and squaring can be used to good advantage. Let s be a
parameter and Z any m × m matrix. Consider the matrix function F (s) defined by the
equation

F (s) = exp(−sZ). (4.1.13)

The function F satisfies the relations

F (0) = I, (4.1.14)

F (1) = exp(−Z), (4.1.15)

(d/ds)F (s) = −Z exp(−sZ). (4.1.16)

See Exercise 3.7.1. Integrate both sides of (1.16) to get the result∫ 1

0

(d/ds)F (s)ds = F (s)|10 = exp(−Z)− I. (4.1.17)
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By combining (1.16) and (1.17) we find the integral formula

exp(−Z)− I = −Z
∫ 1

0

exp(−sZ)ds. (4.1.18)

Now multiply both sites of (1.18) by exp(Z) to get the result

exp(Z) = I + Z exp(Z)

∫ 1

0

exp(−sZ)ds. (4.1.19)

Integration by parts yields the general formula∫ 1

0

exp(−sZ)snds = [1/(n+ 1)] exp(−Z) + [1/(n+ 1)]Z

∫ 1

0

exp(−sZ)sn+1ds. (4.1.20)

Now use (1.20) repeatedly in (1.19) to get the truncated Taylor series with remainder result

exp(Z) =
N∑
`=0

Z`/`! + (ZN+1/N !) exp(Z)

∫ 1

0

exp(−sZ)sNds. (4.1.21)

As before, we define a truncated exponential function by the formula

tNexp(Z) =
N∑
`=0

Z`/`!. (4.1.22)

Then from (1.21) and (1.22) we get the result

tNexp(Z) = exp(Z)[I − (ZN+1/N !)

∫ 1

0

exp(−sZ)sNds]. (4.1.23)

In analogy to (1.9) we define myexp(Z) by the rule

myexp(Z) = {tNexp[Z/(2n)]}2n = {· · · {{tNexp[z/(2n)]}2}2 · · · }2 (n squarings). (4.1.24)

Now scale and square both sides of (1.23). Upon combining (1.23) and (1.24) we find the
final result

myexp(Z) = exp(Z){I − (1/N !)[Z/(2n)]N+1

∫ 1

0

exp[−sZ/(2n)]sNds}2n . (4.1.25)

Suppose we decide to make the approximation

exp(Z) ∼ myexp(Z). (4.1.26)

It is easily checked that the relative error made in doing so has an estimated norm given by
the relation

estimated error =‖ 2n{(1/N !)[Z/(2n)]N+1

∫ 1

0

exp[−sZ/(2n)]sNds} ‖ . (4.1.27)
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By using the properties (3.7.10) through (3.7.13) for a norm the expression (1.27) can be
simplified to the form

estimated error ∼ {[1/(N + 1)!] ‖ Z ‖‖ Z/(2n) ‖N exp[u ‖ Z/(2n) ‖]}, (4.1.28)

where u is a number in the range 0 < u < 1.

For purposes of illustration, suppose we set N = 10 and select n so that
‖ Z/(2n) ‖< (1/20). Then we find the estimates

exp[u ‖ Z/(2n) ‖] < exp(1/20) ∼ 1.05, (4.1.29)

‖ Z/(2n) ‖N< (1/20)10 ∼ 9.8× 10−14, (4.1.30)

1/(N + 1)! = 1/(11!) ∼ 2.5× 10−8. (4.1.31)

Correspondingly, the error estimate becomes

estimated error ∼ (2.6× 10−21) ‖ Z ‖, (4.1.32)

which for reasonable values of ‖ Z ‖ is well below round-off error for 64 bit arithmetic. We
conclude that the error committed in using (1.26) can made quite small by using modest
values for N and n. Consequently, the computation of exp(Z) by scaling and squaring can
be both very fast and very accurate. See Exercise 1.2.

We close this section by remarking that there are alternatives to using the truncated
exponential series (1.22) to evaluate the exponential of the scaled exponent. These alterna-
tives, which include the use of Padé approximants, give even better numerical performance
at the expense of more elaborate programming. For further detail, see the references at the
end of this chapter.

Exercises

4.1.1. Verify (1.6). Verify (1.17) through (1.25). Verify (1.27) through (1.32).

4.1.2. Suppose n is selected so that

‖ Z/(2n) ‖=‖ Z ‖ /(2n) < (1/20). (4.1.33)

Verify that n grows with increasing ‖ Z ‖ like

n ∼ [log(20)]/ log(2) + [log(‖ Z ‖)]/ log(2). (4.1.34)

Consequently, for reasonable values of ‖ Z ‖, the number of squarings required to evaluate
(1.24) is quite modest, and the computation of exp(Z) by scaling and squaring is both
accurate and remarkably fast. Show that for a given ‖ Z ‖ and N , the relative error (1.28)
decreases exponentially with increasing n.
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4.2 (Orthogonal) Polar Decomposition

4.2.1 Real Matrix Case

Consider the set of all real n× n matrices. This set obviously forms a Lie algebra, with the
commutator as a Lie product, and this Lie algebra is g`(n,R). Any matrix B in g`(n,R)
can be written in the form

B = S + A, (4.2.1)

where S is (real) symmetric and A is (real) antisymmetric, and both are unique. Next we
observe that the antisymmetric matrices form a Lie subalgebra by themselves,

{A,A′} = A′′, (4.2.2)

and this Lie algebra is so(n,R). Finally, we observe that the remaining commutation rules
for g`(n,R) can be written in the form

{A, S} = S ′, (4.2.3)

{S, S ′} = A. (4.2.4)

That is, the commutator of an antisymmetric and a symmetric matrix is a symmetric matrix,
and the commutator of two symmetric matrices is an antisymmetric matrix.

If M is a matrix in GL(n,R) sufficiently near the identity, it can be written in the
exponential form

M = exp(B). (4.2.5)

See Section 3.7. Correspondingly, it can also be written in the form

M = exp(S ′) exp(A′) (4.2.6)

where S ′ is symmetric and A′ is antisymmetric. Indeed, near the identity in GL(n,R),
which corresponds to being near the origin in g`(n,R), one can in principle pass back and
forth between the representations (2.5) and (2.6) by means of the BCH formula and an
appropriate Zassenhaus formula. See Sections 3.7 and 8.8.

We observe that matrices of the form exp(S) are positive-definite symmetric, and matri-
ces of the form exp(A) are orthogonal. See Exercise 2.2. Thus, any M sufficiently near the
identity has the polar decomposition

M = PO (4.2.7)

where P is positive-definite symmetric and O is orthogonal. To be more precise, we might
call (2.7) an orthogonal polar decomposition to emphasize that the second factor in (2.7) is
orthogonal.

So far we have examined matrices near the identity. In fact, the decomposition (2.7)
can be made globally and is unique. It is easy to check that the matrix (MMT ) is positive
symmetric, and consequently has a unique positive symmetric square root. See Exercise 2.3.
Let us therefore define P by the rule

P = (MMT )1/2, (4.2.8)
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with the corresponding result
P 2 = MMT . (4.2.9)

Next assume M is invertible, in which case P is also invertible. Define a matrix O by the
rule

O = P−1M. (4.2.10)

Calculation reveals that O is orthogonal,

OOT = (P−1M)(P−1M)T = P−1MMT (P−1)T

= P−1P 2(P T )−1 = P−1P 2P−1 = I. (4.2.11)

Thus (2.10) is equivalent to (2.7).
It can be shown that if M is invertible, then both P and O are unique, and P is positive-

definite symmetric. See also Exercise 2.3. Moreover, the decomposition (2.7) is still possible
if M is not invertible, and P in this case is still unique. However, O is no longer uniquely
defined.

We close this section by noting that there is another way of looking at the decompo-
sition (2.7) that deserves emphasis. We have been dealing with the group GL(n,R) and
its subgroup O(n,R). Form the coset space GL(n,R)/O(n,R) consisting of the left cosets
of GL(n,R) with respect to O(n,R). See Section 5.12 for a detailed description of cosets.
Equation (2.7) indicates that the elements of this coset space can be labeled by positive-
definite symmetric matrices P . Moreover, any positive-definite symmetric matrix P can be
written in the form

P = exp(S) (4.2.12)

where S is symmetric, and conversely. Symmetric matrices that are n × n form, in turn, a
linear vector space whose dimension m is given by the relation

m = dim(S) = (1/2)n(n+ 1). (4.2.13)

It follows that matrices P of the form (2.12) have the topology of Em, m-dimensional
Euclidean space, with m given by (2.13). Correspondingly, GL(n,R) has the topology of
Em ×O(n,R).

4.2.2 Complex Matrix Case

Finally we remark that there is an analogous result for complex matrices. In that case a
factorization of the form (2.7) still holds but now M is complex, P is Hermitian and positive
definite, and O is unitary. This result is also called a polar decomposition. See Exercise 2.5.

Exercises

4.2.1. The purpose of this exercise is to verify that the decomposition (2.1) is unique. To
begin, define matrices S and A by the explicit formulas

S = (1/2)(B +BT ), (4.2.14)
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A = (1/2)(B −BT ). (4.2.15)

Verify that S is symmetric, A is antisymmetric, and (2.1) is satisfied. Next assume that
there are symmetric and antisymmetric matrices S ′ and A′ such that

B = S ′ + A′. (4.2.16)

Verify that there must be the relations

S ′ = S, (4.2.17)

A′ = A. (4.2.18)

4.2.2. Verify the commutation rules (2.2) through (2.4).

4.2.3. This exercise examines some of the properties of exp(A) and exp(S) where A and S
are arbitrary real antisymmetric and symmetric matrices, respectively.

a) Define a matrix O by the rule
O = exp(A). (4.2.19)

Show that
OT = exp(AT ) = exp(−A), (4.2.20)

and therefore
OTO = OOT = I. (4.2.21)

Show, using (3.7.129), that
detO = 1, (4.2.22)

and therefore O ∈ SO(n,R) if A is n× n.

b) Define a matrix P by the rule
P = exp(S). (4.2.23)

Show that P is real and symmetric. Use (3.7.129) to prove that P is nonsingular.
Since S is real and symmetric, show that there is a real orthogonal matrix O such that

S = ODO−1 (4.2.24)

where D is diagonal and real. Show that exp(D) is diagonal, real, and positive definite.
Show that

P = exp(S) = O exp(D)O−1 = O exp(D)OT . (4.2.25)

Show, based on the representation (2.25), that P is positive definite.

There is also a more direct proof of this fact that does not involve matrix diagonaliza-
tion. Show that the matrix P 1/2 defined by

P 1/2 = exp(S/2) (4.2.26)

is real, symmetric, and nonsingular, and has the property

P 1/2P 1/2 = P. (4.2.27)
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As a result, show that for any vector v there is the relation

(v, Pv) = (v, P 1/2P 1/2v) = (P 1/2v, P 1/2v) = ||P 1/2v||2 ≥ 0. (4.2.28)

Finally, demonstrate that (v, Pv) = 0 implies that v = 0.

c) What about the converse? Suppose P is a real positive-definite symmetric matrix.
Show that there is a real orthogonal matrix O such that

P = ODO−1 (4.2.29)

where D is diagonal and has all positive entries on the diagonal. Define a symmetric
matrix S ′ by the rule

S ′ = logD (4.2.30)

where logD is defined to be the diagonal matrix whose diagonal entries are the loga-
rithms of the corresponding diagonal entries in D. Verify that, by this definition, S ′

is real and symmetric and has the feature

D = exp(S ′). (4.2.31)

Define the matrix S by the rule

S = OS ′O−1 = OS ′OT . (4.2.32)

Verify that S is real and symmetric and has the property

P = exp(S). (4.2.33)

d) There is more that can be said about the relation between real symmetric matrices
S and real positive-definite symmetric matrices P . According to (2.23), P is a real
analytic function of S. That is, each entry (matrix element) of P is an analytic function
of the various entries in S, and each entry is real when the entries in S are real. (See
Section 35.2 for a discussion of analyticity in several complex variables.) This result
follows because all powers of S are analytic functions of S and the exponential series
converges in norm for all S.

We will see the converse is also true. Namely, S is a real analytic function of P . This
fact is not obvious from the work so far because the construction of S as given by
(2.32) involved O and D, and their analytic properties are not evident. Indeed, as
described in Section 26.13, the eigenvalues of a matrix M (and eigenvalues of P are
involved in the construction of both O and D) need not be analytic functions of the
entries in M . What is required is an alternate procedure for constructing S in terms
of P that is manifestly analytic. Begin with the matrix Q defined in terms of P by
the rule

Q = [1/tr(P )]P. (4.2.34)
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Evidently [1/tr(P )] is a real analytic function of P as long as tr(P ) 6= 0, and corre-
spondingly Q is also an analytic function of P under this same proviso. Moreover,
since P is positive definite, all its eigenvalues λj are real and positive, and therefore

tr(P ) = (
∑

λj) > 0. (4.2.35)

The eigenvalues of Q, call them µj, are given by the relation

µj = λj/(
∑

λi), (4.2.36)

and therefore are real and satisfy the conditions 0 < µj < 1. Next consider the matrix
I − Q. Its eigenvalues, call them νj, satisfy the conditions 0 < νj < 1. It therefore
follows that

||I −Q|| < 1 (4.2.37)

when the spectral norm is used. See Section 3.7.1. Moreover, suppose P is not exactly
real, symmetric, and positive definite, but is in some sufficiently small and possibly
complex neighborhood of such a matrix. Show that (2.37) will continue to hold for
such a P . [Use the norm property (3.7.12) and the fact that although the eigenvalues
of M need not be analytic functions of M , they are continuous functions of M .] Now
define S in terms of P by the rule

S = {log[tr(P )]}I −
∞∑
k=1

(1/k)(I −Q)k = {log[tr(P )]}I + log(Q). (4.2.38)

Evidently the infinite sum in (2.38) converges in norm because of (2.37), and therefore
is an analytic function of P as long as P is in a sufficiently small neighborhood of a real
positive-definite symmetric matrix. Also, the first term in (2.38) is an analytic function
of P under the same proviso. Therefore S is an analytic function of P . Moreover, S
is manifestly real and symmetric when P is real, positive definite, and symmetric.
Finally, we find that

exp(S) = exp{{log[tr(P )]}I + log(Q)}
= I exp{log[tr(P )]} exp[log(Q)] = [tr(P )]Q = P. (4.2.39)

4.2.4. This exercise further explores polar decomposition. Let M be any real matrix. Show
that the matrix Q defined by

Q = MMT (4.2.40)

is positive symmetric. Show that it has a positive symmetric square root. Hint: Since Q is
symmetric, show that there exists a real orthogonal matrix O′ that diagonalizes it,

O′Q(O′)−1 = D. (4.2.41)

Show that the entries in D are real and positive or zero. Define D1/2 to be a diagonal
matrix with entries equal to the positive square roots of the corresponding entries in D.
Now construct P by the rule

P = (O′)−1D1/2O′. (4.2.42)
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Show that P is positive symmetric and satisfies

P 2 = Q. (4.2.43)

Show that if M is invertible, then so is P , and P is then positive-definite symmetric.
A bit more can be said in the way of analyticity if M is invertible. Review Exercise 2.3.

From the definition (2.40) show that Q is real, symmetric, and positive definite if M is real
and invertible. Verify that Q is analytic in M . From part d of Exercise 2.3 we know there
is a real symmetric matrix S such that

Q = exp(S) (4.2.44)

and S is analytic in Q, and hence also in M . Now define P by the rule

P = exp(S/2). (4.2.45)

Evidently P is real, symmetric, and positive definite. Verify that it also satisfies (2.43).
Also, we see that P is analytic in Q, and hence also in M . Finally, if we make a polar
decomposition of M , we see from (2.10) that O is also analytic in M . This follows because
P−1 is analytic in M if P is.

4.2.5. The purpose of this exercise is to define and study polar decomposition for complex
matrices. Review the work of Subsection 4.2.1. We will follow an analogous path in the
complex case.

Consider the set of all possibly complex n× n matrices. This set obviously forms a Lie
algebra, with the commutator as a Lie product, and this Lie algebra is g`(n,C). Verify that
any matrix B in g`(n,C) can be written uniquely in the form

B = H + A (4.2.46)

where
H = (B +B†)/2 (4.2.47)

and
A = (B −B†)/2. (4.2.48)

Show that H is Hermitian,
H† = H, (4.2.49)

and A is anti-Hermitian,
A† = −A. (4.2.50)

Next we observe that anti-Hermitian matrices form a Lie subalgebra by themselves,

{A,A′} = A′′, (4.2.51)

and this Lie algebra is u(n). Finally, we observe that the remaining commutation rules for
g`(n,C) can be written in the form

{A,H} = H ′, (4.2.52)
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{H,H ′} = A. (4.2.53)

That is, the commutator of an anti-Hermitian and a Hermitian matrix is a Hermitian matrix,
and the commutator of two Hermitian matrices is an anti-Hermitian matrix. Verify these
claims.

If M is a matrix in GL(n,R) sufficiently near the identity, it can be written in the
exponential form

M = exp(B). (4.2.54)

See Section 3.7. Correspondingly, it can also be written in the form

M = exp(H ′) exp(A′) (4.2.55)

where H ′ is Hermitian and A′ is anti-Hermitian. Indeed, near the identity in GL(n,C),
which corresponds to being near the origin in g`(n,C), one can in principle pass back and
forth between the representations (2.54) and (2.55) by means of the BCH formula and an
appropriate Zassenhaus formula. See Sections 3.7 and 8.8.

Verify that matrices of the form exp(H) are positive-definite Hermitian (see Exercise
3.7.44), and matrices of the form exp(A) are unitary. Thus, any M sufficiently near the
identity has the polar decomposition

M = PU (4.2.56)

where P = exp(H ′) is positive-definite Hermitian and U = exp(A′) is unitary. To be more
precise, we might call (2.56) a unitary polar decomposition to emphasize that the second
factor in (2.56) is unitary.

So far we have examined matrices near the identity. In fact, the decomposition (2.56)
can be made globally and is unique. Assume, for a moment, the correctness of (2.56). Verify
that then there is the relation

MM † = PUU †P † = PP † = P 2. (4.2.57)

Verify that the matrix (MM †) is positive Hermitian, and consequently has a unique positive
Hermitian square root. Let us therefore define P by the rule

P = (MM †)1/2, (4.2.58)

with the corresponding result
P 2 = MM †. (4.2.59)

Next assume M is invertible, in which case prove that P is also invertible. Define a
matrix U by the rule

U = P−1M. (4.2.60)

Verify by calculation that U is unitary,

UU † = (P−1M)(P−1M)† = P−1MM †(P−1)†

= P−1P 2(P †)−1 = P−1P 2P−1 = I. (4.2.61)

Thus the decomposition (2.56) can be made globally.
It can be shown that if M is invertible, then both P and U are unique, and P is positive-

definite Hermitian. Moreover, the decomposition (2.56) is still possible if M is not invertible,
and P in this case is still unique. However, U is no longer uniquely defined.
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4.3 Symplectic Polar Decomposition

4.3.1 Introduction

Because we will be working with real symplectic matrices, consider the set of all real 2n×2n
matrices. Since the matrix J is invertible, any matrix B in g`(2n,R) can be written in the
form

B = JS + JA. (4.3.1)

We also know that matrices of the form JS constitute a Lie subalgebra,

{JS, JS ′} = JS ′′, (4.3.2)

and that this Lie algebra is sp(2n,R). We next observe that the remaining matrices in
g`(2n,R) obey commutation rules of the form

{JS, JA} = JA′, (4.3.3)

{JA, JA′} = JS. (4.3.4)

Finally, by arguments identical to those of the previous section, we conclude that if M is a
matrix in GL(2n,R) sufficiently near the identity, then it can be written in the form

M = exp(JA′) exp(JS ′) (4.3.5)

where S ′ is symmetric and A′ is antisymmetric.
Any matrix R of the form

R = exp(JS) (4.3.6)

is symplectic, and therefore satisfies the relation

JRTJ−1 = R−1. (4.3.7)

See Sections 3.1 and 3.7. Let Q be any matrix of the form

Q = exp(JA). (4.3.8)

It is easily verified that Q satisfies the relation

JQTJ−1 = Q. (4.3.9)

We define a J-symmetric matrix to be any matrix Q that satisfies (3.9). See (3.1.12) and
also note the similarity of (3.9) and (3.7.26). With these ideas in mind, we see from (3.5)
that any M in GL(2n,R) sufficiently near the identity has the decomposition

M = QR (4.3.10)

where Q is J -symmetric and R is symplectic.
We call (3.10) a symplectic polar decomposition to emphasize that the second factor in

(3.10) is symplectic. Of course, simply demanding that the second factor R in (3.10) be
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symplectic is not enough for a definition. We must also put requirements on Q because
otherwise we could write R = R′R′′, with R′ and R′′ symplectic, and then make the factor-
ization M = (QR′)R′′ and claim R′′ as the second factor. In what follows we will require
that Q be J-symmetric. We might instead require that Q have a representation of the form
(3.8). However, in all the cases for which we have been able to establish the existence of a
symplectic polar decomposition, with Q being J-symmetric, we have then also been able to
establish that Q has a representation of the form (3.8).

We have seen that orthogonal polar decomposition is possible globally and is unique. Is
symplectic polar decomposition also possible globally and unique? To begin to answer these
questions, we need to explore some of the properties of J -symmetric matrices. We will do
so by proving a series of lemmas.

4.3.2 Properties of J-Symmetric Matrices

Lemma 3.1 Any matrix Q that is symmetric and commutes with J is J -symmetric.
Evidently with these two assumptions about Q we have the result

JQTJ−1 = JQJ−1 = QJJ−1 = Q. (4.3.11)

We conclude that all the matrices Sc are J -symmetric. See Section 3.8. In particular, the
zero and identity matrices are J -symmetric.

Lemma 3.2 J -symmetric matrices form a linear vector space. We have already seen that
the zero matrix is J -symmetric. Suppose Q1, and Q2 are J -symmetric. Let a1 and a2 be
any two scalars. Then we find the result

J(a1Q1 + a2Q2)TJ−1 = a1JQ
T
1 J
−1 + a2JQ

T
2 J
−1 = a1Q1 + a2Q2. (4.3.12)

Lemma 3.3 Suppose Q is J -symmetric and has an inverse. Then Q−1 is J -symmetric:

J(Q−1)TJ−1 = J(QT )−1J−1 = (JQTJ−1)−1 = Q−1. (4.3.13)

Lemma 3.4 Suppose Q1 and Q2 are J -symmetric and commute. Then the product Q1Q2

is J -symmetric:

J(Q1Q2)TJ−1 = J(Q2Q1)TJ−1 = JQT
1Q

T
2 J
−1 = JQT

1 J
−1JQT

2 J
−1 = Q1Q2. (4.3.14)

Lemma 3.5 If Q is J -symmetric, then so are all powers of Q including, if Q is invertible,
all negative powers. This result follows from Lemmas 3.3 and 3.4. We also note that (by
definition) Q0 = I and (by Lemma 3.1) I is J -symmetric.

Lemma 3.6 If Q is J -symmetric, then Q can be written in the form

Q = JA (4.3.15)

where A is antisymmetric, and conversely. To see this, solve (3.15) for A to find the definition

A = JTQ. (4.3.16)
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Then we find the result

AT = (JTQ)T = QTJ = JJ−1QTJ = JJQTJ−1 = JQ = −JTQ = −A. (4.3.17)

Conversely, if A is antisymmetric, we have from (3.15) the result

JQTJ−1 = J(JA)TJ−1 = JATJTJ−1 = −JAJTJ−1 = JA = Q. (4.3.18)

Lemma 3.7 If Q is J -symmetric and nonsingular, then

detQ > 0. (4.3.19)

Moreover, if M is nonsingular and has the symplectic polar decomposition (3.10), then

detM > 0. (4.3.20)

Thus, M is orientation preserving. To verify the first claim, take the determinant of both
sides of (3.15) to find the relation

detQ = (det J)(detA) = detA. (4.3.21)

We see that Q being nonsingular implies that A is nonsingular. But, according to Exercise
3.12.2, it follows that detA > 0 and therefore (3.19) holds. To verify the second claim, take
the determinant of both sides of (3.10) to find the relations

detM = (detQ)(detR) = detQ. (4.3.22)

We see that Q is nonsingular if M is nonsingular. Therefore, if M is nonsingular and has a
symplectic polar decomposition, (3.20) follows from the first claim.

Lemma 3.8 A J -symmetric matrix remains J -symmetric under the action of any sym-
plectic similarity transformation. In other words, if Q is J -symmetric, if R is symplectic,
and if we define the transformed matrix Qtr by the rule

Qtr = R−1QR, (4.3.23)

then Qtr is J -symmetric. To check this claim, we carry out the computation

J(Qtr)TJ−1 = J(R−1QR)TJ−1 = JRTQT (R−1)TJ−1

= JRTJ−1JQTJ−1J(R−1)TJ−1 = R−1QR = Qtr. (4.3.24)

Note that if Q is written in the form (3.15), and Qtr is written in the form

Qtr = JAtr, (4.3.25)

then A and Atr are related by the equation

Atr = JTQtr = JTR−1QR = JTR−1JAR = JR−1J−1AR = RTAR. (4.3.26)
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Also note that if the matrix M has a symplectic polar decomposition, then so does the
matrix R′MR′′ where R′ and R′′ are any two symplectic matrices. To see this, use (3.10) to
write

R′MR′′ = R′QRR′′ = R′Q(R′)−1R′RR′′ = QtrR′′′ (4.3.27)

where now
Qtr = R′Q(R′)−1 (4.3.28)

and
R′′′ = R′RR′′. (4.3.29)

By the Lemma 3.8, Qtr is J-symmetric. And, by the group property, R′′′ is symplectic.
Therefore, the right side of (3.27) is a symplectic polar decomposition.

Conversely, suppose that a matrix M does not have a symplectic polar decomposition.
(We will see in Subsection 4.3.5 that there are such matrices.) Again consider the matrix
R′MR′′ where R′ and R′′ are any two symplectic matrices. Then it is easy to verify, by
reductio ad absurdum, that R′MR′′ also does not have a symplectic polar decomposition. We
conclude that the spaces of matrices that do and do not have symplectic polar decompositions
are invariant under left and right translations/multiplications by elements in the symplectic
group.

Lemma 3.9 Given any matrix M , form the matrix N(M) by the rule

N(M) = MJMTJT . (4.3.30)

Then N is J -symmetric. To see this, simply compute. We find the result

JNTJ−1 = J(MJMTJT )TJ−1 = JJMJTMTJ−1

= MJMTJT = N. (4.3.31)

We remark that if M is symplectic, then N(M) = I. Also, suppose we take the determinant
of both sides of (3.30). Doing so gives the result

detN = (det J)2(detM)2 = (detM)2. (4.3.32)

We see that if M is nonsingular, than so is N . Moreover, consistent with Lemma 3.7, N has
a positive determinant.

Lemma 3.10 Suppose M is any matrix and R′ and R′′ are any two symplectic matrices.
Then we have the relation

N(R′MR′′) = R′N(M)(R′)−1. (4.3.33)

Again we simply compute and use (3.7) to find the result

N(R′MR′′) = (R′MR′′)J(R′MR′′)TJT

= R′M [R′′J(R′′)T ]MT (R′)TJT

= R′MJMTJTJ(R′)TJT

= R′MJMTJT (R′)−1 = R′N(M)(R′)−1. (4.3.34)
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As a special case of (3.33) we have the relation

N(MR′′) = N(M), (4.3.35)

which shows that N(M) depends only on the coset GL(2n,R)/Sp(2n,R) to which M be-
longs.

Lemma 3.11 If the matrix M is transformed by a symplectic similarity transformation,
then so is the matrix N(M). Suppose M is any matrix and R is a symplectic matrix. Define
the transformed matrix M tr by the rule

M tr = R−1MR. (4.3.36)

Let us compute the matrix N tr associated with M tr by the rule (3.30). As a special case of
(3.33) we have the result

N tr = N(M tr) = N(R−1MR) = R−1N(M)R. (4.3.37)

4.3.3 Initial Result on Symplectic Polar Decomposition

With these lemmas in hand, we are prepared to say more about the possibility of achieving
the factorization (3.10) for general matrices M . Suppose M is invertible, and suppose there
exists a J -symmetric matrix Q such that

N(M) = Q2 (4.3.38)

with N defined by (3.30). Then M has the factorization (3.10) with R symplectic.
To prove this result, we first observe that Q is invertible: we know from (3.32) that N

is invertible if M is, and from (3.38) we see that Q is invertible if N is. Next, since Q is
invertible, we define R by the rule

R = Q−1M. (4.3.39)

Then the computation

RJRT = (Q−1M)J(Q−1M)T = Q−1MJMT (Q−1)T

= Q−1MJMTJTJ(Q−1)TJ−1J = Q−1NQ−1J

= Q−1Q2Q−1J = J (4.3.40)

shows that R is symplectic. Conversely, suppose that Q and R in (3.10) are
J -symmetric and symplectic, respectively. Then we find the result

N = MJMTJT = QRJ(QR)TJT = QRJRTQTJT

= QJQTJ−1 = Q2. (4.3.41)

We have learned that establishing the factorization (3.10) is equivalent to finding a J -
symmetric matrix Q that satisfies (3.38).

Put another way, we seek a solution of the matrix equation

Q = [N(M)]1/2, (4.3.42)
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provided a solution can be found, and further require that Q be J-symmetric. A stan-
dard general method for finding roots of a general matrix N is to first find, if possible, its
logarithm.1 Therefore, let us first try to compute log(N). From (3.7.2) we find the result

log(N) = −
∞∑
`=1

(I −N)`/`. (4.3.43)

Note that (by Lemmas 3.1, 3.2, 3.5, and 3.9) all the terms [(I − N)`/`] are J-symmetric
matrices. Consequently, if the series (3.43) converges, then (by Lemma 3.2) log(N) will be
a J -symmetric matrix. If the series does converge, let us define a matrix Q by the rule

Q = exp[(1/2) log(N)]. (4.3.44)

The matrix Q will also be J -symmetric. [Apply to the series (3.7.1) arguments similar to
those just made for log(N).] Moreover, Q will satisfy (3.38),

Q2 = {exp[(1/2) log(N)]}2 = exp[log(N)] = N. (4.3.45)

Therefore we can achieve the factorization (3.10) if the series (3.43) converges.
The series (3.43) will converge if N is sufficiently near I. Specifically, the series will

converge if ‖ N − I ‖< 1 for some choice of matrix norm. But, according to the remark
made in Lemma 3.9, N = I if M is symplectic. Consequently, the series will converge if M
is sufficiently near a symplectic matrix.

4.3.4 Extended Result on Symplectic Polar Decomposition

But still more can be said. Consider the matrix N(λM) which, according to (3.30), has the
form

N(λM) = (λM)J(λM)TJT = λ2MJMTJT = λ2N(M) (4.3.46)

where λ is any real scalar in the range 0 < λ < ∞. Also, let us view the set of all 2n× 2n
matrices as a linear vector space. This space is shown schematically in Figure 3.1. There
we have depicted the zero matrix as the origin, and have also displayed the identity matrix
I. In addition we have depicted the various matrices N(λM) for fixed M as a ray (half
line) emanating from the origin. These matrices do in fact lie on a ray because, according
to (3.46), they are the λ2 multiple of a fixed matrix. Finally, we have depicted the unit ball
about the identity I. It is the set of matrices C that satisfy the requirement

‖ C − I ‖< 1 (4.3.47)

for some choice of matrix norm. In drawing the unit ball about I we have assumed that the
norm has the property ‖ I ‖= 1 so that the zero matrix lies on the ball’s surface. We are
now ready to state an extended result in the form of a theorem.

1Recall from Exercise 2.3 that there are special methods for finding matrix roots if the matrix is positive
symmetric.
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Theorem 3.1 Suppose that for some value λ0 the matrix N(λ0M) lies within the unit ball
around I. (This is the situation depicted in Figure 3.1.) Then the matrix M is invertible,
has positive determinant, and has the symplectic polar decomposition (3.10).

Proof: Consider the matrix M0 defined by the relation

M0 = λ0M. (4.3.48)

According to (3.46) the matrix N0 associated with M0 is given by the relation

N0 = N(λ0M) = λ2
0N(M) = λ2

0N. (4.3.49)

By hypothesis, we have the relation

‖ N0 − I ‖=‖ N(λ0M)− I ‖< 1. (4.3.50)

It follows that the series (3.43) for log(N0) converges, and we can define a J -symmetric
matrix Q0 by the rule

Q0 = exp[(1/2) log(N0)]. (4.3.51)

Moreover, according to Lemma 3.2, the matrix Q defined by

Q = (1/λ0)Q0 (4.3.52)

is also J -symmetric. By (3.49), (3.51), and (3.52), it satisfies the relation

Q2 = (1/λ0)2Q2
0 = (1/λ0)2N0 = N. (4.3.53)

Consequently, M has the symplectic polar decomposition (3.10) with Q given by (3.52).
We also note that Q can be written in exponential form: We already know that

[(1/2) log(N0)] is J -symmetric. Consequently, according to Lemma 3.6, there exists an
antisymmetric matrix A0 such that

(1/2) log(N0) = JA0, (4.3.54)

and (3.51) can therefore be written in the form

Q0 = exp(JA0). (4.3.55)

Now use (3.52) and (3.55) to write Q in the form

Q = (1/λ0)Q0 = exp{−[log(λ0)]I} exp(JA0)

= exp{JA0 − [log(λ0)]I} = exp(JA) (4.3.56)

with A given by the relation
A = A0 + [log(λ0)]J. (4.3.57)

Finally, it follows from (3.56) and (3.7.129) that detQ > 0 and hence, from (3.22), detM >
0.
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I

N(λM)

unit ball

Figure 4.3.1: Schematic depiction of matrix space showing the zero matrix, the identity
matrix I, the ray N(λM), and the unit ball around the identity matrix.

One might wonder if the condition of Theorem 3.1 is necessary. We can easily see that
it is for the case of GL(2,R). However, it is not necessary for some examples in the case
of GL(4,R), and presumably not for some examples in any GL(2n,R) with n ≥ 2. See
Exercise 3.19.

In the GL(2,R) case, for any 2× 2 matrix M , we have the result

N(λM) = λ2MJMTJT = λ2[det(M)]I. (4.3.58)

(See Exercise 3.1.2.) Thus we have the relation

‖ N(λM)− I ‖=‖ [λ2 det(M)− 1]I ‖= |λ2 det(M)− 1| ‖ I ‖ . (4.3.59)

Evidently, if det(M) > 0, we can find a λ such that the right side of (3.59) is less than 1.
Also, we can write M in the form (3.10) with Q and R given by the relation

Q = +[det(M)]1/2I, (4.3.60)

R = +{1/[det(M)]1/2}M. (4.3.61)

On the other hand, if det(M) < 0, no choice of (real) λ will make the right side of (3.59)
less than 1. This is consistent with Lemma 3.7 which states that detM > 0 is a necessary
condition for M to have a symplectic polar decompostion.

We also observe that we could replace the + signs in (3.60) and (3.61) by − signs and
also obtain a (different) symplectic polar decomposition. Exercise 3.13 shows that the use
of the Theorem 3.1 procedure, which is always possible in the 2 × 2 case when detM > 0,
produces the + signs choice.
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Let us summarize our results in the language of cosets. (Again, see Section 5.12, if nec-
essary, for a detailed discussion of cosets.) We have been dealing with the group GL(2n,R)
and its subgroup Sp(2n,R). Form the coset space GL(2n,R)/Sp(2n,R) consisting of the
left cosets of GL(2n,R) with respect to Sp(2n,R). Equations (3.10), (3.56), and (3.57) in-
dicate that the left cosets GL(2n,R)/Sp(2n,R), for those M which satisfy the requirement
of Theorem 3.1, can be put into one-to-one correspondence with 2n× 2n (real) nonsingular
antisymmetric matrices A. Such matrices form a linear vector space whose dimension m is
given by the relation

m = dim(A) = n(2n− 1). (4.3.62)

Thus, the portion of GL(2n,R) that satisfies the requirement of Theorem 3.1 has the topol-
ogy of Em× Sp(2n,R) with m given by (3.62).

4.3.5 Symplectic Polar Decomposition Not Globally Possible

We have already seen that symplectic polar decomposition is not possible for M in the
cosets with detM < 0. Are there other cosets as well for which symplectic decomposition
is impossible? We will see that there are. Therefore symplectic polar decomposition is not
possible globally even with the restriction detM > 0.

Consider, as a possible 4× 4 counter example, the diagonal matrix M given by

M =


µ1 0 0 0
0 µ2 0 0
0 0 ν1 0
0 0 0 ν2

 (4.3.63)

where the µj and νj are real and nonzero. Its determinant satisfies the condition

det(M) = µ1µ2ν1ν2. (4.3.64)

Take for J the matrix

J =

(
J2 0
0 J2

)
. (4.3.65)

See (3.2.10). Then we find, using (3.30) and the results of Exercise 3.1.2, the relations

N(M) =


µ1µ2 0 0 0

0 µ1µ2 0 0
0 0 ν1ν2 0
0 0 0 ν1ν2

 (4.3.66)

and

N(λM) =


λ2µ1µ2 0 0 0

0 λ2µ1µ2 0 0
0 0 λ2ν1ν2 0
0 0 0 λ2ν1ν2

 . (4.3.67)
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It follows that

N(λM)− I = −


1− λ2µ1µ2 0 0 0

0 1− λ2µ1µ2 0 0
0 0 1− λ2ν1ν2 0
0 0 0 1− λ2ν1ν2

 . (4.3.68)

Therefore, using the spectral norm, which is the strongest, we find the result

||N(λM)− I|| = max[|(1− λ2µ1µ2)|, |(1− λ2ν1ν2)|]. (4.3.69)

We see that the ray N(λM) does not pass through the interior of the unit ball about the
identity if

µ1µ2 < 0 or ν1ν2 < 0. (4.3.70)

Consequently the series (3.43) used to construct log(N), and hence Q, might be expected
to diverge in these cases.2

We will show that, in fact, for these cases there is no J-symmetric matrix Q such that

Q2 = N(λM). (4.3.71)

Suppose that such a Q exists. By Lemma 3.6 there is an antisymmetric matrix A such that
Q = JA. Write A in the 2× 2 block form

A =

(
a b
c d

)
. (4.3.72)

Then we find for Q the result

Q = JA =

(
J2 0
0 J2

)(
a b
c d

)
=

(
J2a J2b
J2c J2d

)
. (4.3.73)

And for Q2 we find the result

Q2 =

(
J2a J2b
J2c J2d

)(
J2a J2b
J2c J2d

)
=

(
(J2a)2 + J2bJ2c J2aJ2b+ J2bJ2d
J2cJ2a+ J2dJ2c J2cJ2b+ (J2d)2

)
. (4.3.74)

Let us work out the properties of the entries in Q2. Since A is antisymmetric, the matrices
a and d are antisymmetric and therefore have the form

a =

(
0 α
−α 0

)
, (4.3.75)

d =

(
0 δ
−δ 0

)
. (4.3.76)

Consequently, we have the relations

J2a = −αI, (4.3.77)

2In fact, in this case because of the diagonal form of [N(λM)− I], it easily verified that the series (3.43)
does diverge.
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J2d = −δI, (4.3.78)

from which it follows that
(J2a)2 = α2I, (4.3.79)

(J2d)2 = δ2I. (4.3.80)

Next we find, again using the results of Exercise 3.1.2, that

J2bJ2c = −J2bJ2b
T = det(b)I (4.3.81)

and
J2cJ2b = −J2b

TJ2b = det(b)I. (4.3.82)

Here we have used the relation
c = −bT , (4.3.83)

which also follows from the fact that A is antisymmetric. Finally, we have the results

J2aJ2b+ J2bJ2d = −(α + δ)J2b, (4.3.84)

J2cJ2a+ J2dJ2c = −(α + δ)J2c = (α + δ)J2b
T . (4.3.85)

Now require that (3.71) hold. So doing yields the relations

α2 + det(b) = λ2µ1µ2, (4.3.86)

δ2 + det(b) = λ2ν1ν2, (4.3.87)

− (α + δ)J2b = 0, (4.3.88)

(α + δ)J2b
T = 0. (4.3.89)

Note that the relations (3.88) and (3.89) are equivalent, and yield the two possibilities

α = −δ (4.3.90)

or
J2b = 0 which implies b = 0. (4.3.91)

If (3.90) holds, the relations (3.86) and (3.87) become

α2 + det(b) = λ2µ1µ2, (4.3.92)

α2 + det(b) = λ2ν1ν2, (4.3.93)

and they are contradictory if µ1µ2 6= ν1ν2. If (3.91) holds, the relations (3.86) and (3.87)
become

α2 = λ2µ1µ2, (4.3.94)

δ2 = λ2ν1ν2, (4.3.95)

and at least one of them is an impossibility in the cases (3.70).
We conclude that no J-symmetric matrix Q exists that satisfies (3.71) when M is of

the form (3.63) and (3.70) holds. Therefore, symplectic polar decomposition for such M is
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impossible. The same is true for any matrices M ′ that are in the same cosets as such M .
Finally we note from (3.64) that if both the cases (3.70) hold, then it is still possible to have
det(M) > 0.

From Theorem 3.1 we know that a sufficient condition for M to have a symplectic polar
decomposition is that the ray N(λM) intersect the unit ball about I. From the example
of this section one might be tempted to conjecture that this intersection condition is also
a necessary condition. However, as already mentioned earlier, Exercise 3.19 shows that the
intersection condition is not necessary for a particular GL(4,R) example.

4.3.6 Uniqueness of Symplectic Polar Decomposition

There remains the question of uniqueness. Suppose that M has the two symplectic polar
decompositions

M = QR (4.3.96)

and
M = Q′R′. (4.3.97)

Then we see that
Q′ = QR(R′)−1. (4.3.98)

But, since symplectic matrices form a group, the matrix R(R′)−1 is symplectic, and therefore
Q′ and Q are in the same GL(2n,R)/Sp(2n,R) coset. By Lemma 3.2, −Q is a J-symplectic
matrix if +Q is, and they are related under multiplication by the symplectic matrix −I, and
are therefore in the same coset. Thus, if symplectic polar decomposition is possible at all,
there are always at least two possibilities. In the case of Theorem 3.1 we imposed the unit
ball condition of Figure 3.1, and were able to make the choice specified by (3.51) and (3.52).
In the 2 × 2 case this choice dictates the + sign in (3.60). We will see that an analogous
choice can be made in the general case.

As in Theorem 3.1, let Q0 be the matrix associated with N0 = N(λ0M). Write the
matrix identity

− 2I = (−Q0 − I) + (Q0 − I) (4.3.99)

and use the triangle inequality (3.7.12) to deduce the inequality

|| − 2I|| ≤ || −Q0 − I||+ ||Q0 − I||. (4.3.100)

With an appropriate norm, such as the spectral norm, we have the relation

||2I|| = 2, (4.3.101)

and we conclude from (3.100) that

|| −Q0 − I|| ≥ 2− ||Q0 − I||. (4.3.102)

We will now seek an estimate for the quantity ||Q0 − I||.
Consider the function g(x) defined by the equation

(1− x)1/2 = 1− g(x). (4.3.103)
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It is readily verified that this function has the expansion

g(x) =
∞∑
`=1

d`x
` = x/2 + x2/8 + · · · (4.3.104)

where all the coefficients d` are positive. Moreover, g(x) satisfies the inequality

(x/2) ≤ g(x) ≤ x for x ∈ [0, 1]. (4.3.105)

Instead of the method of Theorem 3.1, let us use a more direct (but equivalent) way of
defining Q0 by writing

Q0 = (N0)1/2 = [I − (I −N0)]1/2 = I − g(I −N0). (4.3.106)

As in the proof of Theorem 3.1, let us also make the assumption that

||N0 − I|| < 1. (4.3.107)

Under this hypothesis the relation (3.106) yields the inequality

||Q0 − I|| = || − g(I −N0)|| = ||g(I −N0)||

= ‖
∞∑
`=1

d`(I −N0)` ‖≤
∞∑
`=1

d` ‖ I −N0 ‖`

= g(||I −N0||) = g(||N0 − I||) ≤ ||N0 − I|| < 1. (4.3.108)

Here we have made use of the positivity of the d` and the relation (3.105).
Finally, combine (3.102) and (3.108) to get the result

|| −Q0 − I|| > 1. (4.3.109)

We see from (3.108) that the use of (3.106) or, equivalently, the use of the method of Theorem
3.1, produces a Q0 that is inside the unit ball shown in Figure 3.1. And, correspondingly,
(3.109) shows that −Q0 is outside this unit ball. Thus, the method of Theorem 3.1 assures
that the J-symplectic factor Q0 is as close to the identity I as possible.

4.3.7 Concluding Summary

Let us summarize what has been learned. We have seen that symplectic polar decomposition
is possible and unique if M is sufficiently near the symplectic group so that N(M) lies
within the unit ball about I. We have extended this result to show that symplectic polar
decomposition is possible and unique if the ray N(λM) passes through the unit ball about
I. Also, we have found a family of counter examples that show that symplectic polar
decomposition is not possible globally. Naturally, for any counter example, the ray N(λM)
cannot pass through the unit ball about I. However, as illustrated in Exercise 3.21, there are
examples where the ray N(λM) does not pass through the unit ball about I and symplectic
polar decomposition is still possible and unique. See also Exercises 3.22 through 3.24 for
further examples of when symplectic polar decomposition is and is not possible.
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Exercises

4.3.1. Verify the commutation rules (3.2) through (3.4).

4.3.2. Suppose M is a 2n × 2n matrix near the identity. Then M can be written in the
form

M = exp[ε(JS + JA)] (4.3.110)

where ε is a small parameter. Show that M can also be written in the form

M = exp(εJA′) exp(εJS ′), (4.3.111)

and determine the first few terms in A′ and S ′ when expressed as a power series expansion
in ε.

4.3.3. Show that any matrix of the form (3.8) satisfies (3.9), and hence is J -symmetric.

4.3.4. Review Exercise 3.1.9. Employing a slightly different notation for the symplectic
transpose, define the matrix M ′ by the rule

M ′ = MS = JMTJ−1. (4.3.112)

Show that any matrix of the form JA is symmetric under this priming operation,

(JA)′ = JA, (4.3.113)

and any matrix of the form JS is antisymmetric,

(JS)′ = −JS. (4.3.114)

Thus, verify that (3.1) is a decomposition of B into symmetric and antisymmetric parts with
respect to the symplectic transpose operation.

4.3.5. Verify the calculations associated with Lemmas 3.1 through 3.11.

4.3.6. Refer to Lemma 3.1. Show that any two of the following three properties implies the
third: (i) symmetric, (ii) commutes with J , (iii) J -symmetric.

4.3.7. Suppose M1 and M2 are two commuting matrices, and suppose M2 is invertible.
Verify that M1 and M−1

2 also commute. Show that the set of all commuting
J -symmetric matrices in GL(2n,R) forms a group.

4.3.8. Review Lemma 3.6. Show that if A is any antisymmetric matrix, there exists another
antisymmetric matrix A′ such that

JA = A′J. (4.3.115)

4.3.9. Given any factorization of the form (3.10), use Lemma 3.8 to show that M also has
the factorization

M = QR = RQtr. (4.3.116)

If Q is of the form (3.8), find the Atr associated with Qtr.
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4.3.10. If M is symplectic, verify that N as given by (3.30) satisfies N = I.

4.3.11. If you have not already done so in Exercise 3.5, verify (3.40) and (3.41).

4.3.12. Verify the steps in the proof of Theorem 3.1.

4.3.13. Verify (3.58) and (3.59). Show that

‖ I ‖≥ 1 (4.3.117)

for any choice of norm. Hint: Apply (3.7.10) and (3.7.13) to ‖ I2 ‖. Show that if det(M) < 0,
no choice of λ will make the right side of (3.59) less than 1. Show that applying the method
of Theorem 3.1 in the 2×2 case produces the symplectic polar decomposition given by (3.60)
and (3.61).

4.3.14. Suppose the matrices M and M ′ belong to the same GL(2n,R)/Sp(2n,R) coset.
Show that they then have the same determinant. Is the converse true?

4.3.15. Verify (3.66).

4.3.16. Suppose that, for the matrix M given by (3.63), there are the conditions µ1µ2 > 0
and ν1ν2 > 0. Show that in this case a J-symmetric solution to (6.71) is given by the relation

Q = [N(λM)]1/2 = λ


[µ1µ2]1/2 0 0 0

0 [µ1µ2]1/2 0 0
0 0 [ν1ν2]1/2 0
0 0 0 [ν1ν2]1/2

 . (4.3.118)

Instead, suppose one or both of the conditions (3.70) holds. Then, from (3.118), one might
surmise that (3.71) has only imaginary solutions. This is not the case. Show, for example if
both conditions (3.70) hold, then (3.71) has the real solution

Q = λ

(
[−µ1µ2]1/2J2 0

0 [−ν1ν2]1/2J2

)
. (4.3.119)

However note that this solution Q is not J-symmetric. Consequently, there is no contradic-
tion with the results of Section 4.3.5.

4.3.17. Graph the function g(x) given by (3.103). Verify all claims made for g(x). Determine
the coefficients d` and the domain of convergence of this series. Verify (3.106) and (3.108).
Show that Q0 as defined by (3.106) is J -symmetric. Show that use of (3.106) gives the same
result as that of Theorem 3.1.

4.3.18. We know that N(M) is J-symmetric and therefore, by Lemma 3.6, there is an
antisymmetric matrix A′ such that

N(M) = JA′. (4.3.120)
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By the same lemma, if Q is J-symmetric there is an antisymmetric A such that (3.15) holds.
Now suppose that there is a Q of the form (3.15) such that (3.38) is satisfied. Show, using
the representations (3.15) and (3.120), that there is the relation

JA′ = JAJA, (4.3.121)

from which it follows that
A′ = AJA. (4.3.122)

Since A is antisymmetric, (3.122) can also be written in the form

− A′ = AJAT . (4.3.123)

Recall the work of Section 3.12. We see that if there exists a J-symmetric Q such that (3.38)
holds, then the antisymmetric matrix A associated with this Q is also a Darboux matrix
that transforms J to −A′.

4.3.19. In Section 4.3.5 we studied the space of all diagonal matrices in GL(4,R) to deter-
mine which of them had symplectic polar decompositions. Ideally we would like to do the
same for all matrices in GL(4,R), but this seems to be a formidable task because GL(4,R)
is 16 dimensional.3 We know that in principle it is sufficient to examine the coset space
GL(4,R)/Sp(4,R), which is 6 dimensional. However, the parameterization of the coset
space GL(2n,R)/Sp(2n,R) is complicated. See Appendix P. As a simpler task, this exercise
begins to examine the subset of matrices SO(4,R) ⊂ GL(4,R). This set (also 6 dimen-
sional), while incomplete in the sense of not embracing all cosets, is easier to study. The
work of this exercise and the next will show that every element in SO(4,R) has a symplectic
polar decomposition. It will also provide information about SO(4,R) that will be valuable
for subsequent use.

The Lie algebra so(4,R) consists of all real 4 × 4 antisymmetric matrices A. As with
the case of symmetric matrices S, it is convenient to decompose A into matrices Aa and Ac

that anticommute and commute with J , respectively,

A = Aa + Ac. (4.3.124)

Show that
Aa = (1/2)(A− JAJ−1) (4.3.125)

and
Ac = (1/2)(A+ JAJ−1). (4.3.126)

Verify that the Lie algebra formed by the set of antisymetric matrices has the property

{Ac, (Ac)′} = (Ac)′′, (4.3.127)

{Ac, Aa} = (Aa)′, (4.3.128)

{Aa, (Aa)′} = Ac. (4.3.129)

3In fact, we would like to do the same for GL(2n,R) for all n; but at least GL(4,R) is the first nontrivial
case.
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If A is sufficiently small, the BCH and Zassenhaus series converge, and we may achieve the
factorization

exp(A) = exp(Aa + Ac) = exp[(Aa)′] exp[(Ac)′]. (4.3.130)

Show that any element of the form exp(Aa) is J-symmetric, and any element of the form
exp(Ac) is symplectic. The relation (3.130) shows that any SO(4,R) element suficiently near
the identity has a symplectic polar decomposition. This is to be expected because we already
know that every matrix sufficiently near the identity has a symplectic polar decomposition.

The most general 4× 4 antisymmetric matrix A can be written in the form

A =


0 α β γ
−α 0 δ ε
−β −δ 0 ζ
−γ −ε −ζ 0

 . (4.3.131)

Using the form of J given by (3.65), show that

Ac = (1/2)


0 2α β + ε γ − δ
−2α 0 −γ + δ β + ε
−β − ε γ − δ 0 2ζ
−γ + δ −β − ε −2ζ 0

 (4.3.132)

and

Aa = (1/2)


0 0 β − ε γ + δ
0 0 γ + δ −β + ε

−β + ε −γ − δ 0 0
−γ − δ β − ε 0 0

 . (4.3.133)

Evidently the space of matrices of the form Ac is 4 dimensional, and the space of matrices
of the form Aa is 2 dimensional. Let us seek a convenient basis for each.

Begin with the Ac. Evidently matrices of the form JSc are antisymmetric and commute
with J . Verify that there is the one-to-one correspondence

JSc ↔ Ac. (4.3.134)

We already know that the matrices JSc are associated with the u(2) part of sp(4,R). Looking
ahead, a convenient basis for these matrices, in the case that J is of the form (3.1.1), will
be found in Exercise 5.7.8. They are the matrices B0 through B3 given in (5.7.44). If we
can find their counterparts for the case that J is given by (3.65), then we will have found a
convenient basis for the Ac. This is easily done. Review Section 3.2. Show that in the 4× 4
case the matrix P of (3.2.5) is given by the relation

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (4.3.135)

Evidently P is both symmetric and orthogonal. Show that the desired basis for the Ac can
be taken to be the matrices Cj defined by the rule

Cj = PBjP. (4.3.136)
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Verify that the matrices Cj are given by the relations

C0 = PB0P =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (4.3.137)

C1 = PB1P =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 , (4.3.138)

C2 = PB2P =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , (4.3.139)

C3 = PB3P =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 , (4.3.140)

and are of the form (3.132). Verify that they satisfy the commutation rules

{C0, Cj} = 0, j = 0, 1, 2, 3; (4.3.141)

{C1, C2} = −2C3, (4.3.142)

{C2, C3} = −2C1, (4.3.143)

{C3, C1} = −2C2. (4.3.144)

Next find a basis for the Aa. By looking at (3.133), show that a convenient choice is

E1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 (4.3.145)

and

E2 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (4.3.146)

Show that they, together with the Cj, obey the commutation relations

{E1, E2} = 2C0, (4.3.147)

{C0, E1} = 2E2, (4.3.148)
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{C0, E2} = −2E1, (4.3.149)

{Cj, E1} = {Cj, E2} = 0, j = 1, 2, 3. (4.3.150)

After a bit of algebraic experimentation (and in anticipation of Exercise 11.1.6), one
finds that it is convenient to relabel and renormalize the basis just found by making the
definitions

G1 = −(1/2)E1 = (1/2)


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

G2 = −(1/2)E2 = (1/2)


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

G3 = (1/2)C0 = (1/2)


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (4.3.151)

H1 = (1/2)C3 = (1/2)


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 ,

H2 = (1/2)C2 = (1/2)


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 ,

H3 = (1/2)C1 = (1/2)


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 . (4.3.152)

Show that the Gj and Hk satisfy the pleasing commutation rules

{G1, G2} = G3, (4.3.153)

{G2, G3} = G1, (4.3.154)

{G3, G1} = G2, (4.3.155)

{H1, H2} = H3, (4.3.156)

{H2, H3} = H1, (4.3.157)

{H3, H1} = H2, (4.3.158)
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{Gj, Hk} = 0 for j, k = 1, 2, 3; (4.3.159)

and the anticommutation relations

{Gj, Gk}+ = {Hj, Hk}+ = −(1/2)δjkI. (4.3.160)

Show also that there are the relations

(G1)2 + (G2)2 + (G3)2 = (H1)2 + (H2)2 + (H3)2 = −(3/4)I. (4.3.161)

You have verified, as advertised in the discussion associated with Table 3.7.1, that the Lie
algebra so(4,R) is the direct sum of two mutually commuting su(2) Lie algebras. [Strictly
speaking, based only on the commutation rules, we cannot tell at this stage whether it is
su(2) or so(3,R) that we have found. In the next exercise you will verify that it is indeed
su(2).] Note that all the matrices Gj and Hk are real and antisymmetric, and form a basis
for the 6-dimensional set of antisymmetric 4 × 4 matrices. Verify that G1 through G3 are
linear combinations of pair-wise commuting generators for rotations in the (1,4 and 2,3),
(1,3 and 2,4), and (1,2 and 3,4) planes, respectively. Verify that H1 through H3 are also
linear combinations of pair-wise commuting generators for rotations in the (1,2 and 3,4),
(1,3 and 2,4), and (1,4 and 2,3) planes, respectively. Verify that, given a four-element set,
there are three ways of forming pairs of disjoint two-element subsets. This combinatorial
fact lies behind the possible construction of the three Gj and the three Hk.

4.3.20. Review Exercise 3.19 above. It set up the machinery for a study of SO(4,R). The
purpose of this exercise is to show that all elements of SO(4,R) have symplectic polar
decompositions. In so doing we will also learn more about so(4,R) and the two mutually
commuting su(2) Lie algebras within it.

Introduce the notation

G = (G1, G2, G3), H = (H1, H2, H3). (4.3.162)

Also introduce the vectors

s = (s1, s2, s3), t = (t1, t2, t3). (4.3.163)

Finally employ the notation

s ·G = s1G
1 + s2G

2 + s3G
3, etc. (4.3.164)

We know that the Gj and Hk form a basis for the Lie algebra so(4,R). It follows from
Section 3.8.1 that the most general element in SO(4,R) can be written in the form

O(s, t) = exp(s ·G+ t ·H). (4.3.165)

Now, since the Gj and Hk commute, we may also write

O(s, t) = exp(s ·G) exp(t ·H). (4.3.166)
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We observe that the factor exp(t ·H) is an element in Sp(4,R). Therefore, in order to
achieve a symplectic polar decomposition for O(s, t), we only need to achieve a symplectic
polar decomposition for exp(s ·G).

At this point let us pause to explore more of the properties of the Gj and Hk. Review
Exercise 8.7.12. Verify that the Gj and Hj satisfy the same multiplication rules as the Kj.
But, unlike some of the Kj, they are purely real. Verify in particular that there are the
relations

(s ·G)2 = −(1/4)(s · s)I (4.3.167)

and
(t ·H)2 = −(1/4)(t · t)I. (4.3.168)

Use these relations to show that there are the explicit results

exp(s ·G) = I cos(s/2) + (s ·G)(2/s) sin(s/2), (4.3.169)

exp(t ·H) = I cos(t/2) + (t ·H)(2/t) sin(t/2) (4.3.170)

where
s = (s · s)1/2, t = (t · t)1/2. (4.3.171)

It follows that the Gj and Hk generate bona fide realizations of the group SU(2) rather than
the group SO(3,R). See Exercise 3.7.30 for the distinction. Note also the coefficient (3/4)
occurring in (3.161) is the same as that in (3.7.203) for su(2), and not that in (3.7.204) for
so(3,R).

After this pleasant interruption, let us return to the main discussion. Write exp(s ·G)
in the Euler angle form

exp(s ·G) = exp(φG3) exp(θG2) exp(ψG3). (4.3.172)

Then we may also write

exp(s ·G) = {exp(φG3) exp(θG2) exp(−φG3)}{exp[(φ+ ψ)G3]}. (4.3.173)

We know that exp(θG2) is J-symmetric and exp(φG3) is symplectic. Therefore, by Lemma
3.8, the first curly-bracketed factor in (3.173) is J-symmetric. Also, the second curly-
bracketed factor in (3.173) is symplectic. Consequently, we have achieved the desired sym-
plectic polar decomposition.

We end this exercise with a few more observations about SO(4,R). Let us write (3.166)
in the form

O(U, V ) = UV (4.3.174)

where
U(s) = exp(s ·G) (4.3.175)

and
V t) = exp(t ·H). (4.3.176)

Evidently the matrices U and V form two separate subgroups of SO(4,R) and each of these
subgroups has the same topology as SU(2). From (3.169) we see that

U(s) = −I when s = 2π, (4.3.177)
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with an analogous result for V . Show that it follows that if U is a matrix of the form (3.175),
then so is −U . Verify an analogous result for V . We also conclude from (3.174) that

O(−U,−V ) = O(U, V ). (4.3.178)

Therefore, (3.174) provides a two-to-one homomorphism of SU(2)⊗ SU(2) onto SO(4,R).

4.3.21. The two previous exercises showed that all elements in SO(4,R) have symplec-
tic polar decompositions. This exercise examines a particular one-parameter subgroup of
SO(4,R). Since it is a subgroup of SO(4,R), all its elements must have symplectic polar
decompositons. We will apply the methods of Theorem 3.1 to matrices in this subgroup;
and in so doing we will discover that the conditions of Theorem 3.1, while sufficient, are not
necessary.

Consider a rotation by angle θ in the q1, q2 plane. It has the effect

q′1 = q1c+ q2s, (4.3.179)

q′2 = −q1s+ q2c, (4.3.180)

p′1 = p1, (4.3.181)

p′2 = p2 (4.3.182)

where
c = cos θ (4.3.183)

and
s = sin θ. (4.3.184)

Show that in the (q1, p1, q2, p2) basis this rotation is represented by the matrix O(θ) given
by the relation

O(θ) =


c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

 . (4.3.185)

Seek to write O(θ) in exponential form. For small θ, and through terms of degree one,
show that (3.185) has the expansion

O(θ) = I + θA (4.3.186)

with

A =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 . (4.3.187)

Verify that
O(θ) = exp(θA). (4.3.188)

Next, using (3.125) and (3.126), verify that A has the decomposition (3.124) with

Aa = (1/2)E2 = −G2 (4.3.189)
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and

Ac = (1/2)C2 = H2. (4.3.190)

Observe from (3.159) that in this case Aa and Ac commute. Verify, therefore, that there is
the relation

O(θ) = exp(θA) = exp[θ(Aa + Ac)] = exp(θAa) exp(θAc). (4.3.191)

For future use show that there are the explicit matrix results

exp(θAa) = exp[(θ/2)E2] = I cos(θ/2) + E2 sin(θ/2) =


c′ 0 s′ 0
0 c′ 0 −s′
−s′ 0 c′ 0
0 s′ 0 c′

 (4.3.192)

and

exp(θAc) = exp[(θ/2)C2] = I cos(θ/2) + C2 sin(θ/2) =


c′ 0 s′ 0
0 c′ 0 s′

−s′ 0 c′ 0
0 −s′ 0 c′

 (4.3.193)

where

c′ = cos(θ/2), (4.3.194)

and

s′ = sin(θ/2). (4.3.195)

Verify, by explicit matrix multiplication, that (3.191) holds.
Define matrices Q(θ) and R(θ) by the rules

Q(θ) = exp(θAa) = exp[(θ/2)E2] (4.3.196)

and

R(θ) = exp(θAc) = exp[(θ/2)C2] (4.3.197)

so that (3.191) can be written in the form

O = QR. (4.3.198)

Verify that Q is J-symmetric and R is symplectic. You have shown, as expected, that O(θ)
has a symplectic polar decomposition for all θ. Verify that Q(θ) can be written in the form

Q(θ) = exp[JA′(θ)] (4.3.199)

Find A′(θ) explicitly and verify that it is real and antisymmetric.
Suppose now that we are just given the matrix M , with

M = O(θ), (4.3.200)
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and we attempt to find a symplectic polar decomposition for M using the method of Theorem
3.1. Show that

N(λM) = λ2


c 0 s 0
0 c 0 −s
−s 0 c 0
0 s 0 c

 . (4.3.201)

As a sanity check, verify that

N(M) = Q2 (4.3.202)

using (3.196) and the explicit matrix results (3.192) and (3.201).
The next task is to compute the spectral norm of [N(λM)− I]. Define the matrix V by

the rule

V = N(λM)− I =


e 0 λ2s 0
0 e 0 −λ2s
−λ2s 0 e 0

0 λ2s 0 e

 (4.3.203)

where

e = λ2c− 1. (4.3.204)

Verify that

V TV =


e 0 −λ2s 0
0 e 0 λ2s
λ2s 0 e 0
0 −λ2s 0 e




e 0 λ2s 0
0 e 0 −λ2s
−λ2s 0 e 0

0 λ2s 0 e



=


e2 + λ4s2 0 0 0

0 e2 + λ4s2 0 0
0 0 e2 + λ4s2 0
0 0 0 e2 + λ4s2

 . (4.3.205)

Evidently V TV is diagonal and has the repeated eigenvalue (e2 + λ4s2). Therefore, the
matrix [N(λM)− I] has the spectral norm

||N(λM)− I|| = (e2 + λ4s2)1/2 = [(λ2c− 1)2 + λ4s2]1/2

= (1− 2λ2c+ λ4c2 + λ4s2)1/2 = [1 + λ4 − 2λ2c]1/2. (4.3.206)

We see that when c > 0 there is a λ > 0 such that ||N(λM)− I|| < 1. That is, the ray
λ2N(M) passes through the unit ball about I. However, this is not true when c ≤ 0. That
is,

||N(λM)− I|| > 1 when λ > 0 and c ≤ 0. (4.3.207)

We conclude from (3.206) that when θ ∈ (−π/2, π/2) there is a λ > 0 such that there is the
inequality ||N(λM)− I|| < 1. That is, the ray λ2N(M) passes through the unit ball about
I. However, this is not true for θ /∈ (−π/2, π/2). That is,

||N(λM)− I|| > 1 when λ > 0 and θ /∈ (−π/2, π/2). (4.3.208)
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But we know that symplectic polar decomposition is possible for M = O(θ) for all θ. We have
discovered examples where symplectic polar decomposition is possible but the ray λ2N(M)
does not pass through the unit ball about I.

Finally, to study uniqueness, let us compute the spectral norm of [Q(θ)− I]. Similar to
what was done in the case of N(λM), now write

T = Q− I = exp(θAa)− I =


e 0 s′ 0
0 e 0 −s′
−s′ 0 e 0
0 s′ 0 e

 (4.3.209)

where now

e = c′ − 1. (4.3.210)

Here we have used (3.196) and (3.192). Verify that in this case

V TV =


e 0 −s′ 0
0 e 0 s′

s′ 0 e 0
0 −s′ 0 e




e 0 s′ 0
0 e 0 −s′
−s′ 0 e 0
0 s′ 0 e



=


e2 + (s′)2 0 0 0

0 e2 + (s′)2 0 0
0 0 e2 + (s′)2 0
0 0 0 e2 + (s′)2

 . (4.3.211)

Evidently V TV is diagonal and has the repeated eigenvalue [e2 + (s′)2]. Therefore, (Q− I)
has the spectral norm

||Q− I|| = [e2 + (s′)2]1/2 = [(c′ − 1)2 + (s′)2]1/2

= [1− 2c′ + (c′)2 + (s′)2]1/2 = (2− 2c′)1/2. (4.3.212)

We see that Q lies outside the unit ball about I when c′ < 1/2. This occurs when |θ/2| > 60◦

and therefore |θ| > 120◦. So, for |θ| < 120◦, there is a symplectic polar decomposition that
is unique. But the ray λ2N(M) lies outside the unit circle about I when θ ∈ (90◦, 120◦) or
θ ∈ (−120◦,−90◦). Thus we have found situations where symplectic polar decomposition
is possible and unique, but for which the ray λ2N(M) lies outside the unit circle about I.
Finally, we note that Q(±2π) = −I.

4.3.22. Section 4.3.6 showed that 4 × 4 diagonal matrices do not have symplectic polar
decompositions when µ1µ2 < 0 and ν1ν2 < 0 (and µ1µ2 6= ν1ν2). Exercise 3.16 showed that
they do when when µ1µ2 > 0 and ν1ν2 > 0. Note that in both cases det(M) > 0. One
might wonder if these two cases are joined by a continuous path in GL(4,R). You are to
show that they are. Thus there must be some point along the path where symplectic polar
decomposition becomes impossible.

Let D be the diagonal matrix given by (3.63), and assume µ1µ2 > 0 and ν1ν2 > 0 so
that D has a symplectic polar decomposition. Show that any matrix M sufficiently close to
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D must also have a symplectic polar decomposition. Define a continuous family of matrices
M(θ) by the rule

M(θ) = O(θ)D (4.3.213)

where O(θ) is the matrix given by (3.185). Verify that

M(θ) ∈ GL(4,R) for all θ. (4.3.214)

Show that

M(0) = D =


µ1 0 0 0
0 µ2 0 0
0 0 ν1 0
0 0 0 ν2

 (4.3.215)

and

M(π) =


−µ1 0 0 0

0 µ2 0 0
0 0 −ν1 0
0 0 0 ν2

 . (4.3.216)

Thus, the continuous path (3.213) joins the two cases. It would be interesting to know where
on the path M(θ) ceases to have a symplectic polar decomposition.

4.3.23. Let H be the subgroup consisting of all elements g ∈ GL(2n,R,+) such that

{g, J} = 0. (4.3.217)

According Exercise 3.9.18, H is isomorphic to GL(n,C). We know that symplectic polar
decomposition is possible for all elements g ∈ H that are sufficiently near the identity. Is
symplectic polar decomposition possible for all elements g ∈ H?

Show that (3.217) implies the commutation relation

{gT , J} = 0. (4.3.218)

That is, if g commutes with J , so does gT , and vice versa. Use this result to show that

N(g) = gJgTJT = ggTJJT = ggT . (4.3.219)

Does N have a J-symmetric square root? Use the correspondence relation (3.9.19) to
obtain the representation

g = M(m). (4.3.220)

Show, using (3.9.25) and (3.9.21), that there is the result

N(g) = ggT = M(m)MT (m) = M(m)M(m†) = M(mm†). (4.3.221)

Verify that mm† is Hermitian and positive definite. Verify that there is a unitary matrix u
such that

mm† = udu† (4.3.222)
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where d is diagonal with real positive entries. Define d1/2 to be the diagonal matrix whose
entries are the positive square roots of the corresponding entries in d. Use this definition to
write the relation

mm† = udu† = ud1/2d1/2u† = ud1/2u†ud1/2u† = (ud1/2u†)2. (4.3.223)

Show that
N(g) = Q2 (4.3.224)

where
Q = M(ud1/2u†). (4.3.225)

Is Q J-symmetric? Verify that

QT = M [(ud1/2u†)†] = M(ud1/2u†) = Q. (4.3.226)

Also, verify that

JQJ−1 = M(iIn)M(ud1/2u†)M(−iIn)

= M [(iIn)(ud1/2u†)(−iIn)] = M(ud1/2u†) = Q. (4.3.227)

You have shown that Q is J-symmetric, and therefore all elements g ∈ H have a symplectic
polar decomposition.

Consider the ray λ2N(g). Does it intersect the unit ball around I? Show that

λ2N(g)− I = λ2M(udu†)− I = M(u)[λ2M(d)− I]M(u†)

= M(u)WD(λ)W−1M(u†) (4.3.228)

where

D(λ) =

(
λ2d− In 0

0 λ2d− In

)
. (4.3.229)

Use the properties of a matrix norm to show that

||λ2N(g)− I|| ≤ ||M(u)|| ||W || ||D|| ||W−1|| ||M(u†)||. (4.3.230)

Verify that when the spectral norm is used, there are the relations

||M(u)|| = ||W || = ||W−1|| = ||M(u†)|| = 1. (4.3.231)

Consequently, verify that for this norm

||λ2N(g)− I|| ≤ ||D||. (4.3.232)

We are ready for the final step. Since d is diagonal with all entries positive, show that there
is a λ0 > 0 such that

||D(λ0)|| < 1. (4.3.233)

Conclude that
||λ2

0N(g)− I|| < 1 (4.3.234)

so that the ray λ2N(g) does indeed intersect the unit ball around I.
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4.3.24. Consider matrices M of the form (3.3.10) where C is an arbitrary n×n real matrix.
Show that in this case

N(M) =

(
I 0

(C − CT ) I

)
(4.3.235)

and therefore

[N(M)]1/2 =

(
I 0

(C − CT )/2 I

)
. (4.3.236)

Show that such matrices M have a symplectic polar decomposition of the form (3.10) with

Q =

(
I 0

(C − CT )/2 I

)
(4.3.237)

and

R =

(
I 0

(C + CT )/2 I

)
. (4.3.238)

Carry out an analogous demonstration for matrices of the form (3.3.9).

4.4 Finding the Closest Symplectic Matrix

4.4.1 Background

Let M be any 2n×2n matrix, and let N be the matrix associated with M by the rule (3.30).
Since N = I when M is symplectic, we may define a measure f of the failure of M to be
symplectic by the rule

f = f(M) =‖ N(M)− I ‖ . (4.4.1)

Suppose f is small. Then M is nearly symplectic, and we might hope to find a matrix R
that is both near M and exactly symplectic. One way to enforce this nearness condition
would be to require the relation

‖M −R ‖∼ f. (4.4.2)

However, there is also another possibility. If R is close to M , then MR−1 is close to the
identity I. Consequently, we could equally well require the relation

‖MR−1 − I ‖∼ f. (4.4.3)

Both (4.2) and (4.3) state the hope that if M fails to be symplectic by an amount f , then
there should be a symplectic matrix R that is, so to speak, roughly within a distance f from
M .

Given (4.1) with f < 1, we will show that there is a symplectic R that satisfies both (4.2)
and (4.3). Such a matrix R is entitled to be called a symplectification of M . Our proof will
be based on the results of the previous section. Recall the function g(x) defined by (3.103).
Similar to what was done before, use it to define Q by the rule

Q = (N)1/2 = [I − (I −N)]1/2 = I −
∞∑
`=1

d`(I −N)`. (4.4.4)
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This series will converge if f < 1, and in that case we have the inequality

‖ Q− I ‖=‖
∞∑
`=1

d`(I −N)` ‖≤
∞∑
`=1

d` ‖ I −N ‖`≤
∞∑
`=1

d`f
` ≤ f. (4.4.5)

We may also define Q−1 by the series

Q−1 = [I − (I −Q)]−1 =
∞∑
`=0

(I −Q)`. (4.4.6)

According to (4.5) this series also converges if f < 1. Since Q has been defined and is
invertible, we may use (3.36) to define a symplectic matrix R and thereby achieve the
symplectic polar decomposition (3.10).

Let us use this R and this decomposition to test the relations (4.2) and (4.3). For (4.2)
we find the result

‖M −R ‖=‖ QR−R ‖=‖ (Q− I)R ‖≤‖ Q− I ‖‖ R ‖≤‖ R ‖ f. (4.4.7)

Testing the relation (4.3) gives the result

‖MR−1 − I ‖=‖ QRR−1 − I ‖=‖ Q− I ‖≤ f. (4.4.8)

We have learned that if M is such that its failure f to be symplectic satisfies f < 1, then
it has a symplectic polar decomposition and the factor R in this decomposition provides a
symplectification that satisfies the nearness relations (4.7) and (4.8).

Suppose R′ is a symplectic matrix that is sufficiently near R in the sense that

‖ R′ −R ‖≤ f. (4.4.9)

(Because symplectic matrices form a Lie group there are many such R′.) Then we find the
result

‖M −R′ ‖=‖ (M −R) + (R−R′) ‖
≤‖M −R ‖ + ‖ R−R′ ‖≤‖ R ‖ f + f = (‖ R ‖ +1)f, (4.4.10)

and conclude that R′ satisfies the nearness requirement (4.2) and hence is also an acceptable
symplectification of M . Alternatively, suppose R′ is a symplectic matrix that is sufficiently
near R in the sense that

‖ R(R′)−1 − I ‖≤ f. (4.4.11)

Then we find the result

‖M(R′)−1 − I ‖ = ‖MR−1R(R′)−1 − I ‖=‖ QR(R′)−1 − I ‖
= ‖ (Q− I) +Q[R(R′)−1 − I] ‖≤‖ Q− I ‖ + ‖ Q[R(R′)−1 − I ‖
≤ f+ ‖ Q ‖‖ R(R′)−1 − I ‖≤ f+ ‖ Q ‖ f = (‖ Q ‖ +1)f, (4.4.12)

and conclude that R′ satisfies the nearness requirement (4.3) and hence is also an acceptable
symplectification of M . We have learned that a matrix M , whose failure f to be symplectic
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satisfies f < 1 in some norm, has many acceptable symplectifications R′ that satisfy (4.2)
or (4.3) and, in particular, (4.10) or (4.12). Sections 4.5 through 4.8 describe four methods
for finding such symplectifications.

Since there are many symplectifications R′ that meet our requirements, we may wonder
which one is actually closest to M . The discussion so far has made only rather general
assumptions about the matrix norm ‖ ∗ ‖ employed to determine nearness. It has served
only as a tool to establish the convergence of various series; but, of course, the quantities
defined by these series, if they are defined at all, are independent of the choice of norm. Now,
however, we have a more specific question than those discussed above: Imagine we are given
a matrix M and we consider all symplectic matrices R′. Is there a closest symplectic matrix
Rc that minimizes the quantity ‖ M − R′ ‖? Alternatively, is there a closest symplectic
matrix Rc that minimizes the quantity ‖M(R′)−1− I ‖? The answers to these questions do
depend on the choice of matrix norm.

4.4.2 Use of Euclidean Norm

Let us explore the question of determining the closest symplectic matrix using the nearness
condition (4.2) and the Euclidean matrix norm. Consider the set of all (real) 2n×2nmatrices.
It obviously forms a linear vector space under the operations of scalar multiplication and
matrix addition. Let A and B be any two vectors (matrices) in this space. We define an
inner product between them by the rule

(A,B) = tr (ATB). (4.4.13)

It is easily verified that this rule satisfies all the requirements for a positive-definite inner
product. (See Exercise 4.3.) Let O′ and O′′ denote any 2n× 2n orthogonal matrices. Then
it can also be shown that the inner product (4.13) is invariant under the action of the
orthogonal group in the sense that

(O′AO′′, O′BO′′) = (A,B). (4.4.14)

Next, as in Exercise 3.7.1, we define the Euclidean norm ‖ M ‖E of any matrix M by the
rule

‖M ‖E= (M,M)1/2. (4.4.15)

This rule satisfies all the conditions (3.7.10) through (3.7.14) required for a norm. The Eu-
clidean norm is not particularly powerful for establishing convergence in some circumstances
because it gives for the 2n× 2n identity matrix the result

‖ I ‖E= (2n)1/2. (4.4.16)

By contrast there are more powerful norms, the maximum column sum norm (3.7.15) and
spectral norm (3.7.17) for examples, that give the optimal result

‖ I ‖= 1. (4.4.17)

However, as a consequence of (4.14), the Euclidean norm does have the convenient feature
that

‖ O′MO′′ ‖E=‖M ‖E (4.4.18)
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where O′ and O′′ are any orthogonal matrices.
It can be shown that if M is any matrix, then the orthogonal matrix O that is closest to

M , in the sense of minimizing ‖M −O ‖E, is given by the orthogonal matrix appearing in
the polar decomposition (2.7). The situation with regard to the closest symplectic matrix is
more complicated. One might entertain the analogous conjecture that the symplectic matrix
R that is closest to any symplectifiable M , in the sense of minimizing ‖M −R ‖E, is given
by the symplectic matrix appearing in the symplectic polar decomposition (3.10). However,
this conjecture is wrong.

As a counter example in the 2× 2 case, consider the matrix M given by the relation

M = µK. (4.4.19)

Here K is a symplectic diagonal matrix of the form

K =

(
k 0
0 k−1

)
, (4.4.20)

and we assume that det(M) > 0 so that µ has the value

µ = +[det(M)]1/2. (4.4.21)

For this M we find from (3.61) the result

R = K. (4.4.22)

Next, let X be the symplectic diagonal matrix

X(x) =

(
x 0
0 x−1

)
. (4.4.23)

Let us examine whether there is a choice of x such that ‖ M − X ‖E has a value smaller
than ‖M −K ‖E. To make such a study, consider the function h(x) defined by the relation

h(x) = [‖M −X ‖E]2. (4.4.24)

Does h have a minimum at x = k? From the definitions (4.13) and (4.15) we find that

h(x) = tr [(M −X)T (M −X)] = (µk − x)2 + (µk−1 − x−1)2. (4.4.25)

Suppose we differentiate h with respect to x and evaluate the result at x = k. Doing so
gives the result

h′(k) = 2(µ− 1)(k−3 − k). (4.4.26)

We see that in general h′(k) 6= 0. It follows that, for this example, setting X = K = R does
not minimize ‖M −X ‖E.

One can also construct counter examples for which the symplectic matrix R produced by
the symplectic polar decomposition of M does not give the symplectic matrix closest to M
in the sense of minimizing ‖M(R′)−1−I ‖E. We also remark that if the transpose operation
in (4.13) is omitted, which produces a different inner product about to be discussed, these
conclusions remain unchanged. See Exercise 4.5.
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4.4.3 Geometric Interpretation of Symplectic Polar
Decomposition

Although the symplectic matrix R produced by the symplectic polar decomposition of M
does not necessarily give the symplectic matrix closest to M as defined by either the nearness
condition (4.2) or (4.3) and the use of some inner product norm, one might still wonder if
it has some other geometric interpretation. It does, but some further concepts need to be
developed to show that this is the case. We note that the nearness condition (4.2) is related
to the matrix operation of addition (actually, in this case, subtraction) while the nearness
condition (4.3) is related to the operation of matrix multiplication. We will explore the
use of nearness conditions related to group properties. Since group properties are based on
the operation of matrix multiplication, these nearness conditions are similar in spirit to the
condition (4.3).

Consider the group GL(2n,R). Near the identity any matrix M can be written in the
form

M = exp(B) (4.4.27)

where B, an arbitrary matrix of g`(2n,R), has the decomposition (3.1). Let B0, B1, · · · be
a set of basis vectors (matrices) for this space. There are (2n)2 such matrices. For example,
for the simplest case n = 1, a convenient basis is given by the choice

B0 =

(
0 1
−1 0

)
, (4.4.28)

B1 =

(
0 −1
−1 0

)
, (4.4.29)

B2 =

(
1 0
0 −1

)
, (4.4.30)

B3 =

(
1 0
0 1

)
. (4.4.31)

We note that the first 3 basis matrices, B0 through B2, are of the form JS [see (5.6.7),
(5.6.13), and (5.6.14)], and the last is of the form JA with A = −J :

B3 = J(−J) = I. (4.4.32)

In terms of the basis provided by the B`, any matrix in g`(2n,R) can be written in the
form

B(b) =
∑
`

b`B`, (4.4.33)

where the b` are real, but otherwise arbitrary, coefficients. We may view the b` as the entries
of a vector b in a (2n)2 dimensional vector space. Correspondingly, we may view (4.27) and
(4.33) as a mapping between points in this vector space and elements in the group GL(2n,R)
near the identity. Put another way, this mapping and the entries in b constitute a coordinate
patch for GL(2n,R) at the identity. Alternatively, we may regard the b` as the components
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of the vectors in the tangent space of GL(2n,R) at the identity. Consequently, the vectors
b are in and span the cotangent space of GL(2n,R) at the identity.

Next, suppose b and b′ are any two vectors. Let us introduce an inner product between
them by the rule

(b, b′) = tr[B(b)B(b′)] = tr[
∑
``′

b`(b′)`
′
B`B`′ ] =

∑
``′

b`(b′)`
′
tr(B`B`′). (4.4.34)

This inner product can be expressed in the form

(b, b′) =
∑
``′

b`(b′)`
′
g``′ (4.4.35)

where g is the metric tensor
g``′ = tr(B`B`′). (4.4.36)

In general, this metric tensor is not positive definite. For example, use of the basis given by
(4.28) through (4.31) in the case n = 1 gives the result

g =


−2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 . (4.4.37)

Although the metric g is not positive definite, it does have two attractive features. The
first feature is this: Suppose b is a vector such that B(b) is a matrix of the form JS, and
b′ is a vector such that B(b′) is a matrix of the form JA. Then b and b′ are orthogonal,

(b, b′) = tr[B(b)B(b′)] = tr(JSJA) = 0. (4.4.38)

To verify this assertion, we make the observation

tr(JSJA) = tr[(JSJA)T ] = tr(ATJTSTJT ) = tr(−AJSJ) = −tr(JSJA). (4.4.39)

A description of the second attractive feature requires some background discussion. Sup-
pose M1 is some matrix, not necessarily near the identity, and we wish to examine matrices
near M1. To do so, we might consider all matrices LM1 of the form

LM1(b) = M1 exp[B(b)] (4.4.40)

where B(b) is again given by (4.33). The relation (4.40) provides a coordinate patch for
GL(2n,R) at the point M1. Indeed, looking at (4.40), we may say that this coordinate
patch is obtained by translating the coordinate patch at the identity to the point M1. This
translation may be called left translation since (4.40) involves multiplication by M1 on the
left. [Hence the notation LM1 in (4.40).] Alternatively, we may view the entries in b as the
components of the vectors in the tangent space of GL(2n,R) at the point M1, and vectors
in this tangent space are to be regarded as associated with those at the identity by the
operation of left translation.
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There is an obvious alternative to (4.40). Namely, we might equally well use right
translation to examine matrices near M1 by considering matrices RM1 of the form

RM1(c) = {exp[B(c)]}M1. (4.4.41)

Here the entries in c may again be viewed as the components of vectors in the tangent space
of GL(2n,R) at the point M1, but vectors in this tangent space are now to be regarded as
associated with those at the identity by the operation of right translation.

Suppose both (4.40) and (4.41) are used to represent the same element,

LM1(b) = RM1(c). (4.4.42)

Then, using (4.40) and (4.41), we find the equation

M1 exp[B(b)] = {exp[B(c)]}M1, (4.4.43)

which is essentially a relation between b and c. Indeed, this relation may be rewritten in the
form

exp[B(c)] = M1{exp[B(b)]}(M1)−1 = exp{M1[B(b)](M1)−1}, (4.4.44)

from which we conclude that

B(c) = M1[B(b)](M1)−1. (4.4.45)

Also, since the matrices B` form a basis, we must have relations of the form

M1B`(M
1)−1 =

∑
`′

d``′(M
1)B`′ (4.4.46)

where the d``′(M
1) are coefficients that depend on M1. Correspondingly, we find the result

M1[B(b)](M1)−1 =
∑
`

b`M1B`(M
1)−1 =

∑
``′

b`d``′B`′ =
∑
`′

(
∑
`

b`d``′)B`′ , (4.4.47)

from which we conclude that c is given in terms of b by the equation

c`
′
=
∑
`

b`d``′ . (4.4.48)

Now a question arises: We have seen how (4.34) can be used to define an inner product
between two vectors b and b′ whose entries are the components for the two vectors in the
tangent space at the identity. What can be done for pairs of tangent vectors at the general
point M1? These tangent-vector pairs can be associated with either of the coordinate pairs
b, b′ or c, c′ depending on whether left or right translation is used. We will define their inner
products to be the same as those for their counterparts at the origin,

(b, b′)L = tr[B(b)B(b′)], (4.4.49)

(c, c′)R = tr[B(c)B(c′)], (4.4.50)
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where we have used the superscripts L and R to indicate that either left or right translation
has been used to make a correspondence between the tangent space at the identity and the
tangent space at the general point M1.

However, we know that b and c are related by (4.45), and the same is true for b′ and c′.
Consequently, from (4.45), (4.49), and (4.50), we find the relation

(c, c′)R = tr[B(c)B(c′)] = tr{M1B(b)(M1)−1M1B(b′)(M1)−1}
= tr{M1B(b)B(b′)(M1)−1} = tr[B(b)B(b′)] = (b, b′)L. (4.4.51)

We have learned that the inner product definition (4.34) has the feature that its extension
from the identity to an arbitrary point M1 is independent of whether left or right translations
are used.

Now that an inner product has been defined on the tangent (and cotangent) spaces at
any point in GL(2n,R), we can discuss the lengths of paths in matrix space. Let M0 and
M1 be any two matrices. Suppose they are joined by a path M(τ), where τ is a parameter
lying in the range [0,1],

M(0) = M0, (4.4.52)

M(1) = M1. (4.4.53)

Consider the two nearby pointsM(τ) and M(τ+dτ) on the path. Suppose we view M(τ+dτ)
as being related to M(τ) by right translation of elements near the identity. That is, we write
a relation of the form

M(τ + dτ) = exp[dτC(τ)]M(τ) = {I + dτC(τ) +O[(dτ)2]}M(τ). (4.4.54)

At this juncture we note that (4.54) can be rewritten in the form

M(τ + dτ)M−1(τ)− I = dτC(τ) +O[(dτ)2], (4.4.55)

and we see that the left side of (4.55) is reminiscent of the nearness condition (4.3). Now
make the Taylor expansion

M(τ + dτ) = M(τ) + (dM/dτ)dτ +O[(dτ)2 = M(τ) + Ṁ(τ)dτ +O[(dτ)2]. (4.4.56)

Upon comparing (4.54) and (4.56), we may solve for C(τ), which we may view as the tangent
vector to the path at the point M(τ), to find the result

C(τ) = Ṁ(τ)M−1(τ). (4.4.57)

Let us define an energy functional E[M ] associated with any path M(τ) by the relation

E[M ] = (1/2)

∫ 1

0

dτ tr[C(τ)C(τ)]. (4.4.58)

[Note that this definition employs the inner product (4.34).] Then an affine geodesic in
matrix space is defined to be a path agM(τ) that extremizes the energy functional. For a
discussion of geodesics and affine geodesics, see Exercise 1.6.17.
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Why should these definitions interest us? Suppose M0 and M1 are close in the sense
that [M1(M0)−1] is near the identity. Then there exists a matrix B such that

M1(M0)−1 = exp(B) (4.4.59)

or

M1 = exp(B)M0. (4.4.60)

Consider the particular path M(τ) given by the rule

M(τ) = exp(τB)M0. (4.4.61)

Evidently this path satisfies (4.52) and (4.53), and therefore joins M0 and M1. Moreover,
this path satisfies the differential equation

Ṁ(τ) = B[exp(τB)]M0 = BM(τ), (4.4.62)

and consequently by (4.57) has the constant tangent vector

C(τ) = B. (4.4.63)

Thus, in this sense, the path (4.61) in matrix space is the analog of a straight line in
Euclidean space, which also has a constant tangent. But even more can be said about this
analogy. The path (4.61) is also an affine geodesic! See Exercise 4.6.

Let us now apply these general considerations to the problem at hand. Suppose that M
is a matrix that meets the condition of Theorem 3.1. Define a path M(τ) in matrix space
by the rule

M(τ) = exp(τJA)R, (4.4.64)

where R is the symplectic matrix in the factorization (3.10) and A is defined by (3.57).
Evidently this path joins R, the symplectic factor of M , to M itself,

M(0) = R, (4.4.65)

M(1) = M. (4.4.66)

See Figure 4.1. Comparison of (4.61), (4.63), and (4.64) shows that this path has the
constant tangent vector JA. Consider the pointR at which the pathM(τ) meets the group of
symplectic matrices. We know that any vector in the tangent space of the group of symplectic
matrices is of the form JS. We see from (4.39) that the path M(τ) is perpendicular to the
subspace of symplectic matrices at the point R. Finally, we know that the path M(τ) is an
affine geodesic. We conclude that R has the special geometric property that it is connected
to M by a path that [in terms of the tangent-space metric (4.36)] is both an affine geodesic
and is perpendicular to the subspace of symplectic matrices at the point R.
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path

subspace of

symplectic

matrices

space of

all matricesM

R

M(τ )

Figure 4.4.1: The matrices R and M are connected by a path that is both an affine geodesic
and is perpendicular to the subspace of symplectic matrices at the point R.

Exercises

4.4.1. Verify that the rule (4.13) satisfies all the requirements for an inner product including
the positive-definite conditions

(A,A) ≥ 0, (4.4.67)

(A,A) = 0⇔ A = 0. (4.4.68)

4.4.2. Verify (4.14) through (4.18).

4.4.3. If you have not already worked Exercise 3.7.1, verify that (4.15) satisfies all the
conditions (3.7.10) through (3.7.14) required for a matrix norm.

4.4.4. Verify (4.25) and (4.26).

4.4.5.

4.4.6. Suppose that, instead of using (4.57), which involves right translation, the tangent
vector C(τ) is defined by the left-translation relation

C(τ) = M−1(τ)Ṁ(τ). (4.4.69)

Show that the value of the energy functional E[M ] given by (4.58) remains unchanged.
The remainder of this exercise is devoted to showing that M(τ) as given by (4.61) is an

affine geodesic. To do so, we will need to evaluate E[M ] for paths near (4.61) and show
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that, through first order, E[M ] remains unchanged when small changes are made about the
path (4.61). Parameterize paths near (4.61) by writing

M(ε, τ) = exp[εF (τ)] exp(τB)M0 = exp[εF (τ)]M(τ), (4.4.70)

where F (τ) is an arbitrary matrix function save for the end-point conditions

F (0) = F (1) = 0. (4.4.71)

Evaluate E(ε) for paths of the form (4.70) and show that

(dE/dε)|ε=0 = 0. (4.4.72)

Hints: Using (4.57) and (4.70), show that

C(τ) = C0 + εC1 +O(ε2) (4.4.73)

where
C0 = B, (4.4.74)

C1 = Ḟ (τ) + {F (τ), B}. (4.4.75)

Next show that
E = E0 + εE1 +O(ε2) (4.4.76)

where

E1 =

∫ 1

0

dτ tr(C0C1). (4.4.77)

Finally, show that
E1 = 0. (4.4.78)

For extra credit, suppose B is of the form JA as in (4.64), F (0) is of the form JS, and
F (1) = 0. Show that (4.78) still holds in this case, and give a geometrical interpretation of
this fact in terms of Figure 4.1.

4.4.7. Consider using the positive-definite inner product (4.13) instead of the indefinite
inner product (4.34). See Exercise 4.1. Show that in this case matrix pairs of the form JS
and JA are again orthogonal,

tr[(JS)TJA] = tr(STJTJA) = tr(SA) = 0. (4.4.79)

Use (4.13) to define an energy functional by writing

E[M ] = (1/2)

∫ 1

0

dτ tr[CT (τ)C(τ)]. (4.4.80)

Following the discussion in Exercise 4.6, show that in this case

E1 =

∫ 1

0

dτ tr(CT
0 C1) (4.4.81)
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with C0 and C1 given by (4.74) and (4.75) as before. Show that in this case E1 has the value

E1 =

∫ 1

0

dτ tr[{B,BT}F ], (4.4.82)

and that the necessary and sufficient condition for E1 to vanish for all F satisfying (4.71) is
the requirement

{B,BT} = 0. (4.4.83)

For the case of the path (4.64), B is the matrix given by the relation

B = JA. (4.4.84)

Verify that (4.83) holds in the case of g`(2,R), but need not be true in the cases of g`(4,R),
g`(6,R), etc.

4.4.8. Consider orthogonal polar decompositions of the form (2.7). Suppose M is invertible.
Show that there exists a real symmetric matrix S such that M can be written in the form

M = exp(S)O. (4.4.85)

See Exercise 2.3. It follows that O and M can be joined by the path

M(τ) = exp(τS)O, (4.4.86)

with constant tangent vector S. We know that the orthogonal matrices form a group, and
that any vector in the tangent space of this group at any point in the group is of the form
A where A is an antisymmetric matrix. Show that matrix pairs of the form S and A are
orthogonal for both the inner products (4.13) and (4.34). Show that M(τ) as given by (4.86)
is an affine geodesic for both the energy functionals (4.58) and (4.80). Show that the length
of this affine geodesic is the same independent of whether (4.57) or (4.69) is used to define
the tangent vector C(τ).

4.5 Symplectification Using Symplectic Polar

Decomposition

We are now prepared to discuss various symplectification processes. The first uses symplectic
polar decompostion. Closely related is an iterative procedure. If successful, it produces the
same result as symplectic polar decomposition. We will begin with a review of the process
and properties of symplectic polar decomposition, and then proceed to describe how and
when iteration may be used to obtain the same results.

4.5.1 Properties of Symplectification Using Symplectic Polar
Decomposition

Let M denote any 2n × 2n matrix. Consider the mapping S of the space of such matrices
into itself defined by the rule

S(M) = (MJMTJT )−1/2M = [N(M)]−1/2M. (4.5.1)
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Here we have used (3.30). Moreover, to define N−1/2 we will write

N−1/2 = [I + (N − I)]−1/2 = I +
∞∑
`=1

e`(N − I)`

= I − (1/2)(N − I) + (3/8)(N − I)2 − · · · (4.5.2)

and assume that in some norm (4.1) is satisfied with f < 1 in order to ensure convergence.
Of course, this assumption places some restrictions on the domain of S.

Suppose R′ and R′′ are any two symplectic matrices. Then we find from (3.33) the result

[N(R′MR′′)− I] = R′[N(M)− I](R′)−1, (4.5.3)

and hence
[N(R′MR′′)− I]` = R′[N(M)− I]`(R′)−1. (4.5.4)

Consequently, since matrix multiplication and infinite summation can be interchanged, we
find from (5.2) the result

[N(R′MR′′)]−1/2 = R′[N(M)]−1/2(R′)−1. (4.5.5)

See Exercise 5.1. It follows from the definition (5.1) that S has the property

S(R′MR′′) = R′[N(M)]−1/2(R′)−1(R′MR′′)

= R′S(M)R′′. (4.5.6)

As a special case of (5.6) we have the result

S(MR′′) = S(M)R′′. (4.5.7)

We note that this result can be proved directly without concern about the effect of inter-
changing the operations of matrix multiplication and infinite summation since we have as a
special case of (3.33) the relation

N(MR′′) = N(M). (4.5.8)

Next suppose Q′ is any (invertible) J-symmetric matrix. Then we find the result

S(Q′) = [Q′J(Q′)TJT ]−1/2Q′ = [(Q′)2]−1/2Q′ = I. (4.5.9)

Finally, suppose M has the symplectic polar decomposition (3.10). Then, using (5.7) and
(5.9), we find the result

S(M) = S(QR) = S(Q)R = R. (4.5.10)

Consequently, as one might expect from (3.38) and (3.39), the map S is a symplectifying
map that sends M into the symplectic factor in its symplectic polar decomposition.

There are three properties of the symplectifying map S provided by symplectic polar
decomposition that are worth noting. First, we have the result

S(R) = R (4.5.11)
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for any symplectic matrix R. Thus, if M is already symplectic, the map S given by (5.1)
leaves M in peace. The second property is that already stated in (5.6): Suppose the matrix
M is given left and right symplectic translations by sending it to the matrix (R′MR′′), and
this translated matrix is then symplectified using symplectic polar decomposition. Equation
(5.6) states that the result is the same as that obtained by first symplectifying M and then
giving the symplectified M the same translations. We may say that the the symplectification
process provided by S is invariant under left and right symplectic translations. Finally,
suppose M has the symplectic polar decomposition (3.10). Then we find for M−1 the result

M−1 = R−1Q−1 = (R−1Q−1R)R−1 = Q́R−1. (4.5.12)

By Lemmas 3.5 and 3.8 the matrix Q́ = (R−1Q−1R) is J-symmetric. Therefore we have the
result

S(M−1) = R−1 = [S(M)]−1. (4.5.13)

We may say that the the symplectification process provided by S is also invariant under
inversion.

4.5.2 Iteration

Suppose we define a map S1, related to S, by retaining only the ` = 1 term in the series
appearing in (5.2). This map has the definition

S1(M) = [I − (1/2)(N − I)]M = (1/2)[3I −N(M)]M

= (1/2)(3I −MJMTJT )M. (4.5.14)

It is readily verified that S1 also satisfies a relation of the form (5.6),

S1(R′MR′′) = R′S1(M)R′′, (4.5.15)

and now, because the series (5.2) has been truncated, there is no concern about convergence.
Now let Q′ be any J-symmetric matrix. Using (3.9) and (5.14), we find that

S1(Q′) = (3/2)Q′ − (Q′)3/2. (4.5.16)

It follows from this result and Lemmas 3.2 and 3.5 that S1 maps the space of
J -symmetric matrices into itself. In addition note that Q′ = I is a fixed pont of S1,

S1(I) = I. (4.5.17)

Let us examine the nature of the fixed point Q′ = I. To do so, write Q′ in the form

Q′ = I +W, (4.5.18)

where W is “small”. By Lemmas 3.1 and 3.2, W = Q′ − I is also J -symmetric if Q′ is
J -symmetric. Upon inserting the form (5.18) into (5.16), we find the result

S1(Q′) = S1(I +W ) = I − (3/2)W 2 − (1/2)W 3. (4.5.19)



456 4. MATRIX EXPONENTIATION AND SYMPLECTIFICATION

At this point it is convenient to introduce the map U1 defined on J -symmetric matrices by
the rule

U1(W ) = S1(I +W )− I. (4.5.20)

From this definition it follows, by combining (5.20) with (5.19), that

U1(W ) = −(3/2)W 2 − (1/2)W 3. (4.5.21)

Evidently, U1 has the fixed point W = 0, which corresponds precisely to the fixed point
Q′ = I of S1.

To exploit this correspondence, define translation maps T and T −1 by the rules

T (W ) = W + I, (4.5.22)

T −1(W ) = W − I. (4.5.23)

We these definitions, we have the relations

U1 = T −1S1T , (4.5.24)

S1 = T U1T −1. (4.5.25)

From (5.25) we see that
Sm1 = T Um1 T −1, (4.5.26)

and conclude that the behavior of Sm1 on J -symmetric matrices of the form Q′ = I + W is
governed by the behavior of Um1 on the matrices W . Moreover, since the right side of (5.21)
is quadratic in W , we expect that W = 0 will be an attractor of U1, and correspondingly
Q′ = I will be an attractor of S1.

An estimate of the basin of attraction of U1 can be obtained by requiring that

‖ U1(W ) ‖=‖ −(3/2)W 2 − (1/2)W 3 ‖<‖ W ‖ . (4.5.27)

This condition is difficult to work with, and we will use instead a poorer estimate. Suppose
we require that

[(3/2) ‖ W ‖2 +(1/2) ‖ W ‖3] <‖ W ‖ . (4.5.28)

By the properties (3.7.11) through (3.7.13) of a norm we will then have the result

‖ −(3/2)W 2 − (1/2)W 3 ‖<‖ W ‖ . (4.5.29)

Consequently, W that satisfy (5.28) will lie in the basin of W = 0. It is easily verified that
(5.28) is equivalent to the condition

‖ W ‖< (−3/2 + (1/2)
√

17) ' (.56). (4.5.30)

We conclude that if ‖ W ‖< .56, then we have the result

lim
m→∞

Um1 (W ) = 0. (4.5.31)
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That is, repeated application (iteration) of U1 will drive such W to 0. Moreover, in view of
(5.21), once convergence gets underway it will be quadratic and therefore very rapid.

We next show that W as given by (5.18) satisfies the inequality

‖ W ‖≤ f, (4.5.32)

where f is given by (4.1) and N is defined in terms of Q′. When M = Q′, we find from
(3.27) the result

N(Q′) = Q′J(Q′)TJT = (Q′)2. (4.5.33)

Consequently, following (4.4) and (4.5), we may write the relations

Q′ = (N)1/2 = [I − (I −N)]1/2 = I −
∞∑
`=1

d`(I −N)`, (4.5.34)

‖ W ‖=‖ Q′ − I ‖≤ f. (4.5.35)

We conclude that if f < (.56), then we again have the result (5.31). Correspondingly, we
also have the result

lim
m→∞

Sm1 (Q′) = I. (4.5.36)

We are now ready for the master stroke. Suppose M is some matrix whose failure f to
be symplectic satisfies f < (.56). Then since f < 1, we know that such a matrix has the
symplectic polar decomposition (3.10), and that [according to (4.5)] the J -symmetric factor
Q of M must satisfy the relation

‖ Q− I ‖≤ (.56). (4.5.37)

Let us compute the matrices Sm1 (M) for successive values of m. From (3.10) and (5.15) we
find the result

Sm1 (M) = Sm1 (QR) = Sm1 (Q)R. (4.5.38)

Now take the limit m→∞. In view of (5.36), doing so gives the result

lim
m→∞

Sm1 (M) = R. (4.5.39)

We see that repeated application (iteration) of S1 drives M to its symplectification R. Since
S1 is simple to evaluate, see (5.14), and the convergence is very rapid, we conclude that this
iterative method is well suited to numerical computation.

As an example of how well the iterative method works, consider the 2× 2 case. In this
case W as defined by (5.18) must be a multiple of the identity matrix so that we may write

W = wI (4.5.40)

and
T1(W ) = −[(3/2)w2 + (1/2)w3]I. (4.5.41)

Exhibit 5.1 below shows successive values of w given by the recursion relation

wn+1 = −(3/2)(wn)2 − (1/2)(wn)3 (4.5.42)

for various initial conditions w0. Evidently the convergence is very rapid as expected.
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Exhibit 4.5.1: Convergence of symplectification by iteration in the 2× 2 case. Successive
values of wn for various initial conditions w0.

n wn

0 0.1000000000000000

1 -1.5500000000000000E-02

2 -3.5851306250000000E-04

3 -1.9277438384305627E-07

4 -5.5742941017167727E-14

5 -4.6609132098651603E-27

6 0.0000000000000000E+00

0 -0.1000000000000000

1 -1.4500000000000000E-02

2 -3.1385068750000000E-04

3 -1.4773792356625795E-07

4 -3.2739739477203758E-14

5 -1.6078358115527613E-27

6 0.0000000000000000E+00

0 0.6000000000000000

1 -0.6480000000000000

2 -0.4938071040000000

3 -0.3055618747255026

4 -0.1257872293112257

5 -2.2738510956402836E-02

6 -7.6968146227769021E-04

7 -8.8838634673523115E-07

8 -1.1838451010276436E-12

9 -2.1022338348398979E-24

10 0.0000000000000000E+00

0 -0.6000000000000000

1 -0.4320000000000000

2 -0.2396252160000000

3 -7.9250697011794843E-02

4 -9.1721356097234983E-03

5 -1.2580629042388899E-04

6 -2.3739838483241409E-08

7 -8.4536989012593641E-16

8 -1.0719753766973067E-30

9 0.0000000000000000E+00

At this point at least two thoughts come to mind. First, it would be nice to have a
procedure that would work whenever f < 1 rather than the condition f < (.56), which is
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more restrictive. Of course, the map S does meet this requirement; but its use requires
summing the infinite series (5.2), which may be only slowly convergent. It is easily verified
that the series for S(M) and S(M tr) have the same convergence properties when M and
M tr are related by a condition of the form (3.33) for some symplectic matrix R. Note that
(3.33) defines an equivalence relation. (For the definition of an equivalence relation, see
Exercise 5.12.7.) It follows that the convergence of the series for S(M) depends only on the
equivalence class to which M belongs. The same is true for the convergence of the sequence
Sm1 (M). From (5.15) we see that its behavior also depends only on the equivalence class
to which M belongs. We note that we have proved that f < (.56) is sufficient to ensure
convergence of the sequence Sm1 (M). However, there may be equivalence classes for which
it is not necessary. For example, in the 2n × 2n case, one equivalence class consists of
matrices Q′ of the form (5.18) with W given by (5.40) with I now being the 2n×2n identity
matrix. It can be shown that the fixed point w = 0 of the sequence (5.42) has a larger
basin of attraction than that given by the condition |w| < (.56). See Exercise 5.3. Indeed,
examination of Exhibit 5.1 shows that convergence occurs when |w| = (.60).

A second thought that comes to mind concerns the properties of maps Sk produced by
discarding in the series (5.2) all terms beyond ` = k. They have properties analogous to
those of S1, and they can also be iterated to produce R. What would be their basins of
attraction and their rates of convergence? See Exercise 5.4 for a discussion of the properties
of S2.

Although these questions may be interesting, they do not seem to be of practical impor-
tance for problems encountered to date. That is, the condition f < (.56) always seems to
be well satisfied in practice whenever a symplectification is required. Consequently, for the
present, we will not pursue these questions further.

Exercises

4.5.1. Verify the expansion (5.2) and compute the first few coeffcients e`. Show that the
series

∑
e`x

` has a radius of convergence of 1. Verify that the series (5.2) converges in norm
when f < 1, and therefore verify (5.6).

4.5.2. Verify (5.14) through (5.26). Verify the steps that led from (5.27) to (5.30).

4.5.3. Consider the map M given by (5.42). Show that it has the four fixed points

wf = −2,−1, 0,±∞ (4.5.43)

where the points ±∞ are to be identified in a manner similar to the way that all points at
infinity are identified by use of the Riemann sphere. Examine the stability of each. You
should find that wf = −1 is unstable, and the rest are stable. Show that w̄ defined by the
equation

w̄ = −1 +
√

3 ≈ .732 (4.5.44)

is the positive root of the cubic equation

w̄3 + 3w̄2 = 2. (4.5.45)
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Show that the open interval w ∈ (−1, w̄) is in the basis of attraction of the fixed point
wf = 0, and points just outside the interval are not. Show thatM sends the two endpoints
of the interval into the unstable fixed point wf = −1. Make a numerical study of the w axis
to see if there are any other points in the basin of attraction of wf = 0. You should find,
for example, that points near w = −3 are in the basin of wf = 0. Color the w axis in three
colors depending on whether a point on the axis is in the basin of −2, 0, or ±∞. As already
illustrated in Figure 1.2.8, the basin of an attracting fixed point can have disjoint pieces.

4.5.4. Study the properties of S2.

4.5.5. Suppose x, px, y, py, t, pt is a set of canonical coordinates as in Exercise 1.6.1. With
this order of variables the J ′ of (3.2.10) should be used. In this context a matrix M is called
static if it is of the form

M =


∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ 1 ∗
0 0 0 0 0 1

 . (4.5.46)

Here the entries denoted by * are arbitrary. Later, in Chapter 7, it will be evident that static
symplectic matrices are related to Lie transformations generated by quadratic polynomials
f2 with the property ∂f2/∂t = 0. Show that if M is a static (but not necessarily symplectic)
matrix, the result of symplectifying M by iteration is a static symplectic matrix. That is,
symplectification by iteration preserves the property of being static.

4.5.6. Show that if Q is an invertible J-symmetric matrix, then so is QT . Review Section
4.5.1. Show that under the transposition operation the symplectifying map S also has the
invariance property

S(MT ) = [S(M)]T . (4.5.47)

4.5.7. Section 4.5.2 studied symplectification by iteration. This exercise explores orthog-
onalization by iteration. Suppose M is any real matrix with nonzero determinant and we
wish to make the polar decomposition (2.7). In analogy to the symplectic case, define a
matrix function N(M) by the rule

N(M) = MMT . (4.5.48)

Also, in analogy to (5.1), define a mapping S by the rule

S(M) = [N(M)]−1/2M. (4.5.49)

Show, using (2.8) through (2.10), that

S(M) = O. (4.5.50)

Again compute N−1/2 using (5.2). Define, in analogy to (5.14), the map S1 by the rule

S1(M) = (1/2)(3I −MMT )M. (4.5.51)
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Show that

S1(O′MO′′) = O′S1(M)O′′ (4.5.52)

where O′ and O′′ are any two orthogonal matrices. Show that S1 maps the set of symmetric
matrices into itself, and that

S1(I) = I (4.5.53)

so that M = I is a fixed point of S1. Show that, on the set of symmetric matrices, this fixed
point is an attractor of S1. Show that if N(M) is sufficiently near I, then

lim
m→∞

Sm1 (M) = O (4.5.54)

where O is the orthogonal factor appearing in the polar decomposition (2.7).

4.6 Modified Darboux Symplectification

Suppose one is given a matrix M whose determinant is nonzero. The columns of M may
be regarded as vectors m1, m2, m3, · · · , and the condition det(M) 6= 0 is equivalent to the
statement that the vectors mj are linearly independent. Given a set of linearly independent
vectors mj, there is the Darboux process for constructing an associated set of symplectic
vectors rj. Finally, the vectors rj may be viewed as the columns of a matrix R, and this
matrix will be symplectic. Thus, given any nonsingular matrix M , there is a procedure for
constructing a corresponding symplectic matrix R. Moreover, ifM itself is nearly symplectic,
then R will be near M . Indeed, if M happens to be symplectic, then R will coincide with
M . See Sections 3.6.3 and 3.6.5. In this section we will describe what we will call modified
Darboux symplectification, and will examine how close R is to M if M is nearly symplectic.

Let M be a 2n× 2n matrix. Rather than using (4.1), we will describe the failure of M
to be symplectic in terms of an antisymmetric matrix F defined by the relation

F = MTJM − J. (4.6.1)

From (4.1) and (6.1) we have the result

‖ F ‖ = ‖ (MTJMJT − I)J ‖≤‖MTJMJT − I ‖‖ J ‖
≤ ‖MTJMJT − I ‖=‖MTJ(MT )TJT − I ‖= f(MT ). (4.6.2)

Here we have assumed that the matrix norm employed has the property

‖ J ‖= 1, (4.6.3)

which is true for the maximum column sum norm (3.7.15) and the spectral norm (3.7.17).
If the norm also has the property (3.7.97), which we shall also assume, then the matrix
elements of F are bounded by the relation

|Fjk| ≤ f(MT ). (4.6.4)
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Suppose we view M as a collection of column vectors m1, m2, · · · m2n. Let mj
i denote the

ith component of the j th such vector. Then, following the usual matrix element labelling
scheme, we have the relation

mj
i = Mij. (4.6.5)

In terms of the vectors mj, the relation (6.1) can be rewritten in the form

(MTJM)jk = (mj, Jmk) = Jjk + Fjk. (4.6.6)

Correspondingly if R is a symplectic matrix and we view it as a collection of column vectors
rj, then the symplectic condition (3.1.2) can be written in the form

(rj, Jrk) = Jjk. (4.6.7)

Assume we are given an M for which f(MT ) is sufficiently small. From M we extract
the vectors mj using (6.5). Our task is to use these mj, which obey (6.6), to construct a set
of vectors rj that obey (6.7). Moreover, this construction is to be made in such a way that
the corresponding symplectic matrix R is near M in the sense that

‖M −R ‖∼ f(MT ). (4.6.8)

We will construct the vectors rj two at a time, beginning with r1 and r2. To simplify
our presentation, we will use a J matrix of the form (3.2.10). For this choice we have the
relation

J12 = 1, (4.6.9)

and (6.6) gives the result
(m1, Jm2) = 1 + F12. (4.6.10)

According to (6.4) and (6.10), if f(MT ) is sufficiently small, the quantity (m1, Jm2) will be
positive and hence will have a positive square root γ12,

γ12 = +[(m1, Jm2)]1/2. (4.6.11)

We can therefore define “normalized” vectors r1 and r2 by the rules

r1 = m1/γ12, (4.6.12)

r2 = m2/γ12. (4.6.13)

Note that by (6.4) and (6.10), γ12 will be near 1 if f(MT ) is sufficiently small. Correspond-
ingly r1 and r2 will be near m1 and m2, respectively. By construction, these vectors satisfy
the relation

(r1, Jr2) = 1 = J12, (4.6.14)

as required by (6.7). Also, because J is antisymmetric, we automatically get from (6.14) the
relations

(rj, Jrk) = Jjk when j = 1, 2 and k = 1, 2, (4.6.15)

as is also required by (6.7).
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Next we construct the vectors r3 and r4. We begin by defining intermediate vectors s3

and s4 according to the rule
s3 = m3 + α31r

1 + α32r
2, (4.6.16)

s4 = m4 + α41r
1 + α42r

2, (4.6.17)

where the α’s are coefficients still to be determined. According to (6.7) we must have the
relations

(rj, Jrk) = 0 when j = 1, 2 and k = 3, 4. (4.6.18)

Let us therefore require the relations

(rj, Jsk) = 0 when j = 1, 2 and k = 3, 4. (4.6.19)

Doing so determines the values of the coefficients α:

α31 = (r2, Jm3), (4.6.20)

α32 = −(r1, Jm3), (4.6.21)

α41 = (r2, Jm4), (4.6.22)

α42 = −(r1, Jm4). (4.6.23)

If f(MT ) is sufficiently small then, according to (6.4), (6.6), (6.11) through (6.13), and (6.20)
through (6.23), all the α’s are of order f(MT ). It also follows that the quantity (s3, Js4)
will be positive and consequently will have the positive square root

γ34 = +[(s3, Js4)]1/2. (4.6.24)

Finally, we define the normalized vectors r3 and r4 by the rules

r3 = s3/γ34, (4.6.25)

r4 = s4/γ34. (4.6.26)

Upon reflection we see that we have now constructed four vectors r1 through r4 that are,
respectively, near m1 through m4 if f(MT ) is small; and these vectors satisfy the relations

(rj, Jrk) = Jjk when j, k = 1, 2, 3, 4. (4.6.27)

Moreover the general pattern is now clear. We see that the construction can be continued
to include r5 and r6 (and still more r’s if we are dealing with more than a 6-dimensional
phase space). We simply write the analogs of (6.16) and (6.17), for example

s5 = m5 + α51r
1 + α52r

2 + α53r
3 + α54r

4, (4.6.28)

s6 = m6 + α61r
1 + α62r

2 + α63r
3 + α64r

4, (4.6.29)

determine the α’s, and then normalize the results. Finally, we may view all the rj we have
constructed in this manner as the columns of a matrix R. This matrix will be symplectic
and will be close to M in the sense of satisfying (6.8).
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There is one last nuisance to be resolved. All our estimates have involved the quantity
f(MT ) whereas it would be more pleasant to work with f(M). This defect can be overcome
by using the modified Darboux procedure just described to symplectify the matrix MT

instead of M . Call the resulting symplectic matrix R′. Using (3.7.51) and (6.8) we will then
have the result

|(MT )jk −R′jk| ∼ f(M). (4.6.30)

Finally we define R, which is to be the symplectification of M , by writing

R = (R′)T . (4.6.31)

Combining (6.30) and (6.31) then gives the desired result

|Mjk −Rjk| ∼ f(M). (4.6.32)

Exercises

4.6.1. Show that F as defined by (6.1) is antisymmetric.

4.6.2. Refer to Exercise 5.4. Show that modified Darboux symplectification also preserves
the property of being static.

4.7 Exponential and Cayley Symplectifications

Both the exponential and Cayley representations of a matrix provide additional methods for
matrix symplectification. We will first describe the use of the exponential representation.
Subsequently we will consider the use of the Cayley representation, which is based on the
exponential representation.

4.7.1 Exponential Symplectification

As before, let M be a (real) 2n× 2n matrix. Consider, in matrix space, the ray λM where
λ lies in the range 0 < λ <∞. Suppose that for some value λ0 the matrix λ0M lies within
the unit ball about I. [The geometric picture for this situation is similar to that of Figure
4.1 except that the ray N(λM) is replaced by the ray λM .] Then M can be written in the
exponential form

M = exp(B) (4.7.1)

where B is a real matrix. The proof for this assertion is straightforward: Since by hypothesis
λ0M lies within the unit ball about I, the series of the form (3.43) for log(λ0M) converges,
and we may write

λ0M = exp[log(λ0M)]. (4.7.2)

It follows that M can be written in the form

M = [(λ0)−1I][λ0M ] = exp[−I log(λ0)] exp[log(λ0M)] = exp(B) (4.7.3)
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where B is defined by the equation

B = log(λ0M)− I log(λ0). (4.7.4)

It is now a simple matter to find a symplectification R for M . Without loss of generality,
the matrix B can be written in the form (3.1) where S and A are uniquely defined. We
simply take R to be the symplectic matrix given by the relation

R = exp(JS). (4.7.5)

4.7.2 Cayley Symplectification

The symplectification provided by (7.5) has the defect that it requires the summation of
the infinite exponential series. Although this problem can be overcome by the method of
Section 4.1, it is worthwhile to explore other possibilities. Suppose M can be written in the
exponential form (7.1). Then we may write the relations

M = exp(B) = [exp(B/2)]/[exp(−B/2)]

= [cosh(B/2) + sinh(B/2)]/[cosh(B/2)− sinh(B/2)]

= [I + tanh(B/2)]/[I − tanh(B/2)]. (4.7.6)

Define a matrix T by the equation

T = tanh(B/2). (4.7.7)

With the aid of T , M as given by (7.6) has the Cayley representation

M = (I + T )(I − T )−1 = (I − T )−1(I + T ). (4.7.8)

The relation (7.8) can be solved for T to given the result

T = (M + I)−1(M − I) = (M − I)(M + I)−1. (4.7.9)

Now view (7.9) as the definition of T in terms of M . That is, this definition can be made
without any reference to B. Define the matrix V by the equation

V = J−1T. (4.7.10)

We know that V will be symmetric if M is symplectic, and vice versa. See Section 3.11. Con-
sequently, V will be nearly symmetric if M is nearly symplectic. Let us define a symmetric
matrix W by taking the symmetric part of V ,

W = (V + V T )/2. (4.7.11)

Then we may define a symplectic matrix R by writing

R = (I + JW )(I − JW )−1 = (I − JW )−1(I + JW ), (4.7.12)
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and R will be a symplecification of M that we will call the Cayley symplectification. Note
that while the evaluation of (7.5) requires the summation of an infinite series, the evaluation
of (7.9) and (7.12) requires only matrix inversion.

Let us view R, the result of this Cayley symplectification process applied to M , as the
outcome of a Cayley symplectifying map SC applied to M ,

R = SC(M). (4.7.13)

Then it is easily verified that Cayley symplectification has the feature

SC(M−1) = [SC(M)]−1. (4.7.14)

That is, Cayley symplectification, like symplectic polar decomposition symplectification, is
invariant under inversion. See (5.13). Moreover, suppose Ŕ is any symplectic matrix. Then
it can be shown that Cayley symplectification has the feature

SC(ŔMŔ−1) = Ŕ[SC(M)]Ŕ−1. (4.7.15)

We may say that Cayley symplectification is invariant under symplectic similarity transfor-
mation. This property, although weaker than and a special case of the symplectic transla-
tional invariance described by (5.6), is still significant.

4.7.3 Cayley Symplectification Near the Identity

Cayley symplectification is particularly useful near the identity. Consider the problem of
evaluating exp(εJS) where ε is small and S is symmetric and may itself have the form of
a power series in ε beginning with constant terms. As discussed at the beginning of this
chapter, such is the problem in evaluating linear transformations of the form exp(: k2 :)
where k2 arises solely from nonlinear feed-down effects. See Chapter 9. According to (7.6)
we have the result

R = exp(εJS) = [I + tanh(εJS/2)][I − tanh(εJS/2)]−1. (4.7.16)

The hyperbolic tangent function has the Taylor expansion

tanh(εJS/2) =
∞∑
`=1

a`(εJS/2)` = (εJS/2)− (1/3)(εJS/2)3 + (2/15)(εJS/2)5

− (17/315)(εJS/2)7 + (62/2835)(εJS/2)9 − · · · . (4.7.17)

Note that the coefficients a` vanish for even `.4 Suppose we truncate the series (7.17) by
omitting terms beyond ` = k, and use this truncated series to define a matrix Wt by the
relation

Wt = J−1

k∑
`=1

a`(εJS/2)`. (4.7.18)

4It is tempting to regard (7.16) through (7.18) as a diagonal Padé approximate to the exponential function.
However, it is not. For example, the 3,3 diagonal Padé approximate (approximation through cubic terms
in the numerator and denominator) for the exponential function has different coefficients. In particular, it
contains both even and odd powers: exp(z) ' (1 + z/2 + z2/10 + z3/120)/(1− z/2 + z2/10− z3/120).
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Let us use Wt to define the matrix Ra, which will be an approximation to the matrix R, by
the equation

Ra = (I + JWt)(I − JWt)
−1 = (I − JWt)

−1(I + JWt). (4.7.19)

It is easily verified thatWt is a symmetric matrix, and henceRa will be symplectic. Moreover,
Ra will be near to R in the sense of satisfying relations of the form

‖ R−Ra ‖∼ εk+2, (4.7.20)

‖ R(Ra)
−1 − I ‖∼ εk+2. (4.7.21)

We conclude that the use of (7.18) and (7.19) is well suited to the calculation of exp(εJS)
where S, although symmetric, is only known through some power in some smallness param-
eter ε. Correspondingly, in the language of and as will be needed for Chapter 9, this method
is well suited to the calculation of exp(: k2 :) when k2 itself is only known through some
power in some smallness parameter ε.

Exercises

4.7.1. Show that the two factors in (7.8) commute as indicated. Show the same for the two
factors in (7.9).

4.7.2. Verify the invariance properties (7.14) and (7.15).

4.7.3. Show that Wt as given by (7.18) is symmetric.

4.7.4. Verify the estimates (7.20) and (7.21).

4.8 Generating Function Symplectification

It is well known that canonical transformations (symplectic maps as defined in Section 6.1)
can be produced by the method of mixed-variable generating functions, often referred to as
F1 through F4. The generating functions are called mixed because they involve both “old”
and “new” variables. In this section we will outline how quadratic mixed-variable generating
functions can be used to symplectify matrices. See section 6.5 for a more extensive discussion
of the mixed-variable generating functions F1 through F4.5

Since the method of generating functions does not treat coordinate and momentum
variables on a common footing, it is convenient to introduce the notation

z = (q1 · · · qn, p1 · · · pn), (4.8.1)

5We remark that the adjective generating often occurs in an “infinitesimal” context” in the sense that one
says that Lie algebras generate Lie groups or Hamiltonians generate symplectic maps. That is, generation
involves some sort of “exponentiation/integration” process. By contrast, in the case of mixed-variable
generating functions, results are immediate with no need to pass from the infinitesimal to the finite. Still,
there is no free lunch. The complexity of exponentiation/integration is replaced by the complexity of making
initially implicit relations explicit.
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Z = (Q1 · · ·Qn, P1 · · ·Pn). (4.8.2)

Let R be a symplectic matrix that maps z to Z according to the rule

Z = Rz. (4.8.3)

Then, under certain conditions, the transformation (8.3) can be produced by a mixed-
variable generating function.

For example, let us attempt to use a generating function of the second kind, F2(q, P ).
Its use gives the implicit equations

p` = ∂F2/∂q`, (4.8.4)

Q` = ∂F2/∂P`. (4.8.5)

In view of (8.4) and (8.5), and since the relation (8.3) is linear, we will consider a quadratic
generating function. The most general such function (of the second kind) can be written in
the form

F2(q, P ) = (1/2)
∑
i,j

αijqiqj +
∑
i,j

βijqiPj + (1/2)
∑
i,j

δijPiPj, (4.8.6)

where the matrices α and δ are symmetric,

αT = α, (4.8.7)

δT = δ, (4.8.8)

and the matrix β is arbitrary. (Soon, however, we will require that β be invertible. Also,
here the matrix δ is not to be confused with the Kronecker delta.)

Applying the rules (8.4) and (8.5) to this F2 gives the set of implicit equations

p = αq + βP, (4.8.9)

Q = βT q + δP. (4.8.10)

These equations may be made explicit to give the relations

P = −β−1αq + β−1p, (4.8.11)

Q = (βT − δβ−1α)q + δβ−1p. (4.8.12)

(Here we have assumed that β is invertible.) Suppose R is written in the n× n block form

R =

(
A B
C D

)
. (4.8.13)

Then comparison of (8.3) with (8.11) and (8.12) gives the relations

A = βT − δβ−1α, (4.8.14)

B = δβ−1, (4.8.15)
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C = −β−1α, (4.8.16)

D = β−1. (4.8.17)

These relations may be solved for the matrices α, β, and δ to give the results

α = −D−1C, (4.8.18)

β = D−1, (4.8.19)

δ = BD−1. (4.8.20)

We conclude that a necessary condition for (8.3) to be produced by an F2(q, P ) is that the
matrix D be invertible. Moreover, it is easily checked that the matrices A through D given by
(8.14) through (8.17) satisfy the symplectic conditions (3.3.3) through (3.3.5). Consequently,
both the necessary and sufficient condition for the linear symplectic transformation (8.3) to
be produced by the F2 defined in (8.6) is that the D matrix associated with R be invertible.

We momentarily interrupt our discussion to observe for future use that the relations
(8.13) through (8.17), which relate R to the matrices α, β, and δ, can be written in a more
compact form. Let W be the symmetric matrix defined by the equation

W =

(
α β
βT δ

)
, (4.8.21)

and define matrices E through H by the rules

E =

(
0 0
I 0

)
, (4.8.22)

F =

(
0 I
0 0

)
, (4.8.23)

G =

(
0 0
0 I

)
, (4.8.24)

H =

(
I 0
0 0

)
. (4.8.25)

Here, as with R, all blocks in W and in the matrices E through H are n × n. With these
definitions, it can be verified that R can be written in terms of W in the compact form

R = (FW +G)(EW +H)−1. (4.8.26)

Equation (8.26) is an example of symplectic and symmetric matrices being related by a
Möbius transformation. See Section 5.13 for further discussion of this topic.

To continue our discussion of symplectification, suppose M is an arbitrary 2n×2n matrix
written in the n× n block form

M =

(
a b
c d

)
. (4.8.27)
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Let us seek to symplectify M . First we make the restriction that d is invertible, and define
a matrix β by the rule

β = d−1. (4.8.28)

Next, following (8.18), we form the matrix (−d−1c) and define a matrix α by taking its
symmetric part,

α = −[(d−1c) + (d−1c)T ]/2. (4.8.29)

Also, following (8.20), we form the matrix (bd−1) and define a matrix δ by taking its sym-
metric part,

δ = [(bd−1) + (bd−1)T ]/2. (4.8.30)

Finally, from the α, β, and δ matrices just defined, we construct the matrices A through D
given by (8.14) through (8.17). In so doing we have constructed a symplectic matrix R of
the form (8.13), and this matrix may be taken to be a symplectification of M .

There are also the generating functions F1(q,Q), F3(p,Q), and F4(p, P ). They too can be
used for symplectification in ways analogous to that described for F2. We close this section
by noting that there are nearly symplectic matrices that cannot be symplectified by using
any of the generating functions F1 through F4. For example the matrix R given by

R =


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

 (4.8.31)

is symplectic, but cannot be produced by any of the generating functions F1(q,Q) through
F4(p, P ). Correspondingly, there are nonsymplectic matrices M near R that cannot be
symplectified by use of the generating functions F1(q,Q) through F4(p, P ). However, there
are other mixed-variable generating functions that can be used. See Section 6.7.4.

Exercises

4.8.1. Verify the relations (8.9) through (8.20). Show that the symplectic conditions (3.3.3)
through (3.3.5) are satisfied.

4.8.2. Verify (8.26). Hint: Along the way you will have to verify the relation

(EW +H)−1 =

(
I 0

−β−1α β−1

)
. (4.8.32)

4.8.3. Referring to (8.27) through (8.30), work out explicitly the relations giving the ma-
trices A through D in terms of the matrices a through d. Show that R coincides with M if
M is symplectic, and is near M if M is nearly symplectic.

4.8.4. Verify that the matrix R given by (8.31) is symplectic. Verify that the matrices A
through D that compose R as in (8.13) have the properties

det(A) = det(B) = det(C) = det(D) = 0, (4.8.33)

and therefore fail to have inverses.
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Chapter 5

Preliminary Lie Concepts for Classical
Mechanics and Related Delights

In this chapter we will begin a study of the Lie algebraic structure of Classical Mechanics.
We will learn about Lie operators and Lie transformations, and how they can be used to
represent the symplectic group. We will see that the symplectic group is related to the
quaternion field just as the orthogonal group and the unitary group are related to the real
and complex fields. We will also find that there is a close connection between symplectic
and symmetric matrices. Along the way we will learn something about Cartan’s method for
understanding the nature of simple Lie algebras and their representations, Clebsch-Gordan
series, the topology of Sp(2n), Siegel and homogeneous spaces, Möbius transformations, and
Lagrangian planes.

5.1 Properties of the Poisson Bracket

The Poisson bracket has already been defined in Section 1.7. The purpose of this section is
to review its properties. Suppose that f and g are any two functions of the variables q, p, t.
We recall that the Poisson bracket of f and g, denoted by the symbol [f, g], is defined by
the equation

[f, g] =
∑
i

[(∂f/∂qi)(∂g/∂pi)− (∂f/∂pi)(∂g/∂qi)]. (5.1.1)

We also recall from Section 1.7 that it is convenient to introduce the 2n variables (z1 . . . z2n)
by the rule

z = (z1 · · · zn, zn+1 · · · z2n) = (q1 · · · qn, p1 · · · pn). (5.1.2)

When this is done, the Poisson bracket in terms of the variables z, t can be written more
compactly in the forms

[f, g] =
∑
a,b

(∂f/∂za)Jab(∂g/∂zb), (5.1.3)

[f, g] = (∂zf, J∂zg). (5.1.4)

Here J is the fundamental 2n× 2n matrix given by (1.7.11) or (3.1.1), and used in defining
symplectic matrices. Note that the Poisson bracket symbol [, ] is the same as that used

473
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earlier for a commutator. This is somewhat awkward, but unfortunately there are not
always enough convenient symbols to go around.

We also saw in Section 1.7 that the Poisson bracket has several obvious properties. These
are again listed below along with one less obvious property, the Jacobi identity. You are
instructed to verify it in Exercise 1.3.

1. Distributive property

[(af + bg), h] = a[f, h] + b[g, h] (5.1.5)

for arbitrary constants a, b.

2. Antisymmetry condition,

[f, g] = −[g, f ]. (5.1.6)

3. Jacobi identity,

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0. (5.1.7)

4. Derivation with respect to ordinary multiplication,

[f, gh] = [f, g]h+ g[f, h]. (5.1.8)

Now the stage is set for a subtle conclusion. Observe that the set of all functions of the
variables q, p, t or z, t forms a linear vector space. That is, any linear combination of two
such functions is again such a function. Thus, we have the first ingredient for a Lie algebraic
structure. Now define the Lie product of any two functions to be the Poisson bracket (1.1).
Equations (1.5) and (1.6) show that conditions 1 through 4 for a Lie algebra are satisfied.
See Section 3.7. And (1.7) shows that condition 5 is satisfied. Consequently, the set of
functions of the variables q, p, t or z, t forms a Lie algebra! This Lie algebra will be called
the Poisson bracket Lie algebra of dynamical variables. It is evidently infinite dimensional
since the set of all functions on phase space is infinite dimensional.

Exercises

5.1.1. If you have not already done so, work out Exercises 1.7.1 through 1.7.4.

5.1.2. Determine the dimensionality of the Poisson bracket Lie algebra of dynamical vari-
ables.
Answer: The set of functions of q, p, t or z, t is an infinite dimensional vector space.

5.1.3. Verify the Jacobi identity (1.7). Hint: Use the relation (1.3).

5.1.4. Verify the relation

[f, g] = −
∑
a,b

[f, za][za, zb][zb, g]. (5.1.9)
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5.2 Equations, Constants, and Integrals of Motion

It has already been shown in Section 1.7 that any dynamical variable f(z, t) of a dynamical
system governed by a Hamiltonian H obeys the equation of motion

df/dt = ∂f/∂t+ [f,H]. (5.2.1)

A special case of this relation is the fact that the dynamical variables za obey the equations
of motion

ża = (J∂zH)a, (5.2.2)

or, in more compact vector notation,

ż = J∂zH. (5.2.3)

A dynamical variable f is called a constant of motion if its total time derivative vanishes.
In view of (2.1), a constant of motion satisfies the equation

∂f/∂t+ [f,H] = 0. (5.2.4)

It can be shown in general that any Hamiltonian dynamical system with n degrees of freedom
has 2n functionally independent constants of motion. See Exercise 2.4.

Suppose that a constant of motion f does not explicitly depend on the time t,

∂f/∂t = 0. (5.2.5)

A constant of motion that does not explicitly depend on the time will be called an integral
of motion. By definition, an integral of motion is a constant of motion, but a constant of
motion is not an integral of motion if it has explicit time dependence. Evidently, an integral
of motion obeys the equation

[f,H] = 0. (5.2.6)

The question of the existence of integrals of motion is quite complicated. Observe that
if f(z) is an integral of motion, then any given trajectory must remain for all time on a
general hypersurface in phase space defined by an equation of the form

f(z) = constant. (5.2.7)

If there are several functionally independent integrals of motion, then the general trajectory
is further restricted to lie in the intersection of several hypersurfaces for all time. Thus, the
greater the number of integrals, the more that can be said about the behavior of a dynamical
system.

Consider a time-independent Hamiltonian H(z). A point zc in phase space for which the
vector ∂zH is zero is called a critical point. Evidently, according to (2.2) or (2.3), a critical
point is some kind of equilibrium point. Now suppose some small region R of phase space
contains no critical points. Then it can be shown that, provided R is small enough, the
dynamical system described by the Hamiltonian H(z) has 2n− 1 functionally independent
integrals of motion in the region R. Furthermore, n of these integrals can be arranged to be
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in involution. (Two functions f and g are said to be in involution if their Poisson bracket
[f, g] is zero.)1 See Exercises 2.5 and 2.6.

The result just stated is of limited use unless all trajectories starting in R happen to
remain in R. In general, and contrary to the impression given by most textbooks, most dy-
namical Hamiltonian systems do not have global integrals of motion. If a time-independent
Hamiltonian dynamical system with n degrees of freedom has n functionally independent
global integrals of motion in involution, the system is said to be completely integrable. In gen-
eral, only the soluble problems found in textbooks fall into this category. Most Hamiltonian
dynamical systems, including the majority encountered in real life, are not completely inte-
grable and are therefore sufficiently complicated to be in some sense insoluble. In particular,
the behavior of most Hamiltonian systems is sufficiently complicated that the trajectories
are not generally confined to lie on hypersurfaces in phase space.

Exercises

5.2.1. Verify (2.2).

5.2.2. Suppose that the Hamiltonian H for a dynamical system does not depend explicitly
on the time t. Show that then H is an integral of motion.

5.2.3. Suppose that the dynamical variables f and g are constants of motion. Verify Pois-
son’s theorem, which states that the quantity [f, g] is then also a constant of motion. Suppose
that f and g are integrals of motion. Show that [f, g] is then also an integral of motion.
Hint: Use the Jacobi identity.

5.2.4. Suppose that f1, f2, · · · , fn are n constants of motion. Let c be any function of the
fj,

c = c(f1, f2, · · · , fn). (5.2.8)

Show that c is then also a constant of motion. Suppose that f1, f2, · · · , fn are n integrals of
motion, and that c is again defined as above. Show that c is then also an integral of motion.

5.2.5. Let ti denote some initial time. Given t and z(t), we can always integrate the
equations of motion backward (or forward) in time to the time ti to find the initial conditions
zi. The result of this process will generally depend on t and z(t). Thus, we obtain 2n
functions zia(z, t). Show that these functions are functionally independent and are constants
of motion. Carry out this construction explicitly for the case of the one-dimensional simple
harmonic oscillator.

5.2.6. Problem on constructing local integrals of motion (Hamiltonian flow-box or straightening-
out theorem).

1It is a confusing fact that the term involution has multiple meanings. It can also refer to a map or
operator whose square is the identity. See, for example, Exercise 3.12.5.
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5.3 Lie Operators

Let f(z, t) be any function of the phase-space variables z and perhaps the time t. Associated
with each f is a Lie operator that we denote by the symbol : f :. The Lie operator : f : is
a differential operator defined by the rule

: f :
def
=
∑
i

(∂f/∂qi)(∂/∂pi)− (∂f/∂pi)(∂/∂qi). (5.3.1)

In particular, if : f : acts on any phase-space function g, one finds the result

: f : g =
∑
i

(∂f/∂qi)(∂g/∂pi)− (∂f/∂pi)(∂g/∂qi) = [f, g]. (5.3.2)

Thus, one may heuristically view a Lie operator as a Poisson bracket waiting to happen.
Note that in view of (1.3), the defining relation (3.1) can also be written in the form

: f :=
∑
a,b

(∂f/∂za)Jab(∂/∂zb). (5.3.3)

We also remark that in the Mathematics literature the Lie operator : f : is sometimes
referred to as ad(f) where ad is shorthand for adjoint. Note the similarity of the relations
(3.7.71) and (3.2). See also the discussion in Section 8.1. We use the notation : f : instead
of ad(f) because it facilitates the writing of complicated expressions.

Powers of : f : can be defined by repeated application, which amounts to taking repeated
Poisson brackets. For example, : f :2 is defined by the relation

: f :2 g =: f :: f : g =: f : [f, g] = [f, [f, g]]. (5.3.4)

Finally, : f : to the zero power is defined to be the identity operator,

: f :0= I ⇔: f :0 g = g. (5.3.5)

We note that Lie operators, as well as their powers, are linear operators because of (1.5)
and (1.6)

As result of (1.5), the sum of two Lie operators is again a Lie operator. Specifically, one
finds the relation

a : f : +b : g :=: (af + bg) : (5.3.6)

for any two scalars a, b and any two functions f, g. Therefore, the set of Lie operators forms
a linear vector space.

A Lie operator is also a derivation with respect to the operation of ordinary multiplica-
tion. That is, a Lie operator satisfies the product rule analogous to that for differentiation:
Let g and h be any two functions. Then, according to (1.8), : f : obeys the rule

: f : (gh) = (: f : g)h+ g(: f : h). (5.3.7)

In addition to being a derivation with respect to ordinary multiplication, a Lie operator
is also a derivation with respect to Poisson bracket multiplication. Suppose g and h are any
two functions. Then the Jacobi identity (1.7) can be written in the form

[f, [g, h]] = [[f, g], h] + [g, [f, h]]. (5.3.8)
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or equivalently, using Lie operator notation,

: f : [g, h] = [: f : g, h] + [g, : f : h]. (5.3.9)

Since the set of Lie operators forms a linear vector space, it is of interest to inquire
whether the vector space can be given a multiplication rule that will convert it into a Lie
algebra. The answer is yes, as is nearly obvious, since Lie operators are linear operators and
linear operators are quite similar to matrices. The Lie product of two Lie operators : f : and
: g : is simply taken to be their commutator. Denoting the Lie product of two Lie operators
by the symbol {: f :, : g :}, the Lie product is defined by the rule

{: f :, : g :} =: f :: g : − : g :: f : . (5.3.10)

See Exercise (3.5). Note that there are now two Lie algebras that have to be kept in mind.
First, there is the Lie algebra of functions of z, t with the Lie product defined to be the
Poisson bracket. Second, there is the Lie algebra of Lie operators with the Lie product
defined to be the commutator.

One point, however, has been overlooked. Namely, is the right side of (3.10) a Lie
operator? To answer this question, it is useful to view the Jacobi identity (1.7) for Poisson
brackets from yet another perspective. For any function h, the Jacobi identity can be written
in the form

[f, [g, h]]− [g, [f, h]] = [[f, g], h]. (5.3.11)

However, using Lie operator notation, this same equation can be written in the form

: f :: g : h − : g :: f : h =: [f, g] : h, (5.3.12)

or more compactly, using (3.10),

{: f :, : g :}h =: [f, g] : h. (5.3.13)

But, since h is an arbitrary function, (3.13) can also be viewed as the operator identity

{: f :, : g :} =: [f, g] : . (5.3.14)

Evidently, the commutator of two Lie operators : f : and : g : is again a Lie operator, and
is in fact the Lie operator associated with the function [f, g].

Put another way, (3.14) shows that there is a close connection between the Lie algebra of
functions and the Lie algebra of Lie operators. Specifically, the Lie product (commutator)
of two Lie operators is the Lie operator of the Lie product (Poisson bracket) of the two
associated functions. Mathematicians have a word for such a situation. They would say
that the two Lie algebras are homomorphic. To see that this relation between the two Lie
algebras is a homomorphism and not an isomorphism, suppose two Lie operators : f : and
: g : are equal,

: f :=: g : . (5.3.15)

Then from (3.15) we can only deduce the relation

f = g + c, (5.3.16)
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where c is an arbitrary constant. That is, as is obvious from the definition (3.1), the Lie
operator associated with any constant is identically zero.

We close this subsection by noting that what we have called a Lie operator is actually a
special case of a more general object. Let x denote a collection of N variables x1, x2, · · ·xN .
Also, let g = (g1, g2, · · · gN) be a collection of N functions of x and perhaps the time t.
The Lie operator Lg associated with the collection of functions gb(x, t) is defined to be the
differential operator given by the rule

Lg =
N∑
b=1

gb(x, t)(∂/∂xb). (5.3.17)

The relation (3.17) is the general definition of a Lie operator. It is also sometimes called
a vector field. With the introduction of the notation ∂ = (∂/∂x1, ∂/∂x2, · · · ∂/∂xN), it is
often convenient to write Lg in the suggestive form

Lg = g · ∂. (5.3.18)

There is an intimate connection between vector fields and ordinary differential equations.
Consider the set of first-order differential equations

ẋa = ga(x, t). (5.3.19)

Then, using (3.17), this set can also be written in the form

ẋa = Lgxa. (5.3.20)

Also, let h be any function of x and perhaps the time t. Then, by the chain rule, the time
derivative of h along a trajectory is given by the relation

dh/dt = ∂h/∂t+
∑
b

(∂h/∂xb)ẋb = ∂h/∂t+
∑
b

gb(∂h/∂xb) = ∂h/∂t+ Lgh. (5.3.21)

Upon comparison of (3.17) with (3.3), we see that we have assumed N = 2n and

gb(z, t) =
∑
a

(∂f/∂za)Jab. (5.3.22)

For future reference we note that (3.22) can also be written in the form

gb(z, t) = [f, zb] = [zb, (−f)]. (5.3.23)

We conclude that, in the case of interest for Hamiltonian systems, the collection of func-
tions gb arises from a single function f according to the relation (3.22). Thus, to be more
precise, what we have called and will continue to call a Lie operator could better be called
a Hamiltonian Lie operator or a Hamiltonian vector field. Non-Hamiltonian vector fields
are of use for describing dissipative effects including, in the field of accelerator physics, syn-
chrotron radiation effects and electron and ionization cooling. Our primary attention will
be focused on Hamiltonian Lie operators. However, where applicable, we will also present
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results for general Lie operators. General polynomial vector fields, both Hamiltonian and
non-Hamiltonian, are treated and classified in Chapter 27.

Finally, in the case N = 2n, define quantities ηc by the rule

ηc =
∑
b

Jbcgb. (5.3.24)

If the gb arise from a single function f as in (3.22), we find the result

ηc =
∑
ab

JbcJab(∂f/∂za) =
∑
ab

JabJbc(∂f/∂za)

=
∑
a

(J2)ac(∂f/∂za) = −∂f/∂zc. (5.3.25)

It follows from (3.25) that the collection of functions ηc then has the property

∂ηc/∂zd − ∂ηd/∂zc = −∂2f/∂zd∂zc + ∂2f/∂zc∂zd = 0. (5.3.26)

Evidently (3.26) is a necessary condition for a vector field to be Hamiltonian. In Section 6.4
we will see that it is also sufficient.

It is easily verified that that the set of all vector fields in N variables forms a Lie
algebra with the commutator taken as the Lie product (see Exercise 3.8), and (in the even
dimensional case) the set of Hamiltonian vector fields forms a Lie subalgebra of the Lie
algebra of all vector fields. In subsequent chapters we will learn that the set of all vector
fields is the Lie algebra of the group of all diffeomorphisms, and the set of all Hamiltonian
vector fields is the Lie algebra of the subgroup of all symplectic maps.

Exercises

5.3.1. Starting from (3.7), show that : f :n obeys the Leibniz rule

: f :n (gh) =
n∑

m=0

(
n
m

)
(: f :m g)(: f :n−m h), (5.3.27)

where

(
n
m

)
is the binomial coefficient defined by(

n
m

)
=

n!

(m!)(n−m)!
. (5.3.28)

Suggestion: Use induction and the relations

(
n
n

)
= 1,

(
n
0

)
= 1, and(

n
m− 1

)
+

(
n
m

)
=

(
n+ 1
m

)
.

According to some, perhaps apocryphal, lore it took Leibniz seven years to discover this
rule (in the context of how to differentiate a product of two functions). He and others first
assumed that the derivative of a product would be the product of the derivatives (which, in
fact, is the case for the chain rule that applies to functions of functions).
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5.3.2. Verify (3.8) and (3.9).

5.3.3. State and verify the analog of the Leibniz rule of Exercise (3.1) for the case of
: f :n [g, h].

5.3.4. Verify that the Lie product defined by (3.10) satisfies the properties 1 through 5
required to make the set of Lie operators into a Lie algebra. See Section 3.7.

5.3.5. Verify (3.11), (3.12), and (3.13).

5.3.6. Let h0 be any constant function. Verify that

: h0 := 0. (5.3.29)

5.3.7. Let G be any function of the variables z. A set of differential equations of the form

ża = −∂G/∂za (5.3.30)

is called a gradient system, and the corresponding vector field

LG = −
∑
a

(∂G/∂za)(∂/∂za) (5.3.31)

is called a gradient vector field. At this point is is interesting to contrast Hamiltonian
systems, see (2.2), with gradient systems. Both are derived from master functions, H and
G, respectively. But their behavior can be very different. Verify the relation

dG/dt = LGG = −
∑
a

(∂G/∂za)
2 ≤ 0. (5.3.32)

It follows that, for a gradient system, points on a trajectory move away from maxima of G
and toward minima of G. Compare the behavior of Hamiltonian and gradient systems near
and at local extrema of H and G, respectively. What happens at and near saddle points?

5.3.8. Suppose Lf and Lg are any two vector fields. Show that their commutator is also a

vector field. That is, given f and g, show that there is a relation of the form

{Lf ,Lg} = Lh (5.3.33)

and find a formula for h in terms of f and g. Show that, for vector fields, double commu-
tators composed of three vector fields obey the Jacobi identity,

{Lf , {Lg,Lh}}+ {Lg, {Lh,Lf }}+ {Lh, {Lf ,Lg}} = 0. (5.3.34)

Show that the set of all vector fields forms an infinite-dimensional Lie algebra with the
commutator playing the role of a Lie product.
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5.3.9. Suppose some N -dimensional Lie algebra L has structure constants cγαβ. Consider an
N -dimensional Euclidean space with coordinates x1, x2, · · ·xN . Define N vector fields Lα by
the rule

Lα = −
∑
βγ

cγαβxβ∂/∂xγ. (5.3.35)

Show that these vector fields satisfy the commutation relations

{Lα,Lβ} =
∑
γ

cγαβLγ, (5.3.36)

and therefore provide a vector-field realization of L. Since the vector fields are manufactured
from the structure constants, might this realization be related to the adjoint representation
of L? Using (3.7.54), show that

Lαxβ = −
∑
γ

(B̂α)βγxγ (5.3.37)

or, more compactly,
Lαx = −B̂αx. (5.3.38)

Suggestion: First verify (3.38) and then (3.36).

5.3.10. Let Lf be a vector field and suppose g and h are any two functions. In analogy to

(3.7), prove the derivation property

Lf (gh) = (Lf g)h+ g(Lfh). (5.3.39)

Find the Leibniz rule for (Lf )n analogous to (3.27).

5.4 Lie Transformations

5.4.1 Definition and Some Properties

Since powers of :f : have been defined, it is also possible to deal with power series in :f :. Of
particular importance is the power series exp(:f :). This particular object is called the Lie
transformation associated with :f : or f .2 The Lie transformation is also a linear operator,
and is formally defined as expected by the exponential series

e:f : = exp(:f :) =
∞∑
n=0

:f :n /n!. (5.4.1)

In particular, the action of exp(: f :) on any function g is given by the rule

exp(: f :)g = g + [f, g] + [f, [f, g]]/2! + · · · . (5.4.2)

2Some authors use the terms Lie transformation and Lie series interchangeably. We prefer to refer to any
power series in :f : as a Lie series, and to refer to the particular power series exp(:f :) as a Lie transformation.
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The fact that : f : is a derivation with respect to ordinary multiplication, see (3.7),
implies that the Lie transformation exp(: f :) is an isomorphism with respect to ordinary
multiplication. (This is another remarkable property of the exponential function!) That is,
suppose g and h are any two functions. Then the Lie transformation exp(: f :) has the
property

exp(: f :)(gh) = [exp(: f :)g][exp(: f :)h]. (5.4.3)

In words, (4.3) says that one can either let a Lie transformation act on the product of two
functions, or act on each function separately and then take the product of the results. Both
operations give the same net result.

The relation (4.3) may be proved as follows. First, use the definition (4.1) to get the
result

exp(: f :)(gh) =
∞∑
n=0

(: f :n /n!)(gh). (5.4.4)

Next, use the Leibniz rule (3.27), which is a consequence of the derivation property (3.7),
to get the result

exp(: f :)(gh) =
∞∑
n=0

(1/n!)
n∑

m=0

(
n
m

)
(: f :m g)(: f :n−m h). (5.4.5)

The binomial coefficients obey the relation

(1/n!)

(
n
m

)
= 1/[(m!)(n−m)!]. (5.4.6)

Consequently, (4.5) can also be written in the form

exp(: f :)(gh) =
∞∑
n=0

n∑
m=0

{[: f :m /m!]g}{[: f :n−m /(n−m)!]h}. (5.4.7)

Observe that the double sum on the right side of (4.7) can be rearranged to give the result

exp(: f :)(gh) =
∞∑
m=0

∞∑
n=m

{[: f :m /m!]g}{[: f :n−m /(n−m)!]h}. (5.4.8)

See Figure 4.1 and Exercise 4.8. Finally, let ` = n −m be a new summation index. Then
(4.8) takes the final form

exp(: f :)(gh) =
∞∑
m=0

[: f :m /m!]g
∞∑
`=0

[: f :` /`!]h

= [exp(: f :)g][exp(: f :)h]. (5.4.9)

The relation (4.3) may be extended to products of Lie transformations acting on products
of functions. Let a and b be any two functions, and let exp(: f :) and exp(: g :) be any two
Lie transformations. Then we have, by using (4.3) repeatedly, the result

exp(: f :) exp(: g :)(ab) = exp(: f :){[exp(: g :)a][exp(: g :)b]}
= [exp(: f :) exp(: g :)a][exp(: f :) exp(: g :)b]. (5.4.10)
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m

a

n

m

b

n

Figure 5.4.1: a) The summation points in m,n space for the sum (4.7) indicating that the
inner sum is over m followed by a sum over n. b) The summation points for the sum (4.8)
illustrating that the points are the same, but the inner sum is now over n followed by a sum
over m.

Analogous results evidently hold for any number of Lie transformations and any number of
functions.

The isomorphism property of exp(: f :) described by (4.3) often facilitates computations
involving Lie transformations. Let the symbol z stand, as usual, for the collection of quan-
tities z1 · · · z2n. Similarly, let the symbol exp(: f :)z stand for the collection of quantities
exp(: f :)z1, · · · exp(: f :)z2n. Now let g(z) be any function. Then it follows from (4.3) that

exp(: f :)g(z) = g[exp(: f :)z]. (5.4.11)

That is, the action of a Lie transformation on a function is to perform a Lie transformation
on its arguments.

To see the truth of (4.11), suppose first that g were a polynomial in the quantities
z1 · · · z2n. But a polynomial is just a sum of monomials of the form

zm1
1 zm2

2 · · · zm2n
2n .

It follows from (4.9) that

exp(: f :)zm1
1 zm2

2 · · · zm2n
2n = [exp(: f :)z1]m1 · · · [exp(: f :)z2n]m2n . (5.4.12)

Also, as mentioned earlier, exp(: f :) is a linear operator. Therefore a Lie transformation
has the advertised property (4.11) when acting on polynomials. But, according to the
Weierstrass approximation theorem, the set of monomials is dense in the complete set of
functions on any bounded domain. Consequently, (4.11) holds in general by continuity.
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As a consequence of (4.10), there is a result analogous to (4.11) for any product of Lie
transformations acting on a function. For example, in the case of two Lie transformations
exp(: f :) and exp(: g :) and a function h, we have the result

exp(: f :) exp(: g :)h(z) = h[exp(: f :) exp(: g :)z]. (5.4.13)

Similar results hold for any number of Lie transformations. The proof of these results is
similar to that just given for (4.11).

The last observation to be made is that since : f : is also a derivation with respect to
Poisson bracket multiplication, the Lie transformation exp(: f :) must also be an isomor-
phism with respect to Poisson bracket multiplication. That is, suppose g and h are any two
functions. Then the Lie transformation exp(: f :) has the property

exp(: f :)[g, h] = [exp(: f :)g, exp(: f :)h]. (5.4.14)

This property will be essential for subsequent discussions of symplectic maps and charged-
particle beam transport. Its proof is exactly analogous to that just given for the case of
ordinary multiplication. Also, there are results analogous to (4.10) for products of Lie
transformations acting on Poisson brackets. Suppose, for example, that a and b are any two
functions. Then we have the result

exp(: f :) exp(: g :)[a, b] = [exp(: f :) exp(: g :)a, exp(: f :) exp(: g :)b], (5.4.15)

and similar results hold for any number of Lie transformations.

5.4.2 Applications

Subsequent chapters and sections will be devoted to the use of Lie transformations for
representing, manipulating, and analyzing symplectic maps. They can also be used to
transform Hamiltonians to normal form. Indeed, this was their original use as envisioned by
Hori and Deprit. Similarly, they can be used to transform vector and tensor fields. See the
references listed at the end of this chapter.

Exercises

5.4.1. Let q and p be the phase-space coordinates for a system having one degree of freedom.
Let f be the function

f = −λp2/2. (5.4.16)

Show that
exp(: f :)p = p,

exp(: f :)q = q + λp. (5.4.17)

Here λ is an arbitrary parameter.
Hint: Observe that the series (4.2) terminates in this case.

5.4.2. Repeat Exercise 4.1 for the case f = λq2/2.
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5.4.3. Repeat Exercise 4.1 for the case f = λq3/3.

5.4.4. Repeat Exercise 4.1 for the case f = −λpq. Now you must sum an infinite series.
Answer:

exp(: f :)q = (eλ)q,

exp(: f :)p = (e−λ)p. (5.4.18)

5.4.5. Repeat Exercise 4.1 for the case f = −λ(p2 + q2)/2.
Answer:

exp(: f :)q = q cosλ+ p sinλ,

exp(: f :)p = −q sinλ+ p cosλ. (5.4.19)

5.4.6. Repeat Exercise 4.1 for the case f = −λ(p2 − q2)/2.
Answer:

exp(: f :)q = q coshλ+ p sinhλ,

exp(: f :)p = q sinhλ+ p coshλ. (5.4.20)

5.4.7. Repeat Exercise 4.1 for the case f = λqp2.
Answer:

exp(: f :)q = q(1− λp)2,

exp(: f :)p = p/(1− λp). (5.4.21)

See the end of Section 1.4.

5.4.8. Verify (4.3) for the case f = λq2 and g = h = p.

5.4.9. Verify the rearrangement required to go from (4.7) to (4.8). Hint: Mark out, in
m,n space, the lattice of points that are summed over in (4.7). Show that the same points
are summed over in (4.8). See Figure 4.1.

5.4.10. Prove (4.13).

5.4.11. Derive (4.14) from the definition (4.1) and the results of Exercise 3.3.

5.4.12. Prove (4.15).

5.4.13. Let c be any constant. Verify the result

exp(: f :)c = c. (5.4.22)

5.4.14. Let Lf be a general vector field. In analogy to (4.1) define an associated Lie

transformation by the rule

exp(Lf ) =
∞∑
n=0

(Lf )n/n!. (5.4.23)

Show, in analogy to (4.3), that this Lie transformation is also an isomorphism with respect
to function multiplication,

exp(Lf )(gh) = [exp(Lf )g][exp(Lf )h]. (5.4.24)



5.5. REALIZATION OF THE SP (2N,R) LIE ALGEBRA 487

5.5 Realization of the sp(2n,R) Lie Algebra

According to Exercise (1.2), the Poisson bracket Lie algebra of dynamical variables is infinite
dimensional. The purpose of this section is to show that, for a 2n-dimensional phase space,
the Poisson bracket Lie algebra of dynamical variables contains sp(2n,R) as a subalgebra.

Suppose f and g are homogeneous polynomials of degree 2 in the variables z. Then,
inspection of (1.3) indicates that their Poisson bracket [f, g] is also a homogeneous polyno-
mial of degree two. We conclude that second-degree polynomials form a subalgebra of the
Poisson bracket Lie algebra of all functions. In fact, calculation shows that this subalgebra
is a realization of sp(2n,R).

To verify this assertion, suppose that f and g are any two homogeneous second-degree
polynomials in the variables z. They can be written in the form

f = (1/2)
∑
a,b

Sfabzazb = (1/2)(z, Sfz), (5.5.1)

g = (1/2)
∑
c,d

Sgcdzczd = (1/2)(z, Sgz), (5.5.2)

where Sf and Sg are real symmetric matrices. Evidently, there is a one-to-one correspon-
dence between homogeneous second-degree polynomials and symmetric matrices. We will
indicate a one-to-one correspondence by the symbol ↔. Since J is invertible, there is also
an associated one-to-one correspondence between homogeneous second degree polynomials
and matrices of the form JS. Indeed, the relations (5.1) and (5.2) can be written also in
the form

f ↔ JSf ⇔ f = (1/2)(Jz, JSfz), (5.5.3)

g ↔ JSg ⇔ g = (1/2)(Jz, JSgz). (5.5.4)

Recall (3.1.6). Here the symbol ⇔ denotes logical implication in both directions.
Now use the representations (5.1) and (5.2) to compute the Poisson bracket [f, g]. This

calculation is facilitated by the relation

[zazb, zczd] = zazcJbd + zazdJbc + zbzcJad + zbzdJac

=
∑
ef

(δaeδcfJbd + δaeδdfJbc + δbeδcfJad + δbeδdfJac)zezf . (5.5.5)

[Note that in this realization the structure constants are related to the entries of J and the
Kronecker delta. This result is not completely surprising because J also enters the definition
of the Poisson bracket. Recall (1.3).] We find from (5.1), (5.2), and (5.5) the result

[f, g] = (z, SfJSgz) = (Jz, JSfJSgz). (5.5.6)

Similarly, the Poisson bracket [g, f ] can be evaluated to give the result

[g, f ] = (Jz, JSgJSfz). (5.5.7)

Subtract (5.7) from (5.6) and use the antisymmetry condition (1.6). Doing so gives the
result

[f, g] = (1/2)(Jz, {JSf , JSg}z). (5.5.8)
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Here the notation {, } indicates the matrix commutator,

{JSf , JSg} = JSfJSg − JSgJSf . (5.5.9)

Suppose the second-degree polynomial h is defined by the relation

h = [f, g]. (5.5.10)

Then, comparison of (5.8) and (5.10) shows that h can be written also in the form

h = (1/2)(Jz, JShz), (5.5.11)

where the matrix JSh is defined by the relation

JSh = {JSf , JSg}. (5.5.12)

Observe that (5.10) is a Lie-algebraic relation in the Poisson bracket Lie algebra of second-
degree polynomials, and (5.12) is a Lie-algebraic relation in sp(2n). Thus we have the logical
implication

h = [f, g]⇔ JSh = {JSf , JSg}. (5.5.13)

What we have just shown is that these two Lie algebras are isomorphic under the one-to-one
correspondence given by (5.3), (5.4), and (5.11).

In the next three sections we will study the problem of finding suitable bases for the Lie
algebras sp(2), sp(4), and sp(6) when special attention is given to their u(1), u(2), and u(3)
subalgebras, respectively. We close this section by finding a basis for sp(2n) when special
attention is given to the subgroups described in Section (3.10).

We have already studied the basis for sp(2n) consisting of the monomials zazb and found
that they satisfy the Poisson bracket rules (5.5). Another possible basis can be found by
decomposing these monomials into those associated with the subgroups constituted by ma-
trices of the form (3.3.9), (3.3.10), and (3.3.11), respectively. Consider first the subgroup
associated with matrices of the form (3.3.9). In this case, S is of the form (3.10.2). Corre-
spondingly, the polynomials f given by (5.1) are linear combinations of the monomials pjpk.
They satisfy the Poisson bracket relations

[pjpk, p`pm] = 0. (5.5.14)

The vanishing of all Lie products for elements of this subalgebra is expected since the
associated subgroup is Abelian.

Consider next the subgroup associated with matrices of the form (3.3.10). In this case
S is of the form (3.10.7), and the polynomials f given by (5.1) are linear combinations of
the monomials qjqk. They satisfy the Poisson bracket relations

[qjqk, q`qm] = 0. (5.5.15)

Again all Poisson brackets for this Lie subalgebra vanish since the associated subgroup is
also Abelian.



5.5. REALIZATION OF THE SP (2N,R) LIE ALGEBRA 489

Finally consider the subgroup associated with matrices of the form (3.3.11). In this case
S is of the form (3.10.13). Correspondingly, the polynomials f given by (5.1) are linear
combinations of the monomials qjpk. They satisfy the Poisson bracket relations

[qjpk, q`pm] = δjmq`pk − δk`qjpm. (5.5.16)

Since the right side of (5.16) is again of the form qjpk, these monomials constitute a Lie
subalgebra as expected. This subalgebra is the Lie algebra g`(n,R), the Lie algebra of the
group GL(n,R).

It remains to compute the Poisson brackets of the monomials pjpk, qjqk, and qjpk with
each other. We find the results

[qjpk, p`pm] = δj`pkpm + δjmpkp`, (5.5.17)

[qjpk, q`qm] = −δk`qjqm − δkmqjq`, (5.5.18)

[qjqk, p`pm] = δj`qkpm + δjmqkp` + δk`qjpm + δkmqjp`. (5.5.19)

Note that (5.17) indicates that the Lie algebra formed by the monomials p`pm is trans-
formed under the action of the Lie algebra formed by the monomials qjpk. Also, (5.16)
and (5.17) together indicate that the set of monomials qjpk and p`pm, when combined in
linear combinations, still form a Lie subalgebra. This is the subalgebra associated with the
subgroup of matrices of the form (3.10.16). The fact that the monomials p`pm transform
under the action of the monomials qjpk is a consequence of the fact that the subgroup of
matrices (3.10.16) is a semidirect product of the subgroups of matrices (3.3.11) and (3.3.9).
Similarly, the relations (5.16) and (5.18) indicate that the monomials qjpk and q`qm span
a Lie subalgebra associated with the subgroup of matrices of the form (3.10.19), and this
subgroup is a semidirect product of the subgroups of matrices (3.3.11) and (3.3.10).

Exercises

5.5.1. Verify (5.5).

5.5.2. Verify (5.6), (5.7), and (5.8).

5.5.3. Verify the following Poisson bracket relation:

[zazb, zc] = zaJbc + zbJac. (5.5.20)

Suppose f is given by (5.1). Show that the matrix JSf can be computed from f by the
relation

: f : zc = [f, zc] = −(JSfz)c = −
∑
d

(JSf )cdzd. (5.5.21)

5.5.4. Find the dimensions of the three Lie subalgebras spanned by the monomials of the
form pjpk, monomials of the form qjqk, and monomials of the form qjpk, respectively.

5.5.5. Find the dimension of the Lie subalgebra spanned by the monomials of the form qjpk
plus monomials of the form p`pm. Find the dimension of the Lie subalgebra spanned by the
monomials of the form qjpk plus monomials of the form q`qm.

5.5.6. Show that the monomials qjqk and p`pm generate the full Lie algebra of sp(2n) in the
sense that taking suitable Poisson brackets of them produces all possible monomials zazb.
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5.6 Basis for sp(2,R)
The symplectic Lie algebras of primary interest for accelerator applications are sp(2,R),
sp(4,R), and sp(6,R).3 The purpose of this and the next two sections is to discuss suitable
bases for these Lie algebras when special attention is given to their unitary subalgebras
u(1), u(2), and u(3). What we will be finding are the defining or fundamental representa-
tions of sp(2,R), sp(4,R), and sp(6,R). See Section 3.7.6. We remark that these are the
lowest dimensional representations that are faithful, in the sense of being isomorphic, to the
underlying abstract Lie algebra.

One way to specify a basis is to select suitable matrices of the form JS. In Section (5.5)
we learned that there is an isomorphism between the Poisson bracket Lie algebra of quadratic
polynomials and the commutator Lie algebra of the matrices JS. Therefore, another way
to specify a basis for sp(2n,R) is to select suitable second-degree polynomials. We will
mostly choose this second approach because of its convenience for later use. However, some
of the calculations employed in selecting suitable polynomials will involve the associated
matrices. Moreover, as indicated by (5.1) through (5.4), the associated matrices can easily
be constructed from a knowledge of the associated second degree polynomials, and vice
versa.

Because (as discussed in Section 3.9 and Exercise 3.9.1) matrices of the form JSc form
a Lie algebra in their own right, it is convenient to find the polynomials associated with
these matrices first. By making use of the results of Sections 3.9 and 5.5, these polynomials
can be arranged to give a realization of the Lie algebra u(n). Then, when this is done, the
polynomials associated with matrices of the form JSa can be selected in a suitable manner.
In particular, these polynomials can be selected in such a way that they have convenient
transformation properties under the action of u(n).

We begin with the case of sp(2,R). In the 2× 2 realization of sp(2,R), the most general
symmetric matrix S is of the form

S =

(
α β
β γ

)
, (5.6.1)

and J is simply the matrix

J =

(
0 1
−1 0

)
. (5.6.2)

Requiring that J commute with S gives the restrictions

β = 0, γ = α. (5.6.3)

Consequently, the most general Sc in the 2× 2 case is just a multiple of the identity,

Sc = αI, (5.6.4)

and JSc is simply a multiple of J ,

JSc = αJ. (5.6.5)

3In addition, the Lie algebra sp(8,R) is useful for the treatment of errors. See Section 9.4.
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Let b0 be the polynomial associated with Sc by a relation of the form (5.1). Set α = 1 so
that Sc = I, in which case b0 is given by the relation

b0 = (1/2)(z2
1 + z2

2) = (1/2)(q2 + p2). (5.6.6)

Let B0 denote the associated matrix of the form JSc. Then, according to (6.5), B0 is given
by the relation

B0 = JSc = JI = J =

(
0 1
−1 0

)
= iσ2. (5.6.7)

[Here, and in (6.13) and (6.14), we have also referenced a Pauli matrix σα. See Exercise
3.7.31. This referencing will be useful later.] We observe that Exercise 3.7.23 shows that
u(1) is one dimensional. The fact that in the 2 × 2 case we have found only one linearly
independent matrix of the form JSc is consistent with this observation.

Next study matrices Sa that anticommute with J . Requiring that J anticommute with
the S of (6.1) gives only the restriction

α = −γ. (5.6.8)

Consequently, Sa is of the general form

Sa = γ

(
−1 0
0 1

)
+ β

(
0 1
1 0

)
, (5.6.9)

and JSa is of the general form

JSa = γ

(
0 1
1 0

)
+ β

(
1 0
0 −1

)
. (5.6.10)

Suppose we set γ = 1 and β = 0 in (6.9). Let f be the polynomial corresponding to this
choice for Sa. It is given by the relation

f = (1/2)(−z2
1 + z2

2) = (1/2)(−q2 + p2). (5.6.11)

Alternatively, suppose we set γ = 0 and β = 1 in (6.9). Let g be the polynomial correspond-
ing to this choice for Sa. It is given by the relation

g = z1z2 = qp. (5.6.12)

[Again see (5.1).] Let F and G be the matrices associated with f and g. According to (6.10),
F and G are given by the relations

F =

(
0 1
1 0

)
= σ1, (5.6.13)

G =

(
1 0
0 −1

)
= σ3. (5.6.14)

It is readily verified that the polynomials b0, f , and g obey the Poisson bracket rules

[b0, f ] = 2g, (5.6.15)



492 5. PRELIMINARY LIE CONCEPTS AND RELATED DELIGHTS

[b0, g] = −2f, (5.6.16)

[f, g] = −2b0. (5.6.17)

Correspondingly, the matrices B0, F , and G obey the analogous commutation rules,

{B0, F} = 2G, (5.6.18)

{B0, G} = −2F, (5.6.19)

{F,G} = −2B0. (5.6.20)

This in one version of the commutation rules for sp(2,R). All others can be obtained
by making the transformations (3.7.56) with a real invertible matrix T . Note that all the
matrices B0, F , and G are of the form JS with S real and symmetric. They therefore belong
to sp(2,R) . Also, B0 is real anti-Hermitian/antisymmetric, and therefore generates elements
in SO(2,R) upon exponentiation. By contrast, F and G are real Hermitian/symmetric and
generate noncompact subgroups upon exponentiation.

Exercises

5.6.1. Verify that the requirement that J commute with S does indeed give the restrictions
(6.3).

5.6.2. Verify that the requirement that J anticommute with S gives the restriction (6.8).

5.6.3. Verify that b0, f , and g are associated with B0, F , and G by relations of the form
(5.3).

5.6.4. Verify the Lie algebraic relations (6.15) through (6.20).

5.6.5. Let g be the 2× 2 matrix

g =

(
1 0
0 −1

)
. (5.6.21)

Let U(1, 1) be the set of all complex 2× 2 matrices that satisfy the relation

U †gU = g. (5.6.22)

Show that U(1, 1) is a group. Let SU(1, 1) be the subset of matrices in U(1, 1) that have unit
determinant. Show that SU(1, 1) is a group. Find the corresponding Lie algebras u(1, 1)
and su(1, 1). Show that su(1, 1) and sp(2) are equivalent over the complex field.

5.6.6. Let g be the 3× 3 matrix

g =

 1 0 0
0 1 0
0 0 −1

 . (5.6.23)
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Let O(2, 1) be the set of all real 3× 3 matrices that satisfy the relation

OTgO = g. (5.6.24)

Show that O(2, 1) is a group. Let SO(2, 1) be the subset of matrices in O(2, 1) that have unit
determinant. Show that SO(2, 1) is a group. Find the corresponding Lie algebra so(2, 1).
Show that so(2, 1) and sp(2) are equivalent over the complex field.

5.6.7. This exercise studies polar decomposition for two interesting symplectic matrices,
call them L and M , defined by the equations

L =

(
1 1
0 1

)
, (5.6.25)

M = −L =

(
−1 −1
0 −1

)
. (5.6.26)

Verify that both L and M are indeed symplectic. The matrix M is interesting because we
know from Exercise 3.7.12 that it cannot be written in single exponential form. By contrast,
verify that L can be written in the form

L = exp(JS) (5.6.27)

with

JS =

(
0 1
0 0

)
(5.6.28)

where S is the symmetric matrix

S =

(
0 0
0 1

)
. (5.6.29)

Let us first work on finding the polar decomposition for L. That is, according to Sub-
section 3.8.2, we wish to write L in the form

L = PO. (5.6.30)

Verify that from the properties of P and O it follows that

LLT = POOTP T = P 2. (5.6.31)

Show that the matrix (LLT ) is real positive-definite symmetric since L is real symplectic.
Next show that (LLT ) has a unique real positive-definite symmetric square root. Thus, P
is determined by the equation

P = (LLT )1/2. (5.6.32)

Show for the problem at hand that

LLT =

(
2 1
1 1

)
(5.6.33)
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and P is given by the relation

P =
1√
5

(
3 1
1 2

)
. (5.6.34)

Observe that P is symplectic and symmetric as desired. Moreover, let us check that P
as given by (6.34) is indeed positive definite. Let v be a two-component real vector given by

v = {v1, v2}. (5.6.35)

Verify that

(v, Pv) = (1/5)(3v2
1 + 2v1v2 + 2v2

2). (5.6.36)

The discriminant D of a binary quadratic form

av2
1 + bv1v2 + cv2

2 (5.6.37)

is defined by the relation

D = 4ac− b2. (5.6.38)

From the theory of binary quadratic forms it is known that such a form is positive definite
if D > 0. Verify that for the form (6.36)

D = (1/25)(24− 4) > 0, (5.6.39)

and therefore P is positive definite.

Now that P is known, O is given by (4.2.10). Verify that

O = P−1L = −JP TJL = −JPJL =
1√
5

(
2 1
−1 2

)
. (5.6.40)

Here we have used the fact that P is symplectic to compute its inverse. Verify that O
is symplectic and orthogonal as desired. Finally, (6.30) holds because of the construction
(6.40).

Let us now turn our attention to finding the polar decomposition for M , which we seek
to write as

M = P ′O′. (5.6.41)

Show that

P ′ = P (5.6.42)

and

O′ = −O. (5.6.43)

The last items we might wonder about for L and M are the matrices Sa and Sc and the
associated polynomials fa2 and f c2 . The computation of these items is the task of Exercise
7.6.14.
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5.7 Basis for sp(4,R)
The case of sp(4,R) is somewhat more complicated. We again begin with the u(n) Lie
algebra, in this case u(2). Any matrix v in U(2) can be written in the form

v = eiτ (5.7.1)

where τ is some linear combination (with real coefficients) of the Hermitian matrices σ0, σ1,
σ2, and σ3, which will be specified shortly. Comparison of (7.1) with (3.9.15) gives the
relation

τ = A+ iB. (5.7.2)

It is convenient to select σ0 to be the 2×2 identity matrix, and to require that the remaining
σj be the Pauli matrices,

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.7.3)

(See Exercise 3.7.31.) Note that the Pauli matrices are all Hermitian and, save for σ0, are
traceless. Then successively setting τ = σj, with j = 0, 1, 2, 3, and using (7.2) specifies
four pairs of A,B matrices. Correspondingly, according to (3.9.10), these four pairs of A,B
matrices specify four matrices of the form Sc. Finally, using the correspondence (5.1), these
four Sc matrices specify four second-degree polynomials. Call these polynomials b0, b1, b2,
and b3, respectively. Carrying out the required calculations gives the results

b0 = (1/2)(z2
1 + z2

2 + z2
3 + z2

4) = (1/2)(q2
1 + p2

1 + q2
2 + p2

2),

b1 = z1z2 + z3z4 = q1q2 + p1p2,

b2 = −z1z4 + z2z3 = −q1p2 + q2p1,

b3 = (1/2)(z2
1 − z2

2 + z2
3 − z2

4) = (1/2)(q2
1 + p2

1 − q2
2 − p2

2). (5.7.4)

It is readily verified that the polynomials b0 through b3 obey the Poisson bracket rules

[b0, bj] = 0 , j = 0, 1, 2, 3; (5.7.5)

[b1, b2] = −2b3, (5.7.6)

[b2, b3] = −2b1,

[b3, b1] = −2b2.

These are the rules for the Lie algebra u(2). Observe also that the relations (7.6) are a
variant of the rules for the Lie algebra su(2). That is, the rules (7.6) can be written in the
form

[bj, bk] = −2
∑
`

εjk`b
`, (5.7.7)
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where εjk` is the Levi-Civita tensor.
The reader is probably aware that the treatment of angular momentum in quantum

mechanics, which essentially amounts to a study of the representations of su(2), is facilitated
by the introduction of raising and lowering ladder operators J± as well as the diagonal
operator Jz. For our purposes it is convenient to employ the analogous polynomials r(±)
and c defined by the relations

r(±) = (i/2)(b1 ± ib2) = (i/2)(q1 ± ip1)(q2 ∓ ip2), (5.7.8)

c = (−i/
√

2)b3 = (−i/
√

8)(q2
1 + p2

1 − q2
2 − p2

2). (5.7.9)

They obey the Poisson bracket rules

[c, r(±)] = ±(
√

2)r(±), (5.7.10)

[r(+), r(−)] = (
√

2)c. (5.7.11)

We note that these rules can also be written in the form

: c : r(±) = ±(
√

2)r(±), (5.7.12)

: r(±) : c = ∓(
√

2)r(±). (5.7.13)

: r(+) : r(−) = (
√

2)c, (5.7.14)

We now turn to the problem of determining the matrices Sa that anticommute with J .
As described earlier, the most general real symmetric S can be written in the form (3.9.1)
subject to the conditions (3.9.2). Requiring that Sa anticommute with J gives the further
restrictions

BT = B, (5.7.15)

C = −A. (5.7.16)

Consequently, the most general Sa is of the form

Sa =

(
A B
B −A

)
, (5.7.17)

with both A and B real and symmetric,

AT = A , BT = B. (5.7.18)

In the 4 × 4 case of sp(4), both A and B are 2 × 2. Thus, since they are symmetric, they
can be written in the form

A = a

(
1 0
0 1

)
+ b

(
1 0
0 −1

)
+ c

(
0 1
1 0

)
, (5.7.19)

B = d

(
1 0
0 1

)
+ e

(
1 0
0 −1

)
+ f

(
0 1
1 0

)
, (5.7.20)
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where the coefficients a through f are abitrary. It follows that in the 4 × 4 case the vec-
tor space spanned by matrices of the form JSa is six dimensional. Since the Lie algebra
generated by matrices of the form JSc is four dimensional as has already been seen, the di-
mension of the complete Lie algebra generated by both the matrices JSc and JSa is 4+6=10
dimensional, in accord with (3.7.35) for n = 4.

The last step is to make a suitable choice of six second-degree polynomials corresponding
to six different choices for the matrices Sa. We have found it convenient to first introduce 3
complex polynomials h±, h0 by the rules

h+ = −(1/2)(q1 + ip1)2, (5.7.21)

h0 = −(1/
√

2)(q1 + ip1)(q2 + ip2), (5.7.22)

h− = (1/2)(q2 + ip2)2. (5.7.23)

Under the action of r(±) and c they are transformed according to the rules

: c : h± = ±(
√

2)h±, (5.7.24)

: c : h0 = 0, (5.7.25)

: r(+) : h− = (
√

2)h0, (5.7.26)

: r(+) : h0 = −(
√

2)h+. (5.7.27)

Note that these rules are analogous to the relations (7.12) through (7.14). Consequently,
we may view the 3 objects h± and h0 as the components of a “spin” 1 (vector) object in a
spherical basis. [Strictly speaking, we should invent a special terminology for this and related
situations. Perhaps we should talk about unitary spin 1 to emphasize the fact that the spin
we are referring to is with respect to an SU(2) group, and is not an angular momentum
spin related to some rotation group.] Finally, under the action of b0, they are transformed
according to the rules

: b0 : h± = 2ih±, (5.7.28)

: b0 : h0 = 2ih0. (5.7.29)

We now form 6 real polynomials f j and gj by taking suitable linear combinations of real
and imaginary parts of h± and h0,

f 3 = −
√

2 Re (h0) = q1q2 − p1p2, (5.7.30)

f 1 = −(1/2)[b2, f 3] = (1/2)(p2
1 − q2

1 − p2
2 + q2

2),

f 2 = −(1/2)[b3, f 1] = −q1p1 − q2p2,

g3 = −
√

2 Im (h0) = q1p2 + q2p1, (5.7.31)

g1 = −(1/2)[b2, g3] = −q1p1 + q2p2,

g2 = −(1/2)[b3, g1] = (1/2)(−p2
1 + q2

1 − p2
2 + q2

2).

The f ’s and g’s have been selected in such a way that they obey the Lie algebraic rules

[bj, fk] = −2
∑
`

εjk`f
`, (5.7.32)
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[bj, gk] = −2
∑
`

εjk`g
`. (5.7.33)

That is, they behave like the Cartesian components of spin 1 objects under the action of
su(2). Under the action of b0, the f ’s and g’s are transformed into each other,

[b0, f j] = −2gj, (5.7.34)

[b0, gj] = 2f j.

Finally, the Poisson brackets of the f ’s and g’s with each other are given by the relations

[f j, fk] = 2
∑
`

εjk`b
`, (5.7.35)

[gj, gk] = 2
∑
`

εjk`b
`, (5.7.36)

[f j, gk] = 2δjkb
0. (5.7.37)

Note that according to the relations (7.32) through (7.34), the f ’s and g’s are transformed
among each other under the action of u(2); and the right sides of (7.35) through (7.37) are
elements of u(2). This result is in accord with Exercise (3.9.1).

When taken all together, the rules (7.5) through (7.7) and (7.32) through (7.37) specify
the Lie algebra sp(4).

Exercises

5.7.1. Carry out the calculations that produce the results (7.4).

5.7.2. Verify the Poisson bracket relations (7.5), (7.6), and (7.7). Show that the Pauli
matrices satisfy the analogous commutation rules

{iσ0, iσj} = 0, (5.7.38)

{iσj, iσk} = −2
∑
`

εjk`(iσ
`) or {σj, σk} = 2i

∑
`

εjk`σ
` ⇔ {σ1, σ2} = 2iσ3, etc. (5.7.39)

5.7.3. Verify that Sa is of the form (7.10) subject to the conditions (7.11).

5.7.4. Show that the f ’s and g’s given by (7.30) and (7.31) do indeed correspond to matrices
of the form Sa, and find these matrices.

5.7.5. Verify the Poisson bracket rules (7.32) through (7.37).

5.7.6. Consider the complex conjugates of the polynomials h± and h0. Show that they are
also transformed among each other as a spin 1 object under the action of u(2). Thus, as
already evidenced by the existence of the f j and gj, there are two spin 1 objects in sp(4)
corresponding to the 6 independent matrices of the form JSa.
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5.7.7. Review Exercise 7.2 above. The purpose of this exercise is to further explore prop-
erties of the Pauli matrices. Show that they obey the multiplication rules

σjσk = δjkσ
0 + i

∑
`

εjk`σ
` for j, k, ` = 1, 2, 3⇔ (σj)2 = I and σ1σ2 = iσ3, etc. (5.7.40)

Show, as a special case of (7.40), that they obey the anticommutation rules

{σj, σk}+ = σjσk + σkσj = 2δjkσ
0 ; j, k = 1, 2, 3. (5.7.41)

In particular, they anticommute (σjσk = −σkσj) when j 6= k.
Show that the Pauli matrices σj for j = 1, 2, 3 span the vector space of 2 × 2 traceless

Hermitian matrices, and obey the relations

tr(σjσk) = 2δjk ; j, k = 1, 2, 3. (5.7.42)

Show that there are the additional trace relations

tr(σj{σk, σ`}+) = 0, (5.7.43)

tr(σj{σk, σ`}) = 4iεjk` = −4i(Lj)k`, (5.7.44)

tr(σjσkσ`) = 2iεjk` = −2i(Lj)k`. (5.7.45)

Recall (3.7.182).
Let a be a three-component vector with entries (a1, a2, a3). Introduce the notation

a · σ =
3∑
j=1

ajσ
j. (5.7.46)

Verify that

a · σ =

(
a3 a1 − ia2

a1 + ia2 −a3

)
. (5.7.47)

Verify that

det(a · σ) = −a · a. (5.7.48)

Show that there are the multiplication, commutation, and anticommutation relations

(a · σ)(b · σ) = (a · b)σ0 + i(a× b) · σ, (5.7.49)

{(a · σ), (b · σ)} = 2i(a× b) · σ, (5.7.50)

{(a · σ), (b · σ)}+ = 2(a · b)σ0. (5.7.51)

Show that the Pauli matrices and σ0 span the vector space of 2× 2 Hermitian matrices,
and obey the relations

tr(σjσk) = 2δjk ; j, k = 0, 1, 2, 3. (5.7.52)
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5.7.8. The relation (5.3) associates a matrix JS with every quadratic polynomial. Find
the matrices Bi (for i = 0, 1, 2, 3) associated with the polynomials bi. Find the matrices F j

and Gj (for j = 1, 2, 3) associated with the polynomials f j and gj. Use (5.21) if you wish.
The Bi, F j, and Gj provide a basis for the 4 × 4 matrix representation of sp(4). Find their
commutation rules.
Answer:

B0 = J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , B1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , (5.7.53)

B2 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , B3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 ,

F 1 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , F 2 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

F 3 =


0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

 , G1 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,

G2 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 , G3 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 .

Note that these generators/matrices are given for the case that J has the form (3.1.1).
In the case that J ′ as given by (3.2.10) is employed, one may find the related generators by
means of the permutation matrix P given by (3.2.18).

5.7.9. Consider the matrices iσj that obey the su(2) commutation rules (7.39). Also, review
Exercise 3.7.36. Form the associated hatted representation given by (3.7.218). Verify that
this representation is equivalent to the original representation using the matrix

E = iσ2 = J. (5.7.54)

Form the associated checked representation given by (3.7.219). Show that in this case the
result is the same as using the hatting operation (3.7.218). Consider the matrices B1, B2, B3

given by (7.47). Verify that, as expected, they also provide a representation of su(2). Show
that these matrices are unaffected by either of the hatting or checking operations (3.7.218)
and (3.7.219).
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5.7.10. Review Exercise 3.7.36. Consider the representation of sp(4,R) provided by the ma-
trices (7.47). Since they are real, they are unaffected by the checking’ operation (3.7.219).
Find the hatted representation given by (3.7.218). Verify that, as expected, this represen-
tation is equivalent to the original representation using

E = J. (5.7.55)

5.7.11. Review Exercise 4.3.19. Let z′ denote the collection of phase-space variables with
the ordering

z′ = (q1, p1, q2, p2). (5.7.56)

The purpose of this exercise is to find a relation between the polynomials bj and the matrices
Cj. Show that there is the relation

: bj : z′c = −
∑
d

Cj
cdz
′
d. (5.7.57)

5.7.12. Consider the linear transformation on 4-dimensional phase space given by the rules

q̄1 = q2, (5.7.58)

q̄2 = q1, (5.7.59)

p̄1 = p2, (5.7.60)

p̄2 = p1. (5.7.61)

Verify that it is described by the matrix

R =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (5.7.62)

Evidently R interchanges the q1, p1 and q2, p2 planes. Verify that this transformation is
symplectic and also that R is orthogonal. Thus, R is in the U(2) subgroup of Sp(4,R) and
must be expressible in the form

R = exp(JSc). (5.7.63)

Your task is to find Sc. Verify that R can be written in the form

R = M(v) (5.7.64)

as described in Section 3.9 and show that

v = σ1. (5.7.65)

Using (3.7.159), show that σ1 satisfies the relation

σ1 = exp[(iπ/2)(σ1 − σ0)]. (5.7.66)

Use this result to find Sc.
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5.8 Basis for sp(6,R)
The case of sp(6,R) is even more complicated, yet the procedure will still be the same. Again
we will begin with the unitary Lie algebra, in this case u(3), corresponding to matrices of
the form JSc. Then we will select a basis for matrices of the form JSa (or, equivalently, a
basis for the corresponding second degree polynomials) in such a way that these matrices
(polynomials) have convenient transformation properties under the action of u(3) or su(3).
This second step will require some discussion of representations of su(3). Fortunately for
us su(3) has been well studied, initially by mathematicians, and subsequently by physicists
because of its applications to Elementary Particle and Nuclear Physics and the Three-Body
problem.

5.8.1 U(3) Preliminaries

Any matrix in U(3) can be written in the form (7.1) where τ is some linear combination
(with real coefficients) of 32 = 9 Hermitian matrices λ0, λ1, · · ·λ8 that will be listed below.
Once these matrices are specified, use of (7.2) in turn specifies 9 pairs of A,B matrices,
which in turn according to (3.9.10) specifies 9 matrices of the form Sc. Finally, using the
correspondence (5.1), these 9 Sc matrices specify 9 second-degree polynomials.

We select λ0 to be the 3 × 3 identity matrix, and require that the remaining λj be the
Gell-Mann (1929-2019) matrices,

λ0 =

 1 0 0
0 1 0
0 0 1

 , λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , (5.8.1)

λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

Note that all the λ matrices are Hermitian and the λj (for j > 0) are traceless. They satisfy
the commutation rules

{iλ0, iλj} = 0; (5.8.2)

{iλj, iλk} = −2
∑
`

fjk`(iλ
`) for j, k, ` 6= 0. (5.8.3)

Taken together, the rules (8.2) and (8.3) are the commutation rules for u(3). The rules
(8.3), for which j, k, ` = 1, 2, · · · 8, are the commutation rules for su(3).4 The coefficients
fjk` (up to a multiplicative constant) are the structure constants of su(3). They are real and

4We remark that quantum physicists prefer, when possible, to work with Hermitian matrices because in
Quantum Mechanics observables are associated with Hermitian operators. (See Exercise 3.7.43.) Therefore
judicious factors of i are employed in definitions like (7.3) and (8.1) to achieve this end. In so doing,
mathematically extraneous factors of i appear elsewhere. However, in writing (7.38), (7.39), (8.2), and (8.3),
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antisymmetric under the interchange of any two (adjacent) indices. Thus most of them are
zero. See Exercise 8.2. The table below lists some of them. All the rest are zero, or can be
obtained from those listed by permutation of indices and use of the antisymmetry property.

Table 5.8.1: Structure Constants of su(3).

jk` fjk` jk` fjk` jk` fjk`
123 1 246 1/2 367 −1/2

147 1/2 257 1/2 458
√

3/2

156 −1/2 345 1/2 678
√

3/2

Before going on, we remark that the Gell-Mann matrices also satisfy the anticommutation
rules

{λj, λk}+ = λjλk + λkλj = (4/3)δjkλ
0 + 2

∑
`

djk`λ
`. (5.8.4)

Here the coefficients djk`, called the symmetric coupling coefficients, are symmetric under
the interchange of any two indices. See Exercise 8.4. Table 8.2 below lists some of them.
All the rest are zero, or can be gotten from those listed by permutation of indices and use
of the symmetry property.

Table 5.8.2: Symmetric Coupling Coefficients of su(3).

jk` djk` jk` djk` jk` djk` jk` djk`
118 1/

√
3 247 −1/2 355 1/2 558 −

√
3/6

146 1/2 256 1/2 366 −1/2 668 −
√

3/6

157 1/2 338 1/
√

3 377 −1/2 778 −
√

3/6

228 1/
√

3 344 1/2 448 −
√

3/6 888 −1/
√

3

5.8.2 Polynomials for u(3)

Now successively set τ = λj with j = 0, 1, · · · 8, and compute the corresponding second-
degree polynomials b0, b1, · · · b8. Doing so gives the results

b0 = (1/2)(q2
1 + p2

1 + q2
2 + p2

2 + q2
3 + p2

3), (5.8.5)

b1 = q1q2 + p1p2,

b2 = −q1p2 + q2p1,

we have compensated for this mischief by explicitly displaying i factors in the commutation rules. From a
Lie algebraic perspective, the natural basis for any su(n) Lie algebra consists of anti-Hermitian matrices.
Thus, for a mathematician, the natural basis for su(3) consists of the matrices iλj with j = 1, 2 · · · 8.
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b3 = (1/2)(q2
1 + p2

1 − q2
2 − p2

2),

b4 = q1q3 + p1p3,

b5 = −q1p3 + q3p1,

b6 = q2q3 + p2p3,

b7 = −q2p3 + q3p2,

b8 = (1/
√

12)(q2
1 + p2

1 + q2
2 + p2

2 − 2q2
3 − 2p2

3).

It is readily verified that the polynomials b0 through b8 obey the Poisson bracket rules

[b0, bj] = 0 for j = 0, 1, · · · 8; (5.8.6)

[bj, bk] = −2
∑
`

fjk`b
` for j, k, ` = 1, · · · 8. (5.8.7)

Taken together, these are the rules for the Lie algebra u(3). By themselves, the relations
(8.7) are the rules for the Lie algebra su(3).

5.8.3 Plan for the Remaining Polynomials

We next turn to the problem of finding the second-degree polynomials corresponding to the
matrices JSa. As was the case for sp(4), the most general Sa is of the form (7.17) with the
matrices A,B subject to the symmetry conditions (7.18). In the 6 × 6 case of sp(6), both
A and B are 3 × 3. Since there are 6 linearly independent 3 × 3 symmetric matrices, the
space spanned by matrices of the form JSa is 2 × 6 = 12 dimensional. This is as it should
be since 9 + 12 = 21, the dimension of sp(6). What we wish to do is select 12 second-degree
polynomials corresponding to the matrices JSa in such a way that these polynomials have
convenient transformation properties under su(3). To do so will require some discussion of
what is called the Cartan basis for su(3) and of the representations of su(3).

5.8.4 Cartan Basis for su(3)

As already mentioned in the previous section, a study of the representations of su(2) is
facilitated by the introduction of raising and lowering ladder operators J± as well as the
diagonal operator Jz. As discovered by Killing and Cartan, the same is true for su(3) and
all simple Lie algebras.5 In the case of su(3) there are 6 ladder elements that play roles
analogous to J±; and there are 2 commuting elements that play roles analogous to Jz [for
this reason su(3) is said to be of rank 2].

Abstractly speaking, a Lie algebra is any set of elements with the properties (3.7.43)
through (3.7.45) and (3.7.48) and (3.7.49). For many purposes (including illustrative pur-
poses) it is convenient to work with concrete matrix or differential operator representations
of Lie algebras. In the matrix case, the Lie algebra consists of linear operators acting on a
(usually finite-dimensional) vector space, and the Lie product is matrix commutation. In

5Recall that a Lie algebra is called simple if it has no ideals. See Section 8.9. For the use of ladder
operators in the case of the symplectic Lie algebras, see Chapter 27.
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the differential operator case, the Lie algebra consists of linear differential operators acting
on a function space, and the Lie product is differential operator commutation. [As indicated,
both these kinds of realizations (representations) of Lie algebras and their associated Lie
groups are linear. There are also nonlinear realizations of groups as illustrated, for example,
in Section 5.11.]

In the case of su(3), as might be imagined, the smallest matrix representation is realized
in terms of 3× 3 matrices. For our purposes it is again convenient to employ the Gell-Mann
matrices. [However, just as in the case of su(2) for which the smallest matrix representation
is realized in terms of the 2 × 2 Pauli matrices but there are also representations in terms
of larger (2j + 1)× (2j + 1) matrices, so too there are also representations of su(3) in terms
of larger matrices.] We will therefore begin by illustrating for su(3) how the 2 commuting
elements and 6 ladder elements are set up in the 3× 3 case.

Call the commuting elements C1 and C2. In the 3 × 3 case they are defined by the
relations

C1 = (1/
√

2)λ3 , C2 = (1/
√

2)λ8. (5.8.8)

It is easily checked that they do indeed commute,

{C1, C2} = 0. (5.8.9)

The 6 ladder elements are conveniently labelled by 3 two-component vectors and their nega-
tives, collectively called root vectors. Let e1 and e2 be orthogonal unit vectors. Define three
vectors α, β, γ by the relations

α = (
√

2)e1, (5.8.10)

β = (1/
√

2)e1 + (
√

6/2)e2,

γ = −(1/
√

2)e1 + (
√

6/2)e2.

Figure 8.1 shows these vectors and their negatives in what is called a root diagram. (Note
that all the root vectors have length

√
2, and the angle between any two successive root

vectors as one goes around the root diagram is 60 degrees.) We denote the ladder elements
by R(µ) where µ is one of the root vectors, i.e. one of the vectors (8.10) or their negatives.
The ladder elements are defined by the relations

R(±α) = (−1/2)(λ1 ± iλ2), (5.8.11)

R(±β) = (−1/2)(λ4 ± iλ5),

R(±γ) = (−1/2)(λ6 ± iλ7).

The choice of elements given by the relations (8.8) and (8.11) is called the Cartan basis for
su(3). The commuting elements Cj are referred to as the Cartan subalgebra, and the rank of
a simple Lie algebra is the dimension of its Cartan subalgebra.6 Inspection of (8.8), (8.11),
and the Gell-Mann matrices (8.1) reveals that all the Cj and R(µ) are real matrices. This is
a general feature of the Cartan basis for simple Lie algebras. See, for example, Chapter 27

6To be true to history, the Cartan subalgebra could better be called the Killing subalgebra since it was
he who first recognized and employed it. We also remark that Killing discovered Lie algebras independently
of Lie.



506 5. PRELIMINARY LIE CONCEPTS AND RELATED DELIGHTS

a

3±2 3±/22 3±/22 3±2

`a

`

_ _

3±/26

Figure 5.8.1: Root diagram showing the root vectors for su(3).

for the case of sp(2n,R). We also note that matrices of the form exp(iθ1C
1 + iθ2C

2) produce
a torus, indeed a 2-torus, in SU(3). See (8.1), (8.5), and Section 3.9. Moreover, this torus
has largest dimension for any torus in SU(3). Thus, exponentiating the Cartan subalgebra
produces a maximal torus.

We remark that in the Lie algebraic mathematics literature it is customary to denote the
elements of the Cartan subalgebra by the symbols Hj rather than our Cj, and the ladder
elements by E(µ) rather than our R(µ). We have departed from this common notation
because of our desire to generally reserve the symbol H for Hamiltonians and to employ the
symbol E for other purposes.

The virtue of the Cartan basis is that the commutation rules take a particularly illumi-
nating form. The commutator of Cj with R(µ) is

{Cj, R(µ)} = (ej · µ)R(µ). (5.8.12)

The Cj thus serve to establish the coordinate system for the root vectors.7 The commutators
between pairs of R’s, R(µ) and R(ν), are of two types. If the root vectors µ and ν are
equal and opposite, the commutator is given by the relation

{R(µ), R(−µ)} =
∑
j

(ej · µ)Cj. (5.8.13)

If the sum of µ and ν is again a root vector, the commutator takes the form

{R(µ), R(ν)} = N(µ,ν)R(µ+ ν). (5.8.14)

All other commutators vanish. Here N(µ, ν) is a numerical factor equal to ±1. The positive
N ’s are N(α, −β), N(γ, α), N(−β, γ), N(β, −α), N(−α, −γ), and N(-γ, β).

7Note that 8.12 can also be written in the form (ad Cj)R(µ) = (ej · µ)R(µ). Thus, the components of
the root vectors are the eigenvalues of the linear operators (ad Cj).
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5.8.5 Representations of su(3): Cartan’s Approach

Suppose the Cj and R(µ) are any set of matrices obeying the commutation rules (8.9) and
(8.12) through (8.14). Suppose further that a scalar product can be set up in the underlying
vector space in such a way that the Cj are Hermitian. See Section 7.3. Let |w〉 = |w1w2〉
denote an eigenvector of the Cj with the property

Cj|w1w2〉 = wj|w1w2〉 or Cj|w〉 = (ej ·w)|w〉. (5.8.15)

Since the Cj are Hermitian, the wj are real. It is convenient, as shown, to treat them
together as the components of a single labeling vector denoted as w and called a weight.
Consider the vector R(µ)|w〉. From the commutation rules (8.12) we have the relation

CjR(µ)|w〉 = R(µ)Cj|w〉+ (ej · µ)R(µ)|w〉
= R(µ)wj|w〉+ (ej · µ)R(µ)|w〉
= [ej · (w + µ)]R(µ)|w〉. (5.8.16)

It follows that if R(µ)|w〉 is different from zero, then it is an eigenvector of the Cj with
weight w + µ. Consequently, from a single weight we can produce a whole set of weights.
The set of weight vectors can be ordered by means of the following definitions:

1. A vector is positive if its first nonvanishing component is positive.

2. A vector w is higher than the vector w′ if w −w′ is positive.

We can now state the fundamental theorems of Cartan concerning representations:

1. In any irreducible representation, there is an eigenvector with highest weight, and this
eigenvector is unique, i.e., non-degenerate.

2. Two irreducible representations are equivalent if they have the same highest weight.

3. Every highest weightwh is a linear combination, with non-negative integer coefficients,
of what are called fundamental weights. For a rank ` Lie algebra there are ` such
fundamental weights. Thus, for a rank ` Lie algebra, each irreducible representation
is (uniquely) specified by an `-tuple of non-negative integers.

For example in the case of su(3), which is of rank 2, the two fundamental weights φ1

and φ2 are given by the relations

φ1 = (1/
√

2)e1 + (1/
√

6)e2, (5.8.17)

φ2 = (1/
√

2)e1 − (1/
√

6)e2. (5.8.18)

These fundamental weights are shown in Figure 8.2 along with the su(3) root vectors.
Consequently, for su(3), every highest weight wh is of the form

wh = mφ1 + nφ2 = m[(1/
√

2)e1 + (1/
√

6)e2] + n[(1/
√

2)e1 − (1/
√

6)e2], (5.8.19)

where m and n are arbitrary non-negative integers.
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Figure 5.8.2: Fundamental weights φ1 and φ2 for su(3). The root vectors are also shown.

Taken together, Cartan’s theorems show that an irreducible representation of su(3) is
completely characterized by the two non-negative integers m and n. We denote this repre-
sentation by Γ(m,n). It can be shown that the conjugate representation is given by Γ(n,m).
That is,

Γ(m,n) = Γ(n,m). (5.8.20)

For discussion and examples see Exercises 3.7.36, 8.29, and 8.30. We also note for future
use that the dimension of the representation Γ(m,n) is given by the relation

dim Γ(m,n) = (m+ 1)(n+ 1)(m+ n+ 2)/2. (5.8.21)

For quick reference, the dimensions of the first few representations are listed in Table 8.3
below. Note that, as expected, Γ(m,n) and Γ(n,m) have the same dimension. Finally, for
simplicity and where no ambiguity is involved, we sometimes refer to a representation by its
dimension. That is, in view of (8.20) and (8.21), we use the shorthand notation 1 = Γ(0, 0),
3 = Γ(1, 0), 3̄ = Γ(0, 1), 6 = Γ(2, 0), 6̄ = Γ(0, 2), 8 = Γ(1, 1), etc. Note however that Γ(2, 1)
and Γ(4, 0) as well as their conjugates all have dimension 15.
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Table 5.8.3: Dimensions of Representations of su(3).

m n dim Γ(m,n) m n dim Γ(m,n)
0 0 1 4 0 15
1 0 3 0 4 15
0 1 3 3 1 24
2 0 6 1 3 24
0 2 6 2 2 27
1 1 8 5 0 21
3 0 10 0 5 21
0 3 10 4 1 35
2 1 15 1 4 35
1 2 15 3 2 42

2 3 42

5.8.6 Weight Diagrams for the First Few su(3) Representations

We begin this subsection with the preparatory remark that the overall normalization of the
root vectors µ (and, correspondingly, that of the related fundamental weights) is arbitrary.
We have chosen a normalization that facilitates comparison of the root vectors for su(3),
sp(2), sp(4), and sp(6). See Chapter 27. For the normalization we have adopted, the su(3)
root vectors obey the relation ∑

µ

(ei · µ)(µ · ej) = 6δij. (5.8.22)

To continue our discussion, consider the representation Γ(0, 0). According to (8.19)
its highest weight is the vector zero, and according to (8.21) this representation is one
dimensional. Thus, Γ(0, 0) has only one weight vector. Figure 8.3 displays this vector in
what is called a weight diagram. Since Γ(0, 0) is one dimensional, and as described earlier,
it is often referred to by its dimension, 1.
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w
2

w
1

Figure 5.8.3: Weight diagram for the representation 1 = Γ(0, 0).

Consider the representation Γ(1, 0). The highest weight wh for this representation is
shown in Figure 8.4. Also shown are all other weights obtained from wh by adding and
subtracting integer multiples of α, β, and γ. We observe that there are 3 different weights.
Correspondingly, in accord with (8.21), Γ(1, 0) is a 3-dimensional representation. It is often
referred to by its dimension, 3.

Next consider the representation Γ(0, 1). Its weights are shown in Figure 8.5. Evidently
this representation is also 3 dimensional. In view of (8.20) and (8.21), it is often referred to
as 3. From (8.19) we find that the highest weights for the representations 3 and 3̄ are given
by the relations

wh(3) = (1/
√

2)e1 + (1/
√

6)e2, (5.8.23)

wh(3) = (1/
√

2)e1 − (1/
√

6)e2. (5.8.24)

Note also that all the weights for 3̄ are related to those for 3 by the operation of reflection
across the w1 axis. This is a general result. The weights for Γ̄(m,n) are related to those
of Γ(m,n) by reflection across the w1 axis. It is a consequence of (8.20) and the fact that
the fundamental weights φ1 and φ2 are interchanged by reflection across the e1 axis. See
(8.17), (8.18), and Figure 8.2.
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w2

w1

wh(3)

2√±1/2√±1/

6√±1/

2/  √±6

Figure 5.8.4: Weight diagram for the representation 3 = Γ(1, 0).

2/  
w2

w1—wh(3)

3±6

23±1/23±1/

63±1/

Figure 5.8.5: Weight diagram for the representation 3 = Γ(0, 1).

Figures 8.6 through 8.8 show the weight diagrams for the representations Γ(2, 0), Γ(0, 2),
and Γ(1, 1). The highest weights in these cases are

wh(6) = (
√

2)e1 + (2/
√

6)e2, (5.8.25)

wh(6) = (
√

2)e1 − (2/
√

6)e2, (5.8.26)

wh(8) = (
√

2)e1 = α. (5.8.27)

According to (8.21) the dimensionality of these representations are 6, 6, and 8, respectively.
Observe that Figures 8.6 and 8.7 for Γ(2, 0) and Γ(0, 2) each contain 6 weights. Corre-
spondingly, since 6 is the dimension of each of these representations, we conclude that the
corresponding eigenvector for each weight w is unique. By contrast, Figure 8.8 for Γ(1, 1)
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only contains 7 weights while we know that the dimension of Γ(1, 1) is 8. It can be shown
that the eigenvectors corresponding to the 6 weight vectors w in the diagram at the hexag-
onal vertices are nondegenerate. However, there are two linearly independent eigenvectors
corresponding to the weight at the origin. That is, an additional label, beyond the weight
itself, is necessary to completely specify these vectors. Note that 6 + 2 = 8, the dimension
of Γ(1, 1).

w2
23 1

4

5

6
w1

wh(6)

63±1/

±32 23±/2 3±/22 3±2

63±/4

2/  3±6

Figure 5.8.6: Weight diagram for the representation 6 = Γ(2, 0).

w2

2

5

46

1 3

w1

wh(6)

3±/2223±/2

3 6±1/

/ 63±4

3±2 3±2

2/  3±6

Figure 5.8.7: Weight diagram for the representation 6 = Γ(0, 2).
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a
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`

_ _

w2

w1

3±/26

3±/22 3±23±/223±2

wh(8)

Figure 5.8.8: Weight diagram for the adjoint representation 8 = Γ(1, 1). The 6 weights at
the hexagonal vertices lie at the tips of the root vectors ±α, ±β, ±γ shown in Figure 8.1.
The highest weight lies at the tip of the vector α. There are two eigenvectors corresponding
to the weight at the origin.

5.8.7 Weight Diagram for the General su(3) Representation

Consider the general representation Γ(m,n). Figure 8.9 shows the general form of the weight
diagram for this representation. It consists of concentric layers that may be constructed as
follows:

1. Find and plot the highest weight wh using (8.19).

2. Plot the pointswh+γ,wh+2γ, · · ·wh+nγ and the pointswh−β,wh−2β, · · ·wh−mβ.

3. Reflect the points obtained in step 2 above across the w2 axis and plot them.

4. Taken together, steps 2 and 3 produce the weights that lie on the left and right
boundaries of the weight diagram. Now we need to fill in the top and bottom bound-
aries. They are the points wh + nγ − α,wh + nγ − 2α, · · ·wh + nγ − mα and
wh −mβ −α,wh −mβ − 2α, · · ·wh −mβ − nα.

5. The weights on the boundary have now been found, and only the weights in the
interior remain to be determined. Next, if the boundary is not triangular, find the
point wh − α. Starting from this point, form the next outermost layer by repeating
steps 2 through 4 with (m,n) replaced by (m− 1, n− 1).

6. Form successive concentric layers following step 5 starting from the points wh −
2α,wh − 3α, etc., until a triangular layer (or the origin) is reached. If a triangu-
lar layer is reached, all successive layers will also be triangles, and the innermost layer
will be either the point at the origin or a triangle that is the same as one of those
shown in Figures 8.4 through 8.7.
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The result of this process is a set of weights that are related under translation in the directions
±α,±β,±γ. It can be shown that all eigenvectors |w〉 corresponding to weights w on a
given layer have the same multiplicity. Those on the boundary have multiplicity 1 (are
nondegenerate). If the boundary is not triangular, the eigenvectors |w〉 corresponding to
weights on the next outermost layer will have multiplicity 2. The multiplicity will continue
to increase by 1 for each consecutive layer until a triangular layer (which may be the origin)
is reached. The vectors |w〉 corresponding to this layer will also have a multiplicity one unit
larger than those of the previous layer. However, all vectors |w〉 corresponding to consecutive
layers inside the triangle will have the same multiplicity as those of the outermost triangle.
That is, the multiplicity remains constant after a triangular layer is reached. For example,
referring to Figure 8.9, the multiplicity of the eigenvectors |w〉 corresponding to the boundary
layer is 1, and the multiplicities for the next two layers in are 2 and 3 respectively. The
multiplicity of the eigenvectors for the first triangular layer is 4, and the multiplicity for the
triangular layer inside it is also 4.

w2

w1

w
h

boundary

1

2

3

4

4

Figure 5.8.9: General form of the weight diagram for the representation Γ(m,n). Shown
here is the case (m,n) = (7, 3). All eigenvectors |w〉 corresponding to weights w on a
given layer have the same multiplicity. Those corresponding to sites on the boundary have
multiplicity 1. Those corresponding to sites on the next two layers have multiplicities 2 and
3, respectively. Those corresponding to sites on the two triangular layers have multiplicity
4.
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5.8.8 The Clebsch-Gordan Series for su(3)

Review of su(2) Results

In the quantum-mechanical treatment of angular momentum, which is essentially an exercise
in the properties of su(2), there is the result that two spin 1/2 entities can be combined to
form entities with spin 0 and spin 1. If we denote the spin j representation of su(2 by the
symbols Γ(j), then we may summarize this result by writing

Γ(1/2)⊗ Γ′(1/2) = Γ(0)⊕ Γ(1). (5.8.28)

Here we have denoted the second spin 1/2 entity on the left side of (8.28) by a prime to
acknowledge that the two spin 1/2 entities my be different. Indeed, the spin 0 combination
[appearing on the right side of (8.28) and called the singlet state] is odd under the inter-
change/permutation of the spin 1/2 entities, and the spin 1 combination (called the triplet
state) is even under the interchange of the spin 1/2 entities. Consequently, if the two spin
1/2 entities are the same, the Γ(0) entry on the right side of (8.28) is empty.

Similarly, two spin 1 entities can be combined to form entities with spins 0, 1, and 2;
and we may summarize this result by writing

Γ(1)⊗ Γ′(1) = Γ(0)⊕ Γ(1)⊕ Γ(2). (5.8.29)

If we view the two spin 1 entities on the left side of (8.29) as being the three-component
vectors u and v then, for the entries on the right side of (8.29), there are the correspondences

Γ(0)↔ u · v, (5.8.30)

Γ(1)↔ u× v, (5.8.31)

Γ(2)↔ (1/2)(uavb + ubva)− (1/3)δab(u · v). (5.8.32)

Note that Γ(1) as given by (8.31) is odd under the interchange of u and v. Consequently
the Γ(1) entry is empty in the case that u = v. By contrast Γ(2) (which is a symmetric
traceless tensor) and Γ(0) are even under the interchange of u and v.

We have given specific instances of the Clebsch-Gordan series for su(2). It can be shown
that for any two spins there is the general Clebsch-Gordan relation

Γ(j)⊗ Γ′(j′) = Γ(j + j′)⊕ Γ(j + j′ − 1)⊕ Γ(j + j′ − 2)⊕ · · · ⊕ Γ(|j − j′|). (5.8.33)

Here all the representations on the right side occur once and only once unless some happen
to be empty in the case of some possible interchange symmetry.

The Case of su(3)

We have briefly reviewed the Clebsch-Gordan series for representations of su(2). There are
similar combination rules for representations of su(3) and, indeed, for all the representations
of all the simple groups.8 The remaining task of this subsection is to review these rules for

8See Chapter 27 for the case of the symplectic group.
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the case of su(3). We begin with some specific cases. For some of the first few representations
of su(3) there are the results

3⊗ 3′ = 3⊕ 6, (5.8.34)

3⊗ 3
′
= 3⊕ 6, (5.8.35)

3⊗ 3 = 1⊕ 8, (5.8.36)

6⊗ 6′ = Γ(2, 0)⊗ Γ′(2, 0) = Γ(0, 2)⊕ Γ(2, 1)⊕ Γ(4, 0), (5.8.37)

6⊗ 6 = 1⊕ 8⊕ 27, (5.8.38)

8⊗ 6 = Γ(1, 1)⊗ Γ(2, 0) = Γ(0, 1)⊕ Γ(2, 0)⊕ Γ(1, 2)⊕ Γ(3, 1), (5.8.39)

8⊗ 8′ = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27. (5.8.40)

In (8.37) and (8.39) the Γ(m,n) notation is used to specify a representation since not all the
representations appearing in (8.37) and (8.39) are uniquely specified by their dimensions.
See Table 8.3. We also remark that if the two factors appearing on the left side of a Clebsch-
Gordan relation are potentially the same, as for example in (8.34), (8.35), (8.37), and (8.40),
then some of the terms appearing on the right side are potentially empty. See, for example,
Exercises 8.21 and 8.23.

Just as is the case for su(2) where (8.33) provides gives an explicit result for combining
any two spins, there is also an explicit formula for the general case of su(3). Use the
shorthand notation (j1, j2) to denote the su(3) representation Γ(j1, j2). The Clebsch-Gordan
series for su(3) in the general case is given by the relation

(j1, j2)⊗ (j′1, j
′
2)′ =

min(j1,j′2)∑
i=0

min(j2,j′1)∑
k=0

(j1 − i, j′1 − k; j2 − k, j′2 − i), (5.8.41)

where the quantity (n, n′;m,m′) is defined by the relation

(n, n′;m,m′) = (n+ n′,m+m′) ⊕
min(n,n′)∑

i=1

(n+ n′ − 2i,m+m′ + i)

⊕
min(m,m′)∑

k=1

(n+ n′ + k,m+m′ − 2k). (5.8.42)

All the sums in the expressions above are direct sums.

5.8.9 Representations of su(3): the Approach of Schur and Weyl

Subsections 8.4 through 8.7 have illustrated how, following Cartan, the representations of
su(3) can be described in terms of ladder operators and weight diagrams. We will employ the
same approach in Chapter 27 for the case of sp(2n). However, we take here the opportunity
to mention an alternate approach due to Schur (1875-1941) and Weyl.

The method of Cartan has the feature that the properties of any given representation
are described without reference to the properties of any other representation. Each repre-
sentation is treated in isolation. By contrast, the approach of Schur and Weyl capitalizes
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on the fact (as illustrated by the Clebsch-Gordan series) that suitable tensor products of
low-dimensional representations contain higher-dimensional representations. In particular
it can be shown for the case of su(3) that by forming suitable tensor products of multiple
copies of 3 = Γ(1, 0) and 3̄ = Γ(0, 1) one obtains a multi-index tensor representation of su(3)
that contains any desired irreducible representation. With this result in hand, the remaining
task is to extract and label from such a representation the desired irreducible representation.
This is done by possibly tracing over some index pairs and by forming linear combinations
over various permutations of other indices with these linear combinations being described by
Young (1873-1940) tableaux. Thus, in the approach of Schur and Weyl, each representation
is labeled by a Young tableau.

5.8.10 Remaining Polynomials

With this brief background on representation theory for su(3), we are prepared to construct
12 second-degree polynomials corresponding to the matrices JSa in such a way that these
polynomials have convenient transformation properties under su(3).

su(3) Decomposition of Homogenous Polynomials

First we state a general result: Let f` be a homogeneous polynomial of degree ` in the
six phase-space variables z1 · · · z6. Then it is easily verified that the quantities : b1 : f`
through :b8: f` are also homogeneous polynomials of degree `. Consequently, the subspace
of homogeneous polynomials of degree ` is sent into itself under the action of su(3). Next,
it can be shown that each f` subspace can itself be decomposed into smaller subspaces that
are each sent into themselves separately under the action of su(3). Indeed, this can be done
in such a way that each smaller subspace forms an irreducible representation of su(3). See
Section 34.2.4. When this is done, the following results are found:

1. Suppose ` is even. Then f` has the direct sum decomposition

f` =
∑

m+n=`

Γ(m,n)⊕
∑

m+n=`−2

Γ(m,n)⊕
∑

m+n=`−4

Γ(m,n)⊕ · · · ⊕ Γ(0, 0). (5.8.43)

Each representation listed in (8.43) occurs once and only once. For example, f0, f2,
and f4 have the decompositions

f0 = Γ(0, 0), (5.8.44)

f2 = Γ(2, 0)⊕ Γ(1, 1)⊕ Γ(0, 2)⊕ Γ(0, 0), (5.8.45)

f4 = Γ(4, 0)⊕Γ(3, 1)⊕Γ(2, 2)⊕Γ(1, 3)⊕Γ(0, 4)⊕Γ(2, 0)⊕Γ(1, 1)⊕Γ(0, 2)⊕Γ(0, 0).
(5.8.46)

2. Suppose ` is odd. Then f` has the direct sum decomposition

f` =
∑

m+n=`

Γ(m,n)⊕
∑

m+n=`−2

Γ(m,n)⊕
∑

m+n=`−4

Γ(m,n)⊕ · · ·

⊕ Γ(1, 0)⊕ Γ(0, 1). (5.8.47)
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Each representation listed in (8.47) occurs once and only once. For example, f1 and
f3 have the decompositions

f1 = Γ(1, 0)⊕ Γ(0, 1), (5.8.48)

f3 = Γ(3, 0)⊕ Γ(2, 1)⊕ Γ(1, 2)⊕ Γ(0, 3)⊕ Γ(1, 0)⊕ Γ(0, 1). (5.8.49)

We will use these results below for the special case of quadratic polynomials. But we remark
that these results are also useful for the construction of Cremona maps and determining the
long-term behavior of particles in storage rings. Again see Section 34.2.4.

Explicit Results for Remaining Quadratic Polynomials

For our present discussion we are interested in the case of quadratic polynomials, the gen-
erators of sp(6). According to the previous paragraph, they have the decomposition (8.45).
It can be shown that the Γ(0, 0) part in (8.45) corresponds to a b0 part as given in (8.5),
and the Γ(1, 1) part corresponds to the b1 through b8 parts given in (8.5). See Exercise
8.19. What remains is the Γ(2, 0)⊕ Γ(0, 2) part. It has dimension 6 + 6 = 12, which is the
dimension of the set of matrices JSa. This circumstance suggests that the second-degree
polynomials corresponding to the matrices JSa might be arranged to transform under the
action of su(3) according to the representation Γ(2, 0)⊕ Γ(0, 2) = 6⊕ 6. This is indeed the
case. As a sanity check on our hypothesis, let us do a dimension count. We know that sp(6)
has dimension 21. Together b0 and the b1 through b8 span a space of dimension 1 + 8 = 9.
Observe that 9 + 6 + 6 = 21, as desired.

Let the symbols cj and r(µ) denote the second-degree polynomials corresponding to the
Cj and R(µ). They are selected and normalized in such a way that their Lie algebra (with
the Poisson bracket as the Lie product) is the same as the Lie algebra of the Cj and R(µ)
(with the commutator as the Lie product). Calculation shows that they are given by the
relations

c1 = −(i/
√

2)b3 = (−i/
√

8)(q2
1 + p2

1 − q2
2 − p2

2), (5.8.50)

c2 = −(i/
√

2)b8 = (−i/
√

24)(q2
1 + p2

1 + q2
2 + p2

2 − 2q2
3 − 2p2

3);

r(±α) = (i/2)(b1 ± ib2) = (i/2)(q1 ± ip1)(q2 ∓ ip2), (5.8.51)

r(±β) = (i/2)(b4 ± ib5) = (i/2)(q1 ± ip1)(q3 ∓ ip3),

r(±γ) = (i/2)(b6 ± ib7) = (i/2)(q2 ± ip2)(q3 ∓ ip3).

Define six weight vectors w1 · · ·w6 for Γ(2, 0) by the rules

w1 = wh(6) , w2 = w1 −α,

w3 = w2 −α , w4 = w3 − γ,

w5 = w4 − γ , w6 = w5 + β. (5.8.52)

See Figures 8.1 and 8.6, and note that the weights shown in Figure 8.6 are numbered in
accord with (8.52). Define six corresponding polynomials h1 · · ·h6 by the relations

h1 = (1/2)(q1 + ip1)2,



5.8. BASIS FOR SP (6,R) 519

h2 = (q1 + ip1)(q2 + ip2),

h3 = (1/2)(q2 + ip2)2,

h4 = (q2 + ip2)(q3 + ip3),

h5 = (1/2)(q3 + ip3)2,

h6 = (q3 + ip3)(q1 + ip1). (5.8.53)

It is easy to check that the hk are all simultaneous eigenvectors of the : cj : with eigenvalues
corresponding to the weights wk,

: cj : hk = (ej ·wk)hk. (5.8.54)

Also, there are ladder relations, corresponding to the relations (8.52), of the form

h2 ∝: r(−α) : h1,

h3 ∝: r(−α) : h2 , h4 ∝: r(−γ) : h3,

h5 ∝: r(−γ) : h4 , h6 ∝: r(+β) : h5. (5.8.55)

Finally, calculation shows that the action of b0 is given by the relation

: b0 : hk = 2ihk. (5.8.56)

We conclude that the six polynomials h1 · · ·h6 transform according to the representation 6
under the action of su(3), and also are transformed among each other under the action of
the full u(3). See Exercise 8.14.

With the hk determined, the construction of a second set of six polynomials corresponding
to the representation 6 is easy. Take the complex conjugate of both sides of the relations
(8.54) and (8.56). Doing so gives the results

: cj : h
k

= (ej ·wk)h
k
, (5.8.57)

: b
0

: h
k

= −2ih
k
. (5.8.58)

However, inspection of (8.5) and (8.50) gives the relations

b
0

= b0 , cj = −cj. (5.8.59)

Consequently, we also have the results

: cj : h
k

= −(ej ·wk)h
k
, (5.8.60)

: b0 : h
k

= −2ih
k
. (5.8.61)

Upon comparing the weight diagrams in Figures 8.6 and 8.7 for the representations 6 and

6, we conclude that the polynomials h
k

transform according to the representation 6.
Our task of finding a suitable set of polynomials corresponding to the matrices JSa

is almost finished. For physical applications, we will want to work with real polynomials
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instead of the complex polynomials hk given by (8.53). This task is easily accomplished.
Define real polynomials fk and gk by writing the relations

hk = fk + igk. (5.8.62)

Doing so gives the results
f 1 = (1/2)(q2

1 − p2
1),

f 2 = q1q2 − p1p2,

f 3 = (1/2)(q2
2 − p2

2),

f 4 = q2q3 − p2p3,

f 5 = (1/2)(q2
3 − p2

3),

f 6 = q3q1 − p3p1;

g1 = q1p1,

g2 = q1p2 + q2p1,

g3 = q2p2,

g4 = q2p3 + q3p2,

g5 = q3p3,

g6 = q3p1 + q1p3. (5.8.63)

Since the hk are transformed among themselves under the action of the full u(3), the Poisson
brackets [bj, hk] can be written in the form

[bj, hk] =
∑
`

ζjk`h
`. (5.8.64)

The results for the cases j = 0, 3, 8 follow from (8.56), (8.54), and (8.50):

[b0, hk] = 2ihk, (5.8.65)

[b3, hk] = i(
√

2)(e1 ·wk)hk,

[b8, hk] = i(
√

2)(e2 ·wk)hk.

Calculation of the other Poisson brackets requires somewhat more work, the results of which
will be presented shortly in tabular form. Suppose the coefficients ζjk` are decomposed into
real and imaginary parts by writing the relations

ζjk` = ξjk` + iηjk`. (5.8.66)

Then equating real and imaginary parts of (8.64), observing that the bj are real, and using
the decomposition (8.62) give the results

[bj, fk] =
∑
`

ξjk`f
` − ηjk`g`, (5.8.67)

[bj, gk] =
∑
`

ηjk`f
` + ξjk`g

`.

The nonzero values of the ξjk` and ηjk` are tabulated below.
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Table 5.8.4: Some Structure Constants of sp(6).

jk` ξjk` ηjk` jk` ξjk` ηjk` jk` ξjk` ηjk`
011 0 2 311 0 2 634 0 1
022 0 2 333 0 −2 643 0 2
033 0 2 344 0 −1 645 0 2
044 0 2 366 0 1 654 0 1
055 0 2 416 0 1 662 0 1
066 0 2 424 0 1 726 −1 0
112 0 1 442 0 1 734 −1 0
121 0 2 456 0 1 743 2 0
123 0 2 461 0 2 745 −2 0
132 0 1 465 0 2 754 1 0
146 0 1 516 −1 0 762 1 0

164 0 1 524 −1 0 811 0 2/
√

3

212 −1 0 542 1 0 822 0 2/
√

3

221 2 0 556 1 0 833 0 2/
√

3

223 −2 0 561 2 0 844 0 −1/
√

3

232 1 0 565 −2 0 855 0 −4/
√

3

246 1 0 626 0 1 866 0 −1/
√

3
264 −1 0

It remains to compute the Poisson brackets of the f ’s and g’s with themselves. First we
observe, as can be easily verified, that the hk are all in involution,

[hj, hk] = 0. (5.8.68)

Next, since the commutator of two matrices of the form JSa is a matrix of the form JSc

(see Exercise 3.9.1), we must have a relation of the form

[hj, h
k
] =

∑
`

τjk`b
`. (5.8.69)

Using the decomposition (8.62) and taking real and imaginary parts of (8.68) give the results

[f j, fk] = [gj, gk], (5.8.70)

[f j, gk] = [fk, gj].

To complete the calculation, decompose τjk` into real and imaginary parts by writing the
relations

τjk` = ρjk` + iσjk`. (5.8.71)

Then taking real and imaginary parts of (8.69) and using (8.70) give the results

[f j, fk] = [gj, gk] = +(1/2)
∑
`

ρjk`b
`, (5.8.72)
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[f j, gk] = −(1/2)
∑
`

σjk`b
`.

Note that by (8.70) and (8.72), ρjk` is antisymmetric in its first two indices, and σjk` is
symmetric,

ρjk` = −ρkj`, (5.8.73)

σjk` = σkj`.

The table below lists the needed values of ρjk` and σjk`. All the rest are zero, or can be
obtained from the symmetry conditions (8.73). Taken together, (8.6), (8.7), (8.67), and
(8.72) specify the Lie algebra sp(6) in all its beauty.

Table 5.8.5: Remaining Structure Constants of sp(6).

jk` ρjk` σjk` jk` ρjk` σjk` jk` ρjk` σjk`
110 0 −4/3 245 2 0 456 0 −2
113 0 −2 266 0 −2 457 2 0

118 0 −2/
√

3 267 2 0 461 0 −2
121 0 −2 330 0 −4/3 462 −2 0
122 2 0 333 0 2 550 0 −4/3

164 0 −2 338 0 −2/
√

3 558 0 4/
√

3
165 2 0 346 0 −2 564 0 −2
220 0 −8/3 347 2 0 565 −2 0

228 0 −4/
√

3 440 0 −8/3 660 0 −8/3
231 0 −2 443 0 2 663 0 2

232 2 0 448 0 2/
√

3 668 0 2/
√

3
244 0 −2

Closing Remarks

We close this section with two remarks. First, we note that the sp(6) polynomials c1, r(±α),
h1, h2, and h3 are the same (up to normalizations) as the sp(4) polynomials c, r(±), h±, and
h0. This correspondence indicates, as expected, that sp(6) contains sp(4) as a subgroup.

The second remark concerns su(3). As mentioned earlier, it can be shown that the
quadratic polynomials b0 through b8, which correspond to the Gell-Mann matrices λ0 through
λ8, transform under the action of su(3) according to the representations 1 = Γ(0, 0) and
8 = Γ(1, 1). See Exercise 8.19.

Now look at the relation (8.3) and compare it with (8.40). The left side of (8.3) may be
viewed as the antisymmetric part of a second-order tensor consisting of ingredients which
each transform according to the representation 8, and the right side of (8.3) is a sum of
entities which also transform according to the representation 8. This result is consistent with
the relation (8.40), which states that the the tensor product of an 8 and an 8 is expected
to contain an 8. Moreover the coefficients fjk`, which are the structure constants for su(3),
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specify which su(3) elements occur in each entry in the antisymmetric part of the second-
order tensor product. Therefore these coefficients may also be viewed as particular instances
of the Clebsch-Gordan coefficients for su(3), namely those associated with the tensor product
of the adjoint representation with itself! Indeed, the structure constants of any Lie algebra
may be viewed as particular instances of the Clebsch-Gordan coefficients for that algebra,
specifically those associated with the tensor product of the adjoint representation with itself.

Next look at (8.4). The left side of (8.4) may be viewed as the symmetric part of a
second-order tensor consisting of ingredients which each transform according to the repre-
sentation 8, and the right side of (8.4) is a sum of entities which transform according to the
representations 1 and 8. This result is also consistent with the relation (8.40), which states
that the the tensor product of an 8 and an 8 is also expected to contain a 1 and a second
8. Thus the coefficients δjk and djk` are also particular instances of the Clebsch-Gordan
coefficients for su(3).

What about the entries 10, 10, and 27 which occur in (8.40) but do not occur in (8.3)
and (8.4) and their composite (8.78)? They do not occur because both factors on the left
sides of (8.3), (8.4), and (8.78) involve the same 8 rather than an 8 and an 8′.

Note that in general the kind of Clebsch-Gordan analysis we have been making only
predicts what representations can possibly occur in a product when each factor in the product
has known transformation properties. For example, consider all entities of the form bibj

where i and j range from 1 to 8. Since each factor belongs to an 8, the product can possibly
contain the representations appearing on the right side of (8.40). But each entity is also a
homogeneous polynomial of degree 4, and therefore can potentially have the su(3) content
given by (8.46). Observe that 10 = Γ(3, 0) and 10 = Γ(0, 3) do not occur in (8.46), but
27 = Γ(2, 2) does.

Exercises

5.8.1. Suppose, for the purposes of this exercise, that λ0 is redefined by the relation

λ0 = (2/3)1/2

 1 0 0
0 1 0
0 0 1

 . (5.8.74)

Show that the matrices λ0 · · ·λ8 span the vector space of all 3×3 Hermitian matrices. Show
that λ0, together with the Gell-Mann matrices, obey the relations

tr(λjλk) = 2δjk; j, k = 0, 1 · · · 8. (5.8.75)

5.8.2. Show that the commutator of two Gell-Mann matrices must be of the general form
(8.3) with the fjk` real. Use (8.3) and (8.75) to derive the relation

fjk` = −(i/4)tr({λj, λk}λ`); j, k, ` = 1, 2, · · · 8. (5.8.76)

Prove from this relation that fjk` is antisymmetric under the interchange of any two (adja-
cent) indices. Verify Table 8.1.
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5.8.3. Show that the anticommutator of two Gell-Mann matrices must be of the general
form (8.4) with the djk` real. Use (8.4) and (8.75) to derive the relation

djk` = (1/4)tr({λj, λk}+λ
`); j, k, ` = 1, 2, · · · 8. (5.8.77)

Prove from this relation that djk` is symmetric under the interchange of any two indices.
Verify Table 8.2.

5.8.4. Show that the Gell-Mann matrices obey the multiplication rules

λjλk = (2/3)δjkλ
0 +

∑
`

(djk` + ifjk`)λ
`; j, k, ` = 1, 2, · · · 8. (5.8.78)

5.8.5. Verify the results (8.5).

5.8.6. Verify the Poisson bracket rules (8.6) and (8.7).

5.8.7. Show that the Cartan-basis matrices given by (8.8) and (8.11) are real and satisfy
the relations

(Cj)† = Cj, (5.8.79)

R(µ)† = R(−µ). (5.8.80)

5.8.8. Verify the Cartan-basis commutation rules (8.9) and (8.12) through (8.14).

5.8.9. Verify that the root vectors given by (8.10) and their negatives satisfy the relation
(8.22).

5.8.10. Verify that the Clebsch-Gordan relations (8.34) through (8.40) are specific cases of
the general Clebsch-Gordan relation given by (8.41) and (8.42).

5.8.11. Look at the Clebsch-Gordan relations (8.34) through (8.40). As a sanity check, the
dimensions of the left and right sides should agree. For example, the dimension (the number
of entities) on the left side of (8.34) is 3 × 3 = 9. And the dimension of the right side of
(8.34) is 3 + 6 = 9. Verify that analogous results hold for (8.35) through (8.40). If you are
algebraically ambitious, verify that analogous results hold in the general case described by
(8.41) and (8.42) using (8.21).

5.8.12. Look at the relations (8.43) through (8.49) for the case of a six-dimensional phase
space. As a sanity check, verify that the dimensions of the left and right sides agree using
(7.3.40) and (8.21).

5.8.13. Review the relations (8.50) and (8.51). Verify the relation

r(−µ) = −r(µ). (5.8.81)

Next consider the Lie operators associated with the cj and r(µ). It can be shown that a
suitable scalar product can be defined so that, in analogy to (8.79) and (8.80), they satisfy
the relations (7.3.22) and (7.3.23). See Section 7.3. Review Exercise 8.8. Show that the Lie
operators associated with the cj and r(µ) obey the same commutation rules as the Cj and
R(µ).
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5.8.14. The purpose of this exercise is to construct the polynomials (8.53) corresponding to
matrices of the form JSa. Consider some second-degree polynomial corresponding to some
matrix of the form JSa. For example, we may set B = 0 and A = I3 in (7.10). Show that
use of (7.10) and (5.1) then produces a polynomial, call it a1, given by the relation

a1 = (1/2)(q2
1 − p2

1 + q2
2 − p2

2 + q2
3 − p2

3). (5.8.82)

If our suspicions about polynomials associated with the JSa belonging to the representation
Γ(2, 0)⊕Γ(0, 2) are correct, the polynomial a1 should be some linear combination of polyno-
mials corresponding to the weights of Figures 8.6 and 8.7. With luck, it may be possible to
produce a polynomial corresponding to the highest weights wh(6) and wh(6) by repeatedly
applying : r(α) : to a1. See Figure 8.1. Verify the results

a2 =: r(α) : a1 = [r(α), a1] = (−i)(q1p2 + q2p1), (5.8.83)

a3 =: r(α) : a2 = (1/2)[(q1 + ip1)2 + (q2 − ip2)2], (5.8.84)

a4 =: r(α) : a3 = 0. (5.8.85)

The relation (8.85) shows that a3 cannot be raised any further in the α direction, and
suggests that a3 is, as desired, a polynomial corresponding to the highest weights wh(6) and
wh(6). Indeed, show that

: c1 : a3 = [c1, a3] = (
√

2)a3 = [e1 ·wh(6)]a3 = [e1 ·wh(6)]a3. (5.8.86)

Finally, the components of a3 corresponding to wh(6) and wh(6) separately can be removed
from a3 by using the operators [: c2 : −e2 ·wh(6)] and [: c2 : −e2 ·wh(6)], respectively. Do
so by defining further polynomials a5 and a6 by the rules

a5 = [: c2 : −e2 ·wh(6)]a3 = −(2/
√

6)(q2 − ip2)2, (5.8.87)

a6 = [: c2 : −e2 ·wh(6)]a3 = (2/
√

6)(q1 + ip1)2. (5.8.88)

Verify (8.87) and (8.88), and show that these polynomials are simultaneous eigenvectors of
both the : cj :,

: cj : a5 = [ej ·wh(6)]a5,

: cj : a6 = [ej ·wh(6)]a6. (5.8.89)

Now verify that
h1 ∝ a6, (5.8.90)

and verify the results (8.55). The particular normalizations used in defining the hk as given
in (8.53) have been chosen for convenience.

5.8.15. Verify the relations (8.54) and (8.56).

5.8.16. Verify the relations (8.57) through (8.61).

5.8.17. Verify Table 8.4.

5.8.18. Verify Table 8.5.
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5.8.19. Thanks to the work of Subsection 8.10, we know that the quadratic polynomials hk

transform under su(3) according to the representation 6, and the h
k

transform according
to 6. The purpose of this exercise is to study how the remaining polynomials bj transform.
Recall that the cj and r(µ) defined by (8.50) and (8.51) satisfy the same Lie algebra as the
Cj and R(µ). See Exercise 8.13.

Begin by considering the polynomial b0. The relations (8.6) can be rewritten in the form

: bj : b0 = [bj, b0] = 0. (5.8.91)

The relations (8.91) may be understood to say that b0 transforms according to the repre-
sentation Γ(0, 0). Show from (8.21) that dim Γ(0, 0) = 1, and from (8.19) that wh(1) = 0.

What about the remaining 8 polynomials b1, · · · b8? Show that dim Γ(1, 1) = 8, and that
wh(8) =α. Figure 8.8 displays the weight diagram for the representation 8=Γ(1,1). There
are 6 points on the vertices of a hexagon at the ends of the vectors ± α, ± β, ± γ. In
addition, there are 2 eigenvectors corresponding to the weight at the origin (indicated by a
dot and a concentric circle) to make a total of 6+2=8 states. Verify the relations

: cj : r(ν) = (ej · ν)r(ν), (5.8.92)

: r(µ) : r(ν) = N(µ,ν)r(µ+ ν), (when µ+ ν is a root vector). (5.8.93)

The relations (8.92) indicate that each r(ν) has a weight ν corresponding to a particular
vertex of the hexagon, and the relations (8.93) indicate that the : r(µ) : act on the r(ν) to
produce polynomials with raised and lowered weights. Also, verify the relations

: cj : ck = 0, (5.8.94)

: r(µ) : ck = −(ek · µ)r(µ). (5.8.95)

The relations (8.94) indicate that c1 and c2 correspond to the two eigenvectors for the weight
at the origin of the weight diagram, and the relations (8.95) indicate that the : r(µ): raise
and lower these eigen vectors. Finally, show that the polynomials b1, · · · b8 are related to the
cj and r(µ) by a nonsingular matrix.

In summary, we conclude that the polynomial b0 transforms under su(3) according to the
representation 1, and the 8 polynomials b1, · · · b8 transform according to the representation
8. The representation 8 = Γ(1, 1) is called the adjoint or regular representation because it
arises from the action of the Lie algebra on itself. See the discussion at the end of Section
3.7.

5.8.20. Consider the first-degree polynomials t1, t2, t3 defined by the relations

tj = qj + ipj. (5.8.96)

Consider also the representation Γ(1, 0). Show that dim Γ(1, 0) = 3 and compute wh(3).
Figure 8.4 shows the weight vectors for Γ(1, 0). Show that the tj transform under su(3)
according to the representation 3. Also compute : b0 : tj. Figure 8.5 shows the weight
vectors for Γ(0, 1). Show that the t

j
transform under su(3) according to the representation

3. Also compute : b0 : t
j
. It follows that the 6 monomials q1, q2, q3, p1, p2, p3 transform

according to the representation 3 ⊕ 3. This is in accord with (8.48).
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5.8.21. Consider the vector space spanned by the quadratic polynomials of the form tj× tk.
See (8.96). Show that this vector space is 6 dimensional, and is spanned by the polynomials
h` of (8.53). Exercise 8.20 showed that the tj transform under su(3) according to the
representation 3, and the t̄j transform under su(3) according to the representation 3̄. It
follows from group theory and the derivation property (3.7) that the products tj × tk must
transform as some portion of the direct product representation 3⊗3. In the case of su(3), the
general direct product representation 3 ⊗ 3′ has the Clebsch-Gordan series decomposition
(8.34). For the present application, both “3” factors on the left of (8.34) are the same,
and correspondingly the 3 portion of the direct product representation is absent. (The 3
portion is antisymmetric under the interchange of the two 3 factors, and the 6 portion is
symmetric.) It follows that the h` should transform according to the representation 6, which
is indeed the case. Similarly, the general direct product representation 3⊗3

′
has the Clebsch-

Gordan series decomposition (8.35). It follows that the h
`

should transform according to
the representation 6, which is also the case.

5.8.22. Consider the vector space spanned by the quadratic polynomials of the form tj× tk.
See (8.96). Show that this vector space is 9 dimensional, and is spanned by the polynomials

b` of (8.5). Exercise 8.20 showed that the tj and t
k

transform under su(3) according to
the representations 3 and 3, respectively. It follows from group theory and the derivation

property (3.7) that the products tj × t
k

must transform according to the direct product
representation 3 ⊗ 3. In the case of su(3), the general direct product representation 3 ⊗ 3
has the Clebsch-Gordan series decomposition (8.36). It follows that the b` should transform
according to the representations 1 and 8. This surmise is indeed the case since Exercise
8.19 showed that b0 transforms according to the representation 1, and the remaining b’s
transform according to the representation 8.

5.8.23. Verify the relations (8.68). The polynomials hj transform according to the repre-
sentation 6. Also, the Poisson bracket operation may be viewed as a kind of multiplication.
It follows from group theory and the derivation property (3.9) that the Lie products [hj, hk]
must transform as some portion of the direct product representation 6 ⊗ 6′. In the case
of su(3), the general direct product representation 6 ⊗ 6′ has the Clebsch-Gordan series
decomposition (8.37). On the other hand, from the structure of sp(6), the Poisson brackets
[hj, hk] can only yield terms of the form b`, which transform according to 1 = Γ(0, 0) and
8 = Γ(1, 1). See (3.9.3) and Exercise 8.19. We seem to have arrived at an apparent con-
tradiction because Γ(0, 0) and Γ(1, 1) do not appear on the right side of (8.37). The only
resolution to this apparent dilemma is for the Poisson brackets (8.68) to vanish, which they
indeed do.

By contrast the general direct product representation 6 ⊗ 6 has the Clebsch-Gordan
series decomposition (8.38). It follows that the Lie products [hj, h̄k] must transform as some
portion of the representations 1⊕ 8⊕ 27. This surmise is indeed the case since the Poisson
brackets [hj, h̄k] yield terms of the form b` [see (8.53)], and these terms transform according
to 1 and 8. Show that similar considerations apply to the Poisson bracket relation (8.64).
The relevant Clebsch-Gordan series decomposition in this cases is (8.39).

5.8.24. Verify that the polynomials b1, b2, and b3 form a Lie subalgebra under the Poisson
bracket operation. This subalgebra is the Lie algebra for an su(2) subalgebra of su(3).
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5.8.25. Verify that the polynomials b2, b5, and b7 form a Lie subalgebra under the Poisson
bracket operation. This subalgebra is the Lie algebra for an so(3) subalgebra of su(3). See
Exercises 7.2.5 and 7.2.6.

5.8.26. For the case of a 6-dimensional phase space, consider the quadratic polynomials
defined by the relations

Tjk = qjqk + pjpk, (5.8.97)

Lj =
∑
k`

εjk`qkp`. (5.8.98)

Show that there are 9 such elements, and that they can be written as linear combinations
of the quantities b0 through b8, and vice versa. The quantities T and L therefore provide an
alternate basis for u(3). Note that T is symmetric. Relate b0 to the trace of T . Show that
the quantities Lj form a basis for so(3). Show that the quantities T transform as a tensor
under so(3). That is, evaluate the Poisson brackets [Lj, Lk] and [Lj, Tk`]. Finally, evaluate
the Poisson brackets [Tk`, Tmn].

5.8.27. The relation (5.3) associates a matrix JS with every quadratic polynomial. Find
the matrices Bi (for i = 0, 1, · · · 8) associated with the polynomials bi. Find the matrices
F j and Gj (for j = 1, 2, · · · 6) associated with the polynomials f j and gj. Use (5.21) if you
wish. The Bi, F j, and Gj provide a basis for the 6 × 6 matrix representation of sp(6). Find
their commutation rules.
Partial Answer:

B0 = J =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

 , B1 =


0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0

 , (5.8.99)

B2 =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0

 , B3 =


0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

 ,

B4 =


0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

 , B5 =


0 0 1 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 −1 0 0

 ,
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B6 =


0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0

 , B7 =


0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 ,

B8 =
1√
3


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −2
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 2 0 0 0

 , F 1 =


0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

F 2 =


0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0

 , F 3 =


0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0

 ,

F 4 =


0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0

 , F 5 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0

 ,

F 6 =


0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

 , G1 =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

G2 =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 0 0 0 0

 , G3 =


0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0

 ,
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G4 =


0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0

 , G5 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1

 ,

G6 =


0 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 −1 0 0

 .

Note that these generators/matrices are given for the case that J has the form (3.1.1).
In the case that J ′ as given by (3.2.10) is employed, one may find the related generators by
means of the permutation matrix P given by (3.2.19).

5.8.28. The purpose of this exercise is to explore the dynamic role of the basis polynomials
b0 through b8, f 1 through f 6, and g1 through g6.

a) Consider first the u(3) basis polynomials b0 through b8. In place of b0, b3, and b8

it is convenient to use the polynomials (p2
1 + q2

1)/2, (p2
2 + q2

2)/2, (p2
3 + q2

3)/2. Show
that (p2

1 + q2
1)/2 generates rotations in the q1, p1 plane, etc. See Exercise 5.4.5. Next

consider b2, b5, and b7. Show that b2 generates rotations in the p1, p2 and q1, q2 planes
simultaneously, etc. See Section 7.2. Finally consider b1, b4, and b6. Show that b1

generates rotations in the q1, p2 and q2, p1 planes simultaneously, etc.

b) Next consider the remaining polynomials f 1 through f 6 and g1 through g6. The poly-
nomials f 1, f 3, and f 5 are analogous. Show that f 1 generates motions on hyperbolas
in the q1, p1 plane, etc. The polynomials g1, g3, and g5 are also analogous. Show that
g1 also generates motions on hyperbolas in the q1, p1 plane, etc. See Exercise 5.4.4.
The polynomials f 2, f 4, and f 6 are analogous. Show that f 2 generates motions on
hyperbolas in the q1, p2 and q2, p1 planes simultaneously, etc. Finally, the polynomials
g2, g4, and g6 are analogous. Show that g2 generates motions on hyperbolas in the
p1, p2 and q1, q2 planes simultaneously, etc.

5.8.29. The purpose of this exercise is to explore conjugacy relations for the case of su(3).
Review Exercise 3.7.36. Suppose, for some representation, there is a basis for which the
elements in the Lie algebra su(3) are anti-Hermitian matrices (and the structure constants
are real). Recall that for such matrices the hatting and checking operations given by (3.7.219)
and (3.7.222) have the same effect.

Specifically, consider the matrices iλj that obey the su(3) commutation rules (8.3). Form
the associated hatted representation given by (3.7.219). Next form the associated checked
representation given by (3.7.222). Show that, as expected, in this case both operations pro-
duce the same result. Verify that in this case the conjugate representation is not equivalent
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to the original representation. Hint: Show that C1 and C2 as given by (8.8) have the eigen-
values displayed in the weight diagram of Figure 8.4. Hence the matrices iC1 and iC2 will
have these eigenvalues multiplied by i. Consequently, the matrix pairs iC1, iC2, and −iC1,
−iC2 cannot have the same eigenvalues, and therefore cannot be related by a similarity
transformation. Indeed, the eigenvalues of the pair −iC1, −iC2 are those shown in Figure
8.5 multiplied by i.

Repeat the above analysis for the basis matrices given by (8.8) and (8.11). Hint: Review
Exercise 8.7.

5.8.30. Use the quantities fjk` to form the adjoint representation of su(3). See (8.3). Show
that this representation has dimension 8 and is therefore Γ(1, 1). See Table 8.3 and Figure
8.8. Review Exercise 3.7.36. Show that the adjoint representation of su(3) is unaffected by
either the hatting operation (3.7.218) or the checking operation (3.7.219). We say that the
adjoint representation is self conjugate in accord with the su(3) representation conjugacy
relation (8.20).

5.8.31. Construct the weight diagrams for the representations 10, 10, and 27. Indicate the
multiplicity of each weight.

5.8.32. A Chevalley basis for a Lie algebra is one for which the structure constants are
all integers. Sometimes one also requires that the entries in matrices used to represent the
algebra have all integer entries. Show that the basis found for sp(2) and sp(4) in Sections
5.6 and 5.7 are Chevalley bases. Find Chevalley bases for su(3) and sp(6).

5.9 Some Topological Questions

In this section we will learn something about the topology of Sp(2n,R) and how the stable
elements of Sp(2n,R) reside within it.

5.9.1 Nature and Connectivity of Sp(2n,R)

Sp(2n,R) Is Connected

We begin by showing that the symplectic group Sp(2n,R) is connected, and indeed infinitely
connected. Let us start with the connected claim, which is easy to demonstrate. Suppose
M and N are any two matrices in Sp(2n,R). Define the symplectic matrix R by the rule

R = MN−1 (5.9.1)

so that there is the relation

M = RN. (5.9.2)

Since R is symplectic, from (3.8.24) we know there are symmetric matrices Sa and Sc such
that R can be written in the form

R = exp(JSa) exp(JSc), (5.9.3)
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and the matrices R(λ) defined by

R(λ) = exp(λJSa) exp(λJSc) (5.9.4)

will form a one-parameter family of symplectic matrices with

R(0) = I (5.9.5)

and
R(1) = R. (5.9.6)

Now consider the one-parameter family of symplectic matrices M(λ) defined by the rule

M(λ) = R(λ)N. (5.9.7)

From this and the previous definitions we have the results

M(0) = N (5.9.8)

and
M(1) = M. (5.9.9)

Thus, the matrices M(λ) provide a path, in the space of symplectic matrices, that connects
N to M .

Sp(2n,R) Is Infinitely Connected

We next turn to the harder task of examining the topology of Sp(2n,R) in more detail and
showing that the space of symplectic matrices is infinitely connected. We will begin with
the case of Sp(2,R).

Suppose the basis elements B0, F , and G given by (6.7), (6.13), and (6.14) are used to
evaluate (3.8.24). Doing so shows that the most general real 2× 2 symplectic matrix can be
written in the form

M = exp(φF + γG) exp(β0B
0), (5.9.10)

where β0, φ, and γ are arbitrary real coefficients. [Note that there are indeed three coefficients
as predicted by (3.7.35) evaluated for n=1.] Thus, (9.10) gives a complete parameterization
of the 2×2 symplectic group. The quantities exp(φF +γG) and exp(β0B

0) can be evaluated
using (3.7.1) to give the results

exp(φF + γG) = I cosh[(φ2 + γ2)1/2] (5.9.11)

+ [(φF + γG)/(φ2 + γ2)1/2] sinh[(φ2 + γ2)1/2],

exp(β0B
0) = I cos β0 +B0 sin β0 =

(
cos β0 sin β0

− sin β0 cos β0

)
. (5.9.12)

Observe that, according to (9.11), the factor exp(φF + γG) has the topology of two-
dimensional Euclidean space E2 since φ and γ can each range over ±∞ without any dupli-
cation of results. By contrast, the factor exp(β0B

0), according to (9.12), has the topology
of a circle T 1 since it is periodic in β0 with period 2π. Indeed, the matrix on the far right
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of (9.12) represents SO(2,R) which has the topology of T 1, and also of U(1). (Here, as
in Section 3.9, we use the notation T n to denote an n-torus, the topological product of n
circles. Thus, T 1 denotes a 1-torus, which is just a circle.) It follows that Sp(2,R) has the
product topology E2×T 1.9 Since T 1 is infinitely connected, Sp(2,R) is infinitely connected.
Finally, in view of (3.9.88, we note that there is the relation

W exp(β0B
0) W−1 =

(
exp(iβ0) 0

0 exp(−iβ0)

)
, (5.9.13)

which shows explicitly that exp(β0B
0) is isomorphic to the representation U(1) ⊕ U(1) of

U(1), as expected.
In an analogous way, with m = n(n+ 1), it can be seen that Sp(2n,R) has the product

topology Em × [U(n)⊕ U(n)]. First, again by (3.8.24), any M in Sp(2n,R) can be written
in the product form

M = exp(JSa) exp(JSc). (5.9.14)

Now, according to Exercise 3.9.10, there are m = n(n + 1) linearly independent matrices
of the form JSa. Note that from its form, m is an even integer, and hence k = m/2 is
an integer. In analogy to the cases of sp(2,R), sp(4,R), and sp(6,R), let F 1, · · ·F k and
G1, · · ·Gk be a basis for the set of matrices of the form JSa. Then the exp(JSa) factor can
be written in the form

exp(JSa) = exp[
k∑
j=1

(φjF
j + γjG

j)]. (5.9.15)

Since the real symmetric logarithm of a real symmetric positive definite matrix is unique,
the m parameters φj and γj can all range from ±∞ without any duplication of results.
Consequently, the factor exp(JSa) has the topology of Em. Finally, according to Section
3.9, matrices of the form exp(JSc) are isomorphic to U(n). Thus, as stated at the beginning
of this paragraph, Sp(2n,R) has the product topology Em × [U(n)⊕ U(n)].

We pause at this point to observe that some of the matrix entries on the right side of
(9.11) grow in magnitude without bound as φ and γ range over ±∞. Thus, the group
Sp(2,R) is not compact. Moreover, since Sp(2,R) is a subgroup of Sp(2n,R) and Sp(2n,C)
for any n, it follows that these groups are also not compact.10

In this vein, what can be said about what we have called the U(n) subgroup, the [U(n)⊕
U(n)] factor of Sp(2n,R)? From the discussion of Section 3.9 we know that all matrices
of the form exp(JSc) are in the orthogonal group SO(2n,R). From the work of the first
part of Section 3.6.3 we know that the rows (and columns) of an orthogonal matrix are
orthonormal. In particular, the rows (and columns) are unit vectors. It follows that all
entries in an orthogonal matrix are bounded in magnitude by 1. Consequently, the U(n)

9 Because φ and γ are unrestricted, this set is sometimes referred to as a solid torus.
10Compactness is a topological property of sets that may be defined in a variety of ways. For our pur-

poses, since we are generally dealing with matrices which may be viewed as being imbedded in some high
dimensional Euclidean space, we will say that a set of matrices is compact if all matrix elements of these
matrices are confined to lie within some closed and bounded set within this Euclidean space. (A set is closed
if it contains all its limit points.) Conversely, if any matrix elements for some sequence of matrices in the
set are unbounded (grow in magnitude without bound), we will say that the set of matrices is noncompact.
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subgroup of Sp(2n,R) is compact. Indeed, it can be shown to be the largest compact
subgroup of Sp(2n,R).

We have already seen that Sp(2n,R) has the product topology Em × [U(n) ⊕ U(n)].
What remains is to study the topology of the U(n) subgroup of Sp(2n,R). In the n = 1
case we have already found that Sp(2,R) has the product topology E2 × U(1) and that
U(1) has the topology of T 1. We might hope to proceed in a similar fashion for the case
n > 1. Suppose, for specificity, we consider the case Sp(4,R) for which n = 2 and we are
therefore interested in the topology of U(2). In the 4× 4 case a basis for the Lie algebra of
the matrices of the form JSc can be taken to be the matrices B0 through B3 given displayed
in (7.45). We also note that B0 commutes with the B1 through B3. See (7.5). Therefore in
the 4× 4 case the most general exp(JSc) can can be written in the form

exp(JSc) = [exp(
3∑
1

βjB
j)] exp(β0B

0). (5.9.16)

Matrices of the form exp(
∑3

1 βjB
j) carry the SU(2)⊕ SU(2) representation of SU(2), and

all the groups SU(n) for n > 1 are known to be simply connected. For example, SU(2) has
the topology of the 3-sphere S3. See Exercise 10.13. And S3 is simply connected. What
remains is to examine the factor exp(β0B

0).
A remark is in order before doing so. It is common in the physics literature to see the

assertion
U(n) = SU(n)⊗ U(1) (5.9.17)

where the symbol ⊗ denotes a direct product. [A particular case of (9.17) is the assertion
that U(2) = SU(2) ⊗ U(1).] If this were true, since SU(n) is simply connected, U(n)
would have the connectivity of U(1), which is T 1. And, in particular, U(2) would have
the connectivity T 1. Correspondingly, Sp(2n,R) would have the product topology Em ×
SU(n)× T 1, and consequently all the Sp(2n,R) would be infinitely connected. It turns out
that these topological statements are correct, but the argument is wrong. The assertion
(9.17) is not globally true. What is true is the weaker result that (9.17) holds only in some
vicinity of the identity.

Let us continue. In view of the result given for B0 in (7.45) and the relation (3.8.30) it
follows that

exp(β0B
0) = I cos β0 + J sin β0. (5.9.18)

And, again in view of (3.9.88), we see that in the 4× 4 case there is the result

W exp(β0B
0) W−1 =


exp(iβ0) 0 0 0

0 exp(iβ0) 0 0
0 0 exp(−iβ0) 0
0 0 0 exp(−iβ0)

 . (5.9.19)

We conclude, because they contain only the diagonal entries exp(iβ0) and exp(−iβ0), that
for small β0 the matrices on the right side of (9.19) behave like U(1) ⊕ U(1). But observe
that taking the determinants of the 2× 2 matrices in the upper left and lower right blocks
of (9.19) yields the results exp(2iβ0) and exp(−2iβ0), respectively. These results, when
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evaluated for β0 = π, both have the value +1. Thus, when for β0 = π, the 2×2 matrices are
in SU(2) and can be absorbed into the first factor, the SU(2)⊕ SU(2) factor, on the right
side of (9.16). For this value of β0 the direct product hypothesis U(2) = SU(2)⊗ U(1) has
abruptly changed. Consequently the 2× 2 matrices in (9.19) are not a global representation
of U(1)⊕U(1). By an analogous analysis it is evident that the hypothesis (9.17) is not true
globally for any n ≥ 2. See, for example, Exercise 9.4.

Where does our exploration now stand? The approach we have been following has not
been adequate for determining the global topology of U(2), and evidently it will also fail for
all U(n) with n > 1. However, by more powerful methods beyond the scope of this book,
it can be shown that all the U(n) have the connectivity of T 1. Consequently Sp(2n,R) has
the product topology Em × SU(n)× T 1. It follows, because of the presence of T 1, that the
groups Sp(2n,R) are infinitely connected for all n.

Since Sp(2n,R) is infinitely connected, it must have a multiplicity of covering groups.11

In particular, it has a two-fold covering group. This group is called the metaplectic group,
and is of interest for paraxial wave optics (Fourier optics) and quantum mechanics.

Finally we remark that, contrary to the case of Sp(2n,R), Sp(2n,C) is simply connected.

5.9.2 Where Are the Stable Elements?

With the topology of Sp(2n,R) in view, it would be useful to know where the stable elements
(those with distinct eigenvalues on the unit circle) reside. In general this is a difficult question
because Sp(2n,R) is n(2n + 1) dimensional. However, Sp(2,R) is only 3 dimensional, and
we will see that this case is tractable.

In the case of Sp(2,R), combining (9.10) through (9.12) gives the result

M = {I cosh[(φ2 + γ2)1/2] + [(φF + γG)/(φ2 + γ2)1/2] sinh[(φ2 + γ2)1/2]} ×
{I cos β0 +B0 sin β0}. (5.9.20)

From the work of Section 3.4.4 we know that in the 2×2 case the spectrum of M is governed
by the quantity

A = tr(M). (5.9.21)

This quantity can be readily evaluated using (9.20) to yield the result

A = 2 cosh[(φ2 + γ2)1/2] cos β0. (5.9.22)

See Exercise 9.5. Introduce a radius r in φ, γ space by writing

r2 = φ2 + γ2. (5.9.23)

With this definition, (9.22) can be rewritten in the form

A = 2(cosh r)(cos β0). (5.9.24)

From (3.4.21) and Figure 3.4.3 we know that there is stability (eigenvalues of M are on the
unit circle) when

− 2 < 2(cosh r)(cos β0) < +2. (5.9.25)

11For a brief discussion of the concept of a covering group, see Exercise 8.2.11.
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It follows that, when (cos β0) > 0, we can move away form the origin in φ, γ space while
maintaining stability until r = rmax with

(cosh rmax)(cos β0) = 1, (5.9.26)

which is equivalent to the statement

rmax = cosh−1[1/ cos(β0)]. (5.9.27)

On the other hand, when (cos β0) < 0, we can move away form the origin in φ, γ space while
maintaining stability until

(cosh rmax)(cos β0) = −1, (5.9.28)

which is equivalent to the statement

rmax = cosh−1[−1/ cos(β0)]. (5.9.29)

The two conditions (9.27) and (9.29) can be combined to give the net result

rmax = cosh−1[1/| cos(β0)|]. (5.9.30)

Figure 9.1 displays the relation (9.30) in the β0, r plane. We observe that rmax(β0) is
periodic in β0 with period π (and therefore also 2π) and that

rmax =∞ when β0 = ±π/2 (5.9.31)

and
rmax = 0 when β0 = 0,±π. (5.9.32)

Note that r = 0 and β0 = ±π/2 correspond to tunes of ±1/4, and r = 0 and β0 = 0,±π
correspond to tunes of 0,±1/2.

Suppose Γ is any closed path in Sp(2,R) that goes once around the torus SO(2,R). For
example, it could begin at the identity I, that is β0 = γ = φ = 0, and end again at the
identity with a 2π increase in β0 so that at the end point β0 = 2π and again γ = φ = 0.
Then, somewhere along the path, the variable β0 must take on the values β0 = π/2 and
β0 = 3π/2. (Note that, by periodicity, the points 3π/2 and −π/2 are equivalent.) At these
points rmax is infinite. Thus, at least two stable group elements must lie on any closed path
Γ that goes once around the torus. Moreover, since the eigenvalues for these elements are
not ±1 (they are ±i because A = 0 at these points), these elements must lie in open sets
comprised of stable elements. Indeed, at these points the tunes are ±1/4.

It would be pleasant to have an analogous understanding of Sp(2n,R) for general n, or at
least for n = 2 and n = 3. Perhaps this is possible for Sp(4,R) using the parameterization
of Section 5.7 and the results associated with Figure 3.4.4. And perhaps, in a National
Emergency, the case of Sp(6,R) could also be understood. But we have not attempted to
do so. However, what we already do know, thanks to the discussion of Sections 3.4 and 3.5,
is that when the eigenvalues of an element lie on the unit circle and are distinct, then this
element is surrounded by an open set of stable elements. We reiterate that this fact should
be of comfort to accelerator designers and builders because it means that, at least in the
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Figure 5.9.1: Stability diagram for Sp(2,R) showing the quantity rmax as a function of β0.
All elements with r < rmax are stable, and all elements with r > rmax are unstable. That
is, the shaded regions are stable, and the unshaded regions are unstable. In accord with
toroidal topology, corresponding points on the dashed lines at the top and bottom of the
figure (β0 = ±π) are to be identified.

linear approximation, the stability of orbits will not be damaged by small fabrication and
control parameter errors.

We close this subsection with a remark that, perhaps, should have been made at the
beginning of this subsection. We know that every symplectic matrix R has the unique
factorization (9.3). Also, if Sa vanishes in this factorization, then R is diagonalizable and
all its eigenvalues lie on the unit circle. Hence, all such R are stable elements. By contrast,
if Sc vanishes in this factorization, then R has all its eigenvalues on the positive real axis,
and some must exceed 1. Hence, all such R are unstable elements. See Exercise 3..8.12.
What we have learned in this subsection is that there are cases where both Sa and Sc are
non vanishing and R is stable, and other cases where both Sa and Sc are non vanishing and
R is unstable.

5.9.3 Covering/Circumnavigating U(n)

We know that there is a U(n) subgroup of Sp(2n,R) and that any R in the U(n) subgroup
of Sp(2n,R) can be written in the form

R(Sc) = exp(JSc). (5.9.33)

Since U(n) is compact, the matrices Sc cannot be arbitrarily large without some repetition
occurring among the elements R(Sc). Here we will find a result for how large Sc needs to
be for all of the U(n) subgroup to be covered.
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According to the work of Section 3.9, given any R in the U(n) subgroup of Sp(2n,R),
there is a u ∈ U(n) such that

R = M(u). (5.9.34)

Also, given any u ∈ U(n) there is a t ∈ U(n) such that

u = tvt−1 (5.9.35)

where v is a diagonal matrix of the form (3.9.50). Since the mappingM(u) is an isomorphism,
we have the result

R = M(u) = M(tvt−1) = M(t)M(v)[M(t)]−1 = M(t)V [M(t)]−1. (5.9.36)

Here we have used (3.9.51). But V is in the U(n) subgroup and therefore there is a matrix
Ŝc such that

V = exp(JŜc). (5.9.37)

See (3.9.55), (3.9.63), and (3.9.64). It follows from (9.36) and (9.37) that

R = M(t) exp(JŜc)[M(t)]−1 = exp{M(t)JŜc)[M(t)]−1}. (5.9.38)

Upon comparing (9.33) and (9.37) we see that a suitable JSc is given by the relation

JSc = M(t)JŜc[M(t)]−1, (5.9.39)

from which it follows that
Sc = J−1M(t)JŜc[M(t)]−1. (5.9.40)

From the symplectic condition MJMT = J and (3.9.30) we see that

J−1MJ = (MT )−1 = M. (5.9.41)

It follows that
Sc = MŜcM−1, (5.9.42)

and therefore
(Sc)2 = M(Ŝc)2M−1. (5.9.43)

Now take the trace of both sides of (9.43) to find the result

tr[(Sc)2] = tr[M(Ŝc)2M−1] = tr[(Ŝc)2]. (5.9.44)

The right side of (9.44) can be easily evaluated using (3.9.63) and (3.9.64). We find that

tr[(Ŝc)2] = 2
n∑
`=1

φ2
` . (5.9.45)

Since each φ` ∈ [−π, π], we see that all of the U(n) subgroup is covered when

tr[(Sc)2] ≤ 2nπ2. (5.9.46)

When (9.46) holds some elements in the U(n) subgroup are covered multiple times and some
are covered only once. But each is covered at least once.
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Exercises

5.9.1. Verify the results (9.11) and (9.12).

5.9.2. Verify that the first part of (9.12), namely

exp(β0B
0) = I cos β0 +B0 sin β0, (5.9.47)

holds in general (the 2n× 2n case) for B0 = J .

5.9.3. Rob, Salman, and Ivan’s work on exponentiating sp(4).

5.9.4. The purpose of this exercise is to make an analysis of Sp(6,R) analogous to that
provided for Sp(4,R) in Subsection 9.1. Begin by observing that (9.14) and (9.15) hold for
general n. Verify that, for n = 3, (9.16) takes the form

exp(JSc) = [exp(
8∑
1

βjB
j)] exp(β0B

0). (5.9.48)

Matrices of the form exp(
∑8

1 βjB
j) carry the SU(3)⊕SU(3) representation of SU(3). What

remains is to examine the factor exp(β0B
0) with B0 given by the first entry in (8.99).

Verify, using (3.9.88), that for n = 3 there is the result

W exp(β0B
0) W−1 =


exp(iβ0) 0 0 0 0 0

0 exp(iβ0) 0 0 0 0
0 0 exp(iβ0) 0 0 0
0 0 0 exp(−iβ0) 0 0
0 0 0 0 exp(−iβ0) 0
0 0 0 0 0 exp(−iβ0)

 .

(5.9.49)

Observe that taking the determinants of the 3× 3 matrices in the upper left and lower right
blocks of (9.49) yields the results exp(3iβ0) and exp(−3iβ0), respectively. These results,
when evaluated for β0 = 2π/3, both have the value +1. Thus, when β0 = 2π/3, the 3 × 3
matrices are in SU(3) and can be absorbed into the first factor, the SU(3)⊕ SU(3) factor,
on the right side of (9.48). For this value of β0 the direct product hypothesis U(3) =
SU(3) ⊗ U(1) has abruptly changed. (Verify that the same is true when β0 = 4π/3.)
Consequently the 3× 3 matrices in (9.49) are not a global representation of U(1)⊕ U(1).

5.9.5. Show that carrying out the multiplication indicated in (9.20) yields a linear combi-
nation of the matrices I, F,G,B0, FB0, and GB0. Show, with the exception of I, that all
these matrices are traceless. Use this result to prove (9.22). Show that all matrices M of
the form (9.20) satisfy

M2 = −I when β0 = ±π/2. (5.9.50)

Suggestion: Use the normal form technology of Section 3.3.7.
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5.9.6. Review Subsection 9.2 and Figure 9.1. Pick a value for r, say r = 0.20. Plot, in the
complex plane, the eigenvalues of M as β0 varies over the interval β0 ∈ [−π, π]. You should
find that they move about the unit circle, collide at the points ±1, and leave and re-enter
the unit circle through the collision points ±1. Finally, when they leave the unit circle. they
both lie on the positive or negative real axis. Recall Figures 3.4.1 and 3.4.3.

Consider the cases where A = ±2, but do not otherwise constrain β0 and r, and let M±
be the Jordan normal form for M in these cases. Show that, generically,

M+ =

(
1 1
0 1

)
(5.9.51)

and

M− =

(
−1 1
0 −1

)
. (5.9.52)

Show that M as given by (3.5.76) with α 6= 0 has the Jordan normal form M+ and −M [with
M again given by (3.5.76) with α 6= 0], which is also symplectic, has Jordan normal form
M−. For M given by (9.20), under what conditions can M , by a similarity transformation,
be brought to the diagonal forms

Md± =

(
±1 0
0 ±1

)
= ±I? (5.9.53)

5.10 Notational Pitfalls and Quaternions

5.10.1 The Lie Algebras sp(2n,R) and usp(2n)

In the discussion of the Lie algebra sp(6) we found it useful to work over the complex field
even though we eventually wrote our final results in real form. The use of the complex field
is both a powerful tool and a possible source of confusion. We have repeatedly made use
of the particular Lie algebraic properties that the commutator of two matrices of the form
JSc is again of the same form, the commutator of a JSc and a JSa is a matrix of the form
JSa, and the commutator of two matrices of the form JSa is a matrix of the form JSc. We
write these relations symbolically in the form

{JSc, JSc′} ∝ JSc
′′
, (5.10.1)

{JSc, JSa} ∝ JSa
′
, (5.10.2)

{JSa, JSa′} ∝ JSc. (5.10.3)

Here all matrices are taken to be real. That is, we are working with the Lie algebra sp(2n,R).
Now suppose that all matrices of the form JSa are replaced by matrices of the form iJSa,
and the matrices of the form JSc are left unchanged. Doing so converts the relations (10.1)
through (10.3) into the relations

{JSc, JSc′} ∝ JSc
′′
, (5.10.4)

{JSc, (iJSa)} ∝ (iJSa
′
), (5.10.5)
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{(iJSa), (iJSa′)} ∝ JSc. (5.10.6)

Examination of the relations (10.4) though (10.6) shows that this replacement produces a
related Lie algebra of the same dimension as before. Evidently this algebra is a subalgebra
of sp(2n,C). We next observe that matrices of the form JSc and iJSa (with Sc and Sa real)
are anti-Hermitian,

(JSc)† = (Sc)†J† = Sc(−J) = −JSc, (5.10.7)

(iJSa)† = (−i)(Sa)†(J†) = −iSa(−J)

= −iJSa. (5.10.8)

Consequently, the Lie algebra they generate is also a subalgebra of u(2n). Let us use the
notation usp(2n) to denote the Lie algebra generated by matrices of the form JSc and iJSa.
Then we have the relation

usp(2n) = u(2n) ∩ sp(2n,C). (5.10.9)

Note that although usp(2n) has a complex basis if a real basis is used for sp(2n,R), it still
has real structure constants in terms of this complex basis. In the language of Section 3.7,
we have found that the Lie algebras sp(2n,R) and usp(2n) are equivalent over the complex
field. However, they are not equivalent over the real field.

Also, let USp(2n) denote the group obtained by exponentiating matrices of the form JSc

and iJSa. These matrices belong to both U(2n) and Sp(2n,C), and we have the relation

USp(2n) = U(2n) ∩ Sp(2n,C). (5.10.10)

This group USp(2n) is called the unitary symplectic group.
Unfortunately for Physicists, Mathematicians often refer to this group simply as Sp(2n)

while we have been using the same notation as shorthand for Sp(2n,R). This dual notation
can be a source of serious confusion because USp(2n) and Sp(2n,R) have very different
properties. For example, USp(2n) is compact [all the entries in USp(2n) matrices are
bounded in absolute value by 1 since these matrices are unitary] while, as can be seen
from the results of Section 5.9, the matrix elements of Sp(2n,R) matrices can be arbitrarily
large. Moreover, it can be shown that USp(2n) is simply connected, and we have seen that
Sp(2n,R) is infinitely connected. Finally, for completeness, we remark that Sp(2n,C) is
noncompact and simply connected.

5.10.2 USp(2n) and the Quaternion Field

The group USp(2n) is of mathematical interest for at least two reasons. First, because it
is compact, it is much easier to analyze than is Sp(2n,R). And, because sp(2n,R) and
usp(2n) are complex equivalent, many results obtained for usp(2n) are readily transferable
to sp(2n,R). Second, USp(2n) is closely related to quaternions and can be viewed as the
quaternion field analog of the groups O(n,R) and U(n) for the real and complex fields.12

We will now describe briefly how this comes about.

12Quaternions as an algebra were discovered by Hamilton in 1843, and often the quaternion field is referred
to as H. Some aspects of them were also known in some form earlier and independently to Euler in 1748,
Gauss in 1819, and Rodrigues in 1840.
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Consider an n-dimensional real vector space with the usual real inner product. To
emphasize the use of the real field, we denote this inner product by the symbols (,)R. Then
the set of real linear transformations that preserves this inner product forms the orthogonal
group, O(n,R). Specifically, if x and y are any two vectors, we require the relation

(Ox,Oy)R = (x, y)R (5.10.11)

But we also have the relation

(Ox,Oy)R = (x,OTOy)R (5.10.12)

from which it follows that O must satisfy the condition

OTO = I. (5.10.13)

Next consider an n-dimensional complex vector space with the usual complex inner prod-
uct. We denote this inner product by the symbols (,)C to emphasize the use of the complex
field. Then the set of complex linear transformations that preserves this inner product forms
the unitary group, U(n). Specifically, if x and y are any two vectors, we require the relation

(Ux, Uy)C = (x, y)C. (5.10.14)

But we also have the relation

(Ux, Uy)C = (x, U †Uy)C (5.10.15)

from which it follows that U must satisfy the condition

U †U = I. (5.10.16)

Finally, suppose we consider an n-dimensional vector space over the quaternion field H
with a suitable inner product yet to be defined. Then the set of linear transformations
with quaternion entries that preserves this inner product can be shown to be isomorphic to
USp(2n). Thus, the groups O(n), U(n), and USp(2n) all arise from analogous constructions
over the real field, the complex field, and the quaternion field, respectively.

We will work up to this result in stages. First we will study the structure of usp(2n) and
USp(2n). Next we will represent quaternions using Pauli matrices, and define a suitable
inner product. Finally, we will show that USp(2n) preserves this inner product.

5.10.3 Quaternion Matrices

Let Sc be any real 2n × 2n symmetric matrix that commutes with J . For J we shall take
the form (3.2.10). That is, J is an n× n collection of 2 × 2 blocks. Suppose that Sc is also
written as an n× n collection of 2× 2 blocks,

Sc =

 c11 · · · c1n

...
...

cn1 · · · cnn

 , (5.10.17)
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where each entry cjk is a 2× 2 block. Then it is easily verified that requiring Sc to commute
with J is equivalent to requiring that each entry cjk commute with the 2 × 2 matrix J2 of
(3.2.11),

cjkJ2 − J2cjk = 0. (5.10.18)

The condition (10.18) in turn requires that each cjk be a linear combination (with arbitrary
real coefficients) of σ0 and J2.

Similarly, let Sa be any real 2n × 2n matrix that anticommutes with J . Suppose that
Sa is written as an n× n collection of 2× 2 blocks in the form

Sa =

 a11 · · · a1n

...
...

an1 · · · ann

 . (5.10.19)

Then requiring that Sa anticommute with J is equivalent to requiring that each entry ajk
anticommute with J2,

ajkJ2 + J2ajk = 0. (5.10.20)

It is easily checked that the condition (10.20) implies in turn that each ajk must be a linear
combination (with real coefficients) of σ3 and σ1.

Now consider matrices of the form iSa where the entries in Sa itself are real. Then, every
2× 2 block in Sa must be a linear combination with real coefficients of the matrices iσ3 and
iσ1. Also, we note that J2 is given by the relation

J2 = iσ2. (5.10.21)

We conclude that all matrices of the form Sc and iSa, and their linear combinations with
real coefficients, must have in their 2× 2 blocks only matrices of the form

Q = w0σ
0 + iw1σ

1 + iw2σ
2 + iw3σ

3, (5.10.22)

where the coefficients w0 through w3 are real. It is convenient to regard the quantities
w1, w2, and w3 as the three components of a vector w, and to then write (10.22) in the more
compact form

Q = w0σ
0 + iw · σ. (5.10.23)

The reader will eventually have the pleasure of showing, in Exercise 10.15, that the set of all
2× 2 matrices of the form (10.23) is isomorphic to the quaternion field H.13 For this reason,
these matrices will be called quaternion matrices.

5.10.4 Properties of Quaternion Matrices

Suppose two quaternion matrices Q and Q′ are multiplied together. From the relation (7.40)
we find the result

QQ′ = (w0w
′
0 −w ·w′)σ0 + i(w0w

′ + w′0w −w ×w′) · σ = Q′′ (5.10.24)

13This discovery was first made by Cayley.
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with
Q′′ = w′′0σ

0 + iw′′ · σ. (5.10.25)

and
w′′0 = w0w

′
0 −w ·w′, (5.10.26)

w′′ = w0w
′ + w′0w −w ×w′. (5.10.27)

We conclude that the product of two quaternion matrices is again a quaternion matrix. Also,
any linear combination with real coefficients of quaternion matrices is again a quaternion
matrix,

αQ+ βQ′ = (αw0 + βw′0)σ0 + i(αw + βw′) · σ (5.10.28)

We summarize the results of (10.24) and (10.28) by saying that the set of quaternion matrices
is closed under the operators of multiplication and addition with real coefficients.

From the specific form of the Pauli matrices we find that Q can be written in the explicit
form

Q =

(
w0 + iw3 iw1 + w2

iw1 − w2 w0 − iw3

)
. (5.10.29)

From this form we easily compute that the determinant of Q is given by the relation

det(Q) = w2
0 + w2

1 + w2
2 + w2

3. (5.10.30)

We conclude that all quaternion matrices are invertible save for the zero quaternion matrix.
That is, quaternion matrices form a division algebra.

Given any quaternion matrix Q specified by (10.23), we define a conjugate quaternion
matrix Q∗ by the relation

Q∗ = w0σ
0 − iw · σ. (5.10.31)

It is easily verified from (10.24) that the product Q∗Q is given by the relation

Q∗Q = QQ∗ = (w2
0 + w2

1 + w2
2 + w2

3)σ0 = [det(Q)]σ0. (5.10.32)

Consequently, the inverse of a quaternion matrix is given by the relation

Q−1 = Q∗/[det(Q)]. (5.10.33)

Since the Pauli matrices are Hermitian, the definition (10.31) is equivalent to the relation

Q∗ = Q†. (5.10.34)

We also find by explicit calculation the relation

Q∗ = −J2Q
TJ2 = (J2)−1QTJ2. (5.10.35)

From either (10.33), (10.34), or (10.35) we find the relation

(Q′Q)∗ = Q∗(Q′)∗. (5.10.36)

We note that if Q is a quaternion matrix, so are the matrices Q∗, Q−1, and QT . Finally, we
observe from (10.21) that the matrix J2 is also a quaternion matrix. It follows that the set
of all nonzero quaternion matrices forms a group.
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5.10.5 Quaternion Matrices and USp(2n)

We have learned that all matrices of the form Sc and iSa, and their linear combinations with
real coefficients, must have quaternion matrices in their 2×2 blocks when the form (3.2.10) is
used for J . Moreover, since in this form J also has quaternion matrices in its 2×2 blocks, all
matrices of the form JSc and iJSa, and their linear combinations with real coefficients, must
also have quaternion matrices in their 2×2 blocks. This result follows from the fact that the
set of quaternion matrices is closed under multiplication and addition with real coefficients.
Finally, suppose matrices of the form JSc and iJSa, and their linear combinations with real
coefficients, are exponentiated and multiplied together. Since these operations all reduce
to the multiplication and addition (again with real coefficients) of quaternion matrices, all
n × n arrays resulting from these operations must also have quaternion matrices in their
2 × 2 blocks. We conclude that when the form (3.2.10) is used for J , all matrices in the
group USp(2n) must have quaternion matrices in their 2× 2 blocks.

Let M be a matrix in USp(2n). Suppose M is written in an n× n arrray,

M =

 m11 · · · m1n

...
...

mn1 · · · mnn

 , (5.10.37)

where, according to the preceding discussion, each block mjk is a quaternion matrix. Then
the matrices M † and MT are given by the relations

M † =

 m†11 · · · m†n1
...

...

m†1n · · · m†nn

 , (5.10.38)

MT =

 mT
11 · · · mT

n1
...

...
mT

1n · · · mT
nn

 . (5.10.39)

Because M is unitary, it must satisfy the relation

M †M = I. (5.10.40)

However, because the entries in M are quaternion matrices, use of the relations (3.2.10),
(10.34), and (10.35) gives the result

M † = J−1MTJ. (5.10.41)

Consequently (10.40) can be rewritten in the form

J−1MTJM = I or MTJM = J. (5.10.42)

We conclude that a unitary matrix whose 2× 2 blocks are quaternion matrices must also be
a symplectic matrix. Conversely, if M is symplectic and is made of 2× 2 quaternion matrix
blocks, then M must also be unitary.
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5.10.6 Quaternion Inner Product and Its Preservation

Let x and y be any two n-component vectors whose entries are quaternion matrices. We will
call such vectors quaternion vectors. For quaternion vectors we define a quaternion inner
product, which we denote by the symbols (,)H, by the relation

(x, y)H =
n∑
j=1

x∗jyj. (5.10.43)

(Note that the result of forming a quaternion inner product is a quaternion matrix.)
Next, suppose M is any matrix in USp(2n). Using the representation (10.37), we define

transformed vectors x′, y′ by the relations

x′j =
∑
k

mjkxk, (5.10.44)

y′j =
∑
`

mj`y`. (5.10.45)

Note that the operations on the right sides of (10.44) and (10.45) involve only quaternion
matrix multiplication and addition. We write (10.44) and (10.45) more compactly in the
form

x′ = Mx , y′ = My. (5.10.46)

From (10.34), (10.36), and (10.44) we find the relations

(x′j)
∗ =

∑
k

(mjkxk)
∗ =

∑
k

x∗km
∗
jk =

∑
k

x∗k(mjk)
†. (5.10.47)

Let us compute (Mx,My)H. We find from (10.45) and (10.47) the result

(Mx,My)H = (x′, y′)Q =
n∑
j=1

(x′j)
∗y′j

=
∑
j,k,`

x∗k(mjk)
†mj`y` =

∑
k,`

x∗kδk`σ
0y`

=
∑
k

x∗kyk = (x, y)H. (5.10.48)

Here we have used the fact that the relation (10.40) can be written in the 2× 2 block form∑
j

(mjk)
†mj` = δk`σ

0. (5.10.49)

See (10.37) and (10.38). Note that (10.49) can also be written in the form∑
j

(mjk)
∗mj` = δk`σ

0, (5.10.50)
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and in this form only quaternion operations are involved. We conclude from (10.48) that M
preserves the quaternion inner product,

(Mx,My)H = (x, y)H. (5.10.51)

Further, it can be checked that if M preserves (10.51) for arbitrary quaternion vectors x
and y, then M must belong to USp(2n).

At this point we might wonder if there is a connection between the the quaternion inner
product (10.43) and the fundamental symplectic 2-form (3.2.3). By working Exercise 10.18
you will have the pleasure of seeing that they are closely related.

5.10.7 Discussion

Comparison of (10.11), (10.14), and (10.51) shows that O(n), U(n), and USp(2n) all arise
from analogous constructions over the real field, the complex field, and the quaternion
field, respectively. We remark that the only finite-dimensional associative normed division
algebras over the real number field are the real number field itself, the complex field, and
the quaternion field. (This proposition is known as Frobenius’ theorem.) Thus, O(n), U(n),
and USp(2n) are not only analogous, they are also exhaustive.

Reference to Table 3.7.1 shows that we have accounted for all the classical Lie algebras.
What can be said about the exceptional algebras? After the reals, the complex numbers, and
the quaternions come the octonions (also called Cayley numbers). As their name suggests,
they form an eight-dimensional vector space for which multiplication can also be defined.
Like the reals, complexes, and quaternions, octonions form a normed division algebra. (In
fact, these four are the only normed division algebras.) However, octonion multliplication is
not associative. It can be shown that, in one way or another, all the exceptional Lie algebras
are related to various properties of the octonions. Moreover, the failure of the exceptional
Lie algebras to form regular infinite families (like the classical Lie algebras do) is related to
the nonassociativity of octonion multiplication.

Exercises

5.10.1. Verify the commutation rules (10.4) through (10.6).

5.10.2. Look at the relations (10.9) and (10.10). Strictly speaking, our discussion has only
shown that usp(2n) is contained in u(2n)∩ sp(2n,C), etc. Prove that they are in fact equal.
That is, prove that (10.9) and (10.10) are correct.

5.10.3. Show that W as given by (3.9.8) belongs to USp(2n).

5.10.4. Show that the matrix elements of (real) orthogonal matrices and unitary matrices
are less than or equal to 1 in absolute value. Show that the matrix elements of matrices
in GL(n,R) [which, as we have seen in Section (3.10), is a subgroup of Sp(2n,R)] are
unbounded. That is, there are matrices in GL(n,R) whose matrix elements are arbitrarily
large.
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5.10.5. Verify that requiring Sc to commute with J is equivalent to (10.18). Verify the
claim that each cjk must be a linear combination of σ0 and J2 with real coefficients. Verify
that requiring Sa to anticommute with J is equivalent to (10.20). Verify the claim that each
ajk must be a linear combination with real coefficients of σ3 and σ1.

5.10.6. Verify the multiplication rule (10.24) through (10.27). Show that the multiplication
of quaternion matrices is generally not commutative.

5.10.7. Verify the relations (10.29) through (10.34).

5.10.8. Verify (10.35) by explicit calculation. Find the same result using (3.1.7) and (10.33).

5.10.9. Verify (10.36) directly from (10.24) and the definition (10.31).

5.10.10. Verify (10.41). Is it true that any unitary matrix that is also symplectic with
respect to (3.2.10) must have quaternion matrices in its 2× 2 blocks? Prove your answer.

5.10.11. Verify (10.49).

5.10.12. Show that the quaternion inner product (10.43) has the property

(y, x)H = [(x, y)H]∗. (5.10.52)

Suppose that the vector x has quaternion entries xj. Let λ be any quaternion. Define xλ to
be the vector with quaternion entries xjλ. Show that the quaternion inner product has the
properties

(x, yλ)H = [(x, y)H]λ, (5.10.53)

(xλ, y)H = λ∗(x, y)H. (5.10.54)

We see that in the case of quaternion vectors with the quaternion inner product (10.43),
what is the analog of scalar multiplication must take place by multiplication on the right.

5.10.13. Show that the set of nonzero quaternion matrices forms a group. Show that any
nonzero quaternion matrix Q can be written in the form

Q = exp(v0σ
0 + iv · σ), (5.10.55)

where v0 and v are real. Thus, these quaternion matrices form a Lie group. Find the
associated Lie algebra. Consider quaternions with determinant +1. In view of (10.30) and
Exercise 10.14 below, we will refer to such quaternions as unit quaternions. Show that the
set of all unit quaternion matrices forms a subgroup that is identical to SU(2). Show, in
view of (10.30), that SU(2) may be viewed as the manifold S3, the 3-dimensional surface of a
sphere in 4-dimensional Euclidean space, also known as the 3-sphere. (It can be shown that
among all the n-spheres, only S1 and S3 also have the structure of a group.) Suppose that
Q is a unit quaternion matrix. Using the parameterization (10.29) and the result (3.9.20),
find the matrix M(Q).

5.10.14. Define a quaternion matrix norm by the relation

‖ Q ‖=
√

det(Q). (5.10.56)

Show that this norm satisfies (3.7.10) through (3.7.13).
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5.10.15. The purpose of this exercise is to define quaternions and to show that, as discovered
by Cayley, they are faithfully represented by quaternion matrices.14 The quaternion field
H, often called Hamilton’s quaternion algebra, is a four-dimensional linear vector space over
the real number field. Let the basis for this vector space be denoted by the symbols e, j, k, `.
Impose the following laws of multiplication among the basis vectors:

e2 = e, ej = je = j, ek = ke = k, e` = `e = `;

j2 = k2 = `2 = −e;

jk = −kj = `, k` = −`k = j, `j = −j` = k. (5.10.57)

Note that the quantities e, j, k, ` all anticommute. Since the vectors e, j, k, ` form a basis,
the most general quaternion is a vector, which we will denote by the symbol q, of the form

q = ae+ bj + ck + d`, (5.10.58)

where the quantities a, b, c, d are real numbers.15 Suppose q′ is a second quaternion,

q′ = a′e+ b′j + c′k + d′`. (5.10.59)

We then have the addition rule

q + q′ = q′′ = a′′e+ b′′j + c′′k + d′′` (5.10.60)

with
a′′ = a+ a′, b′′ = b+ b′, c′′ = c+ c′, d′′ = d+ d′. (5.10.61)

Show, using the multiplication rules (10.57), that

qq′ = q′′ = a′′e+ b′′j + c′′k + d′′` (5.10.62)

with

a′′ = aa′ − bb′ − cc′ − dd′,
b′′ = ab′ + ba′ + cd′ − dc′,
c′′ = ac′ + ca′ + db′ − bd′,
d′′ = ad′ + da′ + bc′ − cb′. (5.10.63)

Now make the following correspondence ↔ between the quaternion matrices σ0, −iσ1,
−iσ2, −iσ3 and the quaternion basis vectors e, j, k, `:

σ0 ↔ e,

14For faithful representations of quaternions by real 4× 4 matrices, see Exercise 11.1.7.
15Other authors, including Hamilton, commonly use the symbols 1, i, j, k for our e, j, k, `. Our notation

is designed to avoid confusion between quaternion basis vectors and the quantities 1 and
√
−1. Finally

we remark that if the coefficients a, b, c, d are permitted to be complex, the resulting object is called a
biquaternion.
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−iσ1 ↔ j,

−iσ2 ↔ k,

− iσ3 ↔ `. (5.10.64)

Make the correspondence ↔ into a linear mapping by extending it from basis elements
to arbitrary elements in a linear fashion. Suppose q is the quaternion (10.58). Define a
corresponding quaternion matrix Q by the rule

Q = aσ0 + b(−iσ1) + c(−iσ2) + d(−iσ3) =

(
a− id −c− ib
c− ib a+ id

)
, (5.10.65)

and make the correspondence
Q↔ q. (5.10.66)

Using (7.3), verify the arithmetic in (10.65). By linearity the correspondence (10.66) and
the correspondence

Q′ ↔ q′ (5.10.67)

imply the correspondence
Q′ +Q↔ q′ + q. (5.10.68)

Verify this assertion. Using (10.57) and the rules for matrix multiplication, show that the
correspondences (10.66) and (10.67) imply the correspondence.

Q′Q↔ q′q. (5.10.69)

See (7.40). Prove that quaternion multiplication is associative.
Given any quaternion q of the form (10.58), the conjugate quaternion q∗ is defined by

the relation
q∗ = ae− bj − ck − d`. (5.10.70)

Show that the correspondence given by (10.65) and (10.66) implies the correspondence

Q† ↔ q∗. (5.10.71)

Review Exercise 10.14. Compare q∗q and qq∗with ||Q||2.

5.10.16. Suppose M is a (possibly complex) symplectic matrix. Then according to (3.1.8)
and (3.1.9), M is nonsingular. Consequently, M must have a unique polar decomposition of
the form

M = PU, (5.10.72)

where P is positive definite Hermitian and U is unitary. Show, in analogy to (3.8.6) and
(3.8.7), that P and U are also symplectic. Next show, in analogy to the derivation of
(3.9.33), that P must have determinant +1. Now consider the matrix U . Since U is both
unitary and symplectic, it must belong to USp(2n). Show that if U is sufficiently near
the identity, then it must have determinant +1. But since USp(2n) is connected (indeed,
simply connected), every matrix in USp(2n) can be continuously deformed to the identity
while remaining within USp(2n). Show, by continuity arguments, that these circumstances
require that all U in USp(2n) must have determinant +1. Finally, use (10.72) to show that
M must have determinant +1.
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5.10.17. Review Exercises 3.1.2 and 3.1.3. Show that the groups USp(2) and SU(2), and
correspondingly the Lie algebras usp(2) and su(2), are the same.

5.10.18. The quantities xj and yj appearing in (10.46) are quaternion matrices, and there-
fore can be written in the form

yj =

(
qj sj
pj rj

)
, (5.10.73)

xj =

(
q̃j s̃j
p̃j r̃j

)
, (5.10.74)

where the various entries are (possibly complex) numbers and ˜ is simply a mark that
distinguishes quaternion matrix entries associated with an xj from those associated with a
yj. Let z, w, z̃, and w̃ be column vectors with 2n entries of the form

z = (q1, p1, q2, p2, · · · qn, pn)T , (5.10.75)

w = (s1, r1, s2, r2, · · · sn, rn)T , (5.10.76)

z̃ = (q̃1, p̃1, q̃2, p̃2, · · · q̃n, p̃n)T , (5.10.77)

w̃ = (s̃1, r̃1, s̃2, r̃2, · · · s̃n, r̃n)T . (5.10.78)

The vector z is made from the entries in the first columns of the yj and the vector w is made
from the entries in the second columns of the yj, etc. We know that the quantity (x, y)H is a
quaternion matrix. Show, using (10.38) and (10.46), that it is the quaternion matrix given
by the relation

(x, y)H =

(
−(w̃, J ′z) −(w̃, J ′w)
(z̃, J ′z) (z̃, J ′w)

)
(5.10.79)

where J ′ is the matrix (3.2.10), the matrix we have been calling J in this section. Evidently
the entries of (x, y)H consist of fundamental symplectic 2-forms involving the vectors z, w,
z̃, and w̃. Show that (10.79) can also be written in the more symmetric form

(x, y)H = −J2

(
(z̃, J ′z) (z̃, J ′w)
(w̃, J ′z) (w̃, J ′w)

)
. (5.10.80)

Verify that the matrix appearing in the second factor in (10.80) is a quaternion matrix. Hint:
Use the fact that (x, y)H is a quaternion matrix and that J2 is an invertible quaternion matrix.
Finally, verify that (10.45) is equivalent to the two ordinary vector and matrix relations

z′ = Mz, (5.10.81)

w′ = Mw, (5.10.82)

and that there are analogous results for (10.44). Note that, in writing relations of the form
(10.73), we have not forced the yj, etc., to be quaternion matrices. Show that to do so one
should require the relations

sj = −p̄j, (5.10.83)

rj = q̄j, (5.10.84)
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where the overbar denotes complex conjugation. Thus, yj takes the form

yj =

(
qj −p̄j
pj q̄j

)
, (5.10.85)

and similarly for xj. Hint: Use (10.29), but realize the that w’s appearing in it are different
from those in (10.76). Finally, show that

(y, y)H = σ0
∑
j

(|qj|2 + |pj|2) = σ0
∑
j

det yj. (5.10.86)

5.10.19. The work of Section 3.8.2 showed that any element of Sp(2n,R) can be written
uniquely in the form

M = exp(JSa) exp(JSc). (5.10.87)

Also, according to Section 3.8.1, any unitary matrix U can be written in the form

U = exp(A) (5.10.88)

where A is anti-Hermitean. What can be said about matrices in USp(2n)?

5.11 Möbius Transformations

Möbius transformations occur in many branches of pure mathematics, and also in some areas
of applied mathematics. This section defines and lays out some general properties of Möbius
transformations. Two subsequent sections use Möbius transformations to provide a relation
between Sp(2n,R) and the theory of several complex variables, and to provide a relation
between symplectic and symmetric matrices. This second relation generalizes the Cayley
representation of Section 3.12. Later, in Section 6.7 of Chapter 6, Möbius transformations
will be used to provide a fundamental connection between symplectic maps and gradient
maps, thereby producing a plethora of generating functions.

5.11.1 Definition in the Context of Complex Variables

In the theory of a single complex variable z, one set of transformations of particular interest
is the set of Möbius or homographic or fractional linear transformations given by relations
of the kind16

z′ = (az + b)/(cz + d). (5.11.1)

(Some authors refer to these transformations as linear even though they manifestly are not.)
Let M be a 2× 2 matrix of the form

M =

(
a b
c d

)
(5.11.2)

16In 1778, years before Möbius and Cayley were born, Euler employed this relation and, apart from
interchanging the letters a and b in the numerator and the letters c and d in the denominator, wrote the
right side of (11.1) in exactly the same form as it appears here. He also considered the possibility that z
was the tangent of some other quantity as in (3.11.2).
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where the coefficients a through d are those appearing in (11.1). We view (11.1) as a
transformation TM associated with the matrix M , and write (11.1) in the compact form

z′ = TM(z). (5.11.3)

Suppose TN is a second Möbius transformation sending z′ to z′′,

z′′ = TN(z′). (5.11.4)

Upon combining (11.3) and (11.4), we get the composite transformation

z′′ = TN(z′) = TN(TM(z)). (5.11.5)

Direct evaluation of (11.5) shows that the composite transformation is given by the relation

TNTM = TNM . (5.11.6)

Note also that TI , where I is the identity matrix, is the identity transformation,

TI(z) = z. (5.11.7)

Suppose we agree to work with Möbius transformations for which the matrix (11.2) has
nonzero determinant. Then (11.6) and (11.7) show that such Möbius transformations form
a group. Moreover, suppose we scale all the entries in (11.2) by a common factor. In
particular, suppose we select the scaling factor in such a way that the matrix (11.2) has
determinant +1. [This will require scaling by a complex number if det(M) is not positive.]
Examination of (11.1) shows that such scaling leaves the Möbius transformation unchanged.
That is, there is the relation

TλM(z) = TM(z) (5.11.8)

where λ is any non vanishing scalar. We may therefore restrict our attention to matrices
(11.2) that are symplectic. Thus, the Möbius transformations associated with these matrices
provide a realization of Sp(2,R) or Sp(2,C) as a set of nonlinear transformations of the
complex plane into itself. We remark that this realization is of mathematical interest for
the construction of unitary representations of Sp(2,R). It is of physical interest for the
construction of unitary representations of the Lorentz group (needed for elementary particle
physics) and for laser optics. In the case of laser optics, the Möbius transformation is
essentially the so-called ABCD law for the propagation of axially symmetric Gaussian beams.

5.11.2 Matrix Extension

The Möbius transformation can be extended/generalized to higher dimensions in the follow-
ing way. Let U be a n× n matrix and let M be a 2n× 2n matrix written in terms of n× n
matrices AM through DM in the block form

M =

(
AM BM

CM DM

)
. (5.11.9)
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(Here we use the superscript M in connection with AM through DM to indicate that these
matrices depend on M .) Define a transformation TM associated with M that sends U to U ′

by the rule
U ′ = TM(U) = (AMU +BM)(CMU +DM)−1. (5.11.10)

Then it can be verified by direct but slightly tedious matrix algebra that successive transfor-
mations again obey the composition law (11.6). Indeed, the composition law holds for any
set of n×n matrices U and 2n×2n matrices M and N . Thus, if we require that the matrices
M be invertible, the transformations TM provide a representation of the group GL(2n,C).
Note that according to (11.10) these transformations are again nonlinear. Moreover, in
analogy to (11.8), there is the scaling relation

TλM(U) = TM(U) (5.11.11)

where λ is any non vanishing scalar. We may therefore restrict our attention to matrices
(11.9) that have unit determinant. Thus, if we require that the matrices M have unit
determinant, the associated Möbius transformations provide a realization of SL(2n,C) as a
set of nonlinear transformations of the set of n× n matrices into itself.

5.11.3 Invertibility Conditions

Of course, for (11.10) to make sense, we must require that the matrix (CMU + DM) be
invertible,

det(CMU +DM) 6= 0. (5.11.12)

We will learn that this invertibility condition entails, and is entailed by, three others. That
is, we will learn that there are four equivalent invertibility conditions. First we must see
what these equivalent invertibility conditions might be.

The relation (11.10) can be solved for U by matrix manipulation. First multiply both
sides of (11.10) on the right by (CMU +DM). So doing gives the result

U ′(CMU +DM) = AMU +BM (5.11.13)

which, when multiplied out, becomes

U ′CMU + U ′DM = AMU +BM . (5.11.14)

Now rearrange terms in (11.14) so that it becomes

(U ′CM − AM)U = −U ′DM +BM . (5.11.15)

This relation can be rewritten in the form

U = (U ′CM − AM)−1(−U ′DM +BM). (5.11.16)

This assertion makes sense if (U ′CM − AM) is invertible,

det(U ′CM − AM) 6= 0. (5.11.17)
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On the other hand, from (11.10) and the group property (11.6), we deduce that

TM−1(U ′) = TM−1(TM(U)) = TM−1M(U) = TI(U) = U. (5.11.18)

But, from the general definition (11.10), there is also the relation

TM−1(U ′) = (AM
−1

U ′ +BM−1

)(CM−1

U ′ +DM−1

)−1. (5.11.19)

Comparison of (11.18) and (11.19) gives the result

U = (AM
−1

U ′ +BM−1

)(CM−1

U ′ +DM−1

)−1. (5.11.20)

For this result to make sense, the matrix (CM−1
U ′ +DM−1

) must be invertible,

det(CM−1

U ′ +DM−1

) 6= 0. (5.11.21)

Also, comparison of (11.20) and (11.16) gives the identity

(AM
−1

U ′ +BM−1

)(CM−1

U ′ +DM−1

)−1 = (U ′CM − AM)−1(−U ′DM +BM) (5.11.22)

which must hold for any matrices U ′ and M as long as (11.17) and (11.21) are satisfied.
Observe that the identity (11.22) can also be written in the form

(AM
−1

U ′ +BM−1

)(CM−1

U ′ +DM−1

)−1 = (−U ′CM + AM)−1(U ′DM −BM). (5.11.23)

Finally, (11.20) can be solved for U ′ by using the same kind of matrix manipulation that
was employed to solve (11.10) for U . So doing gives the result

U ′ = (UCM−1 − AM−1

)−1(−UDM−1

+BM−1

). (5.11.24)

This assertion makes sense if (UCM−1 − AM−1
) is invertible,

det(UCM−1 − AM−1

) 6= 0. (5.11.25)

Also, comparison of (11.10) and (11.24) gives the identity

(AMU +BM)(CMU +DM)−1 = (UCM−1 − AM−1

)−1(−UDM−1

+BM−1

), (5.11.26)

which must hold for any matrices U and M as long as (11.12) and (11.25) are satisfied. Note
that the identities (11.22) and (11.26) are equivalent: M is simply replaced by M−1.

We will now prove that the four invertibility conditions (11.12), (11.17), (11.21), and
(11.25) are equivalent. Let In and I2n be the n×n and 2n×2n identity matrices, respectively.
Then, using the representation (11.9), the equations

MM−1 = M−1M = I2n (5.11.27)

are equivalent to the set of equations

AMAM
−1

+BMCM−1

= AM
−1

AM +BM−1

CM = In, (5.11.28)
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CMAM
−1

+DMCM−1

= CM−1

AM +DM−1

CM = 0, (5.11.29)

AMBM−1

+BMDM−1

= AM
−1

BM +BM−1

DM = 0, (5.11.30)

CMBM−1

+DMDM−1

= CM−1

BM +DM−1

DM = In. (5.11.31)

Now examine the pair of relations (11.20) and (11.10). We claim that there is the equality

(CM−1

U ′ +DM−1

)(CMU +DM) = In. (5.11.32)

The proof is by direct calculation. Use of (11.10) gives the result

(CM−1

U ′ +DM−1

) = (CM−1

)(AMU +BM)(CMU +DM)−1 +DM−1

. (5.11.33)

Here we have assumed that (11.12) holds. From (11.33) we conclude that

(CM−1

U ′ +DM−1

)(CMU +DM) = CM−1

(AMU +BM) +DM−1

(CMU +DM). (5.11.34)

The terms on the right side of (11.34) can be regrouped to give the result

CM−1

(AMU+BM)+DM−1

(CMU+DM) = (CM−1

AM+DM−1

CM)U+(CM−1

BM+DM−1

DM).
(5.11.35)

By (11.29), the first factor on the right side of (11.35) vanishes, and by (11.31) the second
factor equals In. Therefore (11.32) is correct. Now take determinants of both sides of (11.32)
to find the result

[det(CM−1

U ′ +DM−1

)][det(CMU +DM)] = 1. (5.11.36)

We conclude that (11.12) and (11.21) are logically equivalent,

det(CM−1

U ′ +DM−1

) 6= 0 ⇔ det(CMU +DM) 6= 0. (5.11.37)

In a similar way, using (11.24), it can be verified that

(UCM−1 − AM−1

)(U ′CM − AM) = In, (5.11.38)

providing (11.25) holds. Hence (11.17) and (11.25) are logically equivalent,

det(U ′CM − AM) 6= 0 ⇔ det(UCM−1 − AM−1

) 6= 0. (5.11.39)

It remains to be shown that the invertibility conditions (11.12) and (11.25) are logically
equivalent,

det(CMU +DM) 6= 0 ⇔ det(UCM−1 − AM−1

) 6= 0. (5.11.40)

Once this is done we will have the complete chain of inferences

(11.21) ⇔ (11.12) ⇔ (11.25) ⇔ (11.17). (5.11.41)

Specifically, in terms of matrices, (11.41) states that there is the complete chain of inferences

det(CM−1

U ′ +DM−1

) 6= 0 ⇔ det(CMU +DM) 6= 0 ⇔
det(UCM−1 − AM−1

) 6= 0 ⇔ det(U ′CM − AM) 6= 0. (5.11.42)
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We now check the logical equivalence (11.40). It can be verified from (11.28) through
(11.31) by matrix multiplication that there is the identity(

I −U
CM DM

)(
AM

−1
BM−1

CM−1
DM−1

)
=

(
AM

−1 − UCM−1
BM−1 − UDM−1

0 In

)
. (5.11.43)

Also, there is the identity(
In −U
CM DM

)
=

(
In 0
CM In

)(
In −U
0 CMU +DM

)
. (5.11.44)

Taking the determinant of both sides of (11.44) gives the result

det

(
In −U
CM DM

)
= det(CMU +DM). (5.11.45)

Finally, take the determinant of both sides of (11.43) and use (11.45) to get the relation

[det(CMU +DM)][det(M−1)] = det(AM
−1 − UCM−1

) = (−1)n det(UCM−1 − AM−1

).
(5.11.46)

Since we have assumed that M is invertible, we have [det(M−1)] 6= 0 and therefore the
relation (11.46) implies the relation (11.40).

5.11.4 Transitivity

We close this section with a simple, but useful observation. Suppose U and V are any two
nonsingular matrices. Then there is a nonsingular matrix M such that

V = TM(U). (5.11.47)

That is, any nonsingular matrix can be sent into any other nonsingular matrix by a suitable
Möbius transformation. To verify this assertion, simply define M by the equation

M =

(
V U−1 0

0 I

)
, (5.11.48)

and see that (11.47) is satisfied.

Exercises

5.11.1. Verify that
TI(U) = U (5.11.49)

and that (11.6) holds for the generalized Möbius transformation (11.10).

5.11.2. Verify (11.24).

5.11.3. Verify (11.28) through (11.31).
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5.11.4. The critical reader might object that the proof of the logical equivalence (11.37) is
incomplete. Why? Using (11.20) under the assumption (11.21), show that

(CMU +DM)(CM−1

U ′ +DM−1

) = In. (5.11.50)

Similarly, complete the proof of the logical equivalence(11.39). Verify (11.38) and show that

(U ′CM − AM)(UCM−1 − AM−1

) = In (5.11.51)

using (11.16) under the assumption (11.17).

5.11.5. Verify (11.43) through (11.46).

5.11.6. Suppose two functions f(z) and g(z) are connected by the relation

g(z) = [af(z) + b]/[cf(z) + d] (5.11.52)

which, employing the notation of (11.2) and (11.3), we also write in the form

g = TM(f). (5.11.53)

Assume that detM 6= 0. Write g ∼ f if (11.53) holds for some M . Show that ∼ is an
equivalence relation among functions. (For the definition of an equivalence relation, see
Exercise 5.12.7.) Show that

f ∼ g (5.11.54)

if, and only if,
Sf = Sg (5.11.55)

where S denotes the Schwarzian derivative (1.2.16). Show that the differential equation

Sf = 0 (5.11.56)

has, as its most general solution, the relation

f(z) = (az + b)/(cz + d). (5.11.57)

5.11.7. Exercise 3.12.5 introduced the Cayley function cay defined by

cay(X) = (I −X)/(I +X). (5.11.58)

Show that
cay(X) = TM(X) (5.11.59)

with

M = (1/
√

2)

(
−I I
I I

)
. (5.11.60)

Verify that
M2 = I, (5.11.61)

in agreement with (3.12.47).
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5.12 Symplectic Transformations and Siegel Space

5.12.1 Action of Sp(2n,C) on the Space of Complex Symmetric
Matrices

Suppose X and Y are n × n real matrices. Define the most general complex n × n matrix
Z by writing the relation

Z = X + iY. (5.12.1)

Now, with U replaced by Z, define a generalized Möbius transformation TM associated with
any 2n× 2n matrix M and sending Z to Z ′ by the rule

Z ′ = TM(Z) = (AZ +B)(CZ +D)−1. (5.12.2)

Here, for the moment, we have omitted the M superscript on the matrices A through D.
Suppose M is symplectic. Then it is a remarkable fact that Z ′ is symmetric if Z is sym-

metric. (We say that Z is symmetric if X and Y are symmetric.) Thus, if we regard complex
symmetric matrices as generalizations of a single complex variable, then the transformations
TM with M symplectic can be viewed as transformations of a generalized complex variable.

Brute force verification of the assertion that Z ′ is symmetric if Z is symmetric (provided
that M is symplectic) is difficult. However, the proof is easy if we make use of the fact
that Sp(2n,C) is generated by matrices of the form (3.3.9) through (3.3.11). The assertion
can easily be verified for the transformations associated with these matrices, and use of the
group property (11.6) then assures that the assertion is true for all symplectic matrices.

We now check each of the cases (3.3.9) through (3.3.11). Suppose M is of the form
(3.3.9). Then we have the transformation

Z ′ = Z +B. (5.12.3)

Because of (3.3.12), Z ′ is symmetric if Z is symmetric. Next suppose M is of the form
(3.3.11). Then we have the transformation

Z ′ = AZAT (5.12.4)

where use has been made of (3.3.13). Again Z ′ is symmetric if Z is. Finally, suppose that
M is of the form (3.3.10). Recall the conjugacy relation (3.10.8). Evidently, in view of this
relation, of what has already been checked, and by the group property, verification of the
case (3.3.10) is equivalent to verification of the case M = J . When M = J , we have the
transformation

Z ′ = −Z−1. (5.12.5)

Again it is evident that Z ′ is symmetric if Z is.

5.12.2 Siegel Space and Sp(2n,R)

One of the properties of the Möbius transformation (11.1), when the coefficients a through
d are real and detM = ad − bc > 0, is that it maps the upper half plane y > 0 into it-
self, and is in fact the most general analytic mapping of the upper half plane into itself.
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Consider all symmetric matrices of the form (12.1) with Y positive definite. Such matrices
are sometimes called a Siegel space, and may be viewed as a generalized upper half plane
(guhp). Remarkably, this guhp is mapped into itself by the generalized Möbius transforma-
tion (12.2) providing M is real symplectic. (See Exercise 12.3.) Indeed, it can be shown
that the most general analytic mapping of the guhp into itself must be of the form (12.2)
with M an element of Sp(2n,R).

With regard to physical applications, we remark that the generalized Möbius realization
of Sp(4,R) is of interest for the propagation of generalized Gaussian laser beams when axial
symmetry is not assumed.

5.12.3 Group Actions on Homogeneous Spaces

5.12.3.1 Definition of a Homogeneous Space

What is going on here? Speaking abstractly, we have a group G [Sp(2n,R) in our case]
acting on some space Z (the guhp in our case) by mapping it into itself,

G : Z → Z. (5.12.6)

Suppose the action of G on Z is such that given any two “points” Z and Z ′ in Z, there is
some group element g in G whose action sends Z to Z ′. Then the action of G on Z is said
to be transitive, and the space Z is said to be homogeneous with respect to the group G.
The remarkable fact about a homogeneous space, as we will eventually show, is that there is
a natural identification between it and the coset space of the group G with respect to some
subgroup H. Moreover, the action of G on the homogeneous space is equivalent, under this
identification, to the action of G (under group multiplication) on its own coset space. Thus,
in a sense, homogeneous spaces are really aspects of various groups masquerading as if they
were independent spaces in their own right.

5.12.3.2 Siegel Space Is a Homogeneous Space

Before continuing our general abstract discussion, we will show that the guhp is a homo-
geneous space with respect to Sp(2n,R). First consider the point Z0 given by (12.1) with
X = 0 and Y = I,

Z0 = iI. (5.12.7)

Note that Z0 is symmetric and I is positive definite. Thus, Z0 is in the guhp, and may be
viewed as the analog of the point +i in the ordinary upper half plane. Next consider all
matrices L in Sp(2n,R) that leave Z0 fixed under the action (12.2). The relation

TL(Z0) = Z0, (5.12.8)

with Z0 given by (12.7), is equivalent to the relation

(AiI +B)(CiI +D)−1 = iI, (5.12.9)

which gives the relation
AiI +B = iI(CiI +D). (5.12.10)
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Upon equating real and imaginary parts in (12.10), we find the results

B = −C , D = A. (5.12.11)

Now look at (3.9.28). We see that L must be orthogonal as well as (real) symplectic.
We already know from Section 3.9 that such matrices form a U(n) subgroup in Sp(2n,R).
Evidently, a necessary and sufficient condition for L to satisfy (12.8) is that L belong to the
U(n) subgroup.

Next suppose that X is any real symmetric n × n matrix and Y is any real symmetric
positive definite n × n matrix. Since Y is real symmetric positive definite, it has a square
root Y 1/2 that is also real symmetric positive definite, and this matrix has an inverse Y −1/2

that is also real symmetric positive definite. (See Exercise 12.4.) Consider the matrix M(Z)
defined by (12.1) and the relation

M(Z) =

(
Y 1/2 0

0 Y −1/2

)(
I Y −1/2XY −1/2

0 I

)
=

(
Y 1/2 XY −1/2

0 Y −1/2

)
. (5.12.12)

Look at the two factors in (12.12). The first factor is of the form (3.3.11) and satisfies
(3.3.13). Therefore it is symplectic. The second factor is of the form (3.3.9) and satisfies the
first of the relations (3.3.12). Therefore it is also symplectic. It follows that M is symplectic.
Now let M act on Z0. We find the result

TM(Z0) = (Y 1/2iI +XY −1/2)(0iI + Y −1/2)−1

= (iY 1/2 +XY −1/2)Y 1/2 = X + iY = Z, (5.12.13)

where, according to (12.1), Z is an arbitrary point in the guhp. Moreover we have the
inverse relation

TM−1(Z) = TM−1(TM(Z0)) = TM−1M(Z0) = TI(Z
0) = Z0. (5.12.14)

This result follows from (11.37), which also appears in the logical equivalence chain (11.42),
and from (11.6). We note that (11.37) insures the mutual invertibility of any relation of
the form (11.10) and its inverse. Finally, let Z ′ be any other point in the guhp. Define a
symplectic matrix M ′ associated with Z ′ by the analog of (12.2). Then we have the result

Z ′ = TM ′(Z
0) = TM ′(TM−1(Z)) = TM ′M−1(Z). (5.12.15)

We conclude that the symplectic matrix M ′M−1 sends the arbitrary point Z in the guhp to
the arbitrary point Z ′ in the guhp. Therefore the guhp is indeed a homogeneous space with
respect to Sp(2n,R).

5.12.4 Homogeneous Spaces and Cosets

We now resume our general abstract discussion of homogeneous spaces. As before, Z will
denote some space on which some group G acts according to the relation

Z ′ = Tg(Z). (5.12.16)
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Here g is any element in G and Tg is some transformation rule that depends on g. In analogy
with (11.6), we require that the transformation rule satisfy the group representation property

Tg1(Tg2(Z)) = Tg1g2(Z) (5.12.17)

for all “points” Z in Z and all elements g1 and g2 in G. We also require the relation

Te(Z) = Z for all Z in Z, (5.12.18)

where e is the identity element in G.

5.12.4.1 Definition of Stability Group

Now pick some point in Z and call it Z0.17 Consider all elements h in G that keep Z0 fixed.
That is, consider all elements h such that

Th(Z
0) = Z0. (5.12.19)

If h1 is such an element, it follows from (12.17) through (12.19) that h−1
1 is also such an

element,

Th−1
1

(Z0) = Z0. (5.12.20)

Also, if h1 and h2 are two such elements, it follows from (12.17) that the product h1h2 is
also such an element. We conclude that the elements h from a subgroup of G, which we will
call H. This subgroup is often referred to as the stability (stationary, isotropy, little) group
of Z0.

Suppose we had selected some other point Z1 instead of Z0. Then, since we assume that
the action of G is transitive, there is some g1 in G such that

Z1 = Tg1(Z0). (5.12.21)

Consider the subgroup of elements in G that keep Z1 fixed. From (12.17), (12.19), and
(12.21) we have the relations,

Tg1hg
−1
1

(Z1) = Tg1h(Tg−1
1

(Z1)) = Tg1h(Z
0)

= Tg1(Th(Z
0)) = Tg1(Z0) = Z1. (5.12.22)

We conclude that the subgroup that keeps Z1 fixed is conjugate (under g1) to the subgroup
that keeps Z0 fixed. See Exercise 12.6. Therefore, it does not really matter what point in
Z we choose to be a fixed point.

17We reiterate that in this subsection and the next we are again working in the abstract. That is, we are
dealing with some general point Z0 in some abstract space Z and not necessarily the specific point Z0 given
by (12.7) in the concrete case Z = guhp.
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5.12.4.2 Use of Stability Group to Define Cosets

We will now use the subgroup H to define an equivalence relation among the elements of G.
Suppose g1 and g2 are any two elements in G. We say that g2 is equivalent to g1 (and write
g2 ∼ g1) if there exists an h in H such that

g−1
1 g2 = h or, put another way, g2 = g1h. (5.12.23)

This equivalence relation can be used to partition the elements of G into disjoint equivalence
classes. These equivalence classes are called the left cosets of G with respect to H.18 The
collection of all of these cosets is called the left coset space, and is customarily denoted by
the symbols G/H. See Exercises 12.7 and 12.15.

5.12.4.3 Identification of a Homogeneous Space with Cosets

Suppose two group elements g1 and g2 both send Z0 to the same point Z ′,

Tg1(Z0) = Z ′, Tg2(Z0) = Z ′. (5.12.24)

Then from (12.24) we have the result

Tg−1
1 g2

(Z0) = Tg−1
1

(Tg2(Z0)) = Tg−1
1

(Z ′) = Z0. (5.12.25)

It follows from (12.25) and the definition of H that there is an h in H such that (12.23) is
satisfied, and we include that g1 and g2 are in the same equivalence class (coset). Conversely,
if g1 and g2 are equivalent (in the same coset), then it follows from (12.23) and (12.19) that

Tg2(Z0) = Tg1h(Z
0) = Tg1(Th(Z

0)) = Tg1(Z0). (5.12.26)

Thus, they then both send Z0 to the same point Z ′. We conclude that the points Z ′ may be
used to label the cosets, and that the correspondence between cosets in G/H and points Z ′

in Z is one-to-one. Put another way, to see what coset a particular group element g belongs
to, simply compute Tg(Z

0). We conclude that there is a natural identification between points
in Z and cosets in G/H:

Z ↔ G/H. (5.12.27)

5.12.5 Group Action on Cosets Equals Group Action on a
Homogeneous Space

Next, suppose that g1 is some element in G. All elements in the same coset as g1 are of the
form g1h with h being an arbitrary element in H. For any element in this coset we have the
result

Tg1h(Z
0) = Tg1(Th(Z

0)) = Tg1(Z0) = Z1. (5.12.28)

18Note that while, for the second relation in (12.23), the elements of H act by multiplication on the right,
the elements of G that are being acted on appear on the left.
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Let g be any element in G. Consider the element gg1. It must belong to some coset. Suppose
g2 also belongs to this coset. Then we must have the relation

gg1 = g2h
′, (5.12.29)

where h′ is some element in H. We note that (12.29) can also be written in the form

g(g1h) = g2h
′′, (5.12.30)

where h and h′′ are elements in H. In this form we see that the effect of g in (12.30) is to
send the coset containing g1 to the coset containing g2. That is, elements g in G act on
“points” (cosets) in G/H by left multiplication.

Finally, suppose the coset g1 is labelled by Z1 as in (12.28), and that the coset containing
g2 is labelled by Z2,

Tg2(Z0) = Z2. (5.12.31)

Let us compute the action of g on Z1. We find the result

Tg(Z
1) = Tg(Tg1h(Z

0)) = Tgg1h(Z
0)

= Tg2h′′(Z
0) = Tg2(Th′′(Z

0)) = Tg2(Z0) = Z2. (5.12.32)

Upon comparing (12.32) and (12.30), we see that the action of G on Z is equivalent to the
left multiplicative action of G on G/H.

5.12.6 Application of Results to Action of Sp(2n,R) on Siegel
Space

How do these results work out in the case of Sp(2n,R) and its action on the guhp? From
the discussion surrounding (12.8) we learned that the subgroup H of Sp(2n,R) that keeps
Z0 fixed [with Z0 given by (12.7)] is U(n). It follows that points Z in the guhp Z are in
one-to-one correspondence with the cosets in Sp(2n,R)/U(n). Indeed, suppose we are given
a real symplectic matrix N . In accord with the previous discussion, to find out what coset
it belongs to we simply compute TN(Z0). From (12.2) and (12.7) we find the result

Z = TN(Z0) = (iA+B)(iC +D)−1. (5.12.33)

Here N is assumed to be written in the block form (3.3.1). Thanks to Exercise 12.3, we
know that Z is in the guhp. Finally, we note that the generalized Möbius transformation
(12.2) is equivalent to the left multiplicative action of Sp(2n,R) on Sp(2n,R)/U(n).

Let Z be an arbitrary point in the guhp. We know that it labels a coset of Sp(2n,R)/U(n)
and that, according to (12.13), the matrix M(Z) given by (12.12) belongs to this coset. The
most general matrix belonging to this coset, call it N , is of the form M(Z)L where L is in
U(n). We also know that the general element in U(n) can be written in the form exp(JSc

′
).

It follows that the general element N in Sp(2n,R) can be written uniquely in the form

N = M(Z) exp(JSc
′
) (5.12.34)
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for some (unique) point Z in the guhp and some Sc
′
. Since the general element in U(n) can

also be written in the form (3.9.19) with m unitary, it follows that N can just as well be
written uniquely in the form

N = M(Z)M(m) (5.12.35)

for some (unique) point Z in the guhp and some (unique) n × n unitary matrix m. The
factorization (12.34) or (12.35) provides what we will call a partial Iwasawa decomposition
or factorization for Sp(2n,R). For a discussion of the associated partial Iwasawa decompo-
sition of the Lie algebra sp(2n,R), see Exercise 7.2.12. For a discussion of what is usually
called the (full) Iwasawa decomposition, see Section *. For a variant of the partial Iwasawa
factorization, see Exercise 12.11.

Let us try to write M(Z) in factorized Lie form. Look again at the two factors in (12.12).
The second factor can be written in the form(

I Y −1/2XY −1/2

0 I

)
= exp

(
0 Y −1/2XY −1/2

0 0

)
= exp(JS), (5.12.36)

where S is given by the relation

S =

(
0 0
0 Y −1/2XY −1/2

)
. (5.12.37)

The first factor in (12.12) can be written in the form(
Y 1/2 0

0 Y −1/2

)
= exp

(
(1/2) log Y 0

0 (−1/2) log Y

)
= exp(JS) (5.12.38)

where S is given by the relation

S =

(
0 (1/2) log Y

(1/2) log Y 0

)
. (5.12.39)

For an explanation of the meaning of log Y , see Exercise 12.9. Of course, we also know that
M(Z) has a factorization of the form

M(Z) = exp(JSa) exp(JSc
′′
), (5.12.40)

where each of the factors on the right side of (12.40) is unique, and hence uniquely determined
by Z. Upon combining (12.34) and (12.40) we find the result

N = exp(JSa) exp(JSc
′′
) exp(JSc

′
)

= exp(JSa) exp(JSc), (5.12.41)

which should be compared with (3.8.24).
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5.12.7 Action of Sp(2n,R) on the Generalized Real Axis

We have seen that points Z in the guhp Z are in one-to-one correspondence with the cosets
in Sp(2n,R)/U(n). There is second coset/homogeneous space construction that will be of
future use. Consider the space of all real n× n symmetric matrices X. That is, consider all
matrices of the form (12.1) with Y = 0. This space may be viewed as a generalized real axis
(gra). Moreover, if we let any Sp(2n,R) element M act on X by the rule

X ′ = TM(X) = (AX +B)(CX +D)−1, (5.12.42)

then we know from the previous discussion that X ′ will also be symmetric. Thus, Möbius
transformations TM , with M symplectic and real, send the gra into itself. Moreover, if M
is of the form (3.3.9), then we have the transformation

X ′ = X +B. (5.12.43)

Consequently, since B can be any symmetric matrix, we see that the action of TM on the
gra is transitive. Therefore the gra is a homogeneous space.

In analogy with our previous discussion, take as a representative element in the gra the
matrix X0 defined by the equation

X0 = 0, (5.12.44)

and consider all matrices L in Sp(2n,R) that leave X0 fixed under the action (12.42). The
relation

TL(X0) = X0, (5.12.45)

with X0 given by (12.44), is equivalent to the relation

(A0 +B)(C0 +D)−1 = 0, (5.12.46)

which gives the relation
B = 0. (5.12.47)

We have already learned at the end of Section 3.10 that symplectic matrices with B = 0 form
a subgroup. See (3.10.19) and (3.10.20). This subgroup does not seem to have an established
name, but let us call it H(2n,R) or H(2n,C) depending on the field that is being employed.
Then we know from the standard construction discussed earlier that elements in the gra are
in one-to-one correspondence with cosets in Sp(2n,R)/H(2n,R).

As a sanity check, let us compare dimensions. First compute the dimension of H(2n,R).
Since the block A in (3.10.20) is an arbitrary n × n matrix, its dimension is n2. Since the
block C is also n × n, and symmetric, its dimension is n(n + 1)/2. Finally, the block D is
completely specified by (3.3.8), and therefore does not contribute to the dimension count.
We conclude that the dimension of H(2n,R) is given by the relation

dimH(2n,R) = n2 + n(n+ 1)/2 = n(3n+ 1)/2. (5.12.48)

We already know that the dimension of Sp(2n,R) is n(2n+ 1). Therefore we have the count

dim[Sp(2n,R)/H(2n,R)] = dim[Sp(2n,R)]− dim[H(2n,R)]

= n(2n+ 1)− n(3n+ 1)/2 = n(n+ 1)/2. (5.12.49)
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However, since the gra consists of n × n symmetric matrices, its dimension must also be
n(n+ 1)/2,

dim gra = n(n+ 1)/2. (5.12.50)

Comparison of (12.49) and (12.50) gives the result

dim[Sp(2n,R)/H(2n,R)] = dim gra, (5.12.51)

as expected.

5.12.8 Symplectic Modular Groups

We close this section with a final remark. Generally, the entries in a matrix belonging to
Sp(2n,R) can be any real numbers subject only to the symplectic condition. We might
wonder whether there are subgroups of Sp(2n,R) for which all the entries in the various
matrices in a given subgroup are integers (positive, negative, or zero). Such subgroups do
indeed exist, and are called symplectic modular groups. The symplectic modular groups
and their associated generalized Möbius transformations are important for the theory of
automorphic, theta, and elliptic functions.19 Automorphic and theta functions are among
the most important tools of analytic number theory. Moreover, theta functions and the
elliptic functions they generate are key to many soluble problems in nonlinear dynamics.

Exercises

5.12.1. For the transformations (12.2), show that T−M = TM . See (11.11). Consequently,
the group of Möbius transformations described by M is only homomorphic to Sp(2n,R),
and does not provide a faithful representation. [It does provide a faithful representation of
the quotient group G/H where G = Sp(2n,R) and H is the invariant subgroup consisting
of ±I. This quotient group is called the projective symplectic group, and is denoted by the
symbols PSp(2n,R).]

5.12.2. Verify the relations (12.3) through (12.5). With regard to (12.5), also show that Z ′

is symmetric if Z is, and vice versa.

5.12.3. Suppose Z is given by (12.1) with X real symmetric, and Y real symmetric and
positive definite. That is, suppose Z is in the guhp. Also, assume that M is real symplectic.

a) Show that Z ′ given by (12.3) is also in the guhp.

b) Show that Z ′ given by (12.4) is also in the guhp.

c) Show that Z is invertible, and that Z ′ given by (12.5) is also in the guhp.

d) Show that Z ′ given by (12.2) is also in the guhp.

19Poincaré’s thesis (he was a student of Hermite) was devoted to what he called Fuchsian functions, but
are now called automorphic functions.
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Hint for part c: Since Y is real symmetric positive definite, there is a real orthogonal matrix
O such that

OY OT = D, (5.12.52)

where D is diagonal and has positive entries. Define D1/2 to be a diagonal matrix with
entries equal to the positive square root of the corresponding entries in D. Then we have
the relation

(D1/2)−1OZOT (D1/2)−1 = X ′ + iI, (5.12.53)

where X ′ is given by the relation

X ′ = (D1/2)−1OXOT (D1/2)−1. (5.12.54)

Verify that X ′ is real symmetric. Since X ′ is real symmetric, there is a real orthogonal
matrix R such that

RX ′RT = D′, (5.12.55)

where D′ is diagonal. Thus, we have the result

R(D1/2)−1OZOT (D1/2)−1RT = D′ + iI. (5.12.56)

Show that (D′ + iI) is invertible and that −(D′ + iI)−1 is in the guph. Finally, show that

− Z−1 = −OT (D1/2)−1RT (D′ + iI)−1R(D1/2)−1O (5.12.57)

is in the guhp.

5.12.4. Suppose Y is a real symmetric positive definite matrix. Study the hint to part c of
Exercise 12.3. Show that Y 1/2 defined by the relation

Y 1/2 = OTD1/2O (5.12.58)

satisfies
(Y 1/2)2 = Y, (5.12.59)

and is real symmetric positive definite and invertible, and that its inverse Y −1/2 defined by

Y −1/2 = OT (D1/2)−1O (5.12.60)

is also real symmetric positive definite.

5.12.5. Verify (12.12) through (12.15).

5.12.6. Let H0 be the subgroup that keeps Z0 fixed, and H1 be the subgroup that keeps
Z1 fixed. What (12.22) really shows is that all elements of the form g1hg

−1
1 , with h in H0,

are in H1. We write this inclusion relation, using set theoretic notation, in the form

g1H
0g−1

1 ⊂ H1. (5.12.61)

Show that there is also the relation

g1H
0g−1

1 ⊃ H1, (5.12.62)

and therefore
g1H

0g−1
1 = H1. (5.12.63)
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5.12.7. Let X be some (possibly abstract) set, and let ∼ be some relation (something that
can be true or false) among pairs of elements in X. The relation∼ is said to be an equivalence
relation if it satisfies three properties:

a) x ∼ x for all x in X (reflexive property).

b) x1 ∼ x2 implies x2 ∼ x1 for all x1, x2 in X (symmetric property) .

c) x1 ∼ x2 and x2 ∼ x3 implies x1 ∼ x3 for all x1, x2, x3 in X (transitive property).

The set of all elements in X that are equivalent (under some given equivalence relation ∼)
to a given x in X is called the equivalence class of x. Given an equivalence relation ∼ on
some set X, show that each x in X belongs to one and only one equivalence class. Thus,
under an equivalence relation, a set divides up in a natural way into disjoint subsets. Show
that both conjugacy and symplectic conjugacy are equivalence relations. See Exercise 3.5.7.
Let G be a group having a subgroup H. Show that (12.23) defines (satisfies the properties
of) an equivalence relation among the elements of G.

5.12.8. Verify (12.36) and (12.37).

5.12.9. Let D be the diagonal matrix of Exercise 12.3. Define log(D) to be a diagonal
matrix whose entries are the logarithms of the diagonal entries of D. Since the entries of D
are positive, these logarithms can all be taken to be real. Define log(Y ) by the rule

log(Y ) = OT log(D)O, (5.12.64)

where O is the real orthogonal matrix of Exercise 12.3. Show that this matrix satisfies the
relation

exp[log(Y )] = Y. (5.12.65)

Show also that log(Y ) is real and symmetric.

5.12.10. In Exercise 3.9.10 you should have found that the dimension of the vector space
spanned by all 2n× 2n real matrices of the form JSa is n(n + 1). Use (7.17) and (7.18) to
obtain this result. If Z = X + iY is n× n and symmetric (with X and Y real), show that
this space also has real dimension n(n+ 1). Use (12.34) or (12.35) to derive the relation

NNT = M(Z)MT (Z). (5.12.66)

Use (12.41) to derive the relation

NNT = exp(2JSa). (5.12.67)

Show from (12.66) and (12.67) that a knowledge of Z completely determines JSa. Use
(12.8), (12.13), and (12.34) to derive the relation

TN(Z0) = Z. (5.12.68)

[Here we are working in the guhp with Z0 given by (12.7).] Show that a knowledge of JSa

also completely determines Z. That is, show that the exp(JSc) part of N in (12.41) makes
no contribution to (12.68).



570 5. PRELIMINARY LIE CONCEPTS AND RELATED DELIGHTS

5.12.11. The representation (12.35) might be called a lower left partial Iwasawa decompo-
sition or factorization of N because the lower left block of M(Z) is empty. See (12.12). The
purpose of this exercise is to show that the general symplectic matrix N also has what we
will call an upper right partial Iwasawa decomposition or factorization of the form

N = M̄(Z̄)M(m̄), (5.12.69)

where M̄(Z̄) is a matrix of the form

M̄(Z̄) =

(
Ȳ −1/2 0

0 Ȳ 1/2

)(
I 0

−Ȳ −1/2X̄Ȳ 1/2 I

)
=

(
Ȳ −1/2 0
−X̄Ȳ −1/2 Ȳ 1/2

)
. (5.12.70)

(Here, as a test of the reader’s mental agility, the overbar does not denote complex con-
jugation, but rather is used only as a distinguishing mark.) To prove (12.69) and (12.70),
consider the matrix N̄ defined by the relation

N̄ = JNJ−1. (5.12.71)

Since N̄ is symplectic, it must have the factorization (12.35),

N̄ = M(Z̄)M(m̄). (5.12.72)

Suppose that N and N̄ are written in n× n block form,

N =

(
A B
C D

)
, (5.12.73)

N̄ =

(
Ā B̄
C̄ D̄

)
. (5.12.74)

Use (12.71) to find the relation between A,B,C,D and Ā, B̄, C̄, D̄. Show that

Z̄ = X̄ + iȲ = (iĀ+ B̄)(iC̄ + D̄)−1

= −(C − iD)(A− iB)−1 = −Z−1. (5.12.75)

Now solve (12.71) for N and use (12.72) to find the relation

N = J−1N̄J = JN̄J−1 = JM(Z̄)J−1JM(m̄)J−1. (5.12.76)

Use (12.12) and (3.9.19) to find the results

JM(Z̄)J−1 = M̄(Z̄), (5.12.77)

JM(m̄)J−1 = M(m̄). (5.12.78)

5.12.12. In the theory of a single complex variable z, the domain zz < 1 [or, equivalently,
(1− zz) > 0] is the (open) unit disk. Let Z be a matrix of the form (12.1) with both X and
Y real and symmetric. In the space of such matrices we may define a generalized unit disk
(gud) by the relation

(I − ZZ†) > 0, (5.12.79)
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where here > 0 means positive definite. (Note that since Z is symmetric, Z† = Z.) Suppose
that Z is in the guhp. In analogy with the case of a single complex variable, it can be shown
that W given by

W = (Z − iI)(Z + iI)−1 (5.12.80)

is then in the gud. Conversely, it can be shown that if W is in the gud, then Z given by the
inverse of (12.80),

Z = i(I +W )(I −W )−1, (5.12.81)

is in the guhp. Show that (12.80) sends the point Z0 given by (12.7) to the origin of the gud.
Note that (12.80) and (12.81) are transformations of the form (12.2) with complex entries
in M . Indeed, they can be written in the form

W = [(2i)−1/2Z − i(2i)−1/2I][(2i)−1/2Z + i(2i)−1/2I]−1, (5.12.82)

Z = [i(2i)−1/2W + i(2i)−1/2I][−(2i)−1/2W + (2i)−1/2I]−1. (5.12.83)

Show that the matrices M associated with the transformations (12.82) and (12.83), see
(12.2), are inverses of each other, and are both in Sp(2n,C).

5.12.13. Perform for the guhp a dimension sanity check analogous to that given by (12.51)
for the gra. That is, verify the relation

dim[Sp(2n,R)/U(n)] = dim guhp. (5.12.84)

5.12.14. Suppose M is a symplectic matrix with integer entries. Then the same is true of
its powers. Moreover, if N is any other such matrix, products made from M and N have
integer entries. Also, the matrices I and J are symplectic matrices with integer entries.
Finally, according to (3.1.9), inverse powers of M then also have integer entries. Thus, any
set of symplectic matrices with integer entries must form or be part of some group. As
described in Subsection 12.8, such groups are called symplectic modular groups. Show that
the matrices J2 [see (3.2.11)] and M and MT with M given by

M =

(
1 1
0 1

)
(5.12.85)

generate (by multiplication) a symplectic modular subgroup. Show that this group has an
infinite number of elements, and exhibit some of them. Consider n× n orthogonal matrices
with integer entries. Do they form a group? Show that there are only a finite number of
such matrices. Hint: Use Exercise 10.4.

5.12.15. Subsection 12.4 used the subgroup H to define an equivalence relation among the
elements of G. It involved right multiplication of elements g of G by elements h of H.
Recall (12.23). One can also set up an equivalence relation among elements of G using left
multiplication by elements of H. Suppose g1 and g2 are any two elements in G. We may
say that g2 is equivalent to g1 (and write g2 ∼ g1) if there exists an h in H such that

g2g
−1
1 = h or, put another way, g2 = hg1. (5.12.86)

Verify that (12.86) is indeed an equivalence relation. See Exercise 12.7. This equivalence
relation can also be used to partition the elements of G into disjoint equivalence classes.
These equivalence classes are called the right cosets of G with respect to H. The collection
of all of these right cosets is customarily denoted by the symbols H\G.
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5.13 Möbius Transformations Relating Symplectic

and Symmetric Matrices

5.13.1 Overview

Möbius transformations can also be used to show that there is an intimate connection
between symplectic matrices and symmetric matrices. Subsequently, as mentioned before, in
Section 6.7 the results of this section will be generalized to show that there is a fundamental
connection between symplectic maps and gradient maps.

To proceed, we will have to change notation. In the previous sections M was a 2n× 2n
matrix that characterized a Möbius transformation. In this section M will be a 2n × 2n
symplectic matrix that describes the outcome of a Möbius transformation acting on some
other 2n × 2n matrix W . Conversely, W will also be the outcome of the inverse Möbius
transformation acting on M . The Möbius transformation itself will be described by a 4n×4n
matrix.

Inspection of (3.11.5) shows that the Cayley representation for M in terms of the 2n×2n
symmetric matrix W is actually a Möbius transformation, and the inverse relation (3.11.12)
is also a Möbius transformation. Moreover, the relation between R and W displayed in
(4.8.26), and arising from a F2 generating function, is a Möbius transformation. In both cases
a Möbius transformation provides a relation between symplectic and symmetric matrices.

There is a deep reason why, as evinced by these two examples, there is a connection
between symplectic and symmetric matrices. And an understanding of this reason will
reveal that there are a great many ways of relating symplectic and symmetric matrices
by Möbius transformations. This understanding arises as follows: First, introduce a 4n
dimensional space and define two different symplectic forms on this space. Next show that
these forms are congruent under a Darboux transformation. Then show that one of these
symplectic forms is related to symplectic matrices in 2n dimensional space, and the other
is related to symmetric matrices in 2n dimensional space. The congruency of the two forms
then leads to a connection between symplectic and symmetric matrices. Finally, we will
show that this connection is given by Möbius transformations. Along the way we will make
use of Lagrangian planes.

5.13.2 The Cayley Möbius Transformation

Before beginning this trek, we pause to extract a useful matrix from the Cayley transfor-
mation. Inspection shows that the Cayley transformation (3.12.5) can be written in the
form

M = Tτ (W ). (5.13.1)

where τ is the 4n× 4n matrix

τ =

(
Aτ Bτ

Cτ Dτ

)
(5.13.2)

and the matrices Aτ through Dτ are given by the relations

Aτ = J, (5.13.3)
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Bτ = I, (5.13.4)

Cτ = −J, (5.13.5)

Dτ = I. (5.13.6)

More compactly, we may write

τ =

(
J I
−J I

)
. (5.13.7)

Here I is the 2n × 2n identity matrix I2n; and J , which we will sometimes write as J2n, is
the standard 2n × 2n fundamental matrix given by (3.1.1). We note, as is easily checked,
that τ has the pleasing property

τT τ = 2I4n or τ−1 = τT/2. (5.13.8)

Conversely, W can be written as a Möbius transformation of M in the form

W = Tτ−1(M). (5.13.9)

See (3.12.19), and make use of (13.8) to write

τ−1 =

(
−J/2 J/2
I/2 I/2

)
. (5.13.10)

We now define, for future use, a matrix σ given in terms of τ by the equation

σ =
√

2τ−1 = τT/
√

2 = (1/
√

2)

(
−J2n J2n

I2n I2n

)
. (5.13.11)

By this definition and (13.8), σ is orthogonal,

σ−1 = σT = (1/
√

2)

(
J2n I2n

−J2n I2n

)
. (5.13.12)

It can also be verified that

detσ = 1. (5.13.13)

See Exercise 13.1. Finally we note that, in terms of σ, the Cayley relations (3.12.19) and
(3.12.5) take the form

W = Tσ(M) (5.13.14)

and

M = Tσ−1(W ). (5.13.15)

[Note that, in view of (13.11) and with use of a scaling relation of the form (11.11) with the
substitutions M → σ or σ−1 or τ or τ−1 and U → M or W , the pair (13.1) and (13.9) and
the pair (13.14) and (13.15) are equivalent.] We will call Tσ the Cayley Möbius transforma-
tion.
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5.13.3 Two Symplectic Forms and Their Relation by a Darboux
Transformation

Now we are ready to continue. As outlined above, we begin by introducing two different
symplectic forms in 4n dimensional Euclidean space. The first, which we will denote by J4n,
is the standard 4n × 4n antisymmetric matrix given by (3.1.1). The second is the 4n × 4n
antisymmetric matrix J̃4n defined by the equation

J̃4n =

(
J2n 02n

02n −J2n

)
. (5.13.16)

Here 02n denotes the 2n × 2n null matrix. Evidently J̃4n has similar properties to those of
J4n. It is nonsingular, and in fact satisfies the relation

(J̃4n)
2

= −I4n. (5.13.17)

It also satisfies, as direct calculation shows, the relation

det J̃4n = 1. (5.13.18)

Our future discussion will capitalize on the properties of J4n and J̃4n and their block struc-
ture.

Is there a relation between J4n and J̃4n? Since both are 4n × 4n, antisymmetric, and
nonsingular, they must be congruent. That is, they must be related by a Darboux transfor-
mation. See Section 3.12. Indeed, it is easily verified that there is the congruency relation

σT (J4n)σ = J̃4n. (5.13.19)

Because σ is orthogonal, J4n and J̃4n are also conjugate (similar). We also remark that
(13.17) and (13.18) now follow directly from (13.12) and (13.19) and the already established
properties of J4n. Finally, we will call σ the Cayley Darboux matrix.

5.13.4 The Infinite Family of Darboux Transformations

Moreover, there is a 2n(4n+ 1) parameter family of Darboux transformations that connect
J4n and J̃4n. Suppose that J4n and J̃4n are congruent under the action of two Darboux
matrices α and β,

αT (J4n)α = J̃4n, (5.13.20)

βT (J4n)β = J̃4n. (5.13.21)

By taking determinants of both sides of (13.20) and (13.21) it is easy to see that both α
and β are invertible. Indeed, they both have determinant +1. All Darboux matrices have
determinant +1. See Exercise 13.1. We can say even more. For example, if (13.20) holds, it
follows from (13.20) and (13.17) that there is the relation

α−1 = −J̃4nαTJ4n. (5.13.22)
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To continue, from (13.20) and (13.21) we conclude that

αT (J4n)α = βT (J4n)β, (5.13.23)

from which it follows that

(βα−1)T (J4n)βα−1 = (α−1)TβT (J4n)βα−1 = J4n. (5.13.24)

Define a matrix γ by the rule

γ = βα−1 or, equivalently, β = γα. (5.13.25)

We then see from the far left and far right sides of (13.24) that γ is an element of the group
Sp(4n), γ ∈ Sp(4n). Conversely, if β is any element of the form

β = γα (5.13.26)

where γ is an element of Sp(4n) and α satisfies (13.20), then this β satisfies (13.21). We
may, for example, take for α the Cayley Darboux matrix σ and write

β = γσ. (5.13.27)

Then we get all possible matrices β satisfying (13.21) by using the representation (13.27)
and letting γ range over Sp(4n). Therefore the parameter count cited above, which is the
dimension of sp(4n), is correct:

dimension of set of 4n× 4n Darboux matrices = dim sp(4n) = 2n(4n+ 1). (5.13.28)

See (3.7.35) and Table 3.7.1. Thus, for example, in the simplest case of a two-dimensional
phase space, there is a 10 parameter family of Darboux matrices/transformations; and in
the case of a six-dimensional phase space there is a 78 parameter family of Darboux matri-
ces/transformations.

There is a variant of the argument just made that is also useful. Rewrite (13.27) in the
form

β = σµ (5.13.29)

where µ is yet to be determined. Now require that β be a Darboux transformation so that
(13.21) is satisfied. Then, from (13.19) and (13.29) we see that µ must obey the relation

µT (J̃4n)µ = J̃4n. (5.13.30)

We will describe such µ matrices as being J̃4n symplectic. They form a group which we will
refer to as S̃p(4n). According to Section 3.12, this group is related to Sp(4n) by a similarity
transformation, and therefore has the same dimension as sp(4n). See also Exercise 13.2.
Thus, we also get all possible matrices β satisfying (13.21) by using the representation
(13.29) and letting µ range over S̃p(4n). Either of the representations (13.27) and (13.29)
may be used, but sometimes one is more convenient than the other.

Finally, suppose α̂ is any matrix of the form

α̂ = γ̂σµ̂ (5.13.31)
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where
γ̂ ∈ Sp(4n) (5.13.32)

and
µ̂ ∈ S̃p(4n). (5.13.33)

Then, we find that

α̂T (J4n)α̂ = (γ̂σµ̂)T (J4n)γ̂σµ̂ = µ̂TσT γ̂T (J4n)γ̂σµ̂

= µ̂TσT (J4n)σµ̂ = µ̂T (J̃4n)µ̂

= J̃4n. (5.13.34)

Here we have used relations of the forms (3.1.2), (13.19), and (13.30). We conclude that α̂
is a Darboux matrix.

5.13.5 Isotropic Vectors and Lagrangian Planes

5.13.5.1 Construction and Definitions

Next we will introduce and employ the concept of a Lagrangian plane. Suppose M is a
2n × 2n symplectic matrix. View M as a collection of 2n column vectors by writing it in
the form

M = (m1,m2,m3, · · ·m2n) (5.13.35)

where each vector mj is the jth column of M ,

mj
i = Mij. (5.13.36)

(We will say that each vector mj is of length/dimension 2n because each has 2n entries.)
The vectors mj form a symplectic basis and are therefore linearly independent. See Section
3.6.3. We will also need the 2n column vectors ej, also of length 2n, that form the columns
of I2n. They have the components

eji = δij. (5.13.37)

See (3.6.4). Now construct 2n column vectors uj, each of length 4n, by adjoining the entries
of each ej to the bottom of the entries of each mj. Thus we have

u1 = (m1
1,m

1
2,m

1
3, · · ·m1

2n; 1, 0, 0, · · ·)T = (M1,1,M2,1,M3,1, · · ·M2n,1; 1, 0, 0, · · ·)T , (5.13.38)

u2 = (m2
1,m

2
2,m

2
3, · · ·m1

2n; 0, 1, 0, · · ·)T = (M1,2,M2,2,M3,2, · · ·M2n,2; 0, 1, 0, · · ·)T etc.
(5.13.39)

Put another way, the vectors uj (for j = 1 to 2n) have the components

uji = mj
i for i = 1 to 2n, (5.13.40)

uji = δi−2n,j for i = 2n+ 1 to 4n. (5.13.41)

Even more compactly, we may write

uj = (mj; ej)T . (5.13.42)
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Evidently the uj are linearly independent. Indeed, the mj are linearly independent and
so are the ej. Now compute the quantities (ui, J̃4nuj). Because of the form of J̃4n and the
form of the uk, there is the result

(ui, J̃4nuj) = (mi, J2nmj)− (ei, J2nej) = J2n
ij − J2n

ij = 0. (5.13.43)

[Here we have used the fact that the mj form a symplectic basis. See (3.6.34).] Because all
the (ui, J̃4nuj) vanish, the vectors uk are said to be isotropic with respect to the symplectic
form J̃4n. More succinctly, we will say that the uk are J̃4n isotropic. Finally, a set of 2n
linearly independent isotropic vectors in a 4n dimensional space is said to span a Lagrangian
plane. In this case we will say that the uk span a J̃4n Lagrangian plane. (For the reason
why such a plane is called Lagrangian, see Section 6.7.2.)

5.13.5.2 Forming Linear Combinations

Suppose we create a new set of linearly independent vectors úi by forming linear combinations
of the uj. We write

úi =
∑

j
ajiu

j (5.13.44)

where the aji are various coefficients, not all zero, which we may view as the entries in a
2n× 2n matrix a. It is easily verified that the úk are also J̃4n isotropic,

(úi, J̃4núj) = 0, (5.13.45)

because they are linear combinations of the u`. They therefore span the same J̃4n Lagrangian
plane as the ui.

Suppose we also require that any uk can be expressed as a linear combination of the ú`,

uk =
∑

`
b`kú

`. (5.13.46)

Inserting (13.44) into (13.46) gives the relation

uk =
∑

`
b`k
∑

j
aj`u

j =
∑

j

∑
`
aj`b`ku

j =
∑

j
(ab)jku

j. (5.13.47)

Upon comparing both sides of (13.47), and recalling that the ui are linearly independent,
we conclude that there must be the relation

(ab)jk = δjk. (5.13.48)

That is, we must require that a be invertible so that we may write

b = a−1. (5.13.49)
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5.13.6 Connection between Symplectic Matrices and Lagrangian
Planes for the Symplectic Form J̃4n

We will now see that there is a close connection between symplectic matrices and J̃4n La-
grangian planes. Suppose we view the first 2n entries of the ui as column vectors of a 2n×2n
matrix E and the last 2n entries as column vectors of a 2n × 2n matrix F . Then we have
the relations

E = M (5.13.50)

and
F = I2n. (5.13.51)

We will call the collection {E,F} = {M, I2n} a standard symplectic pair. The first matrix
in the pair is symplectic, and the second is the identity, which is also symplectic.

Recall the vectors úi given by (13.44). If we use the úi to construct 2n × 2n matrices
É and F́ in the same way E and F were constructed from the ui, we find from (13.44) the
relations

É = Ea = Ma (5.13.52)

and
F́ = Fa = I2na. (5.13.53)

We will call the collection {É, F́} = {Ea, Fa} = {Ma, I2na} an equivalent symplectic pair
and write

{Ea, Fa} ∼ {E,F} (5.13.54)

because multiplication on the right of a pair of matrices by a nonsingular matrix can be
shown to set up an equivalence relations among pairs of matrices. See Exercise 13.3. And,
because such multiplication does set up an equivalence relation and we have assumed a is
nonsingular, we may also write

{Ma, I2na} ∼ {M, I2n}. (5.13.55)

Moreover, suppose we are given any set of 2n linearly independent J̃4n isotropic vectors
úi in a 4n dimensional space and from them we form the associated matrices É and F́ . Then
it is easy to verify from the definition (13.16) and the block structure of J̃4n that the J̃4n

isotropy condition (13.45) is equivalent to the matrix relation

ÉTJ2nÉ = F́ TJ2nF́ . (5.13.56)

If F́ is invertible, (13.56) can be rewritten in the equivalent form

(ÉF́−1)
T
J2n(ÉF́−1) = J2n, (5.13.57)

and we conclude that the matrix M defined by

M = ÉF́−1 (5.13.58)

is symplectic. In terms of our equivalence relation, we may write

{É, F́} ∼ {ÉF́−1, F́ F́−1} = {M, I2n} (5.13.59)
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with M given by (13.58). Thus, any set of basis vectors spanning a J̃4n Lagrangian plane
whose associated “F” matrix is invertible produces an equivalent standard symplectic pair.
Conversely, we have already seen that any symplectic matrix M produces a set of basis
vectors spanning a J̃4n Lagrangian plane and a standard symplectic pair. In this latter case,
their associated F matrix is trivially invertible because it is the identity.

5.13.7 Connection between Symmetric Matrices and Lagrangian
Planes for the Symplectic Form J4n

There is an analogous construction that can be carried out for the symplectic form J4n, but
now using symmetric matrices W . Suppose W is a 2n× 2n symmetric matrix. View W as
a collection of 2n column vectors, each of length 2n, by writing it in the form

W = (w1, w2, w3, · · ·w2n) (5.13.60)

where each vector wj is the jth column of W ,

wji = Wij. (5.13.61)

Again we will also employ the 2n column vectors ej, also of length 2n, that form the columns
of I2n. Now construct 2n column vectors vj, each of length 4n, by adjoining the entries of
each ej to the bottom of the entries of each wj. This procedure will again yield 2n linearly
independent vectors because the ej are linearly independent. Using the compact notation
introduced earlier, we may write the vj in the form

vj = (wj; ej)T . (5.13.62)

Let us now compute the quantities (vi, J4nvj). From the block form of J4n and (13.62)
it is easily checked that the result is given by the relation

(vi, J4nvj) = (wi, ej)− (ei, wj) = (ej, wi)− (ei, wj). (5.13.63)

But from (13.61) we have the result

(ei, wj) = wji = Wij. (5.13.64)

Combining these results gives the relation

(vi, J4nvj) = Wji −Wji = 0. (5.13.65)

Here we have used the fact that W is assumed to be symmetric. We conclude that the vj

are J4n isotropic, and span a J4n Lagrangian plane.
As before, from the vj construct two 2n × 2n matrices, call them G and H. Construct

G using the first 2n entries in the vj, and construct H using the last 2n entries. In this case
we evidently get the results

G = W (5.13.66)

and
H = I2n. (5.13.67)
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We will call the collection {G,H} = {W, I2n} a standard symmetric pair. The first matrix
in the pair is symmetric, and the second is the identity, which is also symmetric.

We can also form vectors v́i by taking linear combinations of the vj. These vectors will
also be J4n isotropic,

(v́i, J4nv́j) = 0, (5.13.68)

and span the same J4n Lagrangian plane. Moreover, their associated 2n × 2n matrices are
given by the relations

Ǵ = Ga = Wa (5.13.69)

and

H́ = Ha = I2na. (5.13.70)

We will call the collection {Ǵ, H́} = {Ga,Ha} = {Wa, I2na} an equivalent symmetric pair
and write

{Ga,Ha} ∼ {G,H} = {W, I2n}. (5.13.71)

Finally, suppose we are given any set of 2n linearly independent J4n isotropic vectors v́i

in a 4n dimensional space and from them we form the associated matrices Ǵ and H́. Then
it is easy to verify from the definition (3.1.1) and the block structure of J4n that the J4n

isotropy condition (13.68) is equivalent to the matrix relation

ǴT H́ − H́T Ǵ = 0. (5.13.72)

If H́ is invertible, (13.72) can be rewritten in the equivalent form

ǴH́−1 = (H́−1)
T
ǴT . (5.13.73)

Therefore the matrix W defined by the equation

W = ǴH́−1 (5.13.74)

is symmetric,

W T = W. (5.13.75)

In terms of our equivalence relation, we may write

{Ǵ, H́} ∼ {ǴH́−1, H́H́−1} = {W, I2n} (5.13.76)

with W given by (13.74). Thus, any set of basis vectors spanning a J4n Lagrangian plane
whose associated “H” matrix is invertible produces an equivalent standard symmetric pair.
Conversely, we have already seen that any symmetric matrix W produces a set of basis
vectors spanning a J4n Lagrangian plane and a standard symmetric pair. In this latter case,
their associated H matrix is trivially invertible because it is the identity.
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5.13.8 Relation between Symplectic and Symmetric Matrices
and the Role of Darboux Möbius Transformations

The stage is set to discover the relation between symplectic and symmetric matrices. Suppose
we are given some set of 2n vectors ui that span a J̃4n Lagrangian plane. Form associated
vectors vi by the rule

vi = αui (5.13.77)

where α is any 4n× 4n matrix. If we now require that α be a Darboux matrix that satisfies
the relation (13.20), then we find the result

(vi, J4nvj) = (αui, J4nαui) = (ui, αTJ4nαui) = (ui, J̃4nuj) = 0. (5.13.78)

That is, the vectors vi are J4n isotropic , and span a J4n Lagrangian plane. Next, construct
2n × 2n matrices G and H from the first 2n and the last 2n entries in the vi, respectively.
Suppose that the matrix H turns out to be invertible. Then we can write

{G,H} ∼ {GH−1, I2n}. (5.13.79)

From the previous discussion we know that the W given by

W = GH−1, (5.13.80)

will be symmetric.
What do Möbius transformations have to do with this discussion? Watch. Suppose we

are given a symplectic matrix M and from it construct the vectors ui by (13.42). That is, the
ui are the vectors associated with the standard symplectic pair {M, I2n}. Define associated
vectors vi using (13.77). Let E and F be the matrices associated with the ui, and let G and
H be the matrices associated with the vi. Suppose also that we write α in the block form

α =

(
Aα Bα

Cα Dα

)
. (5.13.81)

Then, in terms of the matrices Aα through Dα and the matrices E through G, the relation
(13.77) is equivalent to the relations

G = AαE +BαF, (5.13.82)

H = CαE +DαF. (5.13.83)

Therefore we have the result

W = GH−1 = (AαE +BαF )(CαE +DαF )−1. (5.13.84)

Now use the explicit forms of E and F given by (13.50) and (13.51) to rewrite (13.84). So
doing gives the result

W = GH−1 = (AαM +Bα)(CαM +Dα)−1. (5.13.85)
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5.13.8.1 Mapping of Symplectic Matrices into Symmetric Matrices

We see that W is related to M by the Möbius transformation associated with α,

W = Tα(M). (5.13.86)

Thus, W has been expressed as the Möbius transformation of a symplectic matrix. Of
course, for (13.86) to be well defined, the matrix (CαM +Dα) must be invertible,

det (CαM +Dα) 6= 0. (5.13.87)

[Note that (13.87) is precisely the condition for H to be invertible. See (13.83), (13.50), and
(13.51).] That is, given M , we must find some Darboux matrix α satisfying (13.20) such
that its associated Cα and Dα also satisfy (13.87). Once this is achieved (and we will verify
subsequently that it can be achieved), we know from out previous work that the W given
by (13.80) and hence by (13.86) will be symmetric.

Suppose we now hold α fixed (thereby holding its associated Cα and Dα fixed), and vary
M . It can be verified by continuity that, for small enough variations in M , (13.87) will
continue to hold. Correspondingly, again based on our previous work, we know that the
varied W associated with the varied M will continue to be symmetric. Thus we get a local
mapping of symplectic matrices into symmetric matrices. Since the α appearing in Tα is a
Darboux transformation, we might call Tα a Darboux Möbius transformation.

5.13.8.2 Mapping of Symmetric Matrices into Symplectic Matrices

Conversely, suppose we are given a symmetric matrix W , which may be the W of (13.86).
From it construct the vectors vi using(13.61) and (13.62). That is, the vi are the vectors
associated with the standard symmetric pair {W, I2n}. Define associated vectors ui in terms
of the vi by the rule

ui = α−1vi (5.13.88)

where, as before, α is any 4n× 4n Darboux matrix that satisfies (13.20). [Note that (13.88)
is equivalent to (13.77).] For the ui we find the relation

(ui, J̃4nuj) = (α−1vi, J̃4nα−1vj) = (vi, (αT )
−1
J̃4nα−1vj) = (vi, J4nvj) = 0. (5.13.89)

We see that the vectors ui are J̃4n isotropic. Now construct 2n× 2n matrices E and F from
the first 2n and the last 2n entries in the ui, respectively. Suppose that the matrix F turns
out to be invertible. Then we can write

{E,F} ∼ {EF−1, I2n}. (5.13.90)

From the previous discussion we know that the M given by

M = EF−1, (5.13.91)

will be symplectic. Also, let G and H be the matrices associated with the vi and write the
matrix α−1 in the block form form

α−1 =

(
Aα
−1

Bα−1

Cα−1
Dα−1

)
. (5.13.92)
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In terms of the matrices Aα
−1

through Dα−1
and the matrices E through G, the relation

(13.88) is equivalent to the relations

E = Aα
−1

G+Bα−1

H, (5.13.93)

F = Cα−1

G+Dα−1

H. (5.13.94)

Therefore we have the result

M = EF−1 = (Aα
−1

G+Bα−1

H)(Cα−1

G+Dα−1

H)
−1
. (5.13.95)

Now use the explicit forms of G and H given by (13.66) and (13.67) to rewrite (13.95) in
the form

M = (Aα
−1

W +Bα−1

)(Cα−1

W +Dα−1

)
−1
. (5.13.96)

We see, consistent with (13.86), that M is related to W by the Möbius transformation
associated with α−1,

M = Tα−1(W ). (5.13.97)

Thus, M has been expressed as the Möbius transformation of a symmetric matrix. Of course,
for this relation to make sense, the matrix (Cα−1

W +Dα−1
) must be invertible,

det (Cα−1

W +Dα−1

) 6= 0. (5.13.98)

Observe that (13.98) is exactly the condition for F to be invertible.
For fixed α, and hence fixed Cα−1

and fixed Dα−1
, the relation (13.98) describes an

open set in W space. Therefore Tα−1 provides a local mapping of symmetric matrices into
symplectic matrices. Finally we know from the work of Subsection 11.3 that if (13.87) holds
(thereby making it possible to find a symmetric W given a symplectic M), then (13.98) also
holds (thereby making it possible to find a symplectic M given a symmetric W ), and vice
versa. That is, there is the logical equivalence

det (Cα−1

W +Dα−1

) 6= 0⇔ det (CαM +Dα) 6= 0. (5.13.99)

To very this claim, make in the first line of (11.42) the substitutions M → α, U ′ → W , and
U →M .

We close this subsection with the observation that to find α−1 it is not actually necessary
to carry out the inversion of a 4n × 4n matrix. Instead one can use the inversion relation
(13.22), which only involves matrix multiplication. Indeed, it is easily verified that its use
gives the results

Aα
−1

= J2n(Cα)T , (5.13.100)

Bα−1

= −J2n(Aα)T , (5.13.101)

Cα−1

= −J2n(Dα)T , (5.13.102)

Dα−1

= J2n(Bα)T . (5.13.103)
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5.13.9 Completion of Tasks

5.13.9.1 Verification of Möbius Transformation Invertibility Conditions

Several uncompleted tasks remain. The first is to verify that, given a symplectic matrix M ,
a Darboux matrix α satisfying (13.20) can be found such that the conditions (13.87) and
(13.98) are also satisfied. We have already seen, as stated in (13.99), that these conditions
are logically equivalent. Now we will learn more. Actually, for notational convenience, we
will find a Darboux matrix β with these desired properties.

Suppose L is a symplectic matrix near M so that we may write

M = LN (5.13.104)

where N is a symplectic matrix near the identity. Inspection of the Cayley Möbius trans-
formation Tσ given by (13.14), see also (3.11.12), shows that it is ideally suited to matrices
M near the identity I. What we would like to find is a choice of β such that the Darboux
Möbius transformation Tβ is ideally suited to matrices near L. This is easily done using
group properties. We first find a Möbius transformation that sends L to I and then follow
it by a Cayley Möbius transformation. Of course, in so doing, we must ensure that the
resulting β is also a Darboux transformation. Let µ be the 4n × 4n matrix defined by the
rule

µ =

(
L−1 0

0 I2n

)
. (5.13.105)

Then, analogous to the relations (11.47) and (11.48), we have the result

Tµ(L) = I. (5.13.106)

Furthermore, we have the relation

Tµ(M) = N. (5.13.107)

Also we observe that µ is an element of S̃p(4n) since I is symplectic and L−1 is symplectic
(because L is assumed to be symplectic). Therefore the β given by (13.29) will be a Darboux
matrix. Its associated Möbius transformation will have the property

W = Tβ(M) = Tσµ(M) = Tσ(Tµ(M)) = Tσ(N) = (−JN + J)(N + I)−1. (5.13.108)

Here we have used the group property of Möbius transformations. Evidently the matrix
(N + I) will be invertible for N sufficiently near the identity. Indeed, all that is required is
that −1 not be an eigenvalue of N . Correspondingly, Tβ(M) is well defined. Finally we see
from (13.11), (13.29), and (13.105) that β has the explicit form

β = (1/
√

2)

(
−J2nL−1 J2n

L−1 I2n

)
. (5.13.109)

Therefore, if we write out Tβ(M) explicitly, we find the result

W = Tβ(M) = (AβM +Bβ)(CβM +Dβ)
−1

(5.13.110)
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with

(AβM +Bβ) = (1/
√

2)(−J2nL−1M + J2n = (1/
√

2)(−JN + J), (5.13.111)

and
(CβM +Dβ) = (1/

√
2)(L−1M + I2n) = (1/

√
2)(N + I). (5.13.112)

We see that
det(CβM +Dβ) 6= 0 (5.13.113)

provided N is sufficiently near I.
The result inverse to (13.108) is given by the relation

M = Tβ−1(W ) = T(σµ)−1(W ) = Tµ−1σ−1(W )

= Tµ−1(Tσ−1(W )) = Tµ−1(N) = LN. (5.13.114)

Here we have again used the group property of Möbius transformations and the fact that,
consistent with (13.108), there is the relation

N = Tσ−1(W ) = (JW + I)(−JW + I)−1. (5.13.115)

Note that (13.115) is well defined provided

det(−JW + I) 6= 0. (5.13.116)

This condition is met for W sufficiently near 0. The matrix W will, in turn, be near 0 if N
is sufficiently near I. See (13.108). We can also evaluate Tβ−1(W ) directly. For β−1 we find
the result

β−1 = (1/
√

2)

(
LJ2n L
−J2n I2n

)
. (5.13.117)

See Exercise 13.4. Consequently, we obtain the result

M = Tβ−1(W ) = (LJW + L)(−JW + I)−1. (5.13.118)

Again we see that the condition (13.116) arises and is satisfied.
In summary, for an arbitrary symplectic matrix L, and for M = L or M in the neigh-

borhood of L, the Möbius transformations W = Tβ(M) and M = Tβ−1(W ) are well defined
when β is the Darboux transformation defined by (13.11), (13.29), and (13.105).

5.13.9.2 Verification of Full Family of Darboux Transformations

The second task is to verify that, given a symplectic matrix M , we have the full advertised
2n(4n + 1) degrees of freedom in the choice of α. Suppose we hold M fixed and replace α
by the β given by (13.26). Write (13.86) more explicitly as

W (α) = Tα(M) (5.13.119)

to indicate that W depends on α as well as on M . Then we have the relation

W (β) = Tβ(M) = Tγα(M) = Tγ(Tα(M)) = Tγ(W (α)). (5.13.120)
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Note that Tγ is a Möbius transformation associated with a symplectic transformation since
γ is assumed to be in Sp(4n). From the work of Subsection 12.7 and earlier we know that
such Möbius transformations send symmetric matrices into symmetric matrices. Therefore
the matrix W (β) will also be symmetric. Of course we must again worry about the inversion
of the matrix occurring in the second factor of the Möbius transformation. In the case where
Tγ is applied to W (α) this matrix will be [CγW (α) + Dγ]. It is easy to check that, for γ
sufficiently near the identity, the matrix Cγ is small and the matrix Dγ is near the identity.
Thus the required inverse exists, and we get a full 2n(4n + 1) parameter family of Möbius
transformations Tβ that send the symplectic matrix M to the symmetric matrix W (β).

To finish this aspect of our discussion, we should also explore what happens in the map
(13.97) when W is held fixed, and α is varied. Again we will replace α by β with β given
by (13.26). Then we may view M as depending on β and write

M(β) = Tβ−1(W ) = T(γα)−1(W ) = Tα−1γ−1(W ) = Tα−1(Tγ−1(W )) = Tα−1(W ′) (5.13.121)

where
W ′ = Tγ−1(W ). (5.13.122)

Moreover we know that W ′ will symmetric because W is symmetric, γ−1 is in Sp(4n), and
Möbius transformations corresponding to symplectic matrices send symmetric matrices into
symmetric matrices. Again see Subsection 12.7. For γ near the identity W ′ will be near
W and consequently, by the argument of the previous paragraph, M(β) will be well defined
and symplectic. To verify this claim, examine W ′. Writing out (13.122) in detail gives the
result

W ′ = (Aγ
−1

W +Bγ−1

)(Cγ−1

W +Dγ−1

)
−1
. (5.13.123)

For γ near the identity, The matrices Aγ
−1

and Dγ−1
will be near the identity, and the

matrices Bγ−1
and Cγ−1

will be small. Therefore W ′ will be well defined, and indeed will
be near W . Thus we get a full 2n(4n+ 1) parameter family of Möbius transformations Tβ−1

that send the symmetric matrix W to the symplectic matrix M(β).

5.13.9.3 Freedom in the Choice of Darboux Transformation

Finally, for some semblance of completeness, we should address the question of what freedom
exists in the choice of α for the relations (13.86) and (13.97) when both M and W are held
fixed. Suppose we require that

M(β) = M(α) (5.13.124)

or, equivalently,
Tβ−1(W ) = Tα−1(W ). (5.13.125)

Then we conclude that

W = TI(W ) = Tβ(Tβ−1(W )) = Tβ(Tα−1(W )) = Tβα−1(W ) = Tγ(W ). (5.13.126)

Here we have used the definition (13.25). Upon comparing the far left and far right sides of
(13.126) we see that W must be a fixed point of Tγ. From the work of Subsection 12.4.1 we
know that such γ form a subgroup, the stability group of W .
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Even more can be said. Suppose δ is the Sp(4n) element

δ =

(
I2n W
02n I2n

)
. (5.13.127)

From the discussion of Section 3.3 we know that δ is indeed in Sp(4n) because W is sym-
metric. Moreover, by direct calculation or from the discussion surrounding (12.43), we know
that this δ has the property

Tδ (02n) = W. (5.13.128)

Consequently, (13.126) can be rewritten in the form

Tδ (02n) = Tγ(Tδ (02n)) or, equivalently, Tγ(Tδ (02n)) = Tδ (02n) (5.13.129)

from which it follows that

Tδ−1(Tγ(Tδ (02n))) = 02n or, equivalently, T(δ−1γδ) (02n) = 02n. (5.13.130)

Let ε be the Sp(4n) element specified by the definition

ε = δ−1γδ or, equivalently, γ = δεδ−1. (5.13.131)

From (13.130) we see that ε must be in the stability group of the zero matrix,

Tε (02n) = 02n. (5.13.132)

We have encountered this group before in Subsection 12.7. Using the notation introduced
there, it is the group H(4n,R) with dimension (6n2 + n). Combining (13.26) and (13.131)
gives the relation

β = δεδ−1α. (5.13.133)

We conclude there is a (6n2 + n) parameter set of matrices β that satisfy, for fixed M and
fixed W , the relation

M = Tβ−1(W ) (5.13.134)

and its inverse

W = Tβ(M). (5.13.135)

5.13.9.4 Explicit Construction of the Most General Darboux Transformation

To explore the implications of the relations (13.133) through (13.135) in a concrete case,
let us begin by constructing a particular Darboux transformation φ such that its associ-
ated Möbius transformation Tφ sends any specified symplectic matrix L into any specified
symmetric matrix V :

V = Tφ(L) (5.13.136)

and

L = Tφ−1(V ). (5.13.137)
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This is easily done. Let θ be the 4n× 4n matrix defined by the rule

θ =

(
I2n V
0 I2n

)
. (5.13.138)

Its associated Möbius transformation has the property

Tθ(0
2n) = V. (5.13.139)

See (12.3) or the V analog of (13.127) and (13.128). Moreover, θ is J4n symplectic. See
(3.3.9). Now define a 4n× 4n matrix φ by the rule

φ = θσµ. (5.13.140)

Here σ and µ are defined by (13.11) and (13.105), respectively. Since θ is J4n symplectic
and µ is J̃4n symplectic, φ will be a Darboux transformation. See the discussion associated
with (13.31) through (13.34). Also, by construction and the group property, we have the
relation

Tφ(L) = Tθσµ(L) = Tθ(Tσ(Tµ(L))) = Tθ(Tσ(I2n)) = Tθ(0
2n) = V. (5.13.141)

Here we have used (13.106), (13.139), and the Cayley transformation property

Tσ(I2n) = 02n. (5.13.142)

Evaluation of (13.140) gives the explicit result

φ = (1/
√

2)

(
[−JL−1 + V L−1] [J + V ]

L−1 I

)
. (5.13.143)

Let us continue by setting α = φ in (13.133) and W = V in (13.127) so that δ = θ. Then
we find for β the result

β = δεδ−1θσµ = θεσµ. (5.13.144)

This β will be the most general Darboux transformation such that

V = Tβ(L) (5.13.145)

and
L = Tβ−1(V ). (5.13.146)

In view of the discussion at the beginning of Section 3.3 and (3.10.20), the general ε in
the group H(4n,R) can be written in the form

ε =

(
A 0
0 (AT )−1

)(
I2n 0
C I2n

)
. (5.13.147)

Carrying out the indicated multiplications (13.144) gives for β the explicit form

β = (1/
√

2)

(
−AJL−1 + V (AT )−1(−CJ + I)L−1 AJ + V (AT )−1(CJ + I)

(AT )−1(−CJ + I)L−1 (AT )−1(CJ + I)

)
,

(5.13.148)
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and for its inverse the explicit form

β−1 = (1/
√

2)

(
LJA−1 − LCA−1 −LJA−1V + L(CA−1V + AT )
−JA−1 − CA−1 JA−1V + (CA−1V + AT )

)
. (5.13.149)

(See Exercise 13.5.) Here J stands for J2n. It is readily verified by direct calculation that
(13.145) and (13.146) are satisfied. We observe, since H(4n,R) is a (6n2 + n) dimensional
group, that there is a (6n2+n) dimensional family of Darboux matrices that relate a specified
L to a specified V . Note also that we have written (parameterized) the general 4n × 4n
Darboux matrix β in terms of a general 2n× 2n symplectic matrix L, two general 2n× 2n
symmetric matrices C and V , and a general GL(2n) matrix A. Exercise 13.8 shows that
this parameterization must in fact have some redundancy because the parameter count for
this parameterization exceeds the dimensionality of sp(4n).

5.13.9.5 Two Convenient Simpler Choices

There are two convenient simpler choices for Darboux matrices whose associated Möbius
transformations relate any specified symplectic matrix L to any specified symmetric matrix
V . The first, call it β̃, is the Darboux matrix obtained by setting A = I in (13.148) to yield
the result

β̃ = (1/
√

2)

(
[−JL−1 + V (−CJ + I)L−1] [J + V (CJ + I)]

(−CJ + I)L−1 (CJ + I)

)
(5.13.150)

with the inverse

β̃−1 = (1/
√

2)

(
LJ − LC −LJV + L(CV + I)
−J − C JV + (CV + I)

)
. (5.13.151)

[That β̃ is a Darboux matrix follows from the fact β as given by (13.148) is a Darboux
matrix for all choices of A.] It is easily verified by direct calculation that

V = Tβ̃(L) (5.13.152)

and

L = Tβ̃−1(V ). (5.13.153)

A still simpler choice, call it ˜̃β, is the Darboux matrix obtained by setting A = I and
C = 0 in (13.148) to yield the result

˜̃β = (1/
√

2)

(
[−JL−1 + V L−1] [J + V ]

L−1 I

)
= φ (5.13.154)

with the inverse
˜̃β−1 = (1/

√
2)

(
LJ −LJV + L
−J JV + I

)
. (5.13.155)
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[Note that this choice amounts to setting ε = I. That ˜̃β is also a Darboux matrix follows
from the fact β as given by (13.148) is a Darboux matrix for all choices of A and C.] It is
easily verified by direct calculation that

V = T ˜̃
β
(L) (5.13.156)

and
L = T ˜̃

β−1(V ). (5.13.157)

Exercises

5.13.1. Verify the matrix identity(
−J J
I I

)(
I I
0 I

)
=

(
−J 0
I 2I

)
. (5.13.158)

Use this identity to prove (13.13). Verify (13.19). Use the representation (13.27) to show that
all Darboux matrices, i.e. all matrices that satisfy (13.20) or (13.21), must have determinant
+1.

5.13.2. Show, using the representations (13.27) and (13.29), that there are the relations

µ = σ−1γσ or γ = σµσ−1 (5.13.159)

which demonstrate that S̃p(4n) and Sp(4n) are related by a similarity transformation.

5.13.3. Review Exercise 12.7. Verify that (13.54) is an equivalence relation.

5.13.4. Verify by direct calculation that β as given by (13.109) satisfies (13.21). Verify
(13.117) both by direct calculation and by use of (13.11), (13.29), and (13.105).

5.13.5. Verify (13.143) by working out the product (13.140). Verify by direct calculation
that φ satisfies (13.136) and (13.137). Verify that φ is a Darboux matrix/transformation.

5.13.6. Verify (13.148) and (13.149) using (13.144) and (13.147).

5.13.7. Verify by direct calculation that β and β−1 as given by (13.148) and (13.149) satisfy
(13.145) and (13.146).

5.13.8. The Darboux matrix β given by (13.148) is parameterized in terms of a general
2n × 2n symplectic matrix L, two general 2n × 2n symmetric matrices C and V , and a
generalGL(2n) matrix A. Verify that the dimensionality of the space of all 2n×2n symmetric
matrices is n(2n+1), which is also the dimensionality of sp(2n). Also, the dimensionality of
GL(2n) is evidently (2n)2. Verify that the dimension count for the parameterization (13.148)
of Darboux matrices in terms of a 2n×2n symplectic matrix, two 2n×2n symmetric matrices,
and a general GL(2n) matrix is given by the sum

n(2n+ 1) + 2[n(2n+ 1)] + 4n2 = 10n2 + 3n. (5.13.160)
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By comparison, the dimensionality of the set of 4n × 4n Darboux matrices is the same as
the dimensionality of sp(4n), which is given by the relation

dim sp(4n) = 2n(4n+ 1) = 8n2 + 2n. (5.13.161)

Thus, the parameterization (13.148) must have some redundancy. Determine what this
redundancy is in the simplest case of 4 × 4 Darboux matrices. Verify that the number of
parameters in β̃ as given by (13.150) is 6n2 + 3n. Verify that the number of parameters in
˜̃β as given by (13.154) is 4n2 + 2n..

5.13.9. Suppose N is a J2n symplectic matrix and µ is a J̃4n symplectic matrix. Show,
using (13.159), that M given by

M = Tµ(N) (5.13.162)

is also a J2n symplectic matrix.

5.13.10. Verify that the relation (12.80) between the guhp and the gud can be rewritten in
the form

−W = (iZ + I)(−iZ + I)−1 = Tφ(Z) (5.13.163)

where

φ =

(
iI I
−iI I

)
. (5.13.164)

Verify that the Cayley relation (3.11.5) between symmetric and symplectic matrices can be
written in the form

M = [(−J)(−W ) + I][(J)(−W ) + I]−1 = Tψ(−W ) (5.13.165)

where

ψ =

(
−J I
J I

)
. (5.13.166)

Relate φ and ψ. Hint: Review Exercise 3.2.6.

5.13.11. Let ν be the matrix defined by the relation

ν = (1/
√

2)

(
−I I
I I

)
. (5.13.167)

Verify that the Cayley relation (3.11.5) between a symplectic matrix M and a Hamiltonian
matrix JW , a matrix in the symplectic Lie algebra, can be written in the form

M = Tν(−JW ). (5.13.168)

Verify that ν has the property
ν2 = I, (5.13.169)

from which it follows that Tν is an involution.20 That is, by the composition law (11.6),
there is the relation

TνTν = Tν2 = TI = I. (5.13.170)

20In this context, an involution is a map whose square is the identity map.
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Consequently, show that the relation (13.168) has the inverse relation

− JW = Tν(M), (5.13.171)

in agreement with (3.11.12). We have learned that Tν provides a map between the group
Sp(2n,R) and its Lie algebra sp(2n,R). Show that it does the same for Sp(2n,C) and
sp(2n,C).

Show that Tν has analogous properties for the orthogonal and unitary (but not special
unitary) groups. For example, if A is antisymmetric, show that M = Tν(−A) is orthogonal,
etc.

5.14 Uniqueness of Cayley Möbius Transformation

The Cayley Möbius transformation has three properties that make it essentially unique. The
first is that

Tσ(M−1) = −Tσ(M). (5.14.1)

The second, consistent with the first, is that

Tσ(I) = 0. (5.14.2)

The third is the relation
JTσ(N−1MN) = N−1JTσ(M)N, (5.14.3)

from which it follows that

Tσ(N−1MN) = −JN−1JTσ(M)N. (5.14.4)

Here J = J2n and N is any invertible matrix. Now suppose that N is symplectic. From the
symplectic condition written in the form

NJNT = J (5.14.5)

we infer the relation
− JN−1J = NT , (5.14.6)

so that we also have for symplectic N the result

Tσ(N−1MN) = NTTσ(M)N. (5.14.7)

These properties are easily shown to follow from the form of σ as given in (13.11), and lead
to the inversion and symplectic similarity invariance properties of Cayley matrix symplec-
tification described by (4.7.14) and (4.7.15). They will also be important for the work of
Chapter 34 on Optimal Evaluation of Symplectic Maps.

We now verify that essentially only the Cayley Möbius transformation, among all Dar-
boux Mobius transformations, has these properties. To begin suppose, in analogy with
(14.1), we seek Darboux Mobius transformations β with the property

Tβ(M−1) = −Tβ(M). (5.14.8)
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Also assume that Tβ(I) is well defined. Then it follows from (14.8) that there is the condition

Tβ(I) = 0, (5.14.9)

and hence L = I and V = 0 in (13.145) so that β as given by (13.148) takes the form

β = (1/
√

2)

(
−AJ AJ

(AT )−1(−CJ + I) (AT )−1(CJ + I)

)
. (5.14.10)

Correspondingly β̃, which is obtained from (14.10) by setting A = I, is given by the relation

β̃ = (1/
√

2)

(
−J J

(−CJ + I) (CJ + I)

)
. (5.14.11)

So far, we have actually only used the fact that (14.9) is a consequence of (14.8) to put
restrictions on β. Now let us make further direct use of (14.8). To do so it is useful to
compute Tβ̃(M) and Tβ(M). Begin by computing Tβ̃(M). From (14.11) we find the result

Tβ̃(M) = [−JM + J ][(−CJ + I)M + (CJ + I)]−1. (5.14.12)

We will also need the result

Tβ̃(M−1) = [−JM−1 + J ][(−CJ + I)M−1 + (CJ + I)]−1 (5.14.13)

which follows from (14.12) upon replacing M by M−1. Next compute Tβ(M) using (14.10)
and manipulate the result to find the relation

Tβ(M) = {−AJM + AJ}{(AT )−1(−CJ + I)M + (AT )−1(CJ + I)}−1

= A{−JM + J}{(AT )−1[(−CJ + I)M + (CJ + I)]}−1

= A{−JM + J}{(−CJ + I)M + (CJ + I)}−1AT

= A[Tβ̃(M)]AT . (5.14.14)

It follows from (14.14) that

Tβ̃(M) = A−1[Tβ(M)](AT )−1. (5.14.15)

Similarly, there is the result

Tβ̃(M−1) = A−1[Tβ(M−1)](AT )−1. (5.14.16)

Now add (14.15) and (14.16) to obtain the relation

Tβ̃(M) + Tβ̃(M−1) = A−1[Tβ(M) + Tβ(M−1)](AT )−1. (5.14.17)

Upon making use of (14.8) in (14.17) we find the result

Tβ̃(M) + Tβ̃(M−1) = 0 or, equivalently, Tβ̃(M−1) = −Tβ̃(M). (5.14.18)
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We are almost done with this part of the argument. In (14.13) multiply both the numerator
and denominator on the right by M to obtain the result

Tβ̃(M−1) = [JM − J ][(CJ + I)M + (−CJ + I)]−1. (5.14.19)

Upon employing (14.12) and (14.19) in the second version of (14.18) we now find the result

[JM − J ][(CJ + I)M + (−CJ + I)]−1 = [JM − J ][(−CJ + I)M + (CJ + I)]−1, (5.14.20)

from which it follows that

(CJ + I)M + (−CJ + I) = (−CJ + I)M + (CJ + I). (5.14.21)

(Here we have assumed M 6= I.) Finally, upon canceling like terms on the left and right
sides of (14.21), we find the relation

CJM − CJ = −CJM + CJ or, equivalently 2CJ(M − I) = 0 (5.14.22)

from which it follows that
C = 0. (5.14.23)

Employing (14.23) in (14.11) gives the result

β̃ = (1/
√

2)

(
−J J
I I

)
= σ. (5.14.24)

Correspondingly (14.14) can be rewritten as

Tβ(M) = A[Tσ(M)]AT . (5.14.25)

In analogy to (14.7) let us now invoke the further requirement that

Tβ(N−1MN) = NTTβ(M)N. (5.14.26)

With the aid of (14.25) and (14.7) we find for the left side of (14.26) the result

Tβ(N−1MN) = A[Tσ(N−1MN)]AT = ANT [Tσ(M)]NAT . (5.14.27)

For the right side of (14.26), again using (14.25)), we find the result

NTTβ(M)N = NTATσ(M)ATN. (5.14.28)

Therefore (14.26) is equivalent to the condition

ANT [Tσ(M)]NAT = NTA[Tσ(M)]ATN. (5.14.29)

In order for (14.29) to hold for all matrices M , there must be the relation

ANT = NTA. (5.14.30)

That is, NT and A must commute. See Exercise 15.3.
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Moreover, since N is an arbitrary symplectic matrix, NT is also an arbitrary symplectic
matrix. It can be shown that a matrix A that commutes with all symplectic matrices must
be a multiple of the identity. See Exercise 21.14.1. Therefore, the requirement (14.26) yields
the conclusion that A must be of the form

A = λI. (5.14.31)

Correspondingly, β takes the form

β = (1/
√

2)

(
−λJ λJ

(1/λ)I (1/λ)I

)
. (5.14.32)

We see that, apart from a scaling factor λ, the matrix β is essentially σ. If the scaling factor
is set to one, β becomes σ. Another possible choice is to set λ =

√
2. When this is done, β

takes the rational form

β =

(
−J J
I/2 I/2

)
. (5.14.33)

However, for this λ choice β is not orthogonal, and the simplicity of the orthogonality feature
possessed by σ is lost.

Exercises

5.14.1. Verify the relations (14.1) through (14.7) for the Cayley Möbius transformation.

5.14.2. Verify that (14.21) follows from (14.20).

5.14.3. The purpose of this exercise is to verify that (14.29) implies (14.30). Define matrices
X and Y by the relations

X = ANT , (5.14.34)

Y = NTA. (5.14.35)

Verify that with these definitions (14.29) can be rewritten in the form

X[Tσ(M)]XT = Y [Tσ(M)]Y T . (5.14.36)

Next show that, for some finite (but perhaps small) number δ and any symmetric matrix
S, there is a symplectic M such that

Tσ(M) = δS. (5.14.37)

Thus, show that (14.36) is equivalent to the relation

XSXT = Y SY T . (5.14.38)

Define a matrix Λ by the equation

Y = XΛ. (5.14.39)
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Verify, because A and N are invertible, that this equation actually defines Λ. Using this
definition, show that (14.38) is equivalent to the relation

ΛSΛT = S. (5.14.40)

If we put S = I, which is a possibility, we conclude that Λ must satisfy the relation

ΛΛT = I, (5.14.41)

and therefore Λ is orthogonal. Verify that (14.40) and (14.41) entail the relation

ΛS = SΛ. (5.14.42)

Show that (14.41), together with (14.42) holding for all symmetric matrices S, requires that

Λ = ±I. (5.14.43)

Hint: First show that Λ must be diagonal by considering the cases for which S is diagonal
and has only one nonzero entry. Next show that all diagonal entries in Λ must be equal by
considering the cases for which S has only two nonzero entries located at symmetric places
above and below the diagonal. Finally, use (14.41).

Show that taking the minus sign in (14.43) leads to the condition ANT = −NTA, and that
if this condition holds for all N as it must, it also holds for N = I leading to the conclusion
A = 0, which is not possible since A is assumed to be nonsingular. Show that taking the
plus sign in (14.43) yields the advertised relation (14.30).

5.14.4. Review Exercise 3.11.4. Suppose (13.86) is rewritten in the form

W = J(−J)Tα(M) (5.14.44)

and we define g(M) by the rule

g(M) = −JTα(M). (5.14.45)

Then we have the relation

W = Jg(M). (5.14.46)

Define a quadratic form Qα(z) by the rule

Qα(z) = (z,Wz). (5.14.47)

Exercise 3.11.4 showed that Qα(z) is invariant when α = σ. Show that many other choices
of α do not yield a Qα that has this property. Are there any other choices that do?



5.15. MATRIX SYMPLECTIFICATION REVISITED 597

5.15 Matrix Symplectification Revisited

Section 4.7 described the use of the Cayley representation to carry out matrix symplecti-
fication, and Section 4.8 described the use of generating functions for the same purpose.
As pointed out earlier, both procedures are examples of the use of Möbius transformations.
Moreover, it was also remarked that there were cases for which the Cayley representation
could not be used, and cases for which none of the generating functions F1 through F4 could
be used. The purpose of this section is to show that, given any nearly symplectic matrix M ,
there is a symplectification procedure employing Möbius transformations that will succeed.
(Subsequently, Exercise 6.7.1 shows that there is an associated quadratic generating function
that produces any such Möbius transformation.)

Suppose M is a matrix that is nearly symplectic. Let β be some appropriate Darboux
matrix. Use it to define a matrix U in terms of M by the rule

U = Tβ(M). (5.15.1)

Since M is nearly symplectic, and by the properties of Darboux Möbius transformations, U
will be nearly symmetric. Define a matrix W in terms of U by the rule

W = (U + UT )/2. (5.15.2)

Since U is nearly symmetric, W will be near U . Finally, define a matrix R in terms of W
by the rule

R = Tβ−1(W ). (5.15.3)

Since W is symmetric by construction, and by the properties of Darboux Möbius transfor-
mations, R will be symplectic. Moreover, because W is near U , R will be near M . Note
also that R = M if M is symplectic. Therefore R may be viewed as a symplectification of
M .

We still have to demonstrate that there is a choice of β such that (15.1) and (15.3) are
well defined. Suppose we write M in the form

M = LN (5.15.4)

where L is symplectic and N is a matrix in the vicinity (in a sense to be made more precise
shortly) of the identity. Use for β the Darboux matrix given by (13.148) with the same L
that appears in (15.4). From (15.1) we then find for U a result of the form

U = Tβ(M) = {Numerator} × {Denominator}−1 (5.15.5)

where the denominator is given by the equation

Denominator = (AT )−1{[(−CJ + I)L−1]M + (CJ + I)}. (5.15.6)

Inserting the representation (15.4) for M into (15.6) gives the result

Denominator = (AT )−1{[(−CJ + I)N + (CJ + I)}, (5.15.7)
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which can be rewritten in the form

Denominator = (AT )−1{[(−CJ + I)(N − I) + 2I)}
= 2(AT )−1{[I + (1/2)(−CJ + I)(N − I)]}. (5.15.8)

Compute the determinant of the denominator to find the result

det (Denominator) = det [2(AT )−1]× det {[I + (1/2)(−CJ + I)(N − I)]}. (5.15.9)

We see from the second factor in (15.9) that the determinant of the denominator cannot
vanish as long as N is reasonably near I. Correspondingly we conclude that there is a choice
of β such that, for any given M that is nearly symplectic, (15.1) is well defined for this M
and for all matrices near this M . Conversely, from the work of Section 11, we know that
Tβ−1(U) will then be well defined for the U given by (15.1) and for all matrices near this U .
We have already seen that W is near U . Therefore R as given by (15.3) is well defined. The
symplectification procedure has succeeded.

The last item to be considered in this section is the extent to which the symplectification
procedure given by (15.1) through (15.3) depends on the choice of the Darboux transfor-
mation β. We might suspect some redundancy because the procedure (15.1) through (15.3)
involves the use of both β and β−1, and therefore there is some possibility for compensation
or cancellation.

To explore this question, we will need to study the properties of β as given by (13.148)
in some more detail. As the result of some preliminary monkeying around, we observe that
the terms in the two upper blocks of β can be rewritten in the form

−AJL−1 + V (AT )−1(−CJ + I)L−1 = A[−JL−1 +A−1V (AT )−1(−CJ + I)L−1], (5.15.10)

AJ + V (AT )−1(CJ + I) = A[J + A−1V (AT )−1(CJ + I)]. (5.15.11)

Define a new matrix V́ by the rule

V́ = A−1V (A−1)T . (5.15.12)

The matrix V́ will also be symmetric because V is symmetric. Moreover, since A is assumed
invertible and V is an arbitrary symmetric matrix, the matrix V́ may be taken to be an
arbitrary symmetric matrix. With this definition, (15.10) and (15.11) can be written in the
more compact forms

− AJL−1 + V (AT )−1(−CJ + I)L−1 = A[−JL−1 + V́ (−CJ + I)L−1], (5.15.13)

AJ + V (AT )−1(CJ + I) = A[J + V́ (CJ + I)]. (5.15.14)

Now β can be expressed in the form

β = (1/
√

2)

(
A[−JL−1 + V́ (−CJ + I)L−1] A[J + V́ (CJ + I)]

(AT )−1(−CJ + I)L−1 (AT )−1(CJ + I)

)
. (5.15.15)

When the form for β given by (15.15) is used to compute Tβ(M), we find the result (15.5)
with the denominator given by (15.6) and the numerator given by

Numerator = A{[−JL−1 + V́ (−CJ + I)L−1]M + [J + V́ (CJ + I)]}. (5.15.16)
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Note that the numerator has a common factor of A and, as (15.6) shows, the denominator
has a common factor of (AT )−1. Therefore we have the identity that Tβ(M) for any M can
be written in the factored form

Tβ(M) = A[Tβ̃(M)]AT . (5.15.17)

Here β̃ is a Darboux matrix defined in terms of β by writing

β̃ = (1/
√

2)

(
[−JL−1 + V́ (−CJ + I)L−1] [J + V́ (CJ + I)]

(−CJ + I)L−1 (CJ + I)

)
. (5.15.18)

[That β̃ is a Darboux matrix follows from the fact β as given by (15.15) is a Darboux matrix
for all choices of A, and β̃ is simply the result of putting A = I in (15.15).]

We note in passing that β̃ has the property

Tβ̃(L) = V́ . (5.15.19)

That is, Tβ̃ sends the arbitrary symplectic matrix L to the arbitrary symmetric matrix V́ .

We will now learn that for fixed L, V́ , and C in (15.15), the symplectification procedure
given by (15.1) through (15.3) employing the β of (15.15) yields a result that is independent
of the choice of the matrix A. To see this, suppose that the matrix β̃ is used to symplectify
M using a procedure analogous to (15.1) through (15.3). As just pointed out, this amounts
to setting A = I in (15.15). Then we find the results

Ũ = Tβ̃(M), (5.15.20)

W̃ = (Ũ + ŨT )/2, (5.15.21)

R̃ = Tβ̃−1(W̃ ). (5.15.22)

Now carry out some manipulations using previous results. From (15.1), (15.17), and (15.20)
it follows that

U = Tβ(M) = A[Tβ̃(M)]AT = AŨAT . (5.15.23)

Consequently we have the relations

UT = AŨTAT , (5.15.24)

W = (U + UT )/2 = A[(Ũ + ŨT )/2]AT = AW̃AT . (5.15.25)

But we also have, from (15.3) and application of the identity (15.17), the result

W = Tβ(R) = A[Tβ̃(R)]AT . (5.15.26)

Upon comparing (15.25) and (15.26) we conclude there is the relation

Tβ̃(R) = W̃ , (5.15.27)

and therefore there is also the inverse relation

R = Tβ̃−1(W̃ ). (5.15.28)
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Finally (15.22) and (15.28) taken together show that

R = R̃. (5.15.29)

Thus R is indeed independent of the choice of A. Since the first factor in (13.147), the
factor that involves A, produces an arbitrary linear transformation on the coordinate-space
variables, we may say that the Darboux Möbius symplectification procedure is invariant
under linear transformations of the coordinate-space variables.

Exercises

5.15.1. Verify (15.1) through (15.9).

5.15.2. Verify (15.10) through (15.18).

5.15.3. Verify (15.20) through (15.29).

5.15.4. By studying various examples, explore how the choice of L, V́ , and C in (15.15)
affects the outcome of the symplectification procedure. Study, for example, the use of β̃ to
symplectify matrices of the form λI where λ is a parameter near 1.
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Chapter 6

Symplectic Maps

This chapter defines symplectic maps and explores some of their properties. They form
an infinite dimensional Lie group whose Lie algebra (as will become clear in Chapter 7) is
the Poisson bracket Lie algebra of all phase-space functions. It is shown that Hamiltonian
flows produce symplectic maps, and essentially any family of symplectic maps arises from
an associated Hamiltonian. Thus, Hamiltonian Dynamics is the study of symplectic maps,
and vice versa. It is also shown that, just as symplectic and symmetric matrices are closely
related, symplectic and gradient maps are closely related, and this relation provides a general
theory of generating functions. Finally, an introductory discussion is given of symplectic
invariants.

6.1 Preliminaries and Definitions

Let z1 · · · z2n be a set of canonical coordinates for a 2n-dimensional space. By canonical we
mean that we wish to view the 2n-dimensional space as a phase space and, as in (1.7.9),
have identified the first n of the z’s as being q’s and the remaining n as being p’s. Suppose a
transformation is made that sends the point z with coordinates z1 · · · z2n to some other point
z with coordinates z1(z, t) · · · z2n(z, t). Such a transformation will be called a mapping, and
will be denoted by the symbol M,

M : z → z(z, t). (6.1.1)

See Figure 1.1. In this discussion, the time t simply plays the role of a parameter. It is
included in the notation to indicate that the transformation may depend on the time. That
is, the map M may be different at different times.

Let M(z, t) be the Jacobian matrix of the map M. It is defined by the equation

Mab(z, t) = ∂za/∂zb. (6.1.2)

The Jacobian matrix describes the small changes produced in the final quantities za when
small changes are made in the initial quantities zb. See Exercise 1.4.6.

607



608 6. SYMPLECTIC MAPS

M

�
�
��3
�� Q

Q
QQs
QQ

z z(z, t)

Figure 6.1.1: The map M sends z to z(z, t).

6.1.1 Gradient Maps

As the title to this chapter indicates, it is mostly about symplectic maps. However, we shall
subsequently need gradient maps as well. Indeed, in Section 6.7 we will learn that there is an
intimate connection between gradient and symplectic maps. Therefore, this is a convenient
place to make a detour to define gradient maps.

Suppose g(u, t) is some function of the 2n variables u1 · · ·u2n and possibly some param-
eter t. Use g to define a map G by the rule

G : u→ u(u, t), (6.1.3)

with
u(u, t)a = ∂g/∂ua. (6.1.4)

Note that a gradient is involved in the definition of G, hence the name gradient map. We
also note that a single function, namely g(u, t), has been used to produce the 2n functions
u(u, t). We will refer to g as a source function.1

Let G(u, t) be the Jacobian matrix of the map G. In accord with the spirit of (1.2), it is
given by the equation

Gab(u, t) = ∂ua/∂ub. (6.1.5)

If we now make use of (1.4), we find the relation

Gab(u, t) = ∂2g/∂ub∂ua = ∂2g/∂ua∂ub. (6.1.6)

That is, G is the Hessian of g. We observe that G is symmetric because the order of partial
differentiation is immaterial for functions with continuous derivatives,

[G(z, t)]T = G(z, t). (6.1.7)

Conversely, for any map sending u to u, consider the differential form∑
a

u(u, t)a dua. (6.1.8)

It will be closed if
∂ua/∂ub = ∂ub/∂ua. (6.1.9)

1Since (1.4) involves a gradient, some authors refer to g as a potential function.
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See Exercise 1.1. But (1.9) is simply the condition that G be symmetric. Thus if the
Jacobian matrix of a map is symmetric, there is a function g such that

dg =
∑
a

u(u, t)a dua. (6.1.10)

Indeed, g is given by the path integral

g(u, t) =

∫ u∑
a

u(u′, t)a du
′
a, (6.1.11)

where the integral is to be taken over any path with some fixed initial point and variable end
point u. Moreover, it is evident from (1.10) that (1.4) holds. We conclude that a necessary
and sufficient condition for a map G to be a gradient map is that its Jacobian matrix G be
symmetric.

We also note that, although we have been working with an even number of variables,
namely 2n, gradient maps are also defined for an odd number of variables. Finally we note
that a necessary and sufficient condition for a gradient map to be (locally) invertible is that
detG 6= 0, in which case it can be shown that the inverse map is also a gradient map. See
Exercise 2.9.2

6.1.2 Symplectic Maps

With our detour complete, let us return to the main subject of symplectic maps. The map
M(t) is said to be symplectic if its Jacobian matrix M is a symplectic matrix for all values
of z and t,

MTJM = J or MJMT = J, ∀z, t. (6.1.12)

Note that in general M depends on z and t. However, the particular combinations MTJM
or MJMT must be z and t independent. Therefore, a symplectic map must have very special
properties.

To appreciate the significance of a symplectic mapping, consider the Poisson brackets of
the various z’s with each other. Using (5.1.3), we find the result

[za, zb] =
∑
c,d

(∂za/∂zc)Jcd(∂zb/∂zd). (6.1.13)

By using the definition (1.2) of the Jacobian matrix M , (1.13) can also be written in the
form

[za, zb] =
∑
c,d

MacJcdMbd

=
∑
c,d

MacJcd(M
T )db = (MJMT )ab. (6.1.14)

2For example in the context of Lagrangian/Hamiltonian dynamics, (1.5.7) is a gradient map from velocity
space to momentum space with the Lagrangian L serving as source function, and the first relation in (1.5.11)
is the inverse gradient map from momentum space to velocity space with the Hamiltonian H serving as source
function. Finally, H and L are Legendre transforms of each other.
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Finally, upon using the symplectic condition (1.12), we find the result

[za, zb] = (MJMT )ab = Jab = [za, zb]. (6.1.15)

Consequently, a necessary and sufficient condition for a map M to be symplectic is that it
preserve the fundamental Poisson brackets (1.7.10). As will be shown in Subsection 3, this
statement is equivalent, in turn, to the condition that the mapM must preserve the Poisson
bracket Lie algebra of all dynamical variables.

Symplectic mappings also have a geometrical aspect. Let z0 be some point in phase
space, and suppose it is sent to the point z0 under the action of a symplectic mapM. Also,
let dz and δz be two small vectors originating at the point z0. Under the action ofM, they
are sent to two vectors dz and δz. See Figure 1.2.

z
o

δz

δz

z
o

dz

dz

Phase Space

–

–

–

Figure 6.1.2: The action of a symplectic map M on phase space. The general point z0 is
mapped to the point z0, and the small vectors dz and δz are mapped to the small vectors
dz and δz. The figure is only schematic since in general phase space has a large number of
dimensions.

From calculus, we have the relation

dza =
∑
b

(∂za/∂zb)dzb, (6.1.16)

or more compactly, using (1.2),
dz = Mdz. (6.1.17)

Similarly, the vectors δz and δz are related by the equation

δz = Mδz. (6.1.18)

Now use the two vectors δz, dz and the matrix J to form the quantity (δz, Jdz). As de-
scribed in Section 3.2, this quantity is called the fundamental symplectic 2-form. Suppose
the relations (1.17) and (1.18) are inserted into the 2-form (δz, Jdz). Then, using matrix
manipulation and the symplectic condition (1.12), we find the relation

(δz, Jdz) = (Mδz, JMdz) = (δz,MTJMdz) = (δz, Jdz). (6.1.19)
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That is, the value of the fundamental symplectic 2-form is unchanged by a symplectic map.
Evidently, a necessary and sufficient condition for a map to be symplectic is that it preserve
the fundamental symplectic 2-form at all points of phase space and for all time.3

There is a third aspect of symplectic mappings that should already be familiar. In the
usual treatments of Classical Mechanics, an important topic is that of canonical transforma-
tions. Canonical transformations are usually defined as those transformations that either

a. preserve the Hamiltonian form of the equations of motion for all Hamiltonian dynamical
systems, or

b. preserve the fundamental Poisson brackets.

In case b, according to the previous discussion, canonical transformations and symplectic
maps are the same thing. In case a, it can be shown that the most general canonical
transformation is a map M whose Jacobian matrix satisfies the condition

MTJM = λJ, (6.1.20)

where λ is some real nonzero constant independent of z and t. Furthermore, it can be shown
that M in this case consists of a symplectic map followed or preceded by a simple scaling
of phase-space variables. See Appendix D. Therefore, in either case, the central object of
interest is a symplectic map.

From our perspective, and as will be shown in Subsections 4.1 through 4.3, the most
important property of symplectic maps is that Hamiltonian flows produce symplectic maps,
and vice versa. Thus, the study of Hamiltonian Dynamics is equivalent to the study of
Symplectic Maps.

Exercises

6.1.1. This is an exercise on key properties of differential forms. Consider the differential
form

m∑
b=1

Cb(z)dzb (6.1.21)

where the Cb(z) are specified functions of the m variables z1, z2, · · · zm. Before going any
further, it is convenient to give a differential form a name so that it is not necessary to always
write it out in full. We, as is common, will use the symbol ω to denote the differential form
(1.21) and write

ω =
m∑
b=1

Cb(z)dzb. (6.1.22)

We are now prepared to make some definitions and demonstrate some results about
differential forms:

3The fundamental symplectic 2-form is also sometimes called the Lagrange invariant.
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a) A differential form is called exact or perfect if there exists a function f(z) such that

ω = df. (6.1.23)

We know that for any differentiable function f there is the relation

df =
m∑
b=1

(∂f/∂zb)dzb. (6.1.24)

Now suppose the differential form ω is exact. Then, from (1.23), and comparing (1.22)
and (1.24), we find the result

Cb = ∂f/∂zb. (6.1.25)

Show that (1.25) implies the result

∂Cb/∂za − ∂Ca/∂zb = 0. (6.1.26)

A differential form ω that satisfies this relation is called closed. Thus, being exact
implies being closed.

b) Conversely, suppose (1.26) holds in some simply-connected region R. That is, assume
the form ω is closed in R. Let zi and zf be two arbitrary points in R, and let P be
some path in R joining them. Consider the integral

I[P ] =

∫ zf

zi

∑
b

Cb(z)dzb (6.1.27)

evaluated over the path P . In view of (1.22), we may also employ the notation

I[P ] =

∫ zf

zi
ω. (6.1.28)

We may regard (1.27) as a functional on paths, and write

I[z(τ)] =

∫ τf

τ i
{
∑
b

Cb(z)żb}dτ (6.1.29)

where z(τ) is some parameterization of the path and

żb = dzb/dτ. (6.1.30)

Define a “Lagrangian” L by writing

L(z, ż) =
∑
b

Cb(z)żb. (6.1.31)

With this definition, (1.29) takes the form

I =

∫ τf

τ i
L(z, ż)dτ. (6.1.32)
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Show, using standard variational calculus, that

δI =

∫ τf

τ i
dτ{
∑
a

(
− d

dτ

∂L

∂ża
+
∂L

∂za

)
δza} (6.1.33)

for a varied path with the same end points. Show from its definition (1.31) that L
satisfies Lagrange’s equation,

d

dτ

∂L

∂ża
− ∂L

∂za
= 0, (6.1.34)

if (1.26) holds, and therefore
δI = 0 for all δza. (6.1.35)

The relation (1.35) shows that I is unchanged in first order when infinitesimal varia-
tions (with end points fixed) are made in the path.

From this result, show that I is in fact path independent. In particular, suppose z(τ)
and z̃(τ) are two paths in R with the same end points. Consider the family of paths
z(τ, λ) defined by

z(τ, λ) = (1− λ)z(τ) + λz̃(τ). (6.1.36)

Evidently there are the relations

z(τ, 0) = z(τ) , z(τ, 1) = z̃(τ). (6.1.37)

Verify that all the paths in the family have the same end points. Assuming that z(τ, λ)
remains in R for τ ∈ [τ i, τ f ] and λ ∈ [0, 1], show from (1.35) that

(∂/∂λ)I[z(τ, λ)] = 0, (6.1.38)

and therefore I[z(τ, λ)] is independent of λ so that

I[z(τ)] = I[z̃(τ)]. (6.1.39)

Now that it has been established that the integral (1.27) is path independent, and
therefore depends only on the end points, show that one can define a function f(z) by
the rule

f(z) =

∫ z

zi

∑
b

Cb(z
′)dz′b. (6.1.40)

Show, by selecting and sketching a suitable path, that

∂f/∂za = Ca(z). (6.1.41)

Hint: To verify (1.41), select a path such that only z′a varies near the upper integration
limit. That is, near and at the final end of this path, the z′b for b 6= a have already
taken on the values z′b = zb.

Show that
df =

∑
b

(∂f/∂zb)dzb =
∑
b

Cb(z)dzb. (6.1.42)
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Therefore, (1.26) is both necessary and sufficient for a differential to be exact: An
exact form is closed, and a form that is closed in a simply-connected region is exact.
This result is sometimes called the Poincaré lemma. Note that it is an m-dimensional
generalization of the familiar 3-dimensional theorem that a vector field can be written
as the gradient of a scalar field if and only if the vector field has vanishing curl.

c) Finally, show that if ω is exact, then∫
Γ

ω =

∫
Γ

∑
b

Cb(z)dzb = 0 (6.1.43)

where Γ is any closed path in R, and vice versa.

6.1.2. Consider a two-dimensional phase space consisting of the variables q, p. Evaluate the
quantity (δz, Jdz) and show that it is related to the area formed by the small parallelogram
with sides δz and dz. Note that (δz, Jdz) can be either positive or negative. Thus, the area
is “signed”. Consider a 2n dimensional phase space. Show that the points z(σ, τ) given by
the relation

z(σ, τ) = z0 + σdz + τδz with σ, τ ∈ [0, 1] (6.1.44)

form a two dimensional surface in phase space that can be viewed as a generalized parallel-
ogram with sides δz and dz. Show that this generalized parallelogram has projections into
the za, zb planes that are “ordinary” parallelograms (each za, zb plane is two dimensional).
In particular, the projections of the generalized parallelogram into the qi, pi planes are par-
allelograms. Finally, show that (δz, Jdz) is related to the sum of the signed areas of the
parallelograms in the qi, pi planes. Hint: Use (3.2.3).

6.2 Group Properties

6.2.1 The General Case

Let M be a symplectic mapping of z to z, and suppose it has an inverse M−1,

M : z → z, (6.2.1)

M−1 : z → z. (6.2.2)

According to (1.17), the relation between a small change dz in z, and the associated small
change dz in z, is given by the Jacobian matrix M of M. Since M is symplectic, it has an
inverse M−1. Therefore, (1.17) can be inverted to give the relation

dz = M−1dz. (6.2.3)

But now, comparison of (2.2) and (2.3) shows that the Jacobian matrix of M−1 is M−1.
Note also that the local existence of M−1 did not really have to be assumed, but follows
instead from the inverse function theorem since M−1 is known to exist from the symplectic
condition. Finally, the matrix M−1 is symplectic since the inverse of a symplectic matrix is
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also a symplectic matrix. It follows that M−1 is a symplectic map. What has been shown
is that ifM is a symplectic map, thenM−1 exists (at least locally) and is also a symplectic
map.

Next suppose that M(1) is a symplectic mapping of z to z and M(2) is a symplectic

mapping of z to another set of variables
=
z. Now consider the composite mapping M =

M(2)M(1), which sends z to
=
z.

M =M(2)M(1), (6.2.4)

M(1) : z → z, (6.2.5)

M(2) : z →=
z, (6.2.6)

M(2)M(1) : z →=
z . (6.2.7)

According to the chain rule, the Jacobian matrix M of the composite mapping M is the
product of the Jacobian matrices of M(2) and M(1),

M = M (2)M (1). (6.2.8)

However, the matrices M (2) and M (1) are symplectic since they are the Jacobian matrices
of symplectic maps. It follows from (2.8) and the group property for symplectic matrices
that M is also a symplectic matrix. Consequently, the composite mapping M is also a
symplectic map. What has been shown is that ifM(1) andM(2) are symplectic maps, so is
their product M(2)M(1).

It is also obvious that the identity mapping, which sends each z into itself, is a symplectic
map because the Jacobian matrix of this map is evidently the identity matrix, and the
identity matrix is symplectic.

The previous discussion has shown that the set of symplectic maps has properties very
analogous to the group properties of the group of symplectic matrices. As defined earlier,
the concept of a group applied only to matrices. However, it is clear that the concept of a
group can be enlarged to include the possibility of general mappings. When this is done, the
set of all symplectic maps is entitled to be called a group. The set of all differentiable maps
forms a group called the group of all diffeomorphisms. Because of the symplectic restriction,
the set of all symplectic maps is a subgroup of the group of all diffeomorphisms.

6.2.2 Various Subgroups and Their Names

We found in Section 3.6.1 that the set of all real 2n × 2n symplectic matrices forms a
group. We have denoted this group and its Lie algebra by the symbols Sp(2n,R) and
sp(2n,R). Equivalently, in the present context, the subset of all symplectic maps that send
the origin into itself (preserve the origin) and are linear is a subgroup of the group of all
symplectic maps, and this subgroup is Sp(2n,R). See Exercise 2.1. Evidently, the subset
of all symplectic maps that send the origin into itself, but are not necessarily linear, is also
a subgroup of the group of all symplectic maps. For lack of any standard terminology, we
will refer to this group as SpM(2n,R). Here the M in the name stands either for the word
map or, to please the French, the word morphism because those of Gallic bent often refer
to maps as morphisms. The underlying Lie algebra of SpM(2n,R), see Section 7.7, will be
referred to as spm(2n,R).
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Next consider mappings of the form

za = za + ca, (6.2.9)

where the quantities ca are constants. It is easily verified that such maps are symplectic,
and form a group. This group is called the phase-space translation group. Now consider
phase-space mappings of the form

za = ca +
∑
b

Mabzb, (6.2.10)

where the matrices M are symplectic. Such maps are also symplectic and form a group.
This group is called the inhomogeneous symplectic group, and will be referred to by the
symbols ISp(2n,R). The underlying Lie algebra of ISp(2n,R), see Sections 7.7 and 9.2,
will be referred to as isp(2n,R).

Finally, consider the group of all symplectic maps (also called symplectomorphisms) that
do not necessarily preserve the origin and are not necessarily linear. This group will be
referred to as ISpM(2n,R) and its Lie algebra, see Exercise 7.7.2, will be referred to as
ispm(2n,R).4

We close this section by noting that gradient maps do not form a group. In the case
of gradient maps there is again a relation like (2.8) for the Jacobian of the product of two
maps. However, the product of two symmetric matrices is generally not a symmetric matrix.
Therefore, the product of two gradient maps is generally not a gradient map. Gradient maps
belong to the group of all diffeomorphisms, but do not form a subgroup. However, it can
be shown that the identity map is a gradient map; and the inverse of a gradient map, if the
inverse exists, is also a gradient map. See Exercise 2.9.

Exercises

6.2.1. Consider phase-space mappings of the form

z = Mz (6.2.11)

where M is a symplectic matrix. Show that such maps are symplectic, and form a group.
Show that the symplectic map for M = J interchanges (with a minus sign) coordinates and
momenta.

6.2.2. Consider phase-space mappings of the form (2.9). Show that such maps are symplec-
tic, and form a group. Consider phase-space mappings of the form (2.10). Show that such
maps are symplectic, and also form a group.

6.2.3. Use (1.2) and the chain rule to verify (2.8).

6.2.4. Consider the nonrelativistic motion of a particle of mass m described by Cartesian
coordinates q(t). In the usual way, define the momentum p(t) by the relation

p = mq̇. (6.2.12)

4Some authors refer to ISpM(2n,R) simply as Symp(n) and to Sp(2n,R) as Sp(n).
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The Euclidean group consists of spatial transformations of the form

q̄ = Rq + d (6.2.13)

where R is a 3 × 3 rotation matrix and d is a fixed vector. It describes rotations and
translations (displacements) in 3-dimensional space. These transformations are extended to
phase space by the rule

p̄ = Rp. (6.2.14)

Setting z = (q;p), verify that (2.13) and (2.14) specify a symplectic map. That is, verify
that

[z̄a, z̄a] = Jab. (6.2.15)

Thus, the Euclidean group is a subgroup of the group of all symplectic maps.
To the Euclidean group add the further spatial transformations

q̄(t) = q(t) + ut. (6.2.16)

These transformations describe the (nonrelativistic) coordinate relation between two inertial
frames moving with (fixed) relative velocity u. In accord with (2.12), these transformations
may be extended to phase space by the rule

p̄ = p+mu. (6.2.17)

Show that the transformations described by (2.16) and (2.17) are also symplectic maps.
Together the transformations described by (2.13), (2.14) and (2.16),(2.17) form the group
of all Galilean transformations. You have shown that the Galilean group is a subgroup of
the group of all symplectic maps.5

Suppose we extend phase space to include t as a coordinate and pt as its conjugate mo-
mentum, in which case some parameter τ becomes the independent variable. See Exercises
1.6.4 and 1.6.5. Can the Galilean group be extended to act on this extended phase space?
Implicit in the nonrelativistic approach is the assumption that time is the same in all inertial
frames,

t̄ = t. (6.2.18)

How should we define p̄t? As motivation, consider the free particle case for which we have
the relation

pt = −p · p/(2m). (6.2.19)

If we write
p̄t = −p̄ · p̄/(2m) (6.2.20)

and use (2.17), we find the result

p̄t = pt − u · p− (m/2)u · u, (6.2.21)

which we take to be the rule for how pt transforms.6

5Note that all these transformations are in fact a subset of the inhomogeneous symplectic group, and are
therefore automatically symplectic. See (2.9) and (2.10).

6See also Exercises 2.5 and 2.7 below.
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Show that the relations (2.13),(2.14) and (2.16),(2.17) and (2.18),(2.21) also yield a
group, which we might call the extended Galilean group. Are these transformations sym-
plectic maps on the extended phase space? Show that they are, and therefore the extended
Galilean group is a subgroup of the group of all symplectic maps on extended phase space.
To make this demonstration, write z = (q, t;p, pt) and again set up the usual rules

[za, zb] = Jab. (6.2.22)

Show it then follows that (2.15) also holds on the extended phase space. In particular, you
will need to verify that

[p̄t, q̄] = 0. (6.2.23)

Finally, note that the fact that a particular group can be realized as a set of phase-space
transformations does not necessarily say anything about the invariance properties of the
dynamics of any particular system. What is needed for invariance is for trajectories to be
sent into trajectories under the action of the group. For example, see Exercise 1.6.9.

6.2.5. Read Exercise 2.4. The reader may be dubious about the use of the free particle
case to motivate the transformation rule (2.21). Here is another approach. For simplicity,
consider the case in which phase space is two dimensional. Suppose that the transformation
rule for pt is of the form

p̄t = pt − up+ α(u) (6.2.24)

where α(u) is a function yet to be determined. Verify that the −up term in (2.24) is
necessary to satisfy (2.23), but that the symplectic condition is satisfied for any choice of α.
Now make the requirement that the extended Galilean transformations form a group. Make
two successive transformations with relative velocities u1 and u2 to obtain the relations

q̄ = q + u1t, (6.2.25)

t̄ = t, (6.2.26)

p̄ = p+mu1, (6.2.27)

p̄t = pt − u1p+ α(u1); (6.2.28)

¯̄q = q̄ + u2t̄, (6.2.29)

¯̄t = t̄, (6.2.30)

¯̄p = p̄+mu2, (6.2.31)

¯̄pt = p̄t − u2p̄+ α(u2). (6.2.32)

Show that combining the relations (2.25) through (2.32) yields the net relations

¯̄q = q + (u1 + u2)t, (6.2.33)

¯̄t = t, (6.2.34)

¯̄p = p+m(u1 + u2), (6.2.35)

¯̄pt = pt − (u1 + u2)p−mu1u2 + α(u1) + α(u2). (6.2.36)
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We see that (2.33) through (2.35) are of the standard Galilean transformation form corre-
sponding to a relative velocity u1 +u2. Therefore, if we wish (2.36) to also be of the standard
form (2.24), we must require the relation

−mu1u2 + α(u1) + α(u2) = α(u1 + u2). (6.2.37)

Show that (2.37) implies the relation

α(0) = 0. (6.2.38)

To make further progress, assume that α is differentiable.7 Set

u1 = u (6.2.39)

and
u2 = ε. (6.2.40)

Then, assuming differentiability, show that there are the relations

α(u1 + u2) = α(u+ ε) = α(u) + α′(u)ε+O(ε)2, (6.2.41)

α(u2) = α(ε) = α(0) + α′(0)ε+O(ε)2. (6.2.42)

Next, show that inserting (2.38) through (2.42) into (2.37) and equating like powers of ε
yields the differential equation

α′(u) = α′(0)−mu (6.2.43)

with the solution
α(u) = uα′(0)− (1/2)mu2. (6.2.44)

Here, in solving (2.43), we have taken into account the boundary condition (2.38). Finally,
let us apply the transformation (2.25) through (2.28) to the phase-space origin q = p = 0.
Doing so gives the result

p̄t = pt + α(u) = pt + uα′(0)− (1/2)u2. (6.2.45)

If we now require that p̄t be independent of the sign of u, which seems reasonable since there
is no preferred direction when q = p = 0, we conclude that we should demand the further
condition

α′(0) = 0. (6.2.46)

Thus, under reasonable assumptions, we again arrive at (2.21).

6.2.6. Study Exercises 1.6.7, 1.6.8, and 1.7.5. Suppose x and y are any two space-time
points. The interval D2(x, y) between them is given by the relation

D2(x, y) = gµν(x− y)µ(x− y)ν = ([x− y], g[x− y]) = (x− y) · (x− y). (6.2.47)

7Actually, it is sufficient to assume continuity. It is a remarkable property of Lie groups that the assump-
tion of continuity implies differentiability, and indeed, also the far stronger condition of analyticity.
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Here we use the metric g given by (1.6.45) and (∗, ∗) denotes the usual/ordinary scalar
product. Consider the set of all transformations that send space-time into itself. Special
Relativity asserts that if two events can occur at the points x, y (i.e. the events are consonant
with physical law), then they can also occur at the points x̃, ỹ provided

D2(x̃, ỹ) = D2(x, y). (6.2.48)

Transformations that satisfy (2.48) are called Poincaré transformations.
In studying Poincaré transformations it is often assumed from the outset that they are

of the form

x̃α =
4∑

β=1

Λαβxβ + dα ⇔ x̃ = Λx+ d. (6.2.49)

That is, they are assumed to consist of a linear transformation described by the matrix Λ
followed by a space-time translation described by the 4-vector d. Such an assumption is not
necessary. It can be proved that the most general transformation satisfying (2.48) for all
pairs of points must be of the form (2.49). See Exercise 7.3.26. Assuming the form (2.49),
show from (2.48) that the matrix Λ must satisfy the relation

ΛTgΛ = g. (6.2.50)

Show that the matrices Λ form a group (called the Lorentz group).8 Show that Poincaré
transformations also form a group (called the Poincaré group).9 Show that there are the
logical implications

ΛTgΛ = g ⇔ ΛgΛT = g ⇔ (ΛT )TgΛT = g. (6.2.51)

Suppose that Λ is an element of the Lorentz group. Show that then Λ−1 and ΛT and
(ΛT )−1 = (Λ−1)T are elements of the Lorentz group, and vice versa.

Suppose space-time coordinates are transformed according to (2.49) and the action of
the Lorentz (and Poincaré) group is extended to act on momenta by the rule

p̃ = Λp⇔ p̃α =
4∑

β=1

Λαβpβ. (6.2.52)

Define canonical coordinates in an eight-dimensional phase space to consist of the pairs
(xµ, pν). It can be shown that (2.49) and (2.52) produce a symplectic map in this phase

8The finite dimensional representations of the Lorentz group formed by the matrices Λ are described in
Exercise 7.3.27. Remarkably, as shown in Exercise 7.3.29, the identity component of the Lorentz group is
homomorphic to the group SL(2,C). Indeed, SL(2,C) is the covering group of the Lorentz group.

We also take this occasion to make a comment about nomenclature and notation. Under a Lorentz
transformation space-time transforms according to the rule x̃ = Λx from which it follows that dx̃ = Λdx.
There is also the chain-rule relation dx̃α =

∑
β(∂x̃α/∂xβ)dxβ and therefore Λαβ = ∂x̃α/∂xβ . Any collection

of four elements V α is defined to be a four-vector if there is the transformation rule Ṽ = ΛV . Similarly,
any set of sixteen elements Tαβ is defined to be a second-rank tensor if there is the transformation rule
T̃αβ =

∑
µν ΛαµΛβνTµν . Note that these transformation rules can also be written in the less compact forms

Ṽ α =
∑
µ(∂x̃α/∂xµ)V µ and T̃αβ =

∑
µν(∂x̃α/∂xµ)(∂x̃β/∂xν)Tµν , etc., as is frequently done.

9The Poincaré group could also be called the inhomogeneous Lorentz group.
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space. See Exercise 2.13. That is, (extended) Poincaré transformations are symplectic maps,
and therefore form a subgroup of the group of all symplectic maps. Indeed, since Lorentz
transformations are linear, the (extended) Lorentz group is a subgroup of Sp(8,R). And,
according to (2.49), the (extended) Poincaré group is a subgroup of ISp(8,R).

6.2.7. Read Exercises 2.4 and 2.6 above if you have not already done so. The Poincaré group
involves the parameter c. The aim of this exercise is to show that in the limit c → ∞ the
Poincaré group becomes the extended Galilean group plus translations in time. Consider,
for simplicity, a velocity transformation along the z axis with velocity u. In this case Λ is
the matrix

Λ =


1 0 0 0
0 1 0 0
0 0 γ(u) β(u)γ(u)
0 0 β(u)γ(u) γ(u)

 (6.2.53)

where
β(u) = u/c (6.2.54)

and
γ(u) = 1/

√
1− [β(u)]2. (6.2.55)

Then, from (2.49), we find for the space-time coordinate variables xµ the relations

x̃1 = x1, (6.2.56)

x̃2 = x2, (6.2.57)

x̃3 = γ(u)x3 + γ(u)β(u)x4, (6.2.58)

x̃4 = γ(u)β(u)x3 + γ(u)x4. (6.2.59)

Show that, with the aid of (1.6.41), these last two relations can be rewritten in the form

z̃ = γ(u)z + γ(u)β(u)ct = γ(u)z + γ(u)ut, (6.2.60)

t̃ = γ(u)β(u)z/c+ γ(u)t. (6.2.61)

Show that in the limit c→∞ the relations (2.60) and (2.61) become

z̃ = z + ut, (6.2.62)

t̃ = t, (6.2.63)

which, along with (2.56) and (2.57), are a special case of the Galilean transformation given
by (2.16) and (2.18).

The limiting case of the momentum relations (2.52) is a bit more delicate because the
quantities pµ are c dependent. Verify that for Λ given by (2.53) the relations (2.52) have
the component form

p̃1 = p1, (6.2.64)

p̃2 = p2, (6.2.65)

p̃3 = γ(u)p3 + γ(u)β(u)p4, (6.2.66)
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p̃4 = γ(u)β(u)p3 + γ(u)p4. (6.2.67)

Show that use of (1.6.82), (1.6.96), and (1.6.97) in (2.66) gives the result

γ(ṽ)mṽz + qÃz = γ(u)[γ(v)mvz + Az] + γ(u)β(u)[qA4 + γ(v)mc]

= γ(u)[γ(v)mvz + Az] + γ(u)γ(v)mu+ γ(u)β(u)qA4. (6.2.68)

Show that in the limit c→∞ (2.68) becomes

mṽz + qÃz = mvz + Az +mu, (6.2.69)

which can be written in the form
p̃nr
z = pnr

z +mu (6.2.70)

where pnr is the nonrelativistic canonical momentum. Observe that (2.64), (2.65), and
(2.70) are a special case of (2.17). Thus we have obtained in the c→∞ limit the Galilean
transformations for the spatial components of pµ.

What remains is the temporal component of pµ. Show that use of (1.6.82), (1.6.96), and
(1.7.20) in (2.67) gives the result

p̃t = −γ(u)β(u)cp3 + γ(u)pt, (6.2.71)

which can be rewritten in the form

p̃t = −γ(u)up3 + γ(u)pt. (6.2.72)

Next we need to expand pt as given by (1.7.22). Show that

pt = −qψ − γ(v)mc2 = −qψ −mc2 − (1/2)mv2 + c2O(v/c)4

= pnr
t −mc2 + c2O(v/c)4 (6.2.73)

where we have defined a nonrelativistic pt by the rule

pnr
t = −qψ − (1/2)mv2 = pt +mc2 + c2O(v/c)4. (6.2.74)

Now insert (2.73) into (2.72) to obtain the result

p̃nr
t = −γ(u)up3 + γ(u)[pnr

t −mc2] +mc2 + c2O(ṽ/c)4 + c2O(v/c)4

= −γ(u)up3 + γ(u)pnr
t +mc2[1− γ(u)] + c2O(ṽ/c)4 + c2O(v/c)4.

(6.2.75)

Next verify that
p3 = pnr

z +O(v/c)2 (6.2.76)

and
mc2[1− γ(u)] = −(1/2)mu2 + c2O(u/c)4. (6.2.77)

Now we are ready to take the c→∞ limit of (2.75). Verify that this limit is

p̃nr
t = pnr

t − upnr
z − (m/2)u2. (6.2.78)
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Observe that (2.78) is a special case of (2.21).
We have achieved our goal. We have seen that under a suitable limiting process the

Lorentz group reduces to the extended Galilean group.10 Correspondingly, the Poincaré
group reduces to the extended Galilean group plus translations in time, t̃ = t+ a4.

6.2.8. Study Exercises 1.6.7 through 1.6.10 and Exercise 1.7.5, and adopt the phase-space
coordinates of Exercise 2.6. Show that gauge transformations produce symplectic maps.
Note that if it is necessary to append a gauge transformation to the Lorentz transformation
(2.52), as described in a footnote to Exercise 1.6.7, the net result is still a symplectic map.
Let φ(x) be any scalar field, and let A be the symplectic (see Section 7.1) map

A = exp(−q : φ :). (6.2.79)

Let A act on the HR given by (1.6.92), and demonstrate that A produces gauge transfor-
mations.

6.2.9. Let S0 be the set of all diffeomorphisms (in 2n dimensions), S1 be the set of all ori-
entation preserving diffeomorphisms (see Exercise 1.4.6), and S2 be the set of all symplectic
maps. Show that each of these sets forms a group, and that there is the inclusion relation

S0 ⊃ S1 ⊃ S2. (6.2.80)

Review Section 6.1.1. Show, by an example, that the product of two symmetric matrices
need not itself be symmetric, and thereby demonstrate, in view of (2.4) through (2.8),
that gradient maps do not form a subgroup of the group of all diffeomorphisms. Review
Exercise 5.3.7. Show that the maps produced by integrating gradient vector fields over some
time interval are diffeomorphisms, but generally do not form a subgroup of the group of
all diffeomorphisms. Show that, despite the use of the adjective gradient to describe the
underlying vector fields, such maps are also generally not gradient maps.

Show that the identity map I defined by

u = Iu = u (6.2.81)

has the identity matrix I for its Jacobian matrix, and therefore G = I is a gradient map.
Using (1.11), show that the associated source function g(u) that produces this G is given by

g(u) = (u, u)/2, (6.2.82)

and verify that use of this g in (1.4) yields G = I.

10This reduction of the Lorentz group to the Galilean group is an example of a process that can be
applied to many groups and is called Inönü-Wigner contraction. The inverse process to contraction is
called deformation. For example, it can be shown that the Quantum Mechanical commutator Lie algebra of
functions of the quantum variables Q and P is a deformation of the Poisson bracket Lie algebra of functions
of the associated classical variables q and p. We may say that Quantum Mechanics is a deformation of
Classical Mechanics, and Classical Mechanics is a contraction of Quantum Mechanics in the limit ~ → 0.
See Appendix Y. Similarly, ray optics is a contraction of wave optics in the limit that the wavelength λ→ 0,
and wave optics is a deformation of ray optics.
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Suppose G is a gradient map. Write

ū = Gu, (6.2.83)

and require that its Jacobian matrix G be symmetric as in (1.7) so that G is indeed a gradient
map. Suppose further that G is invertible, and let H be its inverse so that we may write

u = Hū, (6.2.84)

or
H = G−1. (6.2.85)

Your first task is to show that H is also a gradient map.
Show from (1.5) that there is the relation

du = G(u)du. (6.2.86)

By the inverse function theorem, the condition for G to be invertible is

detG 6= 0. (6.2.87)

Show under the assumption (2.87) that (2.86) can be rewritten in the form

du = H(ū)dū (6.2.88)

with
H(ū) = [G(u)]−1. (6.2.89)

Thus, H is the Jacobian matrix for H. Verify it follows that there are the series of relations

HG = I, (6.2.90)

GTHT = I, (6.2.91)

GHT = I, (6.2.92)

HT = G−1 = H. (6.2.93)

You have shown that H is also a gradient map.
What is the source function h for H? Let g be the source function for G. Show that the

Ansatz
h(u) = (u, u)− g(u) (6.2.94)

produces a well-defined function h(u) when u is viewed as a function of u,

u = G−1u. (6.2.95)

Show that the differential of h is given by the relation

dh =
∑
a

[ua(dua) + ua(dua)− (∂g/∂ua)(dua)]. (6.2.96)
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Next use (1.4) to show that dh as given by (2.96) can also be written in the form

dh =
∑
a

ua(dua), (6.2.97)

and thereby conclude that
ua = ∂h/∂ua. (6.2.98)

Comparison of (2.84) and (2.98) shows that h is the source function for H.
Show from (2.88) and (2.98) that

Hab = ∂2h/∂ua∂ub. (6.2.99)

The map H will be invertible iff
detH 6= 0. (6.2.100)

Show from (2.90) that
(detH)(detG) = 1. (6.2.101)

Therefore H is invertible if G is invertible, and vice versa. Moreover, the relation (2.94) can
also be written in the form

g(u) = (u, u)− h(u) (6.2.102)

where
u = H−1u. (6.2.103)

Equation (2.94) shows that h is the Legendre transform of g and, conversely, (2.102) shows
that g is the Legendre transform of h. In this context, a Legendre transformation is the
relation between the source function of a gradient map and the source function of its inverse.

The production of one function from another by performing a Legendre transformation
may be viewed as the result of some operator O acting on function space. Observe that g
is associated with G and h is associated with G−1. Since (G−1)−1 = G, it follows that O2 is
the identity operator on function space. An operator whose square is the identity is called
an involution.11 We have learned that the act of performing a Legendre transformation is
an involution.

As a sanity check on this claim, work out an example. Suppose f(x) is a function of a
single variable x given by the rule

f(x) = λxn (6.2.104)

where λ is some positive constant, and let g(x) be its Legendre transform. Show that

g(x) = λ(x)n (6.2.105)

where
n = n/(n− 1) (6.2.106)

and
λ = (n− 1)λ(nλ)−n. (6.2.107)

11Note: this use of the word involution is not to be confused with that in Section 5.2.
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Let h(
=
x) be the Legendre transform of g(x). Find h(

=
x) and verify that

h(
=
x) = f(

=
x). (6.2.108)

Here is an alternate, but equivalent, definition of the Legendre transform. Given the
function g(u), show that h(ū) can be defined by the rule

h(ū) = max
u

[(u, u)− g(u)]. (6.2.109)

This relation holds when g is convex, i.e. the Hessian of g is a positive definite matrix at
each point u. More generally, one should look for an extremum rather than a maximum.
Extrema will exist and be locally isolated as long as the Hessian of g is nonsingular.

In the case of a function f(x) of a single variable x with Legendre transform g(x), how
are the graphs y = f(x) and y = g(x) related geometrically? Suggestion: See the Legendre
transformation references listed in the bibliography at the end of this chapter.

Review the passage from a Lagrangian to a Hamiltonian employed in Section 1.5. Observe
that the relation (1.5.7) between p and q̇ is a gradient map produced by using L as a source
function, with the remaining variables q and t simply going along for the ride. Also, (1.5.8)
is a Legendre transformation that produces H from L, again with the variables q and t
going along for the ride. Finally, the first of the equations (1.5.11), the one yielding the q̇i,
is simply the inverse of the gradient map (1.5.7). Evidently, the only additional “physics”
in the relations (1.5.11) is that given by the second equation which yields the ṗi.

6.2.10. LetM be a map and let M be its Jacobian matrix. By the inverse function theorem,
M is invertible in the vicinity of a point if M is invertible at that point. Suppose that M
is invertible everywhere. Does it then follow that M is globally invertible? Consider the
following two-dimensional counter example: Suppose the map M sends the points x, y to
the points u, v by the rule

u = ex cos y, (6.2.110)

v = ex sin y. (6.2.111)

Show that in this case M is the matrix

M =

(
ex cos y −ex sin y
ex sin y ex cos y

)
. (6.2.112)

Verify that
detM = e2x 6= 0, (6.2.113)

and therefore M is globally invertible. Show that neverthelessM is not globally invertible.
Hint: Introduce complex variables z, w by writing the relations

z = x+ iy, (6.2.114)

w = u+ iv. (6.2.115)

Show that M as given by (2.110) and (2.111) is equivalent to the complex relation

w = ez, (6.2.116)

and therefore M−1 is given by the multivalued relation

z = logw. (6.2.117)
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6.2.11. Consider a two-dimensional phase space with Cartesian coordinates q, p. Define
new coordinates Q,P implicitly by the rules

q = (2P )1/2 cos(Q), (6.2.118)

p = −(2P )1/2 sin(Q). (6.2.119)

Verify that (2.118) and (2.119) have the inverse relations

Q = tan−1(−p/q) = −tan−1(p/q), (6.2.120)

P = (1/2)(p2 + q2). (6.2.121)

Evidently the quantities (2P )1/2 and Q assign what are essentially cylindrical polar coor-
dinates to the phase-space point having Cartesian coordinates q, p. The only difference is
that increasing Q produces a clockwise rotation whereas, in the usual convention, increasing
the polar angle θ produces a counterclockwise rotation. We also remark that commonly the
symbols J, φ, called action-angle variables, are used instead of P,Q.

Let C be the closed circular path of radius R about the origin of q, p phase space obtained
by using (2.118) and (2.119) with (2P )1/2 = R and Q ∈ [0, 2π]. Verify that the action A
associated with this circular path, defined by the relation

A =

∮
C

p dq =

∫
p2+q2≤R2

dp dq, (6.2.122)

has the value
A = πR2 = 2πP. (6.2.123)

Show that there is the relation

[Q,P ] = [q, p] = 1 (6.2.124)

so that the quantities Q and P may be thought of as position-like and momentum-like
coordinates, respectively. Correspondingly, the relations (2.120) and (2.121) describe a
symplectic map M, and the relations (2.118) and (2.119) describe its inverse. Verify that
M andM−1 are not analytic at the origin. This is to be expected because polar coordinates
are ill defined at the origin.

Let L be the harmonic oscillator Lagrangian

L = (1/2)(q̇2 − q2). (6.2.125)

Show that the associated Hamiltonian is

H = (1/2)(p2 + q2). (6.2.126)

Show that under the symplectic mapM the Hamiltonian H becomes the transformed Hamil-
tonian K given by the relation

K = P. (6.2.127)

Show that there is no Lagrangian whose associated Hamiltonian is K. See Exercise 2.9
and Section 1.5. In particular, see Exercises 1.5.13 and 1.5.14. Thus, under the action
of symplectic maps, it is possible that one may move beyond the realm of Lagrangian
mechanics.
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6.2.12. Exercise to find Λ from F and F̄ given that I1(F̄ ) = I1(F ), etc. See Exercise 1.6.17.
SupposeE andB are electric and magnetic fields having (at some point xµ in space-time)

arbitrary magnitude and direction.

6.2.13. Review the last paragraph of Exercise 2.6. The purpose of this exercise is to show
that extended Lorentz/Poincaré transformations are symplectic maps and to study various
features of the relation (1.6.287) that connects contravariant and covariant transformation
properties. Hints: Show that the Poisson bracket relations (1.7.17) are preserved by (ex-
tended) Lorentz/Poincaré transformations. Show that the linear part M of the phase-space
map is of the form (3.3.11) and that the condition (3.3.13) is satisfied. Given a Lorentz
transformation, what is the f2 for the corresponding symplectic map associated with the
(extended) Lorentz transformation? Also see Exercise 3.7.36.

6.3 Preservation of General Poisson Brackets

Let M be a symplectic mapping of z to z, and let M−1 be its inverse,

M : z → z = z(z, t), (6.3.1)

M−1 : z → z = z(z, t). (6.3.2)

Suppose we view these relations as a transformation of variables. Let f(z, t) be any dynam-
ical variable. Then the mapM−1 given by (3.2) produces a transformed dynamical variable
f ∗(z, t) (a function of the transformed phase-space variables z and perhaps the time t) by
the rule

M−1 : f(z, t)→ f ∗(z, t) = f(z(z, t), t). (6.3.3)

Conversely, if f ∗(z, t) is any function of the transformed phase-space variables z and perhaps
the time t, then the mapM given by (3.1) produces the dynamical variable f(z, t), involving
the original phase-space variables, by the rule

M : f ∗(z, t)→ f(z, t) = f ∗(z(z, t), t). (6.3.4)

In either case, we have the common relation

f ∗(z, t) = f(z, t). (6.3.5)

The matter of transforming dynamical variables can also be viewed from a somewhat
different perspective. Suppose f old(z, t) is some dynamical variable involving the original
phase-space variables and perhaps the time t. Then the map M given by (3.1) produces a
new dynamical variable fnew(z, t) of the original phase-space variables by the rule

M : f old(z, t)→ fnew(z, t) = f old(z(z, t), t). (6.3.6)

In this case, z is to be regarded as a transformed point in the same phase space as the
original point z. By contrast, in the relations (3.3) through (3.5), the points z and z may
be regarded as members of two different phase spaces.
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We now examine the relation between original and transformed dynamical variables and
their Poisson brackets. Suppose f and g are any two dynamical variables. For clarity, it is
convenient to introduce the notation

[f, g]z = (∂zf, J∂zg), (6.3.7)

[f, g]z = (∂zf, J∂zg). (6.3.8)

See (5.1.4). Then the relation (1.15), and the fact that M−1 is a symplectic map if (and
only if) M is also a symplectic map, can be written in the more precise form

Jab = [za, zb]z = [za, zb]z = [za, zb]z = [za, zb]z. (6.3.9)

Now consider f ∗(z, t), and its counterpart g∗(z, t), as defined by (3.3). We claim that
corresponding to the relations (3.3) and (3.4) there are the relations

[f ∗, g∗]z = [f, g]z|z=z(z,t), (6.3.10)

[f, g]z = [f ∗, g∗]z|z=z(z,t), (6.3.11)

respectively. We will prove (3.10) in a moment, and the proof of (3.11) is similar. Note that
the relations (3.10) and (3.11) indicate that the operations of transforming variables and
Poisson bracketing are interchangeable. That is, we may first Poisson bracket two functions
and then change variables, or we may first change variables, and then Poisson bracket with
respect to the transformed variables. In this sense, Poisson brackets in general are preserved
under symplectic maps.

The proof of (3.10) makes used of the chain rule and the symplectic condition. From
(3.3) and (3.8) we have the relations

[f ∗, g∗]z = (∂zf
∗, J∂zg

∗) = (∂zf, J∂zg). (6.3.12)

By the chain rule there is the relation

∂f/∂za =
∑
b

(∂f/∂zb)(∂zb/∂za). (6.3.13)

However, (2.3) can be rewritten in the form

dzb =
∑
c

(M−1)bcdzc, (6.3.14)

and it follows that there is the relation

∂zb/∂za = (M−1)ba. (6.3.15)

Consequently, (3.13) can be written also in the form

∂f/∂za =
∑
b

[(MT )−1]ab(∂f/∂zb). (6.3.16)
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This relation has the compact form

∂zf = (MT )−1∂zf. (6.3.17)

Upon inserting (3.17) and its counterpart for g into (3.12), we find the advertised result,

[f ∗, g∗]z = (∂zf, J∂zg) = ([MT ]−1∂zf, J [MT ]−1∂zg)

= (∂zf, [M
−1J(MT )−1]∂zg) = (∂zf, J∂zg)

= [f, g]z.

(6.3.18)

Here we have used the symplectic condition for M−1 in the form

M−1J(MT )−1 = J. (6.3.19)

The reader is urged to prove (3.11) in an analogous fashion. Finally, she or he should also
prove the related result for old and new functions as given by (3.6),

[fnew(z, t), gnew(z, t)]z = [f old(z, t), gold(z, t)]z|z=z(z,t). (6.3.20)

Exercises

6.3.1. Prove the relations (3.11) and (3.20).

6.3.2. Suppose that h(z, t) is any function of the phase-space variables z and the time t.
Let z be related to z by the symplectic map M−1 as in (3.2). Prove the relation

[za(z, t), h(z, t)]z = [za, h(z(z, t), t)]z. (6.3.21)

Prove also the relation
[za(z, t), h(z, t)]z = [za, h(z(z, t), t)]z. (6.3.22)

Hint: Use (5.1.4), (1.2), and (3.15) to show that the left side of (3.21) can be written in
the form

[za(z, t), h(z, t)]z = (MJ∂zh)a, (6.3.23)

and the right side can be written in the form

[za, h(z(z, t), t)]z = (J(MT )−1∂zh)a. (6.3.24)

Then demonstrate and use the relation

MJ = J(MT )−1, (6.3.25)

which is a consequence of the symplectic condition. Alternatively, use the identity

z∗a(z, t) = za(z(z, t), t) = za (6.3.26)

and the relation (3.11), etc.
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6.4 Relation to Hamiltonian Flows

Let H(z, t) be the Hamiltonian for some dynamical system. Consider a large Euclidean
space with 2n+1 axes labeled by the phase-space variables z1 · · · z2n and the time t. We will
call this construction augmented phase space.12 See Figure 4.1. Suppose the 2n quantities
z1(ti) · · · z2n(ti) are specified at some initial time ti. Then the quantities z1(t) · · · z2n(t) at
some other time t are uniquely determined by the initial conditions z1(ti) · · · z2n(ti) and
Hamilton’s equations of motion (5.2.2). Recall Theorem 1.3.1 and review Section 1.4. The
set of all trajectories in augmented phase space for all possible initial conditions will be called
a Hamiltonian flow. Indeed we know that no two trajectories can intersect. (See Exercise
1.3.6.) Therefore the behavior of the trajectories in augmented phase space is analogous to
fluid flow in a high dimensional space.

6.4.1 Hamiltonian Flows Generate Symplectic Maps

Let ti be some initial time, and let tf be some other final time. Also, let zi denote the
set of quantities z1(ti) · · · z2n(ti), and let zf denote the corresponding set z1(tf ) · · · z2n(tf ).
We have already seen in Section 1.4 that the relation between zi and zf can be viewed as
a transfer map M(ti, tf ) depending on the parameters ti and tf . [Indeed, since the set of
trajectories in augmented phase space is equivalent to a knowledge ofM(ti, tf ) for variable
tf , a flow for a differential equation may be equally well, and often is, defined to be the
family of such maps.] What we will now see is that M is a symplectic map.

Theorem 4.1 Let H(z, t) be the Hamiltonian for some dynamical system, and let zi denote
a set of initial conditions at some initial time ti. Also, let zf denote the coordinates at some
final time tf of the trajectory with initial conditions zi. Finally, letM denote the mapping
from zi to zf obtained by following the Hamiltonian trajectory specified by H,

M : zi → zf . (6.4.1)

Then the mapping M is symplectic.

Proof Suppose the flow takes place for a time interval of duration T so that ti and tf are
related by the equation

tf = ti + T. (6.4.2)

Divide the interval T into N small steps each of duration h. Evidently, T,N , and h are
related by the equation

T = Nh. (6.4.3)

Also, define intermediate times tm at each step by the rule

t0 = ti,

12Some authors, following Cartan, call it state space. But other authors use state space and phase space
interchangeably. Still other authors call this construction extended phase space. However, we have already
used that term to describe ordinary phase space augmented by the two additional variables t and pt. Review
Exercise 1.6.5.
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Figure 6.4.1: A trajectory in augmented phase space. Under the Hamiltonian flow specified
by a Hamiltonian H, the general phase-space point zi is mapped into the phase-space point
zf . The mapping M is symplectic for any Hamiltonian.

tm = t0 +mh , m = 0, 1, · · ·N, (6.4.4)

tN = tf .

Suppose that the mappingM is viewed as a composite of mappings between adjacent times
tm and tm+1. That is, M is written in the form

M =Mtf←tN−1 · · ·Mtm+1←tm · · ·Mt1←ti (6.4.5)

with the notation that Mtm+1←tm denotes the mapping between the quantities

zm = {z1(tm), · · · z2n(tm)}

and
zm+1 = {z1(tm+1), · · · z2n(tm+1)}. (6.4.6)

Corresponding to the relation (4.5), the Jacobian matrix M of the mapping M can be
written using the chain rule in the product form

M = M tf←tN−1 · · ·M tm+1←tm · · ·M t1←ti , (6.4.7)

where, as the notation is meant to indicate, M tm+1←tm is the Jacobian matrix for the map
Mtm+1←tm .

Next it will be shown that each matrix in the product (4.7) is symplectic at least through
terms of order h. According to Taylor’s series, the relation between zm+1 and zm can be
written in the form

zm+1
a = za(t

m+1) = za(t
m + h)

= za(t
m) + hża(t

m) +O(h2) (6.4.8)

= zma + h(J∂zH)a +O(h2).
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Here use has also been made of the equations of motion (5.2.2). Suppose (4.8) is used to
compute the associated Jacobian matrix. The result of this computation is the relation

M tm+1←tm
ab = ∂zm+1

a /∂zmb

= δab + h
∑
c

Jac∂
2H/∂zc∂zb +O(h2). (6.4.9)

Using matrix notation, (4.9) can be written more compactly in the form

M tm+1←tm = I + hJS +O(h2), (6.4.10)

where S is the symmetric matrix

Scb = ∂2H/∂zc∂zb. (6.4.11)

Now compare (4.10) with (3.7.28) and (3.7.34). Evidently, the Jacobian matrix (4.10) is a
symplectic matrix at least through terms of order h.

The desired proof is almost complete. Since symplectic matrices form a group, the
product matrix M given by (4.7) differs from a symplectic matrix by terms at most of order
Nh2 because each of the N terms in the product differs from a symplectic matrix by terms
at most of order h2. Now take the limit h→ 0 and N →∞. In this limit terms proportional
to Nh2 vanish since, using (4.3),

Nh2 = (T/h)h2 = Th, (6.4.12)

and the quantity Th vanishes as h goes to zero. It follows that M is a symplectic matrix,
and M is a symplectic map.

What has been shown is that the problem of describing and following Hamiltonian tra-
jectories, which is one of the fundamental aspects of classical mechanics, is equivalent to the
problem of representing and calculating symplectic maps. We remark that there is another
proof of the result just obtained based on the use of variational equations. It is shorter, but
perhaps less instructive. See Exercise 4.3.

In the proof just given, suppose we regard the final time tf as a general time t. What we
have found is that following trajectories specified by H produces a symplectic mapM(ti, t)
for each value of t. Thus, we have produced a one-parameter family of symplectic maps
M(ti, t). Moreover, we have the initial condition

M(ti, ti) = I (6.4.13)

where I denotes the identity map. We describe this state of affairs by saying that the family
M(ti, t) is generated by the Hamiltonian H(z, t) starting from the identity map I when
t = ti.

It can be verified that the set of symplectic maps generated by Hamiltonians forms a
group which may be regarded as a subgroup of the set of all symplectic maps. This group is
sometimes referred to as Ham(n) where 2n is the dimensionality of the phase space under
consideration.
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6.4.2 Any Family of Symplectic Maps Is Hamiltonian Generated

Consider the space of all symplectic maps. We may regard the M(ti, t), for variable t, as
a path in this space. And, according to (4.13), the starting point of this path, namely
M(ti, ti), is the identity map. Therefore the M(ti, t) form a one-parameter family continu-
ously connected to the identity. Is there a converse result? There is.

Theorem 4.2 Suppose we are given a one-parameter family of symplectic maps N (t) for
t ∈ [ti, tf ]. Let Ni denote the map

Ni = N (ti). (6.4.14)

Then there is a generating Hamiltonian G that generates this family starting from the map
Ni.13 See Figure 4.2. It depicts augmented symplectic map space, which consists of a time
axis and multiple additional axes that provide coordinates for points in the space of all
symplectic maps. Let z̄(z, t) be the result of N (t) acting on the general phase-space point
z,

N (t) : z → z̄(z, t). (6.4.15)

What we want to show is that there is a function G(z̄; t) such that

(∂z̄a/∂t)|z = [z̄a, G(z̄; t)]z̄. (6.4.16)

Symplectic

Map Space

      Axes

Time Axist i

i

(t)

N

N

Figure 6.4.2: The symplectic map family N (t) in augmented symplectic map space.

Proof The proof proceeds by construction. Express the mapping (4.15) in the explicit
component form

z̄a(t) = ua(z, t) (6.4.17)

13Here we apologize that the symbol G has also been used in Subsection 1.1, and again will be used
subsequently, to denote the Jacobian of the gradient map G. There are not always enough letters to go
around. The reader should be able to determine from the context what is meant in any particular case.
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where the ua with a = 1 to 2n are assumed to be known functions of z and t. Next form
the functions wa(z, t) defined by the relations

wa(z, t) = ∂ua(z, t)/∂t. (6.4.18)

By these definitions we have the equivalent statements

(∂z̄a/∂t)|z = wa(z, t). (6.4.19)

Suppose that N has an inverse, as will be the case if N is symplectic. Then, the relations
(4.15) or (4.17) can be inverted to give relations of the form

zb = vb(z̄, t). (6.4.20)

Now form the functions ga(z̄, t) by using (4.20) in the arguments of the wa and writing

ga(z̄, t) = wa(z(z̄, t), t). (6.4.21)

The net result of these steps is the set of relations

∂z̄a/∂t = ga(z̄, t). (6.4.22)

That is, we have produced a vector field Lg defined by the relation

Lg =
∑
a

ga(∂/∂z̄a) (6.4.23)

and having the property
·
z̄a= Lg z̄a. (6.4.24)

We will now show that this vector field is Hamiltonian. (See Section 5.3.). Consider the
quantities z̄a(t+ ε) where ε is small. According to Taylor there is the expansion

z̄a(t+ ε) = z̄a(t) + ε(∂z̄a/∂t) +O(ε2) (6.4.25)

or, in view of (4.19),
z̄a(t+ ε) = z̄a(t) + εwa(z, t) +O(ε2). (6.4.26)

Let us compute [z̄a(t+ ε), z̄b(t+ ε)]. Using (4.26) we find the result

[z̄a(t+ ε), z̄b(t+ ε)]z = [z̄a(t), z̄b(t)]z + ε[z̄a, wb]z + ε[wa, z̄b]z +O(ε2). (6.4.27)

Since N is symplectic for all t ∈ [ti, tf ], there must be the relations

[z̄a(t+ ε), z̄b(t+ ε)]z = [z̄a(t), z̄b(t)]z = Jab. (6.4.28)

See (1.15). Therefore, upon equating powers of ε, (4.27) provides the relation

[z̄a, wb]z + [wa, z̄b]z = 0. (6.4.29)
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Since symplectic maps preserve Poisson brackets, see Section 3, we may also write (4.29) in
the form

[z̄a, gb(z̄, t)]z̄ = [z̄b, ga(z̄, t)]z̄. (6.4.30)

Here we have used (4.21) and the antisymmetry of the Poisson bracket. Finally, expand out
the Poisson brackets using (5.1.3). So doing, for example, gives the result

[z̄a, gb]z̄ =
∑
cd

(∂z̄a/∂z̄c)Jcd(∂gb/∂z̄d)

=
∑
cd

δacJcd(∂gb/∂z̄d) =
∑
d

Jad(∂gb/∂z̄d). (6.4.31)

The net result is that (4.30) is equivalent to the relation∑
d

Jad(∂gb/∂z̄d) =
∑
d

Jbd(∂ga/∂z̄d). (6.4.32)

To make sense of (4.32), multiply both sides by JacJbe, sum over a and b, and manipulate
to produce the relations∑

abd

JacJbeJad(∂gb/∂z̄d) =
∑
abd

JacJbeJbd(∂ga/∂z̄d), (6.4.33)

∑
abd

(JT )caJadJbe(∂gb/∂z̄d) =
∑
abd

(JT )ebJbdJac(∂ga/∂z̄d), (6.4.34)

∑
bd

(JTJ)cdJbe(∂gb/∂z̄d) =
∑
ad

(JTJ)edJac(∂ga/∂z̄d), (6.4.35)

∑
bd

δcdJbe(∂gb/∂z̄d) =
∑
ad

δedJac(∂ga/∂z̄d), (6.4.36)

∑
b

Jbe(∂gb/∂z̄c) =
∑
a

Jac(∂ga/∂z̄e), (6.4.37)

(∂/∂z̄c)
∑
b

Jbegb = (∂/∂z̄e)
∑
a

Jacga. (6.4.38)

Here use has been made of (3.1.6). Now introduce quantities ηc by the rule

ηc =
∑
a

Jacga. (6.4.39)

In terms of these quantities (4.38) yields the relations

∂ηe/∂z̄c = ∂ηc/∂z̄e. (6.4.40)

[Note that this condition is a restatement of (5.3.26).] It follows that the quantity
∑

a ηadz̄a
is an exact differential. See Exercise 1.1.
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Now define G by the phase-space path integral

G(z̄; t) =

∫ z̄∑
a

ηadz
′
a. (6.4.41)

Since the integrand is an exact differential, the integral is path independent and satisfies the
relation

∂G/∂z̄a = ηa. (6.4.42)

Let us put everything together. The relations (4.39) can be solved for the ga to give the
result

ga =
∑
b

Jabηb. (6.4.43)

Upon combining (4.22), (4.42), and (4.43), we find the net result

∂z̄a/∂t =
∑
b

Jab∂G/∂z̄b, (6.4.44)

or, more compactly,
∂z̄/∂t = J∂z̄G = [z̄, G(z̄; t)], (6.4.45)

which is the desired result (4.16).
Even a bit more can be said. Consider the straight-line path z̄′a(τ) in phase space that

connects the origin to z̄. It has the parametric form

z̄′a(τ) = τ z̄a , τ ∈ [0, 1]. (6.4.46)

Suppose the integrability condition (4.40) holds in a simply-connected region that surrounds
this path. Then we may employ this path in (4.41) to obtain the result

G(z̄; t) =

∫ 1

0

dτ
∑
a

ηa(τ z̄, t)z̄a = −
∫ 1

0

dτ
∑
ab

Jabz̄agb(τ z̄, t). (6.4.47)

Let us recapitulate what has been done. By differentiating the map N (t) with respect to
t, the steps involved in (4.17) through (4.21) produced the vector field Lg with components
ga. These steps can be carried out for any invertible one-parameter family of maps N (t).
Then we used the symplectic condition in the steps associated with (4.25) through (4.41) to
show that the vector field was Hamiltonian and to explicitly construct the Hamiltonian.

There are a few more steps that can be made. In analogy to the work of Subsection 4.1,
let M(ti, t) be the map generated by the G(z; t) constructed in this subsection and with
the initial condition (4.13). Then, using the methods of Section 10.1, it can be verified that
there is the relation

N (t) = NiM(ti, t). (6.4.48)

We have found an explicit expression for N in terms of the map generated by its associated
Hamiltonian. Moreover, differentiating (4.48), and again using the methods of Section 10.1,
gives the result

Ṅ (t) = NiṀ(ti, t) = NiM(ti, t) : −G := N (t) : −G :, (6.4.49)
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from which we conclude that
: −G := N−1Ṅ (t). (6.4.50)

In summary, given any family of symplectic maps, we have shown that this family is
generated by a Hamiltonian G starting from an initial map Ni, have explicitly constructed
G, and have found a representation for N .

6.4.3 Almost All Symplectic Maps Are Hamiltonian Generated

In Section 7.9 we will learn that under rather general low-order differentiability conditions
any symplectic map can be connected to the identity map by a one-parameter family of
symplectic maps. This one-parameter family can then be used to construct a Hamiltonian,
and we can also set

Ni = I. (6.4.51)

We conclude that, under mild assumptions, any symplectic map can be generated by a
Hamiltonian starting from the identity map. Thus, for our purposes, we will generally not
make a distinction between ISpM(2n,R) [= Symp(n)] and Ham(n).

6.4.4 Transformation of a Hamiltonian Under the Action of a
Symplectic Map

Suppose H(z; t) is the Hamiltonian governing the motion of some system described by the
canonical coordinates z. Suppose we wish to introduce new canonical coordinates z̄(z, t)
that are related to the old coordinates z by a (possibly time dependent) symplectic map
N (t) as in (4.15). The purpose of this subsection is to show that the motion of the system,
when described by the new coordinates z̄, is also governed by a new Hamiltonian that we
will call K(z̄; t), and to find the relation between K and the old Hamiltonian H.

We proceed as follows: View the quantities z̄a(z, t) as dynamical variables. Then, by the
work of Section 1.7 that defined the Poisson bracket, there is the result

dz̄a(z, t)/dt = ∂z̄a(z, t)/∂t+ [z̄a(z, t), H(z; t)]z. (6.4.52)

Here we have placed a subscript z on the Poisson bracket to make it clear that the Poisson
bracket is taken with respect to the variable z. But, since z̄ and z are related by the
symplectic map N , it follows from the invariance property of the Poisson bracket that

[z̄a(z, t), H(z; t)]z = [z̄a, H(z(z̄, t); t)]z̄. (6.4.53)

See Section 3. Moreover, from the work of Subsection 4.2, we know that there is a generating
Hamiltonian G(z̄; t) for N such that

∂z̄a(z, t)/∂t = [z̄a, G(z̄; t)]z̄. (6.4.54)

Upon combining (4.52) through (4.54) we see that there is the relation

dz̄a/dt = [z̄a, K(z̄; t)]z̄ (6.4.55)
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where
K(z̄; t) = H(z(z̄, t); t) +G(z̄; t) (6.4.56)

so that K(z̄; t) is the desired new Hamiltonian. We note that if N is time independent,
then G = 0. See (4.50). In this case the new Hamiltonian is simply the old Hamiltonian
expressed in terms of the new variables,

K(z̄; t) = H(z(z̄); t). (6.4.57)

Exercises

6.4.1. Use (1.2) and the chain rule to verify (4.7).

6.4.2. Show that the matrix S defined by (4.11) is indeed symmetric.

6.4.3. The purpose of this exercise is to provide another proof of Theorem 4.1: Hamiltonian
flows generate symplectic maps. Refer to Exercise 1.4.6. From Hamilton’s equations of
motion written in the form (5.2.3), show, for the associated variational equations, that the
A matrix of (1.4.51) is given by

A = JS (6.4.58)

with S given by (4.11). Next show that in terms of a general final time t the Jacobian matrix
M satisfies the differential equation

Ṁ(t) = JS(t)M(t) (6.4.59)

with the initial condition
M(ti) = I. (6.4.60)

Now consider the matrix product MTJM . Because of (4.59), it satisfies the differential
equation

(d/dt)[MT (t)JM(t)] = ṀTJM +MTJṀ

= [JSM ]TJM +MTJJSM = −MTSJJM +MTJJSM

= MTSM −MTSM = 0. (6.4.61)

Thus, in view of (4.60), this equation has the unique solution

MT (t)JM(t) = J, (6.4.62)

and we conclude that the Jacobian matrix must be symplectic.

6.4.4. Show that the maps between q, p and Q,P given by (1.4.9) is symplectic. Show that
the map given by (1.4.13) between Qi, P i and Qf , P f is symplectic. In both cases, find the
associated Jacobian matrix M and verify that it is symplectic.

6.4.5. Show that the maps given by (1.4.22), (1.4.23) and (1.4.24), (1.4.25) are symplectic.
In both cases, find the associated Jacobian matrix M and verify that it is symplectic.
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6.4.6. Suppose H(z, t) is a possibly time-dependent quadratic Hamiltonian written, without
loss of generality, in the form

H(z, t) = (1/2)(z, Sz) (6.4.63)

where S is a symmetric and possibly time-dependent matrix. Verify that the equations of
motion generated by this H are linear, and therefore that the associated transfer map is
linear and can be described by a matrix M . Use the machinery of Exercise 4.3 above to
show that M(t, t0) is symplectic. Here t is a general time and t0 is some initial time such
that

M(t0, t0) = I. (6.4.64)

Let u0 and v0 be two initial conditions. Then, for these initial conditions, verify that the
associated solutions to the equations of motion are given by the relations

u(t) = M(t, t0)u0, (6.4.65)

v(t) = M(t, t0)v0. (6.4.66)

Form the quantity C(u, v) by the rule

C(u, v) = (u, Jv). (6.4.67)

Show that
C(u, v) = C(u0, v0), (6.4.68)

and therefore C is constant (time independent) and depends only on the initial conditions.
Consider the set of differential equations arising from any Hamiltonian and, for any

particular trajectory, form the associated variational equations. Show that any two solutions
u and v to the variational equations also satisfy (4.68).

6.4.7. Consider the one-parameter family of maps

z̄1(z, t) = z1 cos t− z2 sin t, (6.4.69)

z̄2(z, t) = z1 sin t+ z2 cos t. (6.4.70)

Verify that these maps are symplectic. Find the Hamiltonian that generates this family of
maps.

6.4.8. Consider the two-parameter family of maps (called the general Hénon map, see Sec-
tion 19.7) given by the relations

q̄ = 1 + p− aq2, (6.4.71)

p̄ = bq. (6.4.72)

Show that the inverse of this map is given by the relations

q = p̄/b, (6.4.73)

p = q̄ − 1 + a(p̄/b)2. (6.4.74)
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Show that if b is held fixed and a is treated as a variable parameter, then the resulting
one-parameter family of maps is generated by the vector field

L = −(p̄/b)2(∂/∂q̄) =: [1/(3b2)]p̄3 : . (6.4.75)

Note that this vector field is Hamiltonian even though the general Hénon map is symplectic
only when b = −1. Show that if a is held fixed and b is treated as a variable parameter,
then the resulting one-parameter family of maps is generated by the vector field

L = (1/b)p̄(∂/∂p̄). (6.4.76)

This vector field is not Hamiltonian. See Section 18.3.

6.4.9. Newton’s equation of motion for an harmonic oscillator consisting of a mass m and
a spring with spring constant k is given by the relation

d2x/dt2 + (k/m)x = 0 (6.4.77)

where x is the difference between the actual and natural lengths of the spring. Introduce
the notation

K = k/m, (6.4.78)

and consider the possibility that K is time dependent so that (4.77) becomes

d2x/dt2 +K(t)x = 0. (6.4.79)

If K is in fact time dependent, the harmonic oscillator is said to be parametrically driven.
The purpose of this exercise is to explore some aspects of the behavior of a parametrically

driven harmonic oscillator. The behavior of a parametrically driven harmonic oscillator can
be very complicated, and there is a vast literature on the subject. If K is periodic, (4.79) is
a form of Hill’s equation. If K is periodic and consists of only a constant term and a square
wave, (4.79) becomes Meissner’s equation. If K is periodic and consists of only a constant
term and a rectangular wave, (4.79) becomes the Kronig-Penney model. If K is periodic and
consists of only a constant term and a string of equally spaced delta function spikes, (4.79)
becomes the Dirac comb or periodic delta function model. If K is periodic and consists of
only a constant term and a sinusoidal term, (4.79) becomes a form of Mathieu’s equation.
Mathieu functions will play an important role in Section 17.4. The general periodic case,
in essence Hill’s equation, is important for the subject of strong focussing in Accelerator
Physics. It is also important for many other areas of physics including band theory in
Condensed Matter Physics, the motion of the Moon (the context in which Hill formulated
and studied his equation), and wave-guide theory. 14

14 It is interesting to note that George William Hill (1838-1914) did not hold any permanent academic
appointment. For ten years of his life he was a clerk at the U. S. National Bureau of Standards (NBS, now
NIST, the National Institute of Standards and Technology) working long hours and doing his own research
at home at night. Much of the rest of his life was spent working only at home. He went unappreciated by his
colleagues for many years. When Poincaré (along with Darboux, Picard, and Boltzmann) visited the United
States in 1904 to lecture at the St. Louis Mathematics Congress held in connection with St. Louis hosting
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Your first task is to show that the equation of motion (4.79) arises from a Hamiltonian.
Define p by the rule

p = dx/dt. (6.4.80)

Show that (4.79) and (4.80) are generated by the Hamiltonian

H = (1/2)[p2 +K(t)x2] (6.4.81)

where p and x are taken to be canonically conjugate.
Consider, as a specific example, the Mathieu case for which the Fourier series for K(t)

only has two terms,
K(t) = K0 +K1 cos(Ωt+ φ). (6.4.82)

In this case (4.79) takes the form

d2x/dt2 + [K0 +K1 cos(Ωt+ φ)]x = 0. (6.4.83)

The quantity K0 describes the natural frequency of the oscillator,

ω =
√
K0, (6.4.84)

where it is assumed that K0 > 0, and K1 describes the parametric driving strength. Compare
(4.83) with the standard form of the Mathieu equation given by (17.4.22). Make the change
of variable

τ = Ωt+ φ, (6.4.85)

and verify that this change of variable brings (4.83) to the form

d2x/dτ 2 + [K̄0 + K̄1 cos(τ)]x = 0 (6.4.86)

where
K̄0 = K0/Ω

2 = ω2/Ω2, (6.4.87)

K̄1 = K1/Ω
2. (6.4.88)

In the case that K(t) is periodic, the solution to (4.79), and hence also to (4.86), can be
described in terms of a stroboscopic map. See Section 1.4.3. Moreover, since the equations
of motion are linear and are generated by a Hamiltonian, namely (4.81), the stroboscopic
map will be linear and symplectic. See Exercise 4.6 above. Introduce the notation

z = (x, p). (6.4.89)

a World’s Fair, the one American mathematician he sought out was Hill. [After the congress these four
foreign speakers boarded a train to Washington D.C. (where NBS was located) to attend a reception hosted
by President Theodore Roosevelt, followed by subsequent stops at Harvard and Columbia Universities, before
sailing back to Europe.] Ernest Brown, in his 1915 National Academy of Sciences Biographical Memoir of
Hill, wrote “Hill’s 1877 publication ‘Researches in the Lunar Theory’ of but fifty quarto pages has become
fundamental for the development of celestial mechanics in three different directions. It would be difficult
to say as much for any other publication of its length in the whole range of modern mathematics, pure or
applied. Poincaré’s remark that in it we may perceive the germ of all the progress which has been made in
celestial mechanics since its publication is doubtless fully justified”.
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Let zi be the initial condition at the beginning of a drive period (τ = 0) and let zf be the
final condition at the end of a drive period (τ = 2π). Then we may write, in the case of the
equation of motion (4.86), the relation

zf = Mzi (6.4.90)

where M is a 2 × 2 symplectic matrix to be determined. In writing (4.90), because of the
variable change (4.85), we take the associated Hamiltonian to be that given by (4.81) with
K replaced by K̄ where K̄ = K/Ω2. Also, (4.80) is replaced by p = dx/dτ .

In the case that K̄1 = 0, the equation of motion (4.86) can be solved in terms of trigono-
metric functions. Show that in this case the matrix M , which describes the stroboscopic
map, is given by the relation

M =

(
cos 2πω̄ (1/ω̄) sin 2πω̄
−ω̄ sin 2πω̄ cos 2πω̄

)
(6.4.91)

where
ω̄ =

√
K̄0 = ω/Ω. (6.4.92)

Verify that the eigenvalues of M lie on the unit circle and have the values

λ± = exp(±2πiω̄). (6.4.93)

Now supposed that K̄1 takes on small nonzero values. Then the eigenvalues of M will
remain on the unit circle provided they were originally not too close to the values ±1. On
the other hand, they could leave the unit circle if originally they were close to or had the
values ±1. Recall Figures 3.4.1 and 3.4.3. The eigenvalues have the value +1 when

2πω̄ = 2nπ ⇐⇒ ω̄ = n, (6.4.94)

and have the value −1 when

2πω̄ = π + 2nπ ⇐⇒ ω̄ = n+ 1/2. (6.4.95)

Here n = 0, 1, 2, · · · . Finally, verify that combining (4.92), (4.94), and (4.95) yields the
conditions

ω = nΩ or Ω = ω/n with n = 1, 2, · · · , (6.4.96)

ω = (n+ 1/2)Ω or Ω = ω/(n+ 1/2) with n = 0, 1, 2, · · · . (6.4.97)

Note that in (4.96) we have excluded the case n = 0 since the case ω = 0 requires more
refined analysis.

When its eigenvalues are off the unit circle, repeated application of the matrix M leads to
exponential growth. See Subsections 3.4.5 and 3.5.8. Verify that the conditions (4.96) and
(4.97) for possible instability can be combined to yield the parametric resonance conditions

Ω = 2ω/m⇔ ω = (m/2)Ω⇔ 1/Ω = m(1/2)(1/ω) with m = 1, 2, · · · . (6.4.98)

Verify in this latter formulation that odd values of m correspond to the possibility of the
eigenvalues leaving the unit circle through the value −1, and even values of m correspond
to the possibility of the eigenvalues leaving the unit circle through the value +1.
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A pendulum of length ` in a gravitational field g has a small-amplitude natural frequency
ω = (g/`)1/2. Show that, according to (4.98), the trapeze artist Jules Léotard (1838-1870)
could increase the amplitude of his swing by alternatively crouching down and then standing
up with frequency Ω = 2ω.15 Also, like a child on a swing, he could do so with frequency
Ω = ω. Remarkably, he could also do so with the subharmonic frequencies Ω = (2/3)ω,
Ω = (2/4)ω, · · · . The first choice Ω = 2ω is used by professionals and is the most effec-
tive. We know from childhood experience with pumping swings that the second choice also
works pretty well, and is easier for mortals. The other choices produce successively slower
amplitude growths.

6.4.10. The purpose of this exercise is to explore the difference between forcefully and
parametrically driven harmonic oscillators. Review Exercise 4.9 above. By forcefully driven
we mean an oscillator described by an equation of motion of the form

d2x/dt2 + βdx/dt+ ω2x = d cos(Ωt+ ψ). (6.4.99)

When β > 0 the motion of this oscillator is bounded for all values of Ω. It is also bounded
when β = 0 provided Ω 6= ω. See Section 28.2. Verify, when β = 0 and Ω = ω, that (4.99)
has the solution

x(t) = [d/(2ω)]t sin(ωt+ ψ). (6.4.100)

Thus, exactly at resonance and in the absence of damping, the amplitude of a forcefully
driven harmonic oscillator grows linearly in time. By contrast it can be shown, in accord
with the results of Exercise 4.9, that the amplitude of a parametrically driven oscillator
described by the Mathieu equation grows exponentially in time when K1 is small and any
of the parametric resonance conditions (4.98) is approximately satisfied.

Moreover, even if the parametrically driven oscillator is damped by adding a term of
the form βdx/dt (with β > 0) to the left side of (4.83), it can be shown that there is still
a range of K1 and Ω values for which the amplitude grows exponentially in time. Thus,
parametric driving can overcome damping, and can do so even for a range of K1 and Ω
values. That is, there is no resonance condition that needs to be met exactly. Rather, there
is a whole band of parameter values for which there is exponential growth. Alternatively,
suppose the parametrically driven oscillator is anti-damped by adding a term of the form
βdx/dt with β < 0 to the left side of (4.83), or suppose K0 < 0. Then the solution would
grow exponentially when K1 = 0. However, there is a now a range of K1 and Ω values for
which parametric driving can stabilize the oscillator. That is, when β < 0 or K0 < 0, it can
be shown that there is range of K1 and Ω values for which x(t) is nevertheless bounded.

Finally we remark, as seems plausible from the arguments made in Exercise 4.9, that the
behavior we have found/claimed for the Mathieu case will occur quite generally for other
cases of Hill’s equation.

6.4.11. Consider the motion of a charged particle in an electromagnetic field. With time as
the independent variable, suppose one integrates the first-order set of differential equations

15“He’d fly through the air with the greatest of ease, a daring young man on the flying trapeze. His
movements were graceful, all girls he could please. And my love he purloined away”. The leotard garment
is named after Léotard who invented and first wore it in his performances.
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(1.6.69) and (1.6.70) for the quantities r and p from t = tin to t = tfin. Recall that here
the quantity p is the mechanical momentum. Therefore, to be more precise, we will use
the notation rmech, pmech and rcan, pcan to refer to mechanical and canonical quantities,
respectively. With this notation in mind, is the relation between the initial conditions
(rmech)in, (pmech)in and the final conditions (rmech)fin, (pmech)fin a symplectic map? You
are to show that in general the answer is no.

More precisely, let d(rmech)in, d(pmech)in denote small changes in the initial conditions,
and let d(rmech)fin, d(pmech)fin be the corresponding changes in the final conditions. By
definition they are connected by the Jacobian matrix relation(

d(rmech)fin

d(pmech)fin

)
= N

(
d(rmech)in

d(pmech)in

)
. (6.4.101)

Your task is to show that in general N is not a symplectic matrix.
The mechanical and canonical quantities are connected by the relations

rmech = rcan, (6.4.102)

pmech = pcan − qA. (6.4.103)

Recall (1.5.30). Use (4.102) and (4.103) to obtain the relations

d(rmech)in = d(rcan)in, (6.4.104)

d(rmech)fin = d(rcan)fin, (6.4.105)

d(pmech
j )in = d(pcan

j )in − q
∑
k

Aj,k[(r
can)in, tin]d(xcan

k )in, (6.4.106)

d(pmech
j )fin = d(pcan

j )fin − q
∑
k

Aj,k[(r
can)fin, tfin]d(xcan

k )fin, (6.4.107)

where
Aj,k(r

can, t) = ∂Aj(r
can, t)/∂xcan

k . (6.4.108)

Next verify that (4.104), (4.106) and (4.105), (4.107) can be written in the more compact
matrix form (

d(rmech)in

d(pmech)in

)
= V in

(
d(rcan)in

d(pcan)in

)
, (6.4.109)(

d(rmech)fin

d(pmech)fin

)
= V fin

(
d(rcan)fin

d(pcan)fin

)
, (6.4.110)

where V is the matrix

V (rcan, t) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−qA1,1 −qA1,2 −qA1,3 1 0 0
−qA2,1 −qA2,2 −qA2,3 0 1 0
−qA3,1 −qA3,2 −qA3,3 0 0 1

 , (6.4.111)
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and V in and V fin are the matrices

V in = V [(rcan)in, tin], (6.4.112)

V fin = V [(rcan)fin, tfin]. (6.4.113)

Finally, explain why there is a relation of the form(
d(rcan)fin

d(pcan)fin

)
= M

(
d(rcan)in

d(pcan)in

)
(6.4.114)

where M is a symplectic matrix. Recall the Hamiltonian (1.5.31).
We are now ready for some matrix manipulation. For calculational convenience write

(4.111) in the block form

V =

(
I 0
C I

)
(6.4.115)

where C is the matrix with entries

Cjk = −qAj,k. (6.4.116)

Verify that V is invertible, and its inverse is given by the formula

V −1 =

(
I 0
−C I

)
. (6.4.117)

Verify that (4.101), (4.109), and (4.110) can be combined to yield the relations

V fin

(
d(rcan)fin

d(pcan)fin

)
= NV in

(
d(rcan)in

d(pcan)in

)
, (6.4.118)

or, equivalently, (
d(rcan)fin

d(pcan)fin

)
= (V fin)−1NV in

(
d(rcan)in

d(pcan)in

)
. (6.4.119)

Verify that comparison of (4.114) and (4.119) yields the matrix relations

(V fin)−1NV in = M, (6.4.120)

or, equivalently,
N = V finM(V in)−1. (6.4.121)

You are ready for the final steps. Begin by showing that in general V is not symplectic. In
particular verify, using the results of Section 3.3.2 , that the condition for V to be symplectic
is that

C − CT = 0. (6.4.122)

Show that in fact for the present case there is the result

C − CT = qB ·L (6.4.123)
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where B(rcan, t) is the magnetic field and L denotes the collection of matrices given by
(3.7.177) through (3.7.179). We see that V is not symplectic unless the magnetic field
vanishes, which should not be too surprising in view of (1.7.18). Show that in fact V
satisfies the relation

V TJV = J

(
I 0

qB ·L I

)
. (6.4.124)

Verify that the product of a symplectic and a nonsymplectic matrix is nonsymplectic. Since
V in and V fin are in general different, it follows from (4.121) that in general N is not sym-
plectic. To strengthen the argument further, suppose that M is of the form

M =

(
λI 0
0 λ−1I

)
(6.4.125)

where λ is any scalar. According to Section 3.3.2 such an M is symplectic. Verify in this
case that

N = M

(
I 0
C ′ I

)
(6.4.126)

where
C ′ = λ2Cfin − Cin. (6.4.127)

Show that
C ′ − (C ′)T = q(λ2Bfin −Bin) ·L, (6.4.128)

and therefore in general the second matrix on the right side of (4.126) is not symplectic.
Correspondingly, in this case N is generally not symplectic even if V in and V fin are the
same. Verify that in this case

NTJN = J

(
I 0

qB′ ·L I

)
(6.4.129)

where
B′ = λ2Bfin −Bin. (6.4.130)

6.4.12. Recall Section 4.3 and review Exercise 4.3.24. Find the symplectic polar decompo-
sition for the matrix V given by (4.115).

6.5 Mixed-Variable Generating Functions

It is well known that canonical transformations/symplectic maps can be produced by the use
of mixed-variable generating functions, the most familiar of which are traditionally referred
to as F1 through F4. The generating functions are called mixed because they involve both
“old” and “new” variables.16

In this section we will verify that the generating functions F1 through F4 produce sym-
plectic maps. Conversely, given a symplectic map, we will find possible associated generating

16In the field of light ray optics, where the use of generating functions was first introduced in the seminal
work of Hamilton, generating functions are sometimes referred to as characteristic functions.
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functions F1 through F4. A time-dependent generating function Fj produces a one-parameter
family of symplectic maps. In that case we will find the associated generating Hamiltonian.

In Section 7 we will find that the functions F1 through F4 are but four examples of
an infinite set of generating functions. Until then, the term generating functions will refer
simply to the functions F1 through F4.

6.5.1 Generating Functions Produce Symplectic Maps

6.5.1.1 Background

Since the use of generating functions does not treat coordinate and momentum variables on
a common footing, it is convenient (as in Section 4.8) to introduce the notation

z = (q1 · · · qn, p1 · · · pn), (6.5.1)

Z = (Q1 · · ·Qn, P1 · · ·Pn). (6.5.2)

In this notation the symplectic map M sends z to Z,

M : z → Z. (6.5.3)

We begin with the mixed-variable generating functions F1(q,Q, t), F2(q, P, t),
F3(p,Q, t), and F4(p, P, t). These four functions produce maps by the (implicit) relations

pk = ∂F1/∂qk, Pk = −∂F1/∂Qk;

assumes det(∂2F1/∂qk∂Q`) 6= 0, yields det(B) 6= 0, (6.5.4)

pk = ∂F2/∂qk, Qk = ∂F2/∂Pk;

assumes det(∂2F2/∂qk∂P`) 6= 0, yields det(D) 6= 0, (6.5.5)

qk = −∂F3/∂pk, Pk = −∂F3/∂Qk;

assumes det(∂2F3/∂pk∂Q`) 6= 0, yields det(A) 6= 0, (6.5.6)

qk = −∂F4/∂pk, Qk = ∂F4/∂Pk;

assumes det(∂2F4/∂pk∂P`) 6= 0, yields det(C) 6= 0. (6.5.7)

The matrices A through D will be specified shortly. It can be verified that each relation
pair produces a symplectic map subject to only mild restrictions on the functional behavior
of the associated mixed-variable generating function. However, as mentioned at the end
of Section 4.8 and will be proved subsequently, there are symplectic maps that cannot be
produced by any of the generating functions Fj.
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6.5.1.2 Use of F2

Consider, for example, the use of F2. The equations (5.5) are implicit,

pk = pk(q, P, t), (6.5.8)

Qk = Qk(q, P, t), (6.5.9)

and have to be brought to the explicit form

Qk = Qk(q, p, t), (6.5.10)

Pk = Pk(q, p, t). (6.5.11)

(The fact that the map equations are initially implicit and subsequently, often with consid-
erable effort, have to be made explicit is one of the drawbacks of using generating functions
to produce symplectic maps. By contrast, as we will see in Chapter 7, Lie transformations
can be used to produce symplectic maps that are immediately in explicit form.)

Take differentials of both sides of (5.8) and (5.9), and use (5.5), to get the relations

dpk =
∑
`

(∂pk/∂q`)dq` + (∂pk/∂P`)dP`

=
∑
`

(∂2F2/∂qk∂q`)dq` + (∂2F2/∂qk∂P`)dP`, (6.5.12)

dQk =
∑
`

(∂Qk/∂q`)dq` + (∂Qk/∂P`)dP`

=
∑
`

(∂2F2/∂Pk∂q`)dq` + (∂2F2/∂Pk∂P`)dP`. (6.5.13)

These relations can be written in the matrix form

dp = αdq + βdP, (6.5.14)

dQ = γdq + δdP = βTdq + δdP, (6.5.15)

where α through δ are the matrices

αk` = ∂pk/∂q` = ∂2F2/∂qk∂q`, (6.5.16)

βk` = ∂pk/∂P` = ∂2F2/∂qk∂P`, (6.5.17)

γk` = ∂Qk/∂q` = ∂2F2/∂Pk∂q`, (6.5.18)

δk` = ∂Qk/∂P` = ∂2F2/∂Pk∂P`. (6.5.19)

(Note here that the matrix δ is not to be confused with the Kronecker delta.) By inspection,
these matrices have the properties

αT = α , βT = γ , δT = δ; (6.5.20)
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and we have used the second property in (5.20) to write the terms on the far right side of
(5.15).

Solve (5.14) for dP to find the result

dP = −β−1αdq + β−1dp, (6.5.21)

and insert this result in (5.15) to get the complementary relation

dQ = (γ − δβ−1α)dq + δβ−1dp. (6.5.22)

Note that these manipulations require that β be invertible. [See (5.17) and the assumption
made in (5.5).] By the inverse function theorem, this invertibility is equivalent to requiring
that the first set of equations in (5.5), see (5.8), can be solved for the P` to find P`(q, p, t).

Next write (5.21) and (5.22) in the compact matrix form

dZ = Mdz. (6.5.23)

Comparison of (5.23) with (5.21) and (5.22) shows that M has the block form

M =

(
γ − δβ−1α δβ−1

−β−1α β−1

)
. (6.5.24)

As in Section 3.3, it is convenient to employ the notation

M =

(
A B
C D

)
. (6.5.25)

Thus, we have the identifications

A = γ − δβ−1α = βT − δβ−1α, (6.5.26)

B = δβ−1, (6.5.27)

C = −β−1α, (6.5.28)

D = β−1. (6.5.29)

At this point we remark that the relations (4.8.9) and (4.8.10) resemble the relations (5.14)
and (5.15); and the relations (4.8.14) through (4.8.17) are identical to the relations (5.26)
through (5.29). This is as it should be because linear maps are a special case of general
maps. We also see from (5.29) that D must be invertible, det(D) 6= 0, in accord with (5.5).

Finally, we must verify that M is symplectic. With the aid of (5.20) we find the relations

AT = γT − αT (β−1)T δT = β − αγ−1δ, (6.5.30)

BT = (β−1)T δT = γ−1δ, (6.5.31)

CT = −αT (β−1)T = −αγ−1, (6.5.32)

DT = (β−1)T = γ−1. (6.5.33)
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Compute the various combinations of matrices that appear in (3.3.3) through (3.3.5). We
find the results

ATC = (β − αγ−1δ)(−β−1α) = −α + αγ−1δβ−1α, (6.5.34)

CTA = −α− γ−1(γ − δβ−1α) = −α + αγ−1δβ−1α, (6.5.35)

BTD = γ−1δβ−1, (6.5.36)

DTB = γ−1δβ−1, (6.5.37)

ATD = (β − αγ−1δ)β−1 = I − αγ−1δβ−1, (6.5.38)

CTB = −αγ−1δβ−1. (6.5.39)

By looking at these results we see that the relations (3.3.3) through (3.3.5) are satisfied, and
therefore M is symplectic. Correspondingly, when the implicit relations (5.8) and (5.9) are
solved to yield Z in terms of z, the result is a symplectic map M.

6.5.1.3 Use of F1

We have examined the use of F2. As a second example, we will consider the use of F1. The
cases of F3 and F4 proceed similarly. For the case of F1 the equations (5.4) have the implicit
form

pk = pk(q,Q, t), (6.5.40)

Pk = Pk(q,Q, t), (6.5.41)

and have to be brought to the explicit form

Qk = Qk(q, p, t), (6.5.42)

Pk = Pk(q, p, t). (6.5.43)

Take differentials of both sides of (5.40) and (5.41), and use (5.4), to get the relations

dpk =
∑
`

(∂pk/∂q`)dq` + (∂pk/∂Q`)dQ`

=
∑
`

(∂2F1/∂qk∂q`)dq` + (∂2F1/∂qk∂Q`)dQ`, (6.5.44)

dPk =
∑
`

(∂Pk/∂q`)dq` + (∂Pk/∂Q`)dQ`

= −
∑
`

(∂2F1/∂Qk∂q`)dq` − (∂2F1/∂Qk∂Q`)dQ`. (6.5.45)

These relations can be written in the matrix form

dp = αdq + βdQ, (6.5.46)

dP = γdq + δdQ, (6.5.47)
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where α through δ are the matrices

αk` = ∂p`/∂q` = ∂2F1/∂qk∂q`, (6.5.48)

βk` = ∂pk/∂Q` = ∂2F1/∂qk∂Q`, (6.5.49)

γk` = ∂Pk/∂q` = −∂2F1/∂Qk∂q`, (6.5.50)

δk` = ∂Pk/∂Q` = −∂2F1/∂Qk∂Q`. (6.5.51)

By inspection, these matrices have the properties

αT = α , βT = −γ , δT = δ. (6.5.52)

Solve (5.46) for dQ to find the result

dQ = −β−1αdq + β−1dp, (6.5.53)

and insert this result in (5.47) to get the complementary relation

dP = (γ − δβ−1α)dq + δβ−1dp. (6.5.54)

Note that these manipulations require that β be invertible. [See (5.49) and the assumption
made in (5.4).] By the inverse function theorem, this invertibility is equivalent to requiring
that the first set of equations in (5.4), see (5.40), can be solved for the Q` to find Q`(q, p, t).

As before, write (5.53) and (5.54) in the compact matrix form (5.23) and employ (5.25).
Comparison of (5.53) and (5.54) with (5.23) and (5.25) yields the relations

A = −β−1α, (6.5.55)

B = β−1, (6.5.56)

C = γ − δβ−1α, (6.5.57)

D = δβ−1. (6.5.58)

We see from (5.56) that B must be invertible, det(B) 6= 0, in accord with (5.4).
Finally, we must verify that M is symplectic. With the aid of (5.52) we find the relations

AT = −αT (β−1)T = αγ−1, (6.5.59)

BT = (β−1)T = −γ−1, (6.5.60)

CT = γT − αT (β−1)T δT = −β + αγ−1δ, (6.5.61)

DT = (β−1)T δT = −γ−1δ. (6.5.62)

Compute the various combinations of matrices that appear in (3.3.3) through (3.3.5). We
find the results

ATC = αγ−1(γ − δβ−1α) = α− αγ−1δβ−1α, (6.5.63)

CTA = (β − αγ−1δ)β−1α = α− αγ−1δβ−1α, (6.5.64)

BTD = −γ−1δβ−1, (6.5.65)

DTB = −γ−1δβ−1, (6.5.66)

ATD = αγ−1δβ−1, (6.5.67)

CTB = (−β + αγ−1δ)β−1 = −I + αγ−1δβ−1. (6.5.68)

By looking at these results we see that the relations (3.3.3) through (3.3.5) are satisfied, and
therefore M is symplectic. Correspondingly, when the implicit relations (5.40) and (5.41)
are solved to yield Z in terms of z, the result is a symplectic map M.
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6.5.1.4 What Maps Can Be Produced by What Fj?

We have seen that the Fj produce symplectic maps, but now wonder what maps can be
produced in this fashion. Here we will make a few observations. A more complete exploration
of this question is made in Subsection 7.4.

Suppose M is the identity map so that

M = I2n. (6.5.69)

In this case
det(A) = det(D) = det(In) = 1. (6.5.70)

Therefore, according to (5.5) and (5.6), we expect the use of F2 and F3 to succeed. Indeed,
it is easy to verify that F2(q, P ) and F3(p,Q) given by

F2(q, P ) =
∑
k

qkPk (6.5.71)

and
F3(p,Q) = −

∑
k

pkQk (6.5.72)

do indeed produce the identity map. By contrast,

det(B) = det(C) = 0 (6.5.73)

for the identity map. Therefore, according to (5.4) and (5.7), use of either F1 or F4 cannot
produce the identity map; attempted use of either F1 or F4 fails.

What about the linear symplectic map M for which M = J? In this case we see from
(3.1.1) that

det(A) = det(D) = 0 (6.5.74)

and
det(B) 6= 0 and det(C) 6= 0. (6.5.75)

Examination of (5.4) through (5.7) shows that attempted use of F2 and F3 are expected to
fail, and attempted use of F1 and F4 are expected to succeed. Indeed, it is easily verified
that

F1(q,Q, t) =
∑
k

qkQk (6.5.76)

and
F4(p, P, t) =

∑
k

pkPk (6.5.77)

produce M = J when employed in (5.4) and (5.7), respectively.
What about the linear symplectic map M for which M = R where R is the symplectic

matrix given by (4.8.31)? If you worked Exercise 4.8.4, you verified that in this case all the
submatrices A through D fail to have inverses. Therefore none of the yields/results listed
in (5,4) through (5.7) can be realized if one attempts to produce this R using any Fj. It
follows that one cannot produce this R using any of the Fj; attempted use of any of the Fj
fails.
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6.5.1.5 Differentials and Differential Forms associated with the Fj

Associated with each of the Fj are both a differential dFj and a differential form which we
will call ωj. For example, we may write the differential

dF1(q,Q, t) =
∑
k

(∂F1/∂qk)dqk + (∂F1/∂Qk)dQk. (6.5.78)

Correspondingly, making use of the relations for pk and Pk in (5.4), we define an associated
differential form ω1 by the rule

ω1 =
∑
k

pkdqk − PkdQk. (6.5.79)

Note that ω1 involves the 2n+2n = 4n variables z and Z. Similarly, there are the differentials
and associated differential forms

dF2(q, P, t) =
∑
k

(∂F2/∂qk)dqk + (∂F2/∂Pk)dPk, (6.5.80)

ω2 =
∑
k

pkdqk +QkdPk; (6.5.81)

dF3(p,Q, t) =
∑
k

(∂F3/∂pk)dpk + (∂F3/∂Qk)dQk, (6.5.82)

ω3 =
∑
k

−qkdpk − PkdQk; (6.5.83)

dF4(p, P, t) =
∑
k

(∂F4/∂pk)dpk + (∂F4/∂Pk)dPk, (6.5.84)

ω4 =
∑
k

−qkdpk +QkdPk. (6.5.85)

We have seen, if the Hessian of a given Fj is invertible, then there is an associated
symplectic map which we will call Mj, and the relevant n × n block in the associated
Jacobian matrix Mj as given by (5.25) will be invertible. [In the case of F1, for example,
according to (5.4) the relevant block is the matrix B.] Conversely, given a symplectic map
M and the desire of find an associated generating function Fj, and after verifying that the
nature of M is such that all the remaining variables among the z and Z can be found in
terms of the variables on which Fj is supposed to depend, then it can be shown that the
differential form ωj is exact in terms of these variables, and correspondingly the desired Fj
can be constructed. Moreover, the requirement that all remaining variables can be found
in terms of the variables on which Fj is supposed to depend is equivalent to assuming that
the relevant n × n block in M is invertible. (In this case we say that form of the desired
Fj is compatible with the nature of M.) See, for example, Subsection 5.2.1 where F2 is
constructed from a knowledge of M.

But what happens if the form of the desired Fj is not compatible with the nature of
M? Then an attempted construction of Fj will fail. Suppose, for example, that M is the
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identity map. In this case, since Qk = qk and Pk = pk, there are, according to (5.79), (5.81),
(5.83), and (5.85), the results

ω1 =
∑
k

pkdqk − PkdQk =
∑
k

pkdqk − pkdqk = 0, (6.5.86)

ω2 =
∑
k

pkdqk +QkdPk =
∑
k

pkdqk + qkdpk = d(
∑
k

qkpk) = d(
∑
k

qkPk), (6.5.87)

ω3 =
∑
k

−qkdpk−PkdQk =
∑
k

−qkdpk− pkdqk = d(−
∑
k

pkqk) = d(−
∑
k

pkQk), (6.5.88)

ω4 =
∑
k

−qkdpk +QkdPk =
∑
k

−qkdpk + qkdpk = 0. (6.5.89)

Note that (5.86) and (5.89) are in accord with the fact that attempted use of F1 or F4 fails
for the identity map. Also, (5.87) and (5.71), and (5.88) and (5.72), are in agreement for
the identity map. That is, ω2 = dF2 and ω3 = dF3.

6.5.2 Finding a Generating Function from a Map or a
Generating Hamiltonian

We have seen that, modulo the invertibility of certain matrices, the mixed-variable gener-
ating functions F1 through F4 can be used to produce symplectic maps M. What about
the converse: given a symplectic map M, can we find a mixed-variable generating func-
tion that produces it? Or, given the Hamiltonian H that generates a family of symplectic
maps M(t), can we find an associated time-dependent generating function? We shall see
that, again modulo the invertibility of certain matrices which amounts to the question of
compatibility, the answer is yes.

6.5.2.1 Finding a Generating Function Directly from a Map

As an example, we will consider the problem of constructing F2(q, P, t) given a symplectic
map M. Begin by writing the relation (5.3) in the component form

Qk = Sk(q, p, t), (6.5.90)

Pk = Tk(q, p, t), (6.5.91)

and assume that the Sk and Tk are known functions. Next assume that the relations (5.91)
can be inverted to give the pk as functions of q, P , and t,

pk = pk(q, P, t). (6.5.92)

By the inverse function theorem, this inversion is possible if the Jacobian matrix

∂Pk/∂p` = ∂Tk/∂p` (6.5.93)
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is invertible. Next substitute the relations (5.92) into (5.190) to obtain the Qk as functions
of q, P , and t,

Qk = Qk(q, P, t). (6.5.94)

Now consider the differential form

ω2 =
∑
k

(pkdqk +QkdPk). (6.5.95)

Recall (5.81). We shall soon see that the assumption that M is symplectic implies that
this differential form is exact with regard to the variables qk, Pk. Taking this assertion as
granted, we may define a function F2(q, P, t) by the path integral

F2(q, P, t) =

∫ q,P

ω2 =

∫ q,P∑
k

[pk(q
′, P ′, t)dq′k +Qk(q

′, P ′, t)dP ′k]. (6.5.96)

By construction F2 will have the properties

∂F2/∂qk = pk(q, P, t), (6.5.97)

∂F2/∂Pk = Qk(q, P, t), (6.5.98)

and we see that the desired relations (5.5) have been obtained.
We still must show that ω2 given by (5.95) is exact. According to Exercise 1.1, we must

verify the relations (1.26). In the present context these relations take the form

∂pm/∂qn = ∂pn/∂qm, (6.5.99)

∂Qm/∂qn = ∂pn/∂Pm, (6.5.100)

∂pm/∂Pn = ∂Qn/∂qm, (6.5.101)

∂Qm/∂Pn = ∂Qn/∂Pm. (6.5.102)

Note that (5.100) and (5.101) say the same thing.
Take differentials of both sides of (5.90) and (5.91) and use the notation of (5.1), (5.2),

(5.23), and (5.25) to find the relations

dQ = Adq +Bdp, (6.5.103)

dP = Cdq +Ddp, (6.5.104)

where A through D are the matrices

Ak` = ∂Qk/∂q` = ∂Sk/∂q` , Bk` = ∂Qk/∂p` = ∂Sk/∂p`, (6.5.105)

Ck` = ∂Pk/∂q` = ∂Tk/∂q` , Dk` = ∂Pk/∂p` = ∂Tk/∂p`. (6.5.106)

We now want to take q and P as independent variables. Solve (5.104) and (5.103) for dp
and dQ in terms of dq and dP to find the results

dp = −D−1Cdq +D−1dP, (6.5.107)
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dQ = (A−BD−1C)dq +BD−1dP. (6.5.108)

Note that in finding these results we assumed the existence of D−1. But comparison of
(5.93) and (5.106) shows that D is the Jacobian matrix whose invertibility has already been
assumed. From (5.107) and (5.108) we obtain the results

∂pm/∂qn = (−D−1C)mn, (6.5.109)

∂pm/∂Pn = (D−1)mn, (6.5.110)

∂Qm/∂qn = (A−BD−1C)mn, (6.5.111)

∂Qm/∂Pn = (BD−1)mn. (6.5.112)

With these results before us, we see that establishing the relations (5.99) through (5.102) is
equivalent to verifying the conjectures

(D−1C)
?
= (D−1C)T , (6.5.113)

A−BD−1C
?
= (D−1)T , (6.5.114)

(BD−1)
?
= (BD−1)T . (6.5.115)

But, thanks to the symplectic condition, (5.113) is a consequence of (3.3.7), (5.115) is a
consequence of (3.3.4), and (5.114) is a consequence of (3.3.8) and (3.37). Thus we have
proved that ω2 is an exact differential, and have verified that F2 can be constructed using
(5.96). Note that in this construction the time t played no role and, if present at all, appeared
only as a parameter.

6.5.2.2 Finding a Generating Function from a Generating Hamiltonian

Given a Hamiltonian H, we know that integrating Hamilton’s equations of motion produces a
time-dependent symplectic mapM(t). Conversely, given a time-dependent symplectic map
M(t), we know that there is an underlying generating Hamiltonian H. Recall Subsection 4.2.
Here we explore how the generating Hamiltonian H can be used to construct the F2(q, P, t)
generating function associated with M(t). Similar constructions can be made for the F1,
F3, and F4 generating functions.

To see how F2 can be constructed, it is convenient, in analogy with (1.7.9), to introduce
the phase-space variables

ζ = (ξ, η). (6.5.116)

Here the ξ’s play the role of coordinates and the η’s are conjugate momenta. Let q, p be
initial conditions at t = ti, and let Q,P be the final conditions reached by following to
time t the trajectories generated by H(ζ, t) starting with these initial conditions. We know
that trajectories can be labeled by specifying either the initial conditions q, p or the final
conditions Q,P . Assume that the trajectories are such that they can also be be labeled by
specifying q and P . See Figure 5.1. This means that there are relations of the form

Qj = Qj(q, P, t), (6.5.117)

pj = pj(q, P, t). (6.5.118)
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Figure 6.5.1: A trajectory of H(ζ, t) in the augmented ξ, η, t phase space having initial
coordinates q and final momenta P .

With these assumptions in mind, define/construct the function F2 by the rule

F2(q, P, t) =
∑
k

PkQk −
∫ t

ti
dτ [(

∑
j

ηj ξ̇j)−H(ζ, τ)]. (6.5.119)

Here the integral on the right side is to be evaluated over the trajectory generated by H
whose initial coordinates are q and final momenta are P . In actual practice, this trajectory
may have to be found by some kind of shooting method: One integrates a variety of
trajectories all having the same initial q and various initial p until one finds a trajectory
that has the desired final momenta P . The search for this trajectory may be facilitated by
also integrating the variational equations, see Exercise 1.4.6, to determine how changes in
the initial conditions produce changes in the final conditions.

We will want to see how F2 changes when changes are made in q, P, t. As a first step,
let us study how the integral on the right side of (5.119) depends on the variables q, P . We
make the definition

A(q, P, t) =

∫ t

ti
dτ [(

∑
j

ηj ξ̇j)−H(ζ, τ)], (6.5.120)

and recognize that A is the action. See (1.6.11). Define A by the rule

A(ζ, ζ̇, τ) = (
∑
j

ηj ξ̇j)−H(ζ, τ) (6.5.121)

so that we may write

A(q, P, t) =

∫ t

ti
A(ζ, ζ̇, τ)dτ. (6.5.122)

Note that A is the Lagrangian L associated with the Hamiltonian H.
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Changing the q’s and P ’s changes the trajectory. Consequently, from variational calculus,
we find that the change in A is given by the relation

δA =

∫ t

ti
dτ [
∑
j

(∂A/∂ξj)δξj + (∂A/∂ξ̇j)δξ̇j + (∂A/∂ηj)δηj + (∂A/∂η̇j)δη̇j]. (6.5.123)

The integrand in (5.123) can be manipulated in the standard way to rewrite δA in the form

δA =

∫ t

ti
dτ{
∑
j

[(∂A/∂ξj)− (d/dτ)(∂A/∂ξ̇j)]δξj

+
∑
j

[(∂A/∂ηj)− (d/dτ)(∂A/∂η̇j)]δηj

+ (d/dτ)[
∑
j

(∂A/∂ξ̇j)δξj + (∂A/∂η̇j)δηj]}. (6.5.124)

For the various ingredients in the integrand of (5.124) we find the results

∂A/∂ξj − (d/dτ)(∂A/∂ξ̇j) = −∂H/∂ξj − (d/dτ)ηj = −∂H/∂ξj − η̇j = 0, (6.5.125)

∂A/∂ξ̇j = ηj, (6.5.126)

∂A/∂η̇j = 0, (6.5.127)

∂A/∂ηj − (d/dτ)(∂A/∂η̇j) = ∂A/∂ηj = ξ̇j − ∂H/∂ηj = 0. (6.5.128)

Here (5.127) follows from the fact that A does not actually depend on the η̇j. See (5.121).
And (5.125) and (5.128) follow from the stipulation that the ζ(τ) are trajectories of H. As
a consequence of these results, δA becomes

δA =

∫ t

ti
dτ(d/dτ)[

∑
j

ηjδξj] = [
∑
j

ηjδξj]|tti =
∑
j

PjδQj − pjδqj. (6.5.129)

We are now ready to study F2. In terms of the definition (5.120) the expression (5.119)
for F2 can be rewritten in the form

F2(q, P, t) = −A(q, P, t) +
∑
k

PkQk. (6.5.130)

It follows that the change in F2 produced by changes in q, P is given by the relation

δF2 = −δA+ δ(
∑
k

PkQk)

=
∑
j

(−PjδQj + pjδqj + PjδQj +QjδPj)

=
∑
j

(pjδqj +QjδPj). (6.5.131)
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Here we have used (5.129). Evidently (5.131) yields the relations

∂F2/∂qj = pj, ∂F2/∂Pj = Qj, (6.5.132)

which are the desired results (5.5).
As a final step, and in anticipation of results to be established in the next section, let

us take the total time derivative of both sides of (5.130). From the chain rule we find the
result

dF2/dt = ∂F2/∂t+
∑
j

(∂F2/∂Pj)Ṗj = ∂F2/∂t+
∑
j

QjṖj. (6.5.133)

Here we have also used (5.132). For A as given by (5.120) we find the result

dA/dt = [(
∑
j

ηj ξ̇j)−H(ζ, τ)]τ=t = (
∑
j

PjQ̇j)−H(Q,P, t). (6.5.134)

Also, there is the simple result

(d/dt)(
∑
j

PjQj) =
∑
j

(ṖjQj + PjQ̇j). (6.5.135)

It follows that the total time derivative of (5.130) is given by the relation

dF2/dt = (d/dt)[−A+ (
∑
j

PjQj)] = [
∑
j

(ṖjQj + PjQ̇j − PjQ̇j)] +H(Q,P, t)

= (
∑
j

QjṖj)−H(Q,P, t). (6.5.136)

Comparison of (5.133) and (5.136) gives the final result

∂F2/∂t = H(Q,P, t). (6.5.137)

6.5.3 Finding the Generating Hamiltonian from a Generating
Function; Hamilton-Jacobi Theory/Equations

If a generating function Fj is time dependent, then its use in the appropriate associated
relation selected from (5.4) through (5.7) will produce a family of symplectic maps M(t).
Thanks to the work of Section 6.4, we know that any family of symplectic maps is generated
by a Hamiltonian. In this subsection we will find the Hamiltonian associated with a time
dependent Fj.

6.5.3.1 Derivation

Consider, for example, the case where F2(q, P, t) is employed. Since our derivation will
involve a flurry of partial differentiations with respect to various variables, it is convenient
to introduce the notation

F2(q, P, t; , , 1) = ∂F2/∂t, (6.5.138)
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F2(q, P, t; k, , 1) = ∂2F2/∂qk∂t, (6.5.139)

F2(q, P, t; k`, , ) = ∂2F2/∂qk∂q`, (6.5.140)

F2(q, P, t; k, `, ) = ∂2F2/∂qk∂P`. (6.5.141)

With this notation in mind, define the function F t
2(q, P, t) by the rule

F t
2(q, P, t) = F2(q, P, t; , , 1). (6.5.142)

We know that use of the map produced by F2 yields relations of the form (5.10) and (5.11).
Moreover, since the map is symplectic, these relations can be inverted to yield relations of
the form

qk = qk(Q,P, t), (6.5.143)

pk = pk(Q,P, t). (6.5.144)

Now substitute (5.143) into the first argument of (5.142) to produce the function H2(Q,P, t)
defined by the rule

H2(Q,P, t) = F t
2(q(Q,P, t), P, t), (6.5.145)

which we write more compactly, but with less precision, as

H2 = ∂F2/∂t. (6.5.146)

We claim that H2 is the Hamiltonian that generates the family of maps M(t) produced by
the use of F2(q, P, t).

To see that this claim is correct, write (5.5) in the form

pk = F2(q, P, t; k, , ), (6.5.147)

Qk = F2(q, P, t; , k, ). (6.5.148)

Now suppose the q, p are held fixed, and t is changed by an amount dt. So doing will change
the Q,P by the amounts dQ,dP given by the relations

0 = dpk =
∑
`

F2(q, P, t; k, `, )dP` + F2(q, P, t; k, , 1)dt, (6.5.149)

dQk =
∑
`

F2(q, P, t; , `k, )dP` + F2(q, P, t; , k, 1)dt. (6.5.150)

Note that the zero on the left side of (5.149) indicates that the pk remain fixed, as desired.
Recall the matrices α and δ given in (5.16) and (5.19). In terms of these matrices (5.149)
and (5.150) can be written in the form

0 =
∑
`

βk`dP` + F2(q, P, t; , k, 1)dt, (6.5.151)

dQk =
∑
`

δk`dP` + F2(q, P, t; , k, 1)dt. (6.5.152)



662 6. SYMPLECTIC MAPS

Solve (5.151) for the dP to find the result

dPm = −dt
∑
n

(β−1)mnF2(q, P, t;n, , 1). (6.5.153)

Also, insert (5.153) into (5.152) to give an expression for the dQ,

dQm = dt[−
∑
n

(δβ−1)mnF2(q, P, t;n, , 1)] + dtF2(q, P, t; ,m, 1). (6.5.154)

Finally, dividing through by dt gives the results

dQm/dt = −[
∑
n

(δβ−1)mnF2(q, P, t;n, , 1)] + F2(q, P, t; ,m, 1), (6.5.155)

dPm/dt = −
∑
n

(β−1)mnF2(q, P, t;n, , 1). (6.5.156)

Note that, as before, these manipulations require that β be invertible.
Next let us work out (∂H2/∂Q) and (∂H2/∂P ). From (5.145) and (5.142) we find the

result
(∂H2/∂Qm) =

∑
n

F2(q, P, t;n, , 1)(∂qn/∂Qm). (6.5.157)

However, if we solve (5.15) and (5.14) for dq and dp, we find the relations

dq = γ−1dQ− γ−1δdP, (6.5.158)

dp = αγ−1dQ+ (β − αγ−1δ)dP. (6.5.159)

Note that, according to (5.20), the invertibility of γ is guaranteed by the invertibility of β.
From (5.158) and (5.20) we find the relation

(∂qn/∂Qm) = (γ−1)nm = (β−1)mn. (6.5.160)

Therefore (5.157) can also be written in the form

(∂H2/∂Qm) =
∑
n

(β−1)mnF2(q, P, t;n, , 1). (6.5.161)

For (∂H2/∂Pm) we find from (5.145) and (5.142) the more complicated result

(∂H2/∂Pm) = [
∑
n

F2(q, P, t;n, , 1)(∂qn/∂Pm)] + F2(q, P, t; ,m, 1). (6.5.162)

From (5.158) and (5.20) we find the relation

(∂qn/∂Pm) = −(γ−1δ)nm = −[δT (γ−1)T ]mn = −(δβ−1)mn. (6.5.163)

Therefore (5.162) can also be written in the form

(∂H2/∂Pm) = −[
∑
n

(δβ−1)mnF2(q, P, t;n, , 1)] + F2(q, P, t; ,m, 1). (6.5.164)
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Now we are essentially done. Comparison of the right sides of (5.155) and (5.164) shows
that they agree; and comparison of the right sides of (5.156) and (5.161) shows that they
agree except for a minus sign. We therefore have demonstrated the desired results

dQm/dt = ∂H2/∂Pm, (6.5.165)

dPm/dt = −∂H2/∂Qm. (6.5.166)

Finally we remark that similar calculations for all the Fj show (again after a transfor-
mation to the variables Q,P ,t has been made) that there is the general result

Hj = ∂Fj/∂t. (6.5.167)

Note that (5.137) is a special case of (5.167). The relations (5.167) are closely related to
the Hamilton-Jacobi equations. See the discussion below. We will revisit this subject in
Subsection 7.3.

6.5.3.2 Transformation of Hamiltonians and Application to Hamilton-Jacobi
Theory

Subsection 4.2 showed that any family of symplectic maps N (t) is Hamiltonian generated,
and the associated Hamiltonian was called G. Subsection 4.4 described the transformation
of an old Hamiltonian to a new Hamiltonian under the action of a symplectic map. Here we
study the relation between the old and new Hamiltonians in the case that the symplectic
map N arises from some specified mixed-variable generating function Fj, and apply the
results to Hamilton-Jacobi theory for this case.

If we make the identification
Z = z̄, (6.5.168)

the relation (4.56) between old and new Hamiltonians can be rewritten in the form

K(Z; t) = H(z(Z, t); t) +G(Z; t). (6.5.169)

In the special case that N (t) arises from the use of an Fj, we found in Subsection 5.3.1
that the associated generating Hamiltonian, which we called Hj, was given by the relation
(5.167). Therefore, if we make the identification

G = Hj = ∂Fj/∂t, (6.5.170)

we see that (5.169) can be rewritten in the form

K(Z; t) = H(z(Z, t); t) + ∂Fj/∂t (6.5.171)

when N arises from the use of an Fj.
Suppose an N (t) can be found such that

K(Z; t) = 0. (6.5.172)

This is, in principle, always possible because we can take the Z to be the initial conditions and
take N (t) to be the symplectic map that transforms final conditions into initial conditions.
If an Fj can be found such that N (t) arises from the use of this Fj, then combining (5.171)
and (5.172) gives the Hamilton-Jacobi relation/equation

H(z(Z, t); t) + ∂Fj/∂t = 0. (6.5.173)



664 6. SYMPLECTIC MAPS

Exercises

6.5.1. Consider linear symplectic maps of the form (3.3.9), (3.3.10), (3.3.11), (3.10.16), and
(3.10,19). Determine which generating functions Fj can be used in these cases, and find
explicitly those that are applicable.

6.5.2. Consider the matrices (3.3.9) through (3.3.11). Show that they can all be produced
by one of the mixed-variable generating functions F1 through F4, and hence any symplectic
matrix can be produced by using a sequence of such generating functions.

6.5.3. We have seen that the matrix R given by (4.8.31) cannot be produced by any one of
the mixed-variable generating functions F1 through F4. Refer to (4.8.27). Show that there
are matrices M near R for which none of the matrices a through d are invertible and hence
for these M the method of mixed-variable generating function symplectification using F1

through F4 fails.

6.5.4. Use the machinery of Section 4.2 to produce the relations (5.167).

6.5.5. In some situations, for example in passing from Cartesian to curvilinear coordinates
in configuration (position) space, it is desirable to make configuration coordinate transfor-
mations of the kind

Qk = fk(q, t). (6.5.174)

Transformations of this kind are called Lagrange point transformations. Here we assume
that the relations (5.174) are invertible so that there are functions gk(Q, t) such that

qk = gk(Q, t). (6.5.175)

If this change of variables is done in a canonical context, we would like to extend the
configuration-space transformation (5.174) into a full phase-space transformation. The pur-
pose of this exercise is to show that this extension can be done symplectically with the aid
of the generating function F2 given by

F2(q, P, t) =
n∑

m=1

Pmfm(q, t). (6.5.176)

This symplectic extension is called a lift of the configuration coordinate transformation from
configuration space to phase space.

Review Subsection 5.1. Show, with the aid of (5.5), that use of the F2 given by (5.176)
yields the desired relation (5.174). Find the matrices α through δ in this case and verify
that the matrix β is invertible (as required) if, as has been assumed, (5.174) is invertible.
You should find that

αk` = ∂2F2/∂qk∂q` =
n∑

m=1

Pm∂
2fm(q, t)/∂qk∂q`, (6.5.177)

βk` = ∂2F2/∂qk∂P` = ∂f`/∂qk, (6.5.178)
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γk` = ∂2F2/∂Pk∂q` = ∂fk/∂q` = (βT )k`, (6.5.179)

δk` = ∂2F2/∂Pk∂P` = 0. (6.5.180)

See (5.16) through (5.19).
Verify, using (5.5), that there is the relation

pk =
n∑

m=1

Pmβkm =
n∑

m=1

βkmPm, (6.5.181)

which can be written in the compact matrix-vector form

p = βP. (6.5.182)

It follows that there is the relation
P = β−1p, (6.5.183)

which specifies the transformed momenta associated with the transformed positions (5.174).
Verify from (5.174) and (5.178) that there is the differential relation

dQ = βTdq. (6.5.184)

Canonical transformations given by relations of the form (5.174) and (5.183) are called
Mathieu transformations, and (5.176) may be called a Mathieu generating function.

Verify that for Mathieu transformations the corresponding A through D matrices are
given by the relations

A = γ − δβ−1α = γ = βT , (6.5.185)

B = δβ−1 = 0, (6.5.186)

C = −β−1α, (6.5.187)

D = β−1. (6.5.188)

According to Exercise 3.10.5, symplectic matrices with B = 0 form a subgroup of the
symplectic group. Since the Jacobian of the product of two maps is the product of their
Jacobians, it follows that Mathieu transformations form a subgroup of the group of sym-
plectic maps. What is the nature of this subgroup? Evidently invertible Lagrange point
transformations form a group which, assuming the underlying topology of configuration
space to be Cartesian/Euclidean, is (under differentiability assumptions) the diffeomorphism
group Diff (Rn). Thus, the subgroup of Mathieu transformations is isomorphic to the group
Diff (Rn).

Suppose that the transformation (5.174) is in fact linear so that it can be written in the
form

Q = Nq (6.5.189)

where N is any real and invertible n× n matrix. That is, N ∈ GL(n,R). Find the matrices
α through δ and A through D in this case. Show, in particular, that in this case α = 0 so
that C = 0, and that corresponding to (5.189) there is the complementary relation

P = (NT )−1p. (6.5.190)
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Compare this result to (3.3.13). Verify that all Mathieu transformations for which a relation
of the form (5.189) holds constitute a subgroup of the group of all Mathieu transformations,
and this subgroup is isomorphic to GL(n,R).

Suppose that the transformation (5.174) is in fact linear and orthogonal so that it can
be written in the form

Q = Oq (6.5.191)

where O is an orthogonal matrix. Show that in this case there is the complementary relation

P = Op. (6.5.192)

Compare this result to (3.3.13) and the discussion of SO(n,R) at the end of Section 7.2.2
and in Exercise 7.2.5. Verify that all Mathieu transformations for which a relation of the
form (5.191) holds constitute a subgroup of the group of all Mathieu transformations, and
this subgroup is isomorphic to O(n,R).

6.5.6. Consider F2 generating functions of the form

F2(q, P, t) = −χ(q, t) +
n∑

m=1

Pmqm. (6.5.193)

Show that these F2 produce symplectic transformations of the form

Qm = qm, (6.5.194)

Pm = pm + ∂χ/∂qm. (6.5.195)

These symplectic transformations/maps are sometimes called gauge transformations because
they arise naturally, for the case n = 3, in the context of charged-particle motion in electro-
magnetic fields.17 Indeed, we have already seen in Exercise 2.8 that gauge transformations
are symplectic maps.

Show that for gauge transformations the matrices α through δ and A through D are
given by the relations

αk` = ∂2F2/∂qk∂q` = −∂2χ/∂qk∂q`, (6.5.196)

βk` = ∂2F2/∂qk∂P` = δ̄k`, (6.5.197)

γk` = ∂2F2/∂Pk∂q` = δ̄k`, (6.5.198)

δk` = ∂2F2/∂Pk∂P` = 0; (6.5.199)

A = γ − δβ−1α = γ = I, (6.5.200)

B = δβ−1 = 0, (6.5.201)

Ck` = −(β−1α)k` = −αk` = ∂2χ/∂qk∂q`, (6.5.202)

D = β−1 = I. (6.5.203)

Here we have used the symbol δ̄k` to denote the Kronecker delta.

17However note that the symplectic transformations given by (5.194) and (5.195) are defined for all n.
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Compare the matrices A through D found above with those for (3.3.10). Show that
gauge transformation symplectic maps form a subgroup of the set of all symplectic maps.
Hint: See Exercise 3.10.1.

What is the nature of this subgroup? Define a symplectic map M by the rule

M = exp : χ(q, t) : . (6.5.204)

Verify that the assertions
Q =Mq, (6.5.205)

P =Mp (6.5.206)

yield (5.194) and (5.195). Let χ(q, t) and χ′(q, t) be any two gauge functions. Evidently
there is the relation

[χ, χ′] = 0. (6.5.207)

It follows that the maps M and M′ defined by (5.204) and

M′ = exp : χ′(q, t) : (6.5.208)

commute. Also, observe that functions of the form χ(q, t) comprise an infinite-dimensional
vector space. Therefore the set of gauge transformations comprises an infinite-dimensional
Abelian group.

6.6 Generating Functions Come from an Exact

Differential

6.6.1 Overview

So far the discussion of generating functions has been relatively straight forward, but not
particularly illuminating. Let us write (5.3) in the form

Z =Mz. (6.6.1)

By this relation we mean that there are 2n functions Ka(z, t) of the 2n variables zb, and
perhaps the time t, such that

Za = Ka(z, t). (6.6.2)

That is, in general 2n functions are required to specify a map in 2n variables.
However in the last section we have seen that, with the use of any one of the generateng

functions F1 through F4, all the required 2n functions come from a single master function,
namely the generating function being employed. How does it happen that the information
required to specify 2n functions can come from a single function? Presumably this occurs
because in our case the 2n functions Ka(z, t) are not, in fact, independent. Of course, in
principle we know that they are not independent because of the assumption that M is
symplectic. Apparently the symplectic condition is so stringent as to reduce the number
of required functions down from 2n to a single function. In one sense this should not be
too surprising, because we know that any family of symplectic maps M(t) is generated by
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a single function, namely the Hamiltonian. But that is an infinitesimal statement. How,
precisely, could one have guessed that there were functions F1 through F4 that could be used
in the manner (5.4) through (5.7) to manufacture symplectic maps? And can all symplectic
maps be obtained in this fashion? Below we present a partial clue. Still deeper insight is
presented in Subsection 7.1. There we will learn that the functions F1 through F4 are but 4
members of a 2n(4n+ 1) parameter family of generating functions, all of which can be used
to manufacture symplectic maps. The final explanation is given in Subsection 7.2.

6.6.2 A Democratic Differential Form

6.6.2.1 Definition

Consider the differential form

ωd = (Z, JdZ)− (z, Jdz). (6.6.3)

Note that ωd involves all the 4n variables z and Z. It has the beauty that it treats the
coordinates and momenta on an equal footing, and is “democratic” in its use of z and Z.
Also, we will see in Subsection 7.2 that it arises in a natural way.18

6.6.2.2 The Democratic Differential Form Is Exact Iff M Is Symplectic

Suppose the Z’s are viewed as functions of the z’s by using (5.23) to write ωd as

ωd(z) = (Z, JMdz)− (z, Jdz). (6.6.4)

Then, if theM in (6.1) is a symplectic map, we will find that ωd is exact with respect to the
2n variables z. Similarly, if the z’s are viewed as functions of the Z’s, ωd can be rewritten
as

ωd(Z) = (Z, JdZ)− (z, JM−1dZ). (6.6.5)

It can be shown that this form is also exact (with respect to the 2n variables Z) if M is a
symplectic map. We will soon verify these claims by brute calculation. Subsection 7.2 will
find the same results in an obvious way.

To see that ωd is exact with respect to the variables z, observe that that it can be written
more explicitly as

ωd(z) = (Z, JMdz)− (z, Jdz) = (MTJTZ, dz)− (JT z, dz)

=
∑
b

[(MTJTZ)b − (JT z)b]dzb. (6.6.6)

Upon comparing (6.6) with (1.22), we see that the coefficients Cb(z, t) are given by the
relation

Cb(z, t) = (MTJTZ)b − (JT z)b. (6.6.7)

18Despite its attractive appearance, the differential form ωd given by (6.3) is not commonly employed by
(and perhaps unfamiliar to some) other authors. Its existence, exactness, and utility were known, however,
to Poincaré.
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Note that there is a possible time dependence sinceM may depend on t. However, as before,
t only plays the role of a parameter.

We must see if the conditions (1.26) are met. An easy computation gives for the second
term in (6.7) the result

(∂/∂za)(J
T z)b = (∂/∂za)

∑
c

(JT )bczc =
∑
c

(JT )bcδac = (JT )ba = Jab. (6.6.8)

Dealing with the first term in (6.7) is more complicated. We find the preliminary result

(∂/∂za)(M
TJTZ)b = (∂/∂za)

∑
c

(MTJT )bcZc =
∑
c

[(∂/∂za)(M
TJT )bc]Zc

+
∑
c

(MTJT )bc(∂/∂za)Zc. (6.6.9)

But, from (5.23), there is the relation

(∂/∂za)Zc = Mca. (6.6.10)

It follows that for the second term on the right side of (6.9) there is the simplification∑
c

(MTJT )bc(∂/∂za)Zc =
∑
c

(MTJT )bcMca = (MTJTM)ba = (MTJM)ab. (6.6.11)

For the first term on the right side of (6.9) there is the result∑
c

[(∂/∂za)(M
TJT )bc]Zc =

∑
c

Zc(∂/∂za)(JM)cb =
∑
cd

ZcJcd(∂/∂za)Mdb

=
∑
cd

ZcJcd(∂
2Zd/∂za∂zb). (6.6.12)

Here we have again used a variant of (6.10). Combining (6.8) (6.9), (6.11), and (6.12) gives
the net result

(∂/∂za)Cb = [(MTJM)ab − Jab] + [
∑
cd

ZcJcd(∂
2Zd/∂za∂zb)]. (6.6.13)

Here we have separated the right side of (6.13) into parts that are antisymmetric and sym-
metric under the interchange of a and b. It follows that there is the relation

(∂/∂za)Cb − (∂/∂zb)Ca = 2[MTJM − J ]ab. (6.6.14)

Consequently the differential form ωd(z) given by (6.4) is exact if, and only if, the map M
is symplectic.

It can be shown in a similar way that the differential form ωd(Z) given by (6.5) is exact
if, and only if, the map M is symplectic.
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6.6.3 Information about M Carried by the Democratic Form

Since (6.3) is exact, there is a function F (z, t) such that

dF = ωd = (Z, JdZ)− (z, Jdz). (6.6.15)

The function F (z, t) may be called the primitive function associated with the differential
form ωd.

19

How much information does F (z, t) carry about M? Put another way, by its definition,
the differential form ωd depends on M. Are there possibly several maps M that produce
the same differential form ωd? According to (5.23) and (6.1) we may rewrite write (6.15) in
the form

dFM = (Mz, JMdz)− (z, Jdz) (6.6.16)

where have have appended the subscriptM to F to indicate that F depends onM. We will
begin our exploration of this uniqueness question by considering various symplectic maps
M.

Suppose M is a member of the inhomogeneous symplectic group ISp(2n,R). See Sub-
section 2.2 and Section 9.2. At this point it is convenient to use Lie-algebraic notation and
tools. See Chapter 7 for details. Let f1 be a first-degree polynomial such that

exp(: f1 :)z = z + δ. (6.6.17)

We define a translation operator τ by writing

τ = exp(: f1 :)z (6.6.18)

so that τ has the action
τz = z + δ. (6.6.19)

Also, let
Rf = exp(: f c2 :) exp(: fa2 :), etc. (6.6.20)

be a general linear symplectic map. It has the action

Rfz = Rfz (6.6.21)

where Rf is a general symplectic matrix. From the work of Section 9.2 we know that any
element in ISp(2n,R) can be written in the factored form

Mf = τR (6.6.22)

and has the action
Z =Mfz = Rfδ +Rfz. (6.6.23)

Let us employ this result in (6.16). We observe from (6.23) that there is the relation

M = Rf . (6.6.24)

19In calculus parlance the terms antiderivative, primitive function, primitive integral, and indefinite inte-
gral are used interchangeably.
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Therefore, in this case, (6.16) takes the form

dFMf
= (Rfδ+Rfz, JRfdz)−(z, Jdz) = (Rfδ, JRfdz)+(Rfz, JRfdz)−(z, Jdz). (6.6.25)

But, employing the symplectic condition for Rf yields the results

(Rfδ, JRfdz) = (δ, RT
f JRfdz) = (δ, Jdz), (6.6.26)

(Rfz, JRfdz)− (z, Jdz) = (z,RT
f JRfdz)− (z, Jdz) = (z, Jdz)− (z, Jdz) = 0. (6.6.27)

Consequently, (6.25) becomes
dFMf

= (δ, Jdz) (6.6.28)

and therefore
FMf

= (δ, Jz) + C (6.6.29)

where C is an arbitrary additive constant.
What can we conclude from looking at (6.28)? First, suppose there is no translation part

so that δ = 0 and τ = I. Then we see from (6.22) that

Mf = Rf , (6.6.30)

and it follows from (6.28) that
dFRf = 0. (6.6.31)

Consequently, up to an inconsequential additive constant, all linear symplectic maps produce
the same primitive function and this primitive function may be taken to be zero. Second,
(6.29) can be rewritten in the form

dFMf
= dFτRf = dFτ (6.6.32)

with
dFτ = (δ, Jdz). (6.6.33)

That is, in the case of ISp(2n,R) and when the factorization (6.22) is employed, the
differential form dFMf

depends only on the translation part of Mf .
The results obtained this far suggest the following exploration: Suppose N is any sym-

plectic map.20 We will write N in the Lie form

N = exp(: f1 :) exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · . (6.6.34)

Now define a map M by writing
M = NL (6.6.35)

where L is a linear symplectic map with the action

Lz = Lz. (6.6.36)

That is, L ∈ Sp(2n,R). Let us consider dFM in this case,

dFM = (Mz, JMdz)− (z, Jdz) (6.6.37)

20That is, using the notation introduced in Subsection 2.2, assume only that N ∈ ISpM(2n,R).
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where M is the Jacobian of M.
Because L is a linear map, we may write

Mz = LN z. (6.6.38)

Also, by the chain rule, we know that M is given by the relation

M = LN (6.6.39)

where N is the Jacobian of N . Next make use of (6.38) and (6.39) and the symplectic
condition to carry out the series of deductions

(Mz, JMdz) = (LN z, JLNdz) = (N z, LTJLNdz) = (N z, JNdz). (6.6.40)

From (6.40) we conclude that
dFM = dFNL = dFN . (6.6.41)

[Note that (6.32) is a special case of (6.41).] Thus, up to a possible additive constant which
is of no consequence, F (z, t) is the same for all maps M obtained by right multiplication
of N by linear symplectic maps L. In coset language, F depends only on the left cosets
ISpM(2n,R)/Sp(2n,R). Recall Section 5.12 for a discussion of cosets.

6.6.4 Breaking the Degeneracy

Although the fact that many symplectic maps lead to the same F may seem alarming, we
shall soon be adding other functions to F that will break this degeneracy. Let us rewrite
(6.15) in terms of the q, p and the Q,P . It is easily verified that

(z, Jdz) =
∑
i

(qidpi − pidqi) and (Z, JdZ) =
∑
i

(QidPi − PidQi). (6.6.42)

It follows that
dF =

∑
i

[(QidPi − PidQi)− (qidpi − pidqi)]. (6.6.43)

This is a key result from which all the relations (5.4) through (5.7) follow.

6.6.4.1 F2 Example

For example, suppose we define F2 by the rule

F2 = [F +
∑
i

(piqi + PiQi)]/2. (6.6.44)

Then we find the result

dF2 = [dF +
∑
i

(pidqi + qidpi + PidQi +QidPi)]/2 =
∑
i

(pidqi +QidPi). (6.6.45)

Evidently the left side of (6.45) is an exact differential, and comparison with (5.71) provides
an independent proof that the differential form ω2 given by (5.81) is exact. Finally, from
(6.45), we immediately derive the relations (5.5).
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6.6.4.2 F1 Example

As a second example, suppose we define F1 by the rule

F1 = [F +
∑
i

(piqi − PiQi)]/2. (6.6.46)

Then we find the result

dF1 = [dF +
∑
i

(pidqi + qidpi − PidQi −QidPi]/2 =
∑
i

(pidqi − PidQi). (6.6.47)

From (6.47) it follows that

∂F1/∂qi = pi, ∂F1/∂Qi = −Pi, (6.6.48)

which are the relations (5.4). The relations (5.6) and (5.7) follow in a similar fashion. See
Exercise 6.4.

6.6.4.3 Poincaré Generating Function

There are also other generating functions beside F1 through F4 that are less familiar. For
example, consider the function F+ defined by the rule

F+ = F + (Z, Jz) = F +
∑
i

(piQi − qiPi). (6.6.49)

For F+ we find the differential

dF+ = dF +
∑
i

[(pidQi +Qidpi)− (Pidqi + qidPi)]

=
∑
i

[(QidPi − PidQi)− (qidpi − pidqi) + (pidQi +Qidpi)− (Pidqi + qidPi)]

=
∑
i

[(Qi − qi)(dpi + dPi)− (Pi − pi)(dqi + dQi)]. (6.6.50)

We may therefore write
F+ = F+[(q +Q), (p+ P ), t] (6.6.51)

to obtain from (6.50) the relations

Qi − qi = ∂F+/∂(pi + Pi), (6.6.52)

Pi − pi = −∂F+/∂(qi +Qi). (6.6.53)

The function F+ is sometimes called a Poincaré generating function. It is more demo-
cratic then the functions F1 through F4 in the sense that it involves the old and new variables
in a symmetric fashion. Indeed, introduce the quantities Σ and ∆ by the rules

Σ = Z + z, (6.6.54)
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∆ = Z − z. (6.6.55)

Then for (6.51) we may write
F+ = F+(Σ, t). (6.6.56)

Correspondingly, the relations (6.52) and (6.53) can be written in the compact form

∆ = J∂ΣF+|Σ=Z+z. (6.6.57)

Here, by employing J in (6.57), we have viewed ∆ = {(Q − q), (P − p)} as composed of a
canonical pair. We remark that if F+ is a quadratic function of Σ, then the use of (6.57)
leads to the Cayley transformation. See Exercise 6.5.

There is an important feature of the Poincaré generating function that is sometimes
useful. A point Σc is called a critical point of F+ if there is the result

∂ΣF+|Σ=Σc = 0. (6.6.58)

From (6.57) we see that at a critical point ∆ = 0 so that

Z =Mz = z (6.6.59)

and, by (6.54),
Z = z = Σc/2. (6.6.60)

Thus, if we make the definition
zf = Σc/2, (6.6.61)

we see that zf is a fixed point of M. We conclude that critical points of F+ correspond to
fixed points of M and vice versa. This result can be useful in some circumstances because
there are theorems (e.g. Morse theory) about critical points of smooth functions on various
manifolds.

Exercises

6.6.1. Show that the differential form ωd(Z) given by (6.5) is exact in terms of the variables
Z.

6.6.2. Verify the claims (6.38) and (6.39).

6.6.3. Review Section 1.2.3. Define maps S and R(φ) by the rules

S = exp(: q3 :), (6.6.62)

R(φ) = exp[−(φ/2) :p2 + q2:] (6.6.63)

Let M be the map
M = SR(φ). (6.6.64)

Verify that the maps (1.2.50) and (6.64) are related by a similarity transformation involving
a map of the form R(ψ), which amounts to changing the observation point O.
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Show that for the democratic differential form ωd given by (6.3) there are the results

dFM = dFSR(φ) = dFS =, (6.6.65)

FM = . (6.6.66)

Why is there no φ dependence?

6.6.4. Consider the functions F3 and F4 defined by the relations

F3 = [F −
∑
i

(piqi + PiQi)]/2, (6.6.67)

F4 = [F −
∑
i

(piqi − PiQi)]/2. (6.6.68)

where dF is the exact differential (6.15). Show that they satisfy (5.6) and (5.7). Compare
(6.67) and (6.68) with (6.44) and (6.46). Observe that all these relations differ only in the
signs assigned to the quantities piqi and PiQi, and that the four possibilities yield the four
functions F1 through F4.

6.6.5. Suppose that the Poincaré generating function F+ is of the form

F+(Σ) = (1/2)(Σ,WΣ) (6.6.69)

where W is a symmetric matrix. It follows from (6.69) that in this case

∂ΣF+ = WΣ. (6.6.70)

Show that this F+, when employed in (6.57), produces the result

∆ = JWΣ, (6.6.71)

which in turn yields the relation

Z − z = JW (Z + z). (6.6.72)

Solve this relation for Z in terms of z to yield the linear relation

Z = (I − JW )−1(I + JW )z. (6.6.73)

Finally write the relation between Z and z in terms of a matrix M ,

Z = Mz. (6.6.74)

Comparison of (6.73) and (6.74) then gives the result

M = (I − JW )−1(I + JW ). (6.6.75)

Observe that this result is the Cayley representation (3.12.5). It follows, as expected,
that M is a symplectic matrix. Verify that the relation (6.75) can be inverted to give the
result

W = −J(M − I)(M + I)−1 (6.6.76)
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in agreement with (3.12.19). Verify that there are the Cayley Möbius transformation rela-
tions

W = Tσ(M) (6.6.77)

and
M = Tσ−1(W ) (6.6.78)

with σ given by (5.13.11).
Suppose that F+ is of the form

F+(Σ) = (v,Σ) + (1/2)(Σ,WΣ) (6.6.79)

where v is any vector. It follows from (6.79) that in this case

∂ΣF+ = v +WΣ. (6.6.80)

Show that this F+, when employed in (6.57), produces the result

Z = Mz + (I − JW )−1Jv. (6.6.81)

6.6.6. Verify, using the methods of Subsection 5.1, that the Poincaré generating function
F+ when employed in (6.57) does indeed produce a symplectic map. Suppose that F+ is
time dependent so that its use produces a one-parameter family of symplectic maps. Find
the associated generating Hamiltonian for this family. Hint: If you are stuck, see Subsection
7.3.1.

6.6.7. Find a generating function F− analogous to F+. That is, in (6.49), replace +(Z, Jz)
by −(Z, Jz).

6.7 Plethora of Generating Functions

We have seen that there are the five generating function types F1 through F4 and F+.
We will now learn that (for a 2n-dimensional phase space) there are an infinite number of
generating functions types, of which the five cited above are but examples, that comprise
a full 2n(4n + 1) parameter family. Indeed, there is a generating function type for each
of the Darboux matrices/transformations of Section 5.13. And we know there is a distinct
Darboux matrix corresponding to each element of Sp(4n) whose dimension is 2n(4n + 1).
See (5.13.28), (3.7.35), and Table 3.7.1. Thus, for example, in the simplest case of a two-
dimensional phase space, there is a 10 parameter family of generating function types; and
in the case of a six-dimensional phase space there is a 78 parameter family of generating
function types. We will begin with a derivation of this result, and then follow the derivation
with a discussion describing how the various results we have found all fit together.

6.7.1 Derivation

Consider again the differential form ωd given by (6.3). If Z and z are 2n dimensional, let Ẑ
denote the 4n dimensional column vector constructed by appending the entries of z below
those of Z,

Ẑ = (Z; z)T . (6.7.1)
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With this notation, the differential form ωd can be rewritten as

ωd = (Z, JdZ)− (z, Jdz) = (Ẑ, J̃4ndẐ). (6.7.2)

Here, as in section 5.13.3, we have used (5.13.16) to define J̃4n.
Let α denote a 4n× 4n invertible matrix. Use α to define new variables Û by the rule

Û = αẐ, (6.7.3)

or
Ẑ = α−1Û . (6.7.4)

With this change of variables the differential form on the right side of (7.2) becomes

(Ẑ, J̃4ndẐ) = (α−1Û , J̃4nα−1dÛ) = (Û , (α−1)T J̃4n(α−1)dÛ). (6.7.5)

Next, inspired by the discussion of Section 5.13, require that α satisfy the relation

(α−1)T J̃4n(α−1) = J4n. (6.7.6)

That is, require that α be a Darboux transformation. Also, in analogy with (7.1), introduce
4n dimensional vectors Û by letting U and u be the first 2n entries and last 2n entries of Û ,
respectively,

Û = (U ;u)T . (6.7.7)

Upon combining (7.5) through (7.7), we find the result

(Ẑ, J̃4ndẐ) = (Û , (α−1)T J̃4n(α−1)dÛ) = (Û , J4ndÛ) = (U, du)− (u, dU). (6.7.8)

We know that (Ẑ, J̃4ndẐ) is exact. See (6.15). Therefore, from the work so far, we have
the relation

dF = (U, du)− (u, dU). (6.7.9)

From F construct another function g by the rule

g = [F + (U, u)]/2. (6.7.10)

Then, by this construction and the properties of F , g has the differential

dg = [dF+(U, du)+(u, dU)]/2 = [(U, du)−(u, dU)+(U, du)+(u, dU)]/2 = (U, du). (6.7.11)

By the chain rule, we also have the relation

dg =
∑
a

[(∂g/∂Ua)(dUa) + (∂g/∂ua)(dua)]. (6.7.12)

Upon comparing (7.11) and (7.12) we deduce the two relations

∂g/∂Ua = 0, (6.7.13)

Ua = ∂g/∂ua. (6.7.14)
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The first of these states the remarkable result that g depends only on u,

g = g(u). (6.7.15)

The second states that U and u are related by the gradient map G produced by the function
g playing the role of a source function. More abstractly, we may write (7.14) in the form

U = Gu. (6.7.16)

See Subsection 1.1.
When written in block form, (7.3) is equivalent to the two relations

U = AαZ +Bαz, (6.7.17)

u = CαZ +Dαz. (6.7.18)

When expanded in component form, (7.17) reads

Ua =
∑
b

[(Aα)abZb + (Bα)abzb], (6.7.19)

and (7.18) reads

uc =
∑
d

[(Cα)cdZd + (Dα)cdzd]. (6.7.20)

In terms of these components, the relations (7.14) become∑
b

[(Aα)abZb + (Bα)abzb] = [∂g/∂ua]|u=CαZ+Dαz. (6.7.21)

In matrix-vector form they can be written more compactly as

AαZ +Bαz = ∂ug|u=CαZ+Dαz. (6.7.22)

Equations (7.21) provide 2n implicit relations between Z and z. When made explicit, they
produce the map M (which will soon be shown to be symplectic) with

Z =Mz. (6.7.23)

Equations (7.21) relate the symplectic map M to the gradient map G associated with
the source function g. Any such function produces a symplectic map, and we will call g,
in association with the Darboux matrix α, the generating function that produces M. Note
that in principle, although we have not taken note of it until now, g could also depend on
the time t,

g = g(u, t). (6.7.24)

Here t should again be regarded as a parameter, and its presence in g when employed
in (7.14) and (7.21) leads to a parameter dependent gradient map G(t) and a parameter
dependent symplectic map M(t).
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At this point we note that there is another way of viewing the relations (7.21). Suppose
we pick a 2n-vector u and, if G depends on t, also specify a value for t. Then, according to
(7.16), we can determine U(u, t) by the rule

U(u, t) = G(t)u. (6.7.25)

In view of (7.7), we have now also specified Û(u, t). Indeed, we have the relation

Û(u, t) = (U(u, t);u)T = (G(t)u;u)T . (6.7.26)

Next, use the Darboux relation (7.4) to determine Ẑ(u, t) by writing

Ẑ(u, t) = α−1Û(u, t). (6.7.27)

When written in block form, (7.27) yields the relations

Z(u, t) = Aα
−1G(t)u+Bα−1

u, (6.7.28)

and
z(u, t) = Cα−1G(t)u+Dα−1

u. (6.7.29)

We see that (7.28) and (7.29) specify the map M(t) in parametric form with u being a set
of 2n parameters.

We still have to verify that the implicit relations (7.21), or the parametric relations (7.28)
and (7.29), can be made explicit. That is, given the z’s, we need to show that we can solve
for the Z’s, and vice versa. At this point one might ask if there is a choice of α such that
the relation (7.21) is already explicit. Exercise 7.3 shows that this is impossible. There is
no such α that also satisfies the Darboux requirement (5.13.20). Thus, we must begin with
implicit relations. We also note that gradient map G(t) employed in (7.21) is explicit in
form. Therefore, as we will next see, the implicit nature of (7.21) with regard to the z’s
and Z’s is controlled primarily by the properties of the associated Darboux matrix α and
its related Möbius transformations Tα and Tα−1 .

Suppose we make small variations dz in the variables z thereby producing small variations
dZ in the variables Z. Then, by the inverse function theorem, we must show that there is a
relation of the form

dZ = Mdz (6.7.30)

where the matrix M is invertible. From (1.5) we find that

dU = Gdu. (6.7.31)

And, from (7.19) and (7.20), we have the results

dU = AαdZ +Bαdz, (6.7.32)

and
du = CαdZ +Dαdz. (6.7.33)

Combining (7.31) through (7.33) gives the series of results

AαdZ +Bαdz = G(CαdZ +Dαdz), (6.7.34)
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(Aα −GCα)dZ = (GDα −Bα)dz, (6.7.35)

dZ = [(Aα −GCα)−1(GDα −Bα)]dz. (6.7.36)

Comparison of (7.30) and (7.36) gives the relation

M = (Aα −GCα)−1(GDα −Bα). (6.7.37)

But, by (5.11.23) with the substitutions M → α and U ′ → G, there is the identity

(Aα −GCα)−1(GDα −Bα) = (Aα
−1

G+Bα−1

)(Cα−1

G+Dα−1

)−1. (6.7.38)

Therefore we may also write

M = (Aα
−1

G+Bα−1

)(Cα−1

G+Dα−1

)−1. (6.7.39)

We conclude that M and G are related by the Möbius transformation Tα−1 ,

M = Tα−1(G). (6.7.40)

See also Exercise 7.4.
We already know that G is symmetric. See (1.7). Moreover, from the work of Section

5.13, we know that Möbius transformations of the form Tα−1 can be found such that (7.40) is
well defined, and we know that these Möbius transformations send symmetric matrices into
symplectic matrices. It follows that M is a symplectic matrix, and therefore M is invertible.
We have shown that the implicit relations (7.21) can be made explicit so that we may indeed
write (7.23). Moreover, since M is a symplectic matrix, we have also verified that M is a
symplectic map.

The discourse so far described how, given the gradient map G associated with any source
function g and a Darboux matrix α, we can construct a symplectic mapM by use of (7.21).
In the spirit of Subsection 5.2, suppose we are instead givenM and we wish to construct g.
Begin with the relation (7.18), which can be rewritten in the form

u = Cα(Mz) +Dαz. (6.7.41)

Let us see if this relation can be solved for z. That is, given u, we want to use (7.41) to
determine z. Taking differentials of both sides of (7.41) and using (7.30 gives the result

du = CαdZ +Dαdz = CαMdz +Dαdz = (CαM +Dα)dz. (6.7.42)

By the inverse function theorem, if the matrix (CαM+Dα) is invertible, we may solve (7.41)
for z, in which case there is also the relation

dz = (CαM +Dα)−1du. (6.7.43)

Next we observe that (7.17) can be rewritten in the form

U = Aα(Mz) +Bαz. (6.7.44)
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Since we have already found z as a function of u by solving (7.41), equation (7.44) enables
us to find U as a function of u.

We claim that the map G that sends u to U is a gradient map ifM is a symplectic map.
Taking differentials of both sides of (7.44), and again using (7.30), give the result

dU = AαdZ +Bαdz = AαMdz +Bαdz = (AαM +Bα)dz. (6.7.45)

Next insert (7.43) into (7.45) to yield the result

dU = (AαM +Bα)(CαM +Dα)−1du. (6.7.46)

Now compare (7.31) and (7.46) to find the relation

G = (AαM +Bα)(CαM +Dα)−1. (6.7.47)

This result is evidently the Möbius relation

G = Tα(M), (6.7.48)

which is consistent with (7.40). Also, we know from Section 5.13 that G will be symmetric
if M is symplectic, and consequently G is indeed a gradient map.

Finally, we may determine the source function g associated with G by performing the
path integral

g(u, t) =

∫ u∑
a

U(u′, t)a du
′
a. (6.7.49)

Here we have indicated that g may also depend on t if M depends on t.
We close this subsection by listing the Darboux matrices α associated with the familiar

generating function types F1 through F4 and F+, and the related γ in the representation
α = γσ. They appear in the table below. Note the interesting fact that all these Darboux
matrices are orthogonal. In Exercises 7.5 through 7.7 you, dear reader, will have the pleasure
of spot checking that the use of these Darboux matrices in (7.21) reproduces the relations
(5.4) through (5.7) and (6.57).
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Table 6.7.1: Darboux Matrices α for the Generating Function types F1 through F4 and F+.

Here α =

(
Aα Bα

Cα Dα

)
= γσ. (6.7.50)

F1(q,Q, t)
pk = ∂F1/∂qk, Pk = −∂F1/∂Qk. (6.7.51)

Aα =

(
0 0
0 −In

)
, Bα =

(
0 In

0 0

)
, (6.7.52)

Cα =

(
0 0
In 0

)
, Dα =

(
In 0
0 0

)
. (6.7.53)

γ = (1/
√

2)


In 0 0 In

In 0 0 −In
0 −In In 0
0 In In 0

 . (6.7.54)

F2(q, P, t)
pk = ∂F2/∂qk, Qk = ∂F2/∂Pk. (6.7.55)

Aα =

(
0 0
In 0

)
, Bα =

(
0 In

0 0

)
, (6.7.56)

Cα =

(
0 0
0 In

)
, Dα =

(
In 0
0 0

)
. (6.7.57)

γ = (1/
√

2)


In 0 0 In

0 In In 0
0 −In In 0
−In 0 0 In

 . (6.7.58)

F3(p,Q, t)
qk = −∂F3/∂pk, Pk = −∂F3/∂Qk. (6.7.59)

Aα =

(
0 0
0 −In

)
, Bα =

(
−In 0

0 0

)
, (6.7.60)

Cα =

(
0 0
In 0

)
, Dα =

(
0 In

0 0

)
. (6.7.61)

γ = (1/
√

2)


0 In −In 0
In 0 0 −In
In 0 0 In

0 In In 0

 . (6.7.62)
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Table 6.7.1 continued

F4(p, P, t)
qk = −∂F4/∂pk, Qk = ∂F4/∂Pk. (6.7.63)

Aα =

(
0 0
In 0

)
, Bα =

(
−In 0

0 0

)
, (6.7.64)

Cα =

(
0 0
0 In

)
, Dα =

(
0 In

0 0

)
. (6.7.65)

γ = (1/
√

2)


0 In −In 0
0 In In 0
In 0 0 In

−In 0 0 In

 . (6.7.66)

F+(Σ, t)
∆ = J∂ΣF+ where Σ = Z + z and ∆ = Z − z. (6.7.67)

α = σ = (1/
√

2)

(
−J2n J2n

I2n I2n

)
. (6.7.68)

γ = I4n. (6.7.69)

6.7.2 Discussion

6.7.2.1 Graphs

In this section, and in Sections 5.13 and 5.14, we introduced a 4n-dimensional space even
though the underlying entities of interest, namely symplectic matrices and symplectic maps,
were associated with a 2n-dimensional space. How could one have guessed that this would
be a good thing to do? Of course, results are what count. But one way to look at the matter
is in terms of graphs.

Suppose we wish to analyze a function f(x) of a single real variable x. One way to do
so is to introduce a two-dimensional space R2, with axes x and y, and then “darken” those
points in R2 for which y = f(x). The darkened points form the graph of f ,

graph of f = {{x, y} ∈ R2 | y = f(x)}. (6.7.70)

Moreover, the graph of f is a one-dimensional submanifold of R2. Let τ1 be some parameter.
Then we may also write

graph of f = {{x, y} ∈ R2 | x = τ1, y = f(τ1) with τ1 ∈ R1}. (6.7.71)



684 6. SYMPLECTIC MAPS

All these considerations are so commonplace that we hardly ever think about them, but
they do involve a doubling of dimension.21

Now consider a 4n-dimensional space with coordinates {Z1 · · ·Z2n} and {z1 · · · z2n} or,
equivalently, coordinates {Ẑ1 · · · Ẑ4n}. Let M be the map (6.1). Then we can describe M
in terms of a graph by writing

graph of M = {Ẑ ∈ R4n | Za = Ka(z) for a = 1, 2n}. (6.7.72)

(Here we have suppressed the possible dependence of K on the parameter t.) We see that
the construction (7.72) is completely analogous to (7.70). Moreover, the graph of M is a
2n-dimensional submanifold of R4n. Let {τ1 · · · τ2n} be a set of 2n parameters. Then we
may also write

graph of M = {Ẑ ∈ R4n | Za = Ka(τ), za = τa for a = 1, 2n with τ ∈ R2n}. (6.7.73)

6.7.2.2 The Graph of M Is a J̃4n Lagrangian Submanifold

Let us find the tangent vectors to the graph of M (now regarded as a 2n-dimensional
submanifold in a 4n-dimensional space). They describe how Ẑ varies when τ is varied.
Write τ in the form

τ = τ 0 +
2n∑
1

λie
i. (6.7.74)

Here the vectors ei are the same as those introduced in Section 5.13, namely those that form
the columns of I2n. Employing this notation for τ , we define 2n vectors ζj tangent to the
graph of M at the point Ẑ(τ 0) by writing the definition

ζj(τ 0) = ∂Ẑ/∂λj|λ=0 = (∂Z/∂λj|λ=0 ; ∂z/∂λj|λ=0)T . (6.7.75)

As indicated, the tangent vectors ζj are of length 4n (have 4n entries) as is appropriate for
a 4n-dimensional space. The last 2n entries in each tangent vector ζj, those to the right of
the semicolon in (7.75), are easy to find. From (7.73) and (7.74) we readily compute the
result

∂z/∂λj|λ=0 = ej. (6.7.76)

The calculation of the first 2n entries is a bit more involved. From (7.73) (which contains
the information that z = τ) and (7.74) we find, in terms of components, the result

∂Zi/∂λj|λ=0 = ∂Zi/∂zj|z=τ0 = Mij(τ
0) = mj

i . (6.7.77)

Here we have used the notation (5.13.36), and M(τ 0) is the Jacobian matrix M(z) for M
evaluated at z = τ 0.

We see from (7.75) through (7.77) that there is the relation

ζj = (mj; ej)T , (6.7.78)

21The use of graphs to portray functions was invented by Descartes. He plotted x along the vertical axis
and y along the horizontal axis. Newton turned this around to plot x along the horizontal axis and y along
the vertical axis, and humankind have followed his convention ever since.



6.7. PLETHORA OF GENERATING FUNCTIONS 685

and recognize that the ζj are just the vectors uj introduced in Section 5.13 and given by
(5.13.42). We know that these vectors are J̃4n isotropic. Thus, we have shown that the
tangent vectors of the graph ofM are J̃4n isotropic at any point Ẑ(τ 0) in the submanifold,
and therefore span a J̃4n Lagrangian plane at every such point. For this reason, the graph
of M is entitled to be called a J̃4n Lagrangian submanifold.

6.7.2.3 The Graph of G Is a J4n Lagrangian Submanifold

We can carry out a similar analysis for the graph of G. The map G is defined by (7.7) and
(7.14) through (7.16). Again let {τ1 · · · τ2n} be a set of 2n parameters. The graph of G, as
a 2n-dimensional submanifold in R4n, is given by the definition

graph of G = {Û ∈ R4n | Ua = ∂g(τ)/∂τa, ua = τa for a = 1, 2n with τ ∈ R2n}. (6.7.79)

Again employing the notation (7.74), the graph of G will have 2n tangent vectors νj at the
point Û(τ 0) given by the definition

νj(τ 0) = ∂Û/∂λj|λ=0 = (∂U/∂λj|λ=0 ; ∂u/∂λj|λ=0)T . (6.7.80)

The last 2n entries in each tangent vector νj, those to the right of the semicolon in (7.80),
are calculated the same way as in the case of M, and are therefore given by the relation

∂u/∂λj|λ=0 = ej. (6.7.81)

In terms of components, the first 2n entries are given by the relations

∂Ui/∂λj|λ=0 = ∂2g/∂λi∂λj|λ=0 = Gij(τ
0). (6.7.82)

In analogy to the notation (5.13.60) and (5.13.61) employed in Section 5.13, define vectors
wj, each of length 2n, by writing

wji = Gij. (6.7.83)

Then, with this notation, the tangent vectors νj become

νj = (wj; ej)T . (6.7.84)

Since G is a symmetric matrix, these vectors are completely analogous to the vectors vj

constructed in Section 5.13 and given by (5.13.62). Therefore we know that these vectors
are J4n isotropic. Thus, we have shown that the tangent vectors of the graph of G are J4n

isotropic at any point Û(τ 0) in the submanifold, and therefore span a J4n lagrangian plane
at every such point. Consequently the graph of G is entitled to be called a J4n Lagrangian
submanifold.

6.7.2.4 Relation between the Graphs of M and G

We have learned that the 4n-dimensional constructions used in Sections 5.13 through 5.15,
and in this section, appear to be less ad hoc when one thinks in terms of graphs. The graph
ofM is a J̃4n Lagrangian submanifold, and the graph of G is a J4n Lagrangian submanifold.
Moreover, according to (7.3) and (7.4), these two submanifolds are mapped into each other
by a Darboux transformation α. Or, put another way, they are the same submanifold, and
this submanifold appears to be J̃4n Lagrangian when the coordinates Ẑ are used and J4n

Lagrangian when the coordinates Û are used.
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6.7.2.5 Reason for the Term “Lagrangian”

To keep a promise, we still need to describe the origin of the term “Lagrangian” when applied
to planes and submanifolds. It has to do with Lagrange brackets. Consider a 2n-dimensional
phase space with coordinates (q; p) as in (1.7.9). Define an n-dimensional submanifold in
this phase space (parameterized by the quantities τ1, · · · , τn) by writing 2n equations of the
form

za = fa(τ) (6.7.85)

where the fa are any functions of the n variables τ . Next form the tangent vectors ∂z/∂τi.
[These n vectors are assumed to be linearly independent since (7.85) is assumed to define
an n-dimensional submanifold.] The Lagrange bracket {τi, τj}, which is a function of the
variables τ , is defined by the rule

{τi, τj} = (∂z/∂τi, J
2n ∂z/∂τj). (6.7.86)

If we use the specific form for J2n given by (3.1.1), we observe that the Lagrange bracket
can also be written in what may be the more familiar text-book form

{τi, τj} =
∑
k

(∂qk/∂τi)(∂pk/∂τj)− (∂pk/∂τi)(∂qk/∂τj). (6.7.87)

From (7.86) we see that the tangent vectors ∂z/∂τi for any fixed τ = τ 0 are J2n isotropic
if the Lagrange brackets {τi, τj} all vanish (for τ = τ 0), and we say that the plane spanned
by the tangent vectors ∂z/∂τi is Lagrangian. Correspondingly, the submanifold given by
(7.85) is Lagrangian if the Lagrange brackets {τi, τj} all vanish for all values of τ . Similar
nomenclature carries over to 2n-dimensional planes and 2n-dimensional submanifolds in
4n-dimensional spaces and the use of J4n or J̃4n.

6.7.2.6 Closing Observation

We close this subsection with the observation that the family of maps produced by the
generating/source function g(u, t) and some Darboux matrix α does not necessarily pass
through the identity map I for some value of t. For each value of t there will be a symmetric
matrix G(u, t) given by (1.6), and for this value of t the map M(t) will have a Jacobian
matrix M given by (7.40). SupposeM(t) = I when t = t0. Then, since the Jacobian matrix
of the identity map I is the identity matrix I, (7.40) becomes the the relation

I = Tα−1(G) (6.7.88)

which requires that
G = G0 (6.7.89)

where
G0 = Tα(I) = (Aα +Bα)(Cα +Dα)−1. (6.7.90)

Corresponding, we must have

g(u, t0) = (1/2)(u,G0u) + (v, u) + g0 (6.7.91)
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where v is a fixed vector yet to be determined and g0 is an immaterial constant.
To determine v, which will turn out to vanish, we need to find the M associated with

the g(u, t0) given by (7.91). Partial differentiation of (7.91) gives the intermediate result

∂g/∂ua = va +
∑
b

(G0)abub, (6.7.92)

and employing this intermediate result in (7.21) gives the further result

AαZ +Bαz = G0(CαZ +Dαz) + v. (6.7.93)

Now solve (7.93) to find the result

Z = (Aα −G0C
α)−1(G0D

α −Bα)z + [(Aα −G0C
α)−1]v

= [(Aα
−1

G0 +Bα−1

)(Cα−1

G0 +Dα−1

)−1]z + [(Aα −G0C
α)−1]v

= [Tα−1(G0)]z + [(Aα −G0C
α)−1]v

= z + [(Aα −G0C
α)−1]v. (6.7.94)

Here we have used (7.38) and (7.88). We see that we must have v = 0 to achieve the identity
map, in which case

g(u, t0) = (1/2)(u,G0u) + g0. (6.7.95)

Now it may well happen that g(u, t) is never of the form (7.95) for any value of t, in
which case the family of maps M(t) never passes through the identity map. There is also
a possible second obstacle. Note that G0 as given by (7.90) is not defined if the matrix
(Cα +Dα) is not invertible,

det(Cα +Dα) = 0. (6.7.96)

Thus, there are Darboux matrices for whichM(t) can never pass through the identity map.
See, for example, the Darboux matrices associated with F1 and F4 given in Table 6.7.1.

To conclude this observation we note that, although we have verified that there are
families of symplectic maps that never pass through the identity map, the symplectic maps
associated with the Hamiltonian Cauchy initial value problem, see Section 1.3 and Subsection
4.1, pass through the identity map by definition because of the initial condition requirement
(4.13).

6.7.2.7 Final Remark

Finally, we remark that there is no reason why the Darboux matrix α cannot also be taken
to depend on t. We know that we can always write

α = γσ (6.7.97)

where σ is the matrix (5.13.11) and γ is any matrix in the group Sp(4n). We also know that
the symplectic group is connected. See Section 5.9. Therefore the set of Darboux matrices
is connected, and we may sensibly write

α(t) = γ(t)σ. (6.7.98)

for any path γ(t) in Sp(4n). If we now employ g(u, t) and α(t) in (7.21), the result will
again be a family of symplectic maps M(t).
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6.7.3 Relating Source Functions and Generating Hamiltonians,
Transformation of Hamiltonians, and Hamilton-Jacobi
Theory/Equations

Suppose the source function g appearing in (7.24) does indeed depend on the time. Then its
use in (7.21) produces a family of symplectic maps which, for our present notational purposes,
we will call N (t) rather thanM(t) and will have Jacobian N(t). We know from Subsection
4.2 that any such family is Hamiltonian generated. Indeed, Subsection 5.3 determined this
Hamiltonian for the case of F2(q, P, t), and (5.167) covers the cases F1 through F4. The
relation between g(u, t), the associated symplectic map N (t), and the associated generating
Hamiltonian, which we will here call Hg, is part of Hamilton-Jacobi theory; and Subsection
5.3.2 describes examples of the Hamilton-Jacobi equation for the cases where N (t) arises
from one of the Fj. In this subsection we will solve the general problem of finding the
Hamiltonian Hg when N (t) arises from g(u, t) and the use of some Darboux matrix α. We
will also solve the inverse general problem of finding g(u, t) in terms of Hg. Finally, we will
relate these results to Hamilton-Jacobi Theory for the general problem. Our results will also
be of use for the work of Chapter 34.

6.7.3.1 Finding the Generating Hamiltonian Hg from the Source Function g

Our discussion will be patterned after that of Subsection 5.3, so again we will have to deal
with a variety of partial derivatives. Therefore we introduce the notation

g(u, t; , 1) = ∂g/∂t,

g(u, t; a, 1) = ∂2g/∂ua∂t,

g(u, t; ab, ) = ∂2g/∂ua∂ub. (6.7.99)

Employing this notation, define the function gt(u, t) by the rule

gt(u, t) = g(u, t; , 1) (6.7.100)

According to (7.18), u may be regarded as a function of Z(t) and z. Also, according to
(7.22) with the substitution M→ N , we may view z as being a function of t and Z(t) by
writing

z = N−1(t)Z. (6.7.101)

Therefore, u may be regarded as a function of Z and t,

u = u(Z, t). (6.7.102)

Now substitute (7.102) into (7.100) to define the function Hg(Z, t) by the rule

Hg(Z, t) = gt(u(Z, t), t). (6.7.103)

We claim that Hg(Z, t) is the Hamiltonian that generates the map N (t) produced by the
use of the source function g(u, t) and some Darboux matrix α. Here we assume that α is
some fixed Darboux matrix, although it would be interesting to also entertain the possibility
(7.98).
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We will now seek to verify this claim about Hg. Suppose z is held fixed and t is increased
by the amount dt. So doing will change Z by the amount dZ. Also, according to (7.18), u
will experience a change that we will call du. Look at the relations (7.28) and (7.29). From
(7.28) we conclude that

dZa = [
∑
b

(Aα
−1

)abg(u, t; b, 1)]dt

+
∑
bc

(Aα
−1

)abg(u, t; bc, )duc

+
∑
b

(Bα−1

)abdub

= [
∑
b

(Aα
−1

)abg(u, t; b, 1)]dt

+
∑
b

[Aα
−1

G(u, t) +Bα−1

]abdub. (6.7.104)

Here we have used (1.6). That is, here G is the Hessian matrix of g and the Jacobian matrix
of G. From (7.29), since z is to be held fixed, we conclude that

0 = dza = [
∑
b

(Cα−1

)abg(u, t; b, 1)]dt

+
∑
bc

(Cα−1

)abg(u, t; bc, )duc

+
∑
b

(Dα−1

)abdub

= [
∑
b

(Cα−1

)abg(u, t; b, 1)]dt

+
∑
b

[Cα−1

G(u, t) +Dα−1

]abdub. (6.7.105)

Let us now eliminate du between (7.104) and (7.105). First solve (7.105) for du to find the
result

dub = −dt
∑
c

{[Cα−1

G(u, t) +Dα−1

]−1Cα−1}bcg(u, t; c, 1). (6.7.106)

Now substitute (7.106) into (7.104) to obtain the result

dZa = dt
∑
b

(Aα
−1

)abg(u, t; b, 1)

− dt
∑
b

{[Aα−1

G(u, t) +Bα−1

][Cα−1

G(u, t) +Dα−1

]−1Cα−1}abg(u, t; b, 1)

= dt
∑
b

{Aα−1 − [Aα
−1

G(u, t) +Bα−1

][Cα−1

G(u, t) +Dα−1

]−1Cα−1}abg(u, t; b, 1).

(6.7.107)
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We also observe that

[Aα
−1

G+Bα−1

][Cα−1

G+Dα−1

]−1 = Tα−1(G) = N. (6.7.108)

Therefore, (7.107) can also be written as

dZa = dt
∑
b

(Aα
−1 −NCα−1

)abg(u, t; b, 1), (6.7.109)

or
dZa/dt =

∑
c

(Aα
−1 −NCα−1

)acg(u, t; c, 1). (6.7.110)

Note that here we have renamed the dummy summation index.
Next let us work out the quantities ∂Hg(Z, t)/∂Za. From (7.100), (7.103), and the chain

rule (and holding t fixed) we have the result

dHg =
∑
a

g(u, t; a, 1)dua. (6.7.111)

Also, use of (7.18) provides the relation

dua =
∑
b

[(Cα)abdZb + (Dα)abdzb] (6.7.112)

which, using (7.30) with the substitution M → N , can be rewritten in the form

dua =
∑
b

[Cα +Dα(N−1)]abdZb. (6.7.113)

When combined, (7.111) and (7.113 yield the relation

dHg =
∑
ab

g(u, t; a, 1)[Cα +Dα(N−1)]abdZb (6.7.114)

from which we conclude that

∂Hg/∂Zb =
∑
a

g(u, t; a, 1)[Cα +Dα(N−1)]ab

=
∑
c

{[Cα +Dα(N−1)]T}bcg(u, t; c, 1).
(6.7.115)

We are almost done. Multiply both sides of (7.115) by Jab and sum over b to find the
result ∑

b

Jab(∂H
g/∂Zb) =

∑
c

{J [Cα +Dα(N−1)]T}acg(u, t; c, 1). (6.7.116)

Here again we have renamed the dummy summation index. We now claim that there is the
relation

(Aα
−1 −NCα−1

) = J [Cα +Dα(N−1)]T . (6.7.117)
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If so, then comparison of (7.110) and (7.116) gives the result

dZa/dt =
∑
b

Jab(∂H
g/∂Zb), (6.7.118)

which is the expected equations of motion set for Z when Hg is the Hamiltonian.
To complete the proof, we need to verify (7.117). Its right side can be rewritten as

J [Cα +Dα(N−1)]T = J(Cα)T + J(N−1)T (Dα)T . (6.7.119)

According to (3.1.11), the symplectic condition for N gives the relation

(N−1)T = −JNJ. (6.7.120)

Therefore the right side of (7.117) can also be rewritten as

J [Cα +Dα(N−1)]T = J(Cα)T − JJNJ(Dα)T = J(Cα)T +NJ(Dα)T . (6.7.121)

Now employ the relations (5.13.100) and (5.13.102) to again rewrite the right side of (7.117)
as

J [Cα +Dα(N−1)]T = J(Cα)T +NJ(Dα)T = Aα
−1 −NCα−1

, (6.7.122)

which, we see, agrees with the left side of (7.117). Therefore our claim is correct.
In summary, we have shown that in the general case the generating Hamiltonian Hg(Z, t)

for the family N (t) of symplectic maps produced by the source function g(u, t) and the
Darboux matrix α is given by the relation

Hg(Z, t) = [∂g(u, t)/∂t]|u=CαZ+Dα(N−1Z). (6.7.123)

We also observe that (5.167) is a special case of (7.123)

6.7.3.2 Finding the Source Function g from the Generating Hamiltonian Hg

In Subsection 5.2.2 we showed, as an example, how to find the source function F2, which
amounts to the choice (7.56) and (7.57) for the Darboux matrix α, in terms of an integral
over a trajectory arising from the generating Hamiltonian which we there called H. See
(5.119) and (5.130). The purpose of this subsection is to provide an analogous treatment
of the general case: Given a Darboux matrix α and a generating Hamiltonian Hg(ζ, t), find
the source function g(u, t). Here, as in Subsection 5.2.2, it is convenient to employ the
phase-space variables ζ = (ξ, η).

Let (q, p) = z be initial conditions at τ = ti, and let (Q,P ) = Z be the final conditions
reached by following to time τ = t the trajectories generated by Hg(ζ, τ) starting with these
initial conditions. We know that trajectories can be labeled by specifying either the initial
conditions z or the final conditions Z. Assume that the trajectories are such that they can
also be be labeled by specifying u as given by (7.18). See Figure 7.1. To do so will generally
require a 2n-dimensional search: Pick a 2n-vector u. Begin by guessing z. Next follow the
trajectory with initial conditions

ζ(ti) = z (6.7.124)
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and generated by Hg(ζ, τ) to the time τ = t and set

Z = ζ(t). (6.7.125)

Now compute the quantity (CαZ +Dαz) and see if it equals u,

CαZ +Dαz = u? (6.7.126)

If it does, then the desired z (and Z) have been found. If not, guess again. In actual practice,
this trajectory may have to be found by some kind of shooting method facilitated, perhaps,
by a Newton’s method search that involves also integrating the variational equations to
determine how changes in the initial conditions produce changes in the final conditions.22

Observe that taking differentials of both sides of (7.18) and using (7.30) gives the result

du = CαdZ +Dαdz = (CαN +Dα)dz (6.7.127)

from which it follows that
dz = (CαN +Dα)−1du. (6.7.128)

Thus, if
det(CαN +Dα) 6= 0, (6.7.129)

the quantity z (by the inverse function theorem) is indeed specified by the quantity u.

Phase
Space
Axes

Time Axist i t

d

j

Z

z

Figure 6.7.1: A trajectory of Hg(ζ, τ) in the augmented (ζ, t) = (ξ, η; t) phase space. Given a
Darboux matrix α, an initial time ti, a final time t, and the 2n-vector u, the initial condition
ζ(ti) = z is to be selected such that CαZ +Dαz = u where ζ(t) = Z.

With these assumptions in mind, define the function A′(u, t) by the rule

A′(u, t) =

∫ t

ti
[(ζ, Jζ̇) + 2Hg(ζ, τ)]dτ. (6.7.130)

22Note that although in general a 2n-dimensional search is required, for some special α’s, such as those
for F1 through F4, only an n-dimensional search is required. See Subsection 5.2.2.
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Here the integral on the right side is to be evaluated over the trajectory satisfying (7.126).
We will want to see how A′(u, t) changes when changes are made in u and/or t.

Write (7.130) in the form

A′(u, t) =

∫ t

ti
A′(ζ, ζ̇, τ)dτ (6.7.131)

where
A′(ζ, ζ̇, τ) = (

∑
cd

ζcJcdζ̇d) + 2Hg(ζ, τ). (6.7.132)

Changing u (while holding t fixed) changes the initial and final conditions and the trajectory
in between. Consequently, from variational calculus, we find that the change in A′ is given
by

δA′ =

∫ t

ti
dτ{
∑
a

[(∂A′/∂ζa)δζa + (∂A′/∂ζ̇a)δζ̇a]}. (6.7.133)

The integrand in (7.133) can be manipulated in the standard way to rewrite δA′ in the
form

δA′ =

∫ t

ti
dτ{
∑
a

[(∂A′/∂ζa)− (d/dτ)(∂A′/∂ζ̇a)]δζa + (d/dτ)[
∑
a

(∂A′/∂ζ̇a)δζa]}. (6.7.134)

For the various ingredients in the integrand of (7.134) we find the results

∂A′/∂ζa = (
∑
b

Jabζ̇b) + 2∂Hg/∂ζa, (6.7.135)

∂A′/∂ζ̇a = −
∑
b

Jabζb, (6.7.136)∑
a

(∂A′/∂ζ̇a)δζa =
∑
ab

ζaJabδζb = (ζ, Jδζ), (6.7.137)

−(d/dτ)(∂A′/∂ζ̇a) =
∑
b

Jabζ̇b, (6.7.138)

[(∂A′/∂ζa)− (d/dτ)(∂A′/∂ζ̇a)] = 2(
∑
b

Jabζ̇b) + 2(∂Hg/∂ζa). (6.7.139)

But, since ζ is assumed to be a trajectory for Hg(ζ, τ), it satisfies Hamilton’s equations

ζ̇a =
∑
b

Jab(∂H
g/∂ζb) (6.7.140)

from which it follows that

[(∂A′/∂ζa)− (d/dτ)(∂A′/∂ζ̇a)] = 2(
∑
b

Jabζ̇b) + 2(∂Hg/∂ζa) = 0. (6.7.141)

As a consequence of all these results, δA′ becomes

δA′ =

∫ t

ti
dτ(d/dτ)[(ζ, Jδζ)] = (ζ, Jδζ)|tti = (Z, JdZ)− (z, Jdz). (6.7.142)
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As a further step, we observe that the quantity (U, u) can be written in the form

(U, u) = (Û , SÛ) (6.7.143)

where S is the 4n× 4n symmetric matrix

S = (1/2)

(
0 I2n

I2n 0

)
. (6.7.144)

[Recall the notation (7.1) and (7.7).] In terms of these quantities, and using (7.3), we may
also write the relation

(U, u) = (Û , SÛ) = (αẐ, SαẐ) = (Ẑ, αTSαẐ). (6.7.145)

We now have the tools to construct g(u, t). It is defined by the rule

g(u, t)
def
= [A′(u, t) + (Ẑ, αTSαẐ)]/2. (6.7.146)

Our task is to verify that this g has the desired properties. We will first show that this
g produces N according to the rule (7.21). Then we will show that it leads back to the
specified Hamiltonian.

To see that this g produces N , suppose t is held fixed and u is varied by an amount du.
Then Ẑ (that is, Z and z) will vary by an amount dẐ. Correspondingly, we find that g is
changed by an amount δg with

δg = [δA′(u, t) + δ(Ẑ, αTSαẐ)]/2. (6.7.147)

Next employ (7.1) through (7.5) and (7.8) and (7.142) to rewrite δA′ in the form

δA′ = (Z, JdZ)− (z, Jdz) = (Ẑ, J̃4ndẐ) = (U, du)− (u, dU). (6.7.148)

Also, we find that

δ(Ẑ, αTSαẐ) = 2(Ẑ, αTSαdẐ) = 2(αẐ, SαdẐ) = 2(Û , SdÛ) = (U, du)+(u, dU). (6.7.149)

Therefore we get the final relation

δg = [(U, du)− (u, dU) + (U, du) + (u, dU)]/2 = (U, du). (6.7.150)

It follows that
Ua = ∂g(u, t)/∂ua, (6.7.151)

which, in view of (7.19), is the desired result (7.21).
To check that this g in turn leads back to the specified Hamiltonian, let us take the total

time derivative of both sides of (7.146). By ‘total’ we mean that the trajectory employed
in computing A′ should simply be extended in time, but otherwise unchanged. This means
that z will not change, but Z and consequently also u will change. By the chain rule and
using (7.151), we get for the left side of (7.146) the result

(d/dt)(left side) = dg/dt = ∂g/∂t+
∑
a

(∂g/∂ua)(dua/dt) = ∂g/∂t+ (U, u̇). (6.7.152)
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For the right side of (7.146) we find

(d/dt)(right side) = (d/dt)[A′(u, t) + (Ẑ, αTSαẐ)]/2

= (1/2)(d/dt)A′(u, t) + (1/2)(d/dt)(Ẑ, αTSαẐ). (6.7.153)

The first term on the right side of (7.153) is easily evaluated using the fundamental theorem
of calculus,

(1/2)(d/dt)[A′(u, t))] = (1/2)A′(ζ, ζ̇, τ)|τ=t = (1/2)(Z, JŻ) +Hg(Z, t). (6.7.154)

According our understanding that z should not change (dz = 0) there is also the result

(1/2)(z, Jż) = 0. (6.7.155)

Therefore, using (7.155), (7.2), and (7.8), the relation (7.154) can also be written in the form

(1/2)(d/dt)[A′(u, t))] = [(1/2)(Z, JŻ)− (1/2)(z, Jż)] +Hg(Z, t)

= (1/2)(Ẑ, J̃4n(d/dt)Ẑ) +Hg(Z, t)

= (1/2)[(U, u̇)− (u, U̇)] +Hg(Z, t). (6.7.156)

Also, by (7.145), there is the simple result

(1/2)(d/dt)(Ẑ, αTSαẑ) = (1/2)(d/dt)(U, u) = (1/2)(U̇ , u) + (1/2)(U, u̇). (6.7.157)

Consequently the derivative of the right side of (7.146) can also be written as

(d/dt)(right side) = (1/2)[(U, u̇)− (u, U̇)] +Hg(Z, t) + (1/2)[(U̇ , u) + (U, u̇)]

= (U, u̇) +Hg(Z, t).

(6.7.158)

Comparison of (7.152) and (7.158) now gives the final result

∂g/∂t = Hg(Z, t), (6.7.159)

which is in agreement with (7.123).

6.7.3.3 Transformation of Hamiltonians and Application to Hamilton-Jacobi
Theory in the General Case

Subsection 4.2 showed that any family of symplectic maps N (t) is Hamiltonian generated,
and the associated Hamiltonian was called G. Subsection 4.4 described the transformation
of an old Hamiltonian to a new Hamiltonian under the action of a symplectic map. And
in Subsection 5.3.2 we found the the relation between the old and new Hamiltonians in
the case that the symplectic map N arises from some specified mixed-variable generating
function Fj, and applied the results to Hamilton-Jacobi theory for this case. Here we study
the relation between the old and new Hamiltonian in the general case that the symplectic
map N arises from some specified source function g and some specified Darboux matrix α,
and apply the results to Hamilton-Jacobi theory for the general case.
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We begin by recalling the relation (5.169), which we copy below,

K(Z; t) = H(z(Z, t); t) +G(Z; t), (6.7.160)

and again remind ourselves that here G is the generating Hamiltonian for N . In the general
case that N arises from some specified source function g and some specified Darboux matrix
α, we found in Subsections 7.3.1 and 7.3.2 that the associated generating Hamiltonian, which
we there called Hg, was given by the relations (7.103) or (7.123) or (7.159). Therefore, if we
make the identification

G = ∂g/∂t, (6.7.161)

we see that (7.160) can be rewritten in the form

K(Z; t) = H(z(Z, t); t) + ∂g/∂t (6.7.162)

when N arises from from some specified g, α pair. We have found the relation between the
old and new Hamiltonians in the general case.

Suppose an N (t) can be found such that

K(Z; t) = 0. (6.7.163)

This is, in principle, always possible because we can take the Z to be the initial conditions and
take N (t) to be the symplectic map that transforms final conditions into initial conditions.
If a g, α pair can be found such that N (t) arises from their use, then combining (7.162) and
(7.163) gives the general Hamilton-Jacobi relation/equation

H(z(Z, t); t) + ∂g/∂t = 0. (6.7.164)

In the next subsection we will see that, at least locally, a g, α pair can be found for any N (t)
such that N (t) arises from their use. Therefore there is always a suitable α such that the
associated general Hamilton-Jacobi equation, at least locally, has a solution.

6.7.4 What Kind of Generating Function/Darboux Matrix
Should We Choose?

6.7.4.1 Background

The relations (5.86) and (5.89) illustrated that attempted use of the generating functions
F1 and F4 fails for the identity map. Here is another example of failure: Consider Mathieu
transformations given by (5.174) and (5.183). Can they be obtained from an F1 generating
function? According to (5.4) we must have det(B) 6= 0 for this to be possible. But we
observe from (5.186) that det(B) = 0 for any Mathieu transformation. Therefore, attempted
construction of the desired F1 must fail. Nevertheless, let us examine ω1 in this case as given
by (5.79). Using (5.79), (5.183), and (5.184) gives for Mathieu transformations the result

ω1 =
∑
k

pkdqk − PkdQk = (p, dq)− (P, dQ) = (p, dq)− (β−1p, βTdq)

= (p, dq)− (ββ−1p, dq) = (p, dq)− (p, dq) = 0. (6.7.165)
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We see that ω1 vanishes when evaluated for any Mathieu transformation, in accord with the
fact that Mathieu transformations cannot be obtained from an F1.

We also learned that the linear symplectic map described by the symplectic matrix R
given by (4.8.31) cannot be obtained by use of any of the generating functions Fj. See the
discussion in the paragraph below Equation (5.77). We will now verify that this troublesome
R can be obtained using the Poincaré generating function F+.

According to Exercise 6.6.5 the quadratic F+ given by (6.69), when employed in the
Poincaré recipe (6.57), produces the symplectic matrix M given by (6.75). Conversely,
the symmetric matrix W specifying the quadratic F+ is given in terms of M by the relation
(6.76). Examination of (6.76) shows that W can be found if (M+I)−1 exists or, equivalently,
det(M+I) 6= 0. That is, M must not have −1 as an eigenvalue. For the case at hand M = R
and therefore

M + I = R + I =


2 0 0 0
0 1 0 1
0 0 2 0
0 −1 0 1

 . (6.7.166)

Simple calculation yields the result

det(M + I) = 8 6= 0. (6.7.167)

(More extensive calculation reveals that R has the eigenvalues 1, 1, i,−i.) Therefore W is
well defined by (6.76), and produces M = R when employed in (6.57) and (6.75).

Here is a slightly different perspective on the general question: Suppose the relation of
a symplectic map M to a gradient map G with the aid of a Darboux matrix α succeeds.
Then, according to the work of Subsection 7.1, there must be the relations

G = Tα(M), (6.7.168)

and
M = Tα−1(G). (6.7.169)

Here G is the Jacobian matrix of the gradient map G, and accordingly must be a symmetric
matrix; and M is the Jacobian matrix of the symplectic map M, and accordingly must be
a symplectic matrix. For the relation (7.168) to be a well defined Möbius transformation
there must be the invertibility condition

det(CαM +Dα) 6= 0. (6.7.170)

We also know from the work of Section 5.11.3 that if (7.170) is satisfied, then there is also
the result

det(Cα−1

G+Dα−1

) 6= 0, (6.7.171)

and vice versa, so that the Möbius transformation (7.169) is also well defined. That is, there
is the logical equivalence

det(Cα−1

G+Dα−1

) 6= 0⇔ det(CαM +Dα) 6= 0. (6.7.172)

To verify this claim, make the substitution W → G in (5.13.99).
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Let us test the condition (7.170) for some of the examples we have already discussed:
First suppose M = I and we choose the Darboux matrix associated with F2. Then we have
the result

det(CαM +Dα) = det(Cα +Dα). (6.7.173)

But, from (7.57), we have the result

Cα +Dα =

(
In 0
0 In

)
, (6.7.174)

and therefore
det(CαM +Dα) = det(Cα +Dα) = det(I2n) = 1 6= 0. (6.7.175)

Thus, we expect the use of an F2 to succeed when M = I; and indeed F2 as given by (5.71)
does yield M = I.

Next suppose M = J and we again choose the Darboux matrix associated with F2. Then
we have the result

CαM +Dα = CαJ +Dα. (6.7.176)

But, from (7.57), we find the results

CαJ =

(
0 0
0 In

)(
0 In

−In 0

)
=

(
0 0
−In 0

)
(6.7.177)

and

CαJ +Dα =

(
In 0
−In 0

)
. (6.7.178)

We see that in this case

det(CαM +Dα) = det(CαJ +Dα) = 0. (6.7.179)

It follows that attempted use of the Darboux matrix associated with F2 must fail when
M = J , as we already know from the work of Subsection 5.1.4.

To continue, suppose M = J and we choose the Darboux matrix associated with F1.
Then we again have the result

CαM +Dα = CαJ +Dα. (6.7.180)

But now, from (7.53), we find the results

CαJ =

(
0 0
In 0

)(
0 In

−In 0

)
=

(
0 0
0 In

)
(6.7.181)

and

CαJ +Dα =

(
In 0
0 In

)
. (6.7.182)

We see that in this case

det(CαM +Dα) = det(CαJ +Dα) = det(I2n) = 1 6= 0. (6.7.183)
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Thus, we expect the use of an F1 to succeed when M = J ; and indeed F1 as given by (5.76)
does yield M = J .

Finally, to complete this set of examples, suppose again that M = I but that we choose
the Darboux matrix associated with F1. Then we have the result

CαM +Dα = Cα +Dα. (6.7.184)

But, from (7.53), we find the result

Cα +Dα =

(
In 0
In 0

)
. (6.7.185)

We see that in this case

det(CαM +Dα) = det(Cα +Dα) = 0. (6.7.186)

It follows that attempted use of the Darboux matrix associated with F1 must fail when
M = I, as we already know from the work of Subsection 5.1.4.

6.7.4.2 The General case

What can be said in general? What we wish to examine is under what conditions there is
a Darboux matrix α and a source/generating function g(u) such that the implicit relation
(7.21) can be made explicit to become the relation (7.23) with M being the desired map.
We will first consider maps that have only a constant and a linear part, and then we will
consider maps that have nonlinear parts.

6.7.4.2.1 Maps for the Inhomogeneous Symplectic Group ISp(2n,R)

Let us begin with maps that have only a constant and a linear part. These are the maps
for the inhomogeneous symplectic group ISp(2n,R). Our goal will be to find a Darboux
matrix α and a source/generating function g(u) such that their use produces maps of the

form (2.10). As a first example, let us employ for the Darboux matrix α the ˜̃β given by
(5.13.154) evaluated for L = M and V = 0. So doing gives the result

α = ˜̃β|L=M,V=0 = (1/
√

2)

(
−JM−1 J
M−1 I

)
. (6.7.187)

For g make the choice
g(u) = (v, u) (6.7.188)

where v is some vector yet to be determined. For this choice there is the relation

∂ug = v, (6.7.189)

and use of (7.22) yields the result

(1/
√

2)[−JM−1Z + Jz) = v. (6.7.190)
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Upon solving (7.190) for Z we find the relation

Z = Mz +
√

2MJv. (6.7.191)

This relation is equivalent to (2.10), after setting Z = z̄, provided a v can be found such
that √

2MJv = c, (6.7.192)

for then (7.191) becomes
Z = Mz + c, (6.7.193)

and our goal will have been accomplished. Finally, (7.192) can indeed be solved for v to
yield the well defined relation

v = −(1/
√

2)JM−1c (6.7.194)

because M is assumed to be symplectic and therefore invertible. Note that for this example
the burden of producing M is borne entirely by the Darboux matrix, and the generating
function provides only the translation part.

Next suppose we continue to use the Darboux matrix given by (7.187) but consider a
more general generating function specified by the Ansatz

g(u) = (v, u) + (1/2)(u,Wu) (6.7.195)

where v and W are to be determined. For this choice there is the relation

∂ug = v +Wu, (6.7.196)

and use of (7.22) yields the result

(1/
√

2)[−JM−1Z + Jz) = v +W (1/
√

2)(M−1Z + z). (6.7.197)

And solving (7.197) for Z gives the result

Z = −(JM−1 +WM−1)−1(W − J)z − (JM−1 +WM−1)−1
√

2v

= −M(J +W )−1(W − J)z −M(J +W )−1
√

2v

= −M(J +W )−1J−1J(W − J)z −M(J +W )−1J−1J
√

2v

= M(I − JW )−1(I + JW )z +M(I − JW )−1J
√

2v (6.7.198)

Let us define a matrix N by the rule

N = (I − JW )−1(I + JW ). (6.7.199)

We observe from (7.199) that N is the Cayley transform of the symmetric matrix W , and
therefore N is symplectic. Moreover, according to the work of Exercise 6.5, there are the
relations

N = Tσ−1(W ) (6.7.200)

and
W = Tσ(N) = −J(N − I)(N + I)−1. (6.7.201)
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With the aid of the definition (7.199), the relation (7.198) can be rewritten in the form

Z = MNz +M(I − JW )−1J
√

2v. (6.7.202)

Yet a bit more can be accomplished by algebraic manipulation. From (7.199) we see that

N + I = (I − JW )−1[(I + JW ) + (I − JW )] = (I − JW )−1(2I), (6.7.203)

and therefore
(I − JW )−1 = (1/2)(N + I). (6.7.204)

Consequently, (7.202) can also be rewritten in the pleasing form

Z = MNz + (1/
√

2)M(N + I)Jv. (6.7.205)

To continue this discussion of maps for ISp(2n,R) using the Darboux matrix given by
(7.187), let us make the definitions

M ′ = MN or N = M−1M ′ (6.7.206)

and
c = (1/

√
2)M(N + I)Jv or v = −

√
2J(N + I)−1M−1c. (6.7.207)

With these definitions we see that the relation between Z and z can be written in the final
form

Z = M ′z + c. (6.7.208)

The general ISp(2n,R) map has been obtained using the fixed Darboux matrix α given by
(7.187) and the generating function g given by (7.195) subject only to the caveat that v and
W be well defined. From the second form of (7.207) we see that the condition for v to be
well defined is that (N + I)−1 must exist. That is, there is the requirement

det(N + I) 6= 0. (6.7.209)

And from (7.201) we see that the same condition must hold for W to be well defined. We
close the discussion of this example by noting that there are also the relations

W = Tα(M ′) (6.7.210)

and
M ′ = Tα−1(W ). (6.7.211)

See Exercise 7.2.
As a second example, suppose we use for the Darboux matrix α that given by (7.56) and

(7.57), the Darboux matrix for the generating function F2, and continue to employ a g(u)
of the form (7.195). In this case we find that use of (7.22) yields the result

Z = Mz + (Aα −WCα)−1v (6.7.212)

with M and W connected by the relation

M = Tα−1(W ). (6.7.213)
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Again see Exercise 7.2.
The relation (7.213) has as its inverse the relation

W = Tα(M) = (AαM +Bα)(CαM +Dα)−1. (6.7.214)

Evidently W is well defined in terms of M provided

det(CαM +Dα) 6= 0. (6.7.215)

That is, a specified M can be obtained with the use of α as given by (7.56) and (7.57) and
a generating function g(u) provided M is such that (7.215) is satisfied. Let us write M in
the block form (5.25). Employing this form gives the result

CαM +Dα =

(
In 0
C D

)
, (6.7.216)

from which it follows that
det(CαM +Dα) = detD. (6.7.217)

Therefore, for the use of the Darboux matrix α associated with F2, the condition (7.215)
becomes

detD 6= 0, (6.7.218)

in agreement with (5.5).
As a third example, suppose we use for α the Cayley Darboux matrix σ, the Darboux

matrix associalted with F+. See (7.68). Put another way, suppose we use for α the Darboux

matrix ˜̃β given by (5.13.154) evaluated at L = I and V = 0. So doing gives the result

α = ˜̃β|L=I,V=0 = (1/
√

2)

(
−J J
I I

)
= σ. (6.7.219)

The relations (7.212) through (7.215) continue to hold since they are true for any choice of
α. But now (7.216) becomes

CσM +Dσ = (1/
√

2)(M + I). (6.7.220)

Correspondingly, the condition (2.15) becomes

det(M + I) 6= 0. (6.7.221)

That is, M must not have −1 as an eigenvalue, a requirement that we already have learned
for the existence of a Cayley representation. Recall Section 3.12.

Let us summarize what we have learned about the use of Darboux matrices and gen-
erating functions for the case of ISp(2n,R) maps. From the first example we have seen
that for any symplectic matrix M there is an associated Darboux matrix α given by (7.187)
such that the full burden of producing M is borne by the Darboux matrix and the gener-
ating function g(u) is required only to produce the translation part. We may say that this
Darboux matrix is optimally compatible with M . Moreover, ISp(2n,R) maps of the form
(7.208) with symplectic matrices M ′ of the form (7.206), can also be produced using the
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same Darboux matrix and a suitable g(u) provided M ′ is sufficiently near M so that (7.209)
is satisfied.

Conversely, it is attractive to conjecture that, for any Darboux matrix α, there is an
Sp(2n,R) [and also an ISp(2n,R)] map with symplectic matrix M for which M and α are
incompatible. That is, given any Darboux matrix α, there is a symplectic matrix M such
that

det(CαM +Dα) = 0. (6.7.222)

Put another way, there is no fixed/universal Darboux matrix (generating function kind)
that is compatible with all symplectic matrices. Correspondingly, there is no fixed/universal
Darboux matrix (generating function kind) that is compatible with all symplectic maps. See
Exercise 7.17. Examples 2 and 3 of this subsection, as well as examples at the beginning of
this section, illustrate instances of incompatibility.

6.7.4.2.2 Maps with Nonlinear Parts

In Section 7.8 we will see that any symplectic map M can be written in the Lie form

M = exp(: f1 :)RN (6.7.223)

where the factor exp(: f1 :) produces a translation, the factor

R = exp(: f c2 :) exp(: fa2 :) (6.7.224)

produces a linear transformation described by the symplectic matrix R, and N is the non-
linear map

N = exp(: f3 :) exp(: f4 :) · · · . (6.7.225)

It can be shown that any such mapM can be produced with the aid of a suitable Darboux
matrix α and generating function g(u) pair. However, if this is done, the choice of α will
be constrained by the requirement that it be compatible with R. An alternative, which
we will follow, is to represent just the nonlinear part N by a Darboux matrix-generating
function pair. This allows for flexibility in the treatment of N and causes no undue problem
in dealing with the ISp(2n,R) part of M, namely the exp(: f1 :)R part, since it can be
handled separately using the methods of Subsection 7.4.2.1 above and those of Chapter 9.

In the nonlinear case we would like the relation (7.22), and the ability to make it explicit,
to hold over as large a phase-space region as possible. In this subsection we will see from some
simple examples that the choice of α influences what can be achieved. These examples will
also illustrate that the subject of nonlinear symplectic maps is very complicated. Therefore
the discussion of this subsection will be limited. A fuller discussion will be undertaken in
Chapter 34.

The complexity of nonlinear symplectic maps is already evident at the quadratic level in
two variables. Consider the map

Q = q − 2qp+O(z3), (6.7.226)

P = p+ p2 +O(z3). (6.7.227)
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It satisfies the relation

[Q,P ] = [q − 2qp, p+ p2] +O(z2)

= [q, p] + [q, p2]− 2[qp, p]− 2[qp, p2] +O(z2)

= 1 + 2p− 2p+O(z2) = 1 +O(z2). (6.7.228)

Therefore the terms displayed in (7.226) and (7.227) constitute a symplectic jet. Indeed,
they can be written in the form

Z = z+ : f3 : z +O(z3) (6.7.229)

with
f3 = qp2. (6.7.230)

As described in Chapter 34, there are important instances in which a symplectic jet
approximation to a symplectic map is inadequate. In these cases it is desirable to find an
exactly symplectic map whose truncated Taylor expansion matches some specified symplectic
jet. Such a symplectic map will be called a symplectic completion of the specified symplectic
jet.

One way to symplectically complete the symplectic jet (7.229) is to write

Z = N z (6.7.231)

with
N = exp(: f3 :). (6.7.232)

We will call this Lie symplectification. So doing gives the result

Q = q(1− p)2, (6.7.233)

P = p/(1− p). (6.7.234)

See Section 1.4.2. [Note that the Taylor expansion through second order of the map given
by (7.233) and (7.234) agrees with that in (7.226) and (7.227).] We observe that the map
given by (7.230) through (7.234) is analytic at the origin and has a pole on the surface p = 1.

We will next explore two examples of how symplectic completion can be achieved with
the use of generating functions. In these examples we will again work with the symplectic
jet given by (7.226) and (7.227). Let us begin with the use of an F2 generating function.
Suppose we make the Ansatz

F2(q, P ) = qP − qP 2. (6.7.235)

Use of this Ansatz in (5.5) produces the implicit equations

p = ∂F2/∂q = P − P 2, (6.7.236)

Q = ∂F2/∂P = q − 2qP. (6.7.237)

Since these equtions are quadratic, they can be solved exactly, and we will do so shortly.
First, however, let us find the first few terms in the Taylor expansions of Q(q, p) and P (q, p)
in powers of q and p. Rewrite (7.236) in the form

P = p+ P 2. (6.7.238)
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Now we can expand Q and P in powers of q and p by iteration of (7.237) and (7.238). In
lowest approximation, they have the solution

Q = q +O(z2), (6.7.239)

P = p+O(z2). (6.7.240)

Now substitute (7.239) and (7.240) into (7.237) and (7.238) to get the improved solution

Q = q − 2qp+O(z3), (6.7.241)

P = p+ p2 +O(z3). (6.7.242)

We have verified that the use of the generating function Ansatz (7.235) produces a (symplec-
tic) map whose Taylor expansion through second order yields the jet map given by (7.226)
and (7.227).

Let us now solve (7.236) and (7.237) to find Q(q, p) and P (q, p) exactly. Solving (7.236)
for P gives the result

P = (1/2)[1− (1− 4p)1/2], (6.7.243)

and substituting (7.243) into (7.237) gives the complementary result

Q = q(1− 4p)1/2. (6.7.244)

[Note that the Taylor expansion through second order of the map given by (7.243) and
(7.244) agrees with that in (7.226) and (7.227).] We see that the map given by (7.243) and
(7.244) is analytic at the origin and has a branch point on the surface p = 1/4.

What happens if we use an F+ generating function instead of F2? According to (7.68)
this amounts to choosing the Darboux matrix α to be σ. Also, according to (7.219) and
the previous discussion of compatibility, in choosing α to be σ we have chosen α to be the
Darboux matrix that is optimally compatible with the symplectic matrix I. Finally, the
linear part of the map given by (7.226) and (7.227) is indeed the identity matrix I.

In the two-dimensional case the variable u appearing in (7.22) will have the components

u = {u1;u2}T . (6.7.245)

Make the Ansatz
g(u) = −(

√
2/4)u1(u2)2. (6.7.246)

In this case
∂ug = {−(

√
2/4)(u2)2;−(

√
2/2)u1u2}T , (6.7.247)

and use of (7.22) with the Darboux matrix α given by (7.68) yields the implicit equations

(1/
√

2)(−JZ + Jz) = {−(
√

2/4)(u2)2;−(
√

2/2)u1u2}T |u=(1/
√

2)(Z+z). (6.7.248)

The equations (7.248) can be rewritten in the vector form

Z − z = (
√

2)J{−(
√

2/4)(u2)2;−(
√

2/2)u1u2}T |u=(1/
√

2)(Z+z)

= J{−(1/4)(P + p)2;−(1/2)(Q+ q)(P + p)}T

= {−(1/2)(Q+ q)(P + p); +(1/4)(P + p)2}T . (6.7.249)
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Finally, the vector form (7.249 is equivalent to the component equations

Q− q = −(1/2)(Q+ q)(P + p), (6.7.250)

P − p = (1/4)(P + p)2. (6.7.251)

The component equations (7.250) and (7.251) are quadratic and can be solved explicitly,
which we will do shortly. But first let us seek Taylor expansions for Q(q, p) and P (q, p).
Rewrite (7.250) and (7.251) in the forms

Q = q − (1/2)(Q+ q)(P + p), (6.7.252)

P = p+ (1/4)(P + p)2 (6.7.253)

and iterate them once and then once again to find the results

Q = q +O(z2), (6.7.254)

P = p+O(z2); (6.7.255)

Q = q − 2qp+O(z3), (6.7.256)

P = p+ p2 +O(z3). (6.7.257)

We see that (7.256) and (7.257) agree with (7.226) and (7.227) as desired.
Let us now solve (7.252) and (7.253) to find Q(q, p) and P (q, p) exactly. Solving (7.253)

for P gives the result

P = 2− p− 2(1− 2p)1/2, (6.7.258)

and substituting (7.258) into (7.252) and solving for Q gives the complementary result

Q = q(1− 2p)1/2/[2− (1− 2p)1/2]. (6.7.259)

[Note that the Taylor expansion through second order of the map given by (7.258) and
(7.259) agrees with that in (7.226) and (7.227).] We see that the map given by (7.258) and
(7.259) is analytic at the origin and has a branch point on the surface p = 1/2.

6.7.4.2.3 Concluding Discussion

We have studied how the choice of a Darboux matrix-generating function pair affects the
representation of maps that have only constant and linear terms, namely ISp(2n,R) maps,
and also how the choice affects nonlinear maps. For the ISp(2n,R) case, because of its
relative simplicity, the treatment was essentially complete. By contrast, the nonlinear case
is much more complicated. Below are some questions/observations that naturally arise about
the nonlinear case along with partial responses:

• How did we know to make the generating function Ansätze (7.235) and (7.246)? Chap-
ter 34 describes how, for any choice of Darboux matrix α, the Lie fn and the generating
function gn are related.
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• Why are the resulting maps given by (7.233) and (7.234), by (7.243) and (7.244),
and by (7.258) and (7.259) all different even though they symplectify (symplectically
complete) the same two-jet given by (7.226) and (7.227)? As found in Chapter 34,
even if all the fn vanish beyond some n value nmax, the same will not be true for the
associated gn. Had these high-order gn (generally infinite in number) been retained,
the resulting maps would agree.

• Because only g3 (and perhaps g2) generating functions were involved in our examples,
the implicit equations produced by their use were quadratic, and therefore could be
solved exactly. What can be done, as occurs for more realistic cases, when the implicit
equations are higher order? Chapter 34 describes various iterative methods, including
Newton’s method, for efficiently solving the implicit equations numerically.

• For the fn case studied, namely that given by (7.230), it was found that the use of an
F2 generating function produced a map that was singular at p = 1/4, and the use of an
F+ generating function produced a map that was singular at p = 1/2. We have seen
that in the linear case an F+ generating function is more compatible with the identity
symplectic matrix I than is an F2 generating function, and for nonlinear maps of the
form (7.225) the linear part is the identity map. Is it significant that the use of an F+

generating function produced a map with a larger domain of analyticity than the use
of an F2 generating function?

Let us review/reconsider when the Möbius transformations relating gradient and sym-
plectic maps succeed or fail. We recall that G is the Jacobian of the gradient map
G and M is the Jacobian of the symplectic map M. Let α be the Darboux matrix
that produces the Möbius transformations transformations Tα and Tα−1 . According to
(7.48) and (7.40) there are the complementary relations

G = Tα(M) = (AαM +Bα)(CαM +Dα)−1 (6.7.260)

and

M = Tα−1(G) = (Aα
−1

G+Bα−1

)(Cα−1

G+Dα−1

)−1. (6.7.261)

For (7.260) to be well defined we must have

det(CαM +Dα) 6= 0, (6.7.262)

and for (7.261) to be well defined we must have

det(Cα−1

G+Dα−1

) 6= 0. (6.7.263)

Recall that the conditions (7.262) and (7.263) are logically equivalent. See (7.172).
Therefore (7.260) is well defined if (7.261) is well defined, and vice versa.

Conversely, we expect that determination of G and therefore construction of the asso-
ciated generating function g(u) will fail if

det(CαM +Dα) = 0 : Condition for incompatibility of α and M. (6.7.264)



708 6. SYMPLECTIC MAPS

We have already seen examples of this incompatibility. Moreover, we expect that the
construction of a satisfactoryM from a generating function g(u) using (7.22) will fail
if

det(Cα−1

G+Dα−1

) = 0 : Condition for map construction failure. (6.7.265)

Put another way, complementary to the logical equivalence (7.172), there are the logical
implications

det(CαM +Dα) = 0 ⇒ G and hence G and g are not defined, (6.7.266)

det(Cα−1

G+Dα−1

) = 0 ⇒ M and hence M are not defined. (6.7.267)

We will see, for our examples, that the appearance of singularities is related to map
construction failure, the condition (7.265).

Consider first the use of F2. We could treat this case by employing the condition (7.265)
with α being the Darboux matrix associated with F2. See Exercise 7.18. Instead, and
equivalently as shown in Exercise 7.19, we already know that use of F2 assumes that

det(∂2F2/∂qk∂P`) 6= 0. (6.7.268)

See (5.5). For the case (7.235) there is the result

∂2F2/∂q∂P = 1− 2P, (6.7.269)

and (7.268) fails when
P = 1/2. (6.7.270)

From (7.243) we see that (7.270) implies that

p = 1/4, (6.7.271)

the value for which the map given by (7.243) and (7.244) has a singularity!

Next consider the use of F+. For the case of F+, the Darboux matrix is σ. See (7.68).
Correspondingly, the condition for map construction failure becomes

det(Cσ−1

G+Dσ−1

) = 0. (6.7.272)

From (5.13.12) we see that (7.272) has the specific form

det(−JG+ I) = 0. (6.7.273)

Since G is the Jacobian of the gradient map G, see (1.6), it follows that in our two-
dimensional case G is given by the matrix

G =

(
∂2g/∂u1∂u1 ∂2g/∂u1∂u2

∂2g/∂u2∂u1 ∂2g/∂u2∂u2

)
=

(
0 −(

√
2/2)u2

−(
√

2/2)u2 −(
√

2/2)u1

)
. (6.7.274)
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Here we have used (7.246). Consequently, we find that

− JG+ I =

(
1 + (

√
2/2)u2 (

√
2/2)u1

0 1− (
√

2/2)u2

)
, (6.7.275)

and the condition (7.273) yields the relation

1− (1/2)(u2)2 = 0 (6.7.276)

with the solution

u2 = ±
√

2. (6.7.277)

Also, when α = σ, (7.18) becomes

u = CσZ +Dσz = (1/
√

2)(Z + z) = (1/
√

2){Q+ q;P + p} (6.7.278)

so that

u2 = (1/
√

2)(P + p). (6.7.279)

See (7.68). Employing (7.277) with a + sign converts (7.279) to the relation

P + p = 2. (6.7.280)

Finally, inserting (7.280) into (7.258) yields the result

p = 1/2, (6.7.281)

the value for which the map given by (7.258) and (7.259) has a singularity!

Let us summarize what has been learned about generating function symplectification:
Suppose one is given a symplectic jet of the form

Za = za +
∑
bc

Tabczbzc +
∑
bcd

Uabcdzbzczd + · · ·+O(znmax+1). (6.7.282)

That is, only the terms through degree nmax are given. Select a Darboux matrix α
that is compatible with the identity matrix I. From the coefficients in the jet (7.282)
and the selected α one can construct a unique polynomial generating function (that
will depend on α) of the form

g =
n=nmax+1∑

n=2

gn (6.7.283)

such that its use in (7.22) reproduces the jet (7.282). Then the (symplectic) map ob-
tained by making explicit the implicit relations (7.22), call itM(α, g), will be analytic
about the origin and may be expected to have singularities when (7.265) holds. If we
select α = σ, the Darboux matrix that is optimally compatible with the symplectic
matrix I, then g2 = 0. Moreover, based on our examples, we anticipate that M(σ, g)
will have optimal analytic properties.
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• Lie symplectification (symplectic completion), that given by (7.232), appears from
our first example to be superior from the perspective of the size of the analyticity
domain because it produced a symplectic map that is singular on the surface p = 1.
But Lie symplectification can be carried out analytically only in a few special cases,
and its implementation by numerical methods requires the summation of a very large
(generally infinite) number of terms. Recall the definition (1.2.44). Therefore its use
is generally impractical when rapid computation is required.

• For a symplectification (symplectic completion) procedure that produces from a sym-
plectic jet a symplectic map having no singularities (save at infinity), see Section
34.2.4.

Exercises

6.7.1. Relate the discussion surrounding (4.8.21) through (4.8.26) in Section 4.8 to the
relations (7.55) through (7.58) in Subsection 7.1.

6.7.2. Suppose g is a source function of the form

g(u) = (1/2)(u,Wu) (6.7.284)

where W is a symmetric 2n× 2n matrix. It follows that in this case

∂ug = Wu. (6.7.285)

Show that the M produced by this g using (7.21) is linear and is described by the matrix

M = Tα−1(W ). (6.7.286)

To do so, use (7.38) with the substitution G→ W .
Suppose g is of the form

g(u) = (v, u) + (1/2)(u,Wu) (6.7.287)

where v is any vector. It follows that in this case

∂ug = v +Wu. (6.7.288)

Show that now there is the relation

Z = Mz + (Aα −WCα)−1v. (6.7.289)

Verify that
M = Tα−1(W ) = (Aα

−1

W +Bα−1

)(Cα−1

W +Dα−1

)−1 (6.7.290)

is well defined providing
det(Cα−1

W +Dα−1

) 6= 0. (6.7.291)
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But, for (7.289) to make sense, we must also have

det(Aα −WCα) 6= 0. (6.7.292)

Is this an additional requirement? Show that it is not. Select from the chain of inferences
(5.11.42) the inference

det(CMU +DM) 6= 0 ⇔ det(UCM−1 − AM−1

) 6= 0 (6.7.293)

and verify that one may make the substitutions M → α−1 and U → W to obtain the logical
equivalence

det(Cα−1

W +Dα−1

) 6= 0⇔ det(Aα −WCα) 6= 0. (6.7.294)

Therefore (7.292) is a consequence of (7.291), and vice versa.
Verify the correctness of the discussion involving (7.88) through (7.96).

6.7.3. If (7.21) or (7.22) is explicit, α must have the property Bα = Cα = 0. See (7.17) and
(7.18). Compute γ for such an α using the relation γ = ασ−1 with σ−1 given by (5.13.12).
Show that the γ so obtained cannot satisfy the symplectic conditions (3.3.3) and (3.3.4).
Therefore α cannot be a Darboux matrix.

6.7.4. Verify that the parametric representation of M given by (7.28) and (7.29) yields
(7.39) and (7.40) directly.

6.7.5. The purpose of this exercise is to verify the F1 contents of Table 7.1. Verify that the
α given by (7.52) and (7.53) is a Darboux matrix, is also orthogonal, and its use reproduces
the equations (7.51) when employed in (7.21). Verify that γ given by (7.54) satisfies α = γσ
and is J4n symplectic.
Hint: Show that, for the α given by (7.52) and (7.53), the relations (7.17) and (7.18) take
the form

Ui = pi for i = 1 to n, (6.7.295)

Ui = −Pi−n for i = n+ 1 to 2n, (6.7.296)

ui = qi for i = 1 to n, (6.7.297)

ui = Qi−n for i = n+ 1 to 2n. (6.7.298)

Suppose we partition u into two parts, each of length/dimension n, by writing

u = (v;w). (6.7.299)

Then the relations (7.297) and (7.298) become

v = q, w = Q. (6.7.300)

Thus, if we use the partition (7.299), we may write

g(u, t) = g(v;w, t). (6.7.301)

Show that there is the relation

g(v;w, t) = F1(v, w, t). (6.7.302)
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6.7.6. The purpose of this exercise is to verify the F2 contents of Table 7.1. Verify that the
α given by (7.56) and (7.57) is a Darboux matrix, is also orthogonal, and its use reproduces
the equations (7.55) when employed in (7.21). Verify that γ given by (7.58) satisfies α = γσ
and is J4n symplectic.
Hint: Show that, for the α given by (7.56) and (7.57), the relations (7.17) and (7.18) take
the form

Ui = pi for i = 1 to n, (6.7.303)

Ui = Qi−n for i = n+ 1 to 2n, (6.7.304)

ui = qi for i = 1 to n, (6.7.305)

ui = Pi−n for i = n+ 1 to 2n. (6.7.306)

Suppose we partition u into two parts, each of length/dimension n, by writing

u = (v;w). (6.7.307)

Then the relations (7.305) and (7.306) become

v = q, w = P. (6.7.308)

Thus, if we use the partition (7.307), we may write

g(u, t) = g(v;w, t). (6.7.309)

Show that there is the relation

g(v;w, t) = F2(v, w, t). (6.7.310)

6.7.7. The purpose of this exercise is to verify and work with the F+ contents of Table 7.1.
Your task is to show that use of the α given by (7.68) reproduces the equations (7.67) when
employed in (7.21) or (7.22).

First show that, for the α given by (7.68), the relations (7.17) and (7.18) take the form

U = AσZ +Bσz = −(1/
√

2)J∆, (6.7.311)

u = CσZ +Dσz = (1/
√

2)Σ. (6.7.312)

Note that (7.312) can be rewritten as

Σ =
√

2u. (6.7.313)

Next show that the relation (7.22) takes the form

− (1/
√

2)J∆ = ∂ug|u=(1/
√

2)Σ, (6.7.314)

from which it follows that

∆ =
√

2J∂ug|u=(1/
√

2)Σ. (6.7.315)
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Let us compare this result with the Poincaré generating function result (7.67) which
reads

∆ = J∂ΣF+. (6.7.316)

Verify that (7.315 and (7.316) are equivalent when there is the relation

g(u, t) = (1/2)F+(Σ, t) = (1/2)F+(u
√

2, t). (6.7.317)

To do so, apply the chain rule to (7.317) to show that

∂g/∂ua = (1/2)
∑
b

(∂F+/∂Σb)(∂Σb/∂ua). (6.7.318)

But, by (7.313), verify that there is the relation

∂Σb/∂ua =
√

2δba. (6.7.319)

Verify that therefore (7.318) can be rewritten in the component form

∂g/∂ua = (1/
√

2)∂F+/∂Σa (6.7.320)

or, more compactly, in the vector form

∂ug = (1/
√

2)∂ΣF+. (6.7.321)

Finally, employ (7.321) in (7.315) to find the result

∆ =
√

2J∂ug =
√

2J(1/
√

2)∂ΣF+ = J∂ΣF+, (6.7.322)

which agrees with (7.316).
As a simple example, suppose g is of the form

g(u) = (v′, u) + (1/2)(u,W ′u) (6.7.323)

where v′ is any vector and W ′ is any symmetric matrix. Then

∂ug = v′ +W ′u. (6.7.324)

Show that in this case there is the relation

Z = Mz + (Aσ −W ′Cσ)−1v′ = Mz + [−(1/
√

2)J − (1/
√

2)W ′]−1v′

= Mz −
√

2(J +W ′)−1v′ = Mz −
√

2(J − JJW ′)−1v′

= Mz −
√

2(I − JW ′)−1J−1v′ = Mz +
√

2(I − JW ′)−1Jv′ (6.7.325)

with
M = Tσ−1(W ′) = (I − JW ′)−1(I + JW ′). (6.7.326)

Compare this result with that given by (6.75) in the case that F+ is of the form (6.69).
Verify that (6.81) and (7.326) agree provided

W ′ = W, (6.7.327)

and
v′ = (1/

√
2)v. (6.7.328)

Is this result consistent with (7.317)?
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6.7.8. Verify that (7.87) is equivalent to (7.86).

6.7.9. In a 2n-dimensional phase space consider the n-dimensional submanifold parameter-
ized by the equations

qi = τi, (6.7.329)

pi = p0
i . (6.7.330)

Show that this submanifold is J2n Lagrangian. Consider the submanifold parameterized by
the equations

qi = τi, (6.7.331)

pi = τi. (6.7.332)

What can be said about it? What can be said about the submanifold parameterized by the
equations

qi = τi, (6.7.333)

pi = ∂f(τ)/∂τi, (6.7.334)

where f is any function of τ?

6.7.10. Verify that the graph of M is a J̃4n Lagrangian submanifold using the parametric
form of M given by (7.28) and (7.29). Hint: Write that

graph of M = {Ẑ ∈ R4n | Ẑ = α−1Û , Û = (U ;u)T = (Gu;u)T with u ∈ R2n}. (6.7.335)

Make the Ansatz

u = u0 +
2n∑
1

λie
i. (6.7.336)

Show that the tangent vectors ζj to the graph of M are given by the relations

ζj(u0) = ∂Ẑ/∂λj|λ=0 = α−1∂Û/∂λj|λ=0 = α−1νj(u0). (6.7.337)

Verify that these tangent vectors are J̃4n isotropic by showing that

(ζj, J̃4nζk) = (α−1νj, J̃4nα−1νk) = (νj, (α−1)T J̃4nα−1νk) = (νj, J4nνk) = 0. (6.7.338)

6.7.11. Suppose all the tangent vectors of a submanifold are mutually isotropic at each
point in the submanifold. Such a submanifold is called isotropic or null. Show that in a
2n-dimensional phase space the largest dimension a null submanifold can have is n. Thus
a Lagrangian submanifold has the largest possible dimension for a null submanifold. For
simplicity, work with J2n isotropic submanifolds.

6.7.12. Suppose, in the relation between symplectic and gradient maps, we wish to arrange
to have the identity map I correspond to the case of a zero (or constant) source function g,
and vice versa. What can be said about the Darboux matrix α in this case? Is it unique?
Far from it.

If g is zero or constant, we must have

G = 0 (6.7.339)
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so that
G = 0. (6.7.340)

Show that, since the linear part of the identity map is the identity matrix I, the relation
(7.40) then becomes

I = Tα−1(0), (6.7.341)

or, equivalently,
Tα(I) = 0. (6.7.342)

Employ the factorization (7.50), namely

α = γσ, (6.7.343)

so that (7.342) becomes
Tγσ(I) = 0. (6.7.344)

Show, from the group property of Möbius transformations and (5.14.2), that

Tγσ(I) = Tγ(Tσ(I)) = Tγ(0), (6.7.345)

and conclude that
Tγ(0) = 0. (6.7.346)

Review the discussions at the ends of Sections 5.12.7 and 5.13.9.3, and show that one must
have

γ ∈ H(4n,R). (6.7.347)

Finally, verify that (7.339), (7.343), and (7.347), when employed in (7.28) and (7.29), yield
the identity map,

Z = z. (6.7.348)

6.7.13. The discussion at the end of Subsection 7.4.1 examined what the conditions on M
were for W as given by (6.76) to be well defined. What are the conditions on W for M
as given by (6.75) to be well defined? Compute W for the case M = R with R given by
(4.8.31). Verify that this W satisfies the conditions for M as given by (6.75) to be well
defined.

6.7.14. Observe that A as given by (5.120) and A′ as given by (7.130) are different. From
our previous discussion we know that they both take extrema on the trajectories generated
by H. However, A′ treats the coordinates ξ and momenta η on an equal footing while A
does not. Nevertheless, they are related. Show that

A = −(1/2)A′ + (1/2)
∑
i

(QiPi − qipi). (6.7.349)

6.7.15. From (6.15) and (7.142) we see that F and A′ are related. Show that ifM(ti, tf ) is
a symplectic map generated by the Hamiltonian H(ζ, t) using ti and tf as initial and final
times, then the F of (6.15) is given by the relation

F (z, ti, tf ) = 2

∫ tf ,Z(z)

ti,z

[(ζ, Jζ̇)/2 +H(ζ, t)]dt. (6.7.350)
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Here the integral is to be evaluated for the trajectory of H satisfying (7.124).
Consider each of the three cases

H = (k, ζ) (6.7.351)

where k is a constant vector,
H = (1/2)(ζ, Sζ) (6.7.352)

where S is a constant symmetric matrix, and

H = (1/3)(ζ1)3. (6.7.353)

In each case find M, verify that (6.3) when viewed as a function z is an exact differential,
and find an F such that (6.15) is satisfied.

Next suppose that H is of the form

H(ζ) = hm(ζ) (6.7.354)

where hm(ζ) is a homogeneous polynomial of degree m in the variables ζa. Show that in this
case

F (z, ti, tf ) = −(m− 2)(tf − ti)hm(z). (6.7.355)

Note that if H is quadratic, then F vanishes. Because quadratic Hamiltonians generate
linear symplectic maps, this result is consistent with the earlier discussion of the fact that
F is the same for all linear symplectic maps.

Finally, if

H(ζ) =
∑
m

hm(ζ), (6.7.356)

show that

F (z, ti, tf ) = −
∫ tf

ti
dt
∑
m

(m− 2)hm(ζ). (6.7.357)

6.7.16. For the map given by (7.233) and (7.234) and the map given by (7.243) and (7.244)
show by direct computation/evaluation that

[Q,P ] = 1, (6.7.358)

thereby verifying that these maps are symplectic.

6.7.17. Recall the incompatibility condition (7.264), which also appears in (7.222). To free
up some symbols for subsequent different use, let us rewrite (7.264) in the form

det(CβM ′ +Dβ) = 0. (6.7.359)

Our goal is to show that, given any Darboux matrix β, there is a symplectic matrix M ′ such
that the incompatibility condition (7.359) holds.

According to Section 5.13.9.4, the most general Darboux matrix β can be written in the
form (5.13.148). Verify that, consequently, there are the relations

Cβ = (1/
√

2)(AT )−1(−CJ + I)L−1 (6.7.360)
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and
Dβ = (1/

√
2)(AT )−1(CJ + I); (6.7.361)

and therefore (7.359) amounts to the requirement

det[(1/
√

2)(AT )−1(−CJ + I)L−1M ′ + (1/
√

2)(AT )−1(CJ + I)] = 0. (6.7.362)

Verify, since A is assumed to be invertible, that the requirement (7.362) is equivalent to the
requirement

det[(−CJ + I)L−1M ′ + (CJ + I)] = 0. (6.7.363)

Let us now write M ′ in the factorized form

M ′ = −LK (6.7.364)

where K is yet to be determined. Verify that employing this M ′ in the argument of (7.363)
produces the result

(−CJ + I)L−1M ′ + (CJ + I) = −(−CJ + I)L−1LK + (I + CJ)

= −(−CJ + I)K + (I + CJ). (6.7.365)

Suppose we require that

(−CJ + I)L−1M ′ + (CJ + I) = −(−CJ + I)K + (I + CJ) = 0. (6.7.366)

Then (7.363) is automatically satisfied, and accordingly we should examine the implication
for K of the requirement

− (−CJ + I)K + (I + CJ) = 0. (6.7.367)

To do so, begin by verifying the manipulation

CJ = JJ−1CJ = JW (6.7.368)

with
W = J−1CJ = −JCJ. (6.7.369)

By assumption C is symmetric. Verify from (7.369) that therefore W is also symmetric.
Consequently the requirement (7.367) can also be written in the form

− (I − JW )K + (I + JW ) = 0. (6.7.370)

with W being symmetric.
Suppose (7.370) can be solved for K. This is possible if the invertibility condition

det(I − JW ) 6= 0 (6.7.371)

holds, and doing so gives the result

K = (I − JW )−1(I + JW ). (6.7.372)
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Observe that (7.372) is a Cayley representation, and therefore K is symplectic. See (3.12.5).
Also, by assumption, L is symplectic, and therefore −L is symplectic. It follows from the
group property of symplectic matrices that M ′, given by the product (7.364), is symplectic.
We have achieved our goal in the generic subcase (7.371). We have found, for the invertible
subccase, a symplectic matrix M ′ such that the incompatibility condition (7.359) holds.

To complete our discussion, we must also explore what can be said when the generic
condition (7.371) does not hold and instead there is the singular/noninvertibility condition

det(I − JW ) = 0. (6.7.373)

This appears to be a more difficult subcase. But, considerable progress can be made using
group theory.

First verify that there is the logical implication

det(I − JW ) = 0⇔ det(I + JW ) = 0 (6.7.374)

To see this, check the equality chain

det(I − JW ) = det[(I − JW )T ] = det(I +WJ)

= det[J(I +WJ)J−1] = det(I + JW ). (6.7.375)

Next observe that JW is a Hamiltonian matrix. See Sections 3.7.2 and 3.7.3. Let H be
any Hamiltonian matrix and N be any symplectic matrix. Verify that H̄ defined by

H̄ = NHN−1 (6.7.376)

is also a Hamiltonian matrix. To do this, set up and employ some Lie-algebraic machinery.
Let A and B be any two matrices of the same dimension. Associated with A introduce an
operator #A# that maps matrices to matrices by the rule

#A#B = {A,B}. (6.7.377)

Note that #A# is essentially the adjoint operator associated with A. See the discussion in
Sections 3.7.7, 5.3, and 8.1 where something similar is described. Next, it can be verified
that

exp(A)B exp(−A) = exp(#A#)B = B + #A#B + (1/2!)(#A#)2B + · · ·
= B + {A,B}+ (1/2!){A, {A,B}}+ (1/3!){A, {A, {A,B}}}+ · · · .

(6.7.378)

See the discussion in Section 8.1 where again something similar is described. Now write N
in the factored form

N = exp(JSa) exp(JSc). (6.7.379)

See (3.8.26). Show, using (7.378) and (7.379), that there is the result

H̄ = NHN−1 = exp(JSa) exp(JSc)H exp(−JSc) exp(−JSa)
= exp(JSa)[exp(#JSc#)H] exp(−JSa) = exp(#JSa#)[exp(#JSc#)H].

(6.7.380)
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Observe that JSc is a Hamiltonian matrix, and recall that Hamiltonian matrices form the
Lie algebra sp(2n,R). It follows from (7.378) that exp(#JSc#)H is also a Hamiltonian
matrix. And, again by analogous reasoning, it follows that exp(#JSa#)[exp(#JSc#)H] is
also a Hamiltonian matrix, thereby verifying (7.376).

Show, as a consequence of (7.376), that there are the results

N(I ± JW )N−1 = (I ± JŴ ) (6.7.381)

where Ŵ is symmetric iff W is symmetric. Indeed, if we write

NJWN−1 = JŴ , (6.7.382)

verify that
Ŵ = −JNJWN−1 = (NT )−1WN−1 = (N−1)TWN−1. (6.7.383)

To do so, verify that the symplectic condition

NTJN = J (6.7.384)

can be rewritten in the form
JNJ = −(NT )−1. (6.7.385)

If two symmetric matrices W and Ŵ are connected by a relation of the form

Ŵ = (N−1)TWN−1 (6.7.386)

where N is symplectic, then we write

Ŵ ∼ W. (6.7.387)

Verify that ∼ is an equivalence relation. See Exercise (5.12.7). Finally, suppose further that
the noninvertibility condition (7.373) holds. Show that there are the results

det(I ± JŴ ) = det[N(I ± JW )N−1] = det(I ± JW ) = 0. (6.7.388)

Thus, the “sandwiching” operation described by (7.381) preserves noninvertibility.
The stage is now set to study the incompatibility requirement (7.363) in the noninvert-

ible subcase. Show, using (7.364), (7.365), and (7.368), that (7.363) is equivalent to the
requirement

det[−(I − JW )K + (I + JW )] = 0. (6.7.389)

Suppose (7.369) holds. Then it is also true that

det{N [−(I − JW )K + (I + JW )]N−1} = 0, (6.7.390)

and vice versa. Verify that matrix manipulation gives the result

N [−(I − JW )K + (I + JW )]N−1 = −N(I − JW )N−1NKN−1 +N(I + JW )N−1

= −(I − JŴ )Ǩ + (I + JŴ ) (6.7.391)
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where
Ǩ = NKN−1. (6.7.392)

Note that Ǩ will be symplectic iff K is symplectic. If two symplectic matrices Ǩ and K are
connected by a relation of the form (7.392), then we write

Ǩ ≈ K. (6.7.393)

Verify that ≈ is also an equivalence relation.
What you have shown is that there is the logical implication

det[−(I − JW )K + (I + JW )] = 0⇔ det[−(I − JŴ )Ǩ + (I + JŴ )] = 0. (6.7.394)

Therefore, the incompatibility condition is a class condition. If it holds for the W,K pair,
then it also holds for the Ŵ , Ǩ pair, and vice versa.

A possible strategy now comes into view. Suppose we partition the set of symmetric
matrices W into equivalence classes using the equivalence relation ∼ and select a normal
form W norm for each equivalence class. Suppose each normal form is sufficiently simple that
we can construct a corresponding matrix K̄ such that the W norm,K̄ pair is incompatible.
Then we will have proved, also in the noninvertible subcase, that for every choice of a
Darboux matrix β there exists a symplectic matrix M ′ such that (7.359) holds.

Let us see how this strategy works in the case of a two-dimensional phase space so that
J , W , and K are 2× 2 matrices. In the two-dimensional case W has the general form

W =

(
c a
a b

)
. (6.7.395)

Verify that in this case JW takes the form

JW =

(
a b
−c −a

)
(6.7.396)

and I ± JW take the forms

I ± JW =

(
1± a ±b
∓c 1∓ a

)
. (6.7.397)

Next show that
det(I ± JW ) = 1− a2 + bc. (6.7.398)

Also, verify that from (7.382) that det(JW ) is a class function. That is,

det(JŴ ) = det(JW ). (6.7.399)

For the parameterization (7.395) we find that

d
def
= det(JW ) = [det(J)][det(W )] = det(W ) = −a2 + bc, (6.7.400)

Verify that, for the case of a two-dimensional phase space, there is the relation

det(I ± JW ) = 1 + d. (6.7.401)
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Finally, from the noninvertibility condition (7.373), verify that we are interested in any
equivalence class for which

d = −1. (6.7.402)

Serendipitously, the normal forms for 2 × 2 symmetric matrices are given in Section
32.2.2.1 in the context of finding normal forms for second-order polynomials. There δ plays
the role of d,

δ = d, (6.7.403)

and we find that a possible normal form is given by

W norm =

(
0 1
1 0

)
. (6.7.404)

See (32.2.41) and (32.2.45). Correspondingly, verify that there are the results

JW norm =

(
1 0
0 −1

)
, (6.7.405)

I + JW norm =

(
2 0
0 0

)
, (6.7.406)

I − JW norm =

(
0 0
0 2

)
. (6.7.407)

Let us evaluate the argument of the right side of (7.394) when

Ŵ = W norm (6.7.408)

and we make the inspired (and symplectic) choice

Ǩ = K̄ = J. (6.7.409)

Show that so doing gives the result

−(I − JW norm)K̄ + (I + JW norm) =

(
0 0
0 −2

)(
0 1
−1 0

)
+

(
2 0
0 0

)
=

(
0 0
2 0

)
+

(
2 0
0 0

)
=

(
2 0
2 0

)
. (6.7.410)

Evidently the matrix on the far right end of (7.410) has determinant 0. It follows that the
W norm,K̄ pair given by (7.408) and (7.409) is incompatible. Consequently we have shown,
for the case of a two-dimensional phase space, that for every choice of a Darboux matrix β
there exists a symplectic matrix M ′ such that the incompatibility condition (7.359) holds
even in the noninvertible subcase.

What can be said about higher dimensional phase-space cases? W have already treated
the invertible subcase for any number of dimensions. What remains is to treat the non-
invertible subcase for dimensions four and higher. We can try to proceed in analogy to
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the two-dimensional phase-space case. In principle normal forms are known for symmetric
matrices in any (even) number of dimensions. See Sections 32.2.2.2 and 32.2.2.3. Therefore
some of the necessary tools are available to proceed. But we will not pursue the question
further in this exercise.

6.7.18. Review Exercise 7.17. The machinery associated with (7.377) through (7.380) and
used to prove (7.376) is elegant, but not really necessary. Verify that (7.376) can also be
proved directly using (7.382) through (7.385).

6.7.19. Review Exercise 6.7.6. The purpose of this exercise is to show, for an F2 generating
function, that use of the failure condition (7.265) yields the result

det(∂2F2/∂qk∂P`) = 0. (6.7.411)

Verify that, according to (7.265), (5.13.102), (5.13.103), (6.7.56), and (6.7.57), the relevant
matrices in this case are

Cα−1

= −J2n(Dα)T =

(
0 0
In 0

)
(6.7.412)

and

Dα−1

= J2n(Bα)T =

(
In 0
0 0

)
. (6.7.413)

Write G in the block form

G =

(
A B
C D

)
, (6.7.414)

and verify that

Cα−1

G+Dα−1

=

(
In 0
A B

)
, (6.7.415)

and therefore in this case (7.265) becomes

det(Cα−1

G+Dα−1

) = det(B) = 0. (6.7.416)

Recall that G is the Hessian of g. Verify from the work of Exercise 6.7.6 that

Bk` = ∂2F2/∂qk∂P`, (6.7.417)

and that therefore (7.416) implies (7.411).

6.8 Symplectic Invariants

We have seen that Hamiltonian flows produce symplectic maps, and that essentially any
symplectic map can be produced by a Hamiltonian flow. Therefore, a fundamental problem
is to understand the action of symplectic maps on phase space. Is the action completely
general, or are there restrictions? If there are restrictions, what is their nature, and are there
any associated invariants? This is a difficult and only partially understood subject. Indeed, it
is still a matter of intensive theoretical research in the general setting of symplectic geometry
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and symplectic topology. It is also of great practical interest. Consider, for example, the field
of Accelerator Physics. Suppose some charged-particle source produces a collection of low-
energy particles described by some initial distribution function. Imagine these particles are
now acted upon over time by some combination of electric and magnetic fields to accelerate
them to high energy. What is the final distribution function under the assumption that
interactions among the particles, e.g. space-charge effects, are ignored? By a suitable choice
of electric and magnetic fields can it be made anything one desires, or are there restrictions?
In this section we will partially explore some elementary aspects of this subject.

6.8.1 Liouville’s Theorem

Consider some 2n-dimensional region Ri
2n of phase space that will be referred to as an initial

region. Suppose some symplectic map M acts on phase space, and in so doing sends Ri
2n

to some region Rf
2n that will be referred to as a final region.23 Let V i be the volume of the

initial region,

V i =

∫
Ri2n

dzi1 · · · dzi2n, (6.8.1)

and let V f be the volume of the final region,

V f =

∫
Rf2n

dzf1 · · · dz
f
2n. (6.8.2)

Here the zi are coordinates for the initial region Ri
2n, and the zf are coordinates for the final

region Rf
2n. They are related by the map M

zf =Mzi, (6.8.3)

and correspondingly their differentials are related by M ,

dzf = Mdzi. (6.8.4)

It follows from the standard rules for changing variables of integration that the volume V f

is also given by the relation

V f =

∫
Ri2n

| det(M)|dzi1 · · · dzi2n. (6.8.5)

But, since M is a symplectic matrix, it must have determinant +1. Therefore, comparison
of (8.5) and (8.1) shows that the two volumes V f and V i are the same,

V f = V i. (6.8.6)

23Here, and elsewhere, we assume that the mapping from Ri2n to Rf2n is a bijection so that M−1 exists
and both M and M−1 are single valued. By the existence and uniqueness theorems, this will certainly be
the case if M is the result of integrating some set of differential equations. In that case M−1 is found by
integrating backwards in time.
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Symplectic maps preserve volume in phase space. This result is called Liouville’s theorem.
Note that in the 2-dimensional case, “volume” is simply area. Therefore, in two dimensions,
area (and orientation) preserving maps are symplectic maps, and vice versa.

There is a slightly different phrasing of Liouville’s theorem that is also worth mentioning.
Consider an ensemble of noninteracting systems with each member of the ensemble governed
by the same Hamiltonian H(z, t). At some initial instant ti, let each member of the ensemble
be characterized by a point in phase space corresponding to its initial condtions. Suppose,
further, that all the points of the ensemble at the initial instant ti occupy a certain region
Ri

2n of phase space. Now follow all the trajectories of the members of the ensemble through
augmented phase space to some later instant tf . The members of the ensemble will then
occupy some final region Rf

2n of phase space. Since the map produced by this Hamiltonian
flow is symplectic, we have the relation (8.6). The volume in phase space occupied by the
ensemble remains constant. Also, by construction, the number of ensemble points in V f

and V i is the same. Therefore, since V f equals V i, one may also say that the density of
points in phase space (the number of points divided by the volume they occupy) is preserved
by Hamiltonian flows. The collection of ensemble points moves about in phase space (and
augmented phase space) like an incompressible fluid. In the context of Accelerator Physics,
this result means that the density of (assumed noninteracting) beam particles in phase space
after acceleration can never exceed (and, in fact, must equal) their initial phase-space density
at the source provided their motions are all governed by the same Hamiltonian. That is,
particles cannot be concentrated in phase space by solely Hamiltonian means.

6.8.2 Gromov’s Nonsqueezing Theorem and the Symplectic
Camel

According to Liouville’s theorem, if an initial region Ri
2n of phase space is sent into a final

region Rf
2n of phase space under the action of a symplectic map M, then these two regions

must have the same volume. One might wonder about the converse: Given two regions of
phase space having the same volume, is there a symplectic map that sends one into the other?
The answer is yes in the case of two-dimensional phase space (n = 1), and, as will be done in
Chapter 33, it is fairly easy to show that the answer is no in the case of four or more phase-
space dimensions (n > 1) if one is restricted to linear symplectic maps. But what about
the far more complicated case where nonlinear symplectic maps are allowed? The answer
to this question was unknown until 1985 when Gromov announced his famous nonsqueezing
theorem and its application to the symplectic camel.24 The proof of his theorem is beyond
the scope of this text and is part of the deep new field of symplectic topology. However, it is
easy to state and understand its contents.

In the spirit of the theoretical physicist who instructed the farmer to first consider a
spherical cow, the mathematician Gromov considered a spherical region in phase space, the

24“It is easier for a camel to go through the eye of a needle than for a rich man to enter into the kingdom
of God”, a saying of Jesus as quoted in Matthew 19, Mark 10, and Luke 18.
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symplectic ball B2n(r) of radius r given by the relation

B2n(r) = {z ∈ R2n |
n∑
j=1

(p2
j + q2

j ) ≤ r2}. (6.8.7)

(This ball is called symplectic because its definition involves the pj as well as the qj.) It is
an easy calculation to show that B2n(r) has a finite volume V (r) given by the relation

V (r) = r2nπn/[nΓ(n)] = r2nπn/n!. (6.8.8)

Gromov also considered a symplectic cylinder C2n
1 (r′) of radius r′ given by the relation

C2n
1 (r′) = B2

1(r′)×R2n−2. (6.8.9)

Here B2
1(r′) is the set

(p2
1 + q2

1) ≤ (r′)2 (6.8.10)

and, according to (8.9), the remaining variables qj and pj for j > 1 are allowed to range
from minus to plus infinity,

qj ∈ (−∞,+∞), pj ∈ (−∞,+∞) for j ∈ [2, n]. (6.8.11)

Evidently, because of (8.11), C2n
1 (r′) has infinite volume. We now ask if there is a symplectic

mapM, possibly nonlinear, such that whenM is applied to B2n(r) the resulting region lies
within (is embedded in) C2n

1 (r′),

MB2n(r) ⊂ C2n
1 (r′)? (6.8.12)

Put another way, if we regard B2n(r) as a “symplectic camel”, can this camel be squeezed
into the cylinder C2n

1 (r′) under the action of some symplectic map? Liouville would not
object because the volume of the cylinder, being infinite, would certainly exceed the volume
of the camel. However, Gromov showed that there was no symplectic M that would map
the camel to a region lying within the cylinder unless the radius of the cylinder equaled or
exceeded that of the camel (ball),

r′ ≥ r. (6.8.13)

A related question, more akin to passing a camel through the eye of a needle, is this:
Suppose there is a camel on one side of a wall, and this wall has a hole in it. Is there a
continuous family of symplectic maps M(τ) such that M(0) is the identity map I and the
map M(1) has the property that when it acts on the camel the result is a camel on the
other side of the wall? Moreover, is it the case that all points obtained by lettingM(τ) act
on the camel (for τ ∈ [0, 1]) lie either outside the wall or within the hole in the wall?

Because we are working in dimension four or higher where our intuition may easily fail,
let us phrase the question more precisely in mathematical terms. We define the wall W to
be the hyperplane q1 = 0,

W = {z ∈ R2n | q1 = 0}. (6.8.14)
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We define the hole in the wall, H(r′), to be the set

H(r′) = {z ∈ R2n | q1 = 0 and
n∑
j=1

(p2
j + q2

j ) ≤ (r′)2}. (6.8.15)

As for the symplectic camel, we define the two sets B2n
+ (r, a) and B2n

− (r, a), with a > r, by
the rules

B2n
+ (r, a) = {z ∈ R2n | (q1 − a)2 + p2

1 +
n∑
j=2

(p2
j + q2

j ) ≤ r2}, (6.8.16)

B2n
− (r, a) = {z ∈ R2n | (q1 + a)2 + p2

1 +
n∑
j=2

(p2
j + q2

j ) ≤ r2}. (6.8.17)

Evidently B2n
+ (r, a) is a camel centered around the point given by q1 = a with all remaining

coordinates being zero, and B2n
− (r, a) is a camel centered around the point given by q1 = −a

with all remaining coordinates being zero. And since we have assumed r < a, no part of
either camel is in contact with the wall. Therefore B2n

+ (r, a) is a camel located on the side
of the wall W with q1 > 0, and B2n

− (r, a) is a camel located on the side of the wall W with
q1 < 0.

Now suppose the camel is smaller than the hole in the wall, r < r′. Then it is easy to
see that the camel can be moved through the hole from one side of the wall to the other
by a simple translation along the q1 axis of the form (6.2.9). Employing notation to be
introduced in Section 7.7, we may then write M(τ) in the form

M(τ) = exp(2τa : p1 :). (6.8.18)

It easily verified that there are the relations

M(0)B2n
+ (r, a) = B2n

+ (r, a), (6.8.19)

M(1)B2n
+ (r, a) = B2n

− (r, a). (6.8.20)

Moreover all the points given by

M(τ)B2n
+ (r, a) = B2n

+ (r, a(1− 2τ)) (6.8.21)

with q1 = 0 satisfy

(a(1− 2τ))2 + p2
1 +

n∑
j=2

(p2
j + q2

j ) ≤ r2. (6.8.22)

From (8.22) we conclude that either q1 6= 0 or

q1 = 0 and
n∑
j=1

(p2
j + q2

j ) ≤ r2 − (a(1− 2τ))2 ≤ (r′)2, (6.8.23)

and therefore all points of the camel are either off the wall (q1 6= 0) or are within the hole
H(r′) as the camel passes through the wall under the action of M(τ). We have moved the
camel from the side with q1 > 0 to the side with q1 < 0.
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What happens in the more interesting case where the camel is larger than the hole,
r > r′? In that case Gromov has shown that there is no continuous family of symplectic
maps M(τ) satisfying (8.19) and (8.20) without some points of M(τ)B2n

+ (r, a) lying in the
wall and outside the hole for some intermediate τ values. Thus for a symplectic camel to
pass through the eye of a needle under the action of a continuous family of symplectic maps,
the eye of the needle must be larger than the camel. By contrast, if one is allowed to use
maps that are simply volume preserving but not symplectic, it is easy to see that one can
pass the camel through the eye of any needle no matter how large the camel is or how
small the eye of the needle is. For example, one may first stretch and thin the camel by
pulling along her tail in the +q1 direction while holding her nose fixed. (We assume the
camel is eyeing the eye with some trepidation, and we plan to pass her through head first.)
While increasing her length in the q1 direction, we appropriately compress her in all other
directions so that her volume remains unchanged. Then this thinned camel may be safely
passed through the eye of the needle. Finally, the camel can be brought back to her original
shape by holding her hind quarters fixed, pushing on her nose thereby compressing her q1

dimension, and letting her other dimensions expand to their original values.
The discussion so far has been concerned with the ‘spherical’ camel B2n(r) given by (8.7).

It can be extended to the case of a general elliptic camel E2n(r). By a general elliptic camel
we mean the set defined by the rule

E2n(r) = {z ∈ R2n | (z, Sz) ≤ r2} (6.8.24)

where S is a positive-definite matrix. Suppose we make the symplectic change of variables

z = AZ or Z = A−1z (6.8.25)

where A is a symplectic matrix. Then there is the relation

(z, Sz) = (AZ, SAZ) = (Z,ATSAZ). (6.8.26)

As will be seen in Chapter 33, if S is positive definite, there is always a symplectic A such
that

ATSA = Sλ (6.8.27)

where Sλ is a diagonal matrix with pair-wise degenerate positive entries. (Sλ is called the
Williamson diagonal or normal form of S.) In the 4× 4 case, for example, Sλ has the form

Sλ =


λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2

 . (6.8.28)

Correspondingly, and in the case of general dimension, there is the relation

(z, Sz) = (Z, SλZ) =
n∑
j=1

λj(P
2
j +Q2

j). (6.8.29)
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Here, without loss of generality, we may select A such the λj are ordered in the fashion

λ1 ≥ λ2 ≥ · · · ≥ λn > 0. (6.8.30)

Motivated by this result, we will define a normal-form elliptic camel E2n
nf (r, λ) by the relation

E2n
nf (r, λ) = {z ∈ R2n |

n∑
j=1

λj(p
2
j + q2

j ) ≤ r2}. (6.8.31)

We conclude that the general elliptic camel can be transformed into a normal-form elliptic
camel by a linear symplectic map. But now there is a generalization of the nonsqueezing
result for the spherical camel to the case of a normal-form elliptic camel. It states that a
normal-form elliptic camel cannot be imbedded in the cylinder C2n

1 (r′) by a symplectic map
unless

r′ ≥ r/
√
λ1. (6.8.32)

Similarly, the normal-form elliptic camel cannot be passed through the hole H(r′) by a
family of symplectic maps unless (8.32) holds.

Evidently the nonsqueezing theorem and the symplectic camel results, which are exam-
ples of the general subject of symplectic capacities, have important applications to Accel-
erator Physics. The nonsqueezing theorem has implications for the feasibility of emittance
trading (the hope that one might be able to concentrate particles in some phase-space plane
at the expense of possible dilution in other planes), and the symplectic camel results bear
on problems of linear and nonlinear beam transport. Of course one would like to have anal-
ogous results for camels and needle eyes with more general shapes than the simple spherical
and elliptical and cylindrical shapes assumed in this section. Also, even if all of a camel
cannot be squeezed into, say, some cylinder or some other camel, what fraction of the camel
can be so squeezed, and how? Some important results have been found in these directions.
See the references to Symplectic Geometry and Topology given at the end of this chapter.25

The study of such matters is still in its infancy. And even when such results have been
obtained and should possibly useful nonlinear symplectic maps be found, there will still be
the problem of designing beamline elements and sequences of beamline elements to realize
the desired symplectic maps.26 Clearly, in this area as in so many others, there is still much
to be learned about the effects of nonlinear maps and how to achieve, exploit, or mitigate
them.

25There are many surprises. For example, when r′ < r so that according to Gromov 100% of the spherical
camel cannot be embedded in the cylinder, nevertheless any fraction less than 100% can be embedded.
Moreover, the construction of such embeddings is very complicated, and in some cases only an existence
proof is available. Apparently there will always be some points whose images are outside the cylinder, and
perhaps quite far outside the cylinder, whose measure can be made as small as one might desire.

26In the case of Accelerator Physics the maps will arise from Hamiltonian flows and will be analytic. With
heroic effort it could probably be possible to achieve maps of the form
M = exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) exp(: f5 :) exp(: f6 :) · · · exp(: g1 :)

with the g1, f
a
2 , f

c
2 , f3, f4, f5, f6 being any desired homogeneous polynomials and the fm with m > 6 being

small. (See Section 7.7 for the meaning of this notation.) In these considerations questions of differentiability
might be important and the distinction between ISpM(2n,R) [= Symp(n)] and Ham(n) might be relevant.
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Finally, we close this section with a related consideration. Suppose f(z) and g(z) are
two phase-space distributions. It would be nice to know whether or not two different phase-
space distributions could be sent into each other by a symplectic map. For example, as
already asked earlier, given the phase-space distribution coming out of some ion source or
electron gun, is there any possible collection of beamline elements that would transform
this distribution into some desired distribution at the end of some beamline or accelerator
complex? Mathematically stated, one would like to decompose phase-space distributions
into equivalence classes. This too is a deep question about which little is known.

6.8.3 Poincaré Integral Invariants

The volume invariant of Liouville’s theorem is actually the last in a hierarchy of invariants
called the Poincaré integral invariants. The first invariant in the series consists of a certain
2-dimensional integral over a 2-dimensional submanifold in phase space. The next consists
of a 4-dimensional integral over a 4-dimensional submanifold, etc. The last consists of a 2n
dimensional integral, which is just the volume of Liouville’s theorem.

A complete and proper discussion of all the Poincaré invariants requires the use of the
exterior calculus of differential forms. However, the first in the series of invariants is easily
discussed using ordinary calculus and the fundamental symplectic 2-form (δz, Jdz) intro-
duced earlier, and we will do so shortly. At this point it is worth noting that, in construct-
ing the general higher-order Poincaré invariants, the exterior calculus of differential forms is
used to fabricate general 2m-forms for m = 2, 3, · · · , n using as the only building block the
fundamental symplectic 2-form. The invariance of all these forms, including the last of the
hierarchy (m = n), which is simply the volume element, follows from the invariance (1.19) of
the fundamental symplectic 2-form. This invariance is in turn equivalent to the symplectic
condition (1.12). Thus, the symplectic condition is really the fundamental condition from
which everything else follows. To the author’s knowledge, the utility of the 2m-forms for
the intermediate m values 2 ≤ m < n is an open question. Finally it is worth remarking
that it is the symplectic structure at the classical level of mechanics that makes possible the
uncertainty principle at the quantum level.

Let Ri
2 be some initial 2-dimensional submanifold in phase space. To be more precise,

we construct it as follows. We imagine a 2-dimensional Euclidean space with coordinates
α,β, and consider a domain Γ2 in this space. See Figure 8.1 below. We map Γ2 into Ri

2 with
the aid of 2n relations of the form

zia = ga(α, β). (6.8.33)

That is, the functions g1 · · · g2n specify the mapping of Γ2 into Ri
2.

Next we will define a certain integral I i2 over Ri
2. Subdivide Γ2 into N rectangles with

each rectangle having sides dα and dβ. This subdivision of Γ2 will produce a corresponding
subdivision of Ri

2 into “parallelograms” with sides dzi and δzi. Here dzi is the vector formed
using (8.33) when only α is allowed to vary,

dzia = (∂ga/∂α)dα (6.8.34)

or, in vector notation,
dzi = ∂αgdα. (6.8.35)
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Γ

β

1

α

Figure 6.8.1: The domain Γ2 in α,β space. Also shown is its subdivision into rectangles of
sides dα, dβ and its boundary Γ1.

Similarly, δzi is the vector formed when only β is allowed to vary,

δzi = ∂βgdβ. (6.8.36)

Now, for each parallelogram in Ri
2, compute the quantity (δzi, Jdzi). By using the relations

(8.35) and (8.36) we find the result

(δzi, Jdzi) = (∂βg, J∂αg)dαdβ. (6.8.37)

The left side of (8.37) is the result of evaluating a 2-form in phase space for a small paral-
lelogram in Ri

2. The right side of (8.37) is a 2-form in α,β space. It is called the pullback
(into α,β space) of the form in phase space.27 We may summarize the situation as follows:
The functions ga provide a mapping of Γ2 in α,β space into Ri

2 in phase space, with small
rectangles in Γ2 mapped into small parallelograms in Ri

2. On phase space there is a 2-form,
namely (δzi, Jdzi), which induces the 2-form {(∂βg, J∂αg)dαdβ} back in the original α,β
space. See Exercise 8.3. We remark that in this terminology the integrand in the right side
of (4.47) is the pullback to the τ parameter space of the 1-form (4.41) in z space.

As a last step, form a Riemann sum over all parallelograms in Ri
2 and a corresponding

Riemann sum over all rectangles in Γ2. Upon continually refining the subdivision of Γ2 by
letting N go to infinity, we obtain the integrals and the relation

I i2 =

∫
Ri2

(δzi, Jdzi) =

∫
Γ2

(∂βg, J∂αg)dαdβ. (6.8.38)

27Why is the 2-form on the right side of (8.37) called a pullback? The relations (8.33) provide a mapping
from points in Γ2 to points in phase space. Suppose we regard this as a mapping in the forward direction.
It is sometimes described by saying that points in Γ2 are pushed forward into points in phase space. By
contrast, the relation (8.37) begins with a 2-form in phase space and yields a 2-form back in Γ2 space. If
points may be regarded as being pushed forward, then associated forms may be regarded as being related
by pulling back.
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Put another way, the integral over Γ2 on the right side of (8.38) is well defined; and, based on
(8.37), defines what is meant by the integral I i2 of the 2-form (δzi, Jdzi) over Ri

2. [We remark
that it can be shown, as desired, that the value of the right side of (8.38) is independent of
the choice of parameterization.]

Now suppose some symplectic mapM sends the points in Ri
2 to some other 2-dimensional

submanifold Rf
2 according to the rule (6.3). For this submanifold we can compute the

associated integral

If2 =

∫
Rf2

(δzf , Jdzf ). (6.8.39)

With the aid of (8.4) and its counterpart for δz, this integral can be pulled back from the
final phase space to the initial phase space, and then puled back further to α,β space to give
the result

If2 =

∫
Rf2

(δzf , Jdzf ) =

∫
Ri2

(Mδzi, JMdzi) =

∫
Γ2

(M∂βg, JM∂αg)dαdβ. (6.8.40)

Here we have used the relations (8.4) and (8.34) to write

dzfa = (Mdzi)a =
∑
c

Macdz
i
c =

∑
c

Mac(∂gc/∂α)dα = (M∂αg)adα, (6.8.41)

and similarly for δzf . But, from the symplectic condition, we have the result

(M∂βg, JM∂αg) = (∂βg,M
TJM∂αg) = (∂βg, J∂αg). (6.8.42)

See also (1.19). It follows that

If2 =

∫
γ2

(M∂βg, JM∂αg)dαdβ =

∫
(∂βg, J∂αg)dαdβ = I i2. (6.8.43)

Under the action of a symplectic map, the 2-dimensional integral based on the fundamental
symplectic 2-form is conserved,

If2 = I i2. (6.8.44)

Finally, if we wish, we may associate the points on Ri
2 with the members of some ensem-

ble at some initial time ti. Assuming that the members at the ensemble are governed by
some Hamiltonian H(z, t), we may follow, as before, the trajectories of the members of the
ensemble through augmented phase space to some later instant tf when they terminate on
Rf

2 . Since H generates a symplectic map, we have the relation (8.44). Integrals over sums
of projected signed areas are conserved. Recall Exercise 1.2.

6.8.4 Connection between Surface and Line Integrals

There is an intimate connection between the 2-form (δz, Jdz) and the differential form (1-
form)

(z, Jdz). (6.8.45)
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Moreover, we will learn that this connection and the relation (8.44) are the inspiration for
the differential form (6.3).

Let Γ1 be the boundary of Γ2 as illustrated in Figure 8.1. View Γ1 as a closed path in
α,β space, and parameterize it using the parameter τ ∈ [0, 1] by introducing functions α(τ)
and β(τ). Under the mapping (8.33) there is an associated closed phase-space path in Ri

2,
call it Ri

1, given by the relations

zia(τ) = ga(α(τ), β(τ)). (6.8.46)

By construction, Ri
1 is the boundary of Ri

2. Now form the closed phase-space path integral

I i1 =

∫
Ri1

(zi, Jdzi). (6.8.47)

To be more explicit, take the differential of (8.46) to find the result

dzia(τ) = (∂ga/∂α)dα + (∂ga/∂β)dβ (6.8.48)

or, in vector notation,
dzi = ∂αgdα + ∂βgdβ. (6.8.49)

These results enable us to write the relations

(zi, Jdzi) = (zi, J∂αg)dα + (zi, J∂βg)dβ, (6.8.50)

I i1 =

∫
Ri1

(zi, Jdzi) =

∫
Γ1

[(zi, J∂αg)dα + (zi, J∂βg)dβ]

=

∫ 1

0

dτ [(zi, J∂αg)(dα/dτ) + (zi, J∂βg)(dβ/dτ)]. (6.8.51)

Observe that the left side of (8.50) is a differential 1-form in phase space, and the right side
is a differential 1-form in α,β space. In analogy to our earlier discussion, the differential
form in α,β space is the pullback of the 1-form in phase space. And the integrand on the
far right side of (8.51) is a differential 1-form in τ space that is a pullback from α, β space,
and the pullback of the pullback from phase space.

Introduce the functions Cα and Cβ by the rules

Cα(α, β) = (zi, J∂αg) = (g, J∂αg), (6.8.52)

Cβ(α, β) = (zi, J∂βg) = (g, J∂βg). (6.8.53)

They allow us to write the integral over the closed path Γ1 in the more compact form

I i1 =

∫
Γ1

[(zi, J∂αg)dα + (zi, J∂βg)dβ] =

∫
Γ1

Cαdα + Cβdβ. (6.8.54)

Now apply Green’s (or Stokes’) theorem to convert the path integral over Γ1 to a surface
integral over Γ2. Doing so gives the result

I i1 =

∫
Γ1

Cαdα + Cβdβ =

∫
Γ2

(∂Cβ/∂α− ∂Cα/∂β)dαdβ. (6.8.55)
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However, from (8.52) and (8.53) we find the results

∂Cβ/∂α = (∂αg, J∂βg) + (g, J∂α∂βg), (6.8.56)

∂Cα/∂β = (∂βg, J∂αg) + (g, J∂β∂αg). (6.8.57)

It follows from the symmetry of mixed partials and the antisymmetry of J that there is the
relation

∂Cβ/∂α− ∂Cα/∂β = 2(∂αg, J∂βg). (6.8.58)

Consequently, (8.55) can be rewriten in the form

I i1 = 2

∫
Γ2

(∂αg, J∂βg)dαdβ. (6.8.59)

Finally, upon comparing (8.38) and (8.59), we find the key result

I i1 = −2I i2. (6.8.60)

Note that this result is completely general in that it holds for any surface Ri
2 and its boundary

Ri
1. We remark that one of the features of the exterior calculus of differential forms, see

the beginning of Subsection 6.8.3, is that it incorporates the Poincaré lemma of Exercise
1.1 and its generalizations in a systematic way so that relations like (8.60) become routinely
obvious.

Now suppose, as in Subsection 6.8.2, that the symplectic map M sends Ri
2 to Rf

2 ac-
cording to the rule (8.3). It will then send Ri

1 to Rf
1 where Rf

1 is the boundary of Rf
2 . Let

If1 be the result of integrating the differential (zf , Jdzf ) over the path Rf
1 ,

If1 =

∫
Rf1

(zf , Jdzf ). (6.8.61)

Based on the result just found, there is the relation

If1 = −2If2 , (6.8.62)

no matter what the nature of M is save that it be differentiable and invertible. (Given Ri
2

and Ri
1, Rf

2 and Rf
1 must be well defined.) But if M is symplectic, then (8.44) must hold,

and we conclude from (8.60) and (8.62) that there must also be the relation

If1 = I i1. (6.8.63)

When written out in full, the relation (8.63) reads∫
Rf1

(zf , Jdzf ) =

∫
Ri1

(zi, Jdzi). (6.8.64)

By using (8.4) to change variables, the integral on the left side of (8.64) can be rewritten as∫
Rf1

(zf , Jdzf ) =

∫
Ri1

(zf , JMdzi). (6.8.65)
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Now combine (8.64) and (8.65) to find the result∫
Ri1

[(zf , JMdzi)− (zi, Jdzi)] = 0. (6.8.66)

We know that a necessary and sufficient condition for this result to hold for any closed path
Ri

1 in phase space is that the differential form

(zf , JMdzi)− (zi, Jdzi) (6.8.67)

be exact. But, in slightly different notation (identify zi with z and zf with Z), this is the
differential form (6.4). And we know that a necessary and sufficient condition for this form
to be exact is that M be a symplectic map. What we have found is that (8.64) or (8.66)
holding for all closed paths is a necessary and sufficient condition forM to be a symplectic
map.

We close this subsection with some comments. Recall the relation (6.30). There is also
the simple result

d(
∑
j

pjqj) =
∑
j

(pjdqj + qjdpj). (6.8.68)

Combining (6.30) and (8.68) gives the relation∑
j

pjdqj = −[(z, Jdz)− d(
∑
j

pjqj)]/2. (6.8.69)

Since by definition the quantity d(
∑

j pjqj) is an exact differential, there must be the result∫
R1

d(
∑
j

pjqj) = 0 (6.8.70)

for any closed phase-space path R1. Therefore from (8.69) and (8.70) we have the general
relation ∫

R1

∑
j

pjdqj = −(1/2)

∫
R1

(z, Jdz) = −(1/2)I1 (6.8.71)

for any closed phase-space path R1. It follows that (8.64) can also be written as∫
Rf1

∑
j

PjdQj =

∫
Ri1

∑
j

pjdqj. (6.8.72)

This relation, although it does not appear to treat the coordinates and momenta on an equal
footing, is still true whenever the Q,P and the q, p are related by a symplectic map M,
and frequently occurs in the literature. [An integral quantity of the form appearing on the
left (or right) side of (8.72) is sometimes called a circulation because, if the qi are regarded
as the coordinates of a “position” vector r and the pi are regarded as being proportional
to the coordinates of a “velocity” vector v, the integrand is of the form v·dr.] Evidently
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(8.72) holding for all closed paths is also a necessary and sufficient condition for M to be
symplectic. Finally, we note that combining (8.60) and (8.71) gives the relation∫

R1

∑
j

pjdqj = I2 =

∫
R2

(δz, Jdz) (6.8.73)

for any phase-space surface R2 whose boundary is the closed phase-space path R1.28

6.8.5 Poincaré-Cartan Integral Invariant

Suppose we are given a family of symplectic mapsN (t). Then we know there is an associated
generating Hamiltonian H(z, t). Recall Theorem 4.2. Alternatively, given a Hamiltonian,
we know from Theorem 4.1 that it generates a family of symplectic maps. In this context,
let Ci be a closed path in the associated (2n+ 1) dimensional augmented phase space. See
Figure 8.2. Specifically, for a parameter τ ∈ [0, 1], we describe Ci by (2n + 1) relations of
the form

zia(τ) = ga(τ), (6.8.74)

ti(τ) = g2n+1(τ). (6.8.75)

Note that different points of Ci may have different values of t.
View each point of Ci as an initial condition. For each point on Ci launch a trajectory

governed by the Hamiltonian H(z, t), and follow this trajectory to some final time tf . Allow
this time to vary from trajectory to trajectory by specifying yet one more relation of the
form

tf (τ) = g2n+2(τ). (6.8.76)

So doing produces a set of final conditions that constitutes another closed path Cf in aug-
mented phase space. [Note that all the functions appearing on the right sides of (8.74)
through (8.76) are assumed to be periodic in τ with period 1.] Put another way, Ci and Cf

are any two augmented phase-space paths that surround a common bundle of phase-space
trajectories produced by H.

For augmented phase space consider the differential form

(
∑
j

pjdqj)−Hdt. (6.8.77)

Then, according to Poincaré and Cartan, there is the path-integral relation∫
Cf

[(
∑
j

pjdqj)−Hdt] =

∫
Ci

[(
∑
j

pjdqj)−Hdt]. (6.8.78)

Note that in the special case that t is constant on both Ci and Cf , (8.78) reduces to (8.72).

28We remark that sometimes the differential form
∑
j pjdqj is called the Liouville form. By the same

token, the differential form (8.45) could be called the Poincaré form. There does not seem to be any name
for the differential form

∑
j qjdpj . Like the Liouville form in (8.72) and the Poincaré form in (8.64), it too

is “invariant” under the action of symplectic maps. See Exercise 8.7.
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Figure 6.8.2: The closed paths Ci and Cf in augmented phase space and the trajectories
that join them.

There are several ways to prove the Poincaré-Cartan relation. Our proof will use vari-
ational calculus. The trajectories originating on Ci and terminating on Cf form a two-
dimensional surface in augmented phase space that is topologically equivalent to a cylinder.
Indeed, points on this surface can be viewed as the image of a two-dimensional parameter
space region described by τ and t with

τ ∈ [0, 1], (6.8.79)

t ∈ [g2n+1(τ), g2n+2(τ)], (6.8.80)

and the understanding that the lines τ = 0 and τ = 1 are to be identified. Introduce for the
integral on the right side of (8.78) the short-hand notation∫

Ci
∗∗, (6.8.81)

and similarly for the integral on the left side. Also, let∫
−Cf
∗∗ (6.8.82)

denote the integral on the left side of (8.78) with the path traversed in the opposite sense.
With these understandings, (8.78) can be rewritten in the form∫

Ci
∗ ∗+

∫
−Cf
∗∗ = 0. (6.8.83)
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1
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C
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f

t

τ

ε

Figure 6.8.3: The t, τ parameter space. The left and right boundaries are the curves ti(τ)
and tf (τ), and their augmented phase-space images are the paths Ci and Cf . Also shown
as dashed lines are pairs of parameter-space paths traversed in opposite directions whose
images are augmented phase-space trajectories traversed in opposite directions. Note that
the lines τ = 0 and τ = 1 have the same image in augmented phase space.

The paths Ci and −Cf are the images of the left and right boundaries of the parameter-space
region. See Figure 8.3.

Divide the τ interval (8.79) into N equal pieces of size ε = 1/N . For each subdivision
consider pairs of parameter-space paths of constant τ traversed in opposite directions. See
Figure 8.3. By construction, their images in augmented phase-space are trajectories for the
Hamiltonian H traversed forward and backward in time. Imagine integrating the differential
form (8.77) over these pairs of augmented phased-space trajectories. So doing will give a
null net result because, by construction, the integrals so produced cancel in pairs. Add these
self-canceling path integrals to those occurring in (8.83). Evidently the sum of integrals thus
obtained can be reorganized into a sum of integrations over N thin loops `j,

∫
Ci
∗ ∗+

∫
−Cf
∗ ∗+ canceling integral pairs =

N∑
j=1

∫
`j

∗ ∗ . (6.8.84)

See Figures 8.4 and 8.5.

Now consider an individual loop. It can be viewed as a sum of top and bottom halves.
See Figure 8.6. Each half can in turn be viewed as the result of deforming (in parameter
space) a line of constant τ . See Figure 8.7. Note that the image of a line of constant τ in
parameter space is a trajectory for the Hamiltonian H in augmented phase space.

Observe that by definition the sum of a path integral over a trajectory of H and its
reverse, see Figure 8.7, cancel. It follows that the integral over any loop `j is the sum of the
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t

τ

Figure 6.8.4: Two adjacent loops in parameter space.

t

z

Figure 6.8.5: The loops in augmented phase space corresponding to the two parameter-space
loops of Figure 8.4. Note that the long sides of the loops are trajectories for the Hamiltonian
H, and the short sides are pieces of Ci and Cf .

= +

Figure 6.8.6: The integral over a loop is the sum of integrals over top and bottom halves.
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= + δup

down= + δ

Figure 6.8.7: The integral over a half loop is the integral over a trajectory of H or its reverse
plus the change in the integral resulting from deforming this path.

“up” and “down” variations about a trajectory of H. See Figures 8.6 and 8.7.∫
`j

∗∗ = δup

∫
∗ ∗+ δdown

∫
∗ ∗ . (6.8.85)

But, from Hamilton’s (modified) principle, we know that the functional formed by inte-
grating (8.77) over paths in augmented phase space has an extremum on paths that are
trajectories of H. See Exercise 8.8 for details. Therefore each term on the right side of
(8.85) vanishes through terms of order ε, and we have the result∫

`j

∗∗ = 0 +O(ε2). (6.8.86)

Insert this result into (8.84) to find the relation∫
Ci
∗ ∗+

∫
−Cf
∗∗ = 0 +O(Nε2). (6.8.87)

Now let N → ∞ and, correspondingly, ε → 0. Then Nε2 → 0, and (8.87) becomes the
desired relation (8.83) or (8.78).

Exercises

6.8.1. Suppose a “burst” of protons is injected into a uniform electric field E = E0ez.
Assume the burst is initially concentrated at x and y = 0 and vx and vy = 0, but is
uniformly spread in z and vz about the values z = 0 and vz = v0

z within intervals ±∆z and
±∆vz. Thus the problem is essentially that of one-dimensional motion along the z axis.
The initial distribution is shown schematically in Figure 8.8. Find the distribution at later
times, and verify Liouville’s theorem. Do not assume that ∆z and ∆vz are infinitesimal.
Neglect Coulomb interactions between particles.
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Figure 6.8.8: Initial phase-space distribution for Exercise 8.1.

6.8.2. Problem about Liouville’s theorem and divergence theorem and how density trans-
forms.

6.8.3. Exercise showing that, in the case of electromagnetic fields, Liouville’s theorem also
holds in terms of spatial coordinates and mechanical momenta.

6.8.4. Verify (8.8).

6.8.5. Construct a nonsymplectic but volume preserving family of maps N (τ) that will send
any symplectic camel through the eye of any needle.

6.8.6. Show that for elliptic camels there is the result

Volume of E2n(r) = Volume of E2n
nf (r, λ) = r2nπn/[(n!)(λ1λ2λ3 · · ·λn)]. (6.8.88)

Show the impossibility of sending a symplectic cigar into a symplectic ball of the same
volume using a symplectic map.

6.8.7. Show that (8.72) can also be written as∫
Rf1

∑
j

QjdPj =

∫
Ri1

∑
j

qjdpj. (6.8.89)

Consider the differential form

− [(z, Jdz)− d(λ
∑
j

pjqj)]/2 (6.8.90)

where λ is a parameter. Evaluate this form for the cases λ = −1, 0, 1. Show that it is
invariant for all λ.
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6.8.8. Refer to Exercise 6.2. Show that the Poincaré-Cartan relation (8.78) can also be
written in the more democratic form∫

Cf
[(z, Jdz)/2 +H(z, t)dt] =

∫
Ci

[(z, Jdz)/2 +H(z, t)dt]. (6.8.91)

6.8.9. The observant reader may object that, in deriving the Poincaré-Cartan invariant of
Section 6.8.5, we invoked Hamilton’s modified principle (1.6.11) and (1.6.12) in an unusual
way because we employed paths in augmented phase space along which the time t may
possibly both increase and decrease. So, some special explanation is required. To take into
account the possibility of this more general case, suppose the path in (1.6.11) is parameter-
ized by considering the qi, the pi, and t itself to be functions of some parameter σ where
σ ∈ [0, 1]. Introduce the notation

q′i = dqi/dσ, p
′
i = dpi/dσ, t

′ = dt/dσ. (6.8.92)

Verify that (1.6.11) can be rewritten in the form

A =

∫ 1

0

dσA (6.8.93)

where
A(q, q′, p, p′, t, t′) =

∑
i

piq
′
i −Ht′. (6.8.94)

Show, employing the usual variational calculus machinery, that the variation in A for fixed
end points q, p, t is given by the relation

δA =

∫ 1

0

dσ{
∑
i

[(d/dτ)(∂A/∂q′i)− ∂A/∂qi]δqi +
∑
i

[(d/dτ)(∂A/∂p′i)− ∂A/∂pi]δpi

+ [(d/dτ)(∂A/∂t′)− ∂A/∂t]δt}+O(ε2). (6.8.95)

Next show that the various partial derivatives in (8.95) are given by the relations

∂A/∂q′i = pi, ∂A/∂qi = −t′(∂H/∂qi), (6.8.96)

∂A/∂p′i = 0, ∂A/∂pi = q′i − t′(∂H/∂pi), (6.8.97)

∂A/∂t′ = −H, ∂A/∂t = −t′(∂H/∂t). (6.8.98)

From these results, and Hamilton’s equations of motion (1.5.11) augmented by (1.5.14),
verify the following conclusions about the terms appearing in the integrand of (8.95):

[(d/dτ)(∂A/∂q′i)− ∂A/∂qi] = dpi/dτ + t′(∂H/∂qi) = p′i − t′ṗi = 0, (6.8.99)

[(d/dτ)(∂A/∂p′i)− ∂A/∂pi] = t′(∂H/∂pi)− q′i = t′q̇i − q′i = 0, (6.8.100)

[(d/dτ)(∂A/∂t′)− ∂A/∂t] = −dH/dτ + t′(∂H/∂t) = −dH/dτ + t′(dH/dt) = 0. (6.8.101)

We see that in the general case, as claimed, the variation in A about a trajectory is given
by the relation

δA = 0 +O(ε2). (6.8.102)
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6.9 Poincaré Surface of Section and Poincaré Return

Maps

In Section 6.4.1 we saw that Hamiltonian flows between two times ti and tf generated
symplectic maps. In this section we will study two generalizations of this result. The first,
the Poincaré surface of section map, is related to the concept of using a coordinate as an
independent variable. For an application of Poincaré surface of section maps see Section
21.7.2.

The second is related to long-term behavior. Recall that Section 1.4.3 illustrated how the
determination of the long-term behavior of a periodically driven system could be reduced to
the study of the behavior of a certain map, the stroboscopic map, under repeated iteration.
For some Hamiltonian problems a similar simplification can be obtained by the use of a
Poincaré return map. How this can be done will be a second generalization.

Poincaré maps may have other uses as well.

6.9.1 Poincaré Surface of Section Maps

Consider the case of conservative Hamiltonian flows in 2n dimensional phase space. That
is, we assume ∂H/∂t = 0. In this case we know that H is an integral of motion. Let g and
h be two phase-space functions and let Sg and Sh be two (2n−2) dimensional submanifolds
in phase space defined by the equations

Sg : H(z) = E and g(z) = 0, (6.9.1)

Sh : H(z) = E and h(z) = 0. (6.9.2)

Note that each of the equations in (9.1) defines a (2n − 1) dimensional submanifold. For
their intersection to define a (2n − 2) dimensional submanifold Sg, the gradients ∂zH and
∂zg must not be colinear. The analogous condition must also hold for Sh.

Next assume that Sg is transverse to the flow generated by H. What does this mean?
Suppose z is some point in Sg. Then, we want z to leave Sg under both the foward and
backward time evolution generated by H. Under time evolution the change in z is given by

dz = (J∂zH)dt. (6.9.3)

In order for z to leave Sg, the quantity dz must have some component in at least one of the
directions ∂zH and ∂zg. Suppose we require that dz have some component in the direction
of ∂zg,

(∂zg, dz) 6= 0. (6.9.4)

In view of (9.3), this requirement is equivalent to the condition

(∂zg, J∂zH) = [g,H] 6= 0. (6.9.5)

We also observe that

(∂zH, dz) = (∂zH, J∂zH)dt = 0 (6.9.6)
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due to the antisymmetry of J . Therefore, (9.5) is a necessary and sufficient condition for
z to leave Sg. Finally, we note that (9.5) guarantees that ∂zH and ∂zg cannot be colinear
(proportional). Thus (9.5) is a necessary and sufficient condition both for Sg to be defined
by (9.1) and for the flow to cross Sg. The surface Sg is said to be a surface of section for
the flow generated by H.

Suppose Sh is also a surface of section. Suppose further that for some region Rg
2n−2 of

Sg the points z ∈ Rg
2n−2 have the property that their phase-space trajectories generated by

H, when followed sufficiently forward in time, arrive at some region Rh
2n−2 in Sh. Note that

the interval of time required for this to occur may vary from trajectory to trajectory. Also,
since H does not depend on the time, without loss of generality we may assume that all
trajectories are launched at some common initial time t = ti. See Figure 9.1. Then, by this
operation, we have produced a mapping M, called a Poincaré surface of section map, that
sends Rg

2n−2 to Rh
2n−2. Moreover, M is invertible since, given any point in Rh

2n−2, we can
always follow trajectories backward in time until they reach Rg

2n−2.

Time

Axis

Phase Space Axes

S

S
g

h

Figure 6.9.1: Two surfaces of section in augmented phase space. Trajectories leaving Sg are
assumed to eventually enter and cross Sh, perhaps at different times.

Let Rg
1 be any closed path in Rg

2n−2, and let Rh
1 be its image in Rh

2n−2 under the action
of M. Then, since Rg

1 and Rh
1 are related by following trajectories generated by H, the

Poincaré-Cartan relation (8.78) takes form∫
Rg1

[(
∑
j

pjdqj)−Hdt] =

∫
Rh1

[(
∑
j

pjdqj)−Hdt]. (6.9.7)

Since we assumed all trajectories on Rg
1 were launched at t = ti, we have dt = 0 for the

integral on the left side of (9.7). Therefore, we have the result∫
Rg1

[(
∑
j

pjdqj)−Hdt] =

∫
Rg1

∑
j

pjdqj. (6.9.8)

Also, since all trajectories lie on the surface H = E , see (9.1) and (9.2), we have the result∫
Rh1

(−H)dt = −E
∫
Rh1

dt = 0 (6.9.9)
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because Rh
1 is a closed curve.29 Therefore we have the result∫

Rh1

[(
∑
j

pjdqj)−Hdt] =

∫
Rh1

∑
j

pjdqj. (6.9.10)

It follows, for a Poincaré map, that∫
Rg1

∑
j

pjdqj =

∫
Rh1

∑
j

pjdqj. (6.9.11)

In some cases still more can be said. Suppose it can be arranged, perhaps by a suitable
choice of variables, that g(z) and h(z) take the form

g(z) = 0→ q1 = α, (6.9.12)

h(z) = 0→ q1 = β, (6.9.13)

when α and β are certain constants. Then we have dq1 = 0 on Rg
1 and Rh

1 , and (9.11)
becomes the relation ∫

Rg1

n∑
j=2

pjdqj =

∫
Rh1

n∑
j=2

pjdqj. (6.9.14)

Let z be an initial condition in Rg
2n−2. We know the value of q1 from (9.12). Suppose

q2, p2 · · · qn, pn are selected to lie in Rg
2n−2. Then p1 can be determined, perhaps up to a

sign, from the condition H = E . The sign ambiguity can be resolved by requiring that
the trajectory launched from Rg

2n−2 reach Rh
2n−2 when traced forward in time. Thus, we

may assume that points in Rg
2n−2 (and Rh

2n−2) are described by the (2n − 2) coordinates
q2, p2 · · · qn, pn; and the Poincaré map M acts on this (2n − 2) dimensional space. Finally,
from the results of Section 6.8.4, the relation (9.14) implies that the Poincaré map M is a
symplectic map on this (2n− 2) dimensional space.

6.9.2 Poincaré Return Maps

Many Hamiltonian flows of physical interest have the property that they repeatedly re-enter
some region of phase space. For example, in a Penning trap or a mirror machine, particles
repeatedly return to some midplane region. In a circular accelerator or storage ring, particles
repeatedly pass through any given beam-line element. In celestial and galactic dynamics,
trajectories sufficiently close to a periodic trajectory nearly repeat themselves.

For such systems there are surfaces of section that are crossed repeatedly by a bundle of
trajectories, and such a surface can be used to define a Poincaré return map. Let Sg be such
a surface of section, and let Rg

2n−2 be some region in Sg. For any point z ∈ Rg
2n−2 suppose

the trajectory launched with these initial conditions returns to Sg. Then, by following these
trajectories, we obtain a mapping of Sg onto itself,

M : Sg → Sg. (6.9.15)

29Note that we could have used the same argument to deduce (9.8) without the assumption that all points
on Sg are launched with the same times ti.
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Moreover, like the case of a stroboscopic map, the long-term behavior of such a system can
be found by studying the repeated action ofM. See (1.4.34). Finally, if coordinates can be
selected so that (9.12) holds, the map M is symplectic.

Consider, for example, a circular accelerator or storage ring as shown schematically in
Figure 1.2.6. At the point O we may introduce Cartesian coordinates as in Figure 1.6.1 so
that particle trajectories repeatedly cross the plane z = 0 as they go around the ring. For
the Hamiltonian we will use Heff as given by (1.6.34). In particular near O we will employ
the conjugate coordinate pairs (z, pz), (x, px), (y, py), and (t, pt), and the independent time-
like variable τ . By construction Heff is conserved, and we may restrict our attention to
trajectories for which Heff = 0, in which case (1.6.5) holds. Given the values of (z, pz),
(x, px), (y, py), and (t, pt) in the plane z = 0, we can find pz as in (1.6.6). Starting with
these initial conditions, we follow a trajectory until it again crosses z = 0. In this way we
find a mapping M of the surface of section into itself,

M : (x, px), (y, py), (t, pt)→ (x̄, p̄x), (ȳ, p̄y), (t̄, p̄t). (6.9.16)

Moreover, we have the relation∫
R1

(pxdx+ pydy + ptdt) =

∫
R̄1

(pxdx+ pydy + ptdt) (6.9.17)

for any closed path R1 in the phase-space surface z = 0 and its image R̄1 under the action
of M. Therefore, M is a symplectic map. Finally, determining the long-term behavior of
trajectories in the ring is equivalent to determining the effect of the repeated action of M
on points in the surface of section.

6.10 Overview and Preview

We have studied symplectic maps and have seen their intimate connection with Hamiltonian
dynamics. Thus, a key goal is to be able to produce, manipulate, and apply symplectic maps.

We have also learned that symplectic maps can be produced using mixed-variable gen-
erating functions. However, while often useful, this method has some disadvantages. As we
have seen, the relations between old and new variables are initially implicit, and must be
made explicit. This fact makes it difficult to apply, multiply, and invert symplectic maps
specified in terms of generating functions.

In subsequent chapters we will learn that symplectic maps can also be produced using
Lie transformations. This approach has the advantage of being explicit. Moreover, we will
develop tools for inverting, multiplying, and otherwise manipulating symplectic maps in
Lie form. Finally, the use of Lie methods yields physical insight and facilitates high-order
perturbation theory.
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[4] C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First
Order, Parts I and II, Holden-Day (1965).

[5] H. Goldstein, Classical Mechanics, Addison-Wesley (1980).

[6] J.V. Jose and E.J. Salatan, Classical Dynamics: A Contemporary Approach, Cam-
bridge University Press (1998).
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Chapter 7

Lie Transformations and Symplectic
Maps

Chapter 6 showed that there is an intimate connection between symplectic maps and Hamil-
tonian flows, and showed how symplectic maps could be produced (in implicit form) with the
aid of mixed-variable generating functions. This chapter explores how Lie transformations
can be used for the same purpose, and how their use produces symplectic maps in explicit
form. It also displays how the group of all symplectic maps is a Lie group whose Lie algebra
is the Poisson bracket Lie algebra of all phase-space functions.

7.1 Production of Symplectic Maps

Let f(z, t) be any dynamical variable, and let exp(: f(z, t) :) be the Lie transformation
associated with f . (Here, as in Section 6.1, the time t simply plays the role of a parameter.)
This Lie transformation can be used to define a mapM that produces new variables z(z, t)
by the rule

za(z, t) = exp(: f(z, t) :)za , a = 1, 2, · · · 2n. (7.1.1)

The relations (1.1) can also be expressed more compactly by writing

z =Mz, (7.1.2)

M = exp(: f :). (7.1.3)

Note that in writing (1.1) we have indicated explicitly the arguments of f . Generally these
arguments will be omitted for simplicity of notation. However, it is always important to
keep in mind what these arguments are, and they should and will always be stated explicitly
whenever there is any possibility for confusion.

Consider the Poisson brackets of the various z’s with each other. Using the definition
(1.1), the isomorphism condition (5.4.14), and (5.4.22), we find the result

[za, zb]z = [exp(: f :)za, exp(: f :)zb]z

= exp(: f :)[za, zb]z (7.1.4)

= exp(: f :)Jab = Jab.

753
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It follows from (1.4) that M is a symplectic map! What has been shown is that every
Lie transformation may be viewed as a symplectic map. Consequently, Lie transformations
produce an endless supply of symplectic maps. And, unlike the case for mixed-variable
generating functions (see Section 6.5.1), these maps are immediately in explicit form. Finally,
we see from (5.4.15) and its generalization that products of Lie transformations also produce
symplectic maps.

Consider the map M(λ) depending on the parameter λ and defined by the relation

M(λ) = exp(λ : f :). (7.1.5)

This map produces the transformation

z(z, t;λ) = exp(λ : f :)z

= z + λ : f : z + (λ2/2!) : f :2 z + · · · . (7.1.6)

Evidently we have the relations

M(0) = I = identity map, (7.1.7)

M(1) =M. (7.1.8)

Next letM(λ1) andM(λ2) be two maps of the form (1.5) corresponding to the λ values λ1

and λ2, respectively. Consider the product map given by the relation

M(λ1)M(λ2) = exp(λ1 : f :) exp(λ2 : f :). (7.1.9)

Because Lie operators are linear operators, their behavior is in many ways analogous to that
of matrices. In particular, observe that we may attempt to combine the exponents appearing
on the right side of (1.9) into a single exponent using the Baker-Campbell-Hausdorff (BCH)
series. See (3.7.33) and (3.7.34). According to (5.3.14), the Lie operators λ1 : f : and λ2 : f :
commute. Consequently, the exponents in (1.9) simply add to give the result

M(λ1)M(λ2) = exp(λ1 : f :) exp(λ2 : f :)

= exp(λ1 : f : +λ2 : f :)

= exp((λ1 + λ2) : f :)

= M(λ1 + λ2). (7.1.10)

Section 6.2 showed that the set of all symplectic maps forms a group. The relation (1.10)
shows that the subset of symplectic maps given by (1.5) forms a one-parameter subgroup
of symplectic maps. Moreover (1.10), together with (1.7) and (1.8), shows that any Lie
transformation lies on a one-parameter subgroup of symplectic maps. That is, any Lie
transformation is continuously connected to the identity map I by a path whose points are
all elements of some common subgroup of symplectic maps.

We have seen that Lie transformations produce symplectic maps that act on the phase-
space variables z. According to (5.4.11), Lie transformations also act on general functions.
Let gold(z, t) be any function of the phase-space variables z and perhaps the time t. Then
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the Lie transformation (1.3), using (5.4.11), produces a new function gnew(z, t) according to
the rule

gnew(z, t) = Mgold(z, t) = exp(: f :)gold(z, t)

= gold(exp(: f :)z, t) = gold(z(z, t), t)

= gold(Mz, t). (7.1.11)

Note that the relation (1.11) is analogous to (6.3.6).
The symplectic map defined by (1.3) has the particular property that f is an invariant

function for the map. That is, there is the relation

f(z, t) = f(z, t) , or fnew(z, t) = f old(z, t). (7.1.12)

To see the truth of this assertion, apply (5.4.11) to the case where g = f . We find, using
the notation of (1.1), the result

exp(: f :)f(z, t) = f(z, t). (7.1.13)

However, using the expression (5.4.2), we also obtain the result

exp(: f :)f(z, t) = f + [f, f ] + [f [f, f ]]/2! + · · ·
= f(z, t) (7.1.14)

since the Poisson bracket [f, f ] is zero by the antisymmetry condition. Comparison of (1.13)
and (1.14) shows that (1.12) is indeed correct. Note again that in all these calculations, the
time t plays no essential role and may be regarded simply as a parameter.

Suppose the symplectic map exp(− : f(z, t) :) is applied to both sides of (1.1). We find
the result

exp(− : f :)za = exp(− : f :) exp(: f :)za. (7.1.15)

Consider first the problem of evaluating the right side of (1.15). Observe that the Lie
operators : f : and − : f : commute. Consequently, the exponents on the right side of (1.15)
can be added to give the result

exp(− : f :) exp(: f :) = exp(: 0 :) = I. (7.1.16)

Correspondingly, when read from right to left, (1.15) may be rewritten in the form

za = exp(− : f :)za. (7.1.17)

The right side of (1.17), which is the left side of (1.15), can be viewed in two ways. First,
both f and the za can be regarded as functions of z (and perhaps the time t), and all
indicated Poisson brackets are to be taken with respect to the variables z. The result of
these operations is simply to produce the functions za as indicated by the left side of (1.17).
Alternatively, f may be viewed as a function of z by writing the relation

f(z, t) = f ∗(z, t) = f(z(z, t), t). (7.1.18)
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See (6.3.3) and (6.3.5). Then, thanks to the preservation of Poisson brackets under sym-
plectic maps as expressed by (6.3.11) and (6.3.21), the relation (1.17) can be written in the
form

za(z, t) = exp(− : f ∗(z, t) :)za (7.1.19)

where now all Poisson brackets are to be taken with respect to the variables z. However,
the invariance condition (1.12) can be written in the form

f ∗(z, t) = f(z, t) = f(z, t). (7.1.20)

Consequently, (1.17) can also be written in the final form

za(z, t) = exp(− : f(z, t) :)za (7.1.21)

where all Poisson brackets are to be taken with respect to the variables z. What has been
shown is that if M is given by the relations (1.1) through (1.3), then, when due regard is
taken for the variables involved, the inverse relation (1.21) can be written in the compact
form

z =M−1z (7.1.22)

with
M−1 = exp(− : f :). (7.1.23)

Exercises

7.1.1. Verify in detail the steps leading from (1.15) to (1.23).

7.1.2. Suppose f and g are two phase-space functions in involution. That is,

[f, g] = 0. (7.1.24)

Show from the power series definition (5.4.1) that in this case there is the relation

exp(: f :) exp(: g :) = exp(: f + g :). (7.1.25)

See Exercise 3.7.11.

7.1.3. Consider the map of Exercise 5.4.6 written in the form

q(q, p) = exp(: f :)q = q(1− λp)2, (7.1.26)

p(q, p) = exp(: f :)p = p/(1− λp). (7.1.27)

Verify by direct computation that [q, p]z = 1. Verify that f = λqp2 is an invariant func-
tion, that is f(q, p) = f(q, p). Solve (1.26) and (1.27) for q(q, p), p(q, p). Verify by direct
computation that [q, p]z = 1. Verify directly that M−1 is given by (1.23).

7.1.4. Repeat Exercise 1.3 for the f of Exercise 5.4.5.
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7.2 Realization of the Group Sp(2n) and Its Subgroups

7.2.1 Realization of General Group Element

Let M be the map given by the relation

M : z → z = Mz, (7.2.1)

where M is a symplectic matrix. Then, according to Exercise 6.2.1,M is a symplectic map.
Since M is a symplectic matrix, it can be written in the form

M = PO = exp(JSa) exp(JSc). (7.2.2)

See (3.8.1) and (3.8.24).
Define a quadratic polynomial fa2 in terms of the matrix Sa appearing in the decompo-

sition (2.2) by the relation

fa2 = −(1/2)
∑
de

Sadezdze. (7.2.3)

Now consider the Lie operator : fa2 :. Suppose this Lie operator acts on the various z’s. We
find the result

: fa2 : zb = −(1/2)
∑
de

Sade[zdze, zb]

= −(1/2)
∑
de

Sade{[zd, zb]ze + [ze, zb]zd}

= −(1/2)
∑
de

Sade{Jdbze + Jebzd}

=
∑
d

(JSa)bdzd. (7.2.4)

Here use has been made of the antisymmetry of J and the symmetry of Sa. Using matrix
and vector notation, (2.4) can also be written in the more compact form

: fa2 : z = (JSa)z. (7.2.5)

From this form it is easy to see that there is the general relation

: fa2 :m z = (JSa)mz. (7.2.6)

Finally, it follows from (2.6) that we also have the relation

exp(: fa2 :)z = exp(JSa)z = Pz. (7.2.7)

In a similar way, define a quadratic polynomial f c2 in terms of the matrix Sc appearing
in (2.2),

f c2 = −(1/2)
∑
de

Scdezdze. (7.2.8)
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Correspondingly, we have the relation

exp(: f c2 :)z = exp(JSc)z = Oz. (7.2.9)

Now define a symplectic map M by the relation

M = exp(: f c2 :) exp(: fa2 :). (7.2.10)

HereM is intended to act on the phase-space variables z, and both fa2 and f c2 are functions
of z. We find, using (2.7) and (2.9), the result

Mzb = exp(: f c2 :) exp(: fa2 :)zb

= exp(: f c2 :)
∑
d

Pbdzd

=
∑
d

Pbd exp(: f c2 :)zd

=
∑
de

PbdOdeze = (Mz)b. (7.2.11)

This result may be written in the more compact form

z =Mz = Mz. (7.2.12)

Notice two things. First, we have shown that any linear symplectic transformation of the
form (2.1) can be realized as the product of two Lie transformations. Second, comparison
of (2.2) and (2.10) shows that the corresponding factors appear in opposite order. That
is, when Lie transformations all involve the same phase-space variables, they act from left
to right. This particular feature of Lie transformations will be explored in greater detail
in Section 8.3. There it will also be explained why the difference in sign between relations
such as (5.5.1) and (2.3) is not arbitrary. The reader will soon come to realize that Lie
transformations lead lives of their own, and possess many unexpected properties.

7.2.2 Realization of Various Subgroups

We next employ Lie transformations to study various aspects of subgroups of Sp(2n). We
begin with symplectic matrices of the form (3.3.9). As shown in Section (3.10), such matrices
are related to matrices S of the form (3.10.2). Correspondingly, let fB2 be the quadratic
polynomial given by the relation

fB2 = −(1/2)
∑
de

Sdezdze = −(1/2)
∑
jk

Bjkpjpk. (7.2.13)

Then we have the relation
z = exp(: fB2 :)z = Mz, (7.2.14)

with M given by (3.3.9) or (3.10.5). We have learned that the subgroup of symplectic ma-
trices of the form (3.3.9) is produced by Lie transformations whose Lie operators arise from
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monomials of the form pjpk. Evidently, monomials of this form are mutually in involution.
See (5.5.14). Correspondingly, the subgroup is Abelian, as has already been seen earlier.

In a similar fashion, it is easily checked that the subgroup of symplectic matrices of the
form (3.3.10) is generated by the Lie operator : fC2 : given by the relation

fC2 = −(1/2)
∑
de

Sdezdze = (1/2)
∑
jk

Cjkqjqk (7.2.15)

with S given by (3.10.7). That is, we have the relation

z = exp(: fC2 :)z = Mz (7.2.16)

with M given by (3.3.10). We have learned that Lie transformations arising from monomials
of the form qjqk produce the subgroup of symplectic matrices of the form (3.3.10). Monomials
of the form qjqk are also mutually in involution, and the corresponding subgroup is again
Abelian. See (5.5.15).

Next consider the subgroup of matrices of the form (3.3.11). Let f2 be the quadratic
polynomial defined by the relation

f2 = −(1/2)
∑
de

Sdezdze = −(1/2)(z, Sz)

= −(1/2)[(q, aTp) + (p, aq)] = −(q, aTp)

= −
∑
jk

aTjkqjpk. (7.2.17)

Here S is given by (3.10.13). Then, for matrices M of the form (3.3.11) and sufficiently near
the identity, we have the relation

z = exp(: f2 :)z = Mz (7.2.18)

with f2 given by (2.17). We have learned that Lie transformations arising from monomials of
the form qjpk produce symplectic matrices of the form (3.3.11). It is easily verified that the
set of monomials of the form qjpk forms a Lie algebra under the Poisson bracket operation.
See (5.5.16). Correspondingly, matrices of the form (3.3.11) constitute a group. As we saw
in Section 3.10, this group is GL(n,R).

As a special case of (2.18), consider the Lie transformation exp(: −λq`p` :) where ` is
some integer satisfying 0 ≤ ` ≤ n, and λ is a parameter. Then for j 6= ` we have the
relations

qj = exp(: −λq`p` :)qj = qj,

pj = exp(: −λq`p` :)pj = pj. (7.2.19)

And for j = ` we find the result

qj = exp(: −λq`p` :)q` = (eλ)q`,

pj = exp(: −λq`p` :)p` = (e−λ)p`. (7.2.20)



760 7. LIE TRANSFORMATIONS AND SYMPLECTIC MAPS

See Exercise 5.4.4. We conclude that exp(: −λq`p` :) scales q` and p` by the (positive) factors
eλ and e−λ, respectively, and leaves the remaining qj and pj untouched.

Consider next Lie transformations corresponding to the quadratic polynomials f `2 given
by the definition

f `2 = −(1/2)θ`(q
2
` + p2

`). (7.2.21)

Then for j 6= ` we have the relations

qj = exp(: f `2 :)qj = qj,

pj = exp(: f `2 :)pj = pj. (7.2.22)

And for j = ` we find the results

q` = exp(: f `2 :)q` = q` cos θ` + p` sin θ`,

p` = exp(: f `2 :)p` = −q` sin θ` + p` cos θ`. (7.2.23)

See Exercise 5.4.5. We conclude that in this case exp(: f `2 :) produces a rotation by angle θ`
in the q`, p` plane. Because these two variables are conjugate, such a rotation is sometimes
referred to as a phase advance.

At this point we remark that there is a correspondence between phase advances and the
maximal Sp(2n,R) torus described at the end of Section 3.9. From (2.22) and (2.23) we
find the result

exp(: f 1
2 + f 2

2 + · · ·+ fn2 :)za =
∑
b

[N(θ1, θ2, · · · θn)]abzb (7.2.24)

where N is given by (3.8.85), or (3.5.60) and (3.5.61). Here we have used the ordering
(3.2.4).

Finally, consider Lie transformations corresponding to the quadratic polynomials f jk2

given by the definition
f jk2 = θjk(qjpk − qkpj). (7.2.25)

It is easily verified that the set of such polynomials is closed under the Poisson bracket
operation, and thus constitutes a Lie algebra. Furthermore, for ` 6= j, k we have the evident
result

q` = exp(: f jk2 :)q` = q`,

p` = exp(: f jk2 :)p` = p`. (7.2.26)

Also, explicit calculation gives the results

qj = exp(: f jk2 :)qj = qj cos θjk + qk sin θjk,

qk = exp(: f jk2 :)qk = −qj sin θjk + qk cos θjk,

pj = exp(: f jk2 :)pj = pj cos θjk + pk sin θjk,

pk = exp(: f jk2 :)pk = −pj sin θjk + pk cos θjk (7.2.27)
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We conclude that in this case exp(: f jk2 :) produces a rotation by angle θjk in the qj, qk
plane, and simultaneously, the same rotation in the pj, pk plane. These rotations provide a
realization of the special orthogonal group SO(n,R). See Exercise 2.5.

Finally, it can be verified that the f `2 given by (2.21) and the f jk2 given by (2.25) all
correspond to matrices Sc that commute with J . Consequently, the transformations given
by (2.22), (2.23) and (2.26), (2.27) are all in the U(n) subgroup of Sp(2n).

7.2.3 Another Proof of Transitive Action of Sp(2n) on Phase
Space

Near the end of Section 3.6 we showed in effect that if z̃i and z̃f are any two points in phase
space distinct from the origin, then there is a linear symplectic map of the form (2.1) such
that

z̃f = Mz̃i. (7.2.28)

See (3.6.115). To recapitulate, with the exception of the origin, any point in phase space can
be sent into any other point by a linear symplectic transformation. (The origin is obviously
sent into itself.) Following the terminology of Section 5.12, we say that, with the exception
of the origin, Sp(2n) acts transitively on phase space.

We will now provide another proof of this result using a series of constructive steps that
have some instructive merit. First, suppose that z̃i is not the origin. Perform successive
phase advances of the form (2.22), (2.23) to remove all “p” type components from z̃i. Next
perform a rotation of the form (2.26), (2.27) in the (n − 1), n plane to remove any qn
component. In so doing, no pn component is produced. Thus both pn and qn components
have been removed. Next perform a rotation in the (n−2), (n−1) plane to remove any qn−1

component, etc. The net result of a sequence of such rotations is that all components have
been transformed to zero save for the q1 component. Also, this component cannot be zero,
because transformations of the form (2.22), (2.23) and (2.26), (2.27) evidently preserve the
inner product (z, z), and this quantity cannot vanish if z̃i is not the origin. Moreover, the
q1 component can be taken to be positive. [If it is not, simply increase θ12 by π. See (2.27).]
Finally, apply a scaling transformation of the form (2.19), (2.20) with ` = 1 to transform
the q1 component so that it has the numerical value 1. Since all the transformations just
described are linear symplectic maps, and linear symplectic maps form a group, it follows
that there is a symplectic matrix M i such that

M iz̃i = z1. (7.2.29)

Here z1 is a vector (phase-space point) whose q1 component is 1, and all others are zero,

z1
a = δa1. (7.2.30)

By an analogous argument, there is also a symplectic matrix M f such that

M f z̃f = z1. (7.2.31)

Upon combining (2.30) and (2.28), we get the result

z̃f = (M f )−1z1 = (M f )−1M iz̃i. (7.2.32)
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That is, the advertised result (2.27) is correct with M given by the relation

M = (M f )−1M i. (7.2.33)

Note that M as given by (2.33) is again symplectic as a consequence of the group property.
Introduce the term punctured phase space to refer to the set of all points in phase space

with the exception of the origin. We have learned that Sp(2n,R) acts transitively on punc-
tured phase space. Consequently, according to the discussion in Section 5.12, punctured
phase space is a homogeneous space with respect to Sp(2n,R), and therefore must be a
coset space of Sp(2n,R) with respect to one of its subgroups. What is this subgroup? See
Exercise 7.4 in Section 7.7.

Exercises

7.2.1. Verify the relations (2.4) through (2.7).

7.2.2. Verify (2.17) and (2.18).

7.2.3. Verify (2.19) and (2.20).

7.2.4. Verify (2.22) and (2.23).

7.2.5. The orthogonal group O(n,R) is defined by the set of real n× n matrices satisfying
(5.10.13). Show that such matrices do indeed form a group. See Exercise (3.7.24). Show
that (5.10.13) implies the relation

detO = ±1.

Orthogonal matrices with determinant +1 are called proper. Show that proper O(n,R)
matrices form a subgroup of O(n,R). Recall that this subgroup is SO(n,R), the special
orthogonal group. Show that the set of O(n,R) matrices with determinant −1 (called
improper orthogonal) does not form a subgroup, and is disconnected from SO(n,R). Show
that any matrix of the form (3.3.11) with

A = D = O, (7.2.34)

and O orthogonal, is symplectic. Recall Exercise 6.5.2.
If O is special (proper) real orthogonal, then it can be written in the form

O = exp(F ) (7.2.35)

where F is n× n, real, and antisymmetric,

F T = −F. (7.2.36)

Show that M as given by (3.3.11) and (2.34) has the form

M = exp(JSc) (7.2.37)
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where JSc is the matrix

JSc =

(
F 0
0 F

)
. (7.2.38)

Show that Sc is given by the relation

Sc =

(
0 −F
F 0

)
. (7.2.39)

Show that Sc is symmetric and, as the notation suggests, commutes with J . See (3.9.6).
Use (2.8) and (2.39) to derive the result

f c2 = −(1/2)(z, Scz) = (q, Fp)

=
∑
jk

Fjkqjpk

= (1/2)
∑
jk

Fjk(qjpk − qkpj). (7.2.40)

7.2.6. Show that the set of polynomials of the form (2.25) or (2.40) constitutes a Lie al-
gebra under the Poisson bracket operation. This Lie algebra is so(n,R), the Lie algebra of
SO(n,R).

7.2.7. Verify (2.26) and (2.27).

7.2.8. Verify that the transformations (2.22), (2.23) and (2.26), (2.27) preserve the inner
product (w, z).

7.2.9. Show that for any (square) matrix G there is the identity

exp(G) = coshG+ sinhG. (7.2.41)

Using (3.1.3) and the series expansion for cosh and sinh, verify the relation

exp(λJ) = I cosλ+ J sinλ. (7.2.42)

Find quadratic polynomials f2 such that M given by M = exp(: f2 :) satisfies (2.1) with
M = ±J and M = ±I.

7.2.10. Review Exercises 6.2.6 and 6.2.7. There we learned that Lorentz transformations are
symplectic maps, and in fact are linear symplectic maps. Therefore, based on the work of this
section, we suspect that they can be written as Lie transformations. Lorentz transformations
consist of rotations about the x, y, z axes and velocity transformations (sometimes called
boosts) along these axes. (We remark that the factorization of Lorentz transformations into
rotations and boosts arises naturally in a polar decomposition of the Lorentz group.) The
relations (2.27) show that rotations can be written as Lie transformations. We want to show
that the same is true of boosts. For simplicity we will consider boosts along the z axis.
Boosts along the other axes, and in arbitrary directions, can be treated analogously.

Verify that the quantities β, γ defined by (6.2.54) and (6.2.55) satisfy the relation

γ2 − γ2β2 = 1. (7.2.43)
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Therefore, we can define a quantity χ called the rapidity such that

sinhχ = βγ, (7.2.44)

coshχ = γ. (7.2.45)

With this notation, show that (6.2.58) and (6.2.59), and their momentum counterparts, can
be written on the form

x̃3 = x3 coshχ+ x4 sinhχ, (7.2.46)

x̃4 = x3 sinhχ+ x4 coshχ, (7.2.47)

p̃3 = p3 coshχ+ p4 sinhχ, (7.2.48)

p̃4 = p3 sinhχ+ p4 coshχ. (7.2.49)

Using the metric tensor ḡ given by (1.6.75), show that (2.48) and (2.49) can be rewritten as

p̃3 = p3 coshχ− p4 sinhχ, (7.2.50)

p̃4 = −p3 sinhχ+ p4 coshχ. (7.2.51)

Let f2 be the quadratic polynomial defined by the relation

f2 = −χ(x3p4 + x4p3). (7.2.52)

Verify the relations

: f2 : x3 = χx4, (7.2.53)

: f2 : x4 = χx3, (7.2.54)

: f2 : p3 = −χp4, (7.2.55)

: f2 : p4 = −χp3. (7.2.56)

Finally, by summing the relevant infinite series, show that

x̃3 = exp(: f2 :) x3, (7.2.57)

x̃4 = exp(: f2 :) x4, (7.2.58)

p̃3 = exp(: f2 :) p3, (7.2.59)

p̃4 = exp(: f2 :) p4. (7.2.60)

7.2.11. We have seen that, apart from the origin, Sp(2n) acts transitively on the 2n-
dimensional Euclidean space E2n. Does O(2n,R) act transitively on E2n?
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7.2.12. Consider the 3-dimensional isotropic harmonic oscillator described by the Hamilto-
nian

H =
3∑
1

p2
j/(2m) + (k/2)q2

j . (7.2.61)

Show that there is a linear canonical transformation that brings H to the form

H = (ω/2)
3∑
1

(p2
j + q2

j ). (7.2.62)

See Exercises (5.4.4) and (6.4.3). Consider the set of all linear canonical transformations
that leaves H invariant. Show that these transformations form a group isomorphic to U(3).
See Section (5.8). Show that there is an even larger group of linear and nonlinear canonical
transformations that leaves H invariant.

7.2.13. Equation (5.11.39) provides the partial Iwasawa decomposition for any element in
the group Sp(2n,R). The purpose of this exercise is to find the corresponding decomposition
of the Lie algebra sp(2n,R). From (5.11.39) we see that we must study the elements in the
Lie algebra associated with M(Z) given by (5.11.18), and the elements in the Lie algebra
associated with M(m) given by (3.9.19). The case of M(m) has already been discussed,
and is realized in terms of Lie transformations by symplectic maps of the form exp(: f c2 :).
Thus, the associated elements in the Lie algebra sp(2n,R) are the polynomials f c2 when the
Poisson bracket realization is used, the Lie operators : f c2 : when the Lie operator realization
is used, and the matrices of the form JSc when the matrix realization is used. We now turn
to the case of M(Z). According to (5.11.18) it can be written as the product of two factors.
Consider first the second factor. It can be written in the form (5.11.41). Show that matrices
of this form are equivalent to those given by (3.3.9). That is, show that any real symmetric
B can be written in the form

B = Y −1/2XY −1/2 (7.2.63)

with X real symmetric, and Y real symmetric and positive definite. Thus, this case has
already been treated in the discussion surrounding (2.13) and (2.14). Finally, consider the
first factor in (4.11.18). It can be written in the form given by (5.11.43) and (5.11.44). Show
that this case is a special case of (3.3.11) with A symmetric. Do symplectic matrices of
the form (3.3.11) with A symmetric form a subgroup? According to Exercise 5.11.9, log(Y )
is real and symmetric. Thus, show that this case is a special case of that treated in the
discussion surrounding (2.17). Specifically, show in this case that the matrix a appearing
in (2.17) is real and symmetric. Consider the Lie algebra sp(2,R). According to Section
5.6, it has a Poisson bracket realization in terms of the basis polynomials b0, f , and g. See
(5.6.6), (5.6.11), and (5.6.12). Show that the partial Iwasawa basis for sp(2,R) is given
by the polynomials b0, p2 = b0 − f , and qp = g. Show that the partial Iwasawa basis
for the quadratic polynomial realization of sp(4,R) is given by the polynomials b0,b1, b2,
b3; p2

1 = (1/2)(b0 + b3 + f 1 − g2), p1p2 = (1/2)(b1 − f 3), p2
2 = (1/2)(b0 − b3 − f 1 − g2);

q1p1 = −(1/2)(f 2 + g1), q2p2 = (1/2)(g1 − f 2), q1p2 + q2p1 = g3. See Section 5.7.

7.2.14. The center of a group G consists of those elements of G that commute with all
elements of G. Show that the center of a group forms a subgroup of G. Show that the
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center of Sp(2n,R) consists of the elements ±I. What is the center of Sp(2n,C)? What is
the center of U(n)? What is the center of SU(n)? What is the center of O(n,R)?

7.2.15. Refer to Exercise 4.5.4. Show that static symplectic matrices form a group. Show
that this group is generated by quadratic polynomials f2 that obey ∂f2/∂t = 0.

7.3 Invariant Scalar Product

In Section 5.8, in the context of describing representations of su(3), the need for a suitable
scalar product was mentioned. In this section we will introduce a particularly convenient
scalar product. The choice of scalar product is not unique, and the whole matter is discussed
in greater detail in Appendix G.

7.3.1 Definition of Scalar Product

For simplicity, we will treat the case of sp(6). From this treatment it will be easy to read
off the results for the general case sp(2n). Let G(µ; ν) denote the general monomial defined
by the relation

G(µ; ν) = (µ1!ν1!µ2!ν2!µ3!ν3!)−1/2pµ1

1 q
ν1
1 p

µ2

2 q
ν2
2 p

µ3

3 q
ν3
3 . (7.3.1)

It is evident that the G(µ; ν) form a basis for the set of all phase-space functions.
For reasons that will become clear shortly, let us pause to consider the Lie operators

associated with the quadratic polynomials q2
1, p

2
1, q1q2, p1p2,

q1p1, and q1p2. Explicit calculation gives the relations

: q2
1 : G(µ1µ2µ3; ν1ν2ν3) = 2

√
µ1(ν1 + 1)G(µ1 − 1, µ2, µ3; ν1 + 1, ν2, ν3), (7.3.2)

: p2
1 : G(µ1µ2µ3; ν1ν2ν3) = −2

√
ν1(µ1 + 1)G(µ1 + 1, µ2, µ3; ν1 − 1, ν2, ν3), (7.3.3)

: q1q2 : G(µ1µ2µ3; ν1ν2ν3) =
√
µ1(ν2 + 1)G(µ1 − 1, µ2, µ3; ν1, ν2 + 1, ν3)

+
√
µ2(ν1 + 1)G(µ1, µ2 − 1, µ3; ν1 + 1, ν2, ν3), (7.3.4)

: p1p2 : G(µ1µ2µ3; ν1ν2ν3) = −
√
ν1(µ2 + 1)G(µ1, µ2 + 1, µ3; ν1 − 1, ν2, ν3)

−
√
ν2(µ1 + 1)G(µ1 + 1, µ2, µ3; ν1, ν2 − 1, ν3), (7.3.5)

: q1p2 : G(µ1µ2µ3; ν1ν2ν3) =
√
µ1(µ2 + 1)G(µ1 − 1, µ2 + 1, µ3; ν1ν2ν3)

−
√
ν2(ν1 + 1)G(µ1µ2µ3; ν1 + 1, ν2 − 1, ν3). (7.3.6)

: q1p1 : G(µ1µ2µ3; ν1ν2ν3) = (µ1 − ν1)G(µ1µ2µ3; ν1ν2ν3). (7.3.7)

With this detour behind us, define a scalar product among the basis elements G(µ; ν)
by the rule

〈G(µ′; ν ′), G(µ; ν)〉 = δµ′µδν′ν . (7.3.8)

Here we use the short-hand notation

δµ′µ = δµ′1µ1
δµ′2µ2

δµ′3µ3
, etc. (7.3.9)
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That is, the basis elements are defined to be an orthonormal set. Note that although the
notation is the same, this scalar product is not to be confused with that introduced for
phase-space vectors in Section 3.5.

It is easily verified that the rule (3.8) induces a positive-definite scalar product among
the set of all phase-space functions. Let f and g be any two (possibly complex) functions.
Make the expansions

f =
∑
µν

fµνp
µ1

1 q
ν1
1 p

µ2

2 q
ν2
2 p

µ3

3 q
ν3
3 , (7.3.10)

g =
∑
µν

gµνp
µ1

1 q
ν1
1 p

µ2

2 q
ν2
2 p

µ3

3 q
ν3
3 . (7.3.11)

Then we have the relation

〈f, g〉 =
∑
µν

fµνgµνµ1!ν1!µ2!ν2!µ3!ν3!. (7.3.12)

Examination of (3.12) shows that there is another equivalent way of defining the scalar
product. Let ∂z denote the set of partial differentiation operators,
∂z = (∂/∂z1, ∂/∂z2, · · · ∂/∂z6). Then we also have the result

〈f, g〉 = f(∂z)g(z)|z=0 = g(∂z)f(z)|z=0. (7.3.13)

There is a corollary that will be of later use. Let h be any phase-space function. Then, from
(3.13), we find the result

〈hf, g〉 = 〈f, h(∂z)g〉. (7.3.14)

We close this subsection with the remark that in the definition of the scalar product given
by (3.1) and (3.8) it was convenient to treat the q”s and p′s separately. For a somewhat
different notation that treats them on the same footing, see Exercise 3.23.

7.3.2 Definition of Hermitian Conjugate

Given a scalar product and any linear operator O, the Hermitian conjugate O† is defined by
the relation

〈f,O†g〉 = 〈Of, g〉. (7.3.15)

The virtue of the scalar product (3.8) is that the Lie operators associated with quadratic
polynomials have particularly simple Hermitian conjugates. From the relations (3.2) through
(3.7) and their generalizations to all zazb pairs, and the definition (3.15), we find the pleasing
results

: qjqk :†= − : pjpk :, (7.3.16)

: pjpk :†= − : qjqk :, (7.3.17)

: qjpk :†=: qkpj : . (7.3.18)

Indeed, let Lab be any vector field of the form

Lab = za(∂/∂zb). (7.3.19)
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See Section 5.3. Then we find the result

(Lab)† = Lba. (7.3.20)

Consider the quadratic polynomials b0 through b8 defined by (5.8.5). It is easily verified
from their definitions, and the relations (3.16) through (3.18), that their associated Lie
operators are anti-Hermitian,

: bj :†= − : bj : . (7.3.21)

Also, from (5.8.50), (5.8.51), and (3.21), we have the relations

: cj :†=: cj :, (7.3.22)

: r(µ) :†=: r(−µ) : . (7.3.23)

Thus the : cj : are Hermitian as desired for the construction of a representation theory.
Finally, the Lie operators associated with the quadratic polynomials f j and gj given by
(5.8.63) are Hermitian,

: f j :†=: f j :, (7.3.24)

: gj :†=: gj : . (7.3.25)

Suppose f c2 is a real quadratic polynomial defined in terms of a real matrix Sc as in
(2.8). Then, in the case of a 6-dimensional phase space, such an f c2 can be written as a
linear combination of the polynomials b0 through b8, with real coefficients. Correspondingly,
the Lie operator associated with f c2 is anti-Hermitian,

: f c2 :†= − : f c2 : . (7.3.26)

Let M be the symplectic map associated with f c2 ,

M = exp(: f c2 :). (7.3.27)

Then, from (3.26), we find the result

M† = exp(: f c2 :†) = exp(− : f c2 :) =M−1. (7.3.28)

It follows thatM is unitary with respect to the scalar product (3.12). That is, we have the
relation

〈Mf,Mg〉 = 〈f,M†Mg〉 = 〈f, g〉. (7.3.29)

We already know that Lie transformations of the form (3.27) are a realization of the group
U(3). From this perspective, the relation (3.28) indicates that the scalar product defined by
(3.12) is invariant under U(3).

Remarkably, the scalar product (3.12) is in fact invariant under the full group USp(6).
Suppose fa2 is a real quadratic polynomial defined in terms of a real matrix Sa as in (2.3).
Then it is easily verified from (5.8.43), (3.24), and (3.25) that the Lie operator : fa2 : is
Hermitian,

: fa2 :†=: fa2 : . (7.3.30)
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Let M be any (complex) symplectic map of the form

M = exp(: f c2 :) exp(i : fa2 :). (7.3.31)

Then, from (3.26) and (3.30), we find the result

M† = exp(−i : fa2 :†) exp(: f c2 :†)

= exp(−i : fa2 :) exp(− : f c2 :)

= M−1. (7.3.32)

It follows as before thatM is unitary with respect to the scalar product (3.12). Moreover, we
know from Section 5.10 and (2.10) that symplectic maps of the form (3.31) are a realization
of the group USp(6). Thus, the scalar product (3.12) is invariant under USp(6).

One might wonder if it is possible to define a scalar product that would be invariant
under all of the real symplectic group Sp(6,R). The answer is no. LetM be the symplectic
map associated with the monomial λq1p1 with λ real,

M = exp(λ : q1p1 :). (7.3.33)

From (3.7) we have the result

MG(µ; ν) = exp[λ(µ1 − ν1)]G(µ; ν). (7.3.34)

It follows that for any definition of the scalar product, there is the relation

〈MG(µ; ν),MG(µ; ν)〉 = exp[2λ(µ1 − ν1)]〈G(µ; ν), G(µ; ν)〉. (7.3.35)

We conclude that if the scalar product is such that the elements G(µ; ν) are normalizable,
then this scalar product cannot be invariant under all of Sp(6,R). What we are observing
here is a consequence of the fact that the group Sp(6,R) is not compact. It can be shown
that a noncompact group cannot have finite-dimensional unitary representations. Note that
anyM of the form (2.10), when acting on a homogeneous polynomial, preserves the degree
of that polynomial. See Lemma 7.6.3. Consequently, any realization of Sp(6,R) associated
with a polynomial basis must be finite dimensional, and thus, by the comment above, cannot
be unitary. Finally, we remark that U(3) is the largest compact subgroup of Sp(6,R), and
therefore is the largest subgroup for which we can hope to obtain finite-dimensional unitary
representations.

While the relations (3.2) through (3.7) are fresh in the mind, we take this opportunity
to observe that any Lie operator of the form : f2 : is traceless. Correspondingly, according
to (3.7.56), any map M of the form

M = exp(: f2 :) (7.3.36)

has determinant +1. These statements may seem somewhat surprising since both : f2 : and
M given by (3.36) may be viewed as infinite dimensional matrices in the sense that they
are both linear operators that act on infinite dimensional vector spaces. We therefore have
to be more precise.
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We have already noted that any M of the form (2.10) and therefore also of the form
(3.36), when acting on a homogeneous polynomial, preserves the degree of that polynomial.
We capitalize on this fact by slightly changing the notation for the monomials G(µ, ν)
defined by (3.1). Specifically, we denote the same monomials by the symbols Gm

r where
m now denotes the degree of the monomial, and r is some index that labels the various
possibilities for the exponents µi and νj subject to their sum being equal to m,∑

(µi + νi) = m, (7.3.37)

r = {µi, νj}. (7.3.38)

With this notation, the scalar product (3.8) takes the form

〈Gm′

r′ , G
m
r 〉 = δm′mδr′r. (7.3.39)

Let us pause for a moment to make the selection of the index r more specific. Consider
all monomials of degree m in d variables. Let N(m, d) be the number of such monomials.
Combinatoric considerations (see Exercises 3.9 through 3.13) show that N is given by the
relation

N(m, d) =

(
m+ d− 1

m

)
=

(m+ d− 1)!

m!(d− 1)!
. (7.3.40)

Table 3.1 below shows values of N(m, d) for various values of m for the case of 6 dimensional
phase space (d = 6), and for other values of d that may be of interest later. Consequently,
for d = 6 and each value of m, we may take for the index r the integers running from r = 1
through r = N(m, 6). More sophisticated indexing schemes are described in Section 27.2.

7.3.3 Matrices Associated with Quadratic Lie Generators

We now return to our main discussion. As is evident from (3.2) through (3.7), any quantity
of the form : f2 : Gm

r must be a homogeneous polynomial of degree m. See also Lemma
7.6.3. Thus, we must have a result of the form

: f2 : Gm
r =

∑
r′

Fm
r′rG

m
r′ (7.3.41)

where the Fm
r′r are coefficients yet to be determined. In fact, from (3.39) and (3.41) we have

the result
Fm
r′r = 〈Gm

r′ , : f2 : Gm
r 〉. (7.3.42)

Let Pm denote the space of all homogeneous polynomials of degree m. We know its
dimension is N(m, 6). What we have made explicit is that the general : f2 : sends Pm
into itself. Indeed, the action of : f2 : on Pm for each value of m is described by the
N(m, 6) × N(m, 6) matrix Fm given by (3.41) and (3.42). Let us compute the matrices
corresponding to powers of : f2 :. From (3.41) we find the result

: f2 :2 Gm
r =

∑
r′

Fm
r′r : f2 : Gm

r′ =
∑
r′r′′

Fm
r′rF

m
r′′r′G

m
r′′

=
∑
r′′

(
∑
r′

Fm
r′′r′F

m
r′r)G

m
r′′ =

∑
r′′

[(Fm)2]r′′rG
m
r′′ . (7.3.43)
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Table 7.3.1: Number of monomials of degree m in various numbers of variables.
m N(m, 4) N(m, 5) N(m, 6) N(m, 7) N(m, 8) N(m, 9) N(m, 10) N(m, 11)
0 1 1 1 1 1 1 1 1

1 4 5 6 7 8 9 10 11

2 10 15 21 28 36 45 55 66

3 20 35 56 84 120 165 220 286

4 35 70 126 210 330 495 715 1001

5 56 126 252 462 792 1287 2002 3003

6 84 210 462 924 1716 3003 5005 8008

7 120 330 792 1716 3432 6435 11440 19448

8 165 495 1287 3003 6435 12870 24310 43758

9 220 715 2002 5005 11440 24310 48620 92378

10 286 1001 3003 8008 19448 43758 92378 184756

11 364 1365 4368 12376 31824 75582 167960 352716

12 455 1820 6188 18564 50388 125970 293930 646646

It follows that the matrix corresponding to the action of : f2 :2 on Pm is (Fm)2. Similarly,
the matrix corresponding to the action of : f2 :` on Pm is (Fm)`. Correspondingly, it follows
that the action of M = exp(: f2 :) on Pm is given by a relation of the form

MGm
r =

∑
r′

Mm
r′rG

m
r′ , (7.3.44)

and the matrices Mm are related to the Fm by the equations

Mm = exp(Fm). (7.3.45)

Let us now examine the form of Fm using (3.2) through (3.7) and (3.42). We see from
(3.2) through (3.6) and (3.42) that the matrices Fm associated with any : f2 : made from
monomials of the form q2

i , p
2
i , qiqj, pipj, qipj have no diagonal entries. Thus, all such Fm

must be traceless. The only monomials that can produce diagonal entries in the Fm are of
the form qipi. But, from (3.7), we see that these entries are either zero or occur in positive
and negative pairs. For example, let α and β be any two positive integers. Then, referring
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to (3.7), for the case µ1 = α and ν1 = β there must also be the case µ1 = β and ν1 = α. We
conclude that all the Fm must be traceless,

tr Fm = 0. (7.3.46)

Correspondingly, the Mm given by (3.44) and (3.45) must have unit determinant,

detMm = 1. (7.3.47)

We close this subsection with a final remark. The relations (3.26) and (3.30) show that
: f2 :† is a Lie operator for any f2. This need not be the case for : fm :† with m > 2. See
Exercise 3.21.

Exercises

7.3.1. Verify the relations (3.2) through (3.7).

7.3.2. Verify the relations (3.13) and (3.14), and (3.16) through (3.20).

7.3.3. Verify the relations (3.21) through (3.23).

7.3.4. Verify the relations (3.24) and (3.25).

7.3.5. Verify the relations (3.26) and (3.30).

7.3.6. Suppose that the scalar product (3.8) is generalized to the case of a 2n dimensional
phase space in the obvious way. See Exercise 3.23. Show that the relations (3.26) and
(3.30) still hold. It follows that this scalar product is invariant under U(n) and USp(2n).
Suggestion: Let f2 and f ∗2 be quadratic polynomials defined by the equations

f2 = −(1/2)(z, Sz), (7.3.48)

f ∗2 (z) = f2(Jz) = −(1/2)(Jz, SJz). (7.3.49)

Here S is a real symmetric matrix. Prove the relation

: f2 :†= − : f ∗2 : . (7.3.50)

7.3.7. Show that f2 and f ∗2 as defined by (3.48) and (3.49) are connected by the relation

exp[−(π/2) : b0 :]f2 = f ∗2 . (7.3.51)

7.3.8. Verify the scalar product relations

〈zazb, zczd〉 = δacδbd + δadδbc. (7.3.52)

For two quadratic polynomials f and g written in the forms (5.5.1) and (5.5.2), verify that

〈f, g〉 = (1/2) tr (SfSg). (7.3.53)
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7.3.9. Review Section 5.9.3 and Exercise 3.8 above. Let

R = exp(: f c2 :) (7.3.54)

be the map corresponding to the matrix R given by (5.9.28). Show that all of the U(n)
subgroup is covered by elements of the form (3.54) when

〈f c2 , f c2〉 = (1/2)tr[(Sc)2] ≤ nπ2. (7.3.55)

7.3.10. Consider the Lie algebra sp(2). Show that b0 as given by (5.6.6) has a squared norm
of 1. That is, 〈b0, b0〉 = 1. Show that f and g given by (5.6.11) and (5.6.12) also have a
squared norm of 1. Show that all these sp(2) elements are mutually orthogonal. Consider
the Lie algebra sp(4). Show that b0 through b3 as given by (5.7.4) have a squared norm of
2. Show that the f j and the gj given by (5.7.30) and (5.7.31) also have a squared norm of
2. Show that all these sp(4) elements are mutually orthogonal. Consider the Lie algebra
sp(6). Show that b0 as given by (5.8.5) has a squared norm of 3. Show that b1 through b8

as given by (5.8.5) have a squared norm of 2. Show that h1, h3, and h5 as given by (5.8.37)
have a squared norm of 2. Show that h2, h4, and h6 have a squared norm of 4. Carry out

an analogous computation for the sp(6) elements h
j
. Show that all these sp(6) elements are

mutually orthogonal. The group-theoretical reason for this orthogonality is that these sp(6)
elements either have different su(3) weights or belong to different su(3) representations.
Show that all fa2 are orthogonal to all f c2 . For some purposes we may wish to renormalize
the sp(6) elements so that they all have the same norm. As shown in Chapter 27, in a
suitable Cartan basis all the basis elements are orthonormal.

7.3.11. Prove (3.40). Hint: First show that the binomial coefficients obey the recursion
relations (

n+ 1
m

)
=

(
n
m

)
+

(
n

m− 1

)
, (7.3.56)

and hence (
n+ 1
m

)
=

(
n
m

)
+

(
n− 1
m− 1

)
+ · · ·+

(
n−m

0

)
, (7.3.57)

and the identity (
n
m

)
=

(
n

n−m

)
. (7.3.58)

Next, by definition, N(m, d) is the number of monomials of degree m in d variables. Verify
the relations

N(m, 1) = 1, (7.3.59)

N(m, 2) = m+ 1. (7.3.60)

In fact, show that N(m, d) satisfies the recursion relation

N(m, d+ 1) = N(m, d) +N(m− 1, d) +N(m− 2, d) + · · ·+N(0, d) =
m∑
j=0

N(j, d). (7.3.61)
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(Let zd+1 be the extra variable that is added to pass from d to d + 1 variables. Then the
monomials of degree m in d+ 1 variables may be partitioned into subsets that contain zd+1

to the zero power, zd+1 to the first power, zd+1 to the second power, etc.) Finally, show that
N(m, d) as given by (3.40) satisfies the recursion relation (3.59) and the initial condition
(3.57), and verify that these facts specify N(m, d) uniquely.

7.3.12. The fact that, according to (3.40), N(m, d) is given simply by a binomial coefficient
suggests that there should be a simple proof of this result. There is: Given n things, the
number of combinations of these n things taken ` at a time is specified by the binomial
coefficient

nC` = C[n, `] = n choose ` =

(
n
`

)
=

n!

`!(n− `)!
. (7.3.62)

On a sheet of paper lay out (m + d + 1) spaces as shown below, and number them from 1
to (m+ d+ 1). Place a vertical bar “|” in the first and last spaces.

| |
· · ·

1 2 3 (m+ d) (m+ d+ 1)

After this construction (m+d−1) empty spaces remain. Select m of these spaces, and place
an “X” in each. The number of ways of doing this is given by the binomial coefficient

C[(m+ d− 1),m] =

(
m+ d− 1

m

)
. (7.3.63)

For example, suppose m = 4 and d = 3. Then one way of placing the X’s is shown below.

| X X X X |

1 2 3 4 5 6 7 8

Next, put vertical bars in the remaining empty spaces. Doing so for the m = 4 and d = 3
example just cited yields this picture.

| | X X X | X |

1 2 3 4 5 6 7 8

Evidently these are (d + 1) vertical bars after this is done. Now regard the (d + 1) vertical
bars as representing the walls of d cells, and count the number of X’s in each cell. In the
case shown above, and proceeding from left to right, these counts are 0,3,1, respectively.
Consider the monomial zj11 z

j2
2 · · · z

jd
d subject to the homogeneity condition

j1 + j2 + · · ·+ jd = m. (7.3.64)

We may regard the numbers j1, j2, · · · jd as possible cell counts for the cells 1, 2, · · · d since
our construction automatically satisfies (3.62). We now see that (3.58) is the number of
ways of selecting d non-negative integers j1, j2, · · · jd such that (3.62) is satisfied. It follows
that (3.40) is correct. Verify the argument just given for several examples.
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7.3.13. There is another way to derive (3.40). Define a composition of m into d parts to be
a representation of the form

m = j1 + j2 + · · ·+ jd, (7.3.65)

where j1, j2, · · · jd are d non-negative integers, and the order of the summands is significant.
Evidently N(m, d) is the number of compositions for a given m and d. Suppose we have
several power series, and we want to find their product. How can we calculate the coefficients
of the product series? Consider, for example, the product

(
∑

aix
i)(
∑

bjx
j)(
∑

ckx
k) =

∑
d`x

`. (7.3.66)

Then we have the relation

d` =
∑

i+j+k=`

aibjck. (7.3.67)

On the right side of (3.65) there will be a term for each composition of ` into 3 parts.
Consider, by inspiration, the power series

f(x) = 1 + x+ x2 + · · · . (7.3.68)

Verify the relation

[f(x)]d =
∞∑
j1=0

∞∑
j2=0

· · ·
∞∑
jd=0

xj1+j2+···+jd . (7.3.69)

Collect terms with the same exponent, and show that the exponent xm occurs N(m, d) times.
Thus, verify the relation

[f(x)]d =
∞∑
`=0

N(`, d)x`. (7.3.70)

You have shown that the functions g(x; d) defined by the relations

g(x; d) = [f(x)]d (7.3.71)

are the generating functions (for each value of d) for the quantities N(`, d). Next verify the
relations

[f(x)]d = (1− x)−d, (7.3.72)

and, by the binomial theorem,

(1− x)−d =
∞∑
`=0

(
`+ d− 1

`

)
x`. (7.3.73)

Now compare (3.68) through (3.71) to prove (3.40). We remark that apparently de Moivre
was the first person to view collections of numbers or functions as coefficients in the power
series of some master function. Laplace subsequently championed the use of such master
functions, for which he coined the term generating functions.
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7.3.14. Here is yet another way to derive (3.40). Suppose a walker in Manhattan wants to
go from A to B (see the picture below where A is taken to be at the lower left corner and
B at the upper right corner). While walking, he is thinking of the problem of finding the
number of all the distinct monomials N(m, d) of degree m in d variables. He soon realizes
that N(m, d) equals the number of different paths he can walk through from A to B 1,
provided that the number of blocks in the East-West direction is d − 1 and the number
of blocks in the South-North direction is m (in the picture m = 5, d = 6). He can easily
associate a path with a monomial. First he labels each street going North with a variable
name. Before leaving A he sets to zero the exponents of all the variables of a monomial.
Then he increases by one the exponent of any variable in the monomial each time he goes
North by one block along the corresponding street. The monomial he is left with when he
reaches B is the one associated with the particular path he has gone through. For example,
the path shown in the picture represents the monomial q1q2p

2
1p2.

E
a
s
tW

e
s
t

North

South

q
1

q
2

q
3

p
1

p
2

p
3

d−1

m

How many different paths can he walk through? In his way from A to B he has to decide
if he wants to go East or North at the corner of each block. He has to take m + (d − 1)
decisions. The only constraint is that, overall, he needs to choose to go North (N) m times,
and go East (E) d − 1 times. With each path we can associate a sequence of N ’s and E’s.
The following table represents the path shown in the picture.

N E N E E N N E N E

The problem is equivalent to finding the number of all possible rearrangements of such
sequences. Each sequence has m+ (d− 1) slots; the symbol N has to appear m times, while
the symbol E appears d− 1 times. Therefore the number of all the possible rearrangements
is given by the relation

N(m, d) =
[m+ (d− 1)]!

m!(d− 1)!
.

7.3.15. Show from (3.40) or (3.59) that N(m, d) can be generated by the recursion relation

N(m, d) = N(m, d− 1) +N(m− 1, d) (7.3.74)

with the boundary conditions
N(m, 1) = 1, (7.3.75)

1Only those paths that minimize the walking distance count. He never walks south or west.
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N(0, d) = 1 or N(1, d) = d. (7.3.76)

7.3.16. From (3.37) with d = 6 we find the results N(0, 6) = 1, N(1, 6) = 6, N(2, 6) = 21,
N(3, 6) = 56, etc. See Table 3.1. Equations (5.8.24) and (5.8.28) describe how homogeneous
polynomials f` of degree ` in 6 variables can be decomposed into irreducible representations
of su(3). Equation (5.8.18) gives the dimension of these representations. Show by explicit
calculation that the dimension counts for both sides of (5.8.24) match for the cases ` = 0, 2, 4.
Do the same for (5.8.28) for the cases ` = 1 and 3. Can you show that the dimension counts
agree for general `?

7.3.17. Verify that the matrix corresponding to the action of : f2 :` on Pm is (Fm)`. Derive
(3.45) from (3.36), (3.41), and (3.44).

7.3.18. Show that the matrices JSa, JSc and P,O given by (2.4), (2.7) etc. are special
cases of the matrices Fm and Mm, respectively. What is m in this case?

7.3.19. Strictly speaking, what has been shown in the text is that all matrices Mm arising
from the M given by (3.36) must satisfy (3.47). Show that (3.47) also holds for matrices
Mm arising from M of the form (2.10).

7.3.20. Show that the matrices Fm associated with Lie operators of the form : fa2 : are real
and symmetric. Show that the matrices Fm associated with Lie operators of the form : f c2 :
are real and antisymmetric.

7.3.21. The dimension of sp(2n) is given by (3.7.35). Compare this dimension with N(2, 2n)
as given by (3.40), and explain why these two numbers must agree.

7.3.22. Let q, p be coordinates in a two-dimensional phase space. Show that : q3 :† is not a
derivation, and therefore not a vector field. Hint: Evaluate its action on q and q2.

7.3.23. The purpose of this exercise is to introduce a somewhat different notation for the
scalar product of Subsection 3.1 with the aim of treating the q′s and p′s more democratically.
For monomials introduce the notation

zk = zk1
1 z

k2
2 · · · zk2n

2n , (7.3.77)

δkk′ = δk1k′1
δk2k′2

· · · δk2nk′2n
, (7.3.78)

k! = k1!k2! · · · k2n!. (7.3.79)

In terms of this notation, show that the scalar product of Subsection 3.1 is given by the
relation

〈zk, zk′〉 = δkk′k!. (7.3.80)

Show that the scalar product based on (3.80) is positive definite. That is, verify that

〈f, f〉 = 0 (7.3.81)

when f = 0, and
〈f, f〉 > 0 (7.3.82)

otherwise.
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7.3.24. The purpose of this exercise is to explore the relation between the Lie algebras
sp(2,R), sl(2,R), su(2), and usp(2). From the work of Exercise 3.7.29 we know that sl(n,R)
and su(n) are equivalent over the the complex field and therefore, as a particular case,
sl(2,R) and su(2) are equivalent over the complex field. Also, from Section 5.10.1, we
know that sp(2n,R) and usp(2n) are equivalent over the complex field and therefore, as a
particular case, sp(2,R) and usp(2) are equivalent over the complex field. In fact, sp(2,R)
and usp(2) are the same. See Exercise 5.10.17. There remains the case of sp(2,R) and su(2).
Your task in this exercise is to verify that they are equivalent over the complex field and to
explore various features of this equivalence. In Exercise 3.25 you will have the privilege of
studying how sp(2,R) and su(2) are related to s`(2,C).

Suppose that the quantities Bα, for α = 1, 2, or 3, are any set of matrices or opera-
tors that obey the sp(2,R) commutation rules given by (3.7.69) through (3.7.71). Define
associated matrices/operators B′α by the (change of basis) rules

B′1 = −iB1, (7.3.83)

B′2 = −B2, (7.3.84)

B′3 = −iB3. (7.3.85)

Verify that the B′α obey the commutation rules

{B′1, B′2} = B′3, (7.3.86)

{B′2, B′3} = B′1, (7.3.87)

{B′3, B′1} = B′2, (7.3.88)

iff the Bα obey the sp(2,R) commutation rules given by (3.7.69) through (3.7.71). But,
according to Equations (3.7.173) and (3.7.174) of Exercise 3.7.31, the commutation rules
(3.86) through (3.88) are those for su(2). Thus sp(2,R) and su(2) are indeed equivalent
over the complex field. [Note that the relations (3.83) through (3.85) do in fact involve
complex coefficients.]

Suppose the quantities Bα are, in fact, the 2× 2 matrices that appear on the right sides
of (3.7.66) through (3.7.68). Show that in this case the matrices B′α are the matrices given
by the relations

B′α = Kα. (7.3.89)

Recall the definitions (3.7.169) through (3.7.171).
What are the polynomials bα and b′α associated with the Bα and the B′α, and what are

the properties of their associated Lie operators? Based on (5.6.6), (5.6.11), and (5.6.12),
and (3.7.66) through (3.7.68), verify that

b1 = (1/2)f = (1/4)(p2 − q2), (7.3.90)

b2 = (1/2)b0 = (1/4)(p2 + q2), (7.3.91)

b3 = (1/2)g = (1/2)qp. (7.3.92)
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Based on (3.83) through (3.85) and (3.89) through (3.91), verify that

b′1 = −ib1 = −i(1/2)f = −i(1/4)(p2 − q2), (7.3.93)

b′2 = −b2 = −(1/2)b0 = −(1/4)(p2 + q2), (7.3.94)

b′3 = −ib3 = −i(1/2)g = −i(1/2)qp. (7.3.95)

Verify the Poisson bracket relations

[b1, b2] = −b3, (7.3.96)

[b2, b3] = −b1, (7.3.97)

[b3, b1] = b2. (7.3.98)

They are to be expected from (3.7.69) through (3.7.71) which, as we have already seen, are
a variant of the commutation rules for sp(2,R). Verify, as expected from (3.86) through
(3.88), that there are the Poisson bracket relations

[b′1, b
′
2] = b′3, (7.3.99)

[b′2, b
′
3] = b′1, (7.3.100)

[b′3, b
′
1] = b′2, (7.3.101)

which are a variant of the commutation rules for su(2). Recall (3.16) through (3.18). Verify
the conjugacy relations

: b1 :†=: b1 :, (7.3.102)

: b2 :†= − : b2 :, (7.3.103)

: b3 :†=: b3 :; (7.3.104)

: b′α :†= − : b′α : . (7.3.105)

Thus : b2 : is anti-Hermitian, : b1 : and : b3 : are Hermitian, and the : b′α : are anti-Hermitian.
It is also useful to introduce another basis for sp(2,R). Let `± and `0 be the monomials

`+ = −(1/2)(f + b0) = −(1/2)p2, (7.3.106)

`− = −(1/2)(f − b0) = (1/2)q2, (7.3.107)

`0 = (1/2)g = (1/2)qp. (7.3.108)

(Note that the `± are linear combinations of b0 and f with real coefficients.) Define associated
Lie operators by the rules

L+ =: `+ :, (7.3.109)

L0 =: `0 :, (7.3.110)

L− =: `− : . (7.3.111)

Using (7.3.16) through (7.3.18) verify that

(L+)† =: −p2/2 :†=: q2/2 := L−, (7.3.112)
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(L0)† =: (1/2)qp :†=: (1/2) : qp := L0, (7.3.113)

(L−)† =: (1/2)q2/2 :†=: −(1/2)p2/2 := L+. (7.3.114)

Also, let L± and L0 be the matrices associated with L± and L′. Verify that they are given
by the relations

L+ = −(1/2)(F +B0) = −
(

0 1
0 0

)
= −(1/2)(σ1 + iσ2), (7.3.115)

L0 = (1/2)G = (1/2)

(
1 0
0 −1

)
= (1/2)σ3, (7.3.116)

L− = −(1/2)(F −B0) = −
(

0 0
1 0

)
= −(1/2)(σ1 − iσ2). (7.3.117)

Verify that Lie operators (3.108) through (3.110) obey the commutation rules

{L+,L−} = 2L0, (7.3.118)

{L0,L+} = L+, (7.3.119)

{L0,L−} = −L−. (7.3.120)

Since the `± and `0 are real polynomials and the L± and L0 are the Lie operators associated
with these polynomials, the commutation rules (3.117) through (3.119) are a variant of
those for sp(2,R). Verify, as expected by construction, that L± and L0 obey the same
commutation rules. Finally, we observe that they are also the commutation rules for su(2)
in its raising and lowering operator form. See Sections 27.1 and 27.2. That is, by a change
of basis involving complex coefficients, the commutation rules for the usual form of su(2)
can be brought to the sp(2,R) commutation rules (3.117) through (3.119). This change in
form is another instance of the equivalence of sp(2,R) and su(2) under a change of basis
involving complex coefficients.

7.3.25. Review Exercise 3.24. The purpose of this exercise is to show that sp(2,R) and
su(2) are subalgebras of s`(2,C), to see how they fit within s`(2,C), and to make analogous
statements about the relations between the corresponding groups Sp(2,R), SU(2), and
SL(2,C).

The group SL(n,C) is the set of n × n matrices with entries drawn from the field C
and having determinant +1. Let B1 through B3 be the matrices given by (3.7.66) through
(3.7.68) and let γ be a three-component vector with entries drawn from C,

γ = (γ1, γ2, γ3). (7.3.121)

According to Exercise 3.1.3, a 2 × 2 matrix is symplectic iff its determinant is +1. And,
according to Exercise 3.7.10, the exponent for the exponential form of any matrix (which
always exists in some neighborhood of the identity) has trace 0 iff the the matrix has deter-
minant +1. Thus, in agreement with Exercise 3.7.26, s`(n,C), the Lie algebra of SL(n,C),
consists of all n × n matrices with entries drawn from the field C and having trace 0. In
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particular, s`(2,C) consists of all 2 × 2 matrices with entries drawn from the field C and
having trace 0. Verify, therefore, that s`(2,C) consists of matrices of the form

(1/2)

(
γ3 γ1 + γ2

γ1 − γ2 −γ3

)
= γ ·B (7.3.122)

where
γ ·B =

∑
j

γjBj. (7.3.123)

Let α and β be three-component vectors with entries drawn from R,

α = (α1, α2, α3), (7.3.124)

β = (β1, β2, β3). (7.3.125)

Decompose γ into real and imaginary parts by writing

γ = α+ iβ. (7.3.126)

Verify that sp(2,R) consists of the matrices (3.121) evaluated with

β = 0 and α unrestricted. (7.3.127)

Consequently, in the sp(2,R) case, the s`(2,C) matrix (3.121) takes the form

(1/2)

(
α3 α1 + α2

α1 − α2 −α3

)
= α ·B. (7.3.128)

What is required for the matrix in (3.121) to be in su(2)? Show that it must be anti-
Hermitian. What does this property require of the vector γ? Verify that

(1/2)

(
γ3 γ1 + γ2

γ1 − γ2 −γ3

)†
=
∑
j

γ̄jB
†
j = γ̄1B1 − γ̄2B2 + γ̄3B3. (7.3.129)

[Recall that B1 and B3 are Hermitian and B2 is anti-Hermitian. See (3.7.66) through
(3.7.68).] Show that the matrix in (3.121) is anti-Hermitian iff

γ̄1 = −γ1, (7.3.130)

γ̄2 = γ2, (7.3.131)

γ̄3 = −γ3. (7.3.132)

Verify it follows that su(2) consists of the matrices (3.121) evaluated with

α1 = 0 and β1 is unrestricted, (7.3.133)

β2 = 0 and α2 is unrestricted, (7.3.134)

α3 = 0 and β3 is unrestricted. (7.3.135)
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Consequently, show that in the su(2) case, the s`(2,C) matrix (3.121) takes the form

(1/2)

(
iβ3 iβ1 + α2

iβ1 − α2 −iβ3

)
= γ1B1 + γ2B2 + γ3B3

= iβ1B1 + α2B2 + iβ3B3

= −β1B
′
1 − α2B

′
2 − β3B

′
3

= −β1K
1 − α2K

2 − β3K
3. (7.3.136)

Recall the relations (3.7.169) through (3.7.171) and (7.3.86) through (7.3.89).
Is it possible for the matrix (3.122) to be in both sp(2,R) and su(2)? Upon comparing

the conditions (3.127) and the conditions (3.133) through (3.135), show that the answer is
yes provided that

β = 0, α1 = α3 = 0, and α2 is unrestricted. (7.3.137)

Thus sp(2,R) and su(2) have in common the one-dimensional Lie algebra (over the real field
R) spanned by B2.

You have shown that sp(2,R) and su(2) are both subalgebras of s`(2,C). Moreover, you
have shown that these two subalgebras are equivalent under the (complex) change of basis
given by (7.3.83) through (7.3.85).

So far you have been treating Lie algebras. What can be said about the associated Lie
groups Sp(2,R), SU(2), and SL(2,C)?

We begin with the case corresponding to the one-dimensional Lie algebra spanned by
B2, which is easy. The matrix B2 is real and antisymmetric. See (3.7.67). Show, therefore,
that elements of the form exp(θB2), with θ real, comprise an SO(2,R) group. See (3.7.93)
or (5.9.12). Note that this SO(2,R) group is in both both Sp(2,R) and SU(2).

To continue, we know much about Sp(2,R) and, in particular, that it has the topology
E2 × T 1. See (5.9.10) in Section 5.9.1.2 Similarly, we know much about SU(2) and, in
particular, that it has the topology S3. See Exercise 5.10.13. What remains is to examine
the case of SL(2,C).

Let a and b be three-vectors with real entries. Employ the notation

a · σ =
∑
j

ajσ
j, etc. (7.3.138)

Verify that the matrix a ·σ is Hermitian and the matrix ib ·σ is anti-Hermitian. Show that
any matrix of the form exp[(1/2)a · σ] is Hermitian and positive definite. Show that any
matrix of the form exp[(1/2)ib · σ] is in SU(2). Show that any element M in SL(2,C) can
be written in the form

M = exp[(1/2)a · σ] exp[(1/2)ib · σ] (7.3.139)

where both factors are unique. (This result is the complex analog of orthogonal polar
decomposition. See Section 4.2.) What is the topology of SL(2,C)? We know that the
second factor in (3.139), because it is in SU(2), has the topology S3. Show that the first
factor has the topology of E3. It follows that SL(2,C) has the topology E3 × S3.

2Observe that the T 1 in Sp(2,R) is the SO(2,R) just described.
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Using the parameterization (3.139), how does one obtain the two subgroups SU(2) and
Sp(2,R)? Show that SU(2) consists of the matrices (3.139) evaluated with

a = 0 and b unrestricted. (7.3.140)

Show that Sp(2,R) consists of the matrices (3.139) evaluated with

a1 and a3 unrestricted, a2 = 0; b1 = b3 = 0, b2 unrestricted. (7.3.141)

In summary, SL(2,C) has both SU(2) and Sp(2,R) subgroups.
Finally, show that the SO(2,R) that is in both SU(2) and Sp(2,R) consists of the

matrices (3.139) evaluated with

a = 0; b1 = b3 = 0, b2 unrestricted. (7.3.142)

7.3.26. Review Exercise 6.2.6. The purpose of this exercise is to derive the result (6.2.49)
from the requirement (6.2.48). Before doing so, let us check that the finite interval defined
by (6.4.27) is consistent with the infinitesimal interval given by (1.6.46). Verify that

D2(x+ dx, x) = (x+ dx− x) · (x+ dx− x) = (dx) · (dx) = ds2. (7.3.143)

Now move on to the main purpose of this exercise. Our goal is to show that any trans-
formation

x′ = f(x) (7.3.144)

that satisfies

D2(x′, y′) = D2(x, y) (7.3.145)

for all pairs of vectors x, y must be of the form

f(x) = x′ = Λx+ d (7.3.146)

where d is a fixed vector and Λ is a fixed matrix. (The converse of this assertion has already
been treated in Exercise 6.2.6.)

Begin by defining d to be the image of the origin,

d = f(0), (7.3.147)

and define a new transformation h(x) by the rule

h(x) = f(x)− d. (7.3.148)

Verify that h maps the origin into itself,

h(0) = 0, (7.3.149)

and also satisfies

D2{h(x), h(y)} = D2(x, y). (7.3.150)
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Verify that explicit evaluation of both sides of (3.150) gives the result

h(x) · h(x)− 2h(x) · h(y) + h(y) · h(y) = x · x− 2x · y + y · y. (7.3.151)

Show that setting y = 0 in (3.151) gives the result

h(x) · h(x) = x · x. (7.3.152)

Show that combining (3.151) and (3.152) yields the result

h(x) · h(y) = x · y. (7.3.153)

Let e1 to e4 be the points/vectors

e1 = (1000), e2 = (0100), etc. (7.3.154)

Define points/vectors cj by the rule
cj = h(ej). (7.3.155)

Show that using (3.153) and (3.155) gives the result

ci · cj = h(ei) · h(ej) = ei · ej = gij. (7.3.156)

Prove, therefore, that the vectors cj are linearly independent and can be used as a basis set.
Now define a matrix Λ by the rule

cj = Λej ⇔ Λej = cj, (7.3.157)

and show that this definition results in the explicit relation

Λij = (ei,Λej) = (ei, cj) (7.3.158)

where (∗, ∗) denotes the usual/ordinary scalar product.
Let x be an arbitrary point having the expansion

x =
∑
j

ξjej, (7.3.159)

and set
x′′ = h(x). (7.3.160)

Show, since the cj form a basis, that one may write

x′′ =
∑
j

gjj{cj · x′′}cj. (7.3.161)

Using (3.153), (3.155), (3.159), and (3.160), verify that

cj · x′′ = h(ej) · h(x) = ej · x = gjjξj. (7.3.162)

Show that combining this information with (3.157), (3.160), and (3.161) yields the result

h(x) = x′′ =
∑
j

(gjj)2ξjcj =
∑
j

ξjΛej = Λx. (7.3.163)

Finally, verify that going back to (3.148) gives the advertised result

f(x) = h(x) + d = Λx+ d. (7.3.164)
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7.3.27. The purpose of this exercise is to study the Lie algebra of the Lorentz group and
the Lie/exponential representation of group elements. But, before doing so, we digress to
observe that the Lorentz group has four separate components, only one of which contains
the identity element.

To see that the Lorentz group has four separate components, begin by verifying that the
matrices g (spatial inversion), −g (temporal inversion), and −I (total inversion), as well as
I, are all Lorentz transformations. Next, starting with the relation (6.2.50), verify the line
of reasoning

ΛTgΛ = g ⇒ det(ΛTgΛ) = det(g)⇒ det(ΛT ) det(g) det(Λ) = det(g)⇒
det(ΛT ) det(Λ) = 1⇒ [det(Λ)]2 = 1⇒ det(Λ) = ±1. (7.3.165)

Since the determinant of a matrix is a continuous function of its entries, the last relation
in (3.165) shows that the Lorentz transformations with determinant +1 are separated in
matrix space from those with determinant −1. Also we know that the matrix g is a Lorentz
transformation, and is easily verified to have det(g) = −1. Therefore, if any Lorentz trans-
formation matrix with determinant +1 is multiplied by g, show that the result will be a
Lorentz transformation matrix with determinant −1. Finally, verify the line of reasoning

ΛTgΛ = g ⇒ (ΛTgΛ)44 = g44 ⇒ (Λ44)2 −
3∑

µ=1

(Λµ4)2 = 1⇒

|Λ44| ≥ 1 ⇔ Λ44 ≥ 1 or Λ44 ≤ −1. (7.3.166)

Evidently, among the four possibilities embraced by the last relations in (3.165) and
(3.166), only the component with

det(Λ) = 1 and Λ44 ≥ 1 (7.3.167)

can contain the identity element. Verify that this component is a subgroup, and the other
three are not. Verify that all the elements in the other components can be obtained by
multiplying the elements in the identity component by g or −g or −I.

With this digression behind us, we turn to studying the Lie structure of the identity
component of the Lorentz group. Suppose Λ is sufficiently near the identity matrix I so that
it can be written in the form

Λ = exp(εS) = I + εS +O(ε2) (7.3.168)

where ε is a small parameter and S is a matrix to be determined. Show that inserting (3.168)
into (6.2.50) and equating powers of ε yields the condition

STg + gS = 0⇔ (7.3.169)

ST = −gSg. (7.3.170)

Verify that the condition (3.170) is also sufficient for the Λ given by (3.168) to satisfy (6.2.50)
exactly. Verify that matrices S that satisfy (3.170) form a Lie algebra.



786 7. LIE TRANSFORMATIONS AND SYMPLECTIC MAPS

Let us pause at this point to see how the tilde Lie algebraic conjugacy operator defined
by C̃ in Exercise 3.7.36 applies to elements in the Lorentz group Lie algebra. Show from the
definition (3.7.219) and (3.170) that

C̃(S) = −ST = gSg = gSg−1. (7.3.171)

(Here we have used the fact that g = g−1). Evidently, for the Lorentz group Lie algebra,
this conjugate representation is equivalent to the original representation. Note that Lorentz
transformation matrices Λ act on four-vectors, and four-vectors carry the representation
Γ(1/2, 1/2). See Exercise 7.3.29. You have shown that this representation is self conjugate
under the tilde operation.

What happens if we instead use the conjugacy operators C̆ and C̀? Verify that

C̆(S) = S̄ = S (7.3.172)

and
C̀(S) = −S† = −ST = gSg = gSg−1 (7.3.173)

because S is a real matrix. It follows that, for the Lorentz group Lie algebra, the conjugate
representation is equivalent to the original representation no matter what conjugacy operator
is used.

Now let us work out the consequences of (3.170) in detail. Begin by computing some
matrix elements. Verify the following line of reasoning for diagonal elements:

ST = −gSg ⇒ (ST )jj = −
∑
k`

gjkSk`g`j ⇒ Sjj = −Sjj

⇒ all diagonal elements of S vanish. (7.3.174)

Verify the following line of reasoning for j4 and 4j elements:

ST = −gSg ⇒ (ST )j4 = −
∑
k`

gjkSk`g`4 ⇒ S4j = −gjjSj4 ⇒ S4j = Sj4 for j 6= 4.

(7.3.175)
Verify, consequently, that S can be written in the form

S =

(
A a
aT 0

)
(7.3.176)

where A is a 3×3 matrix and a is a three-component vector. Now take (3.170) into account
once again. Show that it implies the matrix relation(

AT a
aT 0

)
= −

(
−I o
o 1

)(
A a
aT 0

)(
−I o
o 1

)
(7.3.177)

where o is a three-component vector all of whose entries are zero. Verify that carrying out
the matrix multiplications appearing on the right side of (3.177) yields the final result(

AT a
aT 0

)
=

(
−A a
aT 0

)
. (7.3.178)
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Consequently A must be antisymmetric,

AT = −A, (7.3.179)

and a can be any three-component vector.
We are ready to set up a convenient (and pleasing) basis for the matrices S. In analogy

to (3.7.178) through (3.7.180) define in the present context matrices L1 through L3 by the
rules

L1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , (7.3.180)

L2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , (7.3.181)

L3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (7.3.182)

Also, define matrices N1 through N3 by the rules

N1 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , (7.3.183)

N2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , (7.3.184)

N3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 . (7.3.185)

Verify that these matrices form a basis for the vector space of matrices S that satisfy (3.176)
with the condition (3.179). Thus, the Lie algebra of such matrices is six dimensional. Indeed,
verify that there are the commutation rules

{Lj, Lk} =
∑
`

εjk`L
`, (7.3.186)

{Lj, Nk} =
∑
`

εjk`N
`, (7.3.187)
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{N j, Nk} = −
∑
`

εjk`L
`. (7.3.188)

Finally, observe that the Lj are sent into themselves under the tilde operation (3.171), and
the N j are sent into their negatives. Glancing at (3.186) through (3.188), we see that the
tilded basis elements satisfy the same commutation relations as the original elements, as
expected.

Consider matrices Λ of the form

Λ(λ,m; θ,n) = exp(λm ·N ) exp(θn ·L) (7.3.189)

were m and n are unit vectors and

m ·N =
∑
j

mjN
j, etc. (7.3.190)

Verify that m ·N is Hermitian and n ·L is anti-Hermitian, and therefore (3.189) is a polar
decomposition. Show that every Λ in the identity component of the Lorentz group can be
uniquely written in this form. Show that all Λ in all four components of the Lorentz group
can be uniquely written in the form.

Λ(λ,m; θ,n; r, s) = gr(−g)s exp(λm ·N ) exp(θn ·L) with r = 0, 1 and s = 0, 1. (7.3.191)

To simplify nomenclature, from here on we will refer to the identity component of the Lorentz
group simply as the Lorentz group.

Evidently, as follows from the work of Exercise 3.7.31, the factor exp(θn · L) in (3.189)
produces spatial rotations by angle θ about the axis n. What can be said about the factor
exp(λm ·N )? Your next task is to verify that it produces velocity transformations along
the m axis and to find the relation between λ and the magnitude of the velocity.

Begin with the case m = e3, in which case we are interested in the effect of exp(λN3).
Verify that

(N3)2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (7.3.192)

and

(N3)3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 = N3. (7.3.193)

Show, therefore, that there is the intermediate result

exp(λN3) = I + λN3 + λ2(N3)2/2! + λ3(N3)3/3! + · · ·
= I +N3 sinh(λ) + (N3)2[cosh(λ)− 1]. (7.3.194)

Verify that employing (3.185) and (3.192) in (3.194) gives the final matrix result

exp(λN3) =


1 0 0 0
0 1 0 0
0 0 cosh(λ) sinh(λ)
0 0 sinh(λ) cosh(λ)

 . (7.3.195)
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For extra credit, evaluate m ·N and its second and third powers. Show that

(m ·N )3 = m ·N . (7.3.196)

Use the results you find to generalize (3.194) and to evaluate exp(λm ·N ) for arbitrary unit
vector m.

To continue, review Exercise 6.2.7 and, in particular, the result (6.2.53). How are (6.2.53)
and (3.195) related? Let τ be a parameter and consider the world line

x1 = x2 = x3 = 0, t = τ (7.3.197)

so that
x(τ) = {0, 0, 0, cτ}. (7.3.198)

This is the world line for a particle at rest at the spatial origin.3 Suppose x̄ is the result of
applying exp(λN3) to x. Verify that according to (3.195) there is the result

x̄(τ) = exp(λN3)x(τ) = {0, 0, c sinh(λ)τ, c cosh(λ)τ} (7.3.199)

so that
x̄3 = c sinh(λ)τ (7.3.200)

and
ct̄ = c cosh(λ)τ ⇔ t̄ = cosh(λ)τ. (7.3.201)

Using (3.200) and (3.201) verify that, after the transformation/boost (3.195), the particle
will be moving along the +e3 axis with velocity v given by

v = dx̄3/dt̄ = c tanh(λ). (7.3.202)

Using the definition
v = (v/c)c = βc⇔ β = v/c, (7.3.203)

verify that
β = tanh(λ). (7.3.204)

The quantity
λ = tanh−1(β) (7.3.205)

is called the rapidity. At this point we may make a remark about sign choices. Observe that
had we replaced the matrices defining the N j by their negatives in (3.183) through (3.185),
the commutation rules (3.186) through (3.188) would be unchanged. However, a minus sign
would then appear in (3.202). Since it seems desirable for a positive rapidity to result in a
positive velocity, the sign choice we have made seems to be the more natural.

Here is an occasion for two brief interludes: For the first, review Exercise 3.7.37 and
suppose the tilde group element conjugacy relation defined by the operator D̃ is applied to
the Lorentz group element Λ given by (3.189). Show that

D̃[Λ(λ,m; θ,n)] = exp(−λm ·N ) exp(θn ·L) = Λ(−λ,m; θ,n). (7.3.206)

3Note that for a particle to be possibly at rest in some inertial frame it must have finite mass.
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Evidently the effect of D̃ is to change the sign of the rapidity and therefore the sign of the
boost velocity.

For the second interlude, suppose two velocity transformations with rapidities λ1 and λ2

are made successively in the same direction. Then, from the group property

exp(λ1m ·N )exp(λ2m ·N ) = exp[(λ1 + λ2)m ·N ], (7.3.207)

we see that rapidities add. Show, as a result, that there is the relation

β3 = tanh(λ3) = tanh(λ1 + λ2). (7.3.208)

Verify the chain of reasoning

β3 = tanh(λ1 + λ2) = [tanh(λ1) + tanh(λ2)]/[1 + tanh(λ1) tanh(λ2)]

= (β1 + β2)/(1 + β1β2). (7.3.209)

This is the relativistic law for the addition of parallel velocities.
We also take this opportunity to remark that in general velocity transformations do not

commute because the right side of (3.188) does not vanish, but rather contains rotation
generators. Consequently a sequence of velocity transformations can produce a rotation,
called a Wigner rotation. This failure to commute, which is a relativistic phenomena, is the
origin of Thomas precession.

To return to the main theme, verify using (3.204) that

γ = 1/(1− β2)1/2 = 1/[1− tanh2(λ)]1/2 = cosh(λ)/[cosh2(λ)− sinh2(λ)]1/2

= cosh(λ). (7.3.210)

Also verify that
βγ = tanh(λ) cosh(λ) = sinh(λ). (7.3.211)

Consequently, (3.195) can be rewritten in the form

Λ(λ, e3; 0,n) = exp(λN3) =


1 0 0 0
0 1 0 0
0 0 cosh(λ) sinh(λ)
0 0 sinh(λ) cosh(λ)

 =


1 0 0 0
0 1 0 0
0 0 γ βγ
0 0 βγ γ


(7.3.212)

in agreement with (6.2.53).

7.3.28. Review Exercise 3.27. We have seen that the commutation rules (3.186) are those
for so(3,R) and they generate spatial rotations, SO(3,R) transformations, described by
Lorentz transformation group elements of the form exp(θn ·L). Are there other subgroups
of the Lorentz group?

Curiously, and generally not discussed in the literature, the Lorentz group also has
Sp(2,R) subgroups. Consider, for example, the generators N3, N1, and L2. Verify from
(3.187) and (3.188) that they obey the commutation rules

{L2, N3} = N1, (7.3.213)
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{L2, N1} = −N3, (7.3.214)

{N3, N1} = −L2, (7.3.215)

and therefore generate a subalgebra. Next look at the sp(2,R) commutation rules (3.7.69)
through (3.7.71). Verify, under the correspondences

B1 ↔ −N1, (7.3.216)

B2 ↔ −L2, (7.3.217)

B3 ↔ −N3, (7.3.218)

which taken together behave like a change of basis using real coefficients, that the com-
mutation relations (3.213) through (3.215) are the same as the sp(2,R) commutation rules
(3.7.69) through (3.7.71).4 Verify, therefore, that Lorentz transformations of the form

Λ(λ3, λ1, θ) = exp(λ3N
3 + λ1N

1) exp(θL2) (7.3.219)

form a group that is isomorphic to the group Sp(2,R).
How could one have guessed that the Lorentz group would have both SO(3,R) and

Sp(2,R) subgroups? According to Exercise 3.25 the group SL(2,C) has both SU(2) and
Sp(2,R) subgroups. In Exercise 8.2.14 you will learn that the Lorentz group is homomorphic
to SL(2,C). In fact, SL(2,C) is the covering group for the Lorentz group. Armed with this
knowledge, one would expect that the Lorentz group would have both SO(3,R) and Sp(2,R)
subgroups.

Finally, let Λf be any fixed Lorentz group element. Verify that all Lorentz group elements
Λ′ of the form

Λ′ = Λf exp(λ1N
3 + λ2N

1) exp(θL2)(Λf )−1 (7.3.220)

also comprise an Sp(2,R) subgroup. Thus the Lorentz group has many Sp(2,R) subgroups
depending on the choice of Λf . Make a similar argument for the case of SO(3,R).

7.3.29. The purpose of this exercise is to describe some representations of the Lorentz group.
We begin with the observation that the Lorentz group is not compact. Indeed, for example,
looking at (3.208) we see that λ can be arbitrarily large thereby yielding matrices Λ that are
arbitrarily far from the origin in matrix space. It follows that the Lorentz group does not
have any finite dimensional unitary representations because unitary matrices are bounded
in matrix space.5 However, the Lorentz group does have nonunitary finite dimensional
representations. They are useful for constructing classical and quantum fields including
the Higgs fields, Dirac fields for leptons (neutrinos, electrons · · · ) and quarks, vector boson
fields (gluons, photons, W±, Z0), the graviton field, and more. Some facts about these finite
dimensional representations are the subject of this exercise.

4Making the correspondences (3.216) through (3.218) was facilitated by the common appearance of Pauli
matrices in (3.7.66) through (3.7.68), (5.6.7), (5.6.13), (5.6.14), and (7.3.236) through (7.3.241).

5The Lorentz group does have infinite dimensional unitary representations. Their discussion is beyond
the scope of this book.
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Let Ľj and Ň j be a set of matrices/operators that obey the Lorentz group Lie algebra
commutation rules (3.186) through (3.188). Define related matrices/operators Aj and Bj

by the rules

Aj = (Ľj + iŇ j)/2, (7.3.221)

Bj = (Ľj − iŇ j)/2, (7.3.222)

Note that these definitions are essentially a change of basis with coefficients drawn from
the complex field C. Verify, from (3.186) through (3.188), that the Aj and Bk obey the
commutation rules

{Aj, Bk} = 0, (7.3.223)

{Aj, Ak} =
∑
`

εjk`A
`, (7.3.224)

{Bj, Bk} =
∑
`

εjk`B
`. (7.3.225)

That is, the Aj and Bk commute, and separately obey the commutation rules for su(2). You
have shown that, over the complex field, the Lie algebra of the Lorentz group is equivalent
to su(2) ⊕ su(2), the direct sum of two commuting su(2) Lie algebras. It follows that the
Lorentz group Lie algebra, unlike the classical and exceptional Lie algebras listed in Table
3.7.2, is not a simple Lie algebra.6 In retrospect, we should have already known this. Recall
Exercise 3.7.40.

As is familiar from their occurrence in Quantum Mechanics, the representations of su(2)
are labelled by a quantity j that can take on the values

j = 0, 1/2, 1, 3/2, 2 · · · . (7.3.226)

We also recall that the dimension of an su(2) representation is given by the quantity (2j+1).
Since the Lie algebra of the Lorentz group is equivalent to su(2) ⊕ su(2), we will label a
representation of the Lorentz group Lie algebra by the symbol Γ(j1, j2) where j1 and j2

are the j values associated with the Ak and Bk Lie algebras, respectively.7 Verify that the
dimension of Γ(j1, j2) is given by the relation

dim Γ(j1, j2) = (2j1 + 1)(2j2 + 1). (7.3.227)

What is the representation in the case that the matrices Ľj and Ň j are the matrices
given by (3.180) through (3.185)? This will be the representation carried by the matrices Λ
given by (3.189) acting on four-vectors. To answer this question we may compute the su(2)
Casimir operators given by A ·A and B ·B where

A ·A =
∑
j

(Aj)2, etc. (7.3.228)

6It is, however, semisimple since it is the direct sum of two commuting su(2) Lie algebras and su(2) is
simple.

7The symbol D(j1, j2) is also frequently used to denote a representation of the Lorentz group or its Lie
algebra.
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(For a discussion of Casimir operators see Exercise 3.7.31 and Section 27.11.) Verify from
(3.221) that ∑

j

(Aj)2 = (1/4)
∑
j

[(Lj)2 + i(LjN j +N jLj)− (N j)2]. (7.3.229)

Show that the following results hold:

∑
j

(Lj)2 = −2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (7.3.230)

[see (3.7.215)],

LjN j = N jLj = 0, (7.3.231)

∑
j

(N j)2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 . (7.3.232)

Show, therefore, that ∑
j

(Aj)2 = (1/4)
∑
j

[(Lj)2 − (N j)2] = −(3/4)I, (7.3.233)

and that the same result holds for B ·B. Since the su(2) quadratic Casimir operator has
the value −j(j + 1) it follows that in the four-vector case there are the relations

j1 = j2 = 1/2. (7.3.234)

You have shown that four-vectors carry the representation Γ(1/2, 1/2). Note, from the work
of Exercise 3.27, we know that Γ(1/2, 1/2) is self conjugate under any of the conjugacy
operations. This fact is customarily expressed by writing

Γ̄(1/2, 1/2) = Γ(1/2, 1/2) (7.3.235)

where here, to be precise, the bar represents any of the conjugacy operations. We also
observe from (3.189) that, since the generators given by (3.180) through (3.185) are real,
the matrices Λ are real. Therefore, we say that the representation Γ(1/2, 1/2) is real.

It can be shown that Dirac 4-spinors (to be defined subsequently) carry the representation
Γ(0, 1/2) ⊕ Γ(1/2, 0), and antisymmetric tensors such as the electromagnetic field tensor
F µν carry the representation Γ(0, 1) ⊕ Γ(1, 0). (See Exercises 8.2.17 and 3.33.) It can be
shown that these representations are also real. Verify that four-vectors, Dirac 4-spinors,
and antisymmetric tensors have the expected dimensions of 4, 4, and 6, respectively. Verify,
using (6.2.51), that the metric tensor gµν carries the representation Γ(0, 0). Show that the
same is true of the completely antisymmetric (Levi-Civita) tensor/symbol εαβγδ.
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7.3.30. Review Exercise 3.7.26. One of its purposes was to show that SL(n,C), the set of
all n×n complex matrices with determinant +1, forms a group; and to verify that s`(n,C),
the set of all n × n complex matrices with trace 0, is its Lie algebra. The purpose of this
exercise is to study in some detail (the simplest case) SL(2,C) and its Lie algebra s`(2,C).

To begin, define matrices L̂j and N̂ j by the rules

L̂1 = K1 = (−i/2)σ1 = (−i/2)

(
0 1
1 0

)
, (7.3.236)

L̂2 = K2 = (−i/2)σ2 = (−i/2)

(
0 −i
i 0

)
= (−1/2)

(
0 1
−1 0

)
, (7.3.237)

L̂3 = K3 = (−i/2)σ3 = (−i/2)

(
1 0
0 −1

)
; (7.3.238)

N̂1 = (1/2)σ1 = (1/2)

(
0 1
1 0

)
, (7.3.239)

N̂2 = (1/2)σ2 = (1/2)

(
0 −i
i 0

)
, (7.3.240)

N̂3 = (1/2)σ3 = (1/2)

(
1 0
0 −1

)
. (7.3.241)

See Exercise 3.7.31 and (3.7.169) through (3.7.171). Note that

N̂ j = iL̂j. (7.3.242)

Verify that the L̂j and N̂ j form a basis for s`(2,C) and obey the commutation rules

{L̂j, L̂k} =
∑
`

εjk`L̂
`, (7.3.243)

{L̂j, N̂k} =
∑
`

εjk`N̂
`, (7.3.244)

{N̂ j, N̂k} = −
∑
`

εjk`L̂
`. (7.3.245)

Observe that the structure constants in (3.243) through (3.245) are the same as those in
(3.183) through (3.185). Therefore the Lie algebra s`(2,C) is the same as the Lie algebra
of the Lorentz group.

Consider SL(2,C) matrices Λ̂ of the form

Λ̂(λ,m; θ,n) = exp(λm · N̂ ) exp(θn · L̂) (7.3.246)

were m and n are unit vectors and

m · N̂ =
∑
j

mjN̂
j, etc. (7.3.247)
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Verify that m · N̂ is Hermitian and n · L̂ is anti-Hermitian, and therefore (3.246) is a polar
decomposition. Show that every matrix in SL(2,C) can be uniquely written in this form.
See Exercise 4.2.5.

You have shown that the Lie algebra s`(2,C) is the same as the Lie algebra of the
Lorentz group. Verify, moreover, that there are the analogous polar decompositions (3.246)
and (3.189). We therefore expect that there is an intimate connection between the Lorentz
group and the group SL(2,C). This connection is explored in Exercise 8.2.14 where it is
shown that SL(2,C) is the covering group of the Lorentz group.

At this point it is possible to make three remarks: For the first, review Exercise 3.7.36.
Suppose the grave Lie algebraic conjugacy operator defined by C̀ is applied to the elements
L̂j and N̂ j that comprise a basis for the s`(2,C) Lie algebra. Show from the definition
(3.7.225) and (3.236) through (3.241) that there are the results

C̀(L̂j) =
`̂
Lj = −(L̂j)† = L̂j, (7.3.248)

C̀(N̂ j) =
`̂
N j = −(N̂ j)† = −N̂ j. (7.3.249)

Evidently the L̂j are left in peace and the N̂ j change sign. Verify, as expected, that these
transformed elements obey the same commutation rules (3.243) through (3.245) as the orig-
inal elements.

Can the
`̂
Lj,

`̂
N j be related to the L̂j,N̂ j by a similarity transformation as in (3.7.218)?

Suppose we assume so. Then there will be the relations

`̂
Lj = EL̂jE−1, (7.3.250)

`̂
N j = EN̂ jE−1. (7.3.251)

Verify that combining (3.248) through (3.251) yields the relations

L̂j = EL̂jE−1, (7.3.252)

N̂ j = −EN̂ jE−1. (7.3.253)

But, from (3.242) and (3.253), we conclude that

iL̂j = −iEL̂jE−1 ⇒ L̂j = −EL̂jE−1. (7.3.254)

Observe that (3.252) and the far right side of (3.254) disagree! It follows there is no E for
which (3.250) and (3.251) hold. Therefore the representations of s`(2,C) provided by the

L̂j,N̂ j and the
`̂
Lj,

`̂
N j are not equivalent.

For the second remark, review Exercise 3.7.37. Suppose the grave group element conju-
gacy relation defined by the operator D̀ is applied to the SL(2,C) group elements Λ̂ given
by (3.246). Show that

D̀[Λ̂(λ,m; θ,n)] = exp(−λm · N̂ ) exp(θn · L̂) = Λ̂(−λ,m; θ,n). (7.3.255)

Evidently the effect of D̀ is to change the sign of the SL(2,C) analog of the rapidity and
therefore the sign of the SL(2,C) analog of the boost velocity.
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For the third remark we again comment on sign choices. In accord with our earlier
finding, observe that had we replaced the matrices defining the N̂ j by their negatives in
(3.239) through (3.241), the commutation rules (3.243) through (3.245) would be unchanged.
However, as we will later see at the end of Exercise 8.2.14, the sign choice we have made is
necessary for the construction of a natural map between the group SL(2,C) and the Lorentz
group.

In analogy to the study in Exercise 3.29 of the representations of the Lorentz group
carried by various entities such as four-vectors, the last task of this exercise is to examine
what representations are involved in the case of SL(2,C). Following (3.221) and (3.222),
form the matrices

Âj = (L̂j + iN̂ j)/2, (7.3.256)

B̂j = (L̂j − iN̂ j)/2, (7.3.257)

using for the L̂j and N̂ j the matrices (3.236) through (3.241). Verify that so doing yields
the results

Âj = 0, (7.3.258)

B̂j = (−i/2)σj. (7.3.259)

Continue on to show that ∑
j

(Âj)2 = 0, (7.3.260)

∑
j

(B̂j)2 = −(3/4)I. (7.3.261)

Verify it follows from (3.260) and (3.261) that there are the results

j1 = 0 (7.3.262)

and
j2 = 1/2. (7.3.263)

You have shown that the use of SL(2,C) produces the Γ(0, 1/2) representation of the Lorentz
group.

We have seen that the representations of s`(2,C) provided by the L̂j,N̂ j and the
`̂
Lj,

`̂
N j

are not equivalent and that the representation provided by the L̂j, N̂ j is the Γ(0, 1/2)

representation. What representation is provided by the
`̂
Lj,

`̂
N j? Again following (3.221) and

(3.222), form the matrices
`̂
Aj = (

`̂
Lj + i

`̂
N j)/2, (7.3.264)

`̂
Bj = (

`̂
Lj − i `̂

N j)/2, (7.3.265)

using for the
`̂
Lj and

`̂
N j the matrices (3.248) and (3.249). Verify that so doing yields the

results
`̂
Aj = (

`̂
Lj + i

`̂
N j)/2 = (L̂j − iN̂ j)/2 = (−i/2)σj, (7.3.266)

`̂
Bj = (

`̂
Lj − i `̂

N j)/2 = (L̂j + iN̂ j)/2 = 0. (7.3.267)
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Continue on to show that ∑
j

(
`̂
Aj)2 = −(3/4)I, (7.3.268)

∑
j

(
`̂
Bj)2 = 0. (7.3.269)

Verify it follows from (3.268) and (3.269) that there are the results

j1 = 1/2 (7.3.270)

and
j2 = 0. (7.3.271)

You have shown that the use of the
`̂
Lj,

`̂
N j produces the Γ(1/2, 0) representation of the

Lorentz group. Correspondingly, we may write

Γ̄(0, 1/2) = Γ(1/2, 0) (7.3.272)

where the bar denotes the result of using the grave conjugation operation C̀. It can be shown
that there is the general Lorentz group/Lie-algebra representation conjugacy relation

Γ̄(j1, j2) = Γ(j2, j1) (7.3.273)

of which (3.235) and (3.272) are particular cases.

7.3.31. Review Exercise 7.3.30. There you learned that SL(2,C) and the Lorentz group
have the same Lie algebra. The purpose of this exercise is to show that a subgroup of
SL(3,C) also has the Lorentz group Lie algebra, and to discover what representation of the
Lorentz group is provided by this subgroup. In Exercise 3.7.26 you learned that s`(3,C)
consists of 3× 3 complex matrices with trace 0. A 3× 3 complex matrix requires 9 complex
and hence 18 real numbers for its specification. Requiring that the trace vanish imposes one
complex and hence two real conditions among these numbers with the result that s`(3,C)
has 18 − 2 = 16 real dimensions. For comparison, we know that s`(2,C) and the Lorentz
group Lie algebra have 6 real dimensions. Therefore, if this exercise is to succeed, we must
find a suitable six-dimensional subalgebra of s`(3,C).

Recall the so(3,C) matrices Lj defined by (3.7.178) through (3.7.180). Note that they
are traceless. Use them to define s`(3,C) matrices Ľj and Ň j by the rules

Ľ1 = L1 =

 0 0 0
0 0 −1
0 1 0

 , (7.3.274)

Ľ2 = L2 =

 0 0 1
0 0 0
−1 0 0

 , (7.3.275)

Ľ3 = L3 =

 0 −1 0
1 0 0
0 0 0

 ; (7.3.276)
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Ň1 = iL1 = i

 0 0 0
0 0 −1
0 1 0

 , (7.3.277)

Ň2 = iL2 = i

 0 0 1
0 0 0
−1 0 0

 , (7.3.278)

Ň3 = iL3 = i

 0 −1 0
1 0 0
0 0 0

 . (7.3.279)

Note that, in analogy with (3.242),
Ň j = iĽj. (7.3.280)

Verify that the Ľj and Ň j obey the commutation rules

{Ľj, Ľk} =
∑
`

εjk`Ľ
`, (7.3.281)

{Ľj, Ňk} =
∑
`

εjk`Ň
`, (7.3.282)

{Ň j, Ňk} = −
∑
`

εjk`Ľ
`. (7.3.283)

Evidently they span a subalgebra of s`(3,C). Moreover, the structure constants in (3.281)
through (3.283) are the same as those in (3.186) through (3.188). Therefore this subalgebra
is the same as the Lie algebra of the Lorentz group.

What representation of the Lorentz group Lie algebra is provided by the Ľj and Ň j?
Review Exercise 3.29. Employ in (3.221) and (3.222) the Ľj and Ň j given by (3.274) through
(3.279) to find the results

Ǎj = (Ľj + iŇ j)/2 = (Lj − Lj)/2 = 0, (7.3.284)

B̌j = (Ľj − iŇ j)/2 = (Lj + Lj)/2 = Lj. (7.3.285)

Continue on to show that ∑
j

(Ǎj)2 = 0, (7.3.286)

∑
j

(B̌j)2 =
∑
j

(Lj)2 = −(2)I. (7.3.287)

See (3.7.215). Verify it follows from (3.286) and (3.287) that there are the results

j1 = 0 (7.3.288)

and
j2 = 1. (7.3.289)

You have shown that the use of the s`(3,C) subalgebra produces the Γ(0, 1) representation
of the Lorentz group Lie algebra.
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Suppose the grave Lie algebraic conjugacy operator defined by C̀ is applied to the elements
Ľj and Ň j that comprise a basis for the s`(3,C) Lie subalgebra. Show from the definition
(3.7.225) and (3.274) through (3.279) that there are the results

C̀(Ľj) = `̌Lj = −(Ľj)† = Ľj, (7.3.290)

C̀(Ň j) = `̌N j = −(Ň j)† = −Ň j. (7.3.291)

Evidently the Ľj are left in peace and the Ň j change sign. Verify, as expected, that the `̌Lj,
`̌N j also provide a representation of the Lorentz group Lie algebra.

Suppose instead the breve Lie algebraic conjugacy operator defined by C̆ is applied to
the elements Ľj and Ň j that comprise a basis for the s`(3,C) Lie subalgebra. Show from
the definition (3.7.224) and (3.274) through (3.279) that there are the results

C̆(Ľj) = ˘̌Lj = ¯̌Lj = Ľj, (7.3.292)

C̆(Ň j) = ˘̌N j = ¯̌N j = −Ň j. (7.3.293)

Evidently, for the s`(3,C) Lie subalgebra, the grave and breve operations have the same
effect.

Read again the part of Exercise 3.30 that showed the representations of the Lorentz group

Lie algebra provided by L̂j,N̂ j and
`̂
Lj,

`̂
N j are not equivalent. Construct a similar proof that

the representations of the Lorentz group Lie algebra provided by Ľj,Ň j and `̌Lj, `̌N j are not

equivalent. Also, state and prove an analog of (3.255). Finally, show that the `̌Lj, `̌N j produce
the Γ(1, 0) representation of the Lorentz group Lie algebra so that

Γ̄(0, 1) = Γ(1, 0), (7.3.294)

which is again a particular case of (3.273).

7.3.32. Recall that under the action of a Lorentz transformation Λ the electromagnetic field
tensor F µν defined by

F µν =


0 −Bz By Ex/c
Bz 0 −Bx Ey/c
−By Bx 0 Ez/c
−Ex/c −Ey/c −Ez/c 0

 (7.3.295)

transforms according to the rule

F̂αβ =
∑
µν

ΛαµΛβνF µν ⇔ F̂ = ΛFΛT . (7.3.296)

Review Exercise 1.6.17. (Here we use a hat ˆ rather than a bar ¯ as a distinguishing mark
because later we will want to use a bar to indicate complex conjugation.) This exercise is
the first of two exercises whose purpose is to relate the transformation rule (3.296) to the
Lorentz Lie algebra/group representations Γ(0, 1) and Γ(1, 0) found in Exercise 3.31 above.
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It will be limited to Lorentz transformations that are near the identity transformation. It
will be followed by a subsequent exercise that extends the results found here to all Lorentz
transformations.

Before beginning our exploration it is convenient to introduce some new notation. Define
a tensor-valued function Fµν of E and B by the rule

Fµν(E,B) =


0 −Bz By Ex/c
Bz 0 −Bx Ey/c
−By Bx 0 Ez/c
−Ex/c −Ey/c −Ez/c 0

 . (7.3.297)

With this definition we may rewrite (3.295) in the form

F µν = Fµν(E,B), (7.3.298)

and we may also write

F̂ µν = Fµν(Ê, B̂) =


0 −B̂z B̂y Êx/c

B̂z 0 −B̂x Êy/c

−B̂y B̂x 0 Êz/c

−Êx/c −Êy/c −Êz/c 0

 (7.3.299)

where Ê and B̂ are the transformed fields associated with F̂ . Finally, for compactness of
notation, we will sometimes omit the tensor indices to simply write

F = F(E,B) (7.3.300)

and
F̂ = F(Ê, B̂). (7.3.301)

Now let us begin our exploration by considering some particular cases. Suppose Λ is the
Lorentz transformation for a small rotation θ about the z axis,

Λ = exp(θL3) = I + θL3 +O(θ)2. (7.3.302)

Show that in this case (3.296) becomes

F̂ = ΛFΛT = (I + θL3)F (I − θL3) +O(θ2) = F + θ{L3, F}+O(θ2). (7.3.303)

(Recall that L3 is antisymmetric.) Verify that

FL3 =


0 −Bz By Ex/c
Bz 0 −Bx Ey/c
−By Bx 0 Ez/c
−Ex/c −Ey/c −Ez/c 0




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



=


−Bz 0 0 0

0 −Bz 0 0
Bx By 0 0
−Ey/c Ex/c 0 0

 , (7.3.304)
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L3F = [F T (L3)T ]T = (FL3)T =


−Bz 0 Bx −Ey/c

0 −Bz By Ex/c
0 0 0 0
0 0 0 0

 , (7.3.305)

and therefore

{L3, F} =


0 0 Bx −Ey/c
0 0 By Ex/c
−Bx −By 0 0
Ey/c −Ex/c 0 0

 . (7.3.306)

Verify that use of (3.297) through (3.306) yields the relations

Êx = Ex − θEy +O(θ2), (7.3.307)

Êy = Ey + θEx +O(θ2), (7.3.308)

Êz = Ez +O(θ2); (7.3.309)

B̂x = Bx − θBy +O(θ2), (7.3.310)

B̂y = By + θBx +O(θ2), (7.3.311)

B̂z = Bz +O(θ2). (7.3.312)

What are we to make of the relations (3.307) through (3.312)? Verify that (3.307)
through (3.309) can be rewritten in the form Êx

Êy
Êz

 =

 1 −θ 0
θ 1 0
0 0 1

 Ex
Ey
Ez

+O(θ2) (7.3.313)

or, in matrix/vector notation,

Ê = exp(θĽ3)E +O(θ2). (7.3.314)

See (3.276). Verify that (3.310) through (3.312) can be rewritten analogously.
At this point, in anticipation of further results, it is convenient to define two three-

dimensional complex vectors F± (sometimes called Faraday vectors) by the rules

F± = E ± icB. (7.3.315)

Verify that the results (3.307) through (3.312) can be rewritten in the form F̂+
x

F̂+
y

F̂+
z

 =

 1 −θ 0
θ 1 0
0 0 1

 F+
x

F+
y

F+
z

+O(θ2) (7.3.316)

or, in matrix/vector notation,

F̂+ = exp(θĽ3)F+ +O(θ2). (7.3.317)
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Let us extend our notation a bit further. Evidently a knowledge of F+ is equivalent to
a knowledge of E and B, and vice versa. Indeed, from (3.315) we see that

E = <(F+) (7.3.318)

and
B = (1/c)=(F+). (7.3.319)

We may therefore view F+ as being an argument for F so that (3.300) and (3.301) can also
be written as

F = F(F+) (7.3.320)

and
F̂ = F(F̂+). (7.3.321)

Verify, using this extended notation, that the results (3.301) through (3.303) and (3.317)
can be rewritten in the form

exp(θL3)F(F+)[exp(θL3)]T = F [exp(θĽ3)F+] +O(θ2). (7.3.322)

We have studied the case of a small rotation about the z axis. As a second particular
case, suppose Λ is the Lorentz transformation for a small boost λ along the z axis,

Λ = exp(λN3) = I + λN3 +O(λ)2. (7.3.323)

Show that in this case (3.296) becomes

F̂ = ΛFΛT = (I + λN3)F (I + λN3) +O(λ2) = F + λ{N3, F}+ +O(λ2). (7.3.324)

(Here {∗, ∗}+ denotes an anticommutator, and we have used the fact that N3 is symmetric.)
Verify that

FN3 =


0 −Bz By Ex/c
Bz 0 −Bx Ey/c
−By Bx 0 Ez/c
−Ex/c −Ey/c −Ez/c 0




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0



=


0 0 Ex/c By

0 0 Ey/c −Bx

0 0 Ez/c 0
0 0 0 −Ez/c

 , (7.3.325)

N3F = [F T (N3)T ]T = −(FN3)T =


0 0 0 0
0 0 0 0

−Ex/c −Ey/c −Ez/c 0
−By Bx 0 Ez/c

 , (7.3.326)

and therefore

{N3, F}+ =


0 0 Ex/c By

0 0 Ey/c −Bx

−Ex/c −Ey/c 0 0
−By Bx 0 0

 . (7.3.327)
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Verify that use of (3.297) through (3.299), and (3.324) through (3.327) yields the relations

Êx = Ex + λcBy +O(λ2), (7.3.328)

Êy = Ey − λcBx +O(λ2), (7.3.329)

Êz = Ez +O(λ2); (7.3.330)

B̂x = Bx − λEy/c+O(λ2), (7.3.331)

B̂y = By + λEx/c+O(λ2), (7.3.332)

B̂z = Bz +O(λ2). (7.3.333)

What are we to make of the transformation results (3.328) through (3.333)? Verify, in
terms of the Faraday vector F+, that

F̂+
x = Êx + icB̂x = Ex + icBx + λcBy − iλEy +O(λ2)

= Ex + icBx − iλ(Ey + icBy) +O(λ2)

= F+
x − iλF+

y +O(λ2), (7.3.334)

F̂+
y = Êy + icB̂y = Ey + icBy − λcBx + iλEx +O(λ2)

= Ey + icBy + iλ(Ex + icBx) +O(λ2)

= F+
y + iλF+

x +O(λ2), (7.3.335)

F̂+
z = Ēz + icB̂z = Ez + icBz +O(λ2) = F+

z +O(λ2). (7.3.336)

Consequently the results (3.328) through (3.336) can be rewritten in the form F̂+
x

F̂+
y

F̂+
z

 =

 1 −iλ 0
iλ 1 0
0 0 1

 F+
x

F+
y

F+
z

+O(λ2) (7.3.337)

or, in matrix/vector notation,

F̂+ = exp(λŇ3)F+ +O(λ2). (7.3.338)

See (3.279). Finally, using the extended notation (3.320) and (3.321), verify that the results
(3.324) through (3.338) can be rewritten in the form

exp(λN3)F(F+)[exp(λN3)]T = F [exp(λŇ3)F+] +O(λ2). (7.3.339)

7.3.33. This exercise is a sequel to Exercise 3.32. It established, for small θ and small λ,
the key results (3.322) and (3.339). Associated with these results are the correspondences

Λ = exp(θL3)⇔ F̂+ = exp(θĽ3)F+ +O(θ2), (7.3.340)

Λ = exp(λN3)⇔ F̂+ = exp(λŇ3)F+ +O(λ2). (7.3.341)
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The purpose of this exercise is to extend these results and to relate them to the Lorentz Lie
algebra/group representations Γ(0, 1) and Γ(1, 0).

The first extension is to observe that the O(θ2) error terms in (3.322) and (3.340) and
the O(λ2) error terms in (3.339) and (3.341) are in fact identically zero! To see this, in the
case of the O(θ2) error terms, observe that there is the group relation

exp[θL3] = exp[(1/2)θL3] exp[(1/2)θL3]. (7.3.342)

Verify that employing this group relation in (3.322) yields the result

exp(θL3)F(F+)[exp(θL3)]T =

exp[(1/2)θL3] exp[(1/2)θL3]F(F+){exp[(1/2)θL3)]}T{exp[(1/2)θL3)]}T =

exp[(1/2)θL3]F{exp[(1/2)θĽ3]F+}{exp[(1/2)θL3)]}T +O[(θ/2)2] =

F{exp[(1/2)θĽ3] exp[(1/2)θĽ3]F+}+ 2O[(θ/2)2] =

F [exp(θĽ3)F+] + (1/2)O(θ2). (7.3.343)

That is, the possible O(θ2) error term in (3.322) has been replaced by the possible (1/2)O(θ2)
error term in (3.343). Similarly, using in (3.322) the group relation

exp[θL3] = {exp[(1/n)θL3]}n (7.3.344)

will yield the result

exp(θL3)F(F+)[exp(θL3)]T = F [exp(θĽ3)F+] + (1/n)O(θ2). (7.3.345)

Therefore, upon letting n→∞, we find the result

exp(θL3)F(F+)[exp(θL3)]T = F [exp(θĽ3)F+] (7.3.346)

as claimed.
In an analogous way, mutatis mutandis and again using group properties, (3.339) becomes

the relation
exp(λN3)F(F+)[exp(λN3)]T = F [exp(λŇ3)F+]. (7.3.347)

At this point let us make a sanity check. Verify that

exp(λŇ3) =

 cosh(λ) −i sinh(λ) 0
i sinh(λ) cosh(λ) 0

0 0 1

 , (7.3.348)

and therefore in this case it follows that

F̂+
x = cosh(λ)F+

x − i sinh(λ)F+
y , (7.3.349)

F̂+
y = i sinh(λ)F+

x + cosh(λ)F+
y , (7.3.350)

F̂+
z = F+

z , (7.3.351)
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so that
Êx = <(F̂+

x ) = cosh(λ)Ex + sinh(λ)cBy = γEx + βγcBy, (7.3.352)

Êy = <(F̂+
y ) = cosh(λ)Ey − sinh(λ)cBx = γEy − βγcBx, (7.3.353)

Êz = <(F̂+
z ) = Ez; (7.3.354)

B̂x = (1/c)=(F̂+
x ) = cosh(λ)Bx − sinh(λ)(1/c)Ey = γBx − βγ(1/c)Ey, (7.3.355)

B̂y = (1/c)=(F̂+
y ) = cosh(λ)By + sinh(λ)(1/c)Ex = γBy + βγ(1/c)Ex, (7.3.356)

B̂z = (1/c)=(F̂+
z ) = Bz. (7.3.357)

[See (3.210) and (3.211).] The relations (3.352) through (3.357) are the expected ones for a
boost along the z axis, and therefore the sanity check has been passed.

So far we have considered rotations about the z axis and boosts along the z axis. The
second extension is to consider other axes. Verify that, since we have already allowed E and
B to be completely arbitrary, there must be the obvious generalizations: Suppose Λ is the
Lorentz transformation for a general rotation,

Λ = exp(θn ·L). (7.3.358)

In this case (3.346) has the generalization

exp(θn ·L)F(F+)[exp(θn ·L)]T = F [exp(θn · Ľ)F+]. (7.3.359)

Or suppose Λ is the Lorentz transformation for a general boost,

Λ = exp(λm ·N ). (7.3.360)

In this case (3.347) has the generalization

exp(λm ·N )F(F+)[exp(λm ·N )]T = F [exp(λm · Ň )F+]. (7.3.361)

The final extension is to consider general Lorentz transformations

Λ(λ,m; θ,n) = exp(λm ·N ) exp(θn ·L). (7.3.362)

Recall (3.189). Verify that in this case there is the result

ΛF(F+)ΛT = exp(λm ·N ) exp(θn ·L)F(F+)[exp(θn ·L)]T [exp(λm ·N )]T =

exp(λm ·N )F [exp(θn · Ľ)F+][exp(λm ·N )]T =

F [exp(λm · Ň ) exp(θn · Ľ)F+]. (7.3.363)

Verify, consequently, that there is the general correspondence

Λ = exp(λm ·N ) exp(θn ·L)⇔ F̂+ = exp(λm · Ň ) exp(θn · Ľ)F+. (7.3.364)

Your last task is to explore how these results relate to the Lorentz Lie algebra/group
representations Γ(0, 1) and Γ(0, 1). You already found in Exercise 3.31 that the matrices Ľ
and Ň constitute a basis for the Γ(0, 1) representation of the Lorentz group Lie algebra.
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Consequently, according to the right side equation in (3.364), the vectors F+ carry the
Γ(0, 1) representation of the Lorentz Lie algebra/group. Now form the complex conjugate
of the right side equation in (3.364). Verify that so doing yields the relation

¯̂
F+ = exp(λm · ¯̌N ) exp(θn · ¯̌L)F̄+ (7.3.365)

where a bar ¯ denotes complex conjugation. [Verify from (3.7.1) that exp(B) = exp(B̄)
for any matrix B.] Next verify that

¯̂
F+ = F̂− and F̄+ = F−. (7.3.366)

Also show from (3.290) through (3.293) that for the matrices Ľ and Ň there are the relations

¯̌L = `̌L and ¯̌N = `̌N . (7.3.367)

Verify, therefore, that (3.365) can be rewritten in the form

F̂− = exp(λm · `̌N ) exp(θn · `̌L)F−. (7.3.368)

Verify, accordingly, that the correspondence (3.364) implies the correspondence

Λ = exp(λm ·N ) exp(θn ·L)⇔ F̂− = exp(λm · `̌N ) exp(θn · `̌L)F−, (7.3.369)

and vice versa. You already found in Exercise 3.31 that the matrices `̌L and `̌N constitute a
basis for the Γ(1, 0) representation of the Lorentz group Lie algebra. Consequently, according
to (3.368), the vectors F− carry the Γ(1, 0) representation of the Lorentz Lie algebra/group.
Put another way, in transforming according to the rule (3.296), the electromagnetic field
tensor F µν carries both the Lie algebra/group representations Γ(0, 1) and Γ(1, 0). Note
since (3.296) involves only real quantities when acting on F and hence on E and B, this net
representation is real. See, for example, (3.352) through (3.357). We would now like to see in
more detail how this net representation carries both the Γ(0, 1) and Γ(1, 0) representations.
For this, see Exercise 7.3.35.

7.3.34. The purpose of this exercise is to develop some general purpose matrix machinery
for working with complex matrices that will be of subsequent use.8 Suppose k1 and k2 are
two n× n possibly complex matrices. Decompose each kj into real and imaginary parts by
writing

kj = <kj + i=kj (7.3.370)

so that

k1k2 = (<k1 + i=k1)(<k2 + i=k2) =

(<k1<k2 −=k1=k2) + i(<k1=k2 + =k1<k2). (7.3.371)

Next suppose we define k3 by the rule

k3 = k1k2 (7.3.372)

8This machinery is analogous to some of the machinery in Section 3.9.
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and also make the decomposition (3.370) for k3. Verify it follows from (3.370) through
(3.372) that

<k3 = <k1<k2 −=k1=k2 (7.3.373)

and
=k3 = <k1=k2 + =k1<k2. (7.3.374)

Now comes an interesting construction: Given any n × n matrix k define, in terms of k, a
2n× 2n real matrix K(k) by the rule

K(k) =

(
<k −=k
=k <k

)
. (7.3.375)

Here each entry on the right side of (3.375) is an n × n block.9 Verify that for real scalars
λ there is the scalar multiplication result

K(λk) = λK(k). (7.3.376)

Verify that there is the additive isomorphism

K(k1 + k2) = K(k1) +K(k2). (7.3.377)

More remarkably, verify using (3.370) through (3.375) that there is the multiplicative iso-
morphism

K(k1k2) = K(k1)K(k2). (7.3.378)

That is, show that there is the matrix relation(
<k3 −=k3

=k3 <k3

)
=

(
<k1 −=k1

=k1 <k1

)(
<k2 −=k2

=k2 <k2

)
. (7.3.379)

Let I [n] and I [2n] be the n× n and 2n× 2n identity matrices, respectively. Verify that

K(I [n]) = I [2n]. (7.3.380)

Suppose that k is invertible. Verify that

K(k−1) = [K(k)]−1. (7.3.381)

For another remarkable result, let W be the matrix defined by (3.9.12), which we write more
precisely as

W =
1√
2

(
I [n] iI [n]

iI [n] I [n]

)
. (7.3.382)

Verify the similarity transformation relation

WK(k)W−1 = (1/2)

(
I [n] iI [n]

iI [n] I [n]

)(
<k −=k
=k <k

)(
I [n] −iI [n]

−iI [n] I [n]

)
= (1/2)

(
I [n] iI [n]

iI [n] I [n]

)(
<k + i=k −i<k −=k
=k − i<k −i=k + <k

)
=

(
<k + i=k 0

0 <k − i=k

)
=

(
k 0
0 k̄

)
. (7.3.383)

9Note that if K is known, then k can be found from a knowledge of the upper and lower left blocks of
K. Thus the mapping between k and K is invertible.
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Again, each block occurring in (3.383) is n× n. For bonus points show from (3.383) that

det[K(k)] = | det(k)|2. (7.3.384)

(Recall Exercise 3.3.2.) Finally, associated with the additive and multiplicative isomor-
phisms (3.376) through (3.378), there are various a Lie algebraic/group properties. Suppose
b1 and b2 are two possibly complex n × n matrices. Using (3.376) through (3.378), verify
that

K({b1, b2}) = K(b1b2 − b2b1) = K(b1b2)−K(b2b1)

= K(b1)K(b2)−K(b2)K(b1)

= {K(b1), K(b2)}. (7.3.385)

Thus K is a Lie product (commutator) isomorphism. Suppose b is a possibly complex n×n
matrix. Let us try to evaluate K[exp(b)]. Verify that there is the result

K[exp(b)] = K[
∑
`

(1/`!)b`] =
∑
`

(1/`!)K(b`) =
∑
`

(1/`!)[K(b)]` = exp[K(b)], (7.3.386)

which provides a relation between group elements exp(b) and group elements exp[K(b)].

7.3.35. Review Exercise 7.3.34. The purpose of this exercise is to apply the matrix machin-
ery developed there to the Lorentz group. Make the Ansatz

k = exp(λm · Ň ) exp(θn · Ľ) (7.3.387)

so that the right side of (3.364) can be rewritten in the form

F̂+ = kF+. (7.3.388)

Decompose k into real and imaginary parts by writing

k = <k + i=k. (7.3.389)

Verify that by so doing (3.388) can be rewritten in the form

Ê + icB̂ = (<k + i=k)(E + icB) = (<kE −=kcB) + i(=kE + <kcB). (7.3.390)

Now equate real and imaginary parts of (3.390) to obtain, because E and cB are real, the
relations

Ê = <kE −=kcB, (7.3.391)

cB̂ = =kE + <kcB. (7.3.392)

Introduce a real six-component vector u by the rule

u = (Ex, Ey, Ez; cBx, cBy, cBz). (7.3.393)

Verify that the relations (3.391) and (3.392) can be summarized in the form

û = K(k)u. (7.3.394)
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Note that all quantities appearing in (3.394) are real. Verify from (3.384) that if (3.387)
holds, then det[K(k)] = 1. Moreover, in view of (3.378), the real 6×6 matrices K(k) provide
a representation of the Lorentz group; and evidently this is the representation carried by
the F µν .

Finally, look at (3.383) whose far right side involves k and k̄. Verify from (3.367) and
(3.387) that

k̄ = exp(λm · ¯̌N ) exp(θn · ¯̌L) = exp(λm · `̌N ) exp(θn · `̌L). (7.3.395)

We already know, from the work of Exercise 3.31 and the earlier discussion in this exercise,
that Ľ and Ň and hence k carry the Γ(0, 1) representation of the Lorentz Lie algebra/group,

and `̌L and `̌N and hence k̄ carry the Γ(1, 0) representation of the Lorentz Lie algebra/group.
Note that the right side of (3.383) is block diagonal for all k and that W as given by (3.382)
is fixed and thus independent of k. Therefore the representation carried by the K(k) is
reducible. It follows that the representation carried by the K(k) and hence by the F µν is
equivalent to the direct sum representation

Γ(0, 1) ⊕ Γ(1, 0) = Γ(0, 1) ⊕ Γ̄(0, 1) = Γ̄(1, 0) ⊕ Γ(1, 0). (7.3.396)

Here use has also been made of (3.273). Moreover, upon combining (3.383), (3.387), and
(3.395), we find for Lorentz group elements the relation

WK[exp(λm · Ň ) exp(θn·)Ľ)]W−1 =

(
exp(λm · Ň ) exp(θn · Ľ) 0

0 exp(λm · ¯̌N ) exp(θn · ¯̌L)

)
. (7.3.397)

So far we have been employing the construction/definition (3.375) to set up the group
isomorphism (3.378) between the complex 3×3 matrices k given by (3.387) that provide the
Γ(0, 1) representation of the Lorentz group and the real 6 × 6 matrices K(k) that provide
a representation that is equivalent to the representation (3.396). To complete the story, we
would like to have a corresponding Lie algebraic isomorphism. That is what (3.385) does.
Verify that from (3.281) through (3.283) and (3.385) it follows that

{K(Ľj), K(Ľk)} =
∑
`

εjk`K(Ľ`), (7.3.398)

{K(Ľj), K(Ňk)} =
∑
`

εjk`K(Ň `), (7.3.399)

{K(Ň j), K(Ňk)} = −
∑
`

εjk`K(Ľ`). (7.3.400)

Moreover, the matrices K(Ľj) and K(Ň j) are all real: Verify, since the Ľj are real, it follows
that

K(Ľj) =

(
Ľj 0
0 Ľj

)
. (7.3.401)
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Since the Ň j are pure imaginary, see (3.280), verify that

K(Ň j) =

(
0 −Ľj
Ľj 0

)
. (7.3.402)

Consequently, the K(Ľj) and K(Ň j) provide a representation of the Lorentz group Lie
algebra by 6×6 real matrices. (Is this representation related to the adjoint representation?)
Finally, for any 3× 3 matrix b, there is the relation

WK(b)W−1 =

(
b 0
0 b̄

)
. (7.3.403)

See (3.383). It follows that the K(Ľj) and K(Ň j) provide, for the Lorentz group Lie algebra,
a representation that is equivalent to the representation (3.396).

7.3.36. Review Exercise 3.7.41. It examines the relation between the group commutator and
the associated Lie-algebraic commutator. In this exercise you will evaluate the Lorentz group
commutator for boosts along the 3 and 1 axes.10 Recall from (3.185) that the generators for
these boosts satisfy the commutation rule

{N3, N1} = −L2, (7.3.404)

and the fact that this commutator involves a rotation generator is the source of Wigner (1902-
1995) rotations and Thomas (1903-1992) precession. According to (3.184) the remaining
commutation rules among the generators N3, N1, L2 are

{L2, N3} = N1, (7.3.405)

{L2, N1} = −N3. (7.3.406)

Your task is to evaluate the Lorentz group commutator

h(s) = exp(−sN1) exp(−sN3) exp(sN1) exp(sN3). (7.3.407)

That is, your task is to find the net effect of a boost along the 3 axis with rapidity s followed
by a boost along the 1 axis with the same rapidity followed by a boost along the 3 axis with
rapidity −s finally followed by a boost along the 1 axis with rapidity −s. Roughly speaking,
we may refer to this operation as the concatenation of four boosts along the sides of a square.
Note that the rapidities along the 3 and 1 axes add to zero, and therefore we might intuit
that there is no net boost. However, in view of (3.251), we might expect some net rotation.
Finally note that, in view of the work of Exercise 3.28, you will equivalently be exploring
some properties of Sp(2,R). That is, (3.254) is also an Sp(2,R) group commutator.

As an initial exploratory step, your first sub-task is to find h(s) through terms of O(s3)
making use of the BCH formula (3.7.41). This may be done in steps: Verify that

exp(sN1) exp(sN3) = exp[sN1 + sN3 + (s2/2){N1, N3}
+(s3/12){N1, {N1, N3}}+ (s3/12){N3, {N3, N1}}+O(s4)] =

exp[sN1 + sN3 + (s2/2)L2

+(s3/12){N1, L2} − (s3/12){N3, L2}+O(s4)] =

exp[sN1 + sN3 + (s2/2)L2 + (s3/12)N3 + (s3/12)N1 +O(s4)]. (7.3.408)

10Why not choose the 1 and 2 axes which, from a notational perspective, would be more natural? Although
physically there should be no difference, we will see that our choice is computationally more convenient.
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Similarly, verify that

exp(−sN1) exp(−sN3) = exp[−sN1 − sN3 + (s2/2){N1, N3}
−(s3/12){N1, {N1, N3}} − (s3/12){N3, {N3, N1}}+O(s4)] =

exp[−sN1 − sN3 + (s2/2)L2

−(s3/12){N1, L2}+ (s3/12){N3, L2}+O(s4)] =

exp[−sN1 − sN3 + (s2/2)L2 − (s3/12)N3 − (s3/12)N1 +O(s4)]. (7.3.409)

Next show that (3.255) and (3.256) may be combined to give the result

h(s) = exp(−sN1) exp(−sN3) exp(sN1) exp(sN3) =

exp[−sN1 − sN3 + (s2/2)L2 − (s3/12)N3 − (s3/12)N1 +O(s4)]×
exp[sN1 + sN3 + (s2/2)L2 + (s3/12)N3 + (s3/12)N1 +O(s4)] =

exp[−sN1 − sN3 + (s2/2)L2 +O(s4)] exp[sN1 + sN3 + (s2/2)L2 +O(s4)] =

exp[s2L2 + (1/2){−sN1 − sN3 + (s2/2)L2, sN1 + sN3 + (s2/2)L2}+O(s4)] =

exp[s2L2 + (s3/2){L2, N1 +N3}+O(s4)] =

exp[−(s3/2)N3 + (s3/2)N1 +O(s4)] exp[s2L2 +O(s4)]. (7.3.410)

[Note that, in passing from lines 2 and 3 in (3.257) to subsequent lines, the terms proportional
to s3/12 cancel through O(s3).] Observe that the far right side of (3.257) is written in polar
form. [See Subsection 4.2.2, Exercise 4.2.5, Exercise 7.3.30, (3.186), and (3.241).] Therefore,
through terms of O(s3), the grand result of the four boosts appearing in the Lorentz group
commutator is a net rotation about the 2 axis proportional to s2 and a boost in the −e3 +e1

direction proportional to s3. [Verify that the same result can be obtained using (3.7.241).]
Our intuition about there being no net boost is wrong, but not entirely wrong since there is
no boost term proportional to s. That there is a net boost at all is a relativistic, O[(v/c)3],
effect.

The composition of non-colinear boosts appears to be a complicated matter. What can
be said about higher order terms? As it stands, the evaluation of (3.254) requires working
with 4×4 matrices. However, since what really matters in this situation are the commutation
rules which we know are the same for the Lorentz group and SL(2,C), we could equally well
evaluate the associated SL(2,C) group commutator

ĥ(s) = exp(−sN̂1) exp(−sN̂3) exp(sN̂1) exp(sN̂3). (7.3.411)

This task is simpler because it involves only the exponentiation and multiplication of 2× 2
matrices, which will make it easier to work to higher order in s. Recall (3.232) through
(3.237) and the results of Exercise 5.7.7 that summaries various properties of the Pauli
matrices. Moreover, in view of (3.233), (3.235), and (2.327), we will be able to work with
real matrices, which simplifies numerical computation. This fact is the actual reason for
choosing the boosts to be along the 3 and 1 axes. Our choice was dictated by the way in
which the Pauli matrices have been defined.

Still, there is work to be done. Verify the following preliminary results:

exp(sN̂3) = exp[(s/2)σ3] = cosh[(s/2)σ3] + sinh[(s/2)σ3]

= I cosh(s/2) + σ3 sinh(s/2), (7.3.412)
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exp(sN̂1) = I cosh(s/2) + σ1 sinh(s/2), (7.3.413)

exp(−sN̂3) = I cosh(s/2)− σ3 sinh(s/2), (7.3.414)

exp(−sN̂1) = I cosh(s/2)− σ1 sinh(s/2); (7.3.415)

exp(sN̂1) exp(sN̂3) = [I cosh(s/2) + σ1 sinh(s/2)][I cosh(s/2) + σ3 sinh(s/2)]

= I cosh2(s/2) + (σ3 + σ1) cosh(s/2) sinh(s/2) + σ1σ3 sinh2(s/2)

= I cosh2(s/2) + (1/2)(σ3 + σ1) sinh(s)− iσ2 sinh2(s/2), (7.3.416)

exp(−sN̂1) exp(−sN̂3) =

I cosh2(s/2)− (1/2)(σ3 + σ1) sinh(s)− iσ2 sinh2(s/2). (7.3.417)

Next show that combining (3.263) and (3.264) yields the result

exp(−sN̂1) exp(−sN̂3) exp(sN̂1) exp(sN̂3) =

[I cosh2(s/2)− (1/2)(σ3 + σ1) sinh(s)− iσ2 sinh2(s/2)]×
[I cosh2(s/2) + (1/2)(σ3 + σ1) sinh(s)− iσ2 sinh2(s/2)] =[
[I cosh2(s/2)− iσ2 sinh2(s/2)]− [(1/2)(σ3 + σ1) sinh(s)]

]
×[

[I cosh2(s/2)− iσ2 sinh2(s/2)] + [(1/2)(σ3 + σ1) sinh(s)]
]

=

[I cosh2(s/2)− iσ2 sinh2(s/2)]2 − [(1/2)(σ3 + σ1) sinh(s)]2

−(i/2){σ2, (σ3 + σ1)} sinh2(s/2) sinh(s). (7.3.418)

Look at the contents of the last line of (3.265). It has three pieces, each of which can be
expanded/simplified. Verify that for the first piece there is the result

[I cosh2(s/2)− iσ2 sinh2(s/2)]2 =

I cosh4(s/2)− I sinh4(s/2)− 2iσ2 cosh2(s/2) sinh2(s/2) =

I[cosh2(s/2)− sinh2(s/2)][cosh2(s/2) + sinh2(s/2)]

−2iσ2[cosh(s/2) sinh(s/2)]2 = I cosh(s)− (i/2)σ2 sinh2(s). (7.3.419)

Verify that for the second and third pieces there are the results

− [(1/2)(σ3 + σ1) sinh(s)]2 = −I(1/2) sinh2(s) (7.3.420)

and

− (i/2){σ2, (σ3 + σ1)} sinh2(s/2) sinh(s) = −(σ3 − σ1) sinh2(s/2) sinh(s). (7.3.421)
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Show that adding the results for these three pieces yields the final result

ĥ(s) = exp(−sN̂1) exp(−sN̂3) exp(sN̂1) exp(sN̂3) =

I cosh(s)− (i/2)σ2 sinh2(s)

−I(1/2) sinh2(s)

−(σ3 − σ1) sinh2(s/2) sinh(s) =

I[cosh(s)− (1/2) sinh2(s)]− (i/2)σ2 sinh2(s)

−(σ3 − σ1) sinh2(s/2) sinh(s) =

I[cosh(s)− (1/2) sinh2(s)] + L̂2 sinh2(s)

−2(N̂3 − N̂1) sinh2(s/2) sinh(s). (7.3.422)

Examination of the far right side of the result (3.269) shows signs of a rotation about the
2 axis and a boost in the −e3 + e1 direction. But the result as it stands is not particularly
illuminating because it is not written in polar form. What is needed to further clarify the
situation is a polar decomposition for ĥ(s) of the form

ĥ(s) = exp(λ3N̂
3 + λ1N̂

1) exp(θL̂2). (7.3.423)

In this decomposition, which we know by Section 4.2 is always possible, the quantities
(λ3, λ1) specify the net boost, and θ specifies the net rotation. Only then can definitive
statements be made.11 You will have the privilege of making this decomposition in the next
exercise. Also, a numerical calculation will be described that confirms the correctness of our
results.

In the meantime, your next subtask is to show that (3.257) and (3.269) agree through
terms of order s3. Verify, through terms of order s3, that (3.269) has the expansion

ĥ(s) = exp(−sN̂1) exp(−sN̂3) exp(sN̂1) exp(sN̂3) =

I[cosh(s)− (1/2) sinh2(s)] + L̂2 sinh2(s)

−2(N̂3 − N̂1) sinh2(s/2) sinh(s) =

I + s2L̂2 − (s3/2)(N̂3 − N̂1) +O(s4). (7.3.424)

Using the BCH formula show that (3.271) can be rewritten in the form

ĥ(s) = exp(−sN̂1) exp(−sN̂3) exp(sN̂1) exp(sN̂3) =

I + s2L̂2 − (s3/2)(N̂3 − N̂1) +O(s4) =

[I − (s3/2)N̂3 + (s3/2)N̂1 +O(s4)][I + s2L̂2 +O(s4)] =

exp[−(s3/2)N̂3 + (s3/2)N̂1 +O(s4)] exp[s2L̂2 +O(s4)], (7.3.425)

in agreement with (3.257). Verity, therefore, that

λ3 = −s3/2 +O(s4), (7.3.426)

11Moreover, although the matrices (N3, N1, L2) and (N̂3, N̂1, L̂2) obey the same Lie algebra, they do not
obey the same “multiplicative” algebra. For example, (N̂1)2 = I/4 but (N1)2 6= I/4. Therefore, we should
only expect agreement/correspondence when comparing Lie algebraic quantities in some Lie algebraic form,

such as comparing h(s) and ĥ(s) in polar form.
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λ1 = s3/2 +O(s4), (7.3.427)

θ = s2 +O(s4). (7.3.428)

7.3.37. Review Exercise 3.31. As described at the end of that exercise, what would be
definitive would be to have a polar decomposition for ĥ(s) of the form (3.270). The purpose
of this exercise is to find and check this desired polar decomposition.

In view of (3.232) through (3.237), let us make a few cosmetic changes in (3.270) that
will simplify our computations. What we will seek are quantities (λ̄3, λ̄1,θ̄) such that

ĥ(s) = exp(λ̄3σ
3 + λ̄1σ

1) exp(θ̄iσ2). (7.3.429)

That is, in passing from (3.270) to (3.276) and in view of (3.232) through (3.237), we have
made the (temporary) substitutions

λ̄3 = (1/2)λ3 ⇔ λ3 = 2λ̄3, (7.3.430)

λ̄1 = (1/2)λ1 ⇔ λ1 = 2λ̄1, (7.3.431)

θ̄ = −(1/2)θ ⇔ θ = −2θ̄. (7.3.432)

We will also use the notation
λ = (λ2

3 + λ2
1)1/2, (7.3.433)

λ̄ = (λ̄2
3 + λ̄2

1)1/2, (7.3.434)

so that
λ̄ = (1/2)λ ⇔ λ = 2λ̄. (7.3.435)

At this point we could invoke the machinery of Exercise 4.2.5 with the hope of working
out the desired results. Instead, let us take a different tack. Observe that the penultimate
equation in (3.269), which reads

ĥ(s) =

I[cosh(s)− (1/2) sinh2(s)]

−(i/2)σ2 sinh2(s)

−σ3 sinh2(s/2) sinh(s)

+σ1 sinh2(s/2) sinh(s), (7.3.436)

provides a Pauli matrix expansion for ĥ(s). We will expand ĥ(s) as given by (3.276) in terms
of the Pauli matrices and then use the orthogonality properties (5.7.42) to match coefficients
in the anticipated Pauli matrix expansion and that given by (3.283).

In order to expand (3.276) here are things for you to check: First verify that

exp(θ̄iσ2) = I + (θ̄iσ2) + (θ̄iσ2)2/2! + (θ̄iσ2)3/3! + · · · =
I + θ̄(iσ2)− Iθ̄2/2!− (iσ2)(θ̄3/3!) + · · · =
I(1− θ̄2/2! + · · · ) + iσ2(θ̄ − θ̄3/3! + · · · ) =

I cos(θ̄) + iσ2 sin(θ̄). (7.3.437)



7.3. INVARIANT SCALAR PRODUCT 815

Next verify that

exp(λ̄3σ
3 + λ̄1σ

1) = I + (λ̄3σ
3 + λ̄1σ

1) + (λ̄3σ
3 + λ̄1σ

1)2/2! + (λ̄3σ
3 + λ̄1σ

1)3/3! + · · · =
I + (λ̄3σ

3 + λ̄1σ
1) + I(λ̄2

3 + λ̄2
1)/2! + (λ̄3σ

1 + λ̄1σ
1)(λ̄2

3 + λ̄2
1)/3! + · · · =

I cosh[(λ̄2
3 + λ̄2

1)1/2] + (λ̄3σ
3 + λ̄1σ

1)(λ̄2
3 + λ̄2

1)−1/2 sinh[(λ̄2
3 + λ̄2

1)1/2] =

I cosh(λ̄) + (λ̄3σ
3 + λ̄1σ

1)(1/λ̄) sinh(λ̄). (7.3.438)

Finally, verify that

ĥ(s) = exp(λ̄3σ
3 + λ̄1σ

1) exp(θ̄iσ2) =

[I cosh(λ̄) + (λ̄3σ
3 + λ̄1σ

1)(1/λ̄) sinh(λ̄)][I cos(θ̄) + iσ2 sin(θ̄)] =

I cosh(λ̄) cos(θ̄)

+iσ2 cosh(λ̄) sin(θ̄)

+(λ̄3σ
3 + λ̄1σ

1)(1/λ̄) sinh(λ̄) cos(θ̄) +

(λ̄3σ
3 + λ̄1σ

1)(1/λ̄) sinh(λ̄)iσ2 sin(θ̄) =

I cosh(λ̄) cos(θ̄)

+iσ2 cosh(λ̄) sin(θ̄)

+σ3[λ̄3 cos(θ̄)− λ̄1 sin(θ̄)](1/λ̄) sinh(λ̄)

+σ1[λ̄3 sin(θ̄) + λ̄1 cos(θ̄)](1/λ̄) sinh(λ̄). (7.3.439)

Now equate terms in the Pauli matrix expansion (3.283) with like terms in the Pauli
matrix expansion (3.286). Show that so doing yields the relations

cosh(λ̄) cos(θ̄) = cosh(s)− (1/2) sinh2(s), (7.3.440)

cosh(λ̄) sin(θ̄) = −(1/2) sinh2(s), (7.3.441)

[λ̄3 cos(θ̄)− λ̄1 sin(θ̄)](1/λ̄) sinh(λ̄) = − sinh2(s/2) sinh(s), (7.3.442)

[λ̄3 sin(θ̄) + λ̄1 cos(θ̄)](1/λ̄) sinh(λ̄) = sinh2(s/2) sinh(s). (7.3.443)

The terms on the left sides of these relations, which are the unknown terms, come from
(3.286). And the terms on the right sides, which are known, come from (3.283).

The last step is to solve (3.287) through (3.290) for λ̄3, λ̄1, and θ̄. Upon dividing (3.288)
by (3.287), show that

tan(θ̄) = −(1/2) sinh2(s)/[cosh(s)− (1/2) sinh2(s)]. (7.3.444)

Upon squaring (3.287) and (3.288) and adding the results, show that

cosh2(λ̄) = [cosh(s)− (1/2) sinh2(s)]2 + (1/4)[sinh(s)]4. (7.3.445)

The results (3.291) and (3.292) determine θ̄ and λ̄ as functions of s.
We would also like formulas for λ̄3 and λ̄1 as functions of s. Upon multiplying (3.289)

by cos(θ̄) and (3.290) by sin(θ̄) and adding the results, show that

λ̄3(1/λ̄) sinh(λ̄) = [− cos(θ̄) + sin(θ̄)] sinh2(s/2) sinh(s) (7.3.446)
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so that
λ̄3 = [− cos(θ̄) + sin(θ̄)][sinh2(s/2) sinh(s)]/[(1/λ̄) sinh(λ̄)]. (7.3.447)

Upon multiplying (3.289) by [− sin(θ̄)] and (3.290) by cos(θ̄) and adding the results, show
that

λ̄1(1/λ̄) sinh(λ̄) = [cos(θ̄) + sin(θ̄)] sinh2(s/2) sinh(s) (7.3.448)

so that
λ̄1 = [cos(θ̄) + sin(θ̄)][sinh2(s/2) sinh(s)]/[(1/λ̄) sinh(λ̄)]. (7.3.449)

Considerable algebra has gone by in passing from (3.270) to (3.296). How do we know
there have been no mistakes in deriving the results (3.291), (3.292), (3.294), and (3.296)?
Shortly, as a sanity check, we will make low-order expansions in s for these results to verify
that these expansions agree with what we already know. Then we will also describe numerical
checks.

But before doing so, and assuming the correctness of (3.294) and (3.296), it is instructive
to examine the direction of the net boost associated with the Lorentz group commutator.
In view of (3.277), (3.278), and (3.280) through (3.282), define an angle χ by the relations

cos(χ) = λ̄3/λ̄ = λ3/λ, (7.3.450)

sin(χ) = λ̄1/λ̄ = λ1/λ, (7.3.451)

tan(χ) = λ̄1/λ̄3 = λ1/λ3. (7.3.452)

Show from (3.294), (3.296), and (3.299) that

tan(χ) = −[cos(θ̄) + sin(θ̄)]/[cos(θ̄)− sin(θ̄)] =

= −[cos(θ/2)− sin(θ/2)]/[cos(θ/2) + sin(θ/2)]. (7.3.453)

We have learned that the direction of the net boost depends simply on θ̄ or, equivalently,
on θ.

As promised, we now turn to making low-order expansions in s. Begin by verifying the
expansions

tan−1(ψ) = ψ − ψ3/3 + · · · , (7.3.454)

− (1/2) sinh2(s)/[cosh(s)− (1/2) sinh2(s)] = −(1/2)s2 +O(s4). (7.3.455)

Show if follows from (3.291) that

θ̄ = −(1/2)s2 +O(s4). (7.3.456)

Verify that employing (3.279) in (3.299) yields the result

θ = s2 +O(s4), (7.3.457)

in agreement with (3.275).
Next consider the relation (3.292). Verify, say with the use of Mathematica or by hand

calculation, that there is the expansion

[cosh(s)− (1/2) sinh2(s)]2 + (1/4)[sinh(s)]4 = 1 + s6/8 +O(s8). (7.3.458)



7.3. INVARIANT SCALAR PRODUCT 817

Note the remarkable fact that the coefficients of s2 and s4 vanish! Verify also the expansions

cosh(λ̄) = 1 + λ̄2/2! +O(λ̄4), (7.3.459)

cosh2(λ̄) = 1 + λ̄2 +O(λ̄4). (7.3.460)

Show it follows, using (3.292) and (3.301 through (3.303), that

λ̄2 = s6/8 +O(s8), (7.3.461)

and consequently
λ̄(s) = |s3|(1/

√
8) +O(s5). (7.3.462)

Finally, with the use of (3.282), show that

λ(s) = |s3|(1/
√

2) +O(s5). (7.3.463)

How does the result (3.061) compare with (3.273) and (3.274)? From (3.273), (3.274), and
(3.280) show that

λ(s) = |s3|(1/
√

2) +O(s4). (7.3.464)

Evidently (3.306) and (3.307) are consistent.
What remains is to examine the small s behavior of λ̄3 and λ̄1 as given by (3.294) and

(3.296). Begin by verifying the expansions

cos(θ̄) = 1− θ̄2/2 + · · · = 1− (1/8)s4 +O(s6), (7.3.465)

sin(θ̄) = θ̄ − (θ̄)3/6 + · · · = −(1/2)s2 +O(s4), (7.3.466)

[∓ cos(θ̄) + sin(θ̄)] = ∓1− (1/2)s2 +O(s4), (7.3.467)

sinh2(s/2) sinh(s) = s3/4 +O(s5), (7.3.468)

(1/λ̄) sinh(λ̄) = 1 +O(s6). (7.3.469)

Show, therefore, that (3.299) and (3.301) have the expansions

λ̄3 = −s3/4− s5/8 + · · · , (7.3.470)

λ̄1 = s3/4− s5/8 + · · · , (7.3.471)

and consequently λ3 and λ1 have the expansions

λ3 = −s3/2− s5/4 + · · · , (7.3.472)

λ1 = s3/2− s5/4 + · · · , (7.3.473)

in agreement with (3.278) and (3.279).
The last item of interest with regard to low-order expansions is the behavior of χ(s).

From (3.319) and (3.320) we see that

tan(χ) = λ1/λ3 = (s3/2− s5/4 + · · · )/(−s3/2− s5/4 + · · · )
= −(1− s2/2 + · · · )/(1 + s2/2 + · · · ) = −(1− s2 + · · · )
= −1 + s2 + · · · . (7.3.474)
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As expected from (3.300), (3.303), and (3.304), χ is indeed s dependent.
To fulfill our last promise, we now describe how the results (3.291), (3.292), (3.294),

and (3.296) can also be checked numerically for any s using the charged particle beam
transport code MaryLie. Because it is based on Lie-algebraic methods, MaryLie is capable
of performing various operations related to the symplectic group and, as we have seen, what
we are seeking are various relations among elements of Sp(2,R). In particular for our present
purposes, MaryLie can perform the following operations numerically:

1. Given a quadratic polynomial f2, it can compute the symplectic matrix M associated
with the linear symplectic map M in the relation

M = exp(: f2 :). (7.3.475)

2. It can multiply symplectic matrices thereby implementing group-element multiplica-
tion for the symplectic group.

3. Given a symplectic matrix M , let M be the associated linear symplectic map. With
M as input, MaryLie can compute the quadratic polynomials fa2 and f c2 in the decom-
position

M = exp(: f c2) exp(: fa2 :). (7.3.476)

See Section 7.6. That is, MaryLie can carry out (orthogonal) polar decomposition of
symplectic matrices.

How can these tools be employed in the present context? Examination of (5.6.6), (5.6.7),
and (5.6.11) through (5.6.14) shows that there are the following correspondences between
Pauli matrices and quadratic polynomials:

f = (1/2)(−q2 + p2)↔ σ1, (7.3.477)

b0 = (1/2)(q2 + p2)↔ J = iσ2, (7.3.478)

g = qp↔ σ3. (7.3.479)

(Recall that these correspondences were set up in Section 5.5.) Consequently, there is also
the correspondence

ĥ(s) = exp(−sN̂1) exp(−sN̂3) exp(sN̂1) exp(sN̂3) =

exp[(s/2)σ1)] exp[(s/2)σ3)] exp[(−s/2)σ1)] exp[(−s/2)σ3)]↔
exp[(s/2) : qp :] exp[(s/4) : −q2 + p2 :] exp[(−s/2) : qp :] exp[(−s/4) : −q2 + p2 :].

(7.3.480)

[Note that the order of the Lie transformations appearing in the right side of the correspon-
dence (3.327) is opposite to the order of the related matrices on the left side of (3.327). This
reversal in order is to be expected. See the discussion in Section 8.3.] What we will use
MaryLie to carry out numerically are the operations

exp[(s/2) : qp :] exp[(s/4) : −q2 + p2 :] exp[(−s/2) : qp :] exp[(−s/4) : −q2 + p2 :]

= exp(: f c2) exp(: fa2 :). (7.3.481)
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That is, it will compute and multiply the four maps on the left side of (3.328) and then
express the result in the factored product form shown on the right side. Specifically, it will
output the quadratic polynomials f c2 and fa2 . When this is done, in view of (3.276) and the
correspondences (3.324) through (3.326), we expect f c2 and fa2 will be given by the relations

f c2 = θ̄b0 = θ̄(1/2)(q2 + p2) (7.3.482)

and
fa2 = λ̄3g + λ̄1f = λ̄3qp+ λ̄1(1/2)(−q2 + p2). (7.3.483)

Exhibit 7.3.1: Sample MaryLie Run

7.3.38. Review Exercises 3.27, 3.31, and 3.32. Exercise 3.27 found, among other things, the
concatenation rule for two collinear boosts: rapidities simply add. And Exercises 3.31 and
3.32 found the concatenation rule for four boosts along the sides of a square. The purpose
of this exercise is to find the concatenation rule for two non-collinear boosts. Specifically,
given two real three-component vectors µ and ν, we wish to study group element k(µ,ν)
defined by the product

k(µ,ν) = exp(ν ·N ) exp(µ ·N ). (7.3.484)

Observe that the vectors µ and ν determine (or in the collinear case lie in) a plane which
for convenience, and without loss of generality, may be taken to be the 3,1 plane. Therefore
we may make the decompositions

µ = µ3e3 + µ1e1, (7.3.485)

ν = ν3e3 + ν1e1, (7.3.486)

so that
µ ·N = µ3N

3 + µ1N
1, (7.3.487)

ν ·N = ν3N
3 + ν1N

1, (7.3.488)

and
µ× ν = (µ3ν1 − µ1ν3)e2. (7.3.489)

What we are interested in is finding the vector

λ = λ3e3 + λ1e1 (7.3.490)

and the angle θ such that

exp(ν ·N ) exp(µ ·N ) = exp(λ ·N ) exp(θL2). (7.3.491)

To get a feel for what to expect, we may use the BCH formula to combine exponents on
the left side of (3.338). Verify, through terms quadratic in the components of µ and ν, that

exp(ν ·N ) exp(µ ·N ) = exp[(µ+ ν) ·N + {ν ·N ,µ ·N}/2 + · · · ] =

exp[(µ+ ν) ·N + · · · ] exp[{ν ·N ,µ ·N}/2 + · · · ]. (7.3.492)
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Next show that

{ν ·N ,µ ·N} = (µ3ν1 − µ1ν3)L2 = (µ× ν) ·L. (7.3.493)

Conclude, upon comparing the right sides of (3.338) and (3.339), that there are the results

λ = µ+ ν + · · · , (7.3.494)

θ = (1/2)(µ× ν) · e2 + · · · = (1/2)(µ3ν1 − µ1ν3) + · · · . (7.3.495)

What we are next interested in are the higher-order terms in (3.341) and (3.342).
Again, since what really matters in this situation are the commutation rules which we

know are the same for the Lorentz group and SL(2,C), we can equally well evaluate the
simpler associated SL(2,C) [and Sp(2,R)] function

k̂(µ,ν) = exp(ν · N̂ ) exp(µ · N̂ ). (7.3.496)

In this case (3.338) becomes

exp(ν · N̂ ) exp(µ · N̂ ) = exp(λ · N̂ ) exp(θL̂2) (7.3.497)

or, in terms of Pauli matrices,

exp(ν · σ/2) exp(µ · σ/2) = exp(λ · σ/2) exp(−θiσ2/2). (7.3.498)

To further simplify calculations, and in analogy to what was done in Exercise 3.32, we
will also make the (temporary) substitutions

µ̄ = (1/2)µ ⇔ µ = 2µ̄, etc.; (7.3.499)

θ̄ = −(1/2)θ ⇔ θ = −2θ̄, (7.3.500)

so that

exp(ν · σ/2) = exp(ν̄3σ
3 + ν̄1σ

1), etc. (7.3.501)

and

exp(−θiσ2/2) = exp(θ̄iσ2). (7.3.502)

Moreover, we will use the notation

µ = (µ2
3 + µ2

1)1/2, etc., (7.3.503)

µ̄ = (µ̄2
3 + µ̄2

1)1/2, etc., (7.3.504)

so that

µ̄ = (1/2)µ ⇔ µ = 2µ̄, etc. (7.3.505)

What we will seek to find are the quantities (λ̄3, λ̄1,θ̄) such that

exp(ν̄3σ
3 + ν̄1σ

1) exp(µ̄3σ
3 + µ̄1σ

1) = exp(λ̄3σ
3 + λ̄1σ

1) exp(θ̄iσ2). (7.3.506)
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Consult again Exercise 3.32 to observe that it contains almost all the results necessary
to complete the current exercise. For example, in view of (3.285), there is the analogous
result

exp(ν̄3σ
3 + ν̄1σ

1) = exp(ν̄ · σ) =

I cosh(ν̄) + (ν̄3σ
3 + ν̄1σ

1)(1/ν̄) sinh(ν̄) =

I cosh(ν̄) + ν̄ · σ(1/ν̄) sinh(ν̄), (7.3.507)

and there is an analogous result involving µ̄. Finally, the right side of (3.353) has already
been treated in (3.286).

Carry out the next step by showing that

exp(ν̄3σ
3 + ν̄1σ

1) exp(µ̄3σ
3 + µ̄1σ

1) = exp(ν̄ · σ) exp(µ̄ · σ) =

[I cosh(ν̄) + ν̄ · σ(1/ν̄) sinh(ν̄)][I cosh(µ̄) + µ̄ · σ(1/µ̄) sinh(µ̄)] =

I cosh(ν̄) cosh(µ̄)

+µ̄ · σ cosh(ν̄)(1/µ̄) sinh(µ̄)

+ν̄ · σ cosh(µ̄)(1/ν̄) sinh(ν̄)

+(ν̄ · σ) · (µ̄ · σ)(1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄) =

I cosh(ν̄) cosh(µ̄)

+[µ̄ cosh(ν̄)(1/µ̄) sinh(µ̄) + ν̄ cosh(µ̄)(1/ν̄) sinh(ν̄)] · σ
+[Iν̄ · µ̄+ i(ν̄ × µ̄) · σ](1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄) =

I[cosh(ν̄) cosh(µ̄) + ν̄ · µ̄(1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄)]

+iσ2(ν̄3µ̄1 − ν̄1µ̄3)(1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄)

+[µ̄3 cosh(ν̄)(1/µ̄) sinh(µ̄) + ν̄3 cosh(µ̄)(1/ν̄) sinh(ν̄)]σ3

+[µ̄1 cosh(ν̄)(1/µ̄) sinh(µ̄) + ν̄1 cosh(µ̄)(1/ν̄) sinh(ν̄)]σ1. (7.3.508)

Now equate terms in the Pauli matrix expansion (3.286) with like terms in the Pauli
matrix expansion (3.355). Show that so doing yields the relations

cosh(λ̄) cos(θ̄) = cosh(ν̄) cosh(µ̄) + ν̄ · µ̄(1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄), (7.3.509)

cosh(λ̄) sin(θ̄) = (ν̄3µ̄1 − ν̄1µ̄3)(1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄), (7.3.510)

[λ̄3 cos(θ̄)− λ̄1 sin(θ̄)](1/λ̄) sinh(λ̄) = µ̄3 cosh(ν̄)(1/µ̄) sinh(µ̄) + ν̄3 cosh(µ̄)(1/ν̄) sinh(ν̄),
(7.3.511)

[λ̄3 sin(θ̄) + λ̄1 cos(θ̄)](1/λ̄) sinh(λ̄) = µ̄1 cosh(ν̄)(1/µ̄) sinh(µ̄) + ν̄1 cosh(µ̄)(1/ν̄) sinh(ν̄).
(7.3.512)

The terms on the left sides of these relations, which are the unknown terms, come from
(3.286). And the terms on the right sides, which are known, come from (3.355).

The last step is to solve (3.356) through (3.359) for λ̄3, λ̄1, and θ̄. Upon dividing (3.357)
by (3.356), show that

tan(θ̄) = (ν̄3µ̄1 − ν̄1µ̄3)(1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄)×
[cosh(ν̄) cosh(µ̄) + ν̄ · µ̄(1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄)]−1. (7.3.513)
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Upon squaring (3.356) and (3.357) and adding the results, show that

cosh2(λ̄) = [cosh(ν̄) cosh(µ̄) + ν̄ · µ̄(1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄)]2

+[(ν̄3µ̄1 − ν̄1µ̄3)(1/ν̄) sinh(ν̄)(1/µ̄) sinh(µ̄)]2. (7.3.514)

The results (3.360) and (3.361) determine θ̄ and λ̄ as functions of µ̄ and ν̄.
We would also like formulas for λ̄3 and λ̄1 as functions of µ̄ and ν̄. Upon multiplying

(3.358) by cos(θ̄) and (3.359) by sin(θ̄) and adding the results, show that

λ̄3(1/λ̄) sinh(λ̄) = [µ̄3 cos(θ̄) + µ̄1 sin(θ̄)] cosh(ν̄)(1/µ̄) sinh(µ̄)

+[ν̄3 cos(θ̄) + ν̄1 sin(θ̄)] cosh(µ̄)(1/ν̄) sinh(ν̄) (7.3.515)

so that

λ̄3 = {[µ̄3 cos(θ̄) + µ̄1 sin(θ̄)] cosh(ν̄)(1/µ̄) sinh(µ̄)

+[ν̄3 cos(θ̄) + ν̄1 sin(θ̄)] cosh(µ̄)(1/ν̄) sinh(ν̄)} ×
[(1/λ̄) sinh(λ̄)]−1. (7.3.516)

Upon multiplying (3.358) by [− sin(θ̄)] and (3.359) by cos(θ̄) and adding the results, show
that

λ̄1(1/λ̄) sinh(λ̄) = [−µ̄3 sin θ̄) + µ̄1 cos(θ̄)] cosh(ν̄)(1/µ̄) sinh(µ̄)

+[−ν̄3 sin(θ̄) + ν̄1 cos(θ̄)] cosh(µ̄)(1/ν̄) sinh(ν̄) (7.3.517)

so that

λ̄1 = {[−µ̄3 sin(θ̄) + µ̄1 cos(θ̄)] cosh(ν̄)(1/µ̄) sinh(µ̄)

+[−ν̄3 sin(θ̄) + ν̄1 cos(θ̄)] cosh(µ̄)(1/ν̄) sinh(ν̄)} ×
[(1/λ̄) sinh(λ̄)]−1. (7.3.518)

The results (3.360), (3.361), (3.363), and (3.365) can also be checked numerically for any
µ and ν using the charged particle beam transport code MaryLie. How can MaryLie tools
be employed in the present context? Based on the correspondences (3.324) through (3.326)
there is also the correspondence

exp(ν · N̂ ) exp(µ · N̂ ) = exp(ν · σ/2) exp(µ · σ/2) =

exp(ν̄3σ
3 + ν̄1σ

1) exp(µ̄3σ
3 + µ̄1σ

1)↔
exp[: µ̄3qp+ µ̄1(1/2)(−q2 + p2) :] exp[: ν̄3qp+ ν̄1(1/2)(−q2 + p2) :].

(7.3.519)

What we will use MaryLie to carry out numerically are the operations

exp[: µ̄3qp+ µ̄1(1/2)(−q2 + p2) :] exp[: ν̄3qp+ ν̄1(1/2)(−q2 + p2) :]

= exp(: f c2) exp(: fa2 :). (7.3.520)

That is, it will compute and multiply the two maps on the left side of (3.367) and then
express the result in the factored product form shown on the right side. Specifically, it will
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output the quadratic polynomials f c2 and fa2 . When this is done, as in (3.329) and (3.330),
we expect f c2 and fa2 will be given by the relations

f c2 = θ̄b0 = θ̄(1/2)(q2 + p2) (7.3.521)

and

fa2 = λ̄3g + λ̄1f = λ̄3qp+ λ̄1(1/2)(−q2 + p2). (7.3.522)

Exhibit 7.3.2: Sample MaryLie Run

7.4 Symplectic Map for Flow of Time-Independent

Hamiltonian

Suppose the Hamiltonian of Theorem 6.4.1 does not explicitly depend on the time. [In
this case, we say that the differential equations (1.5.6) generated by the Hamiltonian H are
autonomous.] Then the symplectic map (6.4.1) obtained by following the Hamiltonian flow
specified by H can be written immediately in the form

M = exp{−(tf − ti) : H :}. (7.4.1)

That is, we have the relation

zf =Mzi. (7.4.2)

To verify (4.1) and (4.2), let M act on zi to give the result

zf =Mzi =
∞∑
m=0

(1/m!)(tf − ti)m : −H :m zi. (7.4.3)

However, Taylor’s theorem gives the result

zf = z(tf ) = z(ti) +
∞∑
m=1

(1/m!)(tf − ti)m(d/dt)mz(t)|ti . (7.4.4)

Also, Hamilton’s equations of motion for the z’s can be written in the form

ż = [z,H] = [−H, z] =: −H : z,

z̈ = [−H, ż] =: −H : ż =: −H :2 z,

(d3z)/(dt)3 =: −H :3 z, etc. (7.4.5)

Upon inserting the results of (4.5) into (4.4), we obtain the desired result (4.3).
At this point several observations are possible and in order. Suppose we replace the final

time tf by a general time t. Then (4.1) and (4.2) can be written in the form

z(t) =M(t)zi, (7.4.6)
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with
M(t) = exp{(t− ti) : −H :}. (7.4.7)

Note that here the Hamiltonian H depends on the initial conditions zi, and does not depend
explicitly on the time,

H = H(zi). (7.4.8)

Suppose that (4.7) is differentiated with respect to the time. Doing so gives, in accord with
Appendix C, the result

Ṁ = exp{(t− ti) : −H :} : −H :

= M : −H : . (7.4.9)

The relation (4.9) provides an equation of motion for M that, although only derived so far
for the case of a time independent Hamiltonian, will eventually be shown to hold in general.
Also, M evidently satisfies the initial condition

M(ti) = I. (7.4.10)

It will eventually be shown that the equation of motion (4.9) and the initial condition (4.10)
specify M(t) completely. Conversely, if M(t) is known, the Hamiltonian H can be found,
up to an immaterial constant, from the relation

: −H :=M−1Ṁ. (7.4.11)

See (5.3.15) and (5.3.16).
Next, suppose we differentiate (4.6) with respect to the time. Doing so and making use

of (4.9) gives the result

ż(t) = Ṁ(t)zi =M : −H : zi

= M[−H, zi]zi =M[zi, H]zi . (7.4.12)

The right side of (4.12) can be manipulated further using the relations (5.4.15) and (5.4.11)
to give the result

M[zi, H]zi = [Mzi,MH]zi = [Mzi, H(Mzi)]zi

= [z(t), H(z(t))]zi . (7.4.13)

Also, we should really write z(t) in the more explicit form

z = z(zi, t) (7.4.14)

to indicate that z(t) depends on the initial conditions zi. Finally, because the mapping
between zi and z is symplectic, the Poisson bracket on the right side of (4.13) can be
rewritten to give the result

[z(t), H(z(t))]zi = [z(zi, t), H(z(zi, t))]zi

= [z,H(z)]z. (7.4.15)
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See (6.3.3) and (6.3.10) and let zi play the role of z. Putting all these results together, we
find the final expected relation

ż = [z,H(z)]z. (7.4.16)

As a generalization of (4.1), suppose that the Hamiltonian H is not necessarily time
independent, but does have the property that the Lie operators : H(z, t) : for various times
all commute. That is, one has the relation

{: H(z, t) :, : H(z, t′) :} = 0 for all t, t′. (7.4.17)

Alternatively, because of the homomorphism (5.3.14), we may require that H(z, t) and
H(z, t′) be in involution for all t, t′. It can be shown that in either case the symplectic map
obtained by following the Hamiltonian flow specified by H can be written in the form

M = exp(−
∫ tf

ti
: H : dt). (7.4.18)

See Section 10.3.

Exercises

7.4.1. Verify in detail the steps leading from (4.12) to (4.16).

7.4.2. Prove (4.18) given the assumption (4.17).

7.4.3. Consider the map M(t) given by (1.4.13). Find H using (4.11).

7.4.4. Consider the map
q(qi, pi, t) = qi(1− tpi)2, (7.4.19)

p(qi, pi, t) = pi/(1− tpi). (7.4.20)

Verify that this map is symplectic. Find H using (4.11). Sketch the flow generated by H.

7.4.5. Use the result (1.4.13) to carry out Exercise 5.4.5 and to derive (2.23). Use the
results (1.4.21), (1.4.22), (1.4.23), and (1.4.24) to carry out Exercises 5.4.1 through 5.4.4
and Exercise 5.4.6, and to derive (2.20).

7.4.6. Consider the Hamiltonian H given by

H = (p2 + σq2)/2 (7.4.21)

and the linear symplectic map M generated by H,

M(σ, t) = exp(−t : H :). (7.4.22)

Let M(σ, t) be the symplectic matrix associated with M as in (7.2.1). Find M explicitly
and show that, in accord with Poincaré’s Theorem 3.3 given in Section 1.3, M is analytic in
the variables σ and t. Write M in the form

M = exp(JS) (7.4.23)
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and show that the Hamiltonian matrix (JS) is analytic in σ and t. Find the eigenvalues of
M and (JS) and plot them in the complex plane as a function of σ. See Section 3.4 and
Exercise 3.7.12. Show that the eigenvalues of M and (JS) have square-root branch points
(singularities) at σ = 0.

7.4.7. Let H be a quadratic and time independent Hamiltonian, and write it in the form

H = (1/2)(z, Sz) (7.4.24)

where S is a time independent symmetric matrix. It generates the linear symplectic map

M = exp(−t : H :) (7.4.25)

Show that the symplectic matrix M associated with M is given by the relation

M = exp(tJS). (7.4.26)

7.5 Taylor Maps and Jets

Let N be a symplectic map, and suppose N sends the particular point z̃i to the point z̃f .
Consider points z near z̃i by writing the relation

z = z̃i + ζ, (7.5.1)

and define points z near z̃f by writing the relation

z = z̃f + ζ. (7.5.2)

Then, by construction, we have the relation

ζ = 0 if ζ = 0. (7.5.3)

Also, the mappings (5.1) and (5.2) are symplectic. See Exercise 6.2.2. It follows from the
group property for symplectic maps that the mapping between ζ and ζ, call it M, is also
symplectic. We write the relation

ζ =Mζ, (7.5.4)

and observe that according to (5.3), M sends the origin into itself.
Suppose the map N is analytic in z around the point z̃i. Then M will be analytic in ζ

around the origin. Correspondingly, we may write a Taylor expansion of the form

ζa =
∑
b

Rabζb +
∑
bc

Tabcζbζc +
∑
bcd

Uabcdζbζcζd + · · · . (7.5.5)

Note that the expansion has no constant terms due to (5.3). Expansions of the form (5.5)
often are used both in magnetic particle optics and in light ray optics. In this context the
coefficients R describe paraxial optics, and the remaining coefficients T , U , · · · describe
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aberration effects. For this reason we will refer to expansions of the form (5.5) either as
Taylor maps or aberration expansions.

We have already seen in Section 6.4 that Hamiltonian flows produce symplectic maps.
Also, according to Theorem 3.3.3, if the Hamiltonian has suitable analytic properties, which
is often the case, then the symplectic map it produces will also be analytic. See Chapter
26 and Appendix F. Thus, analytic symplectic maps are of great interest. Without loss of
generality, such maps may be taken to be of the form (5.5).

Finally, suppose f(ζ), a function of the phase-space variables ζ, is analytic at the origin.
Suppose further that the Taylor expansion of f begins with quadratic terms. Then evidently
the symplectic map given by the Lie transformation exp(: f :) is of the form (5.5).

By combining (5.1) through (5.5) we may write the relation

z = N z (7.5.6)

in the form

za = z̃fa +
∑
b

Rab(z − z̃i)b

+
∑
bc

Tabc(z − z̃i)b(z − z̃i)c

+
∑
bcd

Uabcd(z − z̃i)b(z − z̃i)c(z − z̃i)d + · · · . (7.5.7)

Let ga(m; z) denote a homogeneous polynomial of degree m in the components of z. With
this notation (5.7) can also be written in the form

za =
∞∑
m=0

ga[m; (z − z̃i)]. (7.5.8)

Suppose N ′ is some other symplectic map that sends z̃i to z̃f , and suppose N ′ has an
expansion of the form

za =
∞∑
m=0

g′a[m; (z − z̃i)]. (7.5.9)

Since both N and N ′ send z̃i to z̃f , we have the relation

ga(0; z) = g′a(0; z). (7.5.10)

Now suppose that in fact ga and g′a agree for m ≤ k:

ga(m; z) = g′a(m; z) for m ≤ k. (7.5.11)

We express this condition symbolically by writing

N ′ k∼ N (7.5.12)

and say that N ′ and N are equivalent through terms of degree k. It can be shown, as the
notation and terminology are meant to suggest, that (5.12) defines an equivalence relation
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among maps that send z̃i to z̃f . See Exercise 5.2. With the aid of this equivalence relation,
we may define equivalence classes of maps. For any given k, an equivalence class is called a
k-jet. Evidently, an equivalence class (a k -jet) is determined by specifying the polynomials
ha(0; z), ha(1; z), · · · ha(k; z). Put another way, we may say that two maps N and N ′
represent the same k -jet if their derivatives agree at z̃i through order k. Or, what amounts
to the same thing, we may view a k -jet as being representated by a point z̃i and a Taylor
series map (about this point) truncated beyond terms of degree k.

Finally, suppose a Taylor map is a Taylor expansion of a symplectic map. We will refer
to the jet obtained by truncating such an expansion as a symplectic jet. It is important to
note that a symplectic k-jet is generally not a symplectic map, but rather is a k-jet that
satisfies the symplectic condition through terms of degree (k − 1). See Exercise 5.3.

Exercises

7.5.1. Suppose that f(ζ) is analytic at the origin and begins with quadratic terms. Show
that the symplectic map given by exp(: f :) is of the form (5.5).

7.5.2. Show that (5.11) and (5.12) produce an equivalence relation on the set of differentiable
maps. See Exercise 5.12.7.

7.5.3. Exercise about symplectic jets.

7.6 Factorization Theorem

Note what has been accomplished so far. Section 3.7 showed that matrices of the form
JS with S symmetric produce a Lie algebra. It also showed that any symplectic matrix
sufficiently near the identity can be written in the form exp(JS). Section 3.8 showed that
any symplectic matrix can be written as the product of two exponentials. Similarly, Section
5.3 showed that the set of Lie operators : f : forms a Lie algebra. And Section 7.1 showed
that Lie transformations exp(: f :) are symplectic maps. Finally, we have just seen that
if f is analytic at the origin and begins with quadratic terms, then the Lie transformation
exp(: f :) produces a map of the form (5.5). What remains to be studied is the question
of whether any symplectic map M can be written in exponential form. The answer to this
question is given by the factorization theorem.

Theorem 6.1 LetM be an analytic symplectic map that sends the origin into itself. That
is, the relation between z and z is assumed to be expressible in a Taylor series of the form

za =
∑
b

Rabzb +
∑
bc

Tabczbzc +
∑
bcd

Uabcdzbzczd + · · · . (7.6.1)

In the terminology of the last section, truncating this series beyond terms of degree k yields,
for any k, a symplectic k-jet. (Here, to avoid proliferation of notation, we again use the
symbols z and z to denote general phase-space variables.) Then, remarkably, there are
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unique functions f c2(z), fa2 (z), f3(z), f4(z), · · · such that the relation (6.1) can be written in
the form

z =Mz, (7.6.2)

with M expressed as a product of Lie transformations in the form

M = exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · . (7.6.3)

Furthermore, each of the functions fm(z) is a homogeneous polynomial of degree m in the
variables z.

The proof of this theorem is best achieved in stages by verifying a series of lemmas.
Lemma 6.1 The matrix R of (6.1) is symplectic. To see this, compute the Jacobian matrix
M(z) corresponding to the transformation (6.1) using (6.1.2). We find the result

M(0) = R. (7.6.4)

Then, since M is assumed to be symplectic, M(z) must be symplectic for all z, and hence
R must be symplectic.

Lemma 6.2 Let g1(z) · · · g2n(z) be a set of 2n functions. (Here, as usual, 2n is the
dimensionality of the phase space in question.) Suppose these functions satisfy the relations

[za, gb] = [zb, ga]. (7.6.5)

Then such functions exist if and only if there is a function h such that

ga = [h, za] =: h : za. (7.6.6)

The function h is unique up to an additive constant.
To verify this assertion, first suppose that each ga is given by (6.6). Then we quickly

demonstrate (6.5). We find the result

[za, gb]− [zb, ga] = [za, [h, zb]]− [zb, [h, za]]

= [h, [za, zb]] = [h, Jab] = 0. (7.6.7)

Here we have used the Jacobi identity (5.1.7).
Next, suppose (6.5) is true. We are now in a situation analogous to that of Section 6.4.

Compare (6.4.30) and (6.5). As before, define functions ηc using (6.4.39),

ηc =
∑
d

Jdcgd, (7.6.8)

and define an associated function h by the integral

h = −
∫ z∑

a

ηadz
′
a. (7.6.9)

As we have seen, the integral is path independent, and has the property

∂h/∂zb = −ηb. (7.6.10)
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Following (6.4.31), we find that the Poisson bracket [h, za] has the value

[h, za] = −[za, h] = −
∑
b

Jab(∂h/∂zb)

=
∑
b

Jabηb =
∑
bc

JabJcbgc

=
∑
bc

Jab(J
T )bcgc =

∑
c

(JJT )acgc = ga, (7.6.11)

as desired. Here we have also used (6.8).

Lemma 6.3 Let fm be a homogeneous polynomial in z of degree m. Also, let Pr denote the
set of all homogeneous polynomials of degree r. Then, for any two homogeneous polynomials
fm and fn, we have the relation

[fm, fn] ∈ Pm+n−2. (7.6.12)

To put it another way, define a degree functional by the rule

deg(fm) = m. (7.6.13)

Then we have the relation
deg([fm, fn]) = m+ n− 2. (7.6.14)

This lemma is obviously true because the Poisson bracket operation simply involves two
differentiations and multiplication.

We now have the necessary tools to prove Theorem 6.1. First consider the linear part of
the transformation (6.1) that is described by the matrix R. Since R is symplectic, it can be
written in the standard form

R = PO. (7.6.15)

See (2.2). Let fa2 (z) and f c2(z) be the polynomials associated with R using (2.3) and (2.8).
Then, according to (2.11), (2.12), and (1.23), we have the result

exp(− : fa2 :) exp(− : f c2 :)z = R−1z. (7.6.16)

Suppose both sides of (6.1) are acted on by exp(− : fa2 :) exp(− : f c2 :). Doing so, and using
(6.16), gives the result

exp(− : fa2 :) exp(− : f c2 :)zb = zb + rb(> 1). (7.6.17)

Here the notation rb(> m) denotes any “remainder” series consisting of terms of degree
higher than m.

To proceed further, suppose the remainder terms rb(> 1) are decomposed into second
degree terms gb(2; z) and higher degree terms by writing the relations

rb(> 1) = gb(2; z) + rb(> 2). (7.6.18)
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With this notation, we may rewrite (6.17) in the form

exp(− : fa2 :) exp(− : f c2 :)zb = zb + gb(2; z) + rb(> 2). (7.6.19)

Take the Poisson bracket of both sides of (6.19) with themselves for different values of the
index b. Doing so, and making use of (5.4.15), (5.4.16), and (6.12), gives the result

Jbc = Jbc + [zb, gc(2)] + [gb(2), zc] + rbc(> 1). (7.6.20)

Finally, upon equating terms of like degree in (6.20), we find the relation

[zb, gc(2)] + [gb(2), zc] = 0. (7.6.21)

At this point the results of Lemma 6.2 come into play. According to this lemma, there is
a function h such that ga is given by (6.6). Indeed, we may use (6.9) to compute h explicitly.
Inserting the definition (6.8) for the functions ηa into (6.9) gives the result

h = −
∫ z∑

ab

gaJabdz
′
b. (7.6.22)

Suppose we consider the case where each ga is a homogeneous polynomial of degree m, call
it ga(m, z), and suppose we denote by fm+1 the result of computing h in this case. Then the
path integral is conveniently evaluated along the path

z′b = τzb, (7.6.23)

where the parameter τ ranges from 0 to 1. Use of (6.22) and (6.23) gives the result

fm+1(z) = −[1/(m+ 1)]
∑
ab

ga(m; z)Jabzb. (7.6.24)

As the notation suggests, fm+1(z) is a homogeneous polynomial of degree (m + 1). In
particular, use of (6.24) with the functions gb(2; z) produces the third-degree polynomial
f3(z).

As a warm-up exercise for the next step, consider the effect of applying the Lie transfor-
mation exp(− : f3 :) to z. We find the result

exp(− : f3 :)zb = zb + : −f3 : zb︸ ︷︷ ︸
quadratic terms

+(1/2!) : −f3 :2 zb︸ ︷︷ ︸
cubic terms

+ · · · . (7.6.25)

Here, in accord with (6.13), the degrees of the various terms have been indicated.
Now apply exp(: −f3 :) to both sides of (6.19). Doing so, and again making use of (6.14),

gives the result

exp(− : f3 :) exp(− : fa2 :) exp(− : f c2 :)zb =

zb + : −f3 : zb + gb(2; z) + rb(> 2). (7.6.26)
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However, according to Lemma 6.2, f3 has the property

: −f3 : zb + gb(2; z) = 0. (7.6.27)

Consequently, (6.26) can be rewritten in the form

exp(− : f3 :) exp(− : fa2 :) exp(− : f c2 :)zb = zb + rb(> 2). (7.6.28)

Comparison of the right sides of (6.17) and (6.28) shows that the degree of the remainder
term has been raised by 1. At this stage it should also be clear that the degree of the
remainder term can be increased indefinitely by finding f4, f5, · · · and applying the Lie
transformations exp(: −f4 :), exp(− : f5 :) · · · . That is, for any s we have the general result

exp(− : fs :) · · · exp(: −f3 :) exp(− : fa2 :) exp(− : f c2 :)zb = zb + rb[> (s− 1)]. (7.6.29)

We are ready for the final step. Rewrite (6.29) in the form

zb = exp(: f c2 :) exp(: fa2 :) exp(: f3 :) · · · exp(: fs :)zb + rb[> (s− 1)], (7.6.30)

and let s→∞. Then, if the remainder term tends to zero, we obtain the advertised result
(6.2) and (6.3). Otherwise the result is true only formally. In this latter case the infinite
product (6.3) is also not convergent.

We have proved a key result. Recall that in Section 6.4 it was shown that Hamiltonian
flows produce symplectic maps. Also, Theorem 1.3.3 shows that for many systems of physical
interest such maps are analytic. Now, thanks to Theorem 6.1, it is possible to describe the
most general analytic symplectic map (which sends the origin into itself) simply in terms
of various homogeneous polynomials. Finally, it will be shown in the next section that the
restriction of preserving the origin can be removed by including Lie transformations of the
form exp(: f1 :) where f1 is a suitably chosen polynomial linear in the z’s. Consequently, any
analytic symplectic map can be represented uniquely as a product of Lie transformations
generated by homogeneous polynomials. Conversely, any product of Lie transformations
generated by homogeneous polynomials is a symplectic map.

At this point, two comments are appropriate. First, suppose the factored product repre-
sentation (6.3) is truncated at any point. Then the resulting expression is still a symplectic
map because each term in the product is a symplectic map. Also, if the truncation consists
of dropping all terms in the product (6.3) beyond exp(: fm :) for some m, then according
to (6.31) the power-series expansion for the truncated map agrees with that of the origi-
nal Taylor map (6.1) through terms of degree (m − 1). Consequently, a truncated product
map provides a symplectic approximation to the exact map. By contrast, as we know from
Exercise 5.3, simply truncating a Taylor map generally violates the symplectic condition.

Second, suppose (6.3) is decomposed, as shown below, into those factors involving only
quadratic polynomials, and the remaining factors involving cubic and higher degree polyno-
mials,

M =

“Gaussian optics′′︷ ︸︸ ︷
exp(: f c2 :) exp(: fa2 :) ×

Aberrations or nonlinear corrections︷ ︸︸ ︷
exp(: f3 :) exp(: f4 :) · · · . (7.6.31)

It will be demonstrated in subsequent sections that dropping all terms beyond those involving
the quadratic polynomials leads to a lowest-order approximation forM that is equivalent to
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the paraxial Gaussian optics approximation in the case of light optics, and the usual linear
matrix approximation in the case of charged-particle beam optics. Moreover, the remaining
factors exp(: f3 :) exp(: f4 :) · · · represent aberrations or nonlinear corrections to the lowest-
order approximation. In particular, in the case of charged-particle beam optics, the factor
exp(: f3 :) describes various chromatic effects and the effects due to sextupole magnets.
Similarly, the factor exp(: f4 :) describes higher-order chromatic effects, the effects due to
iterated sextupoles, and the effects due to octupoles. Finally in some cases f3, f4, etc. also
describe what may be called “kinematic” nonlinearities in the equations of motion. They
arise, for example, from the fact that the equations of motion generated by the Hamiltonians
(1.6.16) and (1.6.17) are intrinsically nonlinear even in the absence of electric and magnetic
fields. Let D be an integer with D ≥ 3. In general, as will be shown later, retaining in the
product (6.31) only those terms with fm satisfying m ≤ D amounts to neglecting aberrations
of degree D and higher.

We close this section with a cautionary note: the quantities f c2 and fa2 that occur in
the factorization (2.10), or more generally in the factorization (6.3), can have what may
seem to be surprising properties. Suppose, for example, thatM is a linear symplectic map.
Employ the notation z = (q1, q2, · · · ; p1, p2, · · · ) and write z̄ =Mz = (q̄1, q̄2, · · · ; p̄1, p̄2, · · · ).
Suppose moreover that M is known to have the property

p̄1 =Mp1 = p1. (7.6.32)

Such maps obviously form a group, and any map of the form

Mg = exp(: g2 :) (7.6.33)

where g2 does not depend on the variable q1,

∂g2/∂q1 = 0, (7.6.34)

will have this property. Suppose that h2 is another function that does not depend on q1.
Then it is clear that all linear combinations of g2 and h2 and their single and multiple
Poisson brackets will also be independent of q1. Thus, the set of all such functions forms a
Lie subalgebra. Now let M be any product of maps which individually are exponentials of
Lie operators associated with q1-independent quadratic polynomials, and let f c2 and fa2 be
the quadratic polynomials associated with a factorization of M in the form (2.10) or (6.3),

M = exp(: g2 :) exp(: h2 :) · · · = exp(: f c2 :) exp(: fa2 ). (7.6.35)

Then, it is tempting to assume that f c2 and fa2 will also be independent of q1. This would
be the case if f c2 and fa2 were in the Lie subalgebra generated by g2, h2 · · · . However, a
simple counter-example shows that this need not be true. See Exercise 6.14. Although f c2
and fa2 are in the Lie algebra of quadratic polynomials, they need not be in the subalgebra
generated by g2, h2 · · · . This is because, by their construction, f c2 and fa2 are required to
have specific properties with respect to J , and it may happen that these properties can only
be achieved by including Lie elements outside the subalgebra. For example, in the case of
sp(2,R), f c2 is proportional to q2 + p2; and fa2 is a linear combination of −q2 + p2 and qp.
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See Section 5.6. Note that both f c2 and fa2 , when considered individually, depend on both
the variables q and p.

In the context of Accelerator Physics a particularly confusing/irritating example of this
phenomena occurs in the case of static/time-independent maps where the differential transit
time t plays the role of q1 in the present discussion and its conjugate momentum (energy)
pt plays the role of p1. With the exception of maps for radio-frequency cavities and maps
for magnets with time-dependent fields, most maps for accelerator beam-line elements are
static. Yet when the f c2 and fa2 are computed for a static map, they may turn out to be time
dependent.12 But, of course, when the effects of these f c2 and fa2 are combined to compute a
net map, this net map will leave pt unchanged even though this fact is not readily apparent
simply by looking at f c2 and fa2 .

Exercises

7.6.1. Verify (6.7).

7.6.2. Verify (6.8) through (6.10).

7.6.3. Show that any h that satisfies (6.6) is unique up to an additive constant.

7.6.4. Verify (6.12) and (6.14).

7.6.5. Verify (6.20).

7.6.6. Verify (6.11) and (6.22). Carry out the path integral described to get (6.24).

7.6.7. Suppose that f(m, z) is a homogeneous polynomial of degree m. Then it must satisfy
Euler’s relation ∑

a

za(∂f/∂za) = mf. (7.6.36)

See Exercise 1.5.11. Given (6.5), verify by direct calculation that fm+1 as given by (6.24)
satisfies the relation

: fm+1 : zb = gb(m; z). (7.6.37)

7.6.8. Verify (6.26).

7.6.9. Justify the passage from (6.29) to (6.30).

7.6.10. Consider the two-variable map, a variant of the Hénon map, given by the relations

q = λ[q + (q − p)2],

p = (1/λ)[p+ (q − p)2], (7.6.38)

where λ is a parameter (positive or negative). Show that this map is symplectic. Find the
factorization (6.3). That is, determine the polynomials fm.

12For this and other reasons, the charged-particle beam transport code MaryLie does not work directly
with the polynomials f c2 and fa2 . It works with 6× 6 matrices M to represent the linear part of the mapM,
and only computes f c2 and fa2 from M when requested. The static/dynamic nature of M is readily apparent
upon inspection of its matrix elements.



7.6. FACTORIZATION THEOREM 835

7.6.11. Consider the two-variable map, a variant of the Hénon map, given by the relations

q = q cosα + p sinα + p2 cosα,

p = −q sinα + p cosα− p2 sinα, (7.6.39)

where α is a parameter. Show that this map is symplectic. Find the factorization (6.3).
That is, determine the polynomials fm.

7.6.12. Given the factorization (6.31), show how to compute the R, T , and U of (6.1).

7.6.13. Find the restrictions on the coefficients R, T , and U in (6.1) that are entailed by
the symplectic condition.

7.6.14. This exercise is a sequel to Exercise 5.6.7, which you should review. Its purpose is
to examine two linear two-dimensional symplectic maps, find their single exponential forms
where applicable, find their polar decompositions and associated polynomials fa2 and f c2 , and
examine the q and p content of these polynomials.

As the first case to be studied, let M be a linear symplectic map acting on the two-
dimensional phase space q1, p1 and described by the matrix L given by the relation

L =

(
1 1
0 1

)
. (7.6.40)

Evidently L is symplectic and M satisfies (6.32). Verify that, in fact, M can be written in
the form

M = exp(: g2 :) (7.6.41)

with
g2 = −p2

1/2. (7.6.42)

Observe that g2 does not depend on q1.
Let us continue on to compute the quadratic polynomials f c2 and fa2 appearing in (2.10)

to examine their q1 behavior and then find them explicitly. Begin by polar decomposing
L as in (6.15). From Exercise 5.6.7 we know that P is given by (5.6.34) and O is given
by (5.6.40). If we write O and P in the exponential forms (3.8.17) and (3.8.25), we see
that neither Sc nor Sa can vanish since neither O nor P are equal to the identity. Use the
parameterization of (5.9.10) to write

JSc = β0B
0, (7.6.43)

JSa = φF + γG. (7.6.44)

See (5.6.7), (5.6.13), and (5.6.14). Show that f c2 and fa2 are given by the relations

f c2 = −(β0/2)(p2
1 + q2

1), (7.6.45)

fa2 = −(φ/2)(p2
1 − q2

1)− γq1p1. (7.6.46)

Because neither Sc nor Sa can vanish, verify that consequently both f c2 and fa2 , unlike g2,
must depend on q1.
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Let us now compute f c2 and fa2 explicitly. With regard to O, use (5.9.12) to deduce the
relation

O = exp(β0B
0) = I cos β0 +B0 sin β0, (7.6.47)

and thereby obtain the results
cos β0 = 2/

√
5, (7.6.48)

sin β0 = 1/
√

5, (7.6.49)

tan(β0) = 1/2, (7.6.50)

β0 = tan−1(1/2) = .463 · · · . (7.6.51)

Here, in view of the 2π periodicity of the right side of (6.47), we have restricted β0 to the
interval β0 ∈ [−π, π].

With regard to P , deduce from (5.9.11) the relation

P = exp(φF + γG) = I cosh[(φ2 + γ2)1/2]

+ [(φF + γG)]/(φ2 + γ2)1/2] sinh[(φ2 + γ2)1/2]. (7.6.52)

Using the explicit form (5.6.27) for P , take the trace of both sides of (6.52) to find the result

cosh[(φ2 + γ2)1/2] = (1/2)
√

5. (7.6.53)

Next multiply both sides of (6.52) by F and again take traces to find the result

[φ/(φ2 + γ2)1/2] sinh[(φ2 + γ2)1/2] = −1/
√

5. (7.6.54)

Finally, multiply both sides of (6.52) by G and take traces to find the result

[γ/(φ2 + γ2)1/2] sinh[(φ2 + γ2)1/2] = 1/(2
√

5). (7.6.55)

Show that (6.54) and (6.55) are consistent with (6.53), and from them deduce the relation

φ = −2γ. (7.6.56)

Solve (6.53) through (6.55) to obtain the results

φ = −.430 · · · , (7.6.57)

γ = .215 · · · . (7.6.58)

Taken together, the relations (6.45) and (6.46), with β0 and φ and γ given by (6.51) and
(6.57) and (6.58), specify f c2 and fa2 explicitly. Note that both f c2 and fa2 depend on both q1

and p1 even though (6.32) holds and g2 is independent of q1.
As the second case to be studied, let M be the linear symplectic map described by the

matrix M given by the relation

M = −L =

(
−1 −1
0 −1

)
. (7.6.59)
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EvidentlyM is symplectic. Moreover, we know from Exercise 3.7.12 that thisM cannot be
written in single exponential form.

Let us continue on to compute and find explicitly the quadratic polynomials f c2 and fa2
for this M. From Exercise 5.6.7 we know that M has the polar decomposition (5.6.41). It
follows from (5.6.42) that fa2 is the same as the fa2 found in the first part of this exercise.
What remains is to find f c2 . Evidently the Ansatz (6.45) continues to hold, but with a
different value of β0. Show that in this case there is the relation

O′ = exp(β0B
0) = I cos β0 +B0 sin β0 (7.6.60)

with O′ given by (6.43). Show that now there are the results

cos β0 = −2/
√

5, (7.6.61)

sin β0 = −1/
√

5, (7.6.62)

tan(β0) = 1/2, (7.6.63)

β0 = −π + tan−1(1/2) = −π + .463 · · · = −2.677 · · · . (7.6.64)

7.7 Inclusion of Translations

Consider transformations of the form

zb = zb + δb, (7.7.1)

where the quantities δ1, · · · δ2n are parameters. It is easy to verify that (7.1) is a symplectic
map. See Exercise 6.2.2. Define a related set of parameters δ∗a by the rule

δ∗a =
∑
b

Jabδb, or δ∗ = Jδ. (7.7.2)

Also, define a first-degree polynomial g1(z) by the rule

g1(z) =
∑
ab

Jabzaδb = (z, δ∗) = (z, Jδ)

= (JT z, δ) = (δ, JT z) = −(δ, Jz)

= −(δ, z∗). (7.7.3)

Then, use of (6.10) shows that g1 obeys the relations

: g1 : zb = [g1, zb] = −[zb, g1]

= −∂g1/∂z
∗
b = δb, (7.7.4)

: g1 :m zb = 0 for m > 1. (7.7.5)

Consequently, we have the relation

exp(: g1 :)zb = zb + δb. (7.7.6)
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That is, Lie transformations of the form exp(: g1 :) produce translations in phase space, and
any translation can be written in this form.

Suppose the Taylor map (6.1) is generalized by the addition of constant terms to give a
transformation of the form

za = δa +
∑
b

Rabzb +
∑
bc

Tabczbzc +
∑
bcd

Uabcdzbzczd + · · · . (7.7.7)

Then, a slight modification of Theorem (6.1) shows that (6.31) is generalized to become the
relation

exp(− : fs :) · · · exp(− : f3 :) exp(− : fa2 :) exp(− : f c2 :)zb

= zb + δb + rb[> (s− 1)]. (7.7.8)

Here the homogeneous polynomials fm are the same as before. Next use (7.6) in (7.8) to get
the relation

exp(− : fs :) · · · exp(− : f3 :) exp(− : fa2 :) exp(− : f c2 :)zb

= exp(: g1 :)zb + rb[> (s− 1)]. (7.7.9)

Finally, rewrite (7.9) in the form

zb = exp(: f c2 :) exp(: fa2 :) exp(: f3 :) · · · exp(: fs :) exp(: g1 :)zb + rb[> (s− 1)], (7.7.10)

and let s→∞. We see that the generalized transformation (7.7) can be written in the form

z =Mz (7.7.11)

where M has the factorization

M = [exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · ] exp(: g1 :). (7.7.12)

As in Section 7.5, let N be a symplectic map, and suppose N sends the particular point
z̃i to the point z̃f . Also, again suppose N is analytic in z around the point z̃i. Then, the
relations (5.1), (5.2), and (5.5) can also be written in the form

za = z̃fa +
∑
b

Rab(z − z̃i)b +
∑
bc

Tabc(z − z̃i)b(z − z̃i)c

+
∑
bcd

Uabcd(z − z̃i)b(z − z̃i)c(z − z̃i)d + · · · . (7.7.13)

Let h1(z) be a first-degree polynomial defined by the relation

h1(z) = (z, Jz̃i). (7.7.14)

Then, by construction and the discussion at the beginning of this section, h1(z) has the
property

exp(: h1 :)z = z + z̃i, (7.7.15)

or
exp(: h1 :)(z − z̃i) = z. (7.7.16)
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Apply exp(: h1 :) to both sides of (7.13). Doing so, and making use of (7.16) and (5.4.11),
gives the result

exp(: h1 :)za = z̃fa +
∑
b

Rabzb +
∑
bc

Tabczbzc +
∑
bcd

Uabcdzbzczd + · · · . (7.7.17)

We are now again in the situation described by (7.7) with z̃f playing the role of k. Conse-
quently, we may write the relation

exp(− : fs :) · · · exp(− : f3 :) exp(− : fa2 :) exp(− : f c2 :) exp(: h1 :)zb

= exp(: g1 :)zb + rb[> (s− 1)]. (7.7.18)

Here the homogeneous polynomials fm are again the same as before, and g1 is given by the
relation

g1(z) = (z, Jz̃f ). (7.7.19)

Finally, rewrite (7.18) in the form

zb = exp(− : h1 :) exp(: f c2 :) exp(: fa2 :) exp(: f3 :) · · · exp(: fs :) exp(: g1 :)zb

+ exp(− : h1 :)rb[> (s− 1)]. (7.7.20)

Again let s→∞. Then, providing the remainder term tends to zero,

lim
s→∞

exp(− : h1 :)rb[> (s− 1)] = 0, (7.7.21)

we have the result
z = N z (7.7.22)

where N has the factorization

N = exp(− : h1 :)[exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · ] exp(: g1 :). (7.7.23)

We conclude that the general analytic symplectic map N given by (7.13) can be written in
the factored product form (7.23).

Note that Sections 5.1 and 5.3 showed that the set of Lie operators forms an infinite-
dimensional Lie algebra, and Section 6.2 showed that symplectic maps form a group. Theo-
rem 6.1 and (7.23) [see also (8.1) and (8.2)] show that Lie operators form the Lie algebra of
the group of symplectic maps. Thus, the group of symplectic maps is an infinite-dimensional
Lie group, and its Lie algebra is the Lie algebra of Lie operators. From (2.10) we see that the
subgroup of all symplectic maps that preserve the origin and are linear, namely Sp(2n,R),
has as its Lie algebra sp(2n,R) all Lie operators of the form : f2 :. Next consider SpM(2n,R),
the group of all symplectic maps that preserve the origin. From (6.3) we see that its Lie
algebra, spm(2n,R), consists of all Lie operators of the form : fm : with m = 2, 3, · · · .
Finally, consider ISpM(2n,R), the group of all symplectic maps. We see from (7.23) [see
also (8.1) and (8.2)] that its Lie algebra, ispm(2n,R), consists of all Lie operators of the
form : fm : with m = 1, 2, 3 · · · .

We close this section with the remark that if one considers the set of all invertible analytic
maps, and not just the subset of analytic symplectic maps, then this set of all invertible
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analytic maps also forms a group. This group, sometimes called the group of analytic
diffeomorphisms, is also an infinite-dimensional Lie group, and has as its Lie algebra the set of
all general Lie operators of the form (5.3.17) with the gb being analytic functions. This group
is sometimes called Diff (Rm) where m is the dimension of the space under consideration. If
one is more careful, which we generally are not because we assume analyticity, one should
make distinctions between maps that are merely continuous (C0), or have some specified
number of derivatives (Ck), or have an infinite number of derivatives (C∞), or are analytic
(Cω).13 With more careful notation, the group of analytic diffeomorphisms should be called
Diff ω(Rm). We also remark that often C∞ functions are called smooth.

Exercises

7.7.1. Verify (7.8).

7.7.2. Find the factorization of the form (7.12) for the map (6.2.10). Show that Lie operators
of the form : f1 : and : f2 : generate a Lie algebra under commutation. This is the Lie algebra
isp(2n,R), the Lie algebra of the inhomogeneous symplectic group ISp(2n,R). What is the
dimension of this Lie algebra?

Show that the polynomials f0 (where f0 = any constant) and f1 generate a Lie algebra
under the Poisson bracket operation. This is the Lie algebra of the Heisenberg group. What
is its dimension?

Show that the polynomials f0, f1, and f2 generate a Lie algebra under the Poisson bracket
operation. This is the Lie algebra of the Jacobi group. For lack of a standard notation, we
will denote the Jacobi group by the symbols J(2n,R), and its Lie algebra by j(2n,R). What
is the dimension of this Lie algebra? Show that this algebra is homomorphic to that of the
inhomogeneous symplectic group. See (5.3.14), (5.3.15), and (5.3.16).

7.7.3. Consider the matrices Q, P , and E defined by the rules

Q =

 0 1 0
0 0 0
0 0 0

 , (7.7.24)

P =

 0 0 0
0 0 1
0 0 0

 , (7.7.25)

E =

 0 0 1
0 0 0
0 0 0

 . (7.7.26)

Show that these matrices form a Lie algebra with the commutator as a Lie product. Consider
a two-dimensional phase space with coordinates q and p. Show that the functions q, p, and
1 form a Lie algebra with the Poisson bracket as a Lie product. According to Exercise 7.2

13In the context of Accelerator Physics where one is often concerned with charged-particle motion in
electromagnetic fields in vacuum, this analyticity can be proved. See Appendix F.
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above, this Lie algebra is the Heisenberg Lie algebra in the case of a two-dimensional phase
space. Show that the commutator Lie algebra associated with the matrices Q, P , and E
has the same structure constants as the Heisenberg Lie algebra, and therefore provides a
matrix representation of the Heisenberg Lie algebra. Show that this representation is not
the adjoint representation.

7.7.4. As shown in Section 7.2, the symplectic group Sp(2n,R) acts transitively on punc-
tured phase space. Consequently, according to the discussion in Section 5.12, it must be
possible to view punctured phase space as a coset space of Sp(2n,R) with respect to one of
its subgroups. The purpose of this exercise is to find this subgroup. Following the general
procedure of Section 5.12, we must look for all Sp(2n,R) transformations of punctured phase
space that leave some point fixed. Without loss of generality, this point can be taken to be
the point z1 given by (2.30).

Let M be a symplectic matrix that preserves the vector (phase-space point) z1,

Mz1 = z1. (7.7.27)

Show from (2.29) and (7.27) that the Ma1 matrix elements obey the relations

Ma1 = δa1. (7.7.28)

Let M(M) be a symplectic map associated with M by the relation

M(M)za =
∑
b

(MT )abzb. (7.7.29)

Show from (7.29) that M is symplectic, and from (7.28) and (7.29) that M satifies the
relation

Mq1 = q1. (7.7.30)

Conversely, show that ifM is a symplectic map of the form (7.29) that also satisfies (7.30),
then (7.28) and (7.27) are satisfied. Consequently, we can concentrate on finding the general
solution to (7.30).

We begin by working near the identity, and write M in the form

M = exp(: f2 :). (7.7.31)

Show that requiring (7.30) forM near the identity is equivalent to requiring that f2 satisfy
the relation

: f2 : q1 = 0. (7.7.32)

Show that any f2 that satisfies (7.32) cannot depend on p1, and is therefore a linear combi-
nation of the polynomials q2

1, q1f̃1, and f̃2. Here f̃1 and f̃2 denote homogeneous polynomials
in the remaining variables q2 · · · qn and p2 · · · pn of degrees 1 and 2, respectively. Show that
the polynomials f̃2 give a representation of the Lie algebra sp[2(n− 1), R]. Review Exercise
7.2, and consider the Poisson bracket Lie algebra generated by f0, f1, and f2, the Jacobi
Lie algebra j(2n,RR). You should have found that it has dimension n(2n + 3) + 1. Show
that the polynomials q2

1, q1f̃1, and f̃2 have the Lie algebra j[2(n− 1), R] under the Poisson
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bracket operation, and that the Lie operators : q2
1 :, : q1f̃1 :, and : f̃2 : have that same Lie

algebra under commutation. Show that the dimensions of sp(2n,R) and j[2(n − 1),R] are
related by the equation

dim{sp(2n,R)} − dim{j[2(n− 1),R]} = 2n. (7.7.33)

Let J [2(n − 1),R] be the Lie group generated by the Lie operators : q2
1 :, : q1f̃1 :, and

: f̃2 :. Show that the general M in J [2(n− 1),R] can be written in the form

M = exp(α : q2
1 :) exp(: f̃ c2 :) exp(: f̃a2 :) exp(: q1f̃1 :), (7.7.34)

where α is an arbitrary parameter. Show that (7.34) is the most general Sp(2n,R) transfer
map that satisfies the relation

Mq1 = q1. (7.7.35)

Hint: If you are having difficulty, see the beginning of Section 9.4.
Let H be the subgroup of Sp(2n,R) consisting of all matrices M that satisfy (7.27).

Suppose M1 and M2 are in H. Then we have the relation

M(M1)M(M2)za = M(M1)
∑
b

[(M2)T ]abzb

=
∑
b,c

[(M2)T ]ab[(M
1)T ]bczc

=
∑
c

[(M2)T (M1)T ]aczc =
∑
c

[(M1M2)T ]aczc

= M(M1M2)za, (7.7.36)

or, more compactly put,
M(M1)M(M2) =M(M1M2). (7.7.37)

From (7.37) we see that the subgroup H is a matrix realization of J [2(n − 1),R]. Let G
be the group Sp(2n,R). Show that the coset space G/H has dimension 2n, the expected
dimension for the phase space under consideration.

7.7.5. Section 6.1 defined a symplectic map to be a map (of a 2n-dimensional space into
itself) whose Jacobian matrix M is symplectic. Suppose that M is instead required to be
orthogonal. Show that such maps also form a group, which might be called the group of
orthogonal maps. Consider the Taylor expansion of such a map in the 2-dimensional case.
Show that, unlike the expansion for symplectic maps, only constant and linear terms can
occur in the Taylor expansion! You have verified a special case of the fact that, unlike sym-
plectic maps, orthogonal maps are trivial in the sense that they consist only of translations
and linear orthogonal transformations.

7.8 Other Factorizations

In addition to the factorization (7.23), there are other factorizations that are often useful.
First, as will be shown in Chapter 9, it is possible to bring all first degree polynomials over
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to the left. In this case, N has the factorization

N = exp(: f1 :) exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · . (7.8.1)

Here the polynomials fm are generally different from those in (7.23).14 The factorization
(8.1) will be called forward or ascending factorization. Second, it is often useful to have a
factorization of the form

N = · · · exp(: f4 :) exp(: f3 :) exp(: fa2 :) exp(: f c2 :) exp(: f1 :). (7.8.2)

Here again the polynomials fm are generally different from those in (8.1) or (7.23). The
factorization (8.2) will be called reverse or descending factorization. Finally, it is often useful
to have mixed factorizations where the fm terms with m > 1 are ascending or descending,
and the exp(: f1 :) term is at the beginning, or at the end.

Exercises

7.8.1. Find other factorizations for the inhomogeneous symplectic group. See Exercises
(3.9.2) and (7.2).

7.9 Coordinates and Connectivity

Suppose G is a finite-dimensional Lie group, and let B1, B2, · · · Bn be a basis for the
associated Lie algebra L. To be more specific, suppose G is realized as a group of matrices,
and suppose that some element g in G is sufficiently near the identity so that it can be
written in the form

g = exp(
n∑
j=1

ξjBj). (7.9.1)

The parameters ξj are called canonical coordinates (for g) of the first kind. Another possi-
bility is to write g in the form

g = exp(η1B1) exp(η2B2) · · · exp(ηnBn). (7.9.2)

The parameters ηj are called canonical coordinates of the second kind.15 For the case of a
finite-dimensional Lie group, at least in some neighborhood of the identity, one may pass in
principle from one kind of coordinates to the other with the aid of the BCH formula. (See
Section 3.7. See also Exercise 10.4.2.) This may not be possible in the infinite-dimensional
case because then the BCH series may not have any domain of convergence. See Section
33.7.

14In Section 6.6 we saw that the 2n functions required to specify a map in 2n variables can be related to
a single function in the symplectic case. This fact is also evident from (8.1) if we formally regard the fj as
the homogeneous parts of a single function f .

15Note that there are in principle as many as n! different canonical coordinates of the second kind because,
since the Bj may not commute, the order of the factors in (9.2) may be important.
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Reference to (7.23) shows that if the factorization process succeeds, the general analytic
symplectic map N has been given coordinates that are a hybrid of canonical coordinates of
the first and second kinds. The map is written as a product of exponentials as in (9.2), and
each exponential is a sum of terms as in (9.1).

Suppose N can be factored as in (7.23). Then it is easy to see that N is connected to
the identity map I by a continuous family of symplectic maps. Indeed, let λ be a parameter
and let N (λ) be the map

N (λ) = exp(−λ : h1 :)[exp(λ : f c2 :) exp(λ : fa2 :) exp(λ : f3 :) · · · ] exp(λ : g1 :). (7.9.3)

It is evident that N (λ) is a symplectic map for all λ with the properties

N (0) = I , N (1) = N . (7.9.4)

The argument just given lacks generality because we had to assume that N is analytic
and that the factorization process converges. However, we can do better. Suppose we assume
only that N has at least a first few derivatives so that (7.13) can be written in the form

za = z̃fa +
∑
b

Rab(z − z̃i)b +O[(z − z̃i)2]. (7.9.5)

Then, by arguments similar to those of Section 7.7, the map N can be rewritten in the form

N = exp(− : h1 :) exp(: f c2 :) exp(: fa2 :)P exp(: g1 :) (7.9.6)

where P is a symplectic map that sends the origin into itself and has an expansion of the
form

za = Pza = za +Wa(z) (7.9.7)

with
Wa(z) = O[(z)2]. (7.9.8)

Define a map P(λ) by the relation

za = P(λ)za = (1/λ)[λza +Wa(λz)] = za + (1/λ)Wa(λz). (7.9.9)

Here λz denotes the collection of quantities λzb. Evidently, in view of (9.8), we have the
relations

P(0) = I , P(1) = P . (7.9.10)

Also, P(λ) is a symplectic map for all values of λ. To see this, observe that P(λ) can be
written as a product of three maps in the form

P(λ) = [(1/λ)I][P ][λI]. (7.9.11)

Although the maps [(1/λ)I] and [λI] are not symplectic (if λ 6= 1), the product (9.11) is.
Indeed, denoting by P (λ, z) and P (z) the Jacobian matrices of P(λ) and P , respectively,
use of the chain rule gives the relation

P (λ, z) = [(1/λ)I][P (λz)][λI] = P (λz). (7.9.12)
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Since we know that P is a symplectic map, P (z) will be a symplectic matrix. According
to (9.12) P (λ, z), being equal to P (λz), is also a symplectic matrix because P (z) is a
symplectic matrix for all values of z. Finally, because P (λ, z) is a symplectic matrix, P(λ)
is a symplectic map.16 In analogy with (9.6), we now define N (λ) by writing

N (λ) = exp(−λ : h1 :) exp(λ : f c2 :) exp(λ : fa2 :)P(λ) exp(λ : g1 :). (7.9.13)

Evidently N (λ) is a symplectic map for all λ and has the desired properties (9.4). We have
shown that if a symplectic map N has at least a first few derivatives, then it is connected
to the identity map by a continuous family of symplectic maps.

Of course, the family just constructed will generally differ from that given by (9.3). There
are many families of symplectic maps that connect a given symplectic map to the identity
map.17 We note that, according to Section 6.4, for each family there is a corresponding
Hamiltonian that generates it.

7.10 Storage Requirements

How much computer memory is required to store a symplectic map in the Taylor form (7.7),
and how much memory is required to store the corresponding Lie form (8.1)? Suppose the
Taylor map (7.7) is truncated by discarding all terms having degree (D+ 1) and higher. We
denote this truncated Taylor map by TD+1. Then (7.7) has the truncated form

z̃a = TD+1za =
D∑

m=0

ga(m; z) (7.10.1)

where, as in Section 7.6, each ga(m; z) is a homogeneous polynomial of degree m. According
to (8.1) and our discussion of the relation between Taylor and Lie maps, there is a map M
in Lie form that corresponds to TD+1 (they both have the same Taylor expansions through
terms of degree D), and this map has a truncated factored product representation of the
form

M = exp(: f1 :) exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · exp(: fD+1 :). (7.10.2)

Let S(m, d) be the total number of monomials in d variables having degrees 1 through
m. We know from (3.40) that the total number of monomials in d variables having degree
m is N(m, d). Consequently, S(m, d) is given by the relation

S(m, d) =
m∑
k=1

N(k, d). (7.10.3)

The sum (10.3) can be evaluated to give the result

S(m, d) =

(
m+ d
m

)
− 1 =

(m+ d)!

m!d!
− 1. (7.10.4)

16This scaling by some factor λ that we have used is sometimes caled Alexander’s Trick.
17For example, in (9.13) one might replace λ as the coefficient of f c2 by λ2. The reader should be able to

construct other examples.
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See Exercises 10.1 and 10.2. Table 10.1 below lists values of S(m, d) for various values of m
and d.

Now let SL(D, d) be the number of storage locations required to specify the Lie map
(10.2). We know that the specification of an fm requires N(m, d) numbers (with d = 6 for
the case of a 6-dimensional phase space). Consequently, comparison of (10.2) and (10.3)
gives the result

SL(D, d) = S(D + 1, d) =

(
D + d+ 1
D + 1

)
− 1 =

(D + d+ 1)!

(D + 1)!d!
− 1. (7.10.5)

Correspondingly, let ST be the number of locations required to specify the truncated Tay-
lor map (10.1). We know that the specification of a particular ga(m, z) requires N(m, d)
numbers. Consequently, ST (D, d) must be given by the relation

ST (D, d) = d

D∑
k=0

N(k, d) = d[S(D, d) + 1] =
d(D + d)!

D!d!
. (7.10.6)

Note that d must be even in both (10.5) and (10.6) because phase space is even dimensional.
Finally, let us compare ST (D, d) and SL(D, d) for various values of d and D. Table 10.2

below lists values of ST , SL, and the ratio ST/SL, for d = 4 and d = 6 and various values of
D. We conclude that (for modest values of D) storing a 6-dimensional phase-space map in
Taylor form requires about 3 times more storage locations than the equivalent Lie form. For
large D values this ratio approaches 6. This difference in storage requirements for the Taylor
and Lie forms of a symplectic map arises from the fact that the Taylor form makes no use
of the symplectic condition. Indeed, the Lie form contains exactly the minimal information
required to specify a symplectic map while the Taylor form has all the coefficients required
to specify the most general (analytic diffeomorphic) map.18

18Observe that SL(3, 6), the number of storage locations required to store a 6-variable symplectic map
through third order in Lie form, has the value SL(3, 6) = 209. Curiously, according to the Los Angles Times,
in 1987 (when MaryLie 3.0 was being written) the Chinese Communist Party Central Committee, China’s
highest governing body, had 209 members.
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Table 7.10.1: Number of monomials of degree 1 through m in various numbers of variables.
m S(m, 4) S(m, 5) S(m, 6) S(m, 7) S(m, 8) S(m, 9) S(m, 10) S(m, 11)
1 4 5 6 7 8 9 10 11

2 14 20 27 35 44 54 65 77

3 34 55 83 119 164 219 285 363

4 69 125 209 329 494 714 1000 1364

5 125 251 461 791 1286 2001 3002 4367

6 209 461 923 1715 3002 5004 8007 12375

7 329 791 1715 3431 6434 11439 19447 31823

8 494 1286 3002 6434 12869 24309 43757 75581

9 714 2001 5004 11439 24309 48619 92377 167959

10 1000 3002 8007 19447 43757 92377 184755 352715

11 1364 4367 12375 31823 75581 167959 352715 705431

12 1819 6187 18563 50387 125969 293929 646645 1352077
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Table 7.10.2: Storage Requirements for Taylor and Lie Maps.

D ST (D, 4) SL(D, 4) ST (D, 4)/SL(D, 4) ST (D, 6) SL(D, 6) ST (D, 6)/SL(D, 6)

2 60 34 1.8 168 83 2.0

3 140 69 2.0 504 209 2.4

4 280 125 2.2 1260 461 2.7

5 504 209 2.4 2772 923 3.0

6 840 329 2.6 5544 1715 3.2

7 1320 494 2.7 10,296 3002 3.4

8 1980 714 2.8 18,018 5004 3.6

9 2860 1000 2.9 30,030 8007 3.8

10 4004 1364 2.9 48,048 12,375 3.9

11 5460 1819 3.0 74,256 18,563 4.0

12 7280 2379 3.1 111,384 27,131 4.1

Exercises

7.10.1. Verify (10.3) through (10.6). [Hint: Use the relations (3.52) through (3.54).] Show
that S can be generated using the recursion relation

S(m, d) = S(m, d− 1) + S(m− 1, d) + 1 (7.10.7)

with the initial conditions

S(m, 1) = m, (7.10.8)

S(1, d) = d. (7.10.9)

Show that S also satisfies the relation

S(m, d) = S(m− 1, d) +N(m, d). (7.10.10)

7.10.2. The relation (10.4) can be derived directly from the definition of S(m, d) as the
total number of monomials in d variables having degrees 1 through m. Let S0(m, d) be the
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total number of monomials in d variables having degrees 0 through m. Then we evidently
have the relation

S0(m, d) = S(m, d) + 1. (7.10.11)

Show that from its definition S0(m, d) obeys the relations

S0(1, 1) = 2, (7.10.12)

S0(m, 1) = m+ 1, (7.10.13)

S0(2, 2) = 6. (7.10.14)

Next show that S0 obeys the recursion relation

S0(m, d) = S0(m− 1, d) + S0(m, d− 1). (7.10.15)

Hint: The number of monomials in d variables having degrees 0 through m is the number
of monomials having degree 0 through m − 1, which is S0(m − 1, d), plus the number
of monomials having degree m. We have already agreed to let N(m, d) be the number of
monomials having degree m. Homogeneous monomials of degree m in the d variables z1 · · · zd
can be viewed as monomials in the variables z1 · · · zd−1 of degree 0 through m multiplied by
the appropriate power of zd to make the total degree exactly m. Thus, we have the relation

N(m, d) = S0(m, d− 1). (7.10.16)

Finally, use the recursion relation (10.15) with the inital conditions (10.12) through (10.14)
to show that S0 is given by the relation

S0(m, d) =

(
m+ d
m

)
=

(m+ d)!

m!d!
. (7.10.17)

Hint: Recall that the binomial coefficients satisfy the recursion relation (3.52).

7.10.3. Evaluate the ratio ST/SL for various values of d (say d = 4 and d = 6) and various
values of D. Show that this ratio approaches d in the limit of large D.

7.10.4. Compute the quantity [SL(D+1, d)−SL(D, d)]/SL(D, d) for large D. This quantity
is the limiting fractional incremental increase in storage required to include one order higher
aberration effects.
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Chapter 8

A Calculus for Lie Transformations
and Noncommuting Operators

Section 6.4 showed that Hamiltonian flows produce symplectic maps, and Sections 7.2 and
7.7 showed that the general analytic symplectic map (7.7.13) can be written in the factored
product form (7.7.23). In addition, (7.4.1) gives an explicit representation for the symplectic
map in the case of a time-independent Hamiltonian. See also (7.4.18). In subsequent sections
these results will be applied to charged particle beam transport, light optics, and orbits in
circular machines. The purpose of this chapter is to provide a collection of formulas for
the manipulation of Lie transformations and noncommuting operators in general. Some
formulas will be used to compute the product of two symplectic maps when each is written
in factored product form. Others will be used to combine various exponents in a factored
product decomposition into a single exponent. Still others will be used to produce factored
product decompositions. Where necessary, discussion will be restricted to symplectic maps
that send the origin into itself. (See Section 7.6.) This restriction will subsequently be
removed in Chapter 9.

8.1 Adjoint Lie Operators and the Adjoint Lie

Algebra

Work with noncommuting quantities is often facilitated by the concept of an adjoint Lie
operator. Let : f : be some Lie operator, and let : g : be any other Lie operator. The adjoint
of the Lie operator : f :, which will be denoted by the symbol # : f : #, is a kind of super
operator that acts on other Lie operators according to the rule

# : f : # : g := {: f :, : g :}. (8.1.1)

Here, the right side of (1.1) denotes the commutator as in (5.3.10). Thanks to (5.3.14), the
relation (1.1) can also be written in the form

# : f : # : g := {: f :, : g :} =: [f, g] : . (8.1.2)

853
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We see that adjoint Lie operators act on Lie operators, and send them to other Lie operators.
Furthermore, this action is linear. That is, we have the relation

# : f : #(a : g : + b : h :) = a# : f : # : g : +b# : f : # : h : . (8.1.3)

We remark that the word adjoint is much overused in mathematics, and is not to be confused
in this context with the Hermitian conjugate (also sometimes referred to as a Hermitian
adjoint) defined in (7.3.15). To simplify notation in some cases where no confusion can
arise, the set of colons in the symbol # : f : # for the adjoint of the Lie operator : f : will
often be omitted. That is, the abbreviated symbol #f# will often be used to serve for the
complete symbol # : f : #.

Powers of # : f : # or #f# can be defined by repeated application of (1.1). For example,
#f#2 is defined by the relation

#f#2 : g := {: f :, {: f :, : g :}}. (8.1.4)

Also, #f# to the zero power is defined to be the identity operator,

#f#0 : g :=: g : . (8.1.5)

The set of adjoint Lie operators # : f : # can also be made into a Lie algebra in its own
right. This Lie algebra is called the adjoint Lie algebra. First, there is obviously the relation

a#f# + b#g# = #(af + bg)#. (8.1.6)

That is, the set of adjoint Lie operators forms a linear vector space. Next, we define the Lie
product of any two adjoint Lie operators to be their commutator,

{#f#,#g#} = #f##g#−#g##f#. (8.1.7)

We note that this definition of a Lie product obviously satisfies the requirements 1 through
4 listed in Section (3.7) for a Lie algebra. It also satisfies requirement 5 since commutators
satisfy the Jacobi condition. Of course, we must also show that the Lie product (commuta-
tor) of two adjoint Lie operators is again an adjoint Lie operator. Let : h : be an arbitrary
Lie operator. Then we have the results

#f##g# : h := #f#{: g :, : h :} = {: f :, {: g :, : h :}},

#g##f# : h := #g#{: f :, : h :} = {: g :, {: f :, : h :}},

{#f#,#g#} : h : = {: f :, {: g :, : h :}} − {: g :, {: f :, : h :}}
= {: f :, {: g :, : h :}}+ {: g :, {: h :, : f :}}. (8.1.8)

Now use the Jacobi condition for the Lie algebra of Lie operators to find the relation

{: f :, {: g :, : h :}}+ {: g :, {: h :, : f :}} = −{: h :, {: f :, : g :}} = {{: f :, : g :}, : h :}.
(8.1.9)
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We see that (1.8) can be rewritten in the form

{#f#,#g#} : h := {{: f :, : g :}, : h :} = #{: f :, : g :}# : h : . (8.1.10)

Since the Lie operator : h : is arbitrary, it follows that we have the result

{#f#,#g#} = #{: f :, : g :}# = # : [f, g] : #. (8.1.11)

Thus the Lie product of two adjoint Lie operators is indeed an adjoint Lie operator.
Our discussion should have a familiar ring. It parallels, in fact, the material at the end

of Section 3.7 and the treatment of Lie operators given in Section 5.3. Reviewing these
sections, we see that the commutator Lie algebra of Lie operators is actually the adjoint Lie
algebra of the underlying Poisson bracket Lie algebra. And, consequently, the “adjoint” we
have been discussing is really the “adjoint-adjoint” of the basic Poisson bracket Lie algebra.

Exercises

8.1.1. Prove (1.3).

8.1.2. Prove (1.6). Verify that requirements 1 through 5 listed in Section 3.7 for a Lie
algebra are satisfied by the adjoint Lie algebra.

8.1.3. Describe in detail how the adjoint Lie algebra is the adjoint-adjoint of the basic
Poisson bracket Lie algebra. What would the adjoint-adjoint-adjoint Lie algebra be?

8.2 Formulas Involving Adjoint Lie Operators

There are several useful formulas involving adjoint Lie operators. First, we have the relations

#f#0 : g :=: g :=: (: f :0 g) :,

#f# : g := {: f :, : g :} =: [f, g] :=: (: f : g) : . (8.2.1)

Here use has been made of (5.3.14). From these relations we have by induction the general
result

#f#n : g :=: (: f :n g) : . (8.2.2)

Second, the definition of #f# can be extended to let #f# act on any sum or product, or
sum of products, or even power series, of Lie operators. Suppose F (: g :, : h :, · · · ) is any
function of a collection of Lie operators : g :, : h :, · · · . Then we define the action of #f#
on F in analogy to (1.1) by the rule

#f#F = {: f :, F}. (8.2.3)

As a special case of (2.3) we have the relation

#f#(: g :: h :) = {: f :, : g :: h :}
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= {: f :, : g :} : h : + : g : {: f :, : h :}
= (#f# : g :) : h : + : g : (#f# : h :). (8.2.4)

We see that the adjoint Lie operator #f# is a derivation with respect to the multiplication
of Lie operators.

Now suppose that : f : and : g : are any two Lie operators. We then find that

exp(: f :) : g : exp(− : f :) = exp(#f#) : g : . (8.2.5)

Here, as the notation suggests,

exp(#f#) =
∞∑
m=0

#f#m/m!. (8.2.6)

This result is sometimes called Hadamard’s lemma.1 To see that (2.5) is correct, consider
the operator function O(τ) defined by the equation

O(τ) = exp(τ : f :) : g : exp(−τ : f :), (8.2.7)

where τ is a parameter. Then we have the relation

O(0) =: g : . (8.2.8)

Further, we find by differentiation of (2.7) the relation

dO/dτ =: f : O −O : f := {: f :, O} = #f#O. (8.2.9)

The solution to this differential equation with the initial condition (2.8) is given by the
relation

O(τ) = exp(τ#f#) : g : . (8.2.10)

Now set τ = 1 in (2.10) to obtain the desired result.
From (2.2) it follows that we also have the relation

exp(#f#) : g :=: exp(: f :)g : . (8.2.11)

Consequently, (2.5) can also be written in the form

exp(: f :) : g : exp(− : f :) =: exp(: f :)g : . (8.2.12)

Because #f# is a derivation, see (2.4), there is an even more general result. Let F (: g :
, : h :, · · · ) be a function of a collection of Lie operators of the type described above. Then
we have the relations

exp(: f :)F (: g :, : h :, · · · ) exp(− : f :) = exp(#f#)F (: g :, : h :, · · · ), (8.2.13)

exp(#f#)F (: g :, : h :, · · · ) = F (exp(#f#) : g :, exp(#f#) : h :, · · · )
= F (: exp(: f :)g :, : exp(: f :)h :, · · · ). (8.2.14)

1A Web search reveals that there are also other Hadamard lemmas.
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As a special case of (2.13) and (2.14) we find the results

exp(: f :) : g :m exp(− : f :) = [exp(#f#) : g :]m, (8.2.15)

exp(: f :) exp(: g :) exp(− : f :) = exp[exp(#f#) : g :]. (8.2.16)

This discussion should also have a familiar ring. See Section 5.4. Here we are exploiting the
fact that exp(#f#) is an isomorphism with respect to Lie operator multiplications.

The relations (2.13) and (2.14) can also be derived directly. Consider, for example, the
simple case

exp(: f :) : g :: h : exp(− : f :) = exp(#f#) : g :: h :

= (exp(#f#) : g :)(exp(#f#) : h :) =: exp(: f :)g :: exp(: f :)h : . (8.2.17)

The relation (2.17) can also be found by using the fact that the expression
exp(− :f:) exp(:f:) is the identity operator and employing (2.11) and its analog for : h :,

exp(:f:) : g :: h : exp(− :f:) = exp(:f:) : g : exp(− :f:) exp(:f:) : h : exp(− :f:)

= : exp(:f:)g :: exp(:f:)h : . (8.2.18)

We can carry (2.15) a step further using (2.11) to find the relation

exp(: f :) : g :m exp(− : f :) =: exp(: f :)g :m, (8.2.19)

which is a generalization of (2.12). Moreover, (2.19) in turn, or direct use of (2.16) and
(2.11), yields the relation

exp(: f :) exp(: g :) exp(− : f :) = exp[: exp(: f :)g :]

= exp[: g(exp : f : z) :]. (8.2.20)

This relation gives a result for the multiplication of a particular combination of Lie trans-
formations.

The relations (2.2), (2.13), and (2.14) have obvious generalizations to the case of several
Lie operators. Consider, for example, the case of two Lie operators : e : and : f :. Then,
(2.2) has the generalization

#e#m#f#n : g :=: (: e :m: f :n g) : . (8.2.21)

Indeed, suppose E is any function consisting of sums, products, sums of products, or even
power series in two arguments. Then (2.2) has the generalization

E(#e#,#f#) : g :=: E(: e :, : f :)g : . (8.2.22)

Analogous results hold for any number of Lie operators and functions of any number of
arguments.

As for the relations (2.13) and (2.14), they can be generalized to any number of factors.
For example, for the case of two factors, we have the results

exp(: e :) exp(: f :)F (: g :, : h :, · · · ) exp(− : f :) exp(− : e :)

= exp(#e#)(exp #f#)F (: g :, : h :, · · · ), (8.2.23)

exp(#e#) exp(#f#)F (: g :, : h :, · · · )
= F (: exp(: e :) exp(: f :)g :, : exp(: e :) exp(: f :)h :, · · · ). (8.2.24)
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Analogous results hold for any number of factors. Consider, for example, the factors that
compose (7.6.3). In this case we have the result

MF (: g :, : h :, · · · )M−1

= exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · ×

F (: g :, : h :, · · · ) · · · exp(− : f4 :) exp(− : f3 :) exp(− : fa2 :) exp(− : f c2 :)

= exp(#f c2#) exp(#fa2 #) exp(#f3#) exp(#f4#) · · ·F (: g :, : h :, · · · )

= F (exp(#f c2#) exp(#fa2 #) exp(#f3#) exp(#f4#) · · · : g :, · · · )

= F (: exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · g :, · · · )

= F (:Mg :, :Mh :, · · · )

= F (: g(Mz) :, : h(Mz) :, · · · ). (8.2.25)

As special cases of (2.25) we have the result

M : g(z) :M−1 =:Mg(z) :=: g(Mz) :, (8.2.26)

which is an extension of (2.12), and the result

M[exp : g(z) :]M−1 = exp :Mg(z) := exp : g(Mz) :, (8.2.27)

which is an extension of (2.20).

We close this section with another useful result for the multiplication of Lie transforma-
tions. It is the analog of formulas (3.7.33) and (3.7.34) for Lie operators. Suppose : f : and
: g : are any two Lie operators. Then one has the BCH formula

exp(s : f :) exp(t : g :) = exp(s : f : +t : g :

+(st/2){: f :, : g :}+ (s2t/12){: f :, {: f :, : g :}}

+ (st2/12){: g :, {: g :, : f :}}+ · · · ). (8.2.28)

Moreover, using (5.3.14) and (2.2), (2.28) can also be written in the form

exp(s : f :) exp(t : g :) = exp(: h :) (8.2.29)

with

h = sf + tg + (st/2)[f, g]

+ (s2t/12) : f :2 g + (st2/12) : g :2 f + · · · . (8.2.30)



8.2. FORMULAS INVOLVING ADJOINT LIE OPERATORS 859

Exercises

8.2.1. Prove (2.2).

8.2.2. Prove (2.4).

8.2.3. Carry out the steps that lead to (2.5), (2.11), and (2.12). Also verify (2.5) term by
term for at least the first few terms by comparing power series expansions.

8.2.4. Prove (2.13) and (2.14). Hint: Imitate the proof of (2.5) and (2.12). Also verify
(2.13) term by term for at least the first few terms by comparing power series expansions.

8.2.5. Construct a general proof of (2.13) and (2.14) by employing the method used to prove
(2.17).

8.2.6. Prove (2.20).

8.2.7. Prove (2.21) and (2.22).

8.2.8. Prove (2.23), (2.24), and (2.25). Show that (2.25) also holds for M of the form
(7.7.23).

8.2.9. Prove (2.30).

8.2.10. Review Exercise 3.7.31. Since the Lie algebras su(2) and so(3,R) are the same, we
may expect a close relation between the groups SU(2) and SO(3,R). The purpose of this
exercise is to show that there is a two-to-one homomorphism between SU(2) and SO(3,R).
We will also find several formulas, involving SU(2) and SO(3,R) and their Lie algebras,
that will be useful for later work.

Suppose v ∈ SU(2). Consider matrices K̄α(v) defined by the relation

K̄α(v) = v†Kαv. (8.2.31)

Verify that the K̄α(v) are anti-Hermitian and traceless. It follows, since the Kβ form a basis
for the set of 2 × 2 traceless anti-Hermitian matrices, that there must be a relation of the
form

K̄α(v) =
∑
β

Mαβ(v)Kβ (8.2.32)

where M(v) is a 3 × 3 matrix to be determined. Show, in view of the definitions (3.7.169)
through (3.7.171), that (2.32) is equivalent to the relations

v†σαv =
∑
β

M(v)αβσ
β, (8.2.33)

which may be viewed as defining M(v). Indeed, from this result deduce, with the aid of
(3.7.168), the relation

Mαβ(v) = (1/2)tr(v†σαvσβ). (8.2.34)

Let us find some of the properties of M(v). Verify that

M(I) = I, (8.2.35)
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M(−I) = I, (8.2.36)

and, more generally,

M(−v) = M(v). (8.2.37)

Verify also that

Mβα(v) = (1/2)tr(v†σβvσα) = (1/2)tr(vσαv†σβ) = Mαβ(v†) (8.2.38)

so that there is the relation

MT (v) = M(v†). (8.2.39)

[Note that −v ∈ SU(2) and v† ∈ SU(2) if v ∈ SU(2).]
Evidently (2.34) is a rule that sends any matrix v ∈ SU(2) to a corresponding matrix

M(v). Moreover, for any two SU(2) elements v1 and v2, this rule has the property

M(v1v2) = M(v1)M(v2), (8.2.40)

and therefore is in fact a group homomorphism. To verify this assertion, show that

Mαβ(v1v2) = (1/2)tr[(v1v2)†σαv1v2σ
β)] = (1/2)tr[(v2)†(v1)†σαv1v2σ

β)]

= (1/2)
∑
γ

M(v1)αγtr(v
†
2σ

γv2σ
β) =

∑
γ

M(v1)αγM(v2)γβ = [M(v1)M(v2)]αβ.

(8.2.41)

Check the chain of deductions

I = M(I) = M(v†v) = M(v†)M(v) = MT (v)M(v) (8.2.42)

to conclude that M is orthogonal and that

M−1(v) = M(v−1). (8.2.43)

Argue, based on (2.35) and the topology (connectedness) of SU(2), that, by continuity, M
must have determinant +1, and therefore M ∈ SO(3,R). [We will see below that M(v) is
a real matrix.] Thus, (2.34) provides a map from SU(2) to SO(3,R) and, in view of (2.37)
and (2.40), this map is a two-to-one homomorphism.

Even more explicit results are possible: Suppose that v is parameterized as in (3.7.187).
Then (2.31) and (2.32) can be rewritten in the form

K̄α(θ,n) = v(θ,n)†Kαv(θ,n)

= exp(−θn ·K)Kα exp(θn ·K)

=
∑
β

Mαβ(θ,n)Kβ, (8.2.44)

and (2.35) takes the form

M(0,n) = I. (8.2.45)
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Next we will find a differential equation for M . Show that differentiating the first and
third terms in (2.44) yields the result

∂θK̄
α(θ,n) = ∂θ[exp(−θn ·K)Kα exp(θn ·K)]

= exp(−θn ·K){Kα,n ·K} exp(θn ·K). (8.2.46)

But, according to (3.7.183) and (3.7.201), there is the relation

{Kα,n ·K} = {eα ·K,n ·K} = (eα × n) ·K
= −(n× eα) ·K = −[(n ·L)eα] ·K (8.2.47)

so that (2.46) can also be written in the form

∂θK̄
α(θ,n) = − exp(−θn ·K)[(n ·L)eα] ·K exp(θn ·K)

= −
∑
β

exp(−θn ·K)[(n ·L)eα]βK
β exp(θn ·K)

=
∑
β

(n ·L)αβ exp(−θn ·K)Kβ exp(θn ·K)

=
∑
βγ

(n ·L)αβMβγ(θ,n)Kγ =
∑
γ

[(n ·L)M(θ,n)]αγK
γ. (8.2.48)

Verify, by working with components, that here we have used the antisymmetry of the Lα to
correctly make the calculation

−[(n ·L)eα]β = −(eβ, [n ·L]eα)

= −[n ·L]βα = [n ·L]αβ. (8.2.49)

On the other hand, differentiating the first and last terms in (2.44) and changing sum-
mation indices yields the result

∂θK̄
α(θ,n) =

∑
γ

[∂θM(θ,n)]αγK
γ. (8.2.50)

By comparing (2.48) and (2.50) conclude that M satisfies the differential equation

∂θM(θ,n) = (n ·L)M(θ,n). (8.2.51)

Show that (2.51) with the initial condition (2.45) has the unique solution

M(θ,n) = exp(θn ·L) = R(θ,n). (8.2.52)

You have demonstrated that

exp(−θn ·K)Kα exp(θn ·K) =
∑
β

R(θ,n)αβK
β, (8.2.53)

and (2.34) becomes

Rαβ(v) = (1/2)tr(v†σαvσβ) ⇔ R[exp(θn ·K)] = exp(θn ·L). (8.2.54)



862 8. A CALCULUS FOR LIE TRANSFORMATIONS AND . . .

(Here the symbol ⇔ is used to indicate logical implication in both directions.) Should a
relation of the form (2.54) be surprising? Not from a group-theoretic perspective. The
matrices v and v† on the right side of (2.54) each carry a spin 1/2 representation of SU(2).
The matrix R on the left carries a spin 1 representation. We know that two spin 1/2
representations can be combined to produce a spin 1 representation, and evidently the
Pauli matrices σα and σβ on the right act as Clebsch-Gordan coefficients to pick out this
representation.

To find further consequences of (2.53), multiply both sides by aα and sum over α to get
the result

exp(−θn ·K)(
∑
α

aαK
α) exp(θn ·K) =

∑
αβ

R(θ,n)αβaαK
β

=
∑
αβ

RT (θ,n)βαaαK
β =

∑
αβ

R−1(θ,n)βαaαK
β. (8.2.55)

Verify that (2.55) can be written in the more compact form

exp(−θn ·K)(a ·K) exp(θn ·K) =
∑
αβ

R−1(θ,n)βαaαK
β

=
∑
β

[R−1(θ,n)a]βK
β = [R−1(θ,n)a] ·K. (8.2.56)

Show, by making the replacement θ → −θ, that there is also the general result

exp(θn ·K)(a ·K) exp(−θn ·K) = [R(θ,n)a] ·K. (8.2.57)

Note that, according to (3.7.200), the matrix R is produced/generated by exponentiating
elements in the adjoint representation of SU(2). Recall from Section 3.7.7 that the adjoint
representation is defined completely in terms of the structure constants. It can be shown that
the relations (2.56) and (2.57) hold for any set of matrices Kα that satisfy the commutation
relations (3.7.173). See Section 8.1. Show, for example, that

exp(−ψLj)Lk exp(ψLj) = Lk cosψ − {Lj, Lk} sinψ for j 6= k. (8.2.58)

Verify the general result
R(a ·L)R−1 = (Ra) ·L. (8.2.59)

Suppose that a and b are any three-component vectors. As an application of (2.59),
verify that

R(a× b) = R(a ·L)b = R(a ·L)R−1Rb = [(Ra) ·L]Rb = (Ra)× (Rb), (8.2.60)

as expected from the geometric definition of the cross product. Here we have also used
(3.7.201). Suppose O is a 3× 3 orthogonal matrix. Show that

O(a× b) = O(a ·L)b = O(a ·L)O−1Ob

= det(O)[(Oa) ·L]Ob = det(O)[(Oa)× (Ob)], (8.2.61)
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on account of which a× b is called a psuedo vector if a and b are vectors.
Observe also that, according to (3.7.189) through (3.7.191), for fixed n we must have

θ ∈ [0, 4π) to achieve a closed path in SU(2); and, by (3.7.200), (3.7.203), and (3.7.204),
in doing so an associated closed path in SO(3,R) gets covered twice. Therefore, as already
asserted, the homomorphism between SU(2) and SO(3,R) is two to one. For a further
discussion of the topologies of SU(2) and SO(3,R), see Exercise 8.2.11.

Let us use the relation (2.54) to explore once again the relation between su(2) and
so(3,R). This can be done by studying (2.54) for elements v near the identity. Suppose v is
written in the form

v = exp(εK) = I + εK +O(ε2) (8.2.62)

where ε is small and K ∈ su(2) is therefore any 2× 2 traceless anti-Hermitian matrix. That
is, following the terminology of Exercise 3.7.31, K can be written in the form

K = a ·K =
3∑

γ=1

aγK
γ =

3∑
γ=1

aγ(−i/2)σγ (8.2.63)

where a is a real vector. Then we have

v† = exp(εK†) = I + εK† +O(ε2), (8.2.64)

and (2.54) yields

Rαβ(v) = (1/2)tr[(I + εK†)σα(I + εK)σβ] +O(ε2)

= (1/2)tr(σασβ) + (ε/2)tr(σαKσβ +K†σασβ) +O(ε2)

= δαβ + εLαβ +O(ε2) = [exp(εL)]αβ +O(ε2) (8.2.65)

where
Lαβ(K) = (1/2)tr(σαKσβ +K†σασβ). (8.2.66)

Show, using the fact that K is anti-Hermitian and the properties of the trace operation and
of the Pauli matrices (see Exercise 5.7.7), that (2.66) can also be written in the form

Lαβ(a ·K) = Lαβ(K) = (1/2)tr(σαKσβ +K†σασβ) = (1/2)tr(Kσβσα −Kσασβ)

= (−1/2)(−i/2)
3∑

γ=1

aγ tr(σγ{σα, σβ}) = (−4i)(−1/2)(−i/2)
3∑

γ=1

aγ(L
γ)αβ

= (a ·L)αβ. (8.2.67)

Thus, the relations (2.66) and (2.67) provide an explicit isomorphism between su(2) and
so(3,R). Indeed, we have the relations

{L(K), L(K ′} = L({K,K ′}) and, specifically, {L(Kα), L(Kβ)} = L({Kα, Kβ}). (8.2.68)

8.2.11. The purpose of this exercise is to study the topology of SU(2) and SO(3,R). Con-
sider all points in three-dimensional space of the form θn where n is an arbitrary unit
vector and 0 ≤ θ ≤ θmax. They evidently comprise the interior and surface of a ball in
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3-dimensional space with radius θmax. By looking at (3.7.203), show that the topology of
SO(3,R) is the same as that of the interior and surface of a ball of radius π with opposite
pairs of points on the surface identified. By looking at (3.7.189), show that the topology of
SU(2) is the same as that of the interior and surface of a ball of radius 2π with all points
on the surface identified.

The topology of SU(2) can also be examined without use of the exponential function.
Suppose v is any 2× 2 matrix with complex entries written in the form

v =

(
α β
γ δ

)
. (8.2.69)

Now require that v be unitary. Show that the conditions

v†v = vv† = I (8.2.70)

yield, among others, the relations
δ = ᾱ (8.2.71)

and
γ = −β̄ (8.2.72)

so that v takes the form

v =

(
α β
−β̄ ᾱ

)
. (8.2.73)

Next introduce the general parameterizations

α = w0 + iw3 (8.2.74)

and
β = w2 + iw1 (8.2.75)

where all the wj are real. Show that, in terms of these parameters, v takes the form

v =

(
w0 + iw3 w2 + iw1

−w2 + iw1 w0 − iw3

)
. (8.2.76)

Verify that v can also be written in the form

v = w0σ
0 + i

3∑
j=1

wjσ
j. (8.2.77)

Lastly, show that requiring v to have determinant 1 yields the relation

det(v) =
3∑
j=0

w2
j = 1, (8.2.78)

and that this relation also guarantees that v as given by (2.76) or (2.77) is unitary.
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Equation (2.78) is that for S3, the 3-dimensional surface of a sphere in 4-dimensional
space. Thus, SU(2) has the topology of S3.2 This manifold is known to be simply connected,
and therefore SU(2) is simply connected. Simply connected means that any closed curve
can be shrunk to a point. By contrast, SO(3,R) is not simply connected. Consider the ball
with radius π that parameterizes SO(3,R). Let P be any path in the ball that stretches
between antipodal points on the surface of the ball. Since antipodal points on the surface are
to be identified, this path is a closed curve. Show that it cannot be shrunk to a point while
remaining closed. A more detailed study shows that SO(3,R) is doubly connected. Given a
multiply connected manifold, there is a standard procedure in topology for constructing an
associated singly-connected manifold. This singly-connected manifold is called the covering
manifold of the original manifold. In the same spirit, SU(2) is said to be the covering group
of SO(3,R).

It can be shown that all the SO(n,R) for n ≥ 3 are doubly connected. [We have already
learned that SO(2,R) is infinitely connected. See Section 5.9.1.] Consequently each has
a two-fold covering group. These groups are called Spin(n,R). For small n there are the
redundancies Spin(3,R) = SU(2), Spin(4,R) = SU(2)× SU(2), Spin(5,R) = USp(4), and
Spin(6,R) = SU(4).

Let return to the case of SO(3,R). Comparison of (5.10.22) and (2.78), and reference to
Exercises 5.10.13 and 5.10.14, show that v is a unit quaternion matrix. For this reason, the
quantities w0 · · ·w3 are sometimes called quaternion parameters. The quaternion parame-
terization of SU(2) can be extended to a quaternion parameterization of SO(3,R) with the
aid of (2.54) and (2.77).3 Show that doing so gives the result

Rαβ(w) = δαβ(w2
0 −

3∑
γ=1

w2
γ) + 2wαwβ + 2w0

3∑
γ=1

εαβγwγ. (8.2.79)

Students of dynamics or quantum mechanics may be familiar with the use of Euler angles
to parameterize elements in both SU(2) and SO(3,R). For example, we may write

R(φ, θ, ψ) = exp(φL3) exp(θL2) exp(ψL3). (8.2.80)

See (3.7.195) and (3.7.208). However, when studying rigid-body dynamics, this is not always
a good idea because the Euler angles φ and ψ are not uniquely defined when θ = 0 and
θ = π. [Only the quantity (φ + ψ) plays a role when θ = 0, and only the quantity (φ − ψ)
plays a role when θ = π.] That is, the quantities φ, θ, ψ do not provide good coordinate
patches in the neighborhoods θ ' 0 and θ ' π. Correspondingly, the equations of motion
for rigid-body motion in terms of Euler angles have singularities at these values of θ, and are
therefore not well suited for numerical integration.4 By contrast, the equations of motion
are regular everywhere when quaternion parameters are employed. The only penalty to be
paid for this advantage is that equations of motion must be integrated for four parameters

2Put another way, the manifold S3 can be given a group structure, namely that of SU(2). It can be
shown that S1 and S3 are the only spheres that can be given a group structure.

3The so called Cayley-Klein parameters for specifying rotations are closely related to quaternion param-
eters. Also, sometimes quaternion parameters are called Euler-Rodrigues parameters.

4The associated problems encountered in numerical integration are sometimes referred to as gimbal lock.
Google the words Euler angle evil.
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instead of three. Moreover, the equations of motion preserve the relation (2.78), and the
extent to which numerical integration preserves this relation can be used as a check on the
accuracy of the procedure. For further discussion, see Section 11.1.

8.2.12. In Exercise 3.7.35 you verified that the Lie algebras su(4) and so(6,R) have the
same dimension, namely dimension 15. The purpose of this exercise is to verify that su(4)
and so(6,R) are in fact the same (equivalent) over the real field. Moreover, we will learn that
there is a corresponding two-to-one homomorphism between the groups SU(4) and SO(6,R)
just as there is a two-to-one homomorphism between the groups SU(2) and SO(3,R). See
Exercises 3.7.31, 8.2.10, and 8.2.11.

We begin by exploiting a mathematical fact familiar from the relativistic treatment of
electromagnetism. Let A be a general antisymmetric 4× 4 matrix. It can be written in the
form

A =


0 −Bz By Ex/c
Bz 0 −Bx Ey/c
−By Bx 0 Ez/c
−Ex/c −Ey/c −Ez/c 0

 (8.2.81)

where the quantities Eα/c and Bα are arbitrary. See (1.6.56). Then we know from its use
in relativistic electromagnetic theory that there is the mathematical identity

det(A) = [(1/c)E ·B]2. (8.2.82)

See Exercise 1.6.17. At this point introduce variables z1, z2, · · · , z6 by the rules

Ez/c = iz1 + z2, (8.2.83)

Bz = −iz1 + z2, (8.2.84)

Ex/c = iz3 + z4, (8.2.85)

Bx = −iz3 + z4, (8.2.86)

Ey/c = iz5 + z6, (8.2.87)

By = −iz5 + z6. (8.2.88)

(While workable, this ordering may seem a little strange. It will be of use in Exercise 27.5.4.)
Verify that in terms of these variables there is the relation

(1/c)E ·B =
6∑

α=1

z2
α. (8.2.89)

Let us write

A = A(z) = A(z1 · · · z6) =
6∑

α=1

zαA
α (8.2.90)

where the Aα are matrices to be determined. Show, using (2.82) and (2.89), that

det(A) =
[ 6∑
α=1

z2
α

]2

. (8.2.91)
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Verify that

A(z) =


0 iz1 − z2 −iz5 + z6 iz3 + z4

−iz1 + z2 0 iz3 − z4 iz5 + z6

iz5 − z6 −iz3 + z4 0 iz1 + z2

−iz3 − z4 −iz5 − z6 −iz1 − z2 0

 (8.2.92)

so that the Aα are given by the relations

A1 =


0 i 0 0
−i 0 −0 0
0 0 0 i
0 0 −i 0

 = −
(
σ2 0
0 σ2

)
, (8.2.93)

A2 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 = i

(
−σ2 0

0 σ2

)
, (8.2.94)

A3 =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 = i

(
0 σ1

−σ1 0

)
, (8.2.95)

A4 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 = i

(
0 σ2

σ2 0

)
, (8.2.96)

A5 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 = i

(
0 −σ3

σ3 0

)
, (8.2.97)

A6 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 =

(
0 σ0

−σ0 0

)
. (8.2.98)

Here use has been made of the Pauli matrices given by (5.7.3). Evidently, the Aα span the
space of 4× 4 antisymmetric matrices when working over the complex field.

Verify that the Aα have the properties

(Aα)T = −Aα, (8.2.99)

(Aα)† = −(−1)αAα, (8.2.100)

and that they obey the multiplication rules

Aα(Aα)† = (Aα)†Aα = I, (8.2.101)
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A1A2 = A2A1 = i

(
σ0 0
0 −σ0

)
, (8.2.102)

A1A3 = −A3A1 = −iA5, (8.2.103)

A1A4 = A4A1 = −i
(

0 σ0

σ0 0

)
, (8.2.104)

A1A5 = −A5A1 = iA3, (8.2.105)

A1A6 = A6A1 =

(
0 −σ2

σ2 0

)
, (8.2.106)

A2A3 = A3A2 = −i
(

0 σ3

σ3 0

)
, (8.2.107)

A2A4 = −A4A2 = A6, (8.2.108)

A2A5 = A5A2 = −i
(

0 σ1

σ1 0

)
, (8.2.109)

A2A6 = −A6A2 = −A4, (8.2.110)

A3A4 = A4A3 = i

(
−σ3 0

0 σ3

)
, (8.2.111)

A3A5 = −A5A3 = −iA1, (8.2.112)

A3A6 = A6A3 = −i
(
σ1 0
0 σ1

)
, (8.2.113)

A4A5 = A5A4 = i

(
−σ1 0

0 σ1

)
, (8.2.114)

A4A6 = −A6A4 = A2, (8.2.115)

A5A6 = A6A5 = i

(
σ3 0
0 σ3

)
. (8.2.116)

Verify, by looking at (2.102) through (2.116), that there is the rule

AαAβ = (−1)(−1)α+βAβAα for α 6= β. (8.2.117)

Show that combining (2.100) and (2.117) gives the relations

Aα(Aβ)† = −Aβ(Aα)† for α 6= β, (8.2.118)

(Aα)†Aβ = −(Aβ)†Aα for α 6= β. (8.2.119)

Show that combining (2.101), (2.118), and (2.119) gives the relations

Aα(Aβ)† + Aβ(Aα)† = (Aα)†Aβ + (Aβ)†Aα = 2δαβI. (8.2.120)

Finally, verify that the right sides of (2.102) through (2.116) are traceless. Combine this
fact with (2.101) to derive the result

tr[Aα(Aβ)†] = 4δαβ. (8.2.121)
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For the moment, let v be any 4× 4 matrix. Use it to define quantities Āα(v) by the rule

Āα(v) = vTAαv. (8.2.122)

Note the similarity of (2.122) to (2.31) except that † has been replaced by T . Verify that
the Āα(v) are antisymmetric for any choice of v. It follows, since the Aα form a basis for
the set of 4× 4 antisymmetric matrices, that there must be a relation of the form

Āα(v) = vTAαv =
∑
β

Rαβ(v)Aβ (8.2.123)

where R(v) is a 6× 6 matrix to be determined. Verify, in view of (2.121), that there is the
explicit formula

Rαβ(v) = (1/4)tr[vTAαv(Aβ)†]. (8.2.124)

Let us find some of the properties of R(v). Verify that

R(I) = I, (8.2.125)

R(−I) = I, (8.2.126)

and, more generally,
R(−v) = R(v). (8.2.127)

The rule (2.124) is also a homomorphism,

R(v1v2) = R(v1)R(v2). (8.2.128)

Check this assertion by verifying the computation

Rαβ(v1v2) = (1/4)tr[(v1v2)TAαv1v2(Aβ)†] = (1/4)tr[vT2 v
T
1 A

αv1v2(Aβ)†]

= (1/4)
∑
γ

R(v1)αγtr[v
T
2 A

γv2(Aβ)†] =
∑
γ

R(v1)αγR(v2)γβ = [R(v1)R(v2)]αβ.

(8.2.129)

From (2.123) deduce the relation

vT
[∑

α

zαA
α
]
v =

∑
α

zαv
TAαv =

∑
β

[∑
α

zαRαβ(v)
]
Aβ. (8.2.130)

Define variables ẑβ by writing

ẑβ =
∑
α

zαRαβ(v). (8.2.131)

Show that (2.130) can be written more compactly in the form

vTA(z)v = A(ẑ). (8.2.132)

Take the determinant of both sides of (2.132). Show that doing so yields, in view of (2.91),
the result

[det(v)]2
[∑

α

z2
α

]2

=
[∑

β

ẑ2
β

]2

. (8.2.133)
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Take the square roots of both sides of (2.133) to find the result

[det(v)]
[∑

α

z2
α

]
=
[∑

β

ẑ2
β

]
. (8.2.134)

In taking this square root there is, of course, a sign ambiguity. This ambiguity is overcome
by employing (2.125) and imposing continuity. For a Pfaffian-based approach that avoids
this ambiguity, see Exercise 8.2.13.

Next manipulate the ingredients on the right side of (2.134) to show that∑
β

ẑ2
β =

∑
β

[∑
α

zαRαβ

][∑
γ

zγRγβ

]
=
∑
αβγ

zαRαβzγRγβ =
∑
αβγ

zαRαβ(RT )βγzγ =
∑
αγ

zα(RRT )αγzγ. (8.2.135)

It follows that there is the relation

det(v)
∑
α

z2
α =

∑
αγ

zα(RRT )αγzγ. (8.2.136)

Prove from (2.136) that
R(v)RT (v) = det(v)I. (8.2.137)

Finally, assume that v has unit determinant. Then we find that

R(v)RT (v) = I, (8.2.138)

the matrix R is orthogonal. At this stage we have found that (2.124) provides a homomor-
phism of SL(4, C) into SO(6, C). Verify, as a sanity check, that both SL(4, C) and SO(6, C)
have dimension 30.

Next assume that v is also unitary so that v ∈ SU(4). Then deduce the chain of relations

I = R(I) = R(v†v) = R(v†)R(v) (8.2.139)

to conclude that
RT (v) = R(v†). (8.2.140)

Also, we claim that R(v) is real if v ∈ SU(4). Verify that taking the complex conjugate of
both sides of (2.124) and employing the invariance of the trace under transposing and cyclic
permutation gives (with a ∗ denoting complex conjugation) the result

R∗αβ(v) = (1/4)tr[v†(Aα)∗v∗(Aβ)T ] = (1/4)tr[Aβv†(Aα)†v∗]

= (1/4)tr[v∗Aβv†(Aα)†] = (1/4)tr[(v†)TAβv†(Aα)†]

= Rβα(v†) = [R(v†)]βα = [RT (v)]βα = Rαβ(v). (8.2.141)

Thus the mapping (2.124) has the property that R(v) ∈ SO(6,R) if v ∈ SU(4). In view of
(2.127) and (2.128), this mapping is a two-to-one homomorphism.
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Finally, we remark that SU(4) is known to be simply connected. It follows that SO(6,R)
cannot be simply connected. Indeed, SO(6,R) is known to be doubly connected, and its
covering group is SU(4).

At this point one might wonder again about employing the T operation in (2.123) and
(2.124) rather than † operation as was done in (2.34). The reason for this choice lies in
the Clebsch-Gordan series for SU(4). The lowest dimensional representations for SU(4),
those of dimension 4, are not self conjugate. Rather, there are two distinct representations
which we may call 4 and 4̄. The Clebsch-Gordan series for the direct products of these two
representations, and it is something like a direct product that is going on in (2.124), are

4× 4 = 6 + 10, (8.2.142)

4× 4̄ = 1 + 15. (8.2.143)

Thus, only by avoiding complex conjugation do we have any hope of obtaining something
of dimension 6, the dimension that is required for the lowest dimensional representation of
SO(6,R).

We still have to address the relation between the two Lie algebras su(4) and so(6,R).
This can be done by studying (2.124) for elements v near the identity. Suppose v is written
in the form

v = exp(εK) = I + εK +O(ε2) (8.2.144)

where ε is small and K ∈ su(4) is therefore any 4× 4 traceless anti-Hermitian matrix. Then
we have

vT = exp(εKT ) = I + εKT +O(ε2), (8.2.145)

and (2.124) yields

Rαβ(v) = (1/4)tr[(I + εKT )Aα(I + εK)(Aβ)†] +O(ε2)

= (1/4)tr[Aα(Aβ)†] + (ε/4)tr[AαK(Aβ)† +KTAα(Aβ)†] +O(ε2)

= δαβ + εLαβ +O(ε2) = [exp(εL)]αβ +O(ε2)

⇔ R[exp(εK)] = exp(εL) +O(ε2) (8.2.146)

where

Lαβ(K) = (1/4)tr[AαK(Aβ)†+KTAα(Aβ)†] = (1/4)tr[K(Aβ)†Aα+KTAα(Aβ)†]. (8.2.147)

Here we have made use of the trace property (3.6.130).
We note that, from the homomorphism property (2.128) and the infinitesimal relation

(2.146), it follows that there is also the global result

R[exp(K)] = exp(L). (8.2.148)

To verify this claim, show that

R[exp(K)] = R{[exp(K/`)]`} = {R[exp(K/`)]}`

= {exp(L/`) +O[(1/`)2]}`

= {exp(L/`)}` + `O[(1/`)2]

= exp(L) + `O[(1/`)2]. (8.2.149)
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Now let `→∞ in (2.149) to obtain the global result (2.148).
Let us examine the properties of L. We already know that R is orthogonal and real, and

therefore L must be antisymmetric and real. It is valuable to check that these results can
also be verified directly from (2.147). Show from (2.101) and (2.147) that

Lαα(K) = (1/4)tr[KI +KT I] = (1/2) tr(K) = 0 (8.2.150)

because K must be traceless to be in su(4). Next show using (2.18) and (2.19) that, for
α 6= β,

Lαβ(K) = (1/4)tr[K(Aβ)†Aα +KTAα(Aβ)†]

= −(1/4)tr[K(Aα)†Aβ +KTAβ(Aα)†]

= −Lβα(K). (8.2.151)

Taken together, (2.150) and (2.151) show that L is antisymmetric. Next work on showing
that L is real. Let ∗ denote the operation of complex conjugation. To show that L is real,
verify the chain of deductions

[Lαβ(K)]∗ = (1/4){tr[K(Aβ)†Aα +KTAα(Aβ)†]}∗

= (1/4) tr[K∗(Aβ)T (Aα)∗ +K†(Aα)∗(Aβ)T ]

= (1/4) tr{(K†)T (Aβ)T (Aα)∗ +K†[(Aα)T ]†(Aβ)T}
= −(1/4) tr{KTAβ(Aα)† +K(Aα)†Aβ}
= −Lβα(K) = Lαβ(K). (8.2.152)

Here we have used (2.99) and the fact that K must be anti-Hermitian to be in su(4),

K† = −K, (8.2.153)

and the antisymmetry conditions (2.150) and (2.151).
It remains to be verified that L(K) is a homomorphism (and potentially an isomorphism).

Let (K1, K2, · · · , K15) be a set of basis elements for su(4). Form group commutator elements
v by the rule

v = exp(εKα) exp(εKβ) exp(−εKα) exp(−εKβ). (8.2.154)

Recall Exercise 3.7.41. Show, using the BCH series (3.7.41), that

v = exp(ε2{Kα, Kβ}) +O(ε3), (8.2.155)

from which it follows, using (2.148), that

R(v) = exp[ε2L({Kα, Kβ})] +O(ε3). (8.2.156)

Show from (2.128), (2.148), and BCH that

R(v) = R[exp(εKα)]R[exp(εKβ)]R[exp(−εKα)]R[exp(−εKβ)]

= exp[εL(Kα)] exp[εL(Kβ)] exp[−εL(Kα)] exp[−εL(Kβ)]

= exp[ε2{L(Kα), L(Kβ)}] +O(ε3). (8.2.157)
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By equating powers of ε in (2.156) and (2.157), show that

{L(Kα), L(Kβ)} = L({Kα, Kβ}). (8.2.158)

Suppose the quantities cγαβ are structure constants for su(4) so that

{Kα, Kβ} =
∑
γ

cγαβK
γ. (8.2.159)

Show from (2.158) and (2.159) that there is the relation

{L(Kα), L(Kβ)} =
∑
γ

cγαβL(Kγ), (8.2.160)

thereby verifying that, for suitable basis choices, su(4) and so(6,R) have the same structure
constants.

We still want to know what particular K ∈ su(4) produces what L ∈ so(6,R), and we
want to verify that every L ∈ so(6,R) arises from some K ∈ su(4) so that (2.150) is, in fact,
an isomorphism. We begin this task by looking at specific cases. Listed below are three
typical elements in su(4):

K1 =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 = i

(
σ1 0
0 0

)
, (8.2.161)

K2 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 = i

(
σ2 0
0 0

)
, (8.2.162)

K3 =


i 0 0 0
0 −i 0 0
0 0 0 0
0 0 0 0

 = i

(
σ3 0
0 0

)
. (8.2.163)

The matrix K1 is symmetric, pure imaginary, and has zeroes on the diagonal, which makes
it anti-Hermitian and traceless. There are 6 linearly independent matrices of this kind
in su(4). The matrix K2 is antisymmetric and real, which makes it anti-Hermitian and
traceless. There are also 6 linearly independent matrices of this kind in su(4). The element
K3 is diagonal and pure imaginary, which makes it anti-Hermitian, and it is traceless. There
are 3 linearly independent matrices of this kind in su(4) for a total count of 6 + 6 + 3 = 15,
the dimension of su(4). Show that the associated L matrices are given by the relations

L1 = L(K1) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0

 , (8.2.164)
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L2 = L(K2) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 −1 0 0

 , (8.2.165)

L3 = L(K3) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 . (8.2.166)

We see that the associated L matrices are real and antisymmetric, as expected. In
particular, L1 is a linear combination of generators for rotations in the 3,6 and 4,5 planes;
L2 is a linear combination of generators for rotations in the 3,5 and 4,6 planes; and L3 is a
linear combination of generators for rotations in the 3,4 and 5,6 planes. Verify that the two
generators in each linear combination commute. Verify that

{K1, K2} = −2K3, etc. (8.2.167)

so that the elements K1 through K3 form some kind of su(2) [or so(3, R)] within su(4).
Verify, in accord with (2.158), the relations

{L(K1), L(K2)} = −2L(K3) = L({K1, K2}), etc. (8.2.168)

Suppose the remaining elements of su(4) are also considered so that we are working
with a complete set of basis elements (K1, K2, · · · , K15) for su(4). Then presumably their
associated matrices Lα = L(Kα) form a basis for so(6,R). In fact we know from general
principles that this must be the case. These principles are described in Section 8.9, and
applied to the problem at hand in Exercise 8.9.19.

8.2.13. Review Section 3.13.3 and Exercise 8.2.12. The purpose of this exercise is to de-
rive various results of Execise 8.2.12 with the aid of Pfaffians. Let A be a general 4 × 4
antisymmetric matrix written in the form

A =


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 . (8.2.169)

Then the Pfaffian of A is given by the relation

Pf(A) = af − be+ dc. (8.2.170)

Suppose A is given in the form (2.81). Show, for this parameterization, that

Pf(A) = −(1/c)E ·B. (8.2.171)
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Use the Pfaffian property (3.13.65) to derive (2.82). Use the Pfaffian property (3.13.66) to
derive the relation

[det(v)]
[∑

α

z2
α

]
=
[∑

β

ẑ2
β

]
, (8.2.172)

which is a specific square root of the relation (2.133), and yields (2.134) directly without
any ambiguity in sign.

8.2.14. Review Exercise 2.10 that studied the relation between SU(2) and SO(3,R). In
particular, it derived the formula (2.54) that maps SU(2) to SO(3,R) thereby demonstrating
that SU(2) is the covering group for SO(3,R). The purpose of this exercise is to find
analogous results for the relation between SL(2,C) and the Lorentz group.

Begin by setting up some notation and definitions for later use. Let σα for α = 1, 2, 3 be
the usual Pauli matrices and let σ4 be the 2× 2 identity matrix,

σ4 =

(
1 0
0 1

)
. (8.2.173)

Verify, in accord with Exercise 5.7.7, that there are the relations

trσασβ = 2δαβ for α, β = 1, 2, 3, 4. (8.2.174)

Let xµ and yµ be any two four-vectors. Make the definition

x ? y =
4∑

µ=1

xµyµ. (8.2.175)

Note that (2.175) is just the ordinary Euclidean scalar product (x, y). By extension of
notation, make the definition

x ? σ =
4∑

µ=1

xµσµ. (8.2.176)

Verify that x ? σ is Hermitian if x is real, and anti-Hermitian if x is pure imaginary. Verify
that

tr(x ? σ) = 2x4. (8.2.177)

Verify that
tr[(x ? σ)(y ? σ)] = 2(x ? y) (8.2.178)

and, as a special case,
tr[(x ? σ)2] = 2(x ? x). (8.2.179)

Show that x ? σ has the explicit matrix form

x ? σ =

(
x4 + x3 x1 − ix2

x1 + ix2 x4 − x3

)
. (8.2.180)

Given a 2× 2 matrix M , is there a four-vector x such that

M = x ? σ? (8.2.181)
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Any 2× 2 matrix M can be written in the form

M =

(
a b
c d

)
(8.2.182)

where the quantities a through d are arbitrary. Verify, upon examination of (2.180) and
(2.182), that for (2.181) to hold it must be possible to satisfy the relations

x4 + x3 = a, (8.2.183)

x1 − ix2 = b, (8.2.184)

x1 + ix2 = c, (8.2.185)

x4 − x3 = d. (8.2.186)

Show that the equation set (2.183) through (2.186) has the unique solution

x1 = (1/2)(b+ c), (8.2.187)

x2 = (i/2)(b− c), (8.2.188)

x3 = (1/2)(a− d), (8.2.189)

x4 = (1/2)(a+ d). (8.2.190)

Consequently, for any M , there exists a unique x such that (2.181) holds. That is, the σα

form a basis for the set of all 2 × 2 matrices. Show that x is given in terms of M by the
relations

xµ = (1/2) tr(σµM). (8.2.191)

Show that x is real if M is Hermitian, and is pure imaginary if M is anti-Hermitian.
Finally, make the definition

x · y = x4y4 −
3∑

µ=1

xµyµ. (8.2.192)

Note that (2.192) is the Lorentz inner/scalar product.
We are now ready to make yet another remarkable statement about the Pauli matrices:

Verify from (2.180) by explicit calculation that there is the relation

det(x ? σ) = x · x. (8.2.193)

How could we have guessed that at least something like (2.193) should hold? Review Exercise
3.7.17. According to (3.7.150), for any 2× 2 matrix A, there is the relation

det(A) = {[tr(A)]2 − tr(A2)}/2. (8.2.194)

Make the substitution
A = x ? σ. (8.2.195)
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Verify from (2.177) and (2.179) that

[tr(A)]2 = 4(x4)2 (8.2.196)

and
tr(A2) = 2(x ? x). (8.2.197)

Show, therefore, that use of (2.194) yields the result

det(x ? σ) = [4(x4)2 − 2(x ? x)]/2 = [2(x4)2 − 2
3∑

µ=1

(xu)2]/2 = x · x, (8.2.198)

in agreement with (2.193).
With the definitions and results just developed now at hand, we are ready to further

explore the connection between the Lorentz group and SL(2,C). Let v be any element of
SL(2,C) so that

det v = 1. (8.2.199)

Verify that then v† is also in SL(2,C) so that

det v† = 1. (8.2.200)

Next let x be any real four-vector. Consider the matrix v(x ? σ)v†. It is evidently 2 × 2.
Show that it is also Hermitian,

[v(x ? σ)v†]† = v(x ? σ)v†. (8.2.201)

Since v(x ? σ)v† is a 2× 2 Hermitian matrix, there must be a real and unique four-vector x̂
such that

x̂ ? σ = v(x ? σ)v†. (8.2.202)

Show, by taking determinants of both sides of (2.202), that there is the relation

x̂ · x̂ = x · x. (8.2.203)

It follows that x̂ and x are related by a Lorentz transformation! Thus, for each element
v ∈ SL(2,C) there is a Lorentz transformation Λ(v).

How might one have guessed that this should be the case? We know from Exercise 7.3.30
that the v ∈ SL(2,C) carry the representation Γ(0, 1/2) and we might expect, as can be
proved, that the v† would carry the representation Γ(1/2, 0). Since the right side of (2.202)
involves both v and v† in a “multiplicative” way, we might expect that what we are doing
in (2.202) would involve the representation Γ(0, 1/2)×Γ(1/2, 0). But for the Lorentz group
it is easy to see that there is the Clebsch-Gordan result

Γ(0, 1/2)× Γ(1/2, 0) = Γ(1/2, 1/2). (8.2.204)

And, according to Exercise 7.3.29, Γ(1/2, 1/2) is the representation carried by Lorentz trans-
formation matrices Λ acting on four-vectors.
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Your next task is to find the matrix elements of Λ as functions of v. Let us examine and
manipulate the “contents” of v(x ? σ)v†, the right side of (2.202). Verify that

v(x ? σ)v† = v(
∑
ν

xνσν)v† =
∑
ν

(vσνv†)xν . (8.2.205)

Show that the matrices vσνv† are Hermitian,

(vσνv†)† = vσνv†. (8.2.206)

Verify it follows that there are real coefficients, call them Λξν(v), such that

vσνv† =
4∑
ξ=1

Λξν(v)σξ. (8.2.207)

Show that, correspondingly, there is the relation

Λµν(v) = (1/2) tr(σµvσνv†). (8.2.208)

We already know that Λ is a real matrix. Still, it would be good to reverify directly that
Λ as given by (2.208) is real even though some of the matrices appearing on the right side
of (2.208) may be complex. Show, using (3.6.129) and (3.6.130), that

[Λµν(v)]∗ = (1/2) tr[(σµvσνv†)†] = (1/2) tr[vσνv†σµ]

= (1/2) tr[σµvσνv†] = Λµν(v). (8.2.209)

Now what can be said about the vector x̂ and its relation to x? Verify, in view of (2.202),
that the components of x̂ are given by the relations

x̂µ = (1/2) tr[σµv(x ? σ)v†]. (8.2.210)

Next use (2.205) to find that

(1/2) tr[σµv(x ? σ)v†] = (1/2)
∑
ν

[tr(σµvσνv†)]xν . (8.2.211)

Finally, upon combining (2.208), (2.210), and (2.211), show that

x̂µ =
∑
ν

Λµν(v)xν or, in matrix/vector form, x̂ = Λx. (8.2.212)

We have learned, as anticipated by our notation, that the quantities Λµν(v) defined by
(2.208) are the entries of a Lorentz transformation matrix.

What can be said about group properties? Suppose, to begin, that v is the 2×2 identity
matrix σ4. Verify that in this case use of (2.208) gives the result

Λµν(σ4) = (1/2) tr[σµσ4σν(σ4)†] = (1/2) tr[σµσν ] = δµν . (8.2.213)
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That is, the image of the identity element in SL(2,C) is the identity matrix in the Lorentz
group. Next suppose that v is of the product form

v = uw (8.2.214)

where u and w are both elements of SL(2,C). In this case verify that use of (2.208) gives
the result

Λµν(uw) = (1/2) tr[σµuwσν(uw)†] = (1/2) tr[σµu(wσνw†)u†]. (8.2.215)

But, in analogy to (2.207), verify that

wσνw† =
4∑
ξ=1

Λξν(w)σξ. (8.2.216)

Show that combining (2.215) and (2.216) gives the intermediate results

Λµν(uw) = (1/2) tr[σµu(
4∑
ξ=1

Λξν(w)σξ)u†] =
4∑
ξ=1

Λξν(w)(1/2) tr[σµ(uσξu†)]. (8.2.217)

But, again in analogy to (2.207), verify that

uσξu† =
4∑
ρ=1

Λρξ(u)σρ. (8.2.218)

Show that combining (2.217) and (2.218) gives the final result

Λµν(uw) =
4∑
ξ=1

Λξν(w)(1/2) tr[σµ(uσξu†)]

=
4∑
ξ=1

Λξν(w)(1/2) tr[σµ
4∑
ρ=1

Λρξ(u)σρ]

=
4∑
ξ=1

4∑
ρ=1

Λρξ(u)Λξν(w)(1/2) tr[σµσρ]

=
4∑
ξ=1

4∑
ρ=1

Λρξ(u)Λξν(w)δµρ

=
4∑
ξ=1

Λµξ(u)Λξν(w) (8.2.219)

or, in index-free notation,
Λ(uw) = Λ(u)Λ(w). (8.2.220)

Complete our group property study with two calculations: First set

w = σ4 (8.2.221)
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in (2.220) and deduce that
Λ(σ4) = I (8.2.222)

in agreement with (2.213). Second, set

w = v−1 (8.2.223)

in (2.220) and deduce that
Λ(v−1) = [Λ(v)]−1. (8.2.224)

The relation (2.220) and those that follow from it show that Lorentz transformation
matrices Λ provide a representation of SL(2,C). That is, the map (2.208) that sends ele-
ments of SL(2,C) into elements of the Lorentz group is a homomorphism. At this point it
is important to observe, by inspection, that the map (2.208) has the two-to-one property

Λ(−v) = Λ(v). (8.2.225)

Therefore (2.208) is not an isomorphism. As we will see, SL(2,C) is the covering group of
the Lorentz group.

In Exercises 7.7.27 and 7.7.30 it was shown that the Lorentz group and SL(2,C) have
identical Lie algebras and analogous polar decompositions. And in this exercise we have
seen that (2.208) provides a two-to-one homomorphic relation between the Lorentz group
and SL(2,C). The remainder of this exercise explores how these results fit together.

Suppose, employing the polar decomposition (7.3.241), that v is written in the form

v = exp(λm · N̂ ) exp(θn · L̂). (8.2.226)

Show that employing this factorization in (2.220) yields the result

Λ(v) = Λ[exp(λm · N̂ )]Λ[exp(θn · L̂)]. (8.2.227)

Your next tasks will be to work out results for each factor on the right side of (2.227).

Begin Evaluation of Second Factor

Begin with the second factor. For it you will need to work out

Λµν(w) = (1/2) tr(σµwσνw†) (8.2.228)

with
w = exp(θn · L̂) = exp(θn ·K) = exp[θ(−i/2)n · σ]. (8.2.229)

See (7.3.232) through (7.3.234). Verify that in this case w is unitary.
The simplest matrix element to work out is Λ44. Verify using (2.208) that

Λ44(w) = (1/2) tr(σ4wσ4w†) = (1/2) tr(ww†) = (1/2) tr(σ4) = 1. (8.2.230)

The next simplest cases are the Λα4 and Λ4α with α = 1, 2, 3. Verify that for these α

Λα4(w) = (1/2) tr(σαwσ4w†) = (1/2) tr(σα) = 0 (8.2.231)
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and

Λ4α(w) = (1/2) tr(σ4wσαw†) = (1/2) tr(w†wσα) = (1/2) tr(σα) = 0. (8.2.232)

[Here, in writing (2.232), use has been made of the trace relation (3.6.130).] So it has now
been established that Λ(w) is of the form

Λ(w) =


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 1

 . (8.2.233)

To fill in the missing entries in (2.233) the simplest way at this point is to use what has
already been accomplished in Exercises 3.7.31 and 2.10, which you should review. Note,
again using (3.6.130), that (2.208) can be rewritten in the form

Λµν(v) = (1/2) tr(v†σµvσν), (8.2.234)

which has the same form as (2.54). Consequently, the missing entries are the elements of
the 3 × 3 matrix given by (2.54). It follows, as expected, that for the w given by (2.229)
Λ(w) is given by the relation

Λ(w) = exp(θn ·L) (8.2.235)

or
Λ[exp(θn · L̂)] = exp(θn ·L) (8.2.236)

where the L are the matrices given by (7.3.177) through (7.3.179) and whose upper left 3×3
submatrices are the matrices given by (3.7.178) through (3.7.180).

As a sanity check of (2.236), consider the simple case where

n = e3 (8.2.237)

so that
w = exp(θn · L̂) = exp(θL̂3) = exp[θ(−i/2)σ3]. (8.2.238)

Verify that

w = exp[θ(−i/2)σ3] = exp(θK3) =

(
exp(−iθ/2) 0

0 exp(iθ/2)

)
. (8.2.239)

See (3.7.171) and (3.7.194). Also, compare (2.236) with the analogous result (2.54). Show
that for the w given by (2.235) and (2.236) there is the result

Λ(w) =


cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

 = exp(θL3) (8.2.240)

with L3 given by (7.3.179. See (3.7.207). Note that, according to (2.240), Λ(w) is periodic
in θ with period 2π,

Λ(w)|θ+2π = Λ(w)|θ. (8.2.241)
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But, according to (2.239), w is not; it has period 4π,

w|θ+4π = w|θ, (8.2.242)

and
w|θ+2π = −w|θ. (8.2.243)

Show that this result is consistent with (2.225). Show also that results completely analogous
to (2.251) through (2.243) hold for any choice of the unit vector n and are consistent with
(2.225).

The work of Exercise 2.10, which is what we have been using, involved the formation and
solution of a differential equation. Another way to proceed, which is the same in essence, is
to evaluate (2.229) and then (2.228) for small θ, and then build up to large values of θ by
repeatedly using the group property (2.220). Let us explore this approach, which will turn
out to be simpler.

Suppose, in view of (2.229), we work with a w and a w† of the forms

w = exp(εn · L̂) = exp[ε(−i/2)n · σ] = I + ε(−i/2)n · σ +O(ε2), (8.2.244)

w† = I + ε(+i/2)n · σ +O(ε2). (8.2.245)

Show that employing this w and w† pair in (2.228) gives the result

Λµν(w) = (1/2) tr(σµwσνw†)

= (1/2) tr[σµ(I + ε(−i/2)n · σ)σν(I + ε(+i/2)n · σ)] +O(ε2)

= (1/2) tr{σµσν + ε(−i/2)σµ[(n · σ)σν − σν(n · σ)]}+O(ε2)

= δµν + ε(−i/4) tr{σµ[(n · σ)σν − σν(n · σ)]}+O(ε2).

(8.2.246)

Verify that

(n · σ)σν − σν(n · σ) =
3∑
ξ=1

nξ{σξ, σν}. (8.2.247)

Make the definition
n4 = 0 (8.2.248)

so that (2.247) can also be written in the form

(n · σ)σν − σν(n · σ) =
4∑
ξ=1

nξ{σξ, σν}. (8.2.249)

Pause to Develop Needed Mathematical Results

At this point we pause in our present calculations to define and develop the properties of a
remarkable tensor that will be of subsequent use. Let Uαβγ be the tensor defined in terms
of the Pauli matrices σ1 through σ4 by the rule

Uαβγ = tr[σα(σβσγ − σγσβ)]. (8.2.250)
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Evidently U has the symmetry property

Uαγβ = −Uαβγ. (8.2.251)

That is, U is antisymmetric under the interchange of its last two indices. Next verify, because
of the trace relation (3.6.130), that

Uαβγ = tr[σα(σβσγ − σγσβ)] = tr[σασβσγ − σασγσβ]

= tr[σβσγσα − σγσβσα] = tr[σβσγσα − σβσασγ]
= tr[σβ(σγσα − σασγ)] = −Uβαγ. (8.2.252)

Thus, U is also antisymmetric under the interchange of its first two indices. Show that it
follows from (2.251) and (2.252) that U is completely antisymmetric: That is, U changes
sign under the interchange of any pair of indices.

To continue, define an antisymmetric tensor A with Pauli matrix entries by the rule

Aµν = {σµ, σν}. (8.2.253)

Show that

A = 2i


0 σ3 −σ2 0
−σ3 0 σ1 0
σ2 −σ1 0 0
0 0 0 0

 . (8.2.254)

Look at the matrices Lα for α = 1, 2, 3 defined by (3.180) through (3.182). Also define a
matrix L4 by the rule

L4 = 0 (8.2.255)

where 0 is the 4× 4 matrix with all entries having value zero. Show that

A = −2i
4∑

α=1

Lασα. (8.2.256)

Consequently there is the associated component relation

{σµ, σν} = Aµν = −2i
4∑

α=1

(Lα)µνσα (8.2.257)

from which it follows that

tr[σβ(σµσν − σνσµ)] = tr[σβ{σµ, σν}] = −2i
4∑

α=1

(Lα)µν tr(σβσα) = −4i(Lβ)µν . (8.2.258)

Finally, show that comparison of (2.249) and (2.257) gives the result

Aβµν = −4i(Lβ)µν . (8.2.259)
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With these definitions before us, show that

(n · σ)σν − σν(n · σ) =
4∑
ξ=1

nξ{σξ, σν} =
4∑
ξ=1

nξA
ξν = −2i

4∑
ξ=1

4∑
α=1

nξ(L
α)ξνσα. (8.2.260)

Continue on to show that

tr{σµ[(n ·σ)σν−σν(n ·σ)]} = −2i
4∑
ξ=1

4∑
α=1

nξ(L
α)ξν tr(σµσα) = −4i

4∑
ξ=1

nξ(L
µ)ξν . (8.2.261)

But, from the relation (2.259) and the symmetry properties of A, it follows that

(Lµ)ξν = −(Lξ)µν . (8.2.262)

Show, therefore, that (2.261) can be rewritten in the form

tr{σµ[(n ·σ)σν −σν(n ·σ)]} = −4i
4∑
ξ=1

nξ(L
µ)ξν = 4i

4∑
ξ=1

nξ(L
ξ)µν = 4i(n ·L)µν . (8.2.263)

Resume and Complete Evaluation of Second Factor

Verify, as a result of these intervening calculations, that combining (2.246) and (2.263) yields
the pleasingly simple result

Λµν(w) = δµν + ε(n ·L)µν +O(ε2) (8.2.264)

or, in matrix form,
Λ(w) = I + εn ·L+O(ε2). (8.2.265)

Show, using (2.244) and (2.265), that there is the relation

Λ[exp(εn · L̂)] = exp(εn ·L)] +O(ε2). (8.2.266)

As promised, we now intend to use (2.266) and the group property (2.219) to work out
results for finite values of θ. Let ` be a positive integer and set

ε = θ/`. (8.2.267)

Show that

Λ[exp(θn · L̂)] = Λ[exp(`εn · L̂)] = {Λ[exp(εn · L̂)]}`

= [exp(εn ·L) +O(ε2)]` = {exp(εn ·L) +O[(θ/`)2]}`

= exp(`εn ·L) + `O[(θ/`)2] = exp(θn ·L) +O(θ2/`). (8.2.268)

Verify that taking the limit `→∞ in (2.268) yields the expected result

Λ[exp(θn · L̂)] = exp(θn ·L). (8.2.269)
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Begin Evaluation of First Factor

What remains is to work out results for the first factor on the right side of (2.226). For it
you will need to work out Λ(u) with

u = exp(λm · N̂ ) = exp[λ(1/2)m · σ]. (8.2.270)

See (7.3.235) through (7.3.237). Verify that u is the exponential of a Hermitian matrix and
is therefore Hermitian and positive definite.5 See Exercise 3.7.44. According to (2.208) what
we now need to compute are the entries

Λµν(u) = (1/2) tr(σµuσνu†) = (1/2) tr(σµuσνu). (8.2.271)

To proceed, we will adopt a strategy analogous to what we employed for the second
factor. We will evaluate (2.266) for small λ and then build up to large values of λ by
repeatedly using the group property (2.219).

Suppose, in view of (2.242), we work with a u of the form

u = exp(εm · N̂ ) = exp[ε(1/2)m · σ] = I + ε(1/2)m · σ +O(ε2). (8.2.272)

Show that employing this u in (2.243) gives the result

Λµν(u) = (1/2) tr(σµuσνu)

= (1/2) tr[σµ(I + ε(1/2)m · σ)σν(I + ε(1/2)m · σ)] +O(ε2)

= (1/2) tr{σµσν + ε(1/2)σµ[(m · σ)σν + σν(m · σ)]}+O(ε2)

= δµν + ε(1/4) tr{σµ[(m · σ)σν + σν(m · σ)]}+O(ε2).

(8.2.273)

Verify that

(m · σ)σν + σν(m · σ) =
3∑
ξ=1

mξ{σξ, σν}+. (8.2.274)

Make the definition

m4 = 0 (8.2.275)

so that (2.246) can also be written in the form

(m · σ)σν + σν(m · σ) =
4∑
ξ=1

mξ{σξ, σν}+. (8.2.276)

5Note that, unlike in the context of the second factor where we encounter both w and −w, in the context
of the first factor we will not encounter both u and −u because if u is positive definite, then −u is not, and
in the context of the first factor we only encounter the positive definite case.
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Again Pause to Develop Needed Mathematical Results

At this point we pause in our present calculations to define and develop the properties of
another remarkable tensor that will be of subsequent use. Let V αβγ be the tensor defined in
terms of the Pauli matrices σ1 through σ4 by the rule

V αβγ = tr[σα(σβσγ + σγσβ)]. (8.2.277)

Evidently V has the symmetry property

V αγβ = V αβγ. (8.2.278)

That is, V is symmetric under the interchange of its last two indices. Next verify, because
of the trace relation (3.6.130), that

V αβγ = tr[σα(σβσγ + σγσβ)] = tr[σασβσγ + σασγσβ]

= tr[σβσγσα + σγσβσα] = tr[σβσγσα + σβσασγ]

= tr[σβ(σγσα + σασγ)] = V βαγ. (8.2.279)

Thus, V is also symmetric under the interchange of its first two indices. Show that it follows
from (2.250) and (2.251) that V is completely symmetric: That is, V is unchanged under
any permutation of its indices.

To continue, define a symmetric tensor S with Pauli matrix entries by the rule

Sµν = {σµ, σν}+. (8.2.280)

Show that

S = 2


σ4 0 0 σ1

0 σ4 0 σ2

0 0 σ4 σ3

σ1 σ2 σ3 σ4

 . (8.2.281)

Look at the matrices Nα for α = 1, 2, 3 defined by (3.180) through (3.182). Also define a
matrix N4 by the rule

N4 = I (8.2.282)

where I is the 4× 4 identity matrix. Show that

S = 2
4∑

α=1

Nασα. (8.2.283)

Consequently there is the associated component relation

{σµ, σν}+ = Sµν = 2
4∑

α=1

(Nα)µνσα (8.2.284)

from which it follows that

tr[σβ(σµσν + σνσµ)] = tr[σβ{σµ, σν}+] = 2
4∑

α=1

(Nα)µν tr(σβσα) = 4(Nβ)µν . (8.2.285)
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Finally, show that comparison of (2.249) and (2.257) gives the result

V βµν = 4(Nβ)µν . (8.2.286)

With these definitions before us, show that

(m · σ)σν + σν(m · σ) =
4∑
ξ=1

mξ{σξ, σν}+ =
4∑
ξ=1

mξS
ξν = 2

4∑
ξ=1

4∑
α=1

mξ(N
α)ξνσα. (8.2.287)

Continue on to show that

tr{σµ[(m · σ)σν + σν(m · σ)]} = 2
4∑
ξ=1

4∑
α=1

mξ(N
α)ξν tr[σµσα] = 4

4∑
ξ=1

mξ(N
µ)ξν . (8.2.288)

But, from the relation (2.258) and the symmetry properties of V , it follows that

(Nµ)ξν = (N ξ)µν . (8.2.289)

Show, therefore, that (2.260) can be rewritten in the form

tr{σµ[(m ·σ)σν +σν(m ·σ)]} = 4
4∑
ξ=1

mξ(N
µ)ξν = 4

4∑
ξ=1

mξ(N
ξ)µν = 4(m ·N )µν . (8.2.290)

Resume and Complete Evaluation of First Factor

Show, as a result of these intervening calculations, that combining (2.269) and (2.286) yields
the pleasingly simple result

Λµν(u) = δµν + ε(m ·N )µν +O(ε2) (8.2.291)

or, in matrix form,

Λ(u) = I + εm ·N +O(ε2). (8.2.292)

[We remark that had we replaced the matrices in (7.3.235) through (7.3.327) by their nega-
tives, which would not have affected the commutation rules (7.328) through (7.3.240), the +
signs in (2.291) and (2.292) would have been replaced by − signs. This change would lead
to unpleasant consequences in what follows.]

As promised, we now intend to use (2.292) and the group property (2.219) to work out
results for finite values of λ. Review the steps (2.266) through (2.269) that led from (2.265)
to (2.269). Demonstrate that analogous steps lead from (2.292) to the expected and desired
relation

Λ[exp(λm · N̂ )] = exp(λm ·N ). (8.2.293)

What would have been the resulting relation had the + sign in (2.292) been a − sign?
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Summary of Results

We began this exercise with the knowledge that the SL(2,C) and Lorentz groups have the
same Lie algebras and analogous polar decompositions. We therefore expect they are closely
related. In this exercise we found that (2.208) provides a map that sends elements of SL(2,C)
into elements of the Lorentz group, and (2.219) showed that this map is a homomorphism.
Subsequently application of this homomorphism to elements of SL(2,C) written in polar
form produced the factorization (2.226). The results for each factor were then found to be
given by (2.269) and (2.293). Verify that combining (2.226), (2.269), and (2.293) produces
the relation

Λ[exp(λm · N̂ ) exp(θn · L̂)] = Λ[exp(λm · N̂ )]Λ[exp(θn · L̂)]

= exp(λm ·N ) exp(θn ·L). (8.2.294)

This relation shows that the map (2.208) has the property that every element in the Lorentz
group has a preimage in SL(2,C). From (2.224) it follows that every element of the Lorentz
group has (at least) two distinct preimages in SL(2,C). Therefore the map (2.208) is not an
isomorphism. To be more precise, examination of (2.293) shows that the mapping between
the first factors of SL(2,C) and of the Lorentz group is one to one. And examination of
the discussion associated with (2.232) shows that the relation between the second factors of
SL(2,C) and of the Lorentz group is two to one in complete analogy to the relation between
SU(2) and SO(3,R). We conclude that the map between SL(2,C). and the Lorentz group
provided by (2.208) and (2.294) is two to one.

What can be said about the topologies of the two groups? Since the topology of SL(2,C)
is E3 × S3, and both factors are simply connected, SL(2,C) can be shown to be simply
connected. From (7.3.186) we see that the topology of the Lorentz group is E3 × SO(3,R).
Since E3 is simply connected and SO(3,R) is doubly connected, the Lorentz group can be
shown to be doubly connected. All these topological statements are consistent with the
nature of the map between SL(2,C) and the Lorentz group provided by (2.208) and (2.294).
It follows that SL(2,C) is the covering group of the Lorentz group.

8.2.15. Let φ and k be two real three-component vectors. Use them to parameterize the
s`(2,C) element Ŝ defined by

Ŝ = φ · L̂+ k · N̂ . (8.2.295)

In turn, let v be the SL(2,C) element defined by

v = exp(Ŝ). (8.2.296)

Prove that for the map (2.208) there is the relation

Λ(v) = Λ[exp(Ŝ)] = exp(φ ·L+ k ·N ). (8.2.297)

Suggestion: First show that for small ε there is the result

Λ[exp(εŜ)] = exp[ε(φ ·L+ k ·N )] +O(ε2). (8.2.298)

This small ε result can be obtained by direct evaluation of (2.208) or, more easily, by use of
(2.269), (2.293), and the BCH formula. Then use (2.298) and the homomorphism relation
(2.219) to work out results for any finite value of ε including ε = 1.
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8.2.16. When can and when cannot an element in SL(2,C) be written in single exponential
form? And what can be said about the related question for the Lorentz group? Your task
for this exercise is to answer these questions.

Begin with the case of SL(2,C). Recall that any 2 × 2 matrix v can be diagonalized if
its eigenvalues are distinct. That is, if the eigenvalues of v are distinct, it can be written in
the form

v = ada−1 (8.2.299)

where a is a nonsingular matrix, d is the diagonal matrix

d =

(
λ1 0
0 λ2

)
, (8.2.300)

and λ1, λ2 are its eigenvalues. Verify that in this case

det(v) = det(d) = λ1λ2. (8.2.301)

Moreover,
λ1λ2 = 1 (8.2.302)

if v is an element of SL(2,C). Verify therefore that, in the SL(2,C) and distinct eigenvalue
case, d can be written in the form

d =

(
λ 0
0 λ−1

)
= exp(ασ3) (8.2.303)

where
α = log(λ). (8.2.304)

Consequently, verify that any element of SL(2,C) with distinct eigenvalues can be written
in the forms

v = ada−1 = a[exp(ασ3)]a−1 = exp(αaσ3a−1). (8.2.305)

Verify that the matrix aσ3a−1 is traceless, and therefore there is a three-component (possibly
complex) vector β such that

αaσ3a−1 = β · σ. (8.2.306)

Show that the net result of these deliberations is the relation

v = exp(β · σ), (8.2.307)

which demonstrates that any element of SL(2,C) with distinct eigenvalues can be written
in single exponential form.

There remain the cases in which the eigenvalues of v are not distinct, in which cases
because of (2.302) there are the eigenvalue possibilities 1, 1 and −1,−1. Suppose that in
these non distinct cases that v can nevertheless be diagonalized. Show that then there are
the two possibilities

v = σ4 = exp(0) (8.2.308)

and
v = −σ4 = exp(iπσ3). (8.2.309)
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Here, as before, 0 is the matrix with all zero entries. Evidently in both these cases v has
again been written in single exponential form.

The last possibility for these non distinct cases is that v cannot be diagonalized. Verify
that for this possibility there are only the cases

v = aj±a
−1 (8.2.310)

where j± are the two Jordan normal form elements

j+ =

(
1 1
0 1

)
(8.2.311)

and

j− =

(
−1 1
0 −1

)
. (8.2.312)

Consider the case with eigenvalues 1, 1 and the Jordan normal form j+ given by (2.311).
Show that in this case

j+ = exp[(1/2)(σ1 + iσ2)] (8.2.313)

from which it follows that

v = exp[(1/2)a(σ1 + iσ2)a−1]. (8.2.314)

Verify that the exponent appearing in (2.314) is in s`(2,C). You have demonstrated that in
the 1, 1 eigenvalue case every such v in SL(2,C) can be written in single exponential form
with the exponent being an element in s`(2,C).

The final remaining case is that with eigenvalues −1,−1 and the Jordan normal form j−
given by (2.312). From the work of Exercise 3.7.12, which you should review, we know that
j− cannot be written in single exponential form. Show it follows that all SL(2,C) elements
that have j− as their Jordan normal form cannot be written in single exponential form.

The case of SL(2,C) has been dispatched: All elements in SL(2,C) can be written in
single exponential form except those having j− as their Jordan normal form.

We now turn to the case of the Lorentz group. According to Exercise 2.15 above, all the
Lorentz group elements associated with the SL(2,C) elements that can be written in single
exponential form can also be written in single exponential form. What about the Lorentz
group elements associated with the SL(2,C) elements whose Jordan normal form is j−?
Let v− be any such SL(2,C) element. What we wish to determine is the nature of Λ(v−).
Show that if a v in SL(2,C) cannot be written in single exponential form, then −v can.
In particular, show that −j− has Jordan normal form j+. (Again see the work of Exercise
3.7.12.) Verify it follows that −v− can be written in single exponential form, and therefore
Λ(−v−) can also be written in single exponential form. But from (2.225) we know that

Λ(v−) = Λ(−v−). (8.2.315)

Therefore Λ(v−), which is the same as Λ(−v−), can be written in single exponential form.
Conclude that all Lorentz group elements can be written in single exponential form!
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8.2.17. Review Exercise 7.3.30. It showed that the use of s`(2,C) provides the Γ(1/2, 0)
and Γ(0, 1/2) representations of the Lorentz group Lie algebra. Review Exercise 7.3.34
that constructed an isomorphism between n × n possibly complex matrices and 2n × 2n
real matrices. The purpose of this exercise and the next is to describe how the results
of Exercises 7.3.30 and 7.3.34 may be used to characterize/determine the effect of Lorentz
transformations on what we will call Dirac 4-spinors.

Recall the SL(2,C) group elements Λ̂ given by (7.3.246). They are 2×2 possibly complex
matrices. According to Exercise 7.3.30 they carry the representation Γ(0, 1/2) of the Lorentz
group. Make the Ansatz

k = Λ̂ (8.2.316)

and use (7.3.375) to define associated real 4× 4 matrices. For example, suppose

Λ̂ = exp(θL̂3). (8.2.317)

Verify that in this case

Λ̂ = exp(θL̂3) =

(
exp(−iθ/2) 0

0 exp(iθ/2)

)
=

(8.2.318)(
cos(θ/2) 0

0 cos(θ/2)

)
+ i

(
− sin(θ/2) 0

0 sin(θ/2)

)
, (8.2.319)

and

K(k) = K(Λ̂) = K[exp(θL̂3)] =


cos(θ/2) 0 sin(θ/2) 0

0 cos(θ/2) 0 − sin(θ/2)
− sin(θ/2) 0 cos(θ/2) 0

0 sin(θ/2) 0 cos(θ/2)

 .

(8.2.320)

Verify that when θ = 2π there are the results

Λ̂ = exp(2πL̂3) = −I [2] (8.2.321)

and
K(Λ̂) = K[exp(2πL̂3)] = −I [4]. (8.2.322)

Since the Λ̂ are 2 × 2 matrices, they act on two-dimensional objects/arrays. Since the
K(Λ̂) are 4 × 4 matrices, they act on four-dimensional objects/arrays. But the 2 × 2 and
4× 4 matrix/group elements given by (2.321) and (2.322) and corresponding to the Lorentz
transformation consisting of a θ = 2π rotation about the z axis are not identity matrices. It
follows that the objects/arrays on which they act are not vectors.6 Rather, they are 2-spinors
and 4-spinors, respectively.7 Also note that, by the constructions (7.3.246) and (7.3.375), all
elements K(Λ̂) are continuously connected to the identity matrix I [4]. As further evidence

6By their transformation properties ye shall know them.
7Sometimes what we have called 4-spinors are called bispinors.
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that the four-component arrays that we have called 4-spinors are not vectors, observe that,
according to (7.3.167), −I [4] is not a Lorentz transformation in the identity component of
the Lorentz group.

Let b be any of the possibly complex 2 × 2 s`(2,C) basis elements (7.3.236) through
(7.3.241) and consider the associated real 4× 4 matrices K(b). What representation of the
Lorentz group Lie algebra is provided by the matrices K(L̂j) and K(N̂ j)? Verify, using
(7.3.383), that

WK(b)W−1 =

(
b 0
0 b̄

)
. (8.2.323)

We know from the work of Exercise 7.3.30 that the matrices b provide the Γ(0, 1/2) rep-
resentation of the Lorentz group Lie algebra. Momentarily we will demonstrate that the
matrices b̄ provide the Γ(1/2, 0) representation of the Lorentz group Lie algebra. That is,
for the case of s`(2,C), complex conjugation is equivalent to the grave operation. It follows
from (2.323) that the matrices K(b) provide the direct sum

Γ(0, 1/2) ⊕ Γ(1/2, 0) = Γ(0, 1/2) ⊕ Γ̄(0, 1/2) = Γ̄(1/2, 0) ⊕ Γ(1/2, 0) (8.2.324)

representation of the Lorentz group Lie algebra.
Now work on the advertised demonstration: We already know that complex conjugation

is the result of the breve operation and that this operation is a conjugacy operation. See
(3.7.223). For present purposes what we need to show is that, in the case of s`(2,C), the
breve/bar operation and the grave operation are equivalent in the sense of (3.7.218). Verify
that for the bar and grave operations there are the relations

(
¯̂
L1,

¯̂
L2,

¯̂
L3,

¯̂
N1,

¯̂
N2,

¯̂
N3) = (−L̂1, L̂2,−L̂3, N̂1,−N̂2, N̂3), (8.2.325)

(
`̂
L1,

`̂
L2,

`̂
L3,

`̂
N1,

`̂
N2,

`̂
N3) = (L̂1, L̂2, L̂3,−N̂1,−N̂2,−N̂3). (8.2.326)

See (7.3.248) and (7.3.249). We will next show is that the contents of the right sides of
(2.325) and (2.326) are related by a similarity transformation. Recall the relation (3.7.234)
which involved the matrix

J2 = iσ2 =

(
0 1
−1 0

)
. (8.2.327)

Using the anticommutation relations (5.7.41) verify that

J2σ
1J−1

2 = −σ1, (8.2.328)

J2σ
2J−1

2 = σ2, (8.2.329)

J2σ
3J−1

2 = −σ3. (8.2.330)

Show it follows from the definitions (7.3.236) through (7.3.241) and the results (2.328)
through (3.230) that there are the similarity relations

J2(−L̂1, L̂2,−L̂3, N̂1,−N̂2, N̂3)J−1
2 = (L̂1, L̂2, L̂3,−N̂1,−N̂2,−N̂3). (8.2.331)

Thus the right sides of (2.325) and (2.326) are related by a similarity transformation, and
therefore the left sides of (2.325) and (2.326) are related by a similarity transformation.
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There is a second way of verifying that the matrices K(L̂j) and K(N̂ j) provide a rep-
resentation of s`(2,C) that is equivalent to the direct sum (2.324). It essentially amounts
to the previous argument, but appears to be more direct. Verify, using (7.3.236) through
(7.3.241), that there are the six explicit results

K(L̂1) = (1/2)K(−iσ1) = (1/2)

(
0 σ1

−σ1 0

)
, (8.2.332)

K(L̂2) = (1/2)K(−iσ2) = (1/2)

(
−iσ2 0

0 −iσ2

)
, (8.2.333)

K(L̂3) = (1/2)K(−iσ3) = (1/2)

(
0 σ3

−σ3 0

)
, (8.2.334)

K(N̂1) = (1/2)K(σ1) = (1/2)

(
σ1 0
0 σ1

)
, (8.2.335)

K(N̂2) = (1/2)K(σ2) = (1/2)

(
0 iσ2

−iσ2 0

)
, (8.2.336)

K(N̂3) = (1/2)K(σ3) = (1/2)

(
σ3 0
0 σ3

)
. (8.2.337)

Next let V be the matrix defined by the rule

V = (1/
√

2)

(
I [2] iI [2]

iσ2 σ2

)
. (8.2.338)

Note that V involves iσ2, which is J2 in disguise, just as (2.331) involves J2. Show that V
is unitary so that

V −1 = V † = (1/
√

2)

(
I [2] −iσ2

−iI [2] σ2

)
. (8.2.339)

Finally, by executing the indicated matrix multiplications, verify the six similarity rela-
tion results

V K(L̂1)V −1 = (−i/2)

(
σ1 0
0 σ1

)
, (8.2.340)

V K(L̂2)V −1 = (−i/2)

(
σ2 0
0 σ2

)
, (8.2.341)

V K(L̂3)V −1 = (−i/2)

(
σ3 0
0 σ3

)
, (8.2.342)

V K(N̂1)V −1 = (1/2)

(
σ1 0
0 −σ1

)
, (8.2.343)

V K(N̂2)V −1 = (1/2)

(
σ2 0
0 −σ2

)
, (8.2.344)

V K(N̂3)V −1 = (1/2)

(
σ3 0
0 −σ3

)
. (8.2.345)
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In summary, there are the results

V K(L̂j)V −1 =

(
L̂j 0

0
`̂
Lj

)
=

(
L̂j 0

0 L̂j

)
, (8.2.346)

V K(N̂ j)V −1 =

(
N̂ j 0

0
`̂
N j

)
=

(
N̂ j 0

0 −N̂ j

)
. (8.2.347)

Evidently the matrices on the right sides of (2.340) through (2.347) are block diagonal.
Moreover, the upper blocks carry the representation Γ(0, 1/2) of s`(2,C) and the lower
blocks carry the representation Γ(1/2, 0). See Exercise 7.3.30. Thus the full matrices carry
the representation

Γ(0, 1/2)⊕ Γ(1/2, 0). (8.2.348)

.

8.2.18. This exercise is a continuation of the previous exercise and is devoted to sketching
the relation of the s`(2,C) representation provided by the real 4 × 4 matrices K(L̂j) and
K(N̂ j), see (7.3.385), to some of the mathematical machinery associated with some forms
of the Dirac (1902-1984) equation.

Background

Discussion of the Dirac equation often begins with with the introduction of four 4×4 gamma
matrices, denoted as γµ with µ = 1 · · 4, which are required to satisfy the anticommutation
rules

{γµ, γν}+ = γµγν + γνγµ = 2gµνI [4]. (8.2.349)

The relations (2.349) are sometimes called the Dirac algebra.8 For our purposes it is conve-
nient to take the γµ to be the matrices

γ1 =

(
0 iσ3

iσ3 0

)
= i


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 −0

 , (8.2.350)

γ2 =

(
iI [2] 0
0 −iI [2]

)
= i


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (8.2.351)

γ3 =

(
0 −iσ1

−iσ1 0

)
= i


0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

 , (8.2.352)

8Dirac algebra is a particular case of Clifford (1845-1879) algebra.
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γ4 =

(
0 −σ2

−σ2 0

)
= i


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 . (8.2.353)

Verify that the γµ do indeed satisfy the Dirac algebra (2.349). Note that they are all
purely imaginary. Representations of the Dirac algebra that are purely imaginary are called
Majorana (1906-1938) representations. Thus the Ansätze (2.350) through (2.353) provide a
Majorana representation.9

Verify that for this Majorana representation there are the results

(γµ)† = −γµ for µ = 1, 2, 3 (8.2.354)

and
(γ4)† = γ4. (8.2.355)

Verify that, in view of (2.349), the results (2.354) and (2.355) are equivalent to the relations

(γµ)† = γ4γµγ4 for µ = 1 · · 4. (8.2.356)

Finally, verify that γ4 can be written in the form

γ4 = i

(
0 J2

J2 0

)
. (8.2.357)

Definition and some Properties of γ5

It is useful to define a fifth 4× 4 gamma matrix γ5 in terms of the γµ by the rule

γ5 = iγ1γ2γ3γ4. (8.2.358)

Verify that it too is purely imaginary in a Majorana representation.10 Show that, for the
above Majorana representation given by (2.350) through (2.353), there is the result

γ5 = i

(
0 −I [2]

I [2] 0

)
= −iJ (8.2.359)

where here J denotes the 4× 4 version of (3.1.1),

J =

(
0 I [2]

−I [2] 0

)
. (8.2.360)

It follows that γ5 is antisymmetric in our Majorana representation,

(γ5)T = −γ5. (8.2.361)

9There are several possible Majorana representations. As trivial examples of how one Majorana repre-
sentation may be converted into another, the γµ or any subset of the γµ may be multiplied by −1. Also,
the γµ for µ = 1 · 3 may be permuted among each other. See, in addition, Exercise 2.21.

10The notation γ5 can be misleading. Whereas we will see that in some contexts the contravariant index
ν in γν for ν = 1 · · 4 can be lowered using gµν , there is in the Dirac machinery no analogous operation for
γ5. Thus, in the Dirac machinery, the 5 in γ5 is simply a label and not a contravariant index.
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The matrix γ5 defined by (2.358) has some other properties that follow from the Dirac
algebra relations (2.349) and therefore hold in in any representation of the γµ. Verify from
(2.349) and (2.358) that

{γµ, γ5}+ = 0, (8.2.362)

{γµγν , γ5} = 0, (8.2.363)

and
(γ5)2 = I [4]. (8.2.364)

Definition of the σ̂µν and their Relation to the K(L̂j) and K(N̂ j)

Also, for µ, ν = 1 · · 4, define matrices σ̂µν by the commutators

σ̂µν = (1/2){γµ, γν} ⇒ σ̂µν = γµγν for µ 6= ν. (8.2.365)

[Here, in writing the second relation in (2.365), we have used the Dirac algebra.] Note that,
because the γµ are purely imaginary in a Majorana representation, the σ̂µν are purely real.11

We will soon see that the σ̂µν are related to the Lorentz group Lie generator matrices K(L̂j)

and K(N̂ j) and, since these K matrices are real, we would like the σ̂µν to be real. That is
the reason for our use of a Majorana representation for the γµ; and indeed it will transpire
that we have chosen a particular Majorana representation to make things work out neatly.

Verify that there are the six results

σ̂12 = γ1γ2 =

(
0 σ3

−σ3 0

)
, (8.2.366)

σ̂23 = γ2γ3 =

(
0 σ1

−σ1 0

)
, (8.2.367)

σ̂31 = γ3γ1 =

(
−iσ2 0

0 −iσ2

)
, (8.2.368)

σ̂41 = γ4γ1 =

(
σ1 0
0 σ1

)
, (8.2.369)

σ̂42 = γ4γ2 =

(
0 iσ2

−iσ2 0

)
, (8.2.370)

σ̂43 = γ4γ3 =

(
σ3 0
0 σ3

)
, (8.2.371)

and that all other σ̂µν results can be obtained from the antisymmetry relation

σ̂µν = −σ̂νµ. (8.2.372)

11Observe also that we depart from the usual Dirac literature definition/notation σµν = (i/2){γµ, γν}
by omitting a factor of i and placing a hat ˆ on σ to indicate that a change of notation has occurred. As
described in the end of Exercise 3.7.43, we do this to avoid introducing mathematically unnecessary factors
of i.
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For comparison, recall the six results (2.332) through (2.337). Verify from (7.3.236)
through (7.3.241), (2.332) through (2.337), and (2.366) through (2.371) that there are the
relations

(1/2)σ̂12 = (1/2)K(−iσ3) = K(L̂3), (8.2.373)

(1/2)σ̂23 = (1/2)K(−iσ1) = K(L̂1), (8.2.374)

(1/2)σ̂31 = (1/2)K(−iσ2) = K(L̂2), (8.2.375)

(1/2)σ̂41 = (1/2)K(σ1) = K(N̂1), (8.2.376)

(1/2)σ̂42 = (1/2)K(σ2) = K(N̂2), (8.2.377)

(1/2)σ̂43 = (1/2)K(σ3) = K(N̂3). (8.2.378)

We see that, when the Majorana representation (2.350) through (2.353) is employed for the
γµ, the matrices (1/2)σ̂µν are simply a relabeling of the matrices K(L̂j) and K(N̂ j).

It follows that, at least in this case, the matrices (1/2)σ̂µν satisfy the Lorentz group Lie
algebra commutation rules. For example, verify using (2.373) through (2.375), (7.3.385),
and (7.3.243) that there is the commutation rule

{(1/2)σ̂12, (1/2)σ̂23} = {K(L̂3), K(L̂1)} = K({L̂3, L̂1}) = K(L̂2) = (1/2)σ̂31. (8.2.379)

Actually, the same commutation rules for the matrices (1/2)σ̂µν hold for any representation
choice for the γµ, and are in fact a consequence of the Dirac algebra (2.349). Consider again,
for example, the commutator {(1/2)σ̂12, (1/2)σ̂23}. Verify, using (2.349) and (2.365), that

{(1/2)σ̂12, (1/2)σ̂23} = (1/4){γ1γ2, γ2γ3} = (1/4)(γ1γ2γ2γ3 − γ2γ3γ1γ2) =

(1/4)(−γ1γ3 − γ3γ1γ2γ2) = (1/4)(γ3γ1 + γ3γ1) = (1/2)γ3γ1 = (1/2)σ̂31,

(8.2.380)

as expected. The matrices (1/2)σ̂µν depend on the choice of representation for the γµ, but
their commutation rules do not.

Additional Notation

At his point it is useful to introduce additional notation. Since the γµ (for µ = 1 · · · 5) are
purely imaginary in a Majorana representation, we may write them in the form

γµ = iγµr (8.2.381)

where the γµr are purely real. For example, from (2.353) we see that

γ4
r =

(
0 J2

J2 0

)
, (8.2.382)

and from (2.359) we see that
γ5
r = −J. (8.2.383)

Verify that both γ4
r and γ5

r are antisymmetric in our Majorana representation,

(γ4
r )
T = −γ4

r and (γ5
r )
T = −γ5

r . (8.2.384)
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Lorentz Invariance of γ5

We are now prepared to further explore some properties of Dirac matrices and 4-spinors.
The first step has to do with γ5 and consists of verifying that it is invariant under the action
the Lorentz group. That is, there is the result

{K(k), γ5} = 0⇔ K−1γ5K = γ5 (8.2.385)

where k is any element in SL(2,C). We will arrive at this result by several steps.
Begin by verifying from (2.363) and (2.365) that

{γ5, σ̂µν} = 0. (8.2.386)

At this point review Exercise 7.3.30. Use (2.316) and (7.3.246) to write

k(λ,m; θ,n) = exp(λm · N̂ ) exp(θn · L̂). (8.2.387)

Verify it follows from (7.3.378) and (7.3.386) that

K(k) = K[exp(λm · N̂ ) exp(θn · L̂)]

= K[exp(λm · N̂ )]K[exp(θn · L̂)]

= exp[K(λm · N̂ )] exp[K(θn · L̂)]. (8.2.388)

As a further step, verify it follows from (2.373) through (2.378) and (2.386) that

{K(L̂j), γ5} = 0 (8.2.389)

and
{K(N̂ j), γ5} = 0. (8.2.390)

Use these results to show that

{exp[K(θn · L̂)], γ5} = 0 (8.2.391)

and
{exp[K(λm · N̂ )], γ5} = 0; (8.2.392)

and therefore it follows from (2.388) that (2.385) holds. Note that, in view of (2.381), there
is the equivalent real matrix relation

{K(k), γ5
r} = 0. (8.2.393)

Properties of γ4
r

Next, in preparation for future use, let us study various properties of γ4
r . You have already

verified that it is antisymmetric. Recall (2.384). Verify that it also satisfies the relation

(γ4
r )

2 = −I [4]. (8.2.394)

Verify from (2.381) that
(γµ)† = −i(γµr )T . (8.2.395)
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Insert this result into (2.356) to obtain the result

− i(γµr )T = (i)3γ4
rγ

µ
r γ

4
r ⇔ (γµr )T = γ4

rγ
µ
r γ

4
r . (8.2.396)

Finally employ (2.394) in (2.396) to obtain (for µ = 1 · · 4) the result

(γµr )T = −(γ4
r )
−1γµr γ

4
r = −γ4

rγ
µ
r (γ4

r )
−1. (8.2.397)

The matrix γ4
r has one further, and remarkable, property with regard to SL(2,C)/Lorentz

transformations. Namely, suppose k is any element in SL(2,C). Then there is the result

KT (k)γ4
rK(k) = γ4

r . (8.2.398)

We/you will also prove this result in steps.
Begin by verifying the following relations:

σ̂µν = γµγν = (i)2γµr γ
ν
r = −γµr γνr , (8.2.399)

γ4
r σ̂

µν(γ4
r )
−1 = −γ4

rγ
µ
r γ

ν
r (γ4

r )
−1 = −γ4

rγ
µ
r (γ4

r )
−1γ4

rγνr(γ
4
r )
−1 =

−(γµr )T (γνr )T = −(γνr γ
µ
r )T = (γµr γ

ν
r )T = −(σ̂µν)T , (8.2.400)

(σ̂µν)T = −γ4
r σ̂

µν(γ4
r )
−1. (8.2.401)

Recall that the σ̂µν are proportional to the K(N̂ j) and the K(L̂j). See (2.373) through
(2.378). Show from (2.401) that

[K(N̂ j)]T = −γ4
rK(N̂ j)(γ4

r )
−1 (8.2.402)

and
[K(L̂j)]T = −γ4

rK(L̂j)(γ4
r )
−1. (8.2.403)

Let us pause for a moment. Note that (2.402) and (2.403) can be rewritten in the form

− [K(N̂ j)]T = γ4
rK(N̂ j)(γ4

r )
−1 (8.2.404)

and
− [K(L̂j)]T = γ4

rK(L̂j)(γ4
r )
−1. (8.2.405)

Observe that the left side of (2.404) is the result of applying the tilde conjugacy operation
to K(N̂ j), and the left side of (2.405) is the result of applying the tilde conjugacy operation
to K(L̂j). Recall (3.7.129). Consequently, the relations (2.404) and (2.405) show that the
representation of s`(2,C) provided by the K(N̂ j) and the K(L̂j) is self conjugate (for the
tilde conjugacy relation) under the similarity transformation provided by γ4

r .
Recall (7.3.377). Continue on to verify it follows from (2.402) and (2.403) that

[K(λm · N̂ )]T = −γ4
rK(λm · N̂ )(γ4

r )
−1 (8.2.406)

and
[K(θn · L̂)]T = −γ4

rK(θn · L̂)(γ4
r )
−1. (8.2.407)
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Using (2.387), (2.406), and (2.407) verify that

KT (k) = {exp[K(λm · N̂ )] exp[K(θn · L̂)]}T =

{exp[K(θn · L̂)]}T{exp[K(λm · N̂ )]}T =

exp{[K(θn · L̂)]T} exp{[K(λm · N̂ )]T} =

exp[−γ4
rK(θn · L̂)(γ4

r )
−1] exp[−γ4

rK(λm · N̂ )(γ4
r )
−1] =

γ4
r exp[−K(θn · L̂)](γ4

r )
−1γ4

r exp[−K(λm · N̂ )](γ4
r )
−1 =

γ4
r{exp[K(θn · L̂)]}−1{exp[K(λm · N̂ )]}−1(γ4

r )
−1 =

γ4
r{exp[K(λm · N̂ )] exp[K(θn · L̂)]}−1(γ4

r )
−1 =

γ4
r [K(k)]−1(γ4

r )
−1, (8.2.408)

from which it follows that

KT (k)γ4
r = γ4

rK
−1(k) (8.2.409)

and therefore

KT (k)γ4
rK(k) = γ4

r . (8.2.410)

Show, using (2.384), that there is also the relation

KT (k)(γ4
r )
TK(k) = (γ4

r )
T . (8.2.411)

Note that (2.408), upon comparing its beginning and end, can be written as

KT (k) = γ4
r [K(k)]−1(γ4

r )
−1. (8.2.412)

This relation shows that, when the Majorana matrices (2.350) through (2.353) are employed,
the matrices KT (k) and K−1(k) are related by the similarity transformation provided by
γ4
r . Persuade yourself, upon reflection, that this group element relation is a consequence of

the Lie algebraic self conjugacy relations (2.404) and (2.405).
The relation (2.411) has an important consequence. Let M be any 4× 4 matrix. Verify

that

[γ4
rK]TMK = KT (γ4

r )
TMK = KT (γ4

r )
TKK−1MK = (γ4

r )
TK−1MK. (8.2.413)

This will prove to be a key result.

Conjugate 4-Spinors and Bilinear Forms

With γ4
r in mind, we are ready for further definitions/constructions. Suppose u is some real

4-spinor. Define a related conjugate 4-spinor ū by the rule

ū = γ4
ru. (8.2.414)

Note, in view of (2.394), that this barring operation is what we might call an anti-involution,

¯̄u = (γ4
r )

2u = −I [4]u = −u. (8.2.415)
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We are going to be working with quantities of the form (ū, v) where v is any other real
4-spinor and the usual real (no complex conjugate) scalar product is employed. Upon em-
ploying (2.414) and (2.384), verify that we may write

(ū, v) = (γ4
ru, v) = (u, [γ4

r ]
Tv) = −(u, γ4

rv) = −(u, v)γ4
r
. (8.2.416)

Here we have introduced, for any matrix G, the definition

(u, v)G = (u,Gv). (8.2.417)

Quantities of the form (u,Gv) are called bilinear forms. Evidently, according to (2.416),
the introduction of conjugate 4-spinors is equivalent (apart from a minus sign) to the use
of the bilinear form associated with γ4

r . Finally, suppose G is a symmetric matrix S or an
antisymmetric matrix A. Verify that in these cases there are the relations

(u, v)S = (v, u)S and (u, v)A = −(v, u)A. (8.2.418)

Because of these symmetries under the interchange of the arguments u and v, the bilinear
forms (u, v)S and (u, v)A are said to be symmetric and antisymmetric, respectively. Note
that, by (2.384) and this definition, that the bilinear form (u, v)γ4

r
is antisymmetric.

Concept of Transformation Properties

With these definitions behind us, suppose K(k) with k ∈ SL(2,C) acts on u to produce a
transformed spinor that we denote as ŭ,

ŭ = K(k)u. (8.2.419)

We will also use the notation ¯̆u to denote the conjugate of ŭ. Therefore we may write

¯̆u = γ4
rK(k)u. (8.2.420)

Finally, let v be any other real 4-spinor, and act on it to obtain the transformed 4-spinor

v̆ = K(k)v. (8.2.421)

Here we again beg the reader’s forgiveness for awkward notation. In the present context
a bar ¯ simply denotes multiplication by γ4

r as in (2.414); and a breve ˘ is simply a dis-
tinguishing mark as in (2.419). Also, we observe that the term conjugate has many mean-
ings/applications. Here we speak of conjugate spinors. In Exercise 3.7.36 we spoke of
conjugate matrices and representations.

What we/you will soon explore are the transformation properties of (¯̆u,Mv̆) under the
action of K(k) where, as in (2.413), M is any 4× 4 matrix. Verify, using the notation just
introduced, the properties of K and γ4

r , and (2.413) that

(¯̆u,Mv̆) = (γ4
rKu,MKv) = (u, [γ4

rK]TMKv) = (u, (γ4
r )
TK−1MKv) =

(γ4
ru,K

−1MKv) = (ū, K−1MKv). (8.2.422)

By looking at the beginning and end of (2.419) we see that it can be rewritten in the form

(¯̆u,Mv̆) = (ū, K−1MKv). (8.2.423)

This, like (2.413), is also a key result.
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Transformation Properties of I [4] and γ5

Let us consider various possibilities for the matrix M . The simplest possibility is M = I [4].
In this case (2.423) becomes

(¯̆u, I [4]v̆) = (ū, K−1I [4]Kv) = (ū, I [4]v)⇔ (¯̆u, I [4]v̆) = (ū, I [4]v) or (¯̆u, v̆) = (ū, v). (8.2.424)

We may say that I [4] is invariant (behaves like a scalar) under the action of K. Suppose we
also describe the result (2.424) in terms of the associated bilinear form (u, v)γ4

r
. Verify that

there is the relation

(ŭ, I [4]v̆)γ4
r

= (Ku,Kv)γ4
r

= (Ku, γ4
rKv) = (u,KTγ4

rKv) = (u, γ4
rv) = (u, v)γ4

r

⇔ (¯̆u, I [4]v̆) = (ū, I [4]v) or (¯̆u, v̆) = (ū, v) or (Ku,Kv)γ4
r

= (u, v)γ4
r
. (8.2.425)

Verify that
(ū, v) = (γ4

ru, v) = (u, [γ4
r ]
†, v) = −(u, γ4

rv) = −(u, v)γ4
r
. (8.2.426)

Out of curiosity, verify that

(u, v)γ4
r

= −u4v1 + u3v2 − u2v3 + u1v4. (8.2.427)

Note that the associated bilinear form is manifestly antisymmetric, as expected from (2.384).
The next more complicated possibility is M = γ5

r . In this case use of (2.423) and (2.385)
gives the result

(¯̆u, γ5
r v̆) = (ū, K−1γ5

rKv) = (ū, γ5
rv) (8.2.428)

so we may say that γ5
r is also a scalar/invariant under the action of K. Verify that, in terms

of bilinear forms, there is the associated result

(ŭ, v̆)γ4
rγ

5
r

= (ŭ, γ4
rγ

5
r v̆) = (Ku, γ4

rγ
5
rKv) = (Ku, γ4

rKγ
5
rv) =

(u,KTγ4
rKγ

5
rv) = (u, γ4

rγ
5
5v) = (u, v)γ4

rγ
5
r
. (8.2.429)

Verify that
(ū, γ5

rv) = (γ4
ru, γ

5
rv) = −(u, γ4

rγ
5
rv) = −(u, v)γ4

rγ
5
r
. (8.2.430)

Verify using (2.362) and (2.384) that the associated bilinear form is antisymmetric. Out of
curiosity verify that

(u, v)γ4
rγ

5
r

= +u1v2 − u2v1 − u3v4 + u4v3, (8.2.431)

which is manifestly antisymmetric. We have learned that there are two invariant bilinear
forms, namely (2.427) and (2.431), and both are antisymmetric.

Transformation Properties of the γµ

With these instructive but relatively simple observations behind us, let us consider other
possibilities for the matrix M . Suppose we select the possibilities M = γµ for µ = 1 · · 4.
Your task in this case is to show that

(¯̆u, γµv̆) =
∑
ν

Λµν(k)(ū, γνv). (8.2.432)
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Note that, because of (2.381), we may also write the real matrix relations

(¯̆u, γµr v̆) =
∑
ν

Λµν(k)(ū, γνr v). (8.2.433)

In view of (2.432), it is commonly (although somewhat imprecisely) said that the γµ (equiv-
alently, the γµr ) behave like a four-vector under the action of K(k) for k ∈ SL(2,C) in the
same spirit that I [4] and γ5

r are said to behave like scalars.12 According to (2.423) there is
the relation

(¯̆u, γµv̆) = (ū, K−1γµKv). (8.2.434)

Show that (2.432) is established if there is the relation

K−1(k)γµK(k) =
∑
ν

Λµν(k)γν . (8.2.435)

Let us work on verifying (2.435). It helps to separate the problem into two parts. Make
the decomposition

k = kbkr (8.2.436)

where
kb = exp(λm · N̂ ) (8.2.437)

is the SL(2,C) element for a boost and

kr = exp(θn · L̂) (8.2.438)

is the SL(2,C) element for a rotation. Then, by (7.3.378), verify that

K(k) = K(kbkr) = K(kb)K(kr). (8.2.439)

Correspondingly, verify that

K−1(k)γαK(k) = K−1(kr)K
−1(kb)γ

αK(kb)K(kr). (8.2.440)

Conjecture that (2.435) holds for pure boosts and for pure rotations,

K−1(kb)γ
αK(kb)

?
=
∑
β

Λαβ(kb)γ
β and K−1(kr)γ

βK(kr)
?
=
∑
δ

Λβδ(kr)γ
δ. (8.2.441)

Verify the desired result (2.435) then follows from (2.440), (2.441), and (2.219):

K−1(k)γαK(k) = K−1(kr)K
−1(kb)γ

αK(kb)K(kr) =

K−1(kr)
∑
β

Λαβ(kb)γ
βK(kr) =

∑
β

Λαβ(kb)K
−1(kr)γ

βK(kr) =∑
βδ

Λαβ(kb)Λ
βδ(kr)γ

δ =
∑
δ

Λαδ(kbkr)γ
δ =

∑
δ

Λαδ(k)γδ. (8.2.442)

12Since the γµ for µ = 1 · · 4 behave like four-vectors, it makes sense to raise and lower their indices (if
desired) using the metric tensor g. See, for example, (2.478).
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What remains is to verify the conjectures (2.441).
For simplicity, first work on verifying the second conjecture in (2.441). Verify that

K(kr) = K[exp(θn · L̂)) = exp[θK(n · L̂)]. (8.2.443)

See (7.3.386). Next verify that combining (2.443) and the second conjecture in (2.441) yields
the conjecture

exp[−θK(n · L̂)]γβ exp[θK(n · L̂)]
?
=
∑
δ

Λβδ(kr)γ
δ. (8.2.444)

At this point review Sections 8.1 and 8.2 that described the concept of an adjoint Lie
operator, using the symbol #, in the context of Lie operators : f :. The same concept can
be applied to matrices in terms of commutators. Let A and B be any two n × n matrices.
In this context, define a matrix adjoint operator #A# that acts on matrices B by the rule

#A#B = {A,B}. (8.2.445)

Then, in complete analogy to the discussion in Sections 8.1 and 8.2, there is the relation

exp(−A)B exp(A) = exp(−#A#)B, (8.2.446)

which may be thought of as the matrix version of Hadamard’s lemma. See also (27.11.20)
through (27.11.24) in Section 27.11 where this result is again used.

Verify that applying the matrix adjoint operator machinery just described produces, in
the present context, the relation

exp[−θK(n · L̂)]γβ exp[θK(n · L̂)] = exp[−θ#K(n · L̂)#]γβ. (8.2.447)

Consequently, employing (2.447) in (2.444) produces the conjecture

exp[−θ#K(n · L̂)#]γβ
?
=
∑
δ

Λβδ[exp(θn · L̂)]γδ. (8.2.448)

Verify that employing (2.269) in (2.448) produces the logically equivalent conjecture

exp[−θ#K(n · L̂)#]γβ
?
=
∑
δ

[exp(θn ·L)]βδγδ, (8.2.449)

which, in turn, produces the logically equivalent conjectures

− θ{K(n · L̂), γβ} ?
= θ

∑
δ

[n ·L)]βδγδ, (8.2.450)

− {K(n · L̂), γβ} ?
=
∑
δ

[n ·L)]βδγδ. (8.2.451)

Let us seek to verify (2.451) for the three specific cases n = e1, n = e2, and n = e3. Verify
that if we can do so, then (2.451) follows by linearity. Consider, for example, the case n = e3

so that the conjecture (2.451) becomes the conjecture

− {K(L̂3), γβ} ?
=
∑
δ

[L3]βδγδ. (8.2.452)
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Verify that using (2.373) and (2.366) in (2.452) produces the logically equivalent conjectures

− (1/2){σ̂12), γβ} ?
=
∑
δ

[L3]βδγδ, (8.2.453)

− (1/2){γ1γ2, γβ} ?
=
∑
δ

[L3]βδγδ. (8.2.454)

Using the Dirac algebra, verify the following commutation relations:

− (1/2){γ1γ2, γ1} = −γ2, (8.2.455)

− (1/2){γ1γ2, γ2} = γ1, (8.2.456)

− (1/2){γ1γ2, γ3} = 0, (8.2.457)

− (1/2){γ1γ2, γ4} = 0. (8.2.458)

Recall from (7.3.182) that there is the result

L3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (8.2.459)

Verify, upon comparing (2.455) through (2.459), that the conjecture (2.454) is correct, and
therefore the conjecture (2.452) is correct. Similarly, verify that (2.451) also holds for n = e1

and n = e2, and therefore holds for all n. Finally, proceed backwards through the chain of
logically equivalent conjectures to verify that the initial conjecture, the second conjecture in
(2.441), is indeed correct.

Now work on verifying the first conjecture in (2.441). The procedure for doing so is
analogous to that just used to verify the second conjecture. Carry out the verification using
the relations and conjectures below:

K(kb) = K[exp(λm · N̂ )) = exp[λK(m · N̂ )], (8.2.460)

exp[−λK(m · N̂ )]γβ exp[λK(m · N̂ )]
?
=
∑
δ

Λβδ(kb)γ
δ, (8.2.461)

exp[−λK(m · N̂ )]γβ exp[λK(m · N̂ )] = exp[−λ#K(m · N̂ )#]γβ, (8.2.462)

exp[−λ#K(m · N̂ )#]γβ
?
=
∑
δ

Λβδ[exp(λm · N̂ )]γδ, (8.2.463)

exp[−λ#K(m · N̂ )#]γβ
?
=
∑
δ

[exp(λm ·N )]βδγδ, (8.2.464)

− λ{K(m · N̂ ), γβ} ?
= λ

∑
δ

[m ·N )]βδγδ, (8.2.465)

− {K(m · N̂ ), γβ} ?
=
∑
δ

[m ·N )]βδγδ, (8.2.466)
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− {K(N̂3), γβ} ?
=
∑
δ

[N3]βδγδ, (8.2.467)

− (1/2){σ̂43), γβ} ?
=
∑
δ

[N3]βδγδ, (8.2.468)

− (1/2){γ4γ3, γβ} ?
=
∑
δ

[N3]βδγδ, (8.2.469)

− (1/2){γ4γ3, γ1} = 0, (8.2.470)

− (1/2){γ4γ3, γ2} = 0, (8.2.471)

− (1/2){γ4γ3, γ3} = γ4, (8.2.472)

− (1/2){γ4γ3, γ4} = γ3, (8.2.473)

N3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 . (8.2.474)

Let us pause for a moment to reflect on what has been discovered/accomplished here.
We were able to contemplate/determine the action of the K(k) on the γµ by the fact that
both K(k) and the γµ were known 4× 4 matrices so that the quantities K−1γµK could be
evaluated. Equivalently, because the γµ obeyed the Dirac algebra, we were able to use this
algebra to determine the action of the K(L̂j) and the K(N̂ j) on the γβ as in (2.452) through
(2.458) and (2.467) through (2.473).

Transformation Properties of Products of gamma matrices

Consider the case of a product of two distinct gamma matrices, M = γµγν with µ 6= µ.
Verify that

K−1γµγνK = K−1γµKK−1γνK. (8.2.475)

Now use (2.435) in (2.475) to obtain the result

K−1γµγνK =
∑
αβ

Λµα(k)Λνβ(k)γαγβ. (8.2.476)

Evidently γµγν transforms like a second rank tensor. Note, according to (2.365), that σ̂µν

involves the commutator {γµ, γν}. Show it follows that

K−1σ̂µνK =
∑
αβ

Λµα(k)Λνβ(k)σ̂αβ, (8.2.477)

the σ̂µν transform like a second rank antisymmetric tensor.
You have determined the transformation properties of the commutator {γµ, γν}. What

can be said about the transformation properties of the anticommutator {γµ, γν}+? Evaluate
K−1{γµ, γν}+K using (2.349). Also evaluate it using (2.476), and then simplify your result
using (2.349). Verify, with the aid of (6.2.51), that (2.349) and (2.476) are compatible.
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Using the Dirac algebra, verify that∑
ν

γνγ
ν =

∑
µν

gµνγ
µγν = 4I [4], (8.2.478)

and observe from the far right side of (2.478) that
∑

ν γνγ
ν is invariant, as the notation

suggests.
Consider the case of three gamma matrices. Verify, using the Dirac algebra, that the

product of any three distinct gamma matrices can be written in the form γ5γµ. Verify that

K−1γ5γµK = γ5K−1γµK =
∑
ν

Λµν(k)γ5γν . (8.2.479)

Evidently the quantities γ5γµ, like the quantities γµ, also behave as four-vectors.
Consider the case of four gamma matrices. Verify that the product of any four distinct

gamma matrices must be proportional to γ5, whose transformation properties are given by
(2.385). Even a bit more can be said. From (2.435), and an obvious extension of (2.476) to
the case of four gamma matrices, verify that the gamma matrix products γµγνγσγτ transform
like a rank four tensor. Verify, moreover, that there is the relation

γ5 = (i/4!)
∑
µνστ

εµνστγ
µγνγσγτ . (8.2.480)

Observe that the invariance of γ5, already established, is consistent with the invariant ap-
pearance of this relation.

Consider the case of five or more gamma matrices. Verify that any product of five or
more gamma matrices may be reduced to the product of four or less gamma matrices using
the Dirac algebra, and the transformation properties of these products have already been
determined.

Summary of Results and Relation to the Clebsch-Gordan Series

In summary, we have found the following: two “scalars”, I [4] and γ5; two “four-vectors”,
γµ and γ5γµ; and one “antisymmetric tensor”, σ̂µν . Why should this be? Look again at
the bilinear form (¯̆u,Mv̆) that appears on the left side of (2.423). It contains the two 4-
spinors ŭ and v̆, each of which carries the representation Γ(0, 1/2) ⊕ Γ(1/2, 0), and a fixed
matrix M . Evidently the quantities (¯̆u,Mv̆) are essentially tensor products and may be
expected to contain whatever representations of s`(2,C) occur in the tensor product of
Γ(0, 1/2)⊕Γ(1/2, 0) with itself. Let us see what representations can be found in this tensor
product. Verify the tensor product result

[Γ(0, 1/2)⊕ Γ(1/2, 0)]× [Γ(0, 1/2)⊕ Γ(1/2, 0)] =

[Γ(0, 1/2)× Γ(0, 1/2)]⊕ [Γ(0, 1/2)× Γ(1/2, 0)]⊕
[Γ(1/2, 0)× Γ(0, 1/2)]⊕ [Γ(1/2, 0)× Γ(1/2, 0)]. (8.2.481)

Next verify the Clebsch-Gordan results

Γ(0, 1/2)× Γ(0, 1/2) = Γ(0, 1)⊕ Γ(0, 0), (8.2.482)
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Γ(0, 1/2)× Γ(1/2, 0) = Γ(1/2, 1/2), (8.2.483)

Γ(1/2, 0)× Γ(0, 1/2) = Γ(1/2, 1/2), (8.2.484)

Γ(1/2, 0)× Γ(1/2, 0) = Γ(1, 0)⊕ Γ(0, 0). (8.2.485)

Show it follows that there is the grand Clebsch-Gordan result

[Γ(0, 1/2)⊕ Γ(1/2, 0)]× [Γ(0, 1/2)⊕ Γ(1/2, 0)] =

2Γ(0, 0)⊕ 2Γ(1/2, 1/2)⊕ [Γ(0, 1)⊕ Γ(1, 0)], (8.2.486)

which corresponds to the two scalars, two four-vectors, and one antisymmetric tensor, as
described above.

Group-Theoretical Nature of Dirac Gamma Matrices

You have verified that the four matrices γµ given by (2.350) through (2.353) satisfy the
Dirac algebra (2.349). Moreover, in view of (2.365) and (2.373) through (2.378), the γµ are
related to s`(2,C) in that they have the further remarkable property that they factorize the
K(L̂j) and K(N̂ j). That is, each K(L̂j) and K(N̂ j) can be written as the product of two
gamma matrices.

But do the gamma matrices have additional group-theoretical significance? Let p be a
four-vector with covariant components pβ and suppose a Lorentz group element associated
with the SL(2,C) element k acts on p to produce the four-vector p̆. Verify that, according
to (1.6.286), (1.6.287), and (1.6.289), the four-vector p̆ will have covariant components p̆α
given by the relation

p̆α =
∑
β

{[ΛT (k)]−1}αβpβ =
∑
β

{[Λ−1(k)]T}αβpβ =
∑
β

[Λ−1(k)]βαpβ. (8.2.487)

[Here we must again apologize for confusing notation: The matrix K defined by (1.6.287)
is not the matrix K(k) that appears in (7.3.375).] Now consider the matrix, call it C(k),
given by the rule

C(k) =
∑
α

p̆αK
−1(k)γαK(k) = K−1(k)[

∑
α

p̆αγ
α]K(k). (8.2.488)

According to (2.435) there is the relation

K−1(k)γαK(k) =
∑
δ

Λαδ(k)γδ. (8.2.489)

Now employ (2.487) and then (2.489) in (2.488) to show that

C(k) = K−1(k)[
∑
α

p̆αγ
α]K(k) = K−1{

∑
αβ

pβγ
α[Λ−1(k)]βα}K(k)

=
∑
αβδ

pβγ
δ[Λ−1(k)]βαΛ(k)αδ =

∑
βδ

pβγ
δ[Λ−1(k)Λ(k)]βδ

=
∑
βδ

pβγ
δ{I [4]}βδ =

∑
δ

pδγ
δ. (8.2.490)
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You have shown that the matrix C(k) is, in fact, independent of k.
Now suppose that p is the momentum four-vector for a particle that has mass m and is

at rest,
pβ = (0, 0, 0,mc). (8.2.491)

In this case there is the relation ∑
δ

pδγ
δ = mcγ4 (8.2.492)

so that
C(k) = mcγ4. (8.2.493)

Next verify from (2.355) that γ4 must be diagonalizable and have real eigenvalues. And
verify from the Dirac algebra condition (γ4)2 = I [4] that its eigenvalues, call them τ , must
satisfy τ 2 = 1. Let v be a 4-spinor which is an eigenvector of γ4 with eigenvalue τ ,

γ4v = τv. (8.2.494)

We will determine such eigenvectors shortly. They will turn out to be complex, but that
need not concern us. Meanwhile define, as before, v̆ by the rule

v̆ = K(k)v. (8.2.495)

With these definitions in mind, verify the relations

mcγ4v = mcτv (8.2.496)

and
C(k)v = K−1(k)[

∑
α

p̆αγ
α]v̆ = mcγ4v = τmcv. (8.2.497)

Show it follows from (2.495) and (2.497) that

[
∑
α

p̆αγ
α]v̆ = τmK(k)v = τmcv̆. (8.2.498)

Let us rewrite (2.498) in the form

[
∑
α

γαp̆α]v̆ = τmcv̆. (8.2.499)

Observe that on the left side of (2.499) there are the k dependent quantities p̆α and v̆ that
carry the Γ(1/2, 1/2) and [Γ(0, 1/2) ⊕ Γ(1/2, 0)] representations of s`(2,C), respectively.
And on the right side of (2.499) we find just v̆ which carries the [Γ(0, 1/2)⊕ Γ(1/2, 0)] rep-
resentation of s`(2,C). Also observe that matrices γα are three-index quantities because
there is the superscript α and the two matrix indices for each gamma matrix. Thus, from
a group-theoretical perspective, the three-index quantities γα are Clebsch-Gordan coeffi-
cients that couple the representations Γ(1/2, 1/2) and [Γ(0, 1/2)⊕Γ(1/2, 0)] to produce the
representation [Γ(0, 1/2)⊕ Γ(1/2, 0)].13

13Also, from the same group-theoretical perspective, the matrices M = I [4], M = γ5, M = γµ, M = γ5γµ,
and M = σ̂µν are Clebsch-Gordan coefficients that project out from the tensor product appearing on the
left side of (2.481) the representations Γ(0, 0), Γ(1/2, 1/2), and [Γ(0, 1)⊕ Γ(1, 0)].
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Let us check that this possibility/conclusion makes group-theoretical sense. Verify the
tensor product result

Γ(1/2, 1/2)× [Γ(0, 1/2)⊕ Γ(1/2, 0)] =

Γ(1/2, 1/2)× Γ(0, 1/2)⊕ Γ(1/2, 1/2)× Γ(1/2, 0). (8.2.500)

Verify the Clebsch-Gordan results

Γ(1/2, 1/2)× Γ(0, 1/2) = Γ(1/2, 0)⊕ Γ(1/2, 1), (8.2.501)

Γ(1/2, 1/2)× Γ(1/2, 0) = Γ(0, 1/2)⊕ Γ(1, 1/2). (8.2.502)

Verify, therefore, that there is the grand Clebsch-Gordan result

Γ(1/2, 1/2)× [Γ(0, 1/2)⊕ Γ(1/2, 0)] =

Γ(1/2, 0)⊕ Γ(1/2, 1)⊕ Γ(0, 1/2)⊕ Γ(1, 1/2) =

[Γ(0, 1/2)⊕ Γ(1/2, 0)]⊕ Γ(1/2, 1)⊕ Γ(1, 1/2). (8.2.503)

Evidently the role of the γα is to project out, from the tensor product with which (2.503)
begins, the representation that appears in square brackets in the last line of (2.503).

Application to the Dirac Equation

The Dirac equation for a free particle of mass m reads

i~
∑
µ

γµ∂µψ(x) = mcψ(x) (8.2.504)

where ψ(x) is a 4-spinor field that depends on the space-time coordinates x. Dirac’s equation
is often written in natural units (for which ~ = c = 1) and the summation convention is
employed so that it takes the elegant form

iγµ∂µψ = mψ. (8.2.505)

One may also employ the Feynman (1918-1988) slash notation

∂/ =
∑
µ

γµ∂µ (8.2.506)

to achieve the even more elegant form

i∂/ψ = mψ. (8.2.507)

Dirac’s memorial stone, near Newton’s monument in Westminster Abbey, displays his equa-
tion in the form

iγ · ∂ψ = mψ. (8.2.508)

To see this stone, Google the two words Dirac Westminster.
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For pedagogical reasons we will use Dirac’s equation in the form (2.504) in order to keep
track of dimensions. Note that here again it is evident that the gamma matrices play the
role of Clebsch-Gordan coefficients. On the left side of (2.504) we have ∂µ and ψ which carry
the representations Γ(1/2, 1/2) and Γ(0, 1/2)⊕ Γ(1/2, 0), respectively. The γµ couple them
to produce the representation Γ(0, 1/2)⊕ Γ(1/2, 0), which is also the representation carried
by the ψ appearing on the right side of (2.504). Thus, Dirac’s equation is group-theoretically
consistent.

Let us seek a plane-wave solution to (2.504) of the form

ψ(x) = w exp[−i(
∑
µ

pµx
µ)/~]. (8.2.509)

As done before in (2.491), we will take pµ to be specified by the relation

pµ = (0, 0, 0,mc), (8.2.510)

and we will assume w is a 4-spinor that is independent of x. This ψ has no spatial depen-
dence (ψ is translationally invariant) which implies that this proposed Ansatz is intended
to describe a free-particle at rest.14 With regard to temporal dependence, show that

∂4ψ = (∂/∂x4)ψ = −i(mc/~)w exp[−i(
∑
µ

pµx
µ)/~]. (8.2.511)

Therefore, in this case, verify that the left side of (2.504) becomes

i~
∑
µ

γµ∂µψ(x) = mcγ4ψ(x) (8.2.512)

so that (2.504) becomes
mcγ4ψ(x) = mcψ(x). (8.2.513)

Verify that canceling out common factors from both sides of (2.513) yields for w the relation

γ4w = w. (8.2.514)

That is, w must be an eigenvector of γ4 with eigenvalue +1. We will soon see that γ4 has
eigenvectors with eigenvalues ±1 so that (2.494) has solutions for τ = ±1. Note that (2.514)
is consistent with (2.494).

Let us pause/digress briefly to discuss some commonly employed terminology for solu-
tions of the Dirac equation. Verify, using (2.510) and (1.6.42), that the the Ansatz (2.509)
can be rewritten in the form

ψ = w exp[−iE0t/~] (8.2.515)

where E0 is the (manifestly positive) rest energy,

E0 = mc2. (8.2.516)

14We remark that once “at rest” solutions have been found, all other free-particle solutions can be found
by acting on the at rest solutions with suitable Lorentz transformations.
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Despite the appearance of a minus sign in the exponent appearing in (2.515), and also
in (2.509), this proposed solution is called a positive energy solution. The reason for this
terminology has to do with the analogous case of the nonrelativistic Schrödinger (1887-1961)
equation. The Schrödinger equation for the Schrödinger wave function, call it χ(r, t), reads

i~(∂/∂t)χ(r, t) = H(q, p)χ(r, t) (8.2.517)

where H is the (assumed time independent) Hamiltonian. If we make the separation of
variables Ansatz

χ(r, t) = u(r)f(t) (8.2.518)

and specify that u is an eigenfunction of H with eigenvalue E so that

Hu = Eu, (8.2.519)

then (2.517) has the solution

χ(r, t) = u(r) exp[−iEt/~]. (8.2.520)

Evidently the argument of the exponential function appearing in (2.520) is negative imag-
inary as the time t becomes evermore positive providing the energy E is positive, and vice
versa. Observe that the argument of the exponential function appearing in (2.509) eventu-
ally becomes negative imaginary as t becomes evermore positive. Correspondingly, (2.509)
is called a positive energy solution of the Dirac equation.

Now return to the main discussion. As promised, let us find the eigenvectors of γ4. Begin
by writing w in the form

w =


a
b
c
d

 (8.2.521)

where the quantities a through d are to be determined from (2.514). Verify using (2.353)
that

γ4w =


id
−ic
ib
−ia

 , (8.2.522)

and consequently the condition (2.514) yields the relations

d = −ia (8.2.523)

c = ib. (8.2.524)

Therefore any eigenvector of γ4 having eigenvalue +1 must be of the form

w =


a
b
ib
−ia

 . (8.2.525)
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Let us pause at this point to seek eigenvectors of γ4 with eigenvalue −1. Take the
complex conjugate of both sides of (2.514) to find the relation

(γ4)∗w∗ = (γ4w)∗ = w∗. (8.2.526)

Since γ4 is purely imaginary (in a Majorana representation), there is the relation

(γ4)∗ = −γ4, (8.2.527)

from which it follows that
γ4w∗ = −w∗. (8.2.528)

Therefore the eigenvectors of γ4 with eigenvalue −1 are of the form

w∗ =


a∗

b∗

−ib∗
ia∗

 . (8.2.529)

Let us continue on. Evidently there is a two-fold degeneracy for both the eigenvalue +1
and −1 eigenvectors. To break this degeneracy it is convenient to employ the matrix M3

defined by the rule
M3 = iσ̂12. (8.2.530)

Verify, using the Dirac algebra and (2.349), that there are the relations

(M3)† = M3 (8.2.531)

and
(M3)2 = I [4]. (8.2.532)

It follows that M3 can be diagonalized, has real eigenvalues, and the square of these eigen-
values is +1. Verify, again using the Dirac algebra, that

{M3, γ4} = 0, (8.2.533)

which shows that γ4 and M3 can be diagonalized simultaneously.
Let us find the simultaneous eigenvectors of γ4 and M3. For w of the form (2.521) show,

using (2.366), that

M3w =


ic
−id
−ia
ib

 . (8.2.534)

Therefore, if we demand that
M3w = w, (8.2.535)

verify that there are the relations
c = −ia (8.2.536)
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and

d = ib. (8.2.537)

Suppose we now seek to satisfy all the demands (2.523), (2.524), (2.536), and (2.537). Verify
that combining (2.523) and (2.537) yields the relation

b = −a. (8.2.538)

Show that inserting (2.538) into (2.525) yields the vector, which we will call w+↑, given by
the relation

w+↑ =


a
−a
−ia
−ia

 . (8.2.539)

(Here, in anticipation of subsequent results, we introduce the symbols ↑ and ↓ to indicate
what will soon be identified as having spin up and spin down.) Verify that w+↑ is a simul-
taneous eigenvector of both γ4 and M3 with eigenvalues +1 for each.

Alternatively, if we demand that

M3w = −w, (8.2.540)

verify that there are the relations

c = ia (8.2.541)

and

d = −ib. (8.2.542)

Verify that combining (2.523) and (2.542) in this case now yields the relation

b = a. (8.2.543)

Show that inserting (2.543) into (2.525) yields the vector, which we will call w+↓, given by
the relation

w+↓ =


a
a
ia
−ia

 . (8.2.544)

Verify that w+↓ is a simultaneous eigenvector of both γ4 and M3 with eigenvalue +1 for γ4

and eigenvalue −1 for M3. Note that the quantity a appearing in w+↑ and w+↓ is arbitrary
and may, for example, be set to 1.

Finally, let us make the definition

S3 = iK(L̂3). (8.2.545)

Verify using (2.373) and (2.530) that

S3 = (1/2)M3. (8.2.546)
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Consequently, w+↑ is a simultaneous eigenvector of both γ4 and S3 with eigenvalue +1 for
γ4 and eigenvalue +1/2 for S3. And w+↓ is a simultaneous eigenvector of both γ4 and S3

with eigenvalue +1 for γ4 and eigenvalue −1/2 for S3. We may say that w+↑ is the spinor
part of the ψ for a spin 1/2 particle (at rest) having spin up, and w+↓ is the spinor part of
the ψ for a spin 1/2 particle (at rest) having spin down.

So far we have been discussing positive energy solutions of the Dirac equation. We close
this exercise with a brief discussion of negative energy solutions, which also exist. Suppose,
instead of (2.509), we make the Ansatz

ψ(x) = w exp[+i(
∑
µ

pµx
µ)/~]. (8.2.547)

Observe that the argument of the exponential function appearing in (2.547) eventually be-
comes positive imaginary as t becomes evermore positive. Correspondingly, (2.547) is called
a negative energy solution.15 Show that the Ansatz (2.547) satisfies the Dirac equation
(2.504) provided w satisfies the relation

γ4w = −w. (8.2.548)

That is, w must be an eigenvector of γ4 with eigenvalue −1.
Consider the vectors (4-spinors) w−↑ and w−↓ defined by

w−↑ = (w+↓)∗ (8.2.549)

and
w−↓ = (w+↑)∗. (8.2.550)

Verify that
γ4w−↑ = [(γ4)∗w+↓]∗ = [−γ4w+↓]∗ = −(w+↓)∗ = −w−↑. (8.2.551)

Similarly, verify that
γ4w−↓ = −w−↓. (8.2.552)

Next, observe from (2.545) that
(S3)∗ = −S3. (8.2.553)

Consequently, verify that

S3w−↑ = [(S3)∗w+↓]∗ = [−S3w+↓]∗ = (1/2)[w+↓]∗ = (1/2)w−↑. (8.2.554)

Similarly, verify that
S3w−↓ = −(1/2)w−↓. (8.2.555)

Thus, w−↑ and w−↓ behave under the action of γ4 and S3 as their notation suggests. Finally,
verify from (2.539), (2.544), (2.549), and (2.550) that there are the explicit results

w−↑ =


a∗

a∗

−ia∗
ia∗

 , (8.2.556)

15Motivated by the relation E = hν, positive energy solutions are also sometimes called positive frequency
solutions, and negative energy solutions are sometimes called negative frequency solutions.
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w−↓ =


a∗

−a∗
ia∗

ia∗

 . (8.2.557)

Here again the quantity a is arbitrary and may, for example, be set to 1.
In summary, when both positive and negative energy solutions (for a particle at rest) are

considered, we have seen that there are four possibilities for w, namely w+↑, w+↓, w−↑, and
w−↓.

What is the use of the negative energy solutions? Very much further discussion would
bring us too far afield. But remarkably it can be shown that, taken together, the positive and
negative energy solutions can be used to construct a four-component quantum field involving
creation and destruction operators for particles and their antiparticles. In this construction
destruction operators are associated with positive energy solutions and creation operators
are associated with negative energy solutions. The result of this construction is a theory
that describes simultaneously both spin 1/2 particles and their antimatter counterparts (for
example electrons and positrons), and these particles obey Fermi-Dirac statistics. (Thus the
four-fold nature of the Dirac equation associated with the four possibilities for w is revealed
to be related to the four possibilities of spin up and spin down and matter and antimatter.)
Moreover, in the full quantum field version of Dirac theory, there is a ground state called
the vacuum which corresponds to a (unique) state for which there are no particles. And in
the quantum field theory version both particle and antiparticle states have positive energies,
and there is complete symmetry between matter and antimatter.

8.2.19. The two preceding Exercises 2.17 and 2.18 in this chapter have, among other things,
explored the relations between the 2×2 complex matrices L̂j and N̂ j, that carry the Γ(0, 1/2)
of the Lorentz group Lie algebra, and the 4× 4 real matrices K(L̂j) and K(N̂ j). According

to Exercise 7.3.30, the 2× 2 complex matrices
`̂
Lj and

`̂
N j carry the Γ(1/2, 0) of the Lorentz

group Lie algebra. The purpose of this exercise is to consider the complementary question:

what are the relations between the 2 × 2 complex matrices
`̂
Lj and

`̂
N j and the 4 × 4 real

matrices K(
`̂
Lj) and K(

`̂
N j)? We know from the work of Exercise 2.17 that the matrix set

K(L̂j),K(N̂ j) carries the Lorentz group Lie algebra representation Γ(0, 1/2) ⊕ Γ(1/2, 0).

Could it be that the matrix set K(
`̂
Lj),K(

`̂
N j) also carries this representation? If so, the two

sets must be related by a similarity transformation (and vice verse).
Begin our/your investigation by showing from (7.3.248), (7.3.249), and (7.3.376) that

there are the relations

K(
`̂
Lj) = K(L̂j) (8.2.558)

and

K(
`̂
N j) = −K(N̂ j). (8.2.559)

Next verify, using (2.366) through (2.368), (2.373) through (2.375), and the Dirac algebra,
that

(γ4)−1K(L̂j)γ4 = K(L̂j) (8.2.560)

from which, by (2.558), it follows that

(γ4)−1K(L̂j)γ4 = K(
`̂
Lj). (8.2.561)
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Also verify, using (2.369) through (2.371), (2.376) through (2.378), and the Dirac algebra,
that

(γ4)−1K(N̂ j)γ4 = −K(N̂ j) (8.2.562)

from which, by (2.559), it follows that

(γ4)−1K(N̂ j)γ4 = K(
`̂
N j). (8.2.563)

Taken together, (2.561) and (2.563) show that the two sets K(L̂j),K(N̂ j) and K(
`̂
Lj),K(

`̂
N j)

are indeed related by a similarity transformation, the similarity transformation provided
by γ4.16 Finally, verify that the two sets are also related by the similarity transformation
provided by γ5γ4.

Let us summarize our findings. From Exercise 7.3.30 we learned that the Γ(0, 1/2)
representation provided by the matrices L̂j,N̂ j is different from (not equivalent to) the

Γ(1/2, 0) representation provided by the matrices
`̂
Lj,

`̂
N j. Now we have learned that the

representations provided by the two sets of matrices K(L̂j),K(N̂ j) and K(
`̂
Lj),K(

`̂
N j) are

the same/equivalent, namely the representation Γ(0, 1/2)⊕ Γ(1/2, 0).

8.2.20. (Under construction) Review Exercise 2.19. The purpose of this exercise is to do
something analogous for the representations Γ(0, 1), Γ(1, 0), and Γ(0, 1)⊕ Γ(1, 0) using K.

8.2.21. (Under construction) Review Exercise 7.3.34. The purpose of this exercise is to
explore, at least to some extent, what special properties matrices K(k) might have if the
matrices k have special properties. In particular, we will study what can be said about the
case

k ∈ SL(2,C) = Sp(2,C)⇔ kTJ2k = J2 (8.2.564)

without immediately invoking the Dirac machinery.
Apply (7.3.378) to the symplectic condition in (2.557) to show that

K(kT )K(J2)K(k) = K(J2). (8.2.565)

Using the definition (7.3.375), verify the following relations:

K(J2) =

(
J2 0
0 J2

)
= J ′, (8.2.566)

K(kT ) =

(
<kT −=kT
=kT <kT

)
=

(
(<k)T −(=k)T

(=k)T (<k)T

)
, (8.2.567)

and

[K(k)]T =

(
(<k)T (=k)T

−(=k)T (<k)T

)
. (8.2.568)

16Note that the relations (2.561) and (2.563) can also be written in the form (γ4)−1K(
`̂
Lj)γ4 = K(L̂j),

etc. Thus, there is complete symmetry between the use of the Γ(0, 1/2) and the Γ(1/2, 0) representations.
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Let J be the matrix

J =

(
0 I [2]

−I [2] 0

)
. (8.2.569)

Verify that

J−1[K(k)]TJ = K(kT ). (8.2.570)

Show, using (2.559) and (2.563), that (2.558) can be rewritten in the form

J−1[K(k)]TJJ ′K(k) = J ′, (8.2.571)

from which it follows that

[K(k)]T [JJ ′]K(k) = [JJ ′]. (8.2.572)

Define a matrix S by the rule

S = JJ ′ (8.2.573)

so that (2.565) can be written as

[K(k)]TSK(k) = S. (8.2.574)

[Note that, despite our notation, this matrix S has nothing to do with the matrix S3 defined
by (2.538) and (2.539).] Verify that

S =

(
0 J2

−J2 0

)
. (8.2.575)

Verify that J and J ′ commute,

{J, J ′} = 0. (8.2.576)

Show that

ST = S, (8.2.577)

det(S) = 1, (8.2.578)

and

S2 = I [4]. (8.2.579)

Evidently S is real. Verify from (2.570) and (2.572) that S is also orthogonal,

STS = I [4]. (8.2.580)

A brute force verification using (2.568), while tedious, is possible. But note that (2.570)
through (2.572) follow directly from (2.566) and (2.569) and the relations

JT = −J, (J ′)T = −J ′, det(J) = det(J ′) = 1. (8.2.581)

Upon comparing (2.567) with the symplectic condition in (2.557) we see that they have
a similar form but J2 is antisymmetric while S is symmetric. Since S is symmetric, it can
be used to define an inner product, and the relation (2.567) can be viewed as a preservation
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condition for this inner product. Suppose u and v are any two four-component real arrays
and we define their inner product (u, v)S by the rule

(u, v)S = (u, Sv) (8.2.582)

where the inner product on the right side of (2.575) is the usual real inner product. Note
that, since S is real, the quantity (u, v)S is real if u and v are real. Then, using (2.567),
verify that

(Ku,Kv)S = (Ku, SKv) = (u,KTSKv) = (u, Sv) = (u, v)S. (8.2.583)

That is, the inner product (u, v)S is invariant under the action of K(k). Moreover, make
the definition

(u, v)Sγ5
r

= (u, Sγ5
rv). (8.2.584)

Note that (u, v)Sγ5
r

is also real. Then, using (2.567) and (2.384), verify that

(Ku,Kv)Sγ5
r

= (Ku, Sγ5
rKv) = (Ku, SKγ5

rv) =

(u,KTSKγ5
rv) = (u, Sγ5

rv) = (u, v)Sγ5
r
. (8.2.585)

Therefore the inner product (u, v)Sγ5
r

is also invariant under the action of K(k).
But now we are confronted with an embarrassment of riches!
Out of curiosity, verify that

(u, v)S = (u, Sv) = u1v4 − u2v3 − u3v2 + u4v1. (8.2.586)

8.2.22. (Under Construction) Exercise on use of S rather than γ4
r and the existence of more

bilinear forms.

8.2.23. (Under Construction) Other Majorana representations.
What is the nature of the inner product (∗, ∗)S? Evidently S is real. Verify from (2.329)

and (2.331) that S is also orthogonal,

STS = I [4]. (8.2.587)

Therefore there must be a real orthogonal matrix O such that

OTSO = D ⇔ S = ODOT (8.2.588)

where D is diagonal. Verify using (2.335) and (2.331) that there is the relation

D2 = OTSOOTSO = OTS2O = OTO = I [4], (8.2.589)

and therefore the diagonal entries of D must have absolute value 1.
Let us try to find O and D. To continue, verify that

S = K(−iJ2) = K(σ2). (8.2.590)
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Next, using the relation between σ and K given by (3.7.169) through (3.7.171), verify that
(8.2.57) can also be written in the form

exp[(−i/2)θn · σ](a · σ) exp[(i/2)θn · σ] = [R(θ,n)a] · σ. (8.2.591)

(Sorry yet again about the possibly confusing notation! Although they may look related,
there is no connection between the symbols K and K. Sometimes there are not enough
symbols to go around.) Evaluate (2.338) for the case n = e1 and a = e2 so that it becomes

exp[(−i/2)θσ1](σ2) exp[(i/2)θσ1] = [R(θ, e1)e2] · σ. (8.2.592)

Verify that
[R(π/2, e1)e2] = e3. (8.2.593)

Put another way, rotating e2 by θ = π/2 about the e1 axis yields e3. See (3.7.205). Conse-
quently, for θ = π/2, (2.339) becomes

exp[−i(π/4)σ1](σ2) exp[i(π/4)σ1] = σ3. (8.2.594)

As a sanity check, verify directly that (2.341) holds by evaluating the indicated exponential
functions and carrying out the indicated multiplications. In particular, you should find for
the exponential functions the results

exp[±i(π/4)σ1] = cos(π/4)σ0 ± i sin(π/4)σ1 = (1/
√

2)σ0 ± i(1/
√

2)σ1. (8.2.595)

See (3.7.192).
Now verify that applying (7.3.378) to both sides of (2.341) yields the result

K{exp[−i(π/4)σ1]}K(σ2)K{exp[i(π/4)σ1]} = K(σ3). (8.2.596)

Make the assignment
O = K{exp[i(π/4)σ1]} (8.2.597)

and show that

O = (1/
√

2)

(
σ0 −σ1

σ1 σ0

)
. (8.2.598)

Note that, as expected, O is real. Also, using (7.3.381), show that

O−1 = K{exp[−i(π/4)σ1]} (8.2.599)

from which it follows that

O−1 = (1/
√

2)

(
σ0 σ1

−σ1 σ0

)
. (8.2.600)

Verify, by comparing (2.345) and (2.347), that

O−1 = OT . (8.2.601)

Verify it follows from (2.343) that (2.335) has been achieved with

D = K(σ3) =

(
σ3 0
0 σ3

)
= diag(1,−1, 1,−1). (8.2.602)
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As a final sanity check on our/your work, verify directly that (2.335) has been achieved
using (2.327) for S, (2.345) for O, (2.347) for O−1 = OT , and (2.349) for D.

Define matrices M(k) by the rule

M(k) = OTK(k)O = O−1K(k)O. (8.2.603)

Verify that, for k ∈ SL(2,C) = Sp(2,C), they satisfy the relation chain

MT (k)DM(k) = [OTK(k)O]TD[OTK(k)O] =

[OTKT (k)][ODOT ][K(k)O] = OT [KT (k)SK(k)]O =

OTSO = D. (8.2.604)

That is, upon comparing the beginning and end of (2.351), we see that there is the relation

MT (k)DM(k) = D. (8.2.605)

Verify also, using (7.3.380), that
M(I [2]) = I [4]. (8.2.606)

Because D has two positive and two negative diagonal entries we conclude that, for k ∈
SL(2,C) = Sp(2,C), the matrices M(k) provide a representation of SO(2, 2,R). See Exer-
cises 3.7.38 and 3.7.40.

Let P be the permutation operator that interchanges the two and three axes and leaves
the other axes in peace. That is, P is a linear operator with the actions

Pe1 = e1, Pe2 = e3, Pe3 = e2, Pe4 = e4. (8.2.607)

Correspondingly, P has the matrix representation

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (8.2.608)

Verify that P is symmetric, P T = P ; is an involution, P 2 = I [4]; and is therefore orthogonal,
P T = P−1. Define a linear operator D̂ by the rule

D̂ = P TDP. (8.2.609)

Verify that D̂ has the matrix representation

D̂ =

(
I [2] 0
0 −I [2]

)
= diag(1, 1,−1,−1). (8.2.610)

Define matrices M̂(k) by the rule

M̂(k) = P TM(k)P. (8.2.611)
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Verify that, for k ∈ SL(2,C) = Sp(2,C), they satisfy the relation chain

MT (k)DM(k) = [OTK(k)O]TD[OTK(k)O] =

[OTKT (k)][ODOT ][K(k)O] = OT [KT (k)SK(k)]O =

OTSO = D. (8.2.612)

That is, upon comparing the beginning and end of (2.351), we see that there is the relation

MT (k)DM(k) = D. (8.2.613)

Verify also, using (7.3.380), that
M(I [2]) = I [4]. (8.2.614)

Because D has two positive and two negative diagonal entries we conclude that, for k ∈
SL(2,C) = Sp(2,C), the matrices M(k) provide a representation of SO(2, 2,R). See Exer-
cises 3.7.38 and 3.7.40.

8.2.24. (Under Construction) Review Exercise 3.7.37 that relates the Lorentz group Lie
algebra so(3, 1,R) to so(4,R) when working over the complex field, and hence also to su(2)⊕
su(2). See also Exercise 6.2.6.

In the case of the Lorentz group there are the 4 × 4 Dirac gamma matrices γµ, with
µ = 1 · · 4, that satisfy the anti-commutation rules

{γµ, γν}+ = γµγν + γνγµ = 2gµν , (8.2.615)

and transform under the action of the Lorentz group according to the rules

∗ = ∗. (8.2.616)

For the case of SO(4,R) there are analogous 4× 4 matrices; call them Γµ. Define them
as follows:

Γ1 =, (8.2.617)

Γ2 =, (8.2.618)

Γ3 =, (8.2.619)

Γ4 = . (8.2.620)

Note they are all real and involve 2 × 2 blocks featuring the Pauli matrices *. Verify that
they satisfy the anti-commutation rules

{Γµ,Γν}+ = δµν , (8.2.621)

and transform under the action of the the rotation group SO(4,R) according to the rules

∗ = ∗. (8.2.622)

Show that there are six linearly independent matrices of the form

Σµν = {Γµ,Γν} = ΓµΓν − ΓνΓµ. (8.2.623)

Show that these matrices form a basis for so(4,R).
Something about SO(n,R) and Clifford algebras.

8.2.25. (Under Construction) Exercise on the Möbius and Lorentz groups.
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8.3 Questions of Order and other Miscellaneous

Mysteries

Lie operators and Lie transformations have remarkable properties, and in many ways seem
to lead lives of their own. The purpose of this section is to discuss various questions of
operator ordering that are often confusing to the uninitiated, and sometimes puzzling to
even the enlightened. We will also extend some previous results, and resolve some mysteries
of sign that arose in previous sections.

8.3.1 Questions of Order and Map Multiplication

SupposeMf is a symplectic map that sends the general point z in phase space to the point

z, and suppose Mg is another symplectic map that sends z to the point
=
z. The reason

for our naming convention using the subscripts f and g will become apparent shortly. See
Figure 3.1

z

z

Phase Space

––

z
–

f

=
g f

g


Figure 8.3.1: The composite action of two maps Mf and Mg.

Equivalently, in the context of charged particle beam transport, we may think of a beam
that first passes through beam line element f , the action of which is described by the map
Mf , and then through beam line element g whose action is described by the map Mg. See
Figure 3.2.

Now consider the composite mapping M which sends z to
=
z and which, following usual

mathematical notation, would be written in the form

M =MgMf , (8.3.1)

Mf : z → z, (8.3.2)

Mg : z →=
z, (8.3.3)
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z

z
–

––
zelement f element g

f g

Figure 8.3.2: Successive passage of a trajectory with initial condition z through beam line

elements f and g resulting in the intermediate condition z and final condition
=
z.

MgMf : z →=
z . (8.3.4)

Note that, when reading (3.1) from left to right, the mapsMf andMg occur in the opposite
order from which they actually act. See Fig. 3.2. That is, Mf acts first, but appears last
in (3.1); and Mg acts last, but appears first in (3.1). This order follows the standard
mathematical convention for maps (including matrices as a special case), and is in accord
with the ordering used earlier in Section 6.2 and Equations (6.4.5) and (6.4.7).

Suppose, for purposes of discussion, that bothMf andMg can be written in exponential
form using single exponents,

Mf = exp(: f :), (8.3.5)

Mg = exp(: g :). (8.3.6)

In this case (3.2) and (3.3) can be written in the more explicit form

z(z) =Mfz = exp(: f(z) :)z, (8.3.7)

=
z (z) =Mgz = exp(: g(z) :)z. (8.3.8)

Also, if we regard z as a function of z, as done in (3.7), then (3.8) can also be written in the
form

=
z (z) =

=
z (z(z)) = exp(: g(z(z)) :)z(z). (8.3.9)

[Note that the Poisson brackets implied in (3.9) can be evaluated using either the variables z
or z with the same result. See (6.3.10), (6.3.11), and (6.3.20).] Finally, suppose we substitute
(3.7) into (3.9). Doing so gives the result

=
z (z) = exp(: g(z(z)) :) exp(: f(z) :)z. (8.3.10)

This result is simply (3.4) written in explicit form.
Next suppose the identity operator I, written in the form

I = exp(: f(z) :) exp(− : f(z) :), (8.3.11)

is inserted right after the equal sign in (3.10). This insertion brings (3.10) to the form

=
z (z) = exp(: f(z) :) exp(− : f(z) :) exp(: g(z(z)) :) exp(: f(z) :)z. (8.3.12)
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Consider the quantity exp(− : f(z) :) exp(: g(z(z)) :) exp(: f(z) :) that appears in (3.12).
According to (2.20) we have the result

exp(− : f(z) :) exp(: g(z(z)) :) exp(: f(z) :) = exp(: exp(− : f(z) :)g(z(z)) :). (8.3.13)

According to (3.7) and (5.4.11) we have the result

g(z(z)) = g(exp(: f(z) :)z) = exp(: f(z) :)g(z). (8.3.14)

With this information in hand, we may rewrite (3.13) in the form

exp(− : f(z) :) exp(: g(z(z)) :) exp(: f(z) :)

= exp(: exp(− : f(z) :)g(z(z)) :)

= exp(: exp(− : f(z) :) exp(: f(z) :)g(z) :)

= exp(: g(z) :). (8.3.15)

Finally, use of (3.15) in (3.12) gives the remarkable result

=
z (z) = exp(: f(z) :) exp(: g(z) :)z. (8.3.16)

Observe that (3.4) can be written in the form

=
z (z) =Mz =MgMfz, (8.3.17)

while (3.16) can be written in the form

=
z (z) =Mz =MfMgz. (8.3.18)

What is going on here to produce two seemingly contradictory results? The difference
between (3.17) and (3.18) is as follows: In (3.17), as examination of (3.7), (3.8), and (3.10)
shows, f is a function of the initial variable z while g is a function of the intermediate
variable z. By contrast in (3.18), as (3.16) shows, both f and g are functions of the initial
variable z. What we have learned is that if a beam passes successively through beam line
elements f and g, and in that order, then the map for the composite system is MfMg

where both f and g are taken to be functions of the initial variable z. We see that when the
factors in a map (which is expressed as a product of factors all of the initial variable z) are
read from left to right, they are encountered in the same order as they are encountered by
the beam.

Strictly speaking, the last two sentences in the previous paragraph have been shown to
be true for two maps with both maps assumed to be expressible in exponential form using
single exponents as in (3.5) and (3.6). However, by similar arguments, analogous results
can be shown to hold in general. For example, suppose Mf , Mg, and Mh are any three
(analytic) maps. Then, from (7.8.1), Mf has a factorization of the form

Mf = exp(: f1 :) exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · ; (8.3.19)

andMg andMh have similar factorizations. Suppose a trajectory with initial condition zi

passes successively through the beam line elements f , g, and h described by the maps Mf ,
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Mg, and Mh, respectively. Then the final condition zf as a result of this passage is given
by the relation

zf (zi) = MfMgMhz
i

= exp(: f1 :) exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · ×
exp(: g1 :) exp(: gc2 :) exp(: ga2 :) exp(: g3 :) exp(: g4 :) · · · ×
exp(: h1 :) exp(: hc2 :) exp(: ha2 :) exp(: h3 :) exp(: h4 :) · · · zi (8.3.20)

when all the homogeneous polynomials fj, gj, and hj are taken to be functions of the initial
variable zi.

8.3.2 Questions of Order in the Linear Case

We are now prepared to revisit some questions of order that were passed over in earlier
sections. In (7.2.3) and (7.2.8) we constructed polynomials fa2 and f c2 in such a way that

exp(: fa2 :)zb =
∑
d

Pbdzd, (8.3.21)

exp(: f c2 :)zd =
∑
e

Odeze. (8.3.22)

In so doing, we made the z’s transform as the components of a vector under the actions of
the matrices P and O. Then we found the result

exp(: f c2 :) exp(: fa2 :)zb =
∑
e

(PO)beze. (8.3.23)

See (7.2.10) and (7.2.11). Here both f c2 and fa2 were quadratic polynomials in the variable
z. Since P and O were defined in such a way that the z’s transformed under their actions
as the components of a vector, we expect to have the matrix product PO as the result of O
acting first and then followed by P . On the other hand, since both exp(: f c2 :) and exp(: fa2 :)
are functions of the initial variable z, we expect to have the operator product exp(: f c2 :)
exp(: fa2 :) when exp(: f c2 :) acts first and is then followed by the action of exp(: fa2 :). But,
as we see from (3.21) and (3.22), exp(: fa2 :) corresponds to P and exp(: f c2 :) corresponds
to O. Thus, the orders on both sides of (3.23) are just as they should be.

Next consider the operator and matrix orders in (7.7.34). Here the operator and matrix
orders are the same rather than reversed! But look at (7.7.26). We see that in this case
the z’s transformed under the action of the transposed matrix MT . Thus the definition of
M as given in (7.7.26) is different from the definitions of P and O as given by (3.21) and
(3.22). One definition involved matrix transposition and the other did not. What (7.7.26)
and (7.7.34) teach us is that the inclusion of a transpose in the definition of M makes it
possible to have both operator and matrix orders the same.

To gain further insight into what is going on, it is useful to consider the general subject of
linear operators and matrices. We begin our discussion by examining simple transformation
properties of vectors under the action of linear operators. Consider a vector space V spanned
by basis vectors eα that are orthonormal under some scalar product (, ). Let L be a linear
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operator that sends V into itself. Suppose L sends eα into fα. Then we have a relation of
the form

fα = Leα =
∑
β

Lβαeβ. (8.3.24)

The coefficients Lβα are given in terms of the scalar product by the matrix elements

Lβα = (eβ,fα) = (eβ,Leα). (8.3.25)

Let A be some vector in V . Since the eα form a basis, A must have an expansion of the
form

A =
∑
α

aαeα. (8.3.26)

Consider a vector B defined by
B = LA. (8.3.27)

It must have an expansion of the form

B =
∑
β

bβeβ. (8.3.28)

From (3.25) through (3.28) and the orthonormality condition we find that the components
bβ are given by the relation

bβ = (eβ,B) = (eβ,LA) =
∑
α

aα(eβ,Leα)

=
∑
α

Lβαaα. (8.3.29)

We note that the summation in (3.24) is over the first index in L, and that in (10.6) is over
the second. Let us rewrite (3.24) in the form

fβ = Leβ =
∑
α

Lαβeα =
∑
α

(LT )βαeα. (8.3.30)

(Note that the indices α and β are dummy indices, and can be changed at will.) Upon
comparing (3.29) and (3.30), we see that if components are transformed by the matrix L,
then basis vectors are transformed by the transpose matrix LT , and vice versa.

8.3.3 Application to General Operators and General Monomials
to Construct Matrix Representations

Let us apply what we have just learned to operators M of the general form

M = exp(: f1 :) exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · , (8.3.31)

and monomials G(µ; ν) of the form (7.3.1). [Here the fj are homogeneous polynomials, and
are not to be confused with the fα of (3.24), which are abstract vectors.] We will view these
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monomials as basis vectors for the vector space of all polynomials. For this purpose, it is
convenient to subsume the indices µ, ν into a single index, which we will again call r. (For
a concrete way of making a one-to-one correspondence between the indices µ, ν and the
integers r, see Section 27.2.) We will thus work with a set of basis monomials Gr, and in
accord with (7.3.8) we will assign them a scalar product 〈, 〉 by the rule

〈Gr′ , Gr〉 = δr′r. (8.3.32)

Now let M act on a general basis vector Gr. Then we find a result of the form

MGr =
∑
s

MsrGs (8.3.33)

where the coefficients Msr are given in terms of the scalar product by the matrix elements

Msr = 〈Gs,MGr〉. (8.3.34)

Suppose N is another operator of the form (3.31). Then we also have the relation

NGr =
∑
s

NsrGs (8.3.35)

with the matrix Nsr given by
Nsr = 〈Gs,NGr〉. (8.3.36)

Now consider the effect of the operator product MN on Gr. Here all the Lie generators fj
appearing inM and N , as well as all the functions Gr, are assumed to depend on the same
set of variables z. Then, we find the result

MNGr = M
∑
s

NsrGs =
∑
s

NsrMGs

=
∑
s

Nsr

∑
t

MtsGt =
∑
st

MtsNsrGt

=
∑
t

(MN)trGt. (8.3.37)

We note that the ordering of the subscripts in (3.33) through (3.37) is analogous to that
used in (7.3.37) through (7.3.40). Indeed, let A and B be any two linear operators. They
could, for example, be Lie operators, or products of Lie operators, or sums of products of
Lie operators, or infinite sums of products, etc., including Lie transformations and their
products such as occur in (3.31). Define associated matrices O(A) and O(B) by rules of the
form

Osr(B) = 〈Gs,BGr〉. (8.3.38)

Then, since the G’s form a basis (are a complete set), we have the results

BGr =
∑
s

Osr(B)Gs, (8.3.39)
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ABGr = A
∑
s

Osr(B)Gs =
∑
s

Osr(B)AGs

=
∑
s

Osr(B)
∑
t

Ots(A)Gt =
∑
st

Ots(A)Osr(B)Gt

=
∑
t

(O(A)O(B))trGt. (8.3.40)

From (3.38) and (3.40) we obtain the general relation

O(AB) = O(A)O(B). (8.3.41)

We have found a matrix representation of the algebra of linear operators acting on function
space. It can be shown, in the case that these operators are Lie algebra or Lie group elements,
that these matrices are related to the adjoint representation. See Section 8.9.17

Note that, for a 6-dimensional phase space and for polynomials of degree 0 through m,
the matrices O are [S(m, 6) + 1]× [S(m, 6) + 1]. See Section 7.10. For example, in the case
m = 4, 210× 210 matrices are required. And, in the case m = 8, 3003× 3003 matrices are
required.

8.3.4 Application to Linear Transformations of Phase Space

Let us also apply what we have learned to the subject of linear transformations of phase
space into itself. Set up a Euclidean coordinate system in phase space with unit vectors ea
along the coordinate and momentum axes. Then the general point in phase space may be
identified with the vector z from the origin to that point, and z may be written in the form

z =
∑
a

zaea (8.3.42)

where the za are the usual coordinate variables. Suppose L is a linear transformation of
phase space into itself, and suppose L sends the vector z to the vector z,

z = Lz. (8.3.43)

The vector z must have an expansion of the form

z =
∑
b

zbeb. (8.3.44)

Correspondingly, in analogy to (3.25) through (3.29), the quantities zb and za are related by
the equation

zb =
∑
a

Lbaza. (8.3.45)

That is, the z’s transform as the components of a vector, as is consistent with relations of
the form (7.1.1) through (7.1.3), (7.6.1), (3.21), and (3.22).

17The fact that linear operators acting on function space can be represented by matrices is familiar to any
student of Quantum Mechanics. In the context of differential equations and maps, the matrix representation
can be realized by Carleman linearization, a construction suggested by Poincaré. See the references at the
end of this chapter.
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8.3.5 Dual role of the Phase-Space Coordinates za

So far we have regarded the za as the components of a vector as in (3.42). However, the za
are also functions on phase space. Indeed the za are special cases of the functions Gr, and,
according to (7.3.1) and (7.3.8), satisfy the orthonormality conditions

〈za, zb〉 = δab. (8.3.46)

Suppose M is of the form (7.7.28). Then, following (3.39), we find the result

zb(z) =Mzb =
∑
a

M1
abza (8.3.47)

where the matrix M1 is given by the relation

M1
ab = 〈za,Mzb〉. (8.3.48)

In addition, according to (7.3.41) through (7.3.45) or relations of the form (3.41), we have
the result

M1 = exp(F 1), (8.3.49)

where

F 1
ab = 〈za, : f2 : zb〉. (8.3.50)

Now observe that (3.47) can also be written in the form

zb(z) =
∑
a

[(M1)T ]baza. (8.3.51)

Thus in view of our earlier discussion, see (3.30) for example, and noting that a and b are
dummy indices, we conclude the convention used in (7.7.26) is equivalent to viewing the za
as basis vectors (which is consistent with treating the Gr as basis vectors) rather than as
components of a vector.

We have learned that the za play a dual role. If they are viewed as the components
of a displacement vector as in (3.42), then it is appropriate to write their transformation
law in the form (3.45) or (7.6.1). If they are viewed as functions, and therefore as special
cases of the basis vectors (functions) Gr, then it may be more convenient to write their
transformation law in the form (3.47) or, more generally, (3.33).

8.3.6 Extensions

We now turn to extensions of two results found previously. In our initial discussion of
symplectic maps in Section 6.1, a symplectic map was defined as a mapping of phase space
into itself that obeyed certain equivalent conditions such as (6.1.3) or (6.1.6) or (6.1.10). In
Chapter 7 we learned that symplectic maps can be written in terms of Lie transformations,
and obtained the factorizations (7.7.23) and (7.8.1). We also know from (5.4.13) and its
generalizations that Lie transformations act on functions, and that the action of a Lie
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transformation on a function is determined once its action is known on phase space. Indeed,
if a and b are any functions, then from (7.7.23), or (7.8.1), and (5.4.10) we have the results

Ma(z) = a(Mz), Ma(z)b(z) =Ma(z)Mb(z) = a(Mz)b(Mz). (8.3.52)

Thus, we may also view symplectic maps as entities that act on functions. [Note that we
have already encountered this idea in (6.3.6) and (7.1.11) when use is made of (7.7.11)].
Conversely, if we view symplectic maps as entities that act on functions, then, since the za
are functions, we get the action of symplectic maps on phase space from (7.7.11).

The property (3.52) is a consequence of the fact that Lie transformations are isomor-
phisms with respect to (ordinary) multiplication. See Section 5.4. We also know from
Section 5.4 that Lie transformations are isomorphisms with respect to Poisson bracket mul-
tiplication. See (5.4.14). It follows from (5.4.15) and its generalizations, and from (7.7.23)
or (7.8.1), that we also have the result

M[a, b] = [Ma,Mb]. (8.3.53)

Again, this result should already be familiar. When combined with (3.48), it yields the
result (6.3.20).

8.3.7 Sign Differences

The last question to be discussed in this section is the difference in sign between relations
such as (5.5.1) and (7.2.3). The simple answer is that the sign in (5.5.1) was selected to
achieve the correspondence (5.5.13), and that in (7.2.3) was selected to make (7.2.7) hold.
But why should the signs turn out to be different? Our discussion of this topic may seem
somewhat discursive. However, we shall learn some interesting concepts and facts along the
way.

Exercise 3.7.33 studied how, given some matrix representation of a Lie algebra, one
might find other similar or possibly different representations. Now let us carry out the
analogous discussion for the corresponding Lie group. Suppose some set of matrices gives
a respresentation of some group. To every representation matrix M we associate another
matrix M ′ by the rule

M ′ = M̄ (8.3.54)

where a bar denotes complex conjugation. Then these matrices satisfy the relation

M ′
1M

′
2 = (M1M2)′, (8.3.55)

and therefore also provide a representation of some group. If the matrices M are real, then
nothing new has been found. However, if the matrices M are complex and the structure
constants of the underlying Lie algebra cannot be made real by some appropriate basis choice,
then one must determine whether the resulting group is the same as the original group. If
the structure constants are real, then the group will be the same and the representation
given by the matrices M ′ may be different than that given by the matrices M . For example,
in the case of the group SU(3), if the matrices M provide the representation Γ(m,n), then
the matrices M ′ provide the representation Γ(n,m). See Section 5.8.
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Suppose, instead of using (3.54) to define M ′, we use the rule

M ′ = (MT )−1 = (M−1)T . (8.3.56)

Then theM ′ matrices defined in this way also satisfy (3.55), and also provide a representation
of the group in question. As an example, consider the case where the matrices M are
symplectic. The symplectic condition (3.1.2) can be written in the form

M ′ = (MT )−1 = JMJ−1. (8.3.57)

From (3.57) we see that in this case the matrices M ′ and M are similar, and hence the
representations of the group in question carried by M ′ and M are the same. As a second
example, suppose the matrices M are unitary,

M † = (M̄)T = M−1. (8.3.58)

Then we find the result

M ′ = (M−1)T = M̄. (8.3.59)

In this case the definitions (3.54) and (3.56) coincide. What happens if the matrices M
belong to SU(2)? Since these matrices are complex, we might hope that the “priming”
operation (3.59) would give something new. However, since matrices in SU(2) are 2 × 2
and have determinant +1, they must also be symplectic. See the comment after Exercise
3.1.3. Consequently, (3.57) must also hold, and we in fact find that both M ′ and M carry
the same representation.

Let M f be a symplectic matrix. Associate with M f a symplectic map M(M f ) by the
rule

M(M f )za =
∑
b

[(M f )−1]abzb. (8.3.60)

Note that (3.60) is analogous to (7.7.26) except that MT has been replaced by M−1. Let
M g be another symplectic matrix, and make the definitions

Mf =M(M f ), (8.3.61)

Mg =M(M g). (8.3.62)

Then if we regard Mf and Mg as composed of Lie transformations all involving the same
variable z we find, in analogy to (7.7.33), the result

MfMgza = M(M f )M(M g)za =M(M f )
∑
b

[(M g)−1]abzb

=
∑
b,c

[(M g)−1]ab[(M
f )−1]bczc

=
∑
c

[(M g)−1(M f )−1]aczc =
∑
c

[(M fM g)−1]aczc

= M(M fM g)za. (8.3.63)
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We see that the definition (3.60) makes it possible to have both operator and matrix orders
the same just as the definition (7.7.26) did. This result is not surprising in view of (3.56)
and (3.55).

From a group theory perspective, the advantage of (3.60) compared to (7.7.26) is that
the computation of M−1 is a group operation whereas the computation of MT is not.

Now that we have a relation that has both operator and matrix orders the same, we can
compare their respective Lie algebras. Let Sf and Sg be two symmetric matrices and use
them to define functions f2 and g2 as in (5.5.1) and (5.5.2),

f2 = (1/2)
∑
a,b

Sfabzazb, (8.3.64)

g2 = (1/2)
∑
a,b

Sgabzazb. (8.3.65)

Then we have results of the form

: f2 : z = (−JSf )z, (8.3.66)

and hence
exp(: f2 :)z = exp(−JSf )z = [exp(JSf )]−1z. (8.3.67)

Upon comparing (3.60) and (3.67), we find the results

Mf = exp(: f2 :) =M[exp(JSf )], (8.3.68)

Mg = exp(: g2 :) =M[exp(JSg)]. (8.3.69)

Now consider the product exp(ε : f2 :) exp(ε : g2 :) exp(−ε : f2 :) exp(−ε : g2 :) where ε is a
small quantity. Then, as a consequence of (3.63), we find the relation

exp(ε : f2 :) exp(ε : g2 :) exp(−ε : f2 :) exp(−ε : g2 :)

= M[exp(εJSf ) exp(εJSg) exp(−εJSf ) exp(−εJSg)]. (8.3.70)

The products occurring in (3.70) may be viewed as the group analog of what would be a
commutator at the Lie algebraic level. Indeed, from (2.27) and (2.28) we find through terms
of order ε2 the result

exp(ε : f2 :) exp(ε : g2 :) exp(−ε : f2 :) exp(−ε : g2 :) = exp(ε2 : [f2, g2] :). (8.3.71)

Similarly, from (3.7.34) we find through terms of order ε2 the result

exp(εJSf ) exp(εJSg) exp(−εJSf ) exp(−εJSg) = exp(ε2{JSf , JSg}). (8.3.72)

Now compare (3.70) through (3.72). Doing so gives through terms of order ε2 the result

exp(ε2 : [f2, g2] :) =M[exp(ε2{JSf , JSg})]. (8.3.73)

We are ready for the final step. Let h2 be the second-degree polynomial defined by the
relation

h2 = [f2, g2]. (8.3.74)
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Then, with Sh defined by

h2 = (1/2)
∑
a,b

Shabzazb, (8.3.75)

we have the result
Mh = exp(: h2 :) =M[exp(JSh)]. (8.3.76)

Now compare (3.73) and (3.76) to get the result

M[exp(ε2JSh)] =M[exp(ε2{JSf , JSg})]. (8.3.77)

We see that for consistency we must have the relation

JSh = {JSf , JSg}. (8.3.78)

This relation is identical to that in (5.5.13). The moral of this rather long tale is that the
sign in relations such as (5.5.1) was chosen so that, when (3.60) is used, it is possible to have
relations of the form (3.68) and to have both operator and matrix orders the same in (3.63);
and when the orders are the same it is easy to compare Lie algebras (exponents) as was
done in (3.68) through (3.73). On the other hand, the sign in relations such as (7.2.3) was
chosen to achieve relations such as (7.2.7) and (7.2.9), which are to be compared to (3.67).

Exercises

8.3.1. Verify (3.20).

8.3.2. From (3.38) show that O(A) +O(B) = O(A+ B).

8.3.3. Verify (3.52) using (5.4.13) and (7.7.23) or (7.8.1).

8.3.4. Verify (3.53) using (5.4.15) and (7.7.23) or (7.8.1).

8.3.5. Given (3.56), verify (3.55).

8.3.6. Show that the map (3.60) is indeed symplectic.

8.3.7. Verify (3.66) and (3.67).

8.3.8. Verify (3.70).

8.3.9. Verify (3.71) and (3.72).

8.4 Lie Concatenation Formulas

As an application of the formulas and ideas developed so far, consider the problem of com-
puting the product of two symplectic maps when each is expressed in factored product form.
This problem arises in accelerator physics, for example, in the case that one knows the effect
of each of two beam elements separately, and one wants to know the net effect when one
beam element is followed by another. For simplicity, in this section we will consider maps



8.4. LIE CONCATENATION FORMULAS 935

that send the origin into itself, i.e. maps of the form (7.6.3). The most general case of maps
that include leading and trailing translations, i.e. maps of the form (7.7.23), will be treated
in the next chapter.

Let Mf and Mg denote the symplectic maps given by the expressions

Mf = exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · , (8.4.1)

Mg = exp(: gc2 :) exp(: ga2 :) exp(: g3 :) exp(: g4 :) · · · . (8.4.2)

Also, let Mh be the product of Mf and Mg,

Mh =MfMg. (8.4.3)

The problem is to find polynomials hc2, h
a
2, h3, etc. such that

Mh = exp(: hc2 :) exp(: ha2 :) exp(: h3 :) exp(: h4 :) · · · . (8.4.4)

That is, the problem is to express Mh as given by (4.3) in the factored product form
(4.4). For simplicity, only expressions for hc2, h

a
2, h3, · · ·h8 will be found explicitly. Here, as

described in Section 8.3, all polynomials fj, gj, and hj are taken to be functions of the same
variable z.

Before proceeding further, it is necessary to establish a few simple facts. Suppose g2 is
a quadratic polynomial written in the form

g2 = −(1/2)
∑
de

Sdezdze = −(1/2)(z, Sz), (8.4.5)

where S is some symmetric matrix. Suppose further that fm is some homogeneous polyno-
mial of degree m. Then exp(: g2 :)fm is also a homogeneous polynomial of degree m. Indeed,
we have the result

exp(: g2 :)fm(z) = fm[exp(: g2 :)z] = fm(M gz), (8.4.6)

where M g is the linear transformation defined by the equation

M g = exp(JS). (8.4.7)

See (5.4.11) and Section 7.2. Suppose further that gc2 and ga2 are quadratic polynomials
written in the forms

ga2 = −(1/2)(z, Saz), (8.4.8)

gc2 = −(1/2)(z, Scz). (8.4.9)

Then we have the result

exp(: gc2 :) exp(: ga2 :)fm(z) = fm[exp(: gc2 :) exp(: ga2 :)z] = fm(Rgz), (8.4.10)

where Rg is the linear transformation defined by the equations

Rg = P gOg, (8.4.11)
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P g = exp(JSa), (8.4.12)

Og = exp(JSc). (8.4.13)

See Section 7.2. Let us introduce the symplectic map Rg defined by the equation

Rg = exp(: gc2 :) exp(: ga2 :). (8.4.14)

What we have established is the relation

Rgfm(z) = fm(Rgz). (8.4.15)

Actually, (4.15) is not quite what will be needed. What we will need is the relation

(Rg)
−1fm(z) = fm[(Rg)−1z]. (8.4.16)

This relation can be established in a similar fashion. Note that, thanks to the symplectic
condition, the matrix (Rg)−1 required in (4.16) is easily calculated using (3.1.9).

We are now ready to continue. Simply from its definition (4.3), Mh can be written in
the form

Mh = Rf exp(: f3 :) exp(: f4 :) · · ·Rg exp(: g3 :) exp(: g4 :) · · · . (8.4.17)

Here we have used (4.14) and an analogous definition for Rf . Next, by insertion of a factor
of Rg(Rg)

−1, (4.17) can be rewritten in the form

Mh = RfRg(Rg)
−1 exp(: f3 :) exp(: f4 :) · · ·Rg exp(: g3 :) exp(: g4 :) · · · . (8.4.18)

Evidently, comparison of (4.4) and (4.18) shows that hc2 and ha2 are determined by the
equation

Rh = RfRg. (8.4.19)

Indeed, we have the result
Rh = RgRf , (8.4.20)

where Rg is defined by (4.11) through (4.13), and Rf and Rh are defined by analogous
relations. See Section 8.3.

Next define a function F of the Lie operators : f3 :, : f4 :, · · · by the relation

F (: f3 :, : f4 :, · · · ) = exp(: f3 :) exp(: f4 :) · · · . (8.4.21)

Evidently (4.18) contains the factor (Rg)
−1FRg. As a consequence of (2.25) we have the

result

(Rg)
−1F (: f3 :, : f4 :, · · · )Rg = F (: f3[(Rg)−1z] :, : f4[(Rg)−1z] :, · · · ). (8.4.22)

In order to simplify further expressions, introduce the notation

f trm (z) = fm[(Rg)−1z], (8.4.23)
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which indicates that the homogeneous polynomial fm(z) of degree m has been transformed
to the new homogeneous polynomial fm[(Rg)−1z]. With this notation, (4.22) can be written
in the more compact form

(Rg)
−1F (: f3 :, : f4 :, · · · )Rg = F (: f tr3 :, : f tr4 :, · · · ) = exp(: f tr3 :) exp(: f tr4 :) · · · . (8.4.24)

Putting together the work done so far, one finds that (4.18) can also be written in the
form

Mh = Rh exp(: f tr3 :) exp(: f tr4 :) · · · exp(: g3 :) exp(: g4 :) · · · . (8.4.25)

Upon comparing (4.4) and (4.25), we find the result

exp(: h3 :) exp(: h4 :) · · · = exp(: f tr3 :) exp(: f tr4 :) · · · exp(: g3 :) exp(: g4 :) · · · . (8.4.26)

We are now prepared to compute h3, h4, · · · in terms of f tr3 , f
tr
4 , · · · and g3, g4, · · · . The tool

for doing so will be the BCH formula as given by (2.27) and (2.28). We will also use the
degree function defined in (7.6.13) and the relation (7.6.14). They are reproduced below for
ready reference,

deg(fm) = m, (8.4.27)

deg([fm, fn]) = m+ n− 2. (8.4.28)

Consider the result of combining all exponents on the left side of (4.26) into one grand
exponent h by repeated use of the BCH formula. Then, thanks to (4.28), it is relatively easy
to pick out and collect various terms according to their degree. One finds the result

h = h3 + h4 + {(1/2)[h3, h4] + h5}+ · · · . (8.4.29)

Next, consider the result of combining all exponents on the right side of (4.26) into one
grand exponent e. One finds the result

e = {f tr3 + g3}+ {(1/2)[f tr3 , g3] + f tr4 + g4}+ · · · . (8.4.30)

Now compare (4.29) and (4.30). By equating terms of like degree, we immediately obtain
the results

h3 = f tr3 + g3, (8.4.31)

h4 = f tr4 + g4 + [f tr3 , g3]/2. (8.4.32)

With further work, it is possible to find the polynomials h5, h6, etc. Doing so one finds, for
example, the results

h5 = f tr5 + g5 − [g3, f
tr
4 ] +

1

3
: g3 :2 f tr3 −

1

6
: f tr3 :2 g3, (8.4.33)

h6 = f tr6 + g6 − [g3, f
tr
5 ] +

1

2
: g3 :2 f tr4 +

1

2
[f tr4 , g4]− 1

4
[f tr4 , [f

tr
3 , g3]]

− 1

4
[g4, [f

tr
3 , g3]] +

1

24
: f tr3 :3 g3 −

1

8
: g3 :3 f tr3

+
1

8
[f tr3 , [g3, [f

tr
3 , g3]]], (8.4.34)
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h7 = f tr7 + g7 − : g3 : f tr6 − : g4 : f tr5 +
1

2
: g3 :2 f tr5

+
1

2
: f tr4 :: g3 : f tr4 + : g4 :: g3 : f tr4 +

1

3
: g3 :: f tr4 :: f tr3 : g3

− 1

6
: g3 :3 f tr4 −

1

6
: g4 :: f tr3 :: g3 : f tr3 −

1

6
: f tr4 :: f tr3 :: g3 : f tr3

− 1

3
: g4 :: g3 :2 f tr3 −

1

3
[: g3 : f tr3 , : g3 : f tr4 ]

− 1

120
: f tr3 :4 g3 −

1

30
: g3 :: f tr3 :3 g3 −

1

20
: g3 :2: f tr3 :2 g3

+
1

30
: g3 :4 f tr3 +

1

30
[: f tr3 : g3, : f

tr
3 :2 g3] +

1

15
[: g3 : f tr3 , : g3 :2 f tr3 ], (8.4.35)

h8 = f tr8 + g8 − : g3 : f tr7 − : g4 : f tr6 −
1

2
: g5 : f tr5

+
1

2
: g3 :2 f tr6 +

1

2
: f tr5 :: g3 : f tr4 + : g4 :: g3 : f tr5 +

1

2
: g5 :: g3 : f tr4 +

1

3
: g4 :2: f tr4

+
1

6
: f tr4 :: g4 : f tr4 −

1

6
: g3 :3: f tr5 −

1

12
: f tr5 :: f tr3 :: g3 : f tr3 −

1

6
: g3 :: f tr5 :: g3 : f tr3

− 1

12
: g5 :: f tr3 :: g3 : f tr3 −

1

6
: g5 :: g3 :2 f tr3 −

1

6
[: g3 : f tr3 , : g3 : f tr5 ]

− 1

6
: f tr4 :2: g3 : f tr3 −

1

4
: g3 :: f tr4 :: g3 : f tr4 −

1

3
: g4 :: f tr4 :: g3 : f tr3

− 1

2
: g4 :: g3 :2 f tr4 −

1

6
[: g3 : f tr3 , : g4 : f tr4 ]− 1

6
: g4 :2: g3 : f tr3

+
1

24
: f tr4 :: f tr3 :2: g3 : f tr3 +

1

8
: g3 :: f tr4 :: f tr3 :: g3 : f tr3 +

1

8
: g3 :2: f tr4 :: g3 : f tr3

+
1

24
: g3 :4 f tr4 −

1

24
[: g3 : f tr4 , : f

tr
3 :: g3 : f tr3 ]− 1

12
[: g3 : f tr4 , : g3 :2 f tr3 ]

+
1

24
[: g3 : f tr3 , : f

tr
4 :: g3 : f tr3 ] +

1

8
[: g3 :: f tr3 :, : g3 :2 f tr4 ] +

1

24
: g4 :: f tr3 :2: g3 : f tr3

+
1

8
: g4 :: g3 :: f tr3 :: g3 : f tr3 +

1

8
: g4 :: g3 :3 f tr3 : +

1

24
[: g3 : f tr3 , : g4 :: g3 : f tr3 ]

− 1

720
: f tr3 :4: g3 : f tr3 −

1

144
: g3 :: f tr3 :3: g3 : f tr3 −

1

144
[: g3 : f tr3 , : f

tr
3 :2: g3 : f tr3 ]

− 1

72
: g3 :2: f tr3 :2: g3 : f tr3 −

1

48
[: g3 : f tr3 , : g3 :: f tr3 :: g3 : f tr3 ]− 1

72
: g3 :3: f tr3 :: g3 : f tr3

− 1

48
[: g3 : f tr3 , : g3 :3 f tr3 ]− 1

144
: g3 :5 f tr3 . (8.4.36)

Upon examining the expressions for h4, h5, h6, etc. we see that they contain both what
we will call direct terms and what we will call feed-up terms. For example, consider h4 as
given by (4.32). It contains the direct terms f tr4 and g4 which come from like terms in Mf

and Mg. It also contains the feed-up term [f tr3 , g3] which comes from lower-order terms in
Mf andMg. We see that low-order nonlinearities, when combined, can lead to higher-order
nonlinearities.
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There is also a way of getting relations such as (4.31) through (4.36) directly without use
of the BCH formula. Suppose we expand all the exponentials appearing in (4.26). Doing so
gives a relation of the form

(1+ : h3 : + : h3 :2 /2! + · · · )(1+ : h4 : + · · · ) · · ·
= (1+ : f tr3 : + : f tr3 :2 /2! + · · · )(1+ : f tr4 : + · · · ) · · · ×
(1+ : g3 : + : g3 :2 /2! + · · · )(1+ : g4 : + · · · ) · · · . (8.4.37)

Next carry out the indicated multiplications and group terms according to the degree of the
polynomial that would be produced if these terms were to act on z. We find the result

1+ : h3 : +(: h3 :2 /2!+ : h4 :) + · · · = 1 + (: f tr3 : + : g3 :)

+(: f tr3 :: g3 : + : f tr3 :2 /2! + : g3 :2 /2! + : f tr4 : + : g4 :) + · · · . (8.4.38)

Now equate terms of like degree to find results of the form

: h3 :=: f tr3 : + : g3 :, (8.4.39)

: h3 :2 /2!+ : h4 : = : f tr3 :: g3 : + : f tr3 :2 /2! + : g3 :2 /2! + : f tr4 : + : g4 : . (8.4.40)

Evidently (4.39) is equivalent to (4.31). Also, if we substitute (4.39) into (4.40) and rearrange
terms, we find the result

: h4 : = : f tr4 : + : g4 : + : f tr3 :: g3 : −(1/2)(: f tr3 :: g3 : + : g3 :: f tr3 :)

= : f tr4 : + : g4 : +(1/2){: f tr3 :, : g3 :}. (8.4.41)

We see, with the aid of (4.3.14), that (4.41) corresponds to (4.32). Similarly, if we retain
more terms in (4.38), we can derive the relations (4.33) through (4.36), etc.

There is an equivalent but somewhat more elegant way of carrying out the same cal-
culation. As before we expand all the exponentials appearing on the right side of (4.26);
however, we retain the left side in factored product form. As a result we find the relation

exp(: h3 :) exp(: h4 :) · · · = (1+ :f tr
3 : + :f tr

3 :2/2! + · · · )×
(1+ : f tr

4 : + · · · ) · · · × (1+ : g3 : + : g2
3/2! + · · · )(1+ : g4 : + · · · ) · · ·

= 1 + (:f tr
3 : + :g3:) + (:f tr

3 ::g3: + :f tr
3 :2/2! + :g3:

2/2! + :f tr
4 : + :g4:) + · · · . (8.4.42)

From (4.42) we infer, as before, the relation (4.39). But now we multiply both sides of (4.42)
on the left by exp(− : h3 :) and make use (4.39) to find the result

exp(: h4 :) · · · = exp[−(: f tr
3 : + : g3 :)]× [1 + (: f tr

3 : + : g3 :)

+(: f tr
3 :: g3 : + : f tr

3 :2 /2! + : g3 :2 /2! + : f tr
4 : + : g4 :) + · · · ]. (8.4.43)

Next we expand the exponential on the right side of (4.43) and carry out the indicated
multiplications to get the relation

exp(: h4 :) · · · = 1 + [(: f tr
3 :: g3 : − : g3 :: f tr

3 :)/2+ : f tr
4 : + : g4 :] + · · · . (8.4.44)
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At this point we are ready to repeat the process: From (4.44) we infer, again as before, the
relation (4.41). Next we multiply both sides of (4.44) on the left by exp(− : h4 :), make use
of (4.41), etc. This process is reminiscent of the factorization algorithm employed in Section
7.6. It is clear that it can be repeated indefinitely to find expressions for the : hm : for ever
larger values of m. The only major problem (which also occurred before) is to write these
expressions in commutator form so that the outer colons can be removed [using (5.3.14)] to
obtain final results in the form (4.31) through (4.36), etc.

The problem of writing expressions in commutator form is solved by a result of Dynkin.
Let x1, x2, · · ·xn be a collection of noncommuting variables. Suppose P is a polynomial in
these variables of the form

P =
∑

ai1i2···ikxi1xi2 · · ·xik . (8.4.45)

Note that each term contains k factors, not necessarily distinct, and therefore P is homo-
geneous of degree k. For each monomial xi1xi2 · · ·xik form a related multiple commutator
(xi1xi2 · · ·xik)0 by the rule

(xi1xi2 · · ·xik)0 = (1/k){· · · {xi1 , xi2}, xi3}, · · ·xik}. (8.4.46)

Also suppose it is known in principle that P can be written in terms of commutators (as
is our situation thanks to the BCH formula). Then, Dynkin proved, one such commutator
form for P is

P =
∑

ai1i2···ik(xi1xi2 · · ·xik)0. (8.4.47)

Here it is helpful to work out an example. In the process of calculating h5 based on
(4.37) one finds the intermediate result

: h5 :=: f tr5 : + : g5 : + : f tr4 :: g3 : − : g3 :: f tr4 : + P (8.4.48)

with P given by the relation

P (: f tr3 :, : g3 :) = − : f tr3 :2: g3 : /6 + : f tr3 :: g3 :: f tr3 : /3

+ : f tr3 :: g3 :2 /3 − : g3 :: f tr3 :2 /6− (2/3) : g3 :: f tr3 :: g3 :

+ : g3 :2: f tr3 : /3. (8.4.49)

The problem is to put P in commutator form. Following (4.46) gives the results

(: f tr3 :2: g3 :)0 = (1/3){{: f tr3 :, : f tr3 :}, : g3 :} = 0,

(: f tr3 :: g3 :: f tr3 :)0 = (1/3){{: f tr3 :, : g3 :}, : f tr3 :},
(: f tr3 :: g3 :2)0 = (1/3){{: f tr3 :, : g3 :}, : g3 :},
(: g3 :: f tr3 :2)0 = (1/3){{: g3 :, : f tr3 :}, : f tr3 :},

(: g3 :: f tr3 :: g3 :)0 = (1/3){{: g3 :, : f tr3 :}, : g3 :},
(: g3 :2: f tr3 :)0 = (1/3){{: g3 :, : g3 :}, : f tr3 :} = 0. (8.4.50)

Consequently, according to Dynkin, P can be written in the commutator form

P = (1/9){{: f tr3 :, : g3 :}, : f tr3 :}+ (1/9){{: f tr3 :, : g3 :}, : g3 :}
− (1/18){{: g3 :, : f tr3 :}, : f tr3 :} − (2/9){{: g3 :, : f tr3 :}, : g3 :}. (8.4.51)
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Note that h5 as given by (4.48) with P given by (4.51) bears only some resemblence to
the h5 in (4.33). However, repeated use of the antisymmetry condition (3.7.41) gives the
results

{{: f tr3 :, : g3 :}, : f tr3 :} = −{: f tr3 :, {: f tr3 :, : g3 :}},

{{: f tr3 :, : g3 :}, : g3 :} = {: g3 :, {: g3 :, : f tr3 :}},

{{: g3 :, : f tr3 :}, : f tr3 :} = {: f tr3 :, {: f tr3 :, : g3 :}},

{{: g3 :, : f tr3 :}, : g3 :} = −{: g3 :, {: g3 :, : f tr3 :}}. (8.4.52)

Inserting these results into P as given by (4.51) brings it to the form

P = (1/3){: g3 :, {: g3 :, : f tr3 :}} − (1/6){: f tr3 :, {: f tr3 :, : g3 :}}, (8.4.53)

and h5 as given by (4.48) with this P is the “colonized” version of (4.33).
This example illustrates both the use of Dynkin’s theorem and a further complication.

The complication is to determine when two expressions involving multiple Lie products are
in fact equivalent when due account is taken of the antisymmetry condition (3.7.41) and/or
the Jacobi condition (3.7.42). One method to compare expressions is to realize the Lie
products in terms of commutators and then expand out all commutators to obtain a sum of
monomials. If the two monomial sums agree term by term, then the two multiple Lie product
expressions are equivalent. For example, expanding out P as given by (4.51) or (4.53) both
produce (4.49). However, this expansion method is awkward since the expanded version may
contain a very large number of terms. Another method is to employ some basis in standard
form in which only certain multiple Lie product terms occur (with all other possible terms
being brought to standard form by use of the antisymmetry and Jacobi conditions). Two
multiple Lie product expressions are then equivalent if they agree term by term when re-
expressed in some standard form basis. (Obviously their expanded commutator realizations
will then also agree.) Two possible such bases are the Hall and Chen-Fox-Lyndon-Shirshov
bases. See Appendix C.

There are yet another concerns when one is interested in numerical implementations.
Because Lie multiplications (Poisson bracketing) are time consuming, it is desirable to min-
imize their number. For example, if only h3 through h5 were needed, the relations (4.32)
and (4.33) could be rewritten and utilized in the form

h4 = f tr4 + g4 − (1/2)[g3, f
tr
3 ], (8.4.54)

h5 = f tr5 + g5 + [g3,−f tr4 + (1/3)[g3, f
tr
3 ]] + (1/6)[f tr3 , [g3, f

tr
3 ]]. (8.4.55)

In this form a total of only three Poisson brackets is required. Also there is the sometimes
conflicting desire to rearrange terms so that quantities already calculated can be reused to
maximum benefit. Thus, the strategy might change if one wished to compute h6, h7, · · ·
as well. Finally, in actual practice, the quantities g3, g4, · · · may be sparse (most possible
monomials in them having vanishing coefficients). In this case it is desirable to arrange
the Poisson bracket terms in such a way that Poisson bracket routines designed to exploit
sparseness can be employed. [The expansions (4.54) and (4.55) above have been arranged
to exploit possible sparseness in g3.] See Section 27.8.



942 8. A CALCULUS FOR LIE TRANSFORMATIONS AND . . .

We close this section by noting that there is yet another way of finding Lie concatenation
formulas without needing the BCH coefficients, and it has the added advantage of immedi-
ately yielding results in Lie form. At present we do not have at our disposal all the tools
required for its presentation. They will be developed in Chapter 10. See Section 10.5 where
the subject of Lie concatenation is again discussed.

Exercises

8.4.1. Verify (4.16).

8.4.2. Verify (4.29) and (4.30).

8.4.3. Verify (4.31) through (4.33).

8.4.4. Starting with (4.37), verify (4.38) through (4.41).

8.4.5. Derive (4.48) and (4.49) from (4.37).

8.4.6. Expand out (4.51) and (4.53), and verify that both expansions produce (4.49).

8.4.7. Let us refer to a multiple commutator of the kind that appears in (4.46) as a left nest.
Show that every left nest can be re-expressed as a right nest. That is show, by repeated use
of the antisymmetry condition, that there is the relation

{· · · {xi1 , xi2}, xi3}, · · ·xik} = (−1)k−1{xik , {xik−1
, {xik−2

, · · · {xi2 , xi1} · · · }
= (−1)k−1#xik##xik−1

# #xik−2
# · · ·#xi2#xi1 . (8.4.56)

8.5 Map Inversion and Reverse Factorization

Suppose the map Mf is written in the factored product form

Mf = Rf exp(: f3 :) exp(: f4 :) · · · . (8.5.1)

Here, as in the previous section, Rf denotes the map

Rf = exp(: f c2 :) exp(: fa2 :) (8.5.2)

that is associated with the linear transformation Rf given by the matrix relation

Rf = exp(JSa) exp(JSc). (8.5.3)

It follows immediately from (5.1) that the inverse of Mf has the representation

(Mf )
−1 = · · · exp(− : f4 :) exp(− : f3 :)(Rf )

−1. (8.5.4)

Although (5.4) gives a possible representation for the inverse of Mf , it is in the form of
a reverse factorization. We would also like to have a representation in the standard forward
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factorization. That is, we wish also to have a representation for the inverse of Mf in the
form

(Mf )
−1 = Rh exp(: h3 :) exp(: h4 :) · · · . (8.5.5)

See Section 7.8. This is easily accomplished with the aid of the concatenation formulas of
the previous section. We simply write (5.4) and (5.5) in the form

· · · [exp(− : f4 :)][exp(− : f3 :)][(Rf )
−1] = Rh exp(: h3 :) exp(: h4 :) · · · (8.5.6)

where we have used square brackets to indicate that the various maps are to be concatenated
together. See Exercise 5.1. In particular, as needed in the next paragraph, we have the
results

Rh = (Rf )
−1, (8.5.7)

Rh = (Rf )−1. (8.5.8)

Note again, as a result of the symplectic condition, that the matrix (Rf )−1 is easily calculated
using (3.1.9).

The relation (5.5) also provides a procedure for reverse factorizing a map. Suppose we
wish to represent Mf in reverse factorized form. That is, we wish to find generators gm
such that

Mf = Rf exp(: f3 :) exp(: f4 :) · · · = · · · exp(: g4 :) exp(: g3 :)Rg. (8.5.9)

Simply take the inverse of both sides of (5.9) and use (5.5) to get the relation

(Rg)
−1 exp(− : g3 :) exp(− : g4 :) · · · = Rh exp(: h3 :) exp(: h4 :) · · · . (8.5.10)

From (5.10) and (5.7) we find the desired results

Rg = (Rh)
−1 = Rf , (8.5.11)

gm = −hm. (8.5.12)

Exercises

8.5.1. Verify (5.7) and (5.8). Show that h3, h4, and h5 are given by the formulas

h3 =, (8.5.13)

h4 =, (8.5.14)

h5 = . (8.5.15)

8.5.2. Verify (5.11) and (5.12).
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8.6 Taylor and Hybrid Taylor-Lie Concatenation and

Inversion

Section 8.4 treated the problem of concatenating two maps, both of which were in factored-
product Lie form, to obtain their product, again in factored-product Lie form. We also
know that maps can be written in Taylor form. See Section 7.5. For some applications it is
useful to have concatenation procedures for which one or more of the maps is in Taylor form.
Several possibilities arise, as illustrated in Figure 6.1. Of course, we can always pass back
and forth between the Taylor and factored-product Lie forms (see Section 7.6 and Exercise
7.6.12) so that in principle we already have all needed results. However, it is also desirable
to have procedures that work directly with Taylor maps. Four cases of particular interest
are discussed below.

Map     1 in Lie

or Taylor form

Product map    3=    1    2

in Lie or Taylor form

Map     2 in Lie

or Taylor form

Concatenator

Figure 8.6.1: Various possibilities for the representation of maps in the operation of con-
catenation.

Let us begin with the case where bothM1 andM2 are in Taylor form, and we desire as
well to represent the product M3 = M1M2 in Taylor form. Suppose that M1 sends z to
z, and we express this fact in the form of a Taylor series that is truncated beyond terms of
degree D,

M1 : z → z (8.6.1)
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with

za = za(z) =
D∑

m=1

g1
a(m; z). (8.6.2)

Here the g1
a(m; z) denote homogeneous polynomials of degree m in the variables z. Similarly,

M2 sends z to
=
z,

M2 : z →=
z (8.6.3)

with
=
za=

=
za(z) =

D∑
m′=1

g2
a(m

′; z). (8.6.4)

What we desire is a representation for M3 of the form

M3 : z →=
z (8.6.5)

with
=
za=

=
za(z) =

D∑
m′′=1

g3
a(m

′′; z). (8.6.6)

Upon comparing (6.4) and (6.6) we see that the polynomials g3
a are given by the relations

g3
a(m

′′; z) = Pm′′
D∑

m′=1

g2
a(m

′; z(z)). (8.6.7)

Here Pm′′ denotes a projection operator that retains only terms of degree m′′ in the variables
z.

To verify the truth of (6.7), we observe that the quantities g2
a(m

′, z) in (6.4) are linear
combinations of monomials in the z’s of degree m′. When these monomials are computed
using (6.2), the results are linear combinations of monomials in the z’s of degree as high as
m′D. For example, second-order monomials in the z’s are given by the relation

zczd =
D∑

m′=1

g1
c (m

′; z)
D∑

m′′=1

g1
d(m

′′; z). (8.6.8)

From these monomials we need to extract the terms of degree m in the z’s in order to find
their contribution to the g3

a(m; z),

Pm(zczd) =
∑

m′+m′′=m

g1
c (m

′; z)g1
d(m

′′; z). (8.6.9)

We conclude that the operation of concatenating maps in Taylor form involves the mul-
tiplication of truncated Taylor series, the extraction of terms of various degrees from the
resulting products, and the assembly of linear combinations of these terms to form the trun-
cated Taylor expansion (6.6) for the resulting mapM3. All these operations can in principle
be carried out in a straight-forward manner to arbitrary order on a computer using various
algorithms for Truncated Power Series Algebra (TPSA).
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z

z
–

––
zLie form Taylor form

1 2

Figure 8.6.2: Product of a map in Lie form with a map in Taylor form.

In a second important case M1 is in Lie form, M2 is in Taylor form, and we desire or
are content to know their product in Taylor form. See Figure 6.2. According to (6.4) we
can express the action of M2 in Taylor form by writing the relations

=
za (z) = TDa (z) (8.6.10)

where

TDa (z) =
D∑

m′=1

g2
a(m

′; z). (8.6.11)

We also have the relations
za(z) =M1z, (8.6.12)

g2
a(m

′; z(z)) = g2
a(m

′;M1z) =M1g
2
a(m

′; z). (8.6.13)

Here we have used (5.4.13). Consequently, we have the result

=
za (z) =M1T

D
a (z). (8.6.14)

At this point we recognize that there are three common ways thatM1 may be specified
in Lie form. First, suppose that M1 is given in terms of a single exponent,

M1 = exp(: h :), (8.6.15)

where h has a homogeneous polynomial expansion of the form

h = h2 + h3 + · · ·+ hD+1. (8.6.16)

[Note that, consistent with truncating maps beyond terms of degree D, we have truncated
h beyond terms of degree (D + 1).] Maps of this kind arise from autonomous systems. See
Sections 7.4 and 10.5. In this case we may expand exp(: h :) to get the result

=
za (z) =

∞∑
`=0

(1/`!) : h :` TDa (z). (8.6.17)

Correspondingly, we have from (6.6) the result

g3
a(m, z) = Pm

D∑
m′=1

∞∑
`=0

(1/`!) : h :` g2
a(m

′; z). (8.6.18)
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In the circumstance that h2 = 0, each sum over ` (for a given m and m′) reduces to a
finite sum because of (7.6.16). In the case that h2 does not vanish, an infinite sum (for
each value of m′) is generally required. It can be shown, by an argument similar to that
given in Section 10.5, that these sums always converge thanks to the (1/`!) factor. However,
all the caveats described in Section 4.1 concerning the use of Taylor series to evaluate the
exponential function also apply here.

Suppose, as a second possibility, that M1 is given in the factored product form

M1 = Rf exp(: f3 :) exp(: f4 :) · · · exp(: fD+1 :). (8.6.19)

Let Nf be the nonlinear part of M1,

Nf = exp(: f3 :) exp(: f4 :) · · · exp(: fD+1 :). (8.6.20)

According to (6.14) we need to find the quantities

M1T
D
a (z) = RfNfTDa (z). (8.6.21)

Introduce the intermediate results T̃Da and g̃3
a(m; z) defined by the equations

T̃Da (z) = NfTDa (z), (8.6.22)

g̃3
a(m; z) = Pm

D∑
m′=1

Nfg2
a(m

′; z). (8.6.23)

Then, by construction, we have the relation

T̃Da (z) =
D∑

m=1

g̃3
a(m; z). (8.6.24)

Next expand the exponentials appearing in (6.20). Doing so brings (6.23) to the form

g̃3
a(m; z) = Pm

D∑
m′=1

∞∑
`3=0

(1/`3!) : f3 :`3 · · ·
∞∑

`D+1=0

(1/`D+1!) : fD+1 :`D+1 g2
a(m

′; z). (8.6.25)

Again because of (7.6.16), each of the sums over `3 · · · `D+1 (for a given m and m′) reduces
to a finite sum. The remaining task is to take Rf into account. This is easily done. Again
by construction we have the relation

g3
a(m; z) = Rf g̃

3
a(m; z). (8.6.26)

Now use the analog of (8.4.15) to get the final result

g3
a(m; z) = g̃3

a(m;Rfz). (8.6.27)

A third common possibility is that M1 arises in Lie form as a result of the use of some
kind of Zassenhauss (symplectic integration) approximation. In this case M1 is typically a
product of Lie transformations of the form

M1 = exp(w1h : A :) exp(w2h : B :) · · · exp(wmh : A :) (8.6.28)
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where the wj are various weights and h is the integration step size. See Section 10.8. Here the
function A is typically a second-degree polynomial, and the function B has a homogeneous
polynomial expansion consisting of terms of degree three and higher. If A is a second-degree
polynomial, then exp(wjh : A :) is a linear transformation that can be represented by some
matrix R, and we can use methods analogous to (6.26) and (6.27). If B consists only of
terms of degree three and higher, then exp(wjh : B :) can be expanded in a Taylor series to
give results analogous to (6.18) and for which only a finite number of ` values contribute.

We have seen how to find, in Taylor form, the product of a map in Lie form with a
second map in Taylor form. Consider, as case three, the situation in which the two maps to
be multiplied are both in Lie form, and we want their product in Taylor form. An obvious
approach is to convert the second map from Lie to Taylor form, and then proceed as just
described. This conversion is easily carried out as in Exercise 7.6.12. Equivalently, we may
use the machinery just developed. The map M2 can always be written as

M2 =M2I (8.6.29)

where I is the identity map. But the identity map has the immediate Taylor expansion

Iza = za. (8.6.30)

Therefore, to find M2 in Taylor form, we simply concatenate M2 in Lie form with the
identity map I in Taylor form.

As a generalization of this approach, suppose we wish to concatenate m maps in Lie
form and obtain the net result in Taylor form,

Mnet =M1M2M3 · · ·Mm. (8.6.31)

Rewrite the desired result in the form

Mnet =M1(M2(M3 · · · (MmI) · · · )), (8.6.32)

and observe that each mapMj in Lie form is now to be concatenated with a map in Taylor
form to produce a map again in Taylor form. Thus, after m concatenations [namely,MmI,
Mm−1(MmI), Mm−2(Mm−1(MmI)), etc.] we obtain Mnet in Taylor form. At this stage
we may, if desired, obtain Mnet in Lie form from Mnet in Taylor form by carrying out the
steps of the Factorization Theorem of Section 7.6.

A fourth case of interest is that in which the two maps to be multiplied are both in Lie
form, and we also want their product in Lie form. This case has already been discussed in
Section 8.4 where the BCH formula was used to find the quantities h3, h4, · · · in the relation
(4.26). The result was explicit formulas of the form (4.31) through (4.36). These formulas
become ever more complicated as the order is increased.

If one is content with numerical results, which is often the case, then the hm can be
computed algorithmically for any order m, without recourse to the BCH series, by Taylor
methods as described above. To be explicit, and with reference to (4.26), define variables
za(z) by the relations

za = exp(: f tr3 :) exp(: f tr4 :) · · · exp(: g3 :) exp(: g4 :) · · · za. (8.6.33)
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Then we have the result

exp(: h3 :) exp(: h4 :) · · · za = za(z). (8.6.34)

Next let T D be a truncation operator that acts on Taylor series. It is defined to be a
linear operator that retains all terms in a Taylor series of degree less than or equal to D, and
discards all terms of degree greater than D. With the aid of this operator we may define
truncated Taylor series TDa (z) by the relation

TDa (z) = T Dza = T D exp(: f tr3 :) exp(: f tr4 :) · · · exp(: g3 :) exp(: g4 :) · · · za. (8.6.35)

Evidently, in view of (7.6.14), to compute the TDa it is only necessary to retain the factors
containing f tr3 · · · f trD+1 and g3 · · · gD+1 in (6.35). Moreover, only a finite number of terms
need be retained in each exponential series. Therefore, for a fixed D, only a finite number of
operations are required to evaluate (6.35) to find the TDa . Finally, examination of the proof
of the Factorization Theorem of Section 7.6 shows that the desired quantities h3 · · ·hD+1

can be found from the TDa by a finite number of operations. Moreover, unlike the case of the
BCH series whose coefficients are very complicated, the only coefficients required are simply
the factorials in the exponential series and those that arise in the use of (7.6.24).

In summary the virtue of the Taylor method just described is that, even when the
maps to be concatenated are both in Lie factored product form and the desired product
is also required in this form, results can be obtained to any desired degree (D + 1) in the
Lie generators by means of a relatively simple algorithm. The price to be paid for this
simplicity is increased computation [compared to that required for the direct formulas of the
form (4.31) through (4.36)] and the increased (but temporary) storage associated with the
intermediate truncated Taylor series TDa (see Section 7.9).

The last topic to be discussed in this section is the inversion of maps in Taylor form. By
way of introduction, consider the simple quadratic equation

x = αx+ βx2. (8.6.36)

This equation can immediately be solved to find x in terms of x,

x = {−α± [α2 + 4βx]1/2}/(2β). (8.6.37)

The solution that vanishes when x = 0 has the expansion

x = {−α + [α2 + 4βx]1/2}/(2β)

= [α/(2β)]{−1 + [1 + 4βx/α2]1/2}
= [α/(2β)]{(1/2)(4βx/α2)− (1/8)(4βx/α2)2 + (1/16)(4βx/α2)3 + · · · }
= (1/α)x− (β/α3)x2 + (2β2/α5)x3 + · · · . (8.6.38)

Equation (6.36) may be viewed as a one-dimensional Taylor map that sends x to x, and
(6.38) is the Taylor expansion of its inverse.

Suppose we had not been able to solve (6.36) explicitly for x as in (6.37). Is there any
other way to obtain the inverse series (6.38)? The answer is yes. The inverse series can also
be found by a process of recursion or iteration: First rewrite (6.36) in the form

x = (1/α)x− (β/α)x2 = (1/α)x+ n(x) (8.6.39)



950 8. A CALCULUS FOR LIE TRANSFORMATIONS AND . . .

where n(x) is the nonlinear term

n(x) = −(β/α)x2. (8.6.40)

Now consider the recursion relation for functions x(m)(x) specified by the rule

x(m+1)(x) = (1/α)x+ n[x(m)(x)], (8.6.41)

with the starting relation
x(1)(x) = (1/α)x. (8.6.42)

Upon carrying out the indicated operations, we find the results

m = 1 : x(1) = (1/α)x,

m = 2 : x(2) = (1/α)x− (β/α)[(1/α)x]2 = (1/α)x− (β/α3)x2,

m = 3 : x(3) = (1/α)x− (β/α)[(1/α)x− (β/α3)x2]2

= (1/α)x− (β/α3)x2 + (2β2/α2)x3 +O(x4), etc. (8.6.43)

Evidently m applications of the rule (6.41) reproduces the series (6.38) through terms of
degree m. We also note the possible appearance, at each stage, of still higher degree terms
that may not yet be correct. We may remind ourselves not to bother computing these terms
by using the truncation operator T m. With the aid of this operator, the recursion relation
(6.41) can be modified to take the more convenient form

x(m+1)(x) = (1/α)x+ T m+1n[x(m)(x)]. (8.6.44)

The iteration method we have just used to invert the simple quadratic equation (6.34)
can also be used to invert general Taylor maps. Let us rewrite the Taylor representation
(6.2) for the map M1 in the form

zb′(z) =
∑
b

Rb′bzb +Nb′(z) (8.6.45)

where the quantities Nb′(z) are nonlinear terms of degree 2 and higher. Equation (6.43) can
be partially solved to give the result

za = (R−1z)a + Ña(z)

where Ña also contains terms only of degree 2 and higher, and is given by the relation

Ña = −
∑
b′

(R−1)ab′Nb′ . (8.6.46)

Note that we have assumed R−1 exists, as is required by the inverse function theorem for
a map to have an inverse, and as will be the case for symplectic matrices. Now form the
recursion relation

z(m+1)
a (z) = (R−1z)a + T m+1Ña[z

(m)(z)] (8.6.47)

with the starting relation
z(1)
a (z) = (R−1z)a. (8.6.48)

Application of this recursion relation D times produces the Taylor representation, through
terms of degree D, for the map M−1

1 .
Finally, we remark that the operations needed to carry out the recursion relation (6.47),

as well as the Poisson brackets needed in procedures such as (6.18) and (6.35), can all be
performed to arbitrary order on a computer programmed to handle TPSA.
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Exercises

8.6.1. According to (4.31) and (4.32) the direct determination of h3 and h4 requires the
computation of one Poisson bracket. How many Poisson brackets must be computed to find
h3 and h4 by Taylor methods? Compare the amounts of work required for the direct and
Taylor methods.

8.6.2. Prove that use of the recursion relation (6.47) does indeed produce the Taylor repre-
sentation of the inverse of (6.45).
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8.7 Working with Exponents

8.7.1 Formulas for Combining Exponents

The General Case

Sometimes, as will be shown later, it is useful to be able to write the product of two
Lie transformations as a single Lie transformation. This is what the BCH formula (2.27)
attempts to do. In general, there are no known convenient expressions for all the terms on
the right side of (2.29). However, it is possible to sum the series completely with respect to
s and the first few powers in t. One such result can be written in the form

h = sf + s : f : [1− exp(−s : f :)]−1(tg) +O(t2). (8.7.1)

Here the operator expression involving : f : is to be interpreted as the infinite series

s : f : [1− exp(−s : f :)]−1 = s : f : [1−
∞∑
m=0

(−s : f :)m/m!]−1

= s : f : [−
∞∑
m=1

(−s : f :)m/m!]−1 = 1 + (s/2) : f : +(s2/12) : f :2 + · · · . (8.7.2)

Equations (2.27) and (7.1) may be combined to give the result

exp(s : f :) exp(t : g :) = exp[s : f : + : {s : f : [1− exp(−s : f :)]−1(tg)} : +O(t2)]. (8.7.3)

See Appendix C where the O(t2) term is also worked out.
Suppose we succeed in writing a product of two or more Lie transformations as a single

Lie transformation. Then, as shown in Section 7.1, the map corresponding to the product of
Lie transformations has an invariant function. See (7.1.12) through (7.1.14). We will learn
later that generically symplectic maps do not have invariant functions. Correspondingly,
the series (7.1) is generally divergent. We recall from Section 7.7 that the Lie algebra
spm(2n,R) is infinite dimensional. Typically what happens in the infinite dimensional case
is that inverses of the form [1− exp(−s : f :)]−1 may fail to exist. Other difficulties can also
arise. Put another way, the BCH series (3.7.34) may have no domain of convergence in the
case of an infinite dimensional Lie algebra. See Section 38.7.

The Case of Sp(2)

There is one instructive case for which the sum of the BCH series is known exactly. That
is the case of Sp(2) or, more generally, Sp(2,C)= SL(2,C). We will see that the result is
quite complicated. Presumably yet more complicated formulas exist in the Platonic realm
for the still more interesting cases of Sp(4), Sp(6), etc. But, to the author’s knowledge,
these formulas have not yet been brought down to Earth.

Given f2 and g2, there are the associated maps

Mf = exp(: f2 :), (8.7.4)



8.7. WORKING WITH EXPONENTS 953

Mg = exp(: g2 :). (8.7.5)

Our task is to find h2 such that

Mh = exp(: h2 :) =MfMg. (8.7.6)

According to (3.64), (3.65), and (3.76) there are symmetric matrices Sf , Sg, and Sh associ-
ated with f2, g2, and h2 respectively. Also, according to Section 8.3, our task is equivalent
to that of finding the matrix Sh such that

exp(JSh) = exp(JSf ) exp(JSg). (8.7.7)

In the case of sp(2), we know that the vector space of matrices of the form JS is spanned
by the matrices B0, F , and G given by (5.6.7), (5.6.13), and (5.6.14). Upon comparison
with the Pauli matrices (5.7.3), we find the results

B0 = iσ2, (8.7.8)

F = −σ1, (8.7.9)

G = σ3. (8.7.10)

Let us define 3-vectors (with possibly complex components) vf , vg, and vh by the rules

vf · σ = vf1σ
1 + vf2σ

2 + vf3σ
3 = JSf , etc. (8.7.11)

With these results and definitions, the condition (7.7) in the Sp(2) case is equivalent to the
requirement

exp(vh · σ) = exp(vf · σ) exp(vg · σ). (8.7.12)

The matrix exp(vh · σ) can be found analytically using (5.7.40). We begin by noting
that (5.7.40) can be written in the form

(u · σ)(v · σ) = σ0u · v + i(u× v) · σ, (8.7.13)

where u and v are any 3-vectors. Next, define the length of v, denoted by v, by the rule

v = (v · v)1/2. (8.7.14)

Note that v may possibly be complex, and is specified only up to a sign. Using (7.13) and
(7.14), we find the result

exp(v · σ) = cosh(v · σ) + sinh(v · σ)

= σ0 cosh v + v · σ(sinh v)/v. (8.7.15)

We observe that both the functions cosh v and (sinh v)/v are even in v, and therefore un-
affected by the sign ambiguity in (7.14). At this point it is convenient to introduce the
3-vector τ (v) defined by the equation

τ (v) = v(tanh v)/v. (8.7.16)
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Equation (7.16) has as its inverse the relation

v(τ ) = τ (tanh−1 τ)/τ (8.7.17)

where
τ = (τ · τ )1/2. (8.7.18)

Again observe that (tanh v)/v and (tanh−1 τ)/τ are even functions. With this definition,
(7.15) can be written in the equivalent form

exp(v · σ) = [cosh v][σ0 + τ (v) · σ]. (8.7.19)

Now use (7.19) and (7.13) in (7.12). Doing so gives the result

exp(vh · σ) = [cosh vh][σ0 + τ (vh) · σ]

= [cosh vf ][σ0 + τ (vf ) · σ][cosh vg][σ0 + τ (vg) · σ]

= [cosh vf ][cosh vg]{σ0[1 + τ (vf ) · τ (vg)]

+ [τ (vf ) + τ (vg) + iτ (vf )× τ (vg)] · σ}. (8.7.20)

Use (5.7.41) to equate like terms on both sides of (7.20), and thereby find the relations

cosh vh = [cosh vf ][cosh vg][1 + τ (vf ) · τ (vg)], (8.7.21)

(cosh vh)τ (vh) = [cosh vf ][cosh vg][τ (vf ) + τ (vg) + iτ (vf )× τ (vg)]. (8.7.22)

Upon dividing (7.22) by (7.21) we obtain the final and remarkable result

τ (vh) = [τ (vf ) + τ (vg) + iτ (vf )× τ (vg)][1 + τ (vf ) · τ (vg)]−1. (8.7.23)

Given vf and vg, (7.23) specifies τ (vh) which, in turn by using (7.17), gives vh. Taken
together, we will call (7.16), (7.17), and (7.23) the Sp(2,C) BCH function.

Let us examine the singularity structure of the Sp(2,C) BCH function, namely the
relationship between vf , vg, and vh implied by (7.16), (7.17), and (7.23). We see from
(7.16) that τ (v) is analytic in v for small v, has poles when v = i(π/2 + nπ), and has an
essential singularity at v = ∞. We also note that since v is possibly complex, v can tend
toward infinity in various directions while v remains bounded. Thus the singularity structure
at infinity is quite complicated. Near the origin τ (v) has the convergent expansion

τ (v) = v(1− v2/3 + 2v4/15− 17v6/315 + · · · ). (8.7.24)

We see from (7.17) that v(τ ) is analytic in τ for small τ and has branch points at τ = ±1. It
also has a pole in τ at τ = 0 on the Riemann sheets reached by circling these branch points.
Moreover, there is a complicated singularity at infinity. Near the origin on the principal
sheet v(τ ) is analytic and has the convergent expansion

v(τ ) = τ (1 + τ 2/3 + τ 4/5 + τ 6/7 + · · · ). (8.7.25)

Finally, we see that (7.23) has the denominator [1+τ (vf ) ·τ (vg)] which can possibly vanish,
but cannot vanish for small vf and vg because of (7.24). We conclude that the BCH series for
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Sp(2) converges for small vf and vg, but presumably cannot converge everywhere because
of the singularities just described. This result is consistent with our expectations. We know
that any symplectic matrix can be written in the form (3.8.24). If it were always possible to
combine the two exponents in (3.8.24) into one grand exponent using the BCH series, then
(3.7.97) could be written in the form (3.7.36), which we know is false. Indeed, the reader
will have the pleasure of showing in Exercise 7.9 that the offending singularity is the pole
at τ = 0 on a nonprincipal sheet of v(τ ).

What is the source of all these singularities? The fault does not lie with the group
Sp(2,C) itself. Indeed, if elements of Sp(2,C) are parameterized by 2× 2 possibly complex
matrices, the operation of group element multiplication is simply matrix multiplication, and
entries in the product of two matrices are entire functions of the entries in the matrices
being multiplied.18 Rather the fault lies in the use of canonical coordinates of the first kind,
which is what the Ansatz (7.12) essentially does. See Section 7.9. And the use of canonical
coordinates of the first kind depends on the properties of the exponential map. See Section
3.8. Thus, the source of singularities in this case can be traced back to the (not globally
possible/successful) use of the exponential map for Sp(2,C). Seeking the impossible results
in singularities.

8.7.2 Nature of Single Exponential Form

Let us explore further what elements of Sp(2,R) can be written in single exponential form.
In the case of two-dimensional phase space, the most general (real) f2 can be written in the
form

f2 = −(bp2 + 2aqp+ cq2)/2, (8.7.26)

where a, b, c are (real) parameters. We define an associated symplectic matrix R(a, b, c) by
the rule

exp(: f2 :)zd =
∑
e

Rdeze. (8.7.27)

Our goal is to find an explicit expression for R(a, b, c) in terms of the quantities a, b, c. So
doing amounts to finding the exponential map from sp(2,R) to Sp(2,R).19

Direct calculation gives the result

: f2 : zd = −(1/2) : (bp2 + 2aqp+ cq2) : zd =
∑
e

Fdeze (8.7.28)

where F is the Hamiltonian matrix

F =

(
a b
−c −a

)
. (8.7.29)

We readily verify that F has the property

F 2 = ∆I. (8.7.30)

18An entire function is a function that is analytic everywhere except at infinity.
19As announced, we will seek results for the case of Sp(2,R). Partial results are also known for the more

complicated case of Sp(4,R). In particular, there is an explicit formula for matrices of the form exp(JSa).
See the references at the end of this chapter.
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Here ∆ is the discriminant of the quadratic form (7.26),

∆ = a2 − bc. (8.7.31)

We know from Section 7.2 or (7.3.41) that R is given by the relation

R = exp(F ) = cosh(F ) + sinh(F ). (8.7.32)

The term cosh(F ) has the expansion

cosh(F ) = F 0 + F 2/2! + F 4/4! + · · ·
= I(1 + ∆/2! + ∆2/4! + · · · )
= I cosh(∆1/2). (8.7.33)

Here use has been made of (7.30). For sinh(F ) we find the result

sinh(F ) = F + F 3/3! + F 5/5! + · · ·
= F (I + F 2/3! + F 4/5! + · · · )
= F (1 + ∆/3! + ∆2/5! + · · · )
= (F/∆1/2)(∆1/2 + ∆3/2/3! + ∆5/2/5! + · · · )
= F [sinh(∆1/2)]/∆1/2. (8.7.34)

Note that both cosh(∆1/2) and {[sinh(∆1/2)]/∆1/2} are even functions of ∆1/2, and thus do
not depend on which root we take in computing ∆1/2. In fact, they are analytic functions
of ∆ and hence of a, b, c. Putting everything in (7.32) together gives for R the result

R =

(
cosh(∆1/2) + a[sinh(∆1/2)]/∆1/2 b[sinh(∆1/2)]/∆1/2

−c[sinh(∆1/2)]/∆1/2 cosh(∆1/2)− a[sinh(∆1/2)]/∆1/2

)
. (8.7.35)

Let us compute the eigenvalues of R. It has the characteristic polynomial

P (λ) = det(R− λI) = λ2 − 2λ cosh(∆1/2) + 1. (8.7.36)

This polynomial has the roots

λ = exp(∆1/2) , exp(−∆1/2). (8.7.37)

Note that if a, b, c are real, then so is ∆. It follows that ∆1/2 is real if ∆ ≥ 0, and pure
imaginary if ∆ < 0. Correspondingly, the eigenvalues of R are real if ∆ > 0, and have the
hyperbolic configuration shown in Case 1 of Figure 3.4.1. If ∆ < 0, then the eigenvalues of R
are on the unit circle corresponding to the elliptic configuration shown in Case 3 of Figure
3.4.1. The possibilities ∆ = 0 and ∆ = −π2 are discussed further in Exercise 7.11, and
correspond to the parabolic and inversion parabolic configurations shown in Cases 4 and 5
of Figure 3.4.1. We note that the inversion hyperbolic configuration shown in Case 2 does
not occur. It follows that such symplectic matrices cannot be written in single exponential
form with real exponents. [The use of complex exponents may be possible in some cases.
See Exercises 2.16 and 7.12. But we know that even this expedient fails for the matrices M
and N given by (3.7.134) and (3.7.135).] We have proved earlier that all (real) symplectic
matrices, including the inversion hyperbolic case, can be written in the product form (3.8.26)
with real exponents. Also, all the coefficients in the BCH series are real. It follows that the
BCH series must diverge if we try to combine the exponents in (3.8.26) for the inversion
hyperbolic case: if the series converged, the resulting single exponent would be real, and we
have seen that a single real exponent never gives an inversion hyperbolic symplectic matrix.
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Exercises

8.7.1. Verify the expansion (7.2).

8.7.2. Verify (7.8) through (7.10).

8.7.3. Verify (7.13).

8.7.4. Verify (7.15).

8.7.5. Given (7.16), verify (7.17).

8.7.6. Verify (7.19) and (7.20).

8.7.7. Verify (7.21) through (7.23).

8.7.8. Verify the singularity statements made about τ (v) and v(τ ), and verify (7.24) and
(7.25).

8.7.9. Review Exercises 3.7.11 and 5.9.3. Consider the matrix N = −M . [Note that this
N is not that given by (3.7.105).] Show that N can be written in the form (3.7.36) with S
given by the equation

S =

(
0 0
0 1

)
. (8.7.38)

Consider the polar decompositions of M and N given by (3.8.1). Show that both M and
N have the same P given by (5.9.16). Find the O matrices for M and N . Show that they
have the form

O = exp(iθσ2), (8.7.39)

and find θ in each case. Following (3.8.15) and (3.8.23) find the matrix Sa associated with
P and the matrices Sc associated with the matrices O. Compute the corresponding vectors
va, vc, τ a = τ (va), and τ c = τ (vc). Make the identifications va = vf , τ a = τ f , vc = vg,
and τ c = τ g. See (3.8.24) and (7.12). Consider the vector vh(θ) defined by the relation

exp[vh(θ) · σ] = exp(vf · σ) exp(iθσ2). (8.7.40)

Use (7.23) to find τ h(θ) = τ h(vh(θ)). Starting from θ = 0, follow the quantities θ, τ h(θ), and
vh(θ) to the θ value for N . Repeat this same process, again starting at θ = 0, and continuing
to the θ value for M . Show that vh(θ) is well defined for the θ value corresponding to N
and produces (7.38), and that vh(θ) is singular at the θ value corresponding to M .

8.7.10. Verify (7.28) through (7.37).

8.7.11. Show that R = −I when ∆ = −π2. What happens when ∆ = −4π2? Show that R
takes the form

R =

(
1 + a b
−c 1− a

)
(8.7.41)

in the case ∆ = 0. Show that this R can be diagonalized only if b = c = 0. Hint: When
∆ = 0, R = I+F and, according to (7.30), F 2 = 0. Show that such an F can be diagonalized
only if F = 0.
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8.7.12. Consider the inversion hyperbolic symplectic matrix M given by

M =

(
−λ 0
0 −1/λ

)
(8.7.42)

where λ is real and positive. We know that M cannot be written in single exponent form with
a real exponent. But can it be written in single exponent form with a complex exponent?
Let S be the symmetric matrix given by

S =

(
0 a
a 0

)
. (8.7.43)

Verify the results

JS =

(
a 0
0 −a

)
(8.7.44)

and

N = exp(JS) =

(
exp(a) 0

0 exp(−a)

)
. (8.7.45)

Evidently M can be written in single exponent form if one can satisfy the relation

exp(a) = −λ. (8.7.46)

Define a quantity α by the rule
α = log(λ). (8.7.47)

Show that a solution to (7.46) is
a = α + πi. (8.7.48)

You have shown that, although the inversion hyperbolic symplectic matrix M cannot be
written in single exponent form with a real exponent, it can be written in single exponent
form with a complex exponent.

8.7.13. For some purposes it is useful to have an SU(2) version of the BCH formula (7.23).
Recall the 2 × 2 matrices Kj defined in Exercise 3.7.30 and manufactured from the Pauli
matrices by the rules

Kj = (−i/2)σj. (8.7.49)

Verify that they satisfy the multiplication rules

KjKk = (−1/4)δjkI + (1/2)
∑
`

εjk`K
`, (8.7.50)

and recall that these rules can be summarized in the “vector” form

(a ·K)(b ·K) = −(1/4)(a · b)I + (1/2)(a× b) ·K. (8.7.51)

See (3.7.176).
Verify that any matrix u ∈ SU(2) can be written in the form

u(v) = exp(v ·K). (8.7.52)
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Show that the infinite series implied by (7.52) can be summed to give the explicit result

exp(v ·K) = I cos(v/2) + (v ·K)(2/v) sin(v/2) (8.7.53)

where
v = (v · v)1/2. (8.7.54)

Define a vector τ (v) by the rule

τ (v) = v(2/v) tan(v/2). (8.7.55)

Show that (7.55) has the inverse

v(τ ) = τ (2/τ) tan−1(τ/2) (8.7.56)

where
τ = (τ · τ )1/2. (8.7.57)

Show that (7.53) can also be written in the form

exp(v ·K) = cos(v/2)[I + (τ ·K)]. (8.7.58)

Given two vectors va and vb, your task is to find a third vector vc such that

exp(va ·K) exp(vb ·K) = exp(vc ·K). (8.7.59)

Show that there is the formula

τ (vc) = [τ (va) + τ (vb) + (1/2)τ (va)× τ (vb)][1− (1/4)τ (va) · τ (vb)]−1. (8.7.60)

8.7.14. Review Exercise 8.7.13. Determine the analytic behavior of vc as a function of va

and vb.

8.8 Zassenhaus or Factorization Formulas

The BCH formula (3.7.33) and (3.7.34) attempts to combine two exponents into one. There
are related formulas, called Zassenhaus formulas, that attempt the reverse: They try to
write a single exponent term as a product of several such terms. One simple such formula
is the relation

exp(sA+ tB) = exp(sA) exp(tB) exp(Z), (8.8.1)

where Z has the expansion

Z = −(st/2)[A,B] + (s2t/6)[A, [A,B]]− (st2/3)[B, [B,A]] +O(s3t, s2t2, st3). (8.8.2)

It will be seen in Sections 10.8 through 10.10 that Zassenhaus formulas are useful in con-
structing symplectic integrators and computing maps.

Equation (8.1) writes a single exponent term as a product of three such terms. It may
also be desirable to write a single exponent term as a product of two such terms, and to
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attempt to sum some of the infinite series that occur. Consider (7.3), which gives a formula
for combining two exponentials into one grand exponential. Sometimes, as in for example
the construction of a factored product decomposition, it is useful to be able to turn the
process around. Define a quantity h by writing

s : f : [1− exp(−s : f :)]−1g = h. (8.8.3)

Observe that (8.3) may be solved for the quantity g to give the relation

g = {[1− exp(−s : f :)]/[s : f :]}h. (8.8.4)

Here the operator expression appearing on the right of (8.4) is interpreted to be the series

[1− exp(−s : f :)]/[s : f :] = −
∞∑
m=1

(−s)m : f :m /[m!s : f :]

=
∞∑
m=1

(−s)m−1 : f :m−1 /m!. (8.8.5)

Now insert (8.3) into (7.3). One finds, upon reading right to left, the result

exp[s : f : +t : h : +O(t2)] = exp(s : f :) exp(t : g :). (8.8.6)

Finally, the term of O(t2) can be taken from the left to the right side of (7.6) to produce
the relation

exp[s : f : +t : h :] = exp(s : f :) exp(t : g :) exp[: O(t2) :]. (8.8.7)

Equation (8.7) gives a formula for writing the exponential of the sum of two exponents as a
product of two exponentials.

It is worth remarking that the operation described by (8.4), which is required for eval-
uating (8.7), can be written in a more compact form. First, observe the formal integral
identity

[1− exp(−s : f :)]/[s : f :] =

∫ 1

0

dτ exp(−τs : f :). (8.8.8)

Let us define the function iex(w), called the integrated exponential function, by the rule

iex(w) =

∫ 1

0

dτ exp(τw) = (ew − 1)/w =
∞∑
m=0

wm/(m+ 1)!. (8.8.9)

Evidently iex is an entire analytic function. (Like the exponential function, it has no singu-
larities in the complex plane except at infinity, and its Taylor series has an infinite radius of
convergence.) By using the identity (8.8) and the definition (8.9), the relation (8.4) can be
written in the forms

g =

∫ 1

0

dτ exp(−τs : f :)h = iex(−s : f :)h. (8.8.10)
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But now (5.4.11) can be employed to give the final integral formula

g(z) =

∫ 1

0

dτh[exp(−τs : f :)z]. (8.8.11)

In summary, we have the operator identity

exp(s : f : + t : h :) = exp(s : f :) exp[iex(−s#f#)(t : h :)] exp[: O(t2) :]

= exp(s : f :) exp[: iex(−s : f :)(th) :] exp[: O(t2) :]. (8.8.12)

We also note that in (8.4), unlike in (7.3), no inverses of the form [1 − exp(−s : f :)]−1

are involved. Instead, we have benign relations like (8.11). Correspondingly, because they
presuppose the existence of a single exponent form, Zassenhaus formulas can have better
convergence properties than the BCH formula. Finally, we remark that the next few terms
in (8.12), those terms proportional to powers of t2, t3, · · · , can also be found explicitly. See
Exercises 10.3.* and 10.4.*.

Exercises

8.8.1. Derive (8.1) and (8.2) from (3.7.33) and (3.7.34).

8.8.2. Verify the expansion (8.5); derive (8.6) from (7.3) and (8.3).

8.8.3. Verify the integral identity (8.8), and the integral identity and expansion (8.9). Show
that the Taylor series for iex(w) has an infinite radius of convergence.

8.8.4. Derive the formula

exp(s : f : + t : h :) = exp[: O(t2) :] exp[iex(s#f#)(t : h :)] exp(s : f :). (8.8.13)

8.9 Ideals, Quotients, and Gradings

We know that the Lie algebra of all Lie operators, which we have called ispm(2n,R), is
infinite dimensional. Correspondingly ISpM(2n,R), the group of symplectic maps, is infinite
dimensional. Indeed, the factorization (7.7.23) gives a representation of the general analytic
symplectic map. We see that the specification of a symplectic map generally requires an
infinite number of parameters. This fact produces an awkward situation for human beings
and computers, which can only work with a finite number of quantities (and often only with
finite precision).

An optimistic perspective on the experimental and theoretical situation, for example
in the field of accelerator physics, might be stated as follows: We know that a beam
transport system, accelerator, storage ring, or any portion thereof may be described by a
symplectic transfer map. However, because we cannot measure or control electromagnetic
fields exactly, we are unsure of and unable to control exactly what this map is. Also, since
it is impossible to perform computations with an infinite number of variables and to infinite
precision, it is necessary to develop various approximation schemes. Thus, we are able to
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study computationally (and probably theoretically) the detailed properties of only a subset
of all symplectic maps. The hope is that if two symplectic maps are in some sense nearly the
same, then their behavior [including, in some cases, long-term (repeated iteration) behavior]
will be nearly the same. If this were not true from an experimental standpoint, then it
would be impossible to build satisfactory storage rings, etc. If this were not true from a
theoretical standpoint, then it would be impossible to design storage rings, etc., with any
assurance that their actual performance would be satisfactory.

As just described, it is necessary to develop some sort of approximation scheme to treat
symplectic maps in a practical way. In this section we will describe truncation schemes that
maintain a Lie algebraic structure. We already know from Section 8.4 that the rules for
multiplying symplectic maps can be expressed entirely in Lie algebraic terms. Thus, if the
truncation scheme maintains a Lie algebraic structure, it follows that maps may either be
truncated and then multiplied, or multiplied and then truncated. The results from both
procedures are guaranteed to be the same.

For example, consider the Lie algebra spanned by the homogeneous polynomials f2, f3,
f4, · · · . Evidently, this Lie algebra is infinite dimensional. Let D be some integer. Suppose
we decide to retain only the polynomials f2, f3, f4, · · · fD−1, and discard all polynomials
fm with m ≥ D. Correspondingly, in the mapM given by (7.6.3) we drop from the product
all fm with m ≥ D. Is this a consistent procedure? The answer is yes. As we will see, the
discarding of all fm with m ≥ D amounts mathematically to working with a quotient Lie
algebra and its corresponding quotient group. We note that since : fm : zb consists of terms
of degree (m−1), the decision to drop the fm with m ≥ D amounts physically to neglecting
all aberrations of degree (D − 1) and higher.

As a second example, suppose ε is a (presumed small) parameter, and consider the quan-
tities f (0), εf (1), ε2f (2), ε3f (3), · · · , where f (0), f (1), f (2), f (3) · · · are arbitrary functions. The
quantities f (0), εf (1), ε2f (2), ε3f (3), · · · also form (with the Poisson bracket as a Lie product)
an infinite dimensional Lie algebra. Suppose, as a kind of perturbation theory, we decide to
discard all εmf (m) with m > D where again D is some integer. Is this a consistent proce-
dure? The answer again is yes. We will see that expanding in powers of ε is equivalent to
introducing a grading into the Lie algebra, and that truncating the expansion is equivalent
to using the grading to produce a quotient structure.

With this motivation as background, we are ready to develop some mathematical tools.
The first concept we will need is that of an ideal. Let L be a Lie algebra, and let L′ be a
subalgebra of L. For L′ to be a subalgebra means that the elements of L′ must be in L,
and must form a Lie algebra in their own right. That is, by themselves they must satisfy
the properties 1 through 5 (as given in Section 3.7) required of a Lie algebra. Let x be any
element in L and let x′ be any element in L′. Suppose the elements of L′ have the property

[x, x′] ∈ L′ for all x ∈ L, x′ ∈ L′. (8.9.1)

That is, no element of L′ can be sent beyond L′ by taking Lie products with arbitrary
elements in L. In this case L′ is said to be an invariant subalgebra. And if L′ is a genuine
invariant subalgebra, i.e. neither zero nor the full Lie algebra L, it is called an ideal.20

20Here is an opportunity for three more definitions: Recall that a Lie algebra is called simple if it has no
ideals. Recall also that a Lie algebra or subalgebra is called Abelian if the Lie product of any two elements
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Suppose a Lie algebra L has a subalgebra L′. Then L′ can be used to set up an equivalence
relation among the elements of L. Let x1 and x2 be any two elements in L. We say that x2

is equivalent to x1 (and write x2 ∼ x1) if their difference (x2 − x1) is in L′,

x2 ∼ x1 ⇔ (x2 − x1) ∈ L′. (8.9.2)

(Here the symbol ⇔ is used to indicate logical implication in both directions.) This equiv-
alence relation can be used to partition the elements of L into disjoint equivalence classes.
Let the symbols {x} denote all the elements of L that are equivalent to some element x. In
a Lie algebraic (actually, vector space) context, the collection of these equivalence classes is
called a quotient space, and is customarily denoted by the symbols L/L′. See Exercise 9.1.

To get a feeling for this construction, let 0 be the zero element in L and consider the
set of elements {0}, the set of elements in L that are equivalent to 0. We see from (9.2)
that the set {0} is identical to the set of elements L′. Consequently, in the quotient space
construction, all elements in L′ are identified with (are equivalent to) the zero element in L.
That is, we have the logical relation

x′ ∈ L′ ⇔ {x′} = {0}. (8.9.3)

Moreover, suppose x2 ∼ x1. Then by (9.2) we have a relation of the form

x2 = x1 + x′ with x′ ∈ L′. (8.9.4)

Thus, if x1 and x2 are equivalent, they differ only by an element that has been identified
with zero.

As defined so far, the quotient space L/L′ is simply a collection of equivalence classes. We
now give it a vector space structure by a simple but ingenious (and, at first sight, confusing)
construction. We begin by noting the logical implication

x2 ∼ x1 ⇒ ax2 ∼ ax1, (8.9.5)

where a is any scalar. This result follows from (9.4) by noting that ax′ belongs to L′ if x′

belongs to L′. (Remember that L′ is an algebra.) Next, suppose that the elements x1, x2

and y1, y2 satisfy the equivalence relations

x2 ∼ x1 , y2 ∼ y1. (8.9.6)

Then it follows from (9.4) and its y analog that we have the relation

x2 + y2 = x1 + y1 + x′ + y′. (8.9.7)

in it vanishes. Colloquially, we say that all elements in an Abelian Lie algebra or subalgebra commute. A
Lie algebra is called semisimple if it has no Abelian ideals. By this definition, a simple Lie algebra is also
semisimple. That is, simple Lie algebras form a subset of the set of semisimple Lie algebras. Suppose a
Lie algebra L is semisimple but not simple. Then it can be shown that L is the direct sum of two or more
simple Lie algebras. By direct sum it is meant the all the elements of any simple Lie subalgebra in the sum
commute with all the elements of any other simple Lie subalgebra in the sum.
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But if x′ and y′ belong to L′, then so must the sum (x′ + y′). (Again, remember that L′ is
an algebra.) Thus, we also have the logical implication

x2 ∼ x1 and y2 ∼ y1 ⇒ (x2 + y2) ∼ (x1 + y1). (8.9.8)

Now we are ready to give L/L′ a vector space structure. First, we have to define scalar
multiplication. Consider some equivalence class. Then, since equivalence classes are disjoint,
each equivalence class may be labelled by any one of its members. Select some member of
the equivalence class under consideration, and call it x1. Then the equivalence class may be
given the label {x1}. Now let a be any scalar. We define scalar multiplication acting on the
element {x1} of L/L′ by the rule

a{x1} = {ax1}. (8.9.9)

Thus, by this definition, scalar multiplication sends equivalence classes into each other. But
suppose x2 also belongs to {x1}, and that we had used x2 to label {x1} instead of x2. Would
this different choice affect the definition (9.9)? It would not. With the choice of x2 as a
label we would have the definition

a{x2} = {ax2}. (8.9.10)

But, by (9.5), we have the relation

{ax2} = {ax1} (8.9.11)

because an equivalence class is uniquely defined by any of its members. Thus, scalar multi-
plication is uniquely defined by the rule (9.9).

Next we define vector addition. Let {x1} and {y1} be two equivalence classes labelled
by two members x1 and y1. We define addition by the rule

{x1}+ {y1} = {(x1 + y1)}. (8.9.12)

By this definition, addition sends a pair of equivalence classes into some third (not necessarily
different) equivalence class. Again, there is the question of uniqueness under the choice of
labelling. However, thanks to (9.8), the definition (9.12) is in fact independent of labelling.
Note that as a special case of (9.12) we have the relation

{x}+ {0} = {x}. (8.9.13)

That is, the equivalence class {0} plays the role of the zero vector in L/L′.
We have given L/L′ a vector space structure. What is the dimension of L/L′? Suppose

that L′ has a basis b1, b2, · · · , and that a basis for L is constructed by taking the vectors
b1, b2, · · · supplemented by the additional linearly independent vectors v1, v2, · · · vn. Then,
we have the dimensional relations

dimL = dimL′ + n , or n = dimL− dimL′. (8.9.14)

Suppose x is any vector in L. Then x has the unique decomposition

x = x′ +
n∑
i=1

ξivi, (8.9.15)
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where x′ is the portion of x spanned by the basis vectors b1, b2, · · · . Now form equivalence
classes of both sides of (9.15). From the definition (9.12) and (9.3), (9.9), and (9.13) we find
the result

{x} = {x′}+

{
n∑
i=1

ξivi

}
=

n∑
i=1

ξi{vi}. (8.9.16)

It is easily verified that the vectors {vi} are linearly independent. See Exercise 7.2. Conse-
quently, the quotient space L/L′ has dimension n,

dim(L/L′) = n = dimL− dimL′. (8.9.17)

So far we have assumed that L′ is a subalgebra. Now make the further supposition that
L′ is an ideal. In this case we can give the quotient space a Lie algebraic structure. We have
already seen that the quotient space can be given a vector space structure. What remains
is to define a Lie product. Let {x1} and {y1} be two equivalence classes labelled by two
members x1 and y1. We define a quotient space Lie product, denoted by the symbols [ , ]qs,
by the rule

[{x1}, {y1}]qs = {[x1, y1]}. (8.9.18)

By this definition the quotient space Lie product sends a pair of equivalence classes into
some third (not necessarily different) equivalence class. As before there is the question of
uniqueness under the choice of labelling. Suppose we use instead labels x2 and y2 that satisfy
(9.6). Then from (9.4) and its y counterpart we find the result

[{x2}, {y2}]qs = {[x1 + x′, y1 + y′]}
= {[x1, y1] + [x′, y1] + [x1, y

′] + [x′, y′]}
= {[x1, y1]}+ {[x′, y1]}+ {[x1, y

′]}+ {[x′, y′]}
= [{x1}, {y1}]qs + {[x′, y1]}+ {[x1, y

′]}+ {[x′, y′]}. (8.9.19)

But, since L′ is assumed to be an ideal, all the quantities [x′, y1], [x1, y
′], and [x′, y′] must

be in L′. See (9.1). It follows from (9.3) and (9.13) that we have the relation

{[x′, y1]}+ {[x1, y
′]}+ {[x′, y′]} = {0}+ {0}+ {0} = {0}. (8.9.20)

Consequently, upon combining (9.19) with (9.20) and again using (9.3), we find the result

[{x2}, {y2}]qs = [{x1}, {y1}]qs. (8.9.21)

Thus, the quotient space Lie product is uniquely defined by (9.18).
We claim that the addition rule (9.12) and Lie product rule (9.18) together satisfy re-

quirements 1 through 5 for a Lie algebra as given in Section 3.7. For example, if {x}, {y},
and {z} are any three equivalence classes, we have from (9.18) the relation

[{x}, [{y}, {z}]qs]qs = [{x}, {[y, z]}]qs = {[x, [y, z]]}. (8.9.22)

The Jacobi condition requirement follows immediately from (9.22). Verification of the re-
maining requirements is left as an exercise for the reader. We conclude that if L′ is an ideal,
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the elements of the quotient space L/L′ can be viewed as elements of an n dimensional Lie
algebra. This Lie algebra is called the quotient Lie algebra.

The discussion of the quotient Lie algebra L/L′ that we have just worked through may
seem overly abstract. It can be made more concrete by using structure constants. See
(3.7.40). We know from our previous discussion that L is spanned by the basis vectors
b1, b2, b3 · · · and v1, v2, · · · vn. There are therefore three kinds of Lie products: [bi, bj], [vi, bj],
and [vi, vj]. Correspondingly, the structure constants are of six kinds: 1c,2 c, · · ·6 c. Consider
first the Lie products [bi, bj]. Their results can be written in the form

[bi, bj] =
∑
k

1ckijbk +
∑
k

2ckijvk. (8.9.23)

If L′ is a Lie subalgebra spanned by the bi, as we have assumed, then the structure constants
2c must vanish,

2ckij = 0. (8.9.24)

Consider next the Lie products [vi, bj]. Their results can be written in the form

[vi, bj] =
∑
k

3ckijbk +
∑
k

4ckijvk. (8.9.25)

If L′ is an ideal, as we have also assumed, then the structure constants 4c must also vanish,

4ckij = 0. (8.9.26)

See (9.1). Finally, the Lie products [vi, vj] can be written in the form

[vi, vj] =
∑
k

5ckijbk +
∑
k

6ckijvk. (8.9.27)

Now form equivalence classes of both sides of (9.27). Then, using (9.3), (9.13), and (9.18),
we find the result

[{vi}, {vj}]qs =
∑
k

6ckij{vk}. (8.9.28)

We also know from (9.16) that the {vi} span L/L′. From (9.28) we conclude that the 6ckij
are the structure constants of L/L′.

The next topic we need to discuss is that of quotient groups. We will see that for
every quotient Lie algebra there is a corresponding quotient Lie group. To understand this
connection we begin by describing the concept of a quotient group. Suppose G is a group,
and suppose G′ is a subgroup of G. We use the subgroup G′ to set up an equivalence relation
in G. Let g1 and g2 be any two elements in G. We say that g2 is equivalent to g1 (and again
use the notation g2 ∼ g1) if there exists a g′ in G′ such that g−1

1 g2 = g′ or, put another way,
g2 = g1g

′:
g2 ∼ g1 ⇔ g−1

1 g2 = g′ ∈ G′ ⇔ g2 = g1g
′. (8.9.29)

This equivalence relation can be used to partition the elements of G into disjoint equivalence
classes. These equivalence classes are called the (left) cosets of G with respect to G′. The
collection of all of these cosets is called the coset space, and is customarily denoted by the
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symbols G/G′. See Exercise 5.12.7. If g is an element in G, we use the notation {g} to
denote all the elements in G that are equivalent to g. Suppose e is the identity element in
G. Then it is easily checked that

{g′} = {e}, (8.9.30)

where g′ is any element in G′.
We next assume that G′ is a normal or invariant subgroup of G. Suppose g is any

element of G, and g′ is any element of G′. The subgroup G′ is called invariant or normal if
there is the relation

g−1g′g ∈ G′ for all g ∈ G, g′ ∈ G′. (8.9.31)

If G′ is normal, the collection of equivalence classes (coset space) G/G′ can be made into a
group. This group is called the quotient group.

To show that G/G′ can be given a group structure, we must set up a rule for multiplying
equivalence classes (cosets) in such a way that rules analogous to those given for matrices
in Section 3.6 are satisfied. Suppose {g1} and {h1} are two equivalence classes labelled by
representative elements g1 and h1 in G. We define their product, denoted by the symbols
{g1}{h1}, to be the equivalence class given by the rule

{g1}{h1} = {g1h1}. (8.9.32)

As a special case of (9.32) we find the results

{g1}{e} = {g1e} = {g1}, (8.9.33)

{e}{h1} = {eh1} = {h1}. (8.9.34)

Also, we define {g1}−1 by the rule

{g1}−1 = {g−1
1 }. (8.9.35)

Then, upon combining (9.32) and (9.35), we find the results

{g1}{g1}−1 = {g1g
−1
1 } = {e}, (8.9.36)

{g1}−1{g1} = {g−1
1 g1} = {e}. (8.9.37)

Both (9.32) and (9.35) are rules that send equivalence classes to equivalence classes. Of
course, as usual, we must verify that the definitions (9.32) and (9.35) are in fact independent
of the choice of representative elements selected to label the equivalence classes {g1} and
{h1}. For example, suppose we decide to designate the equivalence classes {g1} and {h1} by
the representatives g2 and h2 so that we have the alternate labels {g2} and {h2}. Of course
g2 and g1 are related by (9.29), and h2 and h1 are related by an analogous equation. Then
we find from (9.32) the result

{g2}{h2} = {g2h2} = {g1g
′h1h

′} = {g1h1h
−1
1 g′h1h

′} = {g1h1} = {g1}{h1}. (8.9.38)

Here we have used (9.31) and the fact that G′ is a group to deduce that h−1
1 g′h1h

′ is in G′.
We conclude that the equivalence class product is uniquely defined by (9.32). Similarly, it
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can be shown that the equivalence class inverse is uniquely defined by (9.35). See Exercise
9.4. Thus, the quotient group is uniquely defined.

We are now ready to see the connection between quotient Lie algebras and quotient Lie
groups. Suppose, for simplicity, that the Lie algebra L is realized as a set of linear operators,
with the Lie product being a commutator. Then, as described in Section 3.7, there is (at
least locally near the identity) an associated Lie group G obtained by exponentiating L.
Also, suppose L has a subalgebra L′. Exponentiating L′ gives a Lie subgroup G′. Suppose
that L′ is an ideal. Then we will discover that G′ is normal. Also, since L′ is an ideal, we
can form the quotient Lie algebra L/L′. Correspondingly, since G′ is normal, we can form
the quotient group G/G′. We will discover that L/L′ is the Lie algebra of G/G′.

To see how this comes about, suppose ` is an element of L, and `′ is an element of L′.
Upon exponentiation we get elements g and g′ of G and G′, respectively,

g = exp(`) , g′ = exp(`′). (8.9.39)

Now form the combination g−1g′g. We find from (9.39) the result

g−1g′g = exp(−`) exp(`′) exp(`). (8.9.40)

Next use the adjoint operator #`# and a relation of the form (2.16) to rewrite (9.40) in the
form

g−1g′g = exp[exp(−#`#)`′]. (8.9.41)

Since L′ is assumed to be an ideal, we have from (8.1) the result

#`#`′ = [`, `′] ∈ L′, (8.9.42)

from which it follows that exp(−#`#)`′ is also in L′,

exp(−#`#)`′ ∈ L′. (8.9.43)

But, from (9.43) it follows that

g−1g′g = exp[exp(−#`#)`′] ∈ G′. (8.9.44)

Consequently G′ is normal, as advertised. The converse can also be proved: If G′ with Lie
algebra L′ is a normal subgroup of a Lie group G with Lie algebra L, then L′ is an ideal in
L.

To complete our demonstration, we must show that L/L′ is the Lie algebra of G/G′.
Suppose that x1 is some element of L, and that it is used to label the equivalence class {x1},
which is an element of L/L′. We define exp{x1}, which is supposed to be an element of
G/G′, by the rule

exp({x1}) = {exp(x1)}. (8.9.45)

[Note that the { } on the left side of (9.45) refers to the Lie algebraic equivalence class, and
that on the right side refers to the group equivalence class.] As a special case of (9.45) we
have the relation

exp({0}) = {exp(0)} = {e}. (8.9.46)
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Of course, as usual, we must check that our definition does not depend on the choice of
equivalence class labels. Suppose we label {x1} by x2 where x2 ∼ x1. Then, we find the
result

exp({x2}) = {exp(x2)} = {exp(x1 + x′)}
= {exp(x1) exp(−x1) exp(x1 + x′)}. (8.9.47)

Here we have used (9.4). Now use the BCH series (3.7.33) and (3.7.34) to combine the
exponents (−x1) and (x1 + x′). According to (3.7.34), the first thing we must do is add
them. We find the result

(−x1) + (x1 + x′) = x′ ∈ L′. (8.9.48)

Next, according to (3.7.34), we must find their commutator. Doing so gives the result

[(−x1), (x1 + x′)] = [(−x1), x′] ∈ L′. (8.9.49)

Here, because L′ is an ideal, we have been able to use (9.1). Finally, we must compute an
infinite number of higher-order commutators. See (3.7.34) and Appendix C. Examination
of the contents of these commutators shows that each of them has a term of the form (9.49)
buried inside, and we know this term is in L′. But since L′ is an ideal, (9.1) shows that
all further commutators will also be in L′. We have learned that all terms that arise when
we combine the exponents in exp(−x1) exp(x1 + x′) are in L′. Consequently, the product
exp(−x1) exp(x1 + x′) must be in G′,

exp(−x1) exp(x1 + x′) = g′ ∈ G′. (8.9.50)

It follows from (9.47), (9.50), (9.29), and (9.45) that we have the result

exp({x2}) = {exp(x1) exp(−x1) exp(x1 + x′}
= {exp(x1)g′} = {exp(x1)} = exp({x1}). (8.9.51)

Thus, the definition (9.45) is indeed independent of the choice of equivalence class labels.
The last thing we must show is that products of the form exp({x1}) exp({y1}) can be

computed from a knowledge only of the quotient Lie algebra L/L′. Suppose {x1} and {y1}
are two elements of L/L′. We then find from (9.45) and (9.32) the result

exp({x1}) exp({y1}) = {exp(x1)}{exp(y1)}
= {exp(x1) exp(y1)}. (8.9.52)

Let us use the BCH series to combine the exponents x1 and y1 into one grand exponent z1.
Then we have the relation

exp(x1) exp(y1) = exp(z1). (8.9.53)

Consequently, we find from (9.52) and (9.53) the result

exp({x1}) exp({y1}) = {exp(z1)} = exp({z1}). (8.9.54)
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From the BCH formula (3.7.34) we know that z1 is given by the series

z1 = x1 + y1 + (1/2)[x1, y1] + (1/12)[x1, [x1, y1]]

+ (1/12)[y1, [y1, x1]] + · · · . (8.9.55)

Now, form equivalence classes of both sides of (9.55). By making repeated use of (9.12) and
(9.18) we find from (9.55) the result

{z1} = {x1}+ {y1}+ (1/2)[{x1}, {y1}]qs + (1/12)[{x1}, [{x1}, {y1}]qs]qs
+ (1/12)[{y1}, [{y1}, {x1}]qs]qs + · · · . (8.9.56)

We see from (9.54) and (9.56) that the group multiplication rules for the quotient group
G/G′ are indeed determined by the quotient Lie algebra L/L′.

So far in this section our discussion has been devoted to the general concepts of quotient
Lie algebras and their associated quotient Lie groups. We now turn to applying these
concepts to ispm(2n,R), the Lie algebra of the group of all symplectic maps acting on a 2n
dimensional phase space. As mentioned at the beginning of this chapter, we will first restrict
our attention to those symplectic maps that send the origin into itself. The general case
will be treated at the end of this section. From Section 7.6 we know that the Lie algebra of
maps that send the origin into itself is spanned by the Lie operators : f2 :, : f3 :, · · · . Let us
call this Lie algebra L2.

Let D be some integer satisfying D > 2, and let LD be the set of Lie operators spanned
by all : fm : with m ≥ D. From (5.3.14) and (7.6.14) we find the result

{: fm :, : fn :} =: [fm, fn] :=: Pm+n−2 :, (8.9.57)

where we have used the notation P` to denote the space spanned by all f`. Observe that if
m ≥ D and n ≥ D (with D > 2), then (m + n − 2) ≥ D. Thus, if : fm : and : fn : are in
LD, then so is their Lie product (9.57). It follows that LD is a subalgebra of L2.

As a special case of (9.57) we have the result

{: f2 :, : fn :} =: [f2, fn] :=: Pn : . (8.9.58)

We see from (9.57) and (9.58) that if : fn : is in LD, then so is {: fm :, : fn :} for all : fm : in
L2. It follows that LD is an ideal in L2.

Suppose we form the quotient algebra L2/LD. From our discussion of quotient algebras,
we know this construction is equivalent to discarding all : fm : with m ≥ D, and retaining
only the : f` : with ` = 2, 3, · · · (D − 1). We also discard all Lie products {: fm :, : fn :}
when (m + n − 2) ≥ D. We have seen that dropping all : fm : with m ≥ D is equivalent
to ignoring all aberrations of degree (D − 1) and higher. The result of this construction,
the quotient algebra L2/LD, is a finite-dimensional Lie algebra whose dimension equals the
number of monomials in the phase-space variables z of degrees 2, 3, · · · (D−1). The number
of monomials of degrees 1, 2, 3 · · · (D − 1) is given by S(D − 1, d). (Note that D as defined
in this section differs by 2 from that defined in Section 7.9.) Also, we know that the number
of monomials of degree 1 (in a d-dimensional phase space) is d. Thus, we conclude that the
dimension of L2/LD is given by the relation

dim(L2/LD) = S(D − 1, d)− d. (8.9.59)
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This dimension is tabulated in Table 9.1 below for the cases of d = 4, d = 6, and d = 8 and
various values of D. Finally, there is a finite-dimensional quotient group corresponding to
L2/LD. The elements of this group are all symplectic maps of the form

M = exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · exp(: fD−1 :)×
exp(: hD :) exp(: hD+1 :) · · · , (8.9.60)

Table 8.9.1: Values of dim(L2/LD).

D dim for d = 4 dim for d = 6 dim for d = 8

4 30 77 156

5 65 203 486

6 121 455 1278

7 205 917 2994

8 325 1709 6426

9 490 2996 12,861

10 710 4998 24,301

11 996 8001 43,749

12 1360 12,369 75,573

13 1815 18,557 125,961

where the f ’s are specified and the homogeneous polynomial Lie operators : hD :, : hD+1 :,
· · · can be anything since all such elements are in L′D and their exponentials are in the
normal subgroup G′. We note that (9.60) is a relation of the form g2 = g1g

′. See (9.29).
Consequently, we may view all members of the quotient group as belonging to the equivalence
classes {Mf} where

Mf = exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · exp(: fD−1 :). (8.9.61)

Since the Lie algebra L2/LD is finite dimensional, we might hope to be able to represent
it by finite dimensional matrices. This is indeed possible. We will consider first the whole
Lie algebra L1 and show that it has a representation by infinite dimensional matrices.



972 8. A CALCULUS FOR LIE TRANSFORMATIONS AND . . .

We can take as a basis for L1 the Lie operators : Gt :. Then, in accord with (3.38), these
Lie operators have the associated matrices

Osr(: Gt :) = 〈Gs, : Gt : Gr〉. (8.9.62)

But we also have the result

: Gt : Gr = [Gt, Gr] =
∑
s′

cs
′

trGs′ , (8.9.63)

where the coefficients cs
′
tr are the structure constants of the underlying Poisson bracket Lie

algebra. See (3.7.43). It follows from (9.62) and (9.63) that we have the relation

Osr(: Gt :) = cstr. (8.9.64)

We see that the matrix representation of L1 is determined by the structure constants. Evi-
dently these matrices are infinite dimensional.

Let us pursue the relation (9.64) a bit further. From (5.3.14), (3.41), and (9.63) we have
the result

{O(: Gt :), O(: Gt′ :)} = O({: Gt :, : Gt′ :}) = O(: [Gt, Gt′ ] :)

= O(:
∑
t′′

ct
′′

tt′Gt′′ :) =
∑
t′′

ct
′′

tt′′O(: Gt′′ :). (8.9.65)

Next take r, s matrix elements of both sides of (9.65). Doing so and expanding the commu-
tator on the left side of (9.65) gives the result∑

t′′

Ort′′(: Gt :)Ot′′s(: Gt′ :)−Ort′′(: Gt′ :)Ot′′s(: Gt :) =
∑
t′′

ct
′′

tt′Ors(: Gt′′ :). (8.9.66)

Finally, use (9.64) in (9.66) to find the relation∑
t′′

crtt′′c
t′′

t′s − crt′t′′ct
′′

ts − ct
′′

tt′c
r
t′′s = 0. (8.9.67)

It is easily verified with the aid of (3.7.44) that (9.67) is equivalent to (3.7.45), which is
in turn a consequence of the Jacobi identity. [That the Jacobi identity should be involved
should come as no surprise since (5.3.14), which was used in (9.65), is a consequence of the
Jacobi identity.] Notice that the steps we have been following are quite general and hold,
in fact, for any Lie algebra. We have learned from (9.65) that matrices defined in terms of
the structure constants by the relation (9.64) provide a representation of the underlying Lie
algebra. Indeed, a moment’s reflection reveals that our present discussion is a recapitulation
of that given at the end of Section 3.7. That is, we have found the adjoint representation of
L1. Finally, we observe that if we exponentiate the matrices (9.64), we get a representation,
again called the adjoint representation, of the group. It follows, in the case of the group
of all symplectic maps, that the matrix representation given by (3.34) is just the adjoint
representation. The matrices in this representation are also infinite dimensional.
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We now turn to the case of the Lie algebra L2/LD. As in Section 8.6, define a truncation
(by degree) operator T (> m) on the basis functions Gr by the rules

deg(Gr) ≤ m⇒ T (> m)Gr = Gr, (8.9.68)

deg(Gr) > m⇒ T (> m)Gr = 0, (8.9.69)

and extend T (> m) to all functions by requiring that it be a linear operator. Given any
D > 2 and any Lie operator : f : in L2, we define an associated linear operator LD(: f :) by
the rule

LD(: f :) = T (> D − 2) : f : T (> D − 2). (8.9.70)

We note that since (by hypothesis) : f : is in L2, it can only preserve or raise the degree of
any monomial on which it acts. Therefore the operator T (> D−2) on the far right of (9.70)
is actually redundant. We also define LD for other linear operators, for example products
of Lie operators in L2, by rules of the form

LD(: f :: g :) = T (> D − 2) : f :: g : T (> D − 2). (8.9.71)

Again, strictly speaking, the T (> D − 2) on the far right of (9.71) is redundant since : f :
and : g : are assumed to be in L2.

This definition has several important properties: Suppose : f : is also in LD. Then,
from (9.57) and (9.68) through (9.70), we find the result

: f :∈ LD ⇒ LD(: f :) = 0. (8.9.72)

Next suppose : f : and : g : are in L2. Then, from (9.57) and (9.68) through (9.71), we have
the product rule

: f :, : g :∈ L2 ⇒ LD(: f :)LD(: g :)

= T (> D − 2) : f : T (> D − 2)T (> D − 2) : g : T (> D − 2)

= T (> D − 2) : f :: g : T (> D − 2) = LD(: f :: g :). (8.9.73)

Here we have used the fact that, since : f : and : g : are in L2, the truncation operator
product T (> D − 2)T (> D − 2) that occurs in the intermediate expression in (9.73) is
redundant. From (9.73) it follows that the operators LD(: f :) for : f : in L2 form a Lie
algebra. Indeed, we have the result

: f :, : g :∈ L2 ⇒ {LD(: f :),LD(: g :)} = LD({: f :, : g :})
= LD(: [f, g] :). (8.9.74)

Finally we find that all the LD(: f :), for fixed D and : f : in L2, have only a finite number
of nonzero matrix elements. Suppose either Gr or Gs have degree greater than (D − 2).
Then from (9.57) and (9.68) through (9.70) we find the result

Osr(LD(: f :)) = 〈Gs, T (> D − 2) : f : T (> D − 2)Gr〉
= 0 when deg(Gr) > D − 2 or deg(Gs) > D − 2. (8.9.75)
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Recall (3.32) and the fact that each monomial has a definite degree.
We now claim that the matrices O(LD(: f :)) provide a faithful representation of the

quotient algebra L2/LD. By construction we have the relation

O(LD(: f : + : g :)) = O(LD(: f :)) +O(LD(: g :)), (8.9.76)

and from (3.41), (9.73), (9.74) we find the relations

O(LD(: f :))O(LD(: g :)) = O(LD(: f :: g :)), (8.9.77)

{O(LD(: f :)), O(LD(: g :)} = O(LD(: [f, g] :)). (8.9.78)

Consequently, the matrices O(LD(: f :)) provide a representation of L2. Also, according to
(9.72), all elements in the ideal LD are mapped to the zero matrix. Therefore, in view of
(9.76), the matrix O(LD(: f :)) depends only on the equivalence class to which : f : belongs.
Thus, the matrices O(LD(: f :)) provide a representation of the quotient algebra L2/LD.
Finally, it remains to be shown that this representation is faithful. That is, given a matrix
O(LD(: f :)), we need to be able to determine the equivalence class to which : f : belongs.
Suppose that f is written in the form

f = f2 + f3 + · · · fD−1. (8.9.79)

Compute the action of LD(: f :) on za. We find the result

LD(: f :)za = LD(: f2 :)za + LD(: f3 :)za + · · ·+ LD(: fD−1 :)za

= T (> D − 2)(: f2 : za+ : f3 : za + · · ·+ : fD−1 : za)

= T (> D − 2)[ga(1, z) + ga(2, z) + · · ·+ ga(D − 2, z)]

= ga(1, z) + ga(2, z) + · · · ga(D − 2, z). (8.9.80)

Here we have used the notation

ga(m, z) = : fm+1 : za = [fm+1, za], (8.9.81)

and observe that the ga(m, z) are homogeneous polynomials of degree m. As is evident from
(9.80), the polynomials ga(m, z) can be determined from a knowledge of the matrix elements

Ora = 〈Gr,LD(: f :)za〉
= 〈Gr, ga(1, z)〉+ 〈Gr, ga(2, z)〉+ · · ·+ 〈Gr, ga(D − 2, z)〉 (8.9.82)

with the Gr having degree

deg(Gr) ≤ D − 2. (8.9.83)

Since the ga(m, z) are now known, we can determine the fm from (9.81). See (7.6.24).
Is the matrix representation of L2/LD just described the adjoint representation? It is not.

If it were, the matrix elements of O(LD(: f :)) would be related to the structure constants
of the quotient algebra, which are the 6cstr where both the subscripts s and r refer to basis
elements for the quotient algebra. See (9.28) and (9.64). But examination of (9.82) shows
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that the functions za were used to compute matrix elements, and the Lie operators : za : are
not in L2, and therefore not even candidates for the quotient algebra L2/LD.

Consider the “truncated” analog of (9.61) written in the form

MT
f = exp(LD(: f c2 :)) exp(LD(: fa2 :)) exp(LD(: f3 :))×

exp(LD(: f4 :)) · · · exp(LD(: fD−1 :)). (8.9.84)

Also, arrange the labelling of the basis functions Gr so that G0 corresponds to the constant
function 1 (the monomial of degree zero), the Ga (with a = 1 · · · d) correspond to the linear
monomials za, and the subsequent monomials Gr [with r = d+ 1 · · ·S(D− 2, d)] correspond
to the monomials of degrees 2, 3, · · · (D − 2). Take matrix elements of both sides of (9.84)
using the basis Gr with r = 1, 2 · · ·S(D − 2, d). Doing so gives the result

MT
f = exp(O(LD(: f c2 :))) exp(O(LD(: fa2 :))) exp(O(LD(: f3 :)))×

exp(O(LD(: f4 :))) · · · exp(O(LD(: fD−1 :))). (8.9.85)

Here use has been made of relations of the form (9.76) and (9.77). We see that (9.85) provides
a S(D− 2, d)× S(D− 2, d) matrix representation of the quotient Lie group associated with
the quotient Lie algebra L2/LD. Moreover, this representation is faithful. To see the truth
of this assertion, consider the matrix elements

(MT
f )ra = 〈Gr,MT

f Ga〉 = 〈Gr,LD(Mf )Ga〉, (8.9.86)

with
r ∈ [1, S(D − 2, d)] and a ∈ [1, d]. (8.9.87)

From these matrix elements we can determine the coefficients in the Taylor series (7.6.1)
through terms of degree (D−2), and from these coefficients we can determine the polynomials
f c2 , f

a
2 , f3, · · · fD−1.

The last concept to be discussed in this section is gradings. For our purposes, a grading
of a vector space V is a decomposition of V into a direct sum of subspaces along with a
function gr (called the grading function) that assigns an integer (called the grade) to all
the elements of any subspace. For example, we may take as our vector space V the set
of all analytic functions f(z) on phase space. Any such function can be decomposed into
homogeneous polynomials by writing

f = f0 + f1 + f2 + · · · , (8.9.88)

and these polynomials are in the subspaces we have called Pm. In this case we may define
the function gr by the rule

gr(fm) = deg(fm) = m. (8.9.89)

Elements of V that satisfy (9.89) are called homogeneous. Suppose there is some multi-
plication rule, ◦, that makes V into an algebra. See Section 3.7. Suppose also that this
multiplication rule, and the direct sum decomposition, are such that the product of any two
homogeneous elements is also homogeneous. The multiplication rule and grading function
are said to be compatible if, for all homogeneous elements, we have the relation

gr(fm ◦ gn) = gr(fm) + gr(gn). (8.9.90)



976 8. A CALCULUS FOR LIE TRANSFORMATIONS AND . . .

For example, in the case of functions, we may take for ◦ the operation of ordinary function
multiplication. Then, if we use the definition (9.89), we find the result

gr(fm ◦ gn) = deg(fmgn) = m+ n = gr(fm) + gr(gn), (8.9.91)

which shows that ordinary function multiplication and the grading function (9.89) are com-
patible.

Suppose we use Poisson bracket multiplication for ◦ instead of ordinary multiplication.
Then (4.28) shows that (9.89) is not compatible with Poisson bracket multiplication. How-
ever, if we define gr by the rule

gr(fm) = m− 2, (8.9.92)

we find the result

gr([fm, gn]) = gr(Pm+n−2) = m+ n− 2− 2

= m− 2 + n− 2 = gr(fm) + gr(gn). (8.9.93)

Thus, the grading function (9.92) is compatible with Poisson bracket multiplication. A Lie
algebra equipped with a grading (compatible with the Lie product) is called a graded Lie
algebra.

Given a graded Lie algebra, it is easy to find subalgebras and ideals. Consider the case
of analytic functions defined on phase space. Introduce the notation

fn−2(z) = fn(z) (8.9.94)

to indicate, in accord with (9.92), that homogeneous polynomials of degree n have grade
(n− 2). Equivalently, we have the relation

gr(fm) = m. (8.9.95)

We also introduce the notation
Pn−2 = Pn (8.9.96)

to indicate the subspace of polynomials of degree n and grade (n − 2). Finally, we extend
the concept of grade to Lie operators by the rule

gr(: fm :) = gr(fm) = m. (8.9.97)

Now consider the space of all Lie operators spanned by basis elements of the form : f 0 :,
: f 1 :, : f 2 :, · · · . Then, because of the relation

gr({: fm :, : fn}) = gr(: [fm, fn] :) = gr([fm, fn])

= gr(fm) + gr(fn) = m+ n, (8.9.98)

we see that
{: fm :, : fn :} ∈: Pm+n :, (8.9.99)

and hence this space is a Lie algebra. This is just the Lie algebra that we found and called
L2 earlier, and that we now will also call L0. Similarly, we can use arguments based on



8.9. IDEALS, QUOTIENTS, AND GRADINGS 977

grading to show that Lm = Lm+2 (with m > 0) is a subalgebra of L0 = L2, and also an
ideal in L0. (Indeed, the arguments we used earlier for this purpose were actually grading
arguments without being identified as such.)

Note that the Lie algebra L−1 = L1 also has Lm as a subalgebra. However Lm is not an
ideal in L−1 since L−1 contains : f−1 :=: f1 : which, according to (9.99), can lower the grade
of elements in Lm until they are no longer in Lm. We have seen that L0 can be approximated
by using the finite dimensional quotient algebras L0/Lm = L2/Lm+2. Is there some way that
we can approximate L−1 in a consistent Lie algebraic way even though Lm is not an ideal in
L−1? We would certainly like to do so since maps of the form (7.8.1) are of interest when the
origin is not mapped into itself. The answer to the question just posed is yes provided we
are willing to treat the f1 as being in some sense small. Fortunately this circumstance is the
one usually encountered since, as we will see in Chapter 14, f1 terms are usually associated
with misalignment, misplacement, and mispowering errors, and these errors are generally
small.

Before considering the inclusion of small f1 terms, let us return to the case described at
the beginning of this section. Let ε be a (presumably small) parameter, and define V to
be the vector space spanned by all phase-space functions of the form f (0), εf (1), ε2f (2) · · · .
Here the f (n) are arbitrary analytic functions not to be confused with the fn defined earlier.
Assign a grade to the subspaces εnf (n) and the associated Lie operators : εnf (n) : by the
rules

gr(εnf (n)) = n, (8.9.100)

gr(: εnf (n) :) = n. (8.9.101)

This grading function is evidently compatible with Lie multiplication,

gr([εmf (m), εnf (n)]) = gr(εm+n[f (m), f (n)])

= m+ n = gr(εmf (m)) + gr(εnf (n)), (8.9.102)

gr({: εmf (m) : , : εnf (n) :}) = gr(: [εmf (m), εnf (n)] :)

= m+ n = gr(: εmf (m) :) + gr(: εnf (n) :). (8.9.103)

Here we have used the fact that [f (m), f (n)] is again an arbitrary analytic phase-space func-
tion. Thus we may use this grading to construct subalgebras, ideals, and quotient algebras.
Suppose we define Ln to be the vector space spanned by εnf (n), εn+1f (n+1), εn+2f (n+2) · · · .
Then it is easily verified that the Ln are Lie algebras. Moreover, any Ln for n > 0 is an ideal
in L0, and each L0/Ln is a quotient algebra. Finally, it is evident that working with the
quotient algebra L0/Ln is equivalent to doing perturbation theory in ε and retaining only
those terms that carry powers of ε of the form ε0, ε1, · · · εn−1. What we have learned is that
finite order perturbation theory is a consistent Lie algebraic procedure.

We now turn to the inclusion of small f1 terms. Again let ε be a parameter. Consider
now the vector space V spanned by all functions of the form εmfn. Assign a grade to these
subspaces and their associated Lie operators : εmfn : by the rules

gr(εmfn) = m+ n− 2, (8.9.104)
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gr(: εmfn :) = m+ n− 2. (8.9.105)

With this definition we find that ε2f0, εf1, and f2 have grade 0; ε3f0, ε2f1, εf2, and f3

have grade 1; ε4f0, ε3f1, ε2f2, εf3, and f4 have grade 2; etc. From the previous discussion
it is easy to see that the grading functions (9.104) and (9.105) are compatible with Lie
multiplication. Consequently, we may use it as before to construct subalgebras, ideals, and
quotient algebras. Let εL` denote the vector space of functions spanned by elements of the
form εmfn with (m + n − 2) ≥ ` [that is, gr(εmfn) ≥ `]. Then, following arguments given
previously, it is easy to check that the εL` (with ` ≥ 0) are Lie algebras, εL` with ` > 0
is an ideal in εL0, and each εL0/εL` is a quotient algebra. We also see that εL0 contains
the element εf1, which can be interpreted as being a small f1. Finally, we observe that
the quotient algebra εL0/εL`, for fixed `, is finite dimensional. (These dimensions are listed
below in Table 9.2 for the cases of four and six-dimensional phase spaces. In computing
these dimensions we set ε = 1 and ignored all terms of the form εmf0.) Consequently, we
have discovered a systematic and Lie algebraically consistent approximation scheme that
includes small f1 terms. This approximation scheme will be studied extensively in the next
chapter.
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Table 8.9.2: Values of dim(εL0/εL`).

` dim for d = 4 dim for d = 6

1 14 27

2 34 83

3 69 209

4 125 461

5 209 923

6 329 1715

7 494 3002

8 714 5004

9 1000 8007

10 1364 12,375

11 1819 18,563

Exercises

8.9.1. Review Exercise 5.12.7. Let L be a vector space having a vector subspace L′. Show
that (9.2) defines (satisfies the properties of) an equivalence relation among the elements of
L.

8.9.2. Verify that the vectors {vi} used in (9.16) are linearly independent. Hint: Assume
there exist scalars αi such that

n∑
i=1

αi{vi} = {0}.

Show that there exists a vector x′εL′ such that

n∑
i=1

αivi = x′.



980 8. A CALCULUS FOR LIE TRANSFORMATIONS AND . . .

Show that since x′εL′, it must have an expansion of the form

x′ =
∑
j

βjbj.

Now show that all the coefficients αi and βj must vanish.

8.9.3. Verify the relation
[{0}, {x}]qs = {0}.

Show that the addition rule (9.12) and Lie product rule (9.18) together satisfy requirements
1 through 5 for a Lie algebra as given in Section 3.7.

8.9.4. Verify (9.30). Verify (9.38) in detail. Show that the definition (9.35) is independent
of equivalence class labeling if G′ is normal. Verify that the definition (9.32) satisfies the
associative property

{f1}({g1}{h1}) = ({f1}{g1}){h1}.

8.9.5. If G is a group with a subgroup G′, the subgroup G′ can be used to produce equiva-
lence classes in G in two possibly different ways. First, there is the equivalence relation ∼
defined by

g2 ∼ g1 ⇔ g−1
1 g2 ∈ G′.

Second, there is another equivalence relation, let us denote it by the symbol ↔, defined by

g2 ↔ g1 ⇔ g2g
−1
1 ∈ G′.

We know that ∼ decomposes G into left coset equivalence classes. Show that↔ is indeed an
equivalence relation, and that it decomposes G into right coset equivalence classes. Suppose
g is any element of G. Let {g}` denote the set of all elements in G that are equivalent to g
using the relation ∼, and let {g}r denote the set of all elements in G that are equivalent to
g using the relation ↔. Show that

{e}` = {e}r.

Next assume that G′ is normal. In this case show that

{g}` = {g}r

for any g in G. Thus, left and right cosets are the same if G′ is normal.

8.9.6. The center of a group G consists of those elements of G that commute with all
elements of G. See Exercise 7.2.13. Show that the center of a group is a special case of an
invariant (normal) subgroup. Review Exercise 5.11.1.

8.9.7. Verify (9.43).

8.9.8. Show that if G′ with Lie algebra L′ is a normal subgroup of a Lie group G with Lie
algebra L, then L′ is an ideal in L.

8.9.9. Starting with (9.64), verify (9.67) and show that it is equivalent to (3.7.42).
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8.9.10. Find and describe the adjoint representation of L2. What is its dimension? Find
and describe the adjoint reprsentation of L2/LD. What is its dimension?

8.9.11. Verify (9.73) and (9.74).

8.9.12. Verify (9.77) and (9.78).

8.9.13. Verify (9.85).

8.9.14. Consider a 2-dimensional phase space with canonical variables q, p. Referring to
(9.70), find the matrix elements of L4(: q3 :) and exp(L4(: q3 :)). See (9.75), (9.84), and
(9.85).

8.9.15. Read Exercise 9.14. Find the matrix representations for the Lie algebras L2/L3 and
L2/L4 in the case of a 2-dimensional phase space.

8.9.16. Verify (9.93).

8.9.17. Use the grading (9.104) and (9.105). Show that it is compatible with Lie multipli-
cation.

8.9.18. Let εL` denote the vector space of functions spanned by elements of the form εmfn
with (m + n − 2) ≥ `. Show that the εL` with ` ≥ 0 are Lie algebras, εL` with ` > 0 is
an ideal in εL0, and each εL0/εL` is a quotient Lie algebra. For a given ` and assuming a
d-dimensional phase space, show that the dimension of εL0/εL` is given in terms of (7.10.4)
by the relation

dim(εL0/εL`) = S(`+ 1, d). (8.9.106)

In computing these dimensions, set ε = 1 and ignore all terms of the form εmf0. Verify Table
9.2.

8.9.19. Review Exercise 8.2.12. This exercise is a continuation of that exercise. Our task
is to show that the Lα = L(Kα) form a basis for so(6,R). This task could be carried out by
computing all the Lα and verifying that they are indeed linearly independent. Instead, we
will use an approach that is less tedious but also more abstract.

Suppose, to the contrary, that the Lα = L(Kα) do not form a basis, and are therefore
not linearly independent. Then there are constants λα, not all zero, such that∑

α

λαL
α = 0. (8.9.107)

Use the constants λα to form an su(4) element, call it K(λ), by the rule

K(λ) =
∑
α

λαK
α. (8.9.108)

We know that K(λ) 6= 0 because the Kα are linearly independent and not all the λα are
zero. Show that

L[K(λ)] =
∑
α

λαL(Kα) =
∑
α

λαL
α = 0. (8.9.109)



982 8. A CALCULUS FOR LIE TRANSFORMATIONS AND . . .

Next, let I be the set of all elements in su(4) of the form

K(σ) =
∑
α

σαK
α (8.9.110)

such that
L[K(σ)] = 0. (8.9.111)

Show that I is a Lie subalgebra of su(4). That is, show that I is a linear vector space and
verify that

L[{K(σ), K(σ′)}] = {L[K(σ)], L[K(σ′)]} = 0 (8.9.112)

so that {K(σ), K(σ′)} ∈ I if K(σ) ∈ I and K(σ′) ∈ I. Finally, show that

L[{Kβ, K(σ)}] = {L(Kβ), L[K(σ)]} = 0 (8.9.113)

for any β and any K(σ) ∈ I. It follows that I is an invariant subalgebra of su(4). Also, we
know that I is not empty because, by hypothesis, it contains K(λ). Nor is it all of su(4)
because, for example, inspection of (2.164) shows that L(K1) 6= 0. Therefore I is an ideal.
But, this is a contradiction because su(4) is supposed to be simple, i.e. have no ideals. See
Section 3.7.6.
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Chapter 9

Inclusion of Translations in the
Calculus

9.1 Introduction

In Chapter 8 we dealt with, among other things, the restricted problem of concatenating
maps, all of which had the property of sending the origin into itself. In this chapter we
consider the general case. Let Mf and Mg denote the general symplectic maps given by
the expressions

Mf = exp(: f1 :) exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · , (9.1.1)

Mg = exp(: g1 :) exp(: gc2 :) exp(: ga2 :) exp(: g3 :) exp(: g4 :) · · · . (9.1.2)

Also, let Mh be the product of Mf and Mg,

Mh =MfMg. (9.1.3)

Given Mf and Mg, our problem will be to find polynomials h1, hc2, ha2, h3, h4, etc. such
that

Mh = exp(: h1 :) exp(: hc2 :) exp(: ha2 :) exp(: h3 :) exp(: h4 :) · · · . (9.1.4)

For future use it is convenient to use the notation

Rf = exp(: f c2 :) exp(: fa2 :), etc. (9.1.5)

In this notation, our goal is to write Mh in the form

Mh = exp(: h1 :)Rh exp(: h3 :) exp(: h4 :) · · · . (9.1.6)

Section 9.2 treats the special case where both the maps Mf and Mg produce only
constant and linear terms when acting on za. This is the case of ISp(2n,R) where all the
nonlinear generators f3, f4, · · · and g3, g4, · · · are assumed to be zero. See Section 6.2 and
Exercise 7.7.2. In this case we will be able to solve all possible problems to our hearts’
content.

Subsequent sections will treat the general case where the nonlinear generators are also
present. In this case, following the discussion in Section 8.9, we will find it necessary to
introduce a grading in which f1 and g1 are treated as being small.
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9.2 The Inhomogeneous Symplectic Group ISp(2n,R)
The inhomogeneous symplectic group ISp(2n,R) consists of all transformations of phase
space of the form

za = δa +
∑
b

Rabzb (9.2.1)

where the δa are arbitrary constants and R is a symplectic matrix. It is closely related to
the Jacobi group. See Exercises 6.2.2, 7.7.2, and 7.7.3. We already know from Section 7.7
that there is a map M such that

z =Mz, (9.2.2)

and M has the factorization

M = exp(: f c2 :) exp(: fa2 :) exp(: g1 :). (9.2.3)

Indeed, fa2 and f c2 are determined by R using (7.6.17), (7.2.2), (7.2.3), and (7.2.8); and g1

is given in terms of δ by (7.7.3). Lie operators of the form : f1 and : f2 : provide a basis for
isp(2n,R), the Lie algebra of ISp(2n,R). The purpose of this section is to state and prove
various rearrangement, factorization, and concatenation formulas for the inhomogeneous
symplectic group.

9.2.1 Rearrangement Formula

We begin with a rearrangement formula. Let us rewrite (2.3) in the form

Mf = Rf exp(: g1 :) (9.2.4)

with Rf being the linear map defined by (1.5). In terms of this notation we have the results

Rfz = Rfz, (9.2.5)

exp(: g1 :)z = z + δ, (9.2.6)

z =Mfz = Rf exp(: g1 :)z = Rf (z + δ) = δ +Rfz. (9.2.7)

Next let δ′ be another set of constants. Using (7.7.3), define a first-degree polynomial f1

such that
exp(: f1 :)z = z + δ′. (9.2.8)

Consider the map exp(: f1 :)Rf . It has the action

exp(: f1 :)Rfz = exp(: f1 :)Rfz = Rf (z + δ′) = Rfδ
′ +Rfz. (9.2.9)

Upon comparing (2.7) and (2.9) we see that there will be the equality

Rf exp(: g1 :) = exp(: f1 :)Rf (9.2.10)

provided there is the relation
Rfδ

′ = δ. (9.2.11)
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We will call the relation specified by (2.10) and (2.11) a rearrangement formula.
There is another way to obtain the rearrangement formula. Insert the identity factor

R−1
f Rf on the right side of (2.4) to get the result

Mf = Rf exp(: g1 :)R−1
f Rf . (9.2.12)

Next make use of (8.2.25) to write

Rf exp(: g1 :)R−1
f = exp(: Rfg1 :). (9.2.13)

Now define a first-degree polynomial f1 by the rule

f1 = Rfg1. (9.2.14)

We have found the result

Mf = Rf exp(: g1 :) = exp(: f1 :)Rf (9.2.15)

with f1 and g1 related by (2.14).
What remains is to make (2.15) more explicit. According to the work of Section 7.7 there

are the relations
f1(z) = (Jδ′, z), (9.2.16)

g1(z) = (Jδ, z). (9.2.17)

Consequently, (2.15) can be rewritten in the form

(Jδ′, z) = f1(z) = Rfg1 = .Rf (Jδ, z) = (Jδ,Rfz) = (RT
f Jδ, z). (9.2.18)

Upon comparing the left and right sides of (2.18) we conclude that

Jδ′ = RT
f Jδ. (9.2.19)

Now multiply both sides of (2.19) by −RfJ . Doing so to the left side of (2.19) yields the
result

−RfJJδ
′ = Rfδ

′. (9.2.20)

And doing so to the right side of (2.19) yields the result

−RfJR
T
f Jδ = −JJδ = δ. (9.2.21)

Upon comparing the right sides of (2.20) and (2.21) we see that (2.11) has been recovered.

9.2.2 Factorization Formula

The next result to obtain is a factorization formula. Given any two homogeneous polynomi-
als h1 and h2 (of degrees 1 and 2, respectively), there exist related polynomials f1, f2 that
satisfy the factorization formula

exp(: h1 + h2 :) = exp(: f2 :) exp(: f1 :). (9.2.22)
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There are at least two ways to prove (2.22). The first amounts to combining the two
exponents on the right side of (2.22), and then matching terms with the left side. Consider
all Lie products made from f1 and f2. We observe that all Lie products containing two or
more f1 factors, for example [f1, [f1, f2]], must give only constant terms, and hence their
associated Lie operators vanish. Let s and t be small parameters. According to formula
(8.7.3), we have the result

exp(s : f2 :) exp(t : f1 :) =

exp[s : f2 : + : {s : f2 : [1− exp(−s : f2 :)]−1(tf1)} : + : O(t2) :], (9.2.23)

where the notation : O(t2) : indicates Lie operators that contain at least two factors of t.
But the presence of two factors of t requires the presence of two factors of f1 and hence, by
the previous observation these Lie operators must all vanish. It follows that (2.23) is exact
for f1 and f2. Now set s = t = 1 in (2.23) and combine the result so obtained with (2.22)
to get the relation

exp(: h1 + h2 :) = exp[: f2 : + : {: f2 : [1− exp(− : f2 :)]−1f1} :]. (9.2.24)

Upon comparing like terms in (2.6), we find the relations

f2 = h2, (9.2.25)

h1 = : f2 : [1− exp(− : f2 :)]−1f1

= : h2 : [1− exp(− : h2 :)]−1f1. (9.2.26)

Finally, (2.26) may be solved for f1 to give the relation

f1 = {[1− exp(− : h2 :)]/[: h2 :]}h1

= iex(− : h2 :)h1. (9.2.27)

See (8.8.9). We note that f1 and f2 are well defined by (2.27) and (2.25) for all h1 and h2.
The converse question is more difficult: given f1 and f2, does (2.26) always define an

h1? Or equivalently, in view of (2.27), does [iex(− : f2 :)]−1f1 always exist? If not, then it
is not possible to write every inhomogeneous symplectic group element in terms of a single
exponential. See Exercise 2.3 for a discussion of this question.

There is a second derivation of (2.25) and (2.27) that is worth knowing. Consider the
functions za defined by the relation

za = exp(: sh2 + th1 :)za. (9.2.28)

As before, s and t are parameters. Expanding (2.28) in a power series gives the result

za =
∞∑
n=0

[(: sh2 + th1 :)n/n!]za. (9.2.29)
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Next expand the powers in (2.29). For n ≥ 1 we have the result

(: sh2 + th1 :)n = (s : h2 : +t : h1 :)n

= sn : h2 :n +tsn−1

n−1∑
m=0

: h2 :m: h1 :: h2 :n−m−1 +O(t2). (9.2.30)

Here we have kept track of the fact that : h1 : and : h2 : may not commute. Observe that
the terms in (2.30) proportional to t2 must have two factors of : h1 : and are therefore of the
form

t2 terms ∼ (: h2 :)α : h1 : (: h2 :)β : h1 : (: h2 :)γ (9.2.31)

where α, β, γ satisfy the relations

α + β + γ = n− 2,

α ≥ 0 , β ≥ 0 , γ ≥ 0. (9.2.32)

From (7.6.16) it is easy to verify the relation

(: h2 :)α : h1 : (: h2 :)β : h1 : (: h2 :)γza = 0. (9.2.33)

Similarly, analogous results hold for terms having three or more factors of : h1 :. It follows
that all the O(t2) terms in (2.30 annihilate the za. Thus, we find the exact result

exp(: sh2 + th1 :)za ={
∞∑
n=0

sn : h2 :n /n! + t
∞∑
n=1

(sn−1/n!)
n−1∑
m=0

: h2 :m: h1 :: h2 :n−m−1

}
za. (9.2.34)

The first term on the right side of (2.34) sums to the exponential function,

∞∑
n=0

sn : h2 :n /n! = exp(s : h2 :). (9.2.35)

The second term sums to a relation involving the exponential and integrated exponential
functions,

∞∑
n=1

n−1∑
m=0

(1/n!) : sh2 :m: th1 :: sh2 :n−m−1= exp(s : h2 :)iex(−#sh2#) : th1 : . (9.2.36)

See Appendix C. As a consequence of relations of the form (8.2.22), we have the result

iex(−#sh2#) : th1 :=: iex(− : sh2 :)th1 : . (9.2.37)

Putting (2.34) through (2.37) together gives the relation

exp(: sh2 + th1 :)za = exp(s : h2 :)[1+ : iex(− : sh2 :)th1 :]za. (9.2.38)
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Suppose we define f1 by writing

f1 = iex(− : sh2 :)h1. (9.2.39)

Again from (7.6.16) we have the relation

[1 + t : f1 :]za = exp(t : f1 :)za. (9.2.40)

We conclude that (2.38) can be rewritten in the form

exp(: sh2 + th1 :)za = exp(s : h2 :) exp(t : f1 :)za. (9.2.41)

Since the operator factors on both sides of (2.23) are manifestly group elements (symplectic
maps), we get the group (map) factorization relation

exp(: sh2 + th1 :) = exp(s : h2 :) exp(t : f1 :) (9.2.42)

with f1 defined by (2.39). Now put s = t = 1 in (2.39) and (2.42) and make the definition
(2.25) to recover (2.22), (2.25), and (2.27).

9.2.3 Concatenation Formulas

We have found the rearrangement formula given by (2.10) and (2.11) and the factorization
formula given by (2.22), (2.25, and (2.27). We now turn to the easier subjects of concate-
nation formulas. Let Mf and Mg be the inhomogeneous symplectic group maps

Mf = exp(: f1 :) exp(: f c2 :) exp(: fa2 :) = exp(: f1 :)Rf , (9.2.43)

Mg = exp(: g1 :) exp(: gc2 :) exp(: ga2 :) = exp(: g1 :)Rg. (9.2.44)

Also, let Mh be the product of Mf and Mg as in (1.3). We wish to find polynomials h1,
hc2, and ha2 such that

Mh =MfMg = exp(: h1 :) exp(: hc2 :) exp(: ha2 :) = exp(: h1 :)Rh. (9.2.45)

From (2.43) and (2.44) we have the result

MfMg = exp(: f1 :)Rf exp(: g1 :)Rg. (9.2.46)

Insert an identity factor of the form R−1
f Rf into (2.46) to find the relation

MfMg = exp(: f1 :)Rf exp(: g1 :)R−1
f RfRg. (9.2.47)

From (2.13) we conclude that (2.47) can be rewritten in the form

MfMg = exp(: f1 :) exp(: Rfg1 :)RfRg

= exp(: f1 +Rfg1 :)RfRg. (9.2.48)

Here we have used the fact that the Lie operators associated with first-degree polynomials
commute. (See Exercise 2.4.) Now compare (2.45) and (2.48) to get the concatenation
formulas

h1 = f1 +Rfg1, (9.2.49)

Rh = RfRg. (9.2.50)

We note that (2.50) is identical to (8.4.19), as expected, and consequently we also have the
corresponding matrix relation (8.4.20) as before.
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Exercises

9.2.1. Read (2.22) from right to left. That is, assume that f1 and f2 are two given homoge-
neous polynomials (of degrees 1 and 2, respectively), and we wish to find h1 and h2. From
Exercise 7.7.2 we know that : f1 : and : f2 : generate a Lie algebra. Also, we know from the
BCH formula (3.7.33) and (3.7.34) that all terms that occur when we combine the exponents
on the right side of (2.22) must be in this Lie algebra. Show that the most general such
term is of the form : h1 + h2 : where h1 and h2 have degrees 1 and 2, respectively. Show
from (8.7.3) that h1 as defined by the first line in (2.26) does indeed have degree 1, so that
terms of like degree have indeed been equated.

9.2.2. The purpose of this exercise is to convert (2.27) into an explicit matrix equation.
Since h1 is a given degree 1 polynomial, it can be written in the form

h1 =
∑
a

ha1za (9.2.51)

where the ha1 are known coefficients. From (7.6.16) the action of : h2 : on the za is a relation
of the form

: h2 : za =
∑
a′

Ha′aza′ . (9.2.52)

The matrix H is given in terms of the scalar product (7.3.8) by the relation

Ha′a = (za′ , : h2 : za). (9.2.53)

Define a matrix O in terms of H by the rule

O = iex(−H) =
∞∑
m=0

(−H)m/(m+ 1)!. (9.2.54)

Show that the series (2.54) converges for any matrix H, and therefore O is well defined.
Next verify the relation

iex(− : h2 :)za =
∑
a′

Oa′aza′ . (9.2.55)

Suppose we write f1 in the form

f1 =
∑
a′

fa
′

1 za′ . (9.2.56)

Show that (2.27) implies the relation

fa
′

1 =
∑
a

Oa′ah
a
1. (9.2.57)

What remains is to determine more explicitly the matrix H. Following (7.2.3), let us write
h2 in the form

h2 = −(1/2)
∑
de

Sdezdze (9.2.58)
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where S is a symmetric matrix. Following (7.2.4), show that

H = (JS)T = −SJ = J(JSJ) = JS ′ (9.2.59)

where
S ′ = JSJ. (9.2.60)

Show that S ′ is symmetric.

9.2.3. This exercise examines the following question: given f c2 , fa2 , and f1, when do there
exist h1 and h2 such that there is the relation

exp(: f c2 :) exp(: fa2 :) exp(: f1 :) = exp(: h1 + h2 :)? (9.2.61)

Thanks to Section 8.7 we know that such a relation is not always possible even when f1

is absent (and its presence never helps). So we should phrase the question more narrowly:
given f2 and f1, when do there exist an h1 and h2 such that (2.22) holds? Even this question
is too broad. Given an R such as in (1.5), we are in effect given a symplectic matrix R and
the requirement

Rza =
∑
b

Rabzb. (9.2.62)

There may be many f2 such that
R = exp(: f2 :) (9.2.63)

and (2.62) holds. Give an explicit example of this fact. [Hint: look at (7.2.23).] Thus,
the question should be made still narrower: Given f1 and a symplectic matrix R with the
property that there exists some f2 such that (2.62) and (2.63) hold, when do there exist h1

and h2 such that
R exp(: f1 :) = exp(: h1 + h2 :)? (9.2.64)

We will begin with the case of 2-dimensional phase space. Following (8.7.25), let us write
h2 in the form

h2 = −(bp2 + 2aqp+ cq2)/2. (9.2.65)

With this definition, show from (8.7.27) and (8.7.28) that the H matrix of (2.53) is given
by the relation

H = F T =

(
a −c
b −a

)
. (9.2.66)

Like F , the matrix H has the property

H2 = ∆I (9.2.67)

where ∆ is the discriminant (8.7.30). We are now prepared to compute O as given by (2.54).
From (2.54) and (8.7.9) derive the formal result

O = iex(−H) =
∞∑
m=0

(−H)m/(m+ 1)! = −[exp(−H)− I]/H (9.2.68)

= −[cosh(H)− sinh(H)− I]/H = [sinh(H)]/H − [cosh(H)− I]/H.
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Show using (2.67) that the series in (2.68) have the sums

[sinh(H)]/H = I[sinh(∆1/2)]/∆1/2, (9.2.69)

− [cosh(H)− I]/H = −H[cosh(∆1/2)− 1]/∆. (9.2.70)

Thus, show that O has the explicit matrix form

O = (9.2.71)(
[sinh(∆1/2)]/∆1/2 − a[cosh(∆1/2)− 1]/∆ c[cosh(∆1/2)− 1]/∆

−b[cosh(∆1/2)− 1]/∆ [sinh(∆1/2)]/∆1/2 + a[cosh(∆1/2)− 1]/∆

)
.

Note that O is well defined for all values of a, b, c as expected. Verify that O has the
determinant

det(O) = 2[cosh(∆1/2)− 1]/∆. (9.2.72)

It follows that O is not invertible when ∆ = −4π2, −16π2, · · · . Indeed, inspection of (2.71)
shows that O vanishes identically for these ∆ values! Give a geometrical argument showing
that this must be the case. From looking at (2.57) we conclude that, given f1, h1 cannot be
determined when O is not invertible. Therefore, we are tempted to conclude that our single-
exponent goal (2.64) cannot be accomplished in this case. However, we see from (8.7.34)
that R is the identity matrix when ∆ = −4π2, −16π2, · · · . In this case we may take f2 = 0
and h2 = f2 = 0. Show that O is then the identity matrix, and the single-exponent goal is
trivially achieved. We conclude, despite our fears to the contrary, that the single-exponent
goal (2.64) can always be achieved in the 2-dimensional phase-space case. What about the
cases of higher dimensional phase spaces, say 4 and 6-dimensional phase spaces? These cases
appear to be more difficult. They will be treated after we have developed a theory of normal
forms for quadratic polynomials.

9.2.4. Verify that Lie operators associated with first-degree polynomials commute. That is,
let f1 and g1 be any two first-degree polynomials. Show that

{: f1 :, : g1 :} =: [f1, g1] := 0 (9.2.73)

using (5.3.14), (5.3.21), and (7.6.14). From Exercise 7.7.2 we know that Lie operators of
the form : f1 : and : f2 : comprise the Lie algebra isp(2n,R). Show that the subalgebra
composed of Lie operators of the form : f1 : comprises a subalgebra that is an ideal in
isp(2n,R). Show that isp(2n,R) is not semisimple. See Section 8.9. It is in fact the semi-
direct sum of the Lie subalgebra generated by Lie operators of the form : f2 :, namely the
subalgebra sp(2n,R), and the Lie subalgebra generated by Lie operators of the form : f1 :,
namely the Lie subalgebra of the translation group. The sum is called semi-direct because
Lie operators of the form : f2 : and do not commute with Lie operators of the form : f1 :.
Instead, Lie operators of the form : f2 : have a nontrivial action on first-order polynomials
and, correspondingly, on Lie operators of the form : f1 :. See Section 25.2.1.

9.2.5. Equation (2.22) gives a reverse factorization. Consider the problem of making the
forward factorization

exp(: h1 + h2 :) = exp(: g1 :) exp(: g2 :). (9.2.74)



994 9. INCLUSION OF TRANSLATIONS IN THE CALCULUS

Show that in this case one has the results

g2 = h2, (9.2.75)

g1 = iex(: h2 :)h1. (9.2.76)

Hint: Either invert both sides of (2.22), or use (2.22), (2.10), and (2.11).

9.2.6. Review (2.1) through (2.3) and (7.7.3). Consider the general ISp(2n,R) elementM
given by (2.3). When g1 = 0 we know that M has the origin as a fixed point. The purpose
of this exercise is to show that when g1 6= 0 the map M generally still has a fixed point.
Suppose thatM has a fixed point zf . Show from (2.1) that there must then be the relation

zf = δ +Rzf , (9.2.77)

from which it follows that zf is uniquely defined by the relation

zf = −(R− I)−1δ (9.2.78)

provided the matrix (R − I) has an inverse. For (R − I) to have an inverse it must be the
case that

det(R− I) 6= 0. (9.2.79)

Consequently, provided R does not have +1 as an eigenvalue,M has a fixed point zf given
by (2.78), and this fixed point is unique. In particular, if the eigenvalues of R lie on the unit
circle so that tunes are defined, no tune may be integer.

Provide an example of a symplectic matrix R, with some eigenvalue equal +1, for which
M does not have a fixed point for some g1 6= 0. For example, study in detail the 2× 2 case
for which

R =

(
1 λ
0 1

)
(9.2.80)

where λ is an arbitrary parameter. Show that, when δ2 6= 0, M has no fixed point. Show
that, when δ2 = 0 and λ 6= 0, M has a whole line of fixed points and therefore does not
have a unique fixed point. What happens when λ = 0?

Given M and any degree one polynomial h1, define a map N by the relation

N = exp(: h1 :)M exp(− : h1 :). (9.2.81)

Show that, when
h1 = (z, Jzf ), (9.2.82)

there is the relation
N = R. (9.2.83)

Thus, show that generally M has the factorization

M = exp(− : h1 :)R exp(: h1 :) (9.2.84)

with h1 given by (2.82), zf being the fixed point of M, and R being the linear part of M.
However, not all M can be written in the form (2.84) because we know from the work of
the previous paragraph that there are some M that do not have a fixed point.
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9.2.7. Consider a generating function of the form

g(u) = (k, u) + (1/2)(u,Wu) (9.2.85)

where k is a vector with 2n entries and W is a general 2n×2n symmetric matrix. That is, g
consists of arbitrary linear and quadratic parts. Using (6.7.21), find the associated symplectic
map M for any Darboux matrix α, and show that M is an element of ISp(2n,R).

9.3 Lie Concatenation in the General Nonlinear Case

We now turn to the general case ISpM(2n,R) where we have to take into account the
presence of the nonlinear generators f3, f4 · · · and g3, g4 · · · . In this case, the Lie algebras
are infinite dimensional and, as described in Section 8.9, we will introduce a quotient-space
structure in order to produce an approximation scheme. This quotient-space structure will
be based on the grading given by (8.9.78) and (8.9.79). As we will see, it amounts to treating
the quantities f1 and g1 in (1.1) and (1.2) as being small.

For purposes of illustration, we will begin our discussion with the case in which we retain
only f3 and f4 in (1.1) and g3 and g4 in (1.2). Correspondingly, we will only retain h3 and h4

in (1.3). In addition, we will let ε be a parameter which we will initially regard as small, but
will eventually set equal to one. Now consider terms of the form εmfn, and corresponding
terms for the g’s and h’s. We assign these terms a grade following (8.9.78) and (8.9.79),

grade 0 : ε2f0, εf1, f2; (9.3.1)

grade 1 : ε3f0, ε
2f1, εf2, f3; (9.3.2)

grade 2 : ε4f0, ε
3f1, ε

2f2, εf3, f4. (9.3.3)

We have already seen that these elements span the quotient Lie algebra εL0/εL3, and we
will work within this quotient Lie algebra and its corresponding quotient group. Note that
since we will be working with Lie operators, and the Lie operator for a constant function
vanishes, terms of the form εmf0 actually play no role.

Following the notation (2.26) and (8.4.14), let us rewrite (1.1), (1.2), and (1.4) in the
form

Mf = exp(: εf1 :)Rf exp(: f3 :) exp(: f4 :), (9.3.4)

Mg = exp(: εg1 :)Rg exp(: g3 :) exp(: g4 :), (9.3.5)

Mh = exp(: εh1 :)Rh exp(: h3 :) exp(: h4 :). (9.3.6)

Here we have replaced f1 by εf1, etc. Upon comparing (3.4) through (3.6), we see that
performing the multiplication (1.3) requires that all first-order exponents be moved to the
extreme left. We will do this in steps. Let us write the product (1.3) in the form

Mh = exp(: εf1 :)Rf exp(: f3 :) exp(: f4 :) exp(: εg1 :)Rg exp(: g3 :) exp(: g4 :). (9.3.7)

The first step will be to move the first-order exponent, g1 in this case, to the left of f4. We
begin with the relation

exp(: f4 :) exp(: εg1 :) = exp(: εg1 :) exp(− : εg1 :) exp(: f4 :) exp(: εg1 :)

= exp(: εg1 :) exp(: exp(− : εg1 :)f4 :). (9.3.8)
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Here use has been made of (8.2.20). Now we use the relation

: exp(− : εg1 :)f4 :=:

[
∞∑
m=0

(: −εg1 :m /m!)f4

]
:

= : [f4 − ε : g1 : f4 + (ε2/2!) : g1 :2 f4 − (ε3/3!) : g1 :3 f4] : . (9.3.9)

Note that the apparently infinite series in (3.9) actually terminates because of (7.6.16). Also,
use has been made of (5.3.21).

Let us rewrite (3.8) and (3.9) in the form

exp(: f4 :) exp(: εg1 :) = exp(: εg1 :) exp(: j
(2)
1 + j

(2)
2 + j

(2)
3 + j

(2)
4 :) (9.3.10)

where the j
(2)
i are the homogeneous polynomials

j
(2)
1 = −(ε3/3!) : g1 :3 f4, (9.3.11)

j
(2)
2 = (ε2/2!) : g1 :2 f4, (9.3.12)

j
(2)
3 = −ε : g1 : f4, (9.3.13)

j
(2)
4 = f4. (9.3.14)

Here a subscript on a j indicates the degree of the polynomial. Observe from (3.3) that all
the j polynomials have grade two. Hence they also all carry a superscript 2 in parentheses to
indicate this fact. Next we use the factorization theorem to write the product representation

exp(: j
(2)
1 + j

(2)
2 + j

(2)
3 + j

(2)
4 :) = exp(: k1 :) exp(: k2 :) exp(: k3 :) exp(: k4 :). (9.3.15)

Without loss of generality we may require that the ki are in the Lie algebra generated by
the j

(2)
i and are also in εL0/εL3. It follows that we have the relations

ki = j
(2)
i . (9.3.16)

Now combine (3.10) and (3.15) to obtain the result

exp(: f4 :) exp(: εg1 :) = exp(: εg1 :) exp(: k1 :) exp(: k2 :) exp(: k3 :) exp(: k4 :)

= exp(: εg1 + k1 :) exp(: k2 :) exp(: k3 :) exp(: k4 :). (9.3.17)

Observe that in relations such as (3.11) through (3.14), powers of ε are correlated with
powers of : g1 :. Thus, we may simply view the introduction of ε as a way of counting powers
of g1. Correspondingly, after obtaining final results, we may set ε = 1 to obtain, under the
assumption that g1 itself is small, a set of formulas that make systematic expansions in the
size of g1. The final result of this process for the work done thus far is a formula that can
be written as

exp(: f4 :) exp(: g1 :) = exp(: h4
1 :) exp(: h4

2 :) exp(: h4
3 :) exp(: h4

4 :) (9.3.18)
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where the h4
i are given by the relations

h4
1 = g1 − (1/3!) : g1 :3 f4, (9.3.19)

h4
2 = (1/2!) : g1 :2 f4, (9.3.20)

h4
3 = − : g1 : f4, (9.3.21)

h4
4 = f4. (9.3.22)

Here the subscript on h denotes its degree, and the superscript 4 indicates that it is associated
with f4. (Unlike the notation used earlier, the superscript on h is not a grade.) Note that
in moving g1 to the left of f4 we have generated the third and second-degree polynomials
h4

3 and h4
2 as well as the additional first-degree term in h4

1. This generation of lower-order
terms is a nonlinear feed-down effect. It shows, for example, that a misplaced octupole can
produce sextupole, quadrupole, and steering-like effects.

We have seen how to move a first-order exponent to the left of f4. The second step is to
move such an exponent to the left of f3. Let us now call the first-order exponent g̃1. Then,
in analogy to (3.8) and (3.9) find the relations

exp(: f3 :) exp(: εg̃1 :) = exp(: εg̃1 :) exp(: exp(− : εg̃1 :)f3 :), (9.3.23)

: exp(− : εg̃1 :)f3 :=: [f3 − ε : g̃1 : f3 + (ε2/2!) : g̃1 :2 f3] : . (9.3.24)

As before, we rewrite these relations in the form

exp(: f3 :) exp(: εg̃1 :) = exp(: εg̃1 :) exp(: j̃
(1)
1 + j̃

(1)
2 + j̃

(1)
3 :), (9.3.25)

where the j̃
(1)
i are now the homogeneous polynomials

j̃
(1)
1 = (ε2/2!) : g̃1 :2 f3, (9.3.26)

j̃
(1)
2 = −ε : g̃1 : f3, (9.3.27)

j̃
(1)
3 = f3. (9.3.28)

We note that all the terms on the left sides of the relations (3.26) through (3.28) are of grade
one. Hence all the j̃’s carry, within parentheses, a superscript of 1. Again, as before, we use
the factorization theorem to write the representation

exp(: j̃
(1)
1 + j̃

(1)
2 + j̃

(1)
3 :) = exp(: k̃1 :) exp(: k̃2 :) exp(: k̃3 :) exp(: k̃4 :). (9.3.29)

At this point there are two new features to the calculation: First, we have included
a fourth-degree polynomial k̃4 on the right side of (3.29) even though the highest degree

polynomial on the left of (3.29), namely j̃
(1)
3 , is of degree three. This is done for the sake of

consistency since our calculation is being carried out in the quotient algebra εL0/εL3, which
contains fourth-degree generators. Second, since the k̃i are in the Lie algebra generated by
the j̃

(1)
i and also in εL0/εL3, they may contain terms of grade 1 and grade 2. Therefore we

make the decompositions
k̃1 = k̃

(1)
1 + k̃

(2)
1 , (9.3.30)
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k̃2 = k̃
(1)
2 + k̃

(2)
2 , (9.3.31)

k̃3 = k̃
(1)
3 + k̃

(2)
3 , (9.3.32)

k̃4 = k̃
(2)
4 . (9.3.33)

[Note that according to (3.1) through (3.3) there is no fourth-degree polynomial of grade
1.] Now use the BCH formula and the decompositions (3.30) through (3.33) to combine all
exponents on the right side of (3.29) into one grand exponent. We find, through terms of
grade 2, the result

exp(: k̃1 :) exp(: k̃2 :) exp(: k̃3 :) exp(: k̃4 :) = exp(: `1 + `2 + `3 + `4 :) (9.3.34)

where the `i are given by the relations

`1 = k̃
(1)
1 + k̃

(2)
1 + [k̃

(1)
1 , k̃

(1)
2 ]/2, (9.3.35)

`2 = k̃
(1)
2 + k̃

(2)
2 + [k̃

(1)
1 , k̃

(1)
3 ]/2, (9.3.36)

`3 = k̃
(1)
3 + k̃

(2)
3 + [k̃

(1)
2 , k̃

(1)
3 ]/2, (9.3.37)

`4 = k̃
(2)
4 . (9.3.38)

Upon comparing (3.29) and (3.34) we find the results

`i = j̃i for i = 1 to 3, (9.3.39)

`4 = 0. (9.3.40)

We thus have the relations

j̃
(1)
1 = k̃

(1)
1 + k̃

(2)
1 + [k̃

(1)
1 , k̃

(1)
2 ]/2, (9.3.41)

j̃
(1)
2 = k̃

(1)
2 + k̃

(2)
2 + [k̃

(1)
1 , k̃

(1)
3 ]/2, (9.3.42)

j̃
(1)
3 = k̃

(1)
3 + k̃

(2)
3 + [k̃

(1)
2 , k̃

(1)
3 ]/2, (9.3.43)

0 = k̃
(2)
4 , (9.3.44)

and these relations must be solved for the k̃
(1)
i and k̃

(2)
i . To carry out this task, we equate

terms of like grade in (3.41) through (3.44) to find the results

k̃
(1)
1 = j̃

(1)
1 , (9.3.45)

k̃
(1)
2 = j̃

(1)
2 , (9.3.46)

k̃
(1)
3 = j̃

(1)
3 , (9.3.47)

k̃
(2)
1 = −[k̃

(1)
1 , k̃

(1)
2 ]/2 = −[j̃

(1)
1 , j̃

(1)
2 ]/2, (9.3.48)

k̃
(2)
2 = −[k̃

(1)
1 , k̃

(1)
3 ]/2 = −[j̃

(1)
1 , j̃

(1)
3 ]/2, (9.3.49)

k̃
(2)
3 = −[k̃

(1)
2 , k̃

(1)
3 ]/2 = −[j̃

(1)
2 , j̃

(1)
3 ]/2, (9.3.50)
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k̃
(2)
4 = 0. (9.3.51)

Now put the results (3.26) through (3.28), (3.30) through (3.33), and (3.45) through (3.51)
together to get the relations

k̃1 = (ε2/2) : g̃1 :2 f3 − (ε3/4)[: g̃1 :2 f3, : g̃1 : f3], (9.3.52)

k̃2 = −ε : g̃1 : f3 − (ε2/4)[: g̃1 :2 f3, f3], (9.3.53)

k̃3 = f3 + (ε/2)[: g̃1 : f3, f3], (9.3.54)

k̃4 = 0. (9.3.55)

Finally, as before, these relations should be evaluated with ε = 1. The net result is the
formula

exp(: f3 :) exp(: g̃1 :) = exp(: h3
1 :) exp(: h3

2 :) exp(: h3
3 :) exp(: h3

4 :) (9.3.56)

where the h3
i are given by the relations

h3
1 = g̃1 + (1/2) : g̃1 :2 f3 − (1/4)[: g̃1 :2 f3, : g̃1 : f3], (9.3.57)

h3
2 = − : g̃1 : f3 − (1/4)[: g̃1 :2 f3, f3], (9.3.58)

h3
3 = f3 + (1/2)[: g̃1 : f3, f3], (9.3.59)

h3
4 = 0. (9.3.60)

We note that moving g̃1 past f3 is more difficult than moving g1 past f4! This greater
difficulty occurs because, as is evident from (3.57) through (3.60), the feed-down terms are
more complicated.

We have seen how to move a first-degree exponent past f4 and f3, and how to calculate
(within the quotient algebra εL0/εL3) the feed-down terms left in its wake. The penultimate
step is to move the first-degree exponent past Rf and then combine it with f1. But this
we know how to do exactly using the concatenation formulas (2.34) through (2.38) for the
inhomogeneous symplectic group. Finally, we have to combine the results obtained so far
with the remaining factors Rg exp(: g3 :) exp(: g4 :) in (3.7). This we also know how to do
exactly using the concatenation formulas of Section 8.4. Thus, we have explored in some
detail how to perform concatenation within the quotient group generated by the Lie algebra
εL0/εL3.

Two tasks remain. The first is to find a convenient way of evaluating the symplectic
matrices associated with the feed-down linear transformations of the form exp(: hn2 :). This
subject has already been treated in Chapter 4.

The second task is to find results for the larger quotient algebras εL0/εL` with ` > 3. A
suitable Mathematica program for this purpose is presented in Appendix E. Essentially two
problems must be solved to carry out the second task. First, we need formulas of the kind
(3.15) and (3.29). Given a set of graded polynomials j

(n)
i , we need formulas for the km that

appear in the product representation

exp(: j
(n)
1 + j

(n)
2 + j

(n)
3 + · · · :) = exp(: k1 :) exp(: k2 :) exp(: k3 :) · · · . (9.3.61)
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Second, let us write a relation of the form

exp(: fn :) exp(: g1 :) = exp(: hn1 :) exp(: hn2 :) exp(: hn3 :) · · · , (9.3.62)

where, as before, we have used the notation hni to denote the polynomial of degree i that
results from moving : g1 : past : fn :. For this relation we need formulas for the hni in terms
of g1 and fn. We summarize below the results we have already found for the quotient algebra
εL0/εL3 and, as a more complicated example found using the program in Appendix E, the
results for the quotient algebra εL0/εL5.
Formulas for the ki in (3.61) in the quotient algebra εL0/εL3.
n=2

ki = j
(2)
1 , i = 1 to 4. (9.3.63)

n=1
k1 = j

(1)
1 − [j

(1)
1 , j

(1)
2 ]/2, (9.3.64)

k2 = j
(1)
2 − [j

(1)
1 , j

(1)
3 ]/2, (9.3.65)

k3 = j
(1)
3 − [j

(1)
2 , j

(1)
3 ]/2, (9.3.66)

k4 = 0. (9.3.67)

Formulas for the hni in (3.62) in the quotient algebra εL0/εL3.

h4
1 = g1 − (1/3!) : g1 :3 f4, (9.3.68)

h4
2 = (1/2!) : g1 :2 f4, (9.3.69)

h4
3 = − : g1 : f4, (9.3.70)

h4
4 = f4. (9.3.71)

h3
1 = g1 + (1/2!) : g1 :2 f3 − (1/4)[: g1 :2 f3, : g1 : f3], (9.3.72)

h3
2 = − : g1 : f3 − (1/4)[: g1 :2 f3, f3], (9.3.73)

h3
3 = f3 + (1/2)[: g1 : f3, f3], (9.3.74)

h3
4 = 0. (9.3.75)

Formulas for the ki in (3.61) in the quotient algebra εL0/εL5.
n=4

ki = j
(4)
i , i = 1, 6. (9.3.76)

n=3
k1 = j

(3)
1 , (9.3.77)

k2 = j
(3)
2 , (9.3.78)

k3 = j
(3)
3 , (9.3.79)

k4 = j
(3)
4 , (9.3.80)

k5 = j
(3)
5 , (9.3.81)
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k6 = 0. (9.3.82)

n=2
k1 = j

(2)
1 + [j

(2)
2 , j

(2)
1 ]/2, (9.3.83)

k2 = j
(2)
2 + [j

(2)
3 , j

(2)
1 ], (9.3.84)

k3 = j
(2)
3 + [j

(2)
3 , j

(2)
2 ]/2 + [j

(2)
4 , j

(2)
1 ], (9.3.85)

k4 = j
(2)
4 + [j

(2)
4 , j

(2)
2 ], (9.3.86)

k5 = [j
(2)
4 , j

(2)
3 ], (9.3.87)

k6 = 0. (9.3.88)

n=1

k1 = j
(1)
1 + [j

(1)
2 , j

(1)
1 ]/2− [j

(1)
1 , j

(1)
3 , j

(1)
1 ]/6 + [j

(1)
2 , j

(1)
2 , j

(1)
1 ]/6

− [j
(1)
1 , j

(1)
3 , j

(1)
2 , j

(1)
1 ]/8− [j

(1)
2 , j

(1)
1 , j

(1)
3 , j

(1)
1 ]/24

+ [j
(1)
2 , j

(1)
2 , j

(1)
2 , j

(1)
1 ]/24, (9.3.89)

k2 = j
(1)
2 + [j

(1)
3 , j

(1)
1 ]/2− [j

(1)
2 , j

(1)
3 , j

(1)
1 ]/12 + [j

(1)
3 , j

(1)
2 , j

(1)
1 ]/6

− [j
(1)
2 , j

(1)
3 , j

(1)
2 , j

(1)
1 ]/24− [j

(1)
3 , j

(1)
1 , j

(1)
3 , j

(1)
1 ]/24

+ [j
(1)
3 , j

(1)
2 , j

(1)
2 , j

(1)
1 ]/24, (9.3.90)

k3 = j
(1)
3 + [j

(1)
3 , j

(1)
2 ]/2− [j

(1)
2 , j

(1)
3 , j

(1)
2 ]/6 + [j

(1)
3 , j

(1)
3 , j

(1)
1 ]/6

+ [j
(1)
2 , j

(1)
2 , j

(1)
3 , j

(1)
2 ]/24− [j

(1)
2 , j

(1)
3 , j

(1)
3 , j

(1)
1 ]/8 + [j

(1)
3 , j

(1)
2 , j

(1)
3 , j

(1)
1 ]/24

+ [j
(1)
3 , j

(1)
3 , j

(1)
2 , j

(1)
1 ]/24, (9.3.91)

k4 = −[j
(1)
3 , j

(1)
3 , j

(1)
2 ]/12 + [j

(1)
3 , j

(1)
2 , j

(1)
3 , j

(1)
2 ]/24− [j

(1)
3 , j

(1)
3 , j

(1)
3 , j

(1)
1 ]/24, (9.3.92)

k5 = [j
(1)
3 , j

(1)
3 , j

(1)
3 , j

(1)
2 ]/24, (9.3.93)

k6 = 0. (9.3.94)

Formulas for the hni in (3.62) in the quotient algebra εL0/εL5.

h6
1 = g1 − (1/120) : g1 :5 f6, (9.3.95)

h6
2 = (1/24) : g1 :4 f6, (9.3.96)

h6
3 = −(1/6) : g1 :3 f6, (9.3.97)

h6
4 = (1/2) : g1 :2 f6, (9.3.98)

h6
5 = − : g1 : f6, (9.3.99)

h6
6 = f6; (9.3.100)

h5
1 = g1 + (1/24) : g1 :4 f5, (9.3.101)
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h5
2 = −(1/6) : g1 :3 f5, (9.3.102)

h5
3 = (1/2) : g1 :2 f5, (9.3.103)

h5
4 = − : g1 : f5, (9.3.104)

h5
5 = f5, (9.3.105)

h5
6 = 0; (9.3.106)

h4
1 = g1 + j4

1 + [j4
2 , j

4
1 ]/2, (9.3.107)

h4
2 = j4

2 + [j4
3 , j

4
1 ]/2, (9.3.108)

h4
3 = j4

3 + [j4
3 , j

4
2 ]/2 + [j4

4 , j
4
1 ]/2, (9.3.109)

h4
4 = j4

4 + [j4
4 , j

4
2 ]/2, (9.3.110)

h4
5 = [j4

4 , j
4
3 ]/2, (9.3.111)

h4
6 = 0, (9.3.112)

where
j4

1 = − : g1 :3 f4/6, (9.3.113)

j4
2 =: g1 :2 f4/2, (9.3.114)

j4
3 = − : g1 : f4, (9.3.115)

j4
4 = f4; (9.3.116)

h3
1 = g1 + j3

1 + [j3
2 , j

3
1 ]/2− [j3

1 , j
3
3 , j

3
1 ]/6 + [j3

2 , j
3
2 , j

3
1 ]/6− [j3

1 , j
3
3 , j

3
2 , j

3
1 ]/8

− [j3
2 , j

3
1 , j

3
3 , j

3
1 ]/24 + [j3

2 , j
3
2 , j

3
2 , j

3
1 ]/24, (9.3.117)

h3
2 = j3

2 + [j3
3 , j

3
1 ]/2− [j3

2 , j
3
3 , j

3
1 ]/12 + [j3

3 , j
3
2 , j

3
1 ]/6− [j3

2 , j
3
3 , j

3
2 , j

3
1 ]/24

− [j3
3 , j

3
1 , j

3
3 , j

3
1 ]/24 + [j3

3 , j
3
2 , j

3
2 , j

3
1 ]/24, (9.3.118)

h3
3 = j3

3 + [j3
3 , j

3
2 ]/2− [j3

2 , j
3
3 , j

3
2 ]/6 + [j3

3 , j
3
3 , j

3
1 ]/6 + [j3

2 , j
3
2 , j

3
3 , j

3
2 ]/24

− [j3
2 , j

3
3 , j

3
3 , j

3
1 ]/8 + [j3

3 , j
3
2 , j

3
3 , j

3
1 ]/24 + [j3

3 , j
3
3 , j

3
2 , j

3
1 ]/24, (9.3.119)

h3
4 = −[j3

3 , j
3
3 , j

3
2 ]/12 + [j3

3 , j
3
2 , j

3
3 , j

3
2 ]/24− [j3

3 , j
3
3 , j

3
3 , j

3
1 ]/24, (9.3.120)

h3
5 = [j3

3 , j
3
3 , j

3
3 , j

3
2 ]/24, (9.3.121)

h3
6 = 0, (9.3.122)

where
j3

1 =: g1 :2 f3/2, (9.3.123)

j3
2 = − : g1 : f3, (9.3.124)

j3
3 = f3. (9.3.125)
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Here for multiple Poisson brackets we have used the notation

[a1, a2, a3] = [a1, [a2, a3]], (9.3.126)

[a1, a2, a3, a4] = [a1, [a2, [a3, a4]]]. (9.3.127)

Note that for εL0/εL5 the feed-down terms are quite complicated. Also, note that the
terms h4

5, h3
4, and h3

5 are nonzero. Consequently there can also be, in effect, nonlinear feed-up
terms due to translations in phase space. Finally, we see that the εL0/εL3 formulas (3.68)
through (3.75) are special cases of the εL0/εL5 formulas for h4

i and h3
i in which higher-power

terms in g1 are neglected.
We close this section with an observation that will be of relevance for the work of the

next section. Observe that the relations (3.25) and (3.29) can be written in the form

exp(: f3 :) exp(: εg1 :) = exp(: k
(0)
1 :) exp(: k

(1)
1 + k

(2)
1 :) exp(: k

(1)
2 + k

(2)
2 :) exp(: k

(1)
3 + k

(2)
3 :).

(9.3.128)

Here, for convenience, we have dropped the tildes and we have defined the k
(n)
i by the

relations
k

(0)
1 = εg1, (9.3.129)

k
(1)
1 = (ε2/2) : g1 :2 f3, (9.3.130)

k
(2)
1 = −(ε3/4)[: g1 :2 f3, : g1 : f3], (9.3.131)

k
(1)
2 = −ε : g1 : f3, (9.3.132)

k
(2)
2 = −(ε2/4)[: g1 :2 f3, f3], (9.3.133)

k
(1)
3 = f3, (9.3.134)

k
(2)
3 = (ε/2)[: g1 : f3, f3]. (9.3.135)

See (3.1) through (3.3) and (3.52) through (3.55). We see that several of the exponents
contain terms of different grades. We will therefore refer to expressions of the form (3.128)
as mixed grade factorizations.

From the Lie algebraic perspective of working within εL0/εL3 we could as well sought
relations of the form

exp(: f3 :) exp(: εg1 :) = exp(: k̂
(0)
1 :) exp(: k̂

(1)
1 :) exp(: k̂

(2)
1 :)×

exp(: k̂
(0)
2 :) exp(: k̂

(1)
2 :) exp(: k̂

(2)
2 :)×

exp(: k̂
(1)
3 :) exp(: k̂

(2)
3 :) exp(: k̂

(2)
4 :). (9.3.136)

Here we have used hats to indicate that the k̂
(n)
i may differ from the k

(n)
i . (They are actually

the same for the algebra εL0/εL3, but they may differ for relations analagous to (3.136) in
the case of algebras having a larger maximum grade.) Note that in the factorization (3.136)
each exponent has a single grade. [And, according to (3.1) through (3.3), each exponent
carries a single power of ε.] We will call factorizations of this kind single grade factorizations.

Once again ε serves as a counting parameter and, having obtained a single grade fac-
torization of the form (3.136), we may set ε = 1. Evidently, since we are working within
a quotient algebra based on grade, setting ε = 1 in either a mixed grade or a single grade
factorization gives equivalent results.
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Exercises

9.3.1. Verify the relations (3.8) through (3.22).

9.3.2. Verify the relations (3.30) through (3.38). Note that Poisson brackets between grade
one and grade two polynomials, and Poisson brackets between two grade two polynomials,
vanish in the quotient algebra εL0/εL3.

9.3.3. Verify the relations (3.39) through (3.55).

9.3.4.

9.3.5.

9.4 Canonical Treatment of Translations

The Lie concatenation formulas for maps that send the origin into itself, see Sections 8.4 and
10.12, were relatively easy to derive. By contrast, the concatenation formulas just derived
in the previous section, where translations were included, seem much more complicated. In
this section we will show how the translation case can be handled using a concatenator for
the simpler origin-preserving case. This will be done by enlarging the 2n-dimensional phase
space to include the extra variables qn+1 and pn+1. For this reason, the method will be
referred to as a canonical treatment of translations.

9.4.1 Preliminaries

Since the origin-preserving concatenation formulas do not depend on the phase-space dimen-
sion, the only costs associated with increased phase-space dimension are those of increased
storage and slower execution when a concatenator is realized as computer code. The advan-
tages of this approach are simplicity and reliability. If one has a reliable origin-preserving
concatenator, one can construct from it a self-checking concatenator for general maps.

Those who have been meticulous to do the Exercises in this book will recognize that Exer-
cise 7.7.2 showed that the Jacobi Lie algebra j(2n,R) is homomorphic to the inhomogeneous
symplectic Lie algebra isp(2n,R) of Section 9.2, and Exercise 7.7.3 treated, among other
things, the relation between j(2n,R) and the symplectic group Lie algebra sp[2(n + 1),R]
for a phase space having two additional dimensions. We begin our discussion here by further
elaborating on this theme. Subsequently we will treat ISpM(2n,R) and ispm(2n,R), the
full nonlinear case of all symplectic maps.

Let us use the symbol ẑ to denote the coordinates in the (2n+ 2)-dimensional enlarged
phase space,

ẑ = (q1 · · · qn, qn+1, p1 · · · pn, pn+1). (9.4.1)

We will also use the notation M̂f̂ to denote a symplectic (and origin-preserving) map acting

on the enlarged phase space. For what follows we will want to consider special maps M̂ĥ

on the enlarged phase space that have the property

M̂ĥqn+1 = qn+1. (9.4.2)
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Such maps obviously form a group. Moreover, they have a factorization of the form

M̂ĥ = R̂ĥ exp(: ĥ3 :) exp(: ĥ4 :) · · · (9.4.3)

where the linear part R̂ĥ has the property

R̂ĥqn+1 = qn+1, (9.4.4)

and the ĥm(ẑ) that describe the nonlinear part are independent of pn+1,

∂ĥm(ẑ)/∂pn+1 = 0. (9.4.5)

To see that this is so, equate terms of like degree on both sides of (4.2). From (7.6.14) there
is the result

[exp(: ĥ3 :) exp(: ĥ4 :) · · · ]qn+1 = qn+1 +O(ẑ2). (9.4.6)

Therefore (4.2) requires the relation

qn+1 = M̂ĥqn+1 = R̂ĥ[qn+1 +O(ẑ2)] = R̂ĥqn+1 +O(ẑ2), (9.4.7)

and equating terms of first degree yields (4.4).
Now that (4.4) is established, multiply both sides of (4.2) by R̂−1

ĥ
to find the result

R̂−1

ĥ
M̂ĥqn+1 = R̂−1

ĥ
qn+1 = qn+1 (9.4.8)

from which it follows that

[exp(: ĥ3 :) exp(: ĥ4 :) · · · ]qn+1 = qn+1. (9.4.9)

Evaluate both sides of (4.9) through terms of degree 2. Doing so gives the relation

qn+1 + : ĥ3 : qn+1 +O(ẑ3) = qn+1, (9.4.10)

and equating terms of like degree gives the relation

0 =: ĥ3 : qn+1 = [ĥ3, qn+1] = −∂ĥ3/∂pn+1, (9.4.11)

which establishes (4.5) for the case m = 3. From (4.11) we also conclude that

exp(: ĥ3 :)qn+1 = qn+1. (9.4.12)

Finally, multiply both sides of (4.9) by exp(− : ĥ3 :) to find the result

[exp(: ĥ4 :) exp(: ĥ5 :) · · · ]qn+1 = exp(− : ĥ3 :)qn+1 = qn+1. (9.4.13)

Expanding both sides of (4.13) and equating terms of like degree shows that (4.5) also holds
for the case m = 4, etc.

Let us explore the consequences of (4.4) in detail. For simplicity, consider the case of
a phase space that is initially two dimensional (n = 1) and is enlarged to become four
dimensional. The results for general n can easily be inferred from what we will find for the
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n = 1 case. Suppose R̂ĥ is the matrix associated with R̂ĥ. In the 4×4 case we have decided
to consider, and in view of (4.4) with n = 1, it has the general form

R̂ĥ =


R̂ĥ

11 R̂ĥ
12 R̂ĥ

13 R̂ĥ
14

R̂ĥ
21 R̂ĥ

22 R̂ĥ
23 R̂ĥ

24

0 0 1 0

R̂ĥ
41 R̂ĥ

42 R̂ĥ
43 R̂ĥ

44

 . (9.4.14)

Here we have used the ordering
ẑ = (q1, p1; q2, p2). (9.4.15)

However, since R̂ĥ is a symplectic map, R̂ĥ must be a symplectic matrix. Enforcing the
symplectic condition (3.1.2) or (3.1.10) gives, among others, the relations

R̂ĥ
a4 = δa4. (9.4.16)

It follows that R̂ĥ has the more specific form

R̂ĥ =


R̂ĥ

11 R̂ĥ
12 R̂ĥ

13 0

R̂ĥ
21 R̂ĥ

22 R̂ĥ
23 0

0 0 1 0

R̂ĥ
41 R̂ĥ

42 R̂ĥ
43 1

 . (9.4.17)

Introduce the 2× 2 matrix R̄ĥ defined by the upper-left 2× 2 block in R̂ĥ,

R̄ĥ =

(
R̂ĥ

11 R̂ĥ
12

R̂ĥ
21 R̂ĥ

22

)
, (9.4.18)

and let Řĥ be the 4× 4 matrix

Řĥ =

(
R̄ĥ 0
0 I

)
. (9.4.19)

Also, define quantities αĥ2 and δĥa for a = 1 to 2 by the rules

αĥ2 = R̂ĥ
43/2, (9.4.20)

δĥ1 = −R̂ĥ
42, (9.4.21)

δĥ2 = R̂ĥ
41, (9.4.22)

and define associated polynomials h1 and ĥ2
1 by the rules

h1(z) = δĥ2 q1 − δĥ1p1 = δĥ2z1 − δĥ1z2 = (z, (δĥ)∗), (9.4.23)

ĥ2
1(ẑ) = q2h1(z). (9.4.24)

Here we have used the notation of Section 7.7, and z denotes the original phase-space
variables,

z = (q1, p1).
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The superscript indicates that ĥ2
1 is homogeneous of degree two in the variables ẑ, and the

subscript indicates that it is homogeneous of degree one with respect to the variables z.
Note that h1 has the property

: h1 : za = δĥa . (9.4.25)

Correspondingly, ĥ2
1 has the properties

: ĥ2
1 : za =: q2h1(z) : za = [q2h1(z), za] = q2[h1(z), za] = q2 : h1 : za = q2δ

ĥ
a , (9.4.26)

: ĥ2
1 :m za = 0 for m > 1, (9.4.27)

: ĥ2
1 : q2 = [q2h1(z), q2] = 0, (9.4.28)

: ĥ2
1 : p2 = [q2h1(z), p2] = h1(z), (9.4.29)

: ĥ2
1 :m p2 = 0 for m > 1. (9.4.30)

Then, with these definitions, we assert that R̂ĥ has the unique factorization

R̂ĥ = F̂ĥR̂ĥ2
1
Řĥ (9.4.31)

where

F̂ĥ = exp(: αĥ2q
2
2 :), (9.4.32)

R̂ĥ2
1

= exp(: ĥ2
1 :), (9.4.33)

and Řĥ is a linear symplectic map whose associated matrix Řĥ is given by (4.19).
If correct, the operator assertion (4.31) is equivalent to the matrix assertion

R̂ĥ = ŘĥR̂ĥ2
1F̂ ĥ (9.4.34)

where R̂ĥ2
1 and F̂ ĥ are the matrices associated with R̂ĥ2

1
and F̂ĥ. Let us find these matrices.

From (4.26) through (4.30) we see that R̂ĥ2
1

has the property

R̂ĥ2
1
za = za + q2δ

ĥ
a , (9.4.35)

R̂ĥ2
1
q2 = q2, (9.4.36)

R̂ĥ2
1
p2 = p2 + h1(z) = p2 + (z, (δĥ)∗). (9.4.37)

It follows that the matrix R̂ĥ2
1 is given by the relation

R̂ĥ2
1 =


1 0 δĥ1 0

0 1 δĥ2 0
0 0 1 0

δĥ2 −δĥ1 0 1

 . (9.4.38)
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Finding F̂ ĥ is easier. A simple calculation gives the result

F̂ ĥ =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 R̂ĥ
43 1

 . (9.4.39)

Let us solve (4.34) for Řĥ to find the relation

Řĥ = R̂ĥ(F̂ ĥ)−1(R̂ĥ2
1)−1. (9.4.40)

Carrying out the indicated multiplications gives the result

Řĥ =


R̂ĥ

11 R̂ĥ
12 ε1 0

R̂ĥ
21 R̂ĥ

22 ε2 0
0 0 1 0
0 0 0 1

 (9.4.41)

where

ε1 = R̂ĥ
13 + R̂ĥ

11R̂
ĥ
42 − R̂ĥ

12R̂
ĥ
41 = R̂ĥ

13 − R̂ĥ
11δ

ĥ
1 − R̂ĥ

12δ
ĥ
2 , (9.4.42)

ε2 = R̂ĥ
23 + R̂ĥ

21R̂
ĥ
42 − R̂ĥ

22R̂
ĥ
41 = R̂ĥ

23 − R̂ĥ
21δ

ĥ
1 − R̂ĥ

22δ
ĥ
2 . (9.4.43)

Next, because R̂ĥ, (F̂ ĥ)−1, and (R̂ĥ2
1)−1 are symplectic matrices (Rĥ, Fĥ, and Rĥ2

1
are

symplectic maps), Řĥ must be a symplectic matrix. The symplectic condition (3.1.10) yields

for Řĥ as given by (4.41) the relations

εa = 0 for a = 1 to 2, (9.4.44)

R̂ĥ
11R̂

ĥ
22 − R̂ĥ

12R̂
ĥ
21 = 1. (9.4.45)

From (4.44) we conclude that the εa entries in (4.41) must vanish, and therefore (4.34) is

correct with Řĥ given by (4.19). The relation (4.45) is the condition that R̄ĥ and hence Řĥ

be symplectic matrices. Finally (4.42) and (4.43), when combined with (4.44), show that

the matrix R̂ĥ in (4.17) must have the form

R̂ĥ =


R̂ĥ

11 R̂ĥ
12 (R̄ĥδĥ)1 0

R̂ĥ
21 R̂ĥ

22 (R̄ĥδĥ)2 0
0 0 1 0

δĥ2 −δĥ1 R̂ĥ
43 1

 . (9.4.46)

With what we have learned we are now prepared to show how general maps (including
translations) for the case of 2n-dimensional phase space can be imbedded in the set of
(2n+ 2)-dimensional origin preserving maps. We will first consider maps with no nonlinear
part, and then move on to the general case.
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9.4.2 Case of Maps with No Nonlinear Part

Enlarging

Let Mf be an inhomogeneous symplectic group map acting on the original 2n-dimensional
phase space z. As in (2.31), it may be written in the form

Mf = exp(: f1 :)Rf . (9.4.47)

Define a function f̂ 2
1 (ẑ) by the rule

f̂ 2
1 (ẑ) = (qn+1)f1(z). (9.4.48)

As before, the superscript indicates that f̂ 2
1 is homogeneous of degree two in the variables

ẑ, and the subscript indicates that it is homogeneous of degree one with respect to the
variables z. Now define a map M̂f̂ on the enlarged phase space by the rule

M̂f̂ = exp(: f̂ 2
1 :)Řf̂ . (9.4.49)

Here Řf̂ is a linear map with the associated matrix Řf̂ given by

Řf̂ =

(
Rf 0
0 I

)
(9.4.50)

where Rf is the matrix associated with Rf , I denotes the 2 × 2 identity matrix acting
on the qn+1, pn+1 space, and the 0’s denote rectangular matrices of zeroes. Evidently, we
have mapped an element of the inhomogeneous symplectic group in 2n dimensions into an
element of the homogeneous (origin-preserving) symplectic group in (2n + 2) dimensions.
This process will be called enlarging.

What is the effect of M̂f̂ on the enlarged phase space? Evidently we immediately have
the relation

M̂f̂qn+1 = qn+1. (9.4.51)

To explore matters further suppose, in analogy with (4.25), that f1 has the property

: f1 : za = δfa . (9.4.52)

See (7.7.1) through (7.7.6). Then f̂ 2
1 has the properties

: f̂ 2
1 : za = : (qn+1)f1(z) : za = [(qn+1)f1(z), za]

= (qn+1)[f1(z), za] = (qn+1) : f1 : za = (qn+1)δfa , (9.4.53)

: f̂ 2
1 :m za = 0 for m > 1, (9.4.54)

: f̂ 2
1 : (qn+1) = [(qn+1)f1(z), (qn+1)] = 0, (9.4.55)

: f̂ 2
1 : (pn+1) = [(qn+1)f1(z), (pn+1)] = f1(z), (9.4.56)

: f̂ 2
1 :m (pn+1) = 0 for m > 1. (9.4.57)
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Let R̂f̂2
1

denote the map

R̂f̂2
1

= exp(: f̂ 2
1 :). (9.4.58)

From (4.53) through (4.57) we see that R̂f̂2
1

has the property

R̂f̂2
1
za = za + (qn+1)δfa , (9.4.59)

R̂f̂2
1
qn+1 = qn+1, (9.4.60)

R̂f̂2
1
pn+1 = pn+1 + f1(z) = pn+1 + (z, (δf )∗). (9.4.61)

See also (7.7.3).
It follows from (4.59) through (4.61) that the action of R̂f̂2

1
can be represented by a

matrix R̂f̂2
1 . In the simplest case that the original phase space is two dimensional, this

matrix is 4× 4 and is given by the relation

R̂f̂2
1 =


1 0 δf1 0

0 1 δf2 0
0 0 1 0

δf2 −δf1 0 1

 . (9.4.62)

Here we have used the ordering (4.15) and the J of (3.2.11). Evidently (4.62) is analogous
to (4.38).

Finally, let us find the effect of M̂f̂ . According to (4.49) and (4.58), it can be written in
the form

M̂f̂ = R̂f̂2
1
Řf̂ . (9.4.63)

It follows that the action of M̂f̂ can be represented by the matrix R̂f̂ given by the relation

R̂f̂ = Řf̂ R̂f̂2
1 . (9.4.64)

See (8.4.19) and (8.4.20). Carrying out the indicated multiplication gives (in the 4× 4 case)
the result

R̂f̂ =


Rf

11 Rf
12 (Rfδf )1 0

Rf
21 Rf

22 (Rfδf )2 0
0 0 1 0

δf2 −δf1 0 1

 . (9.4.65)

which is analogous to (4.46).

Shrinking

We have defined enlarged maps and have studied their effect on the enlarged phase space.
Let us now explore how they behave under multiplication. Suppose Mf and Mg are any

two inhomogeneous symplectic group maps, and M̂f̂ and M̂ĝ are their enlargements. We

can form corresponding maps Mh and M̂ĥ by the products

Mh =MfMg, (9.4.66)
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M̂ĥ = M̂f̂M̂ĝ. (9.4.67)

The product (4.66) involves the concatenation of maps that include translations, and its
calculation entails the derivation and use of complicated (and only partially known) feed-
down formulae as described in the previous section. By contrast, the product (4.67) is for
origin-preserving maps in the enlarged 8-dimensional phase space. Its computation involves
only the use of far simpler universal dimension-independent origin-preserving concatenation
rules. What we wish to learn is whether Mh can be deduced from a knowledge of M̂ĥ.

The process of constructing Mh from M̂ĥ will be called shrinking. See Figure 9.4.1 for a
pictorial presentation of this question.

To answer this question, let us compute R̂ĥ, the matrix corresponding to M̂ĥ. It is given
by the relation

R̂ĥ = R̂ĝR̂f̂ =


Rg

11 Rg
12 (Rgδg)1 0

Rg
21 Rg

22 (Rgδg)2 0
0 0 1 0
δg2 −δg1 0 1




Rf
11 Rf

12 (Rfδf )1 0

Rf
21 Rf

22 (Rfδf )2 0
0 0 1 0

δf2 −δf1 0 1



=


Rh

11 Rh
12 (Rhδf +Rgδg)1 0

Rh
21 Rh

22 (Rhδf +Rgδg)2 0
0 0 1 0
∗ ∗ ∗ 1

 . (9.4.68)

Here,
Rh = RgRf . (9.4.69)

As before, for simplicity, we have treated the case where the original phase space is two
dimensional, and the enlarged phase space is four dimensional. Again, the result in this
case is sufficient to deduce the result in any dimension. Finally, we have not computed the
starred entries in the bottom row of R̂ĥ. See Exercise 4.10.

We observe, as a consequence of (4.69), that the matrix Rh can be read off from the

upper-left corner of R̂ĥ. Also, upon comparison of (4.68) with (4.46), we expect the upper

two entries of the penultimate column of R̂ĥ to be the entries of the vector (Rhδh). Therefore,
from (4.46) and (4.68), we get the relation

Rhδh = Rhδf +Rgδg. (9.4.70)

In view of (4.69), the relation (4.70) can also be written in the form

δh = δf + (Rf )−1δg, (9.4.71)

from which it follows that

(z, Jδh) = (z, Jδf ) + (z, J(Rf )−1δg). (9.4.72)

But from the symplectic condition (3.1.2) there is the relation

J(Rf )−1 = (Rf )TJ. (9.4.73)
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Shrinker

Enlarger

Concatenator

Concatenator

Enlarger

gf

h
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Figure 9.4.1: Concatenation of origin-preserving maps in an enlarged phase space to find
equivalent results for maps, including translations, in the original phase space. The concate-
nator depicted at the top of the figure works with the usual phase space. When translations
are taken into account, it involves the use of complicated feed-down formulae as illustrated
in Section 9.3. The concatenator at the bottom of the figure works in an enlarged phase
space, and employs the far-simpler concatenation rules for origin preserving maps.
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Consequently, (4.72) can also be written in the form

(z, Jδh) = (z, Jδf ) + (Rfz, Jδg). (9.4.74)

Finally, use of (7.7.3) gives the result

h1(z) = f1(z) + g1(Rfz) (9.4.75)

or, equivalently,
h1(z) = f1(z) +Rfg1(z). (9.4.76)

But (4.75), along with (4.69), are the rules (2.37) and (2.38) for concatenating inhomo-
geneous symplectic group maps. We conclude that, in the case of inhomogeneous symplectic
group maps, the map Mh can indeed be deduced from M̂ĥ.

9.4.3 Case of General Maps

Enlarging

We now turn to the general case ISpM(2n,R) for mapsMf andMg of the form (1.1) and

(1.2). The enlargement process will be carried out as before to yield the maps M̂f̂ and M̂ĝ.

For example, the map M̂f̂ is given by

M̂f̂ = exp(: f̂ 2
1 :)Řf̂ exp(: f̂ 3

3 :) exp(: f̂ 4
4 :) · · · (9.4.77)

where f̂ 2
1 and Řf̂ are given by (4.48) and (4.50) as before, and

f̂mm (ẑ) = fm(z), m = 3, 4, · · · . (9.4.78)

Next form the product map
M̂ĥ = M̂f̂M̂ĝ. (9.4.79)

Since M̂ĥ sends the origin into itself, it has a factorization of the form

M̂ĥ = R̂ĥN̂ĥ. (9.4.80)

The linear map R̂ĥ will be described by a matrix R̂ĥ, and from the relation

R̂ĥ = R̂f̂R̂ĝ (9.4.81)

we have the rule
R̂ĥ = R̂ĝR̂f̂ . (9.4.82)

The nonlinear map N̂ĥ will have a representation of the form

N̂ĥ = exp(: ĥ3 :) exp(: ĥ4 :) · · · (9.4.83)

with the ĥm given by the relations of the form (8.4.31) through (8.4.36) already found in
Section 8.4. Our task now is to extract Mh from M̂ĥ.



1014 9. INCLUSION OF TRANSLATIONS IN THE CALCULUS

Let us first examine R̂ĥ and its associated matrix R̂ĥ. We know that M̂ĥ has the property

(4.2) since by construction the maps M̂f̂ and M̂ĝ have this property, and such maps form a

group. Consequently R̂ĥ satisfies (4.4). It follows, in analogy with (4.46) when written out

for the full 8× 8 case, that the matrix R̂ĥ has the form

R̂ĥ =



Rh
11 Rh

12 Rh
13 Rh

14 Rh
15 Rh

16 (Rhδh)1 0
Rh

21 Rh
22 Rh

23 Rh
24 Rh

25 Rh
26 (Rhδh)2 0

Rh
31 Rh

32 Rh
33 Rh

34 Rh
35 Rh

36 (Rhδh)3 0
Rh

41 Rh
42 Rh

43 Rh
44 Rh

45 Rh
46 (Rhδh)4 0

Rh
51 Rh

52 Rh
53 Rh

54 Rh
55 Rh

56 (Rhδh)5 0
Rh

61 Rh
62 Rh

63 Rh
64 Rh

65 Rh
66 (Rhδh)6 0

0 0 0 0 0 0 1 0

δh2 −δh1 δh4 −δh3 δh6 −δh5 R̂ĥ
87 1


. (9.4.84)

We can read off the entries in δh from the bottom row of (4.84), and from these entries
construct h1(z). Specifically, if we write

h1(z) = (z, (δh)∗), (9.4.85)

then we have the relation
[(δh)∗]b = (R̂ĥ)8b for b ∈ [1, 6]. (9.4.86)

Again see Section 7.7.
Next let Řĥ be the symplectic map described by the matrix Řĥ with

Řĥ =

(
Rh 0
0 I

)
. (9.4.87)

Here Rh is the 6 × 6 matrix obtained earlier, and I denotes the 2 × 2 identity matrix. It
follows that R̂ĥ can be rewritten in the form

R̂ĥ = exp(αh2 : q2
n+1 :) exp(: qn+1h1 :)Řĥ (9.4.88)

with n = 3. Here αh2 is given by the relation

αh2 = Rh
87/2. (9.4.89)

The quantity αh2 is not presently of direct interest to us, but if desired it can be computed

from the entries in R̂f̂ and R̂ĝ. See Exercise 4.10.
We next turn to the nonlinear part N̂ĥ. We know from (4.5) that the ĥm are independent

of pn+1. Therefore the ĥm must have expansions of the form

ĥm(ẑ) = hmm(z) + (qn+1)hmm−1(z) + · · ·+ (qn+1)mhm0 (z). (9.4.90)

Here the superscript m on the quantity hm` indicates that the quantity is associated with ĥm,
and the subscript ` indicates that the quantity is homogeneous of degree ` in the variables z.
Let us explore the consequences of this expansion. In Section 9.3 we employed an expansion
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in powers of ε where ε was a measure of the smallness of the first-degree generators. See, for
example, relations of the kind (3.10) through (3.14). From this perspective, the expansion
(4.90) is an expansion in powers of qn+1 with qn+1 playing the role of ε. Compare also (3.1)
and (4.48). (See also Exercise 4.11.) Moreover, the use of the standard concatenator for
origin preserving maps in the enlarged phase space produces power series expansions in the
quantity qn+1 automatically!

Shrinking by Concatenation

Equally pleasant is the fact that this concatenator can be used to construct a shrinker. Since
the quantities [(qm−`n+1 )hm` ] form a basis for the (pn+1 independent) polynomials of degree m

in the enlarged phase space, N̂ĥ must have a factorization of the form

N̂ĥ = exp(: α3q
3
n+1 :) exp(: α4q

4
n+1 :) exp(: α5q

5
n+1 :) · · · ×

exp(: q2
n+1h̃

3
1 :) exp(: q3

n+1h̃
4
1 :) exp(: q4

n+1h̃
5
1 :) · · · ×

exp(: qn+1h̃
3
2 :) exp(: q2

n+1h̃
4
2 :) exp(: q3

n+1h̃
5
2 :) · · · ×

exp(: h̃3
3 :) exp(: qn+1h̃

4
3 :) exp(: q2

n+1h̃
5
3 :) · · · ×

exp(: h̃4
4 :) exp(: qn+1h̃

5
4 :) exp(: q2

n+1h̃
6
4 :) · · · ×

exp(: h̃5
5 :) exp(: qn+1h̃

6
5 :) exp(: q2

n+1h̃
7
5 :) · · · , (9.4.91)

where the quantities h̃m` are yet to be determined. In a moment we will see that the h̃m`
can be computed using the concatenator. But first we observe that (4.91) is a single grade
factorization with qn+1 playing the role of ε. See the end of Section 9.3. We may therefore
set qn+1 = 1 in (4.91) and (4.88) to obtain Mh from M̂ĥ. So doing gives the result

Mh = exp(: h2
1 :)Rh exp(: h̃3

1 + h̃4
1 + h̃5

1 + · · · )×
exp(: h̃3

2 :) exp(: h̃4
2 :) exp(: h̃5

2 :) · · · ×
exp(: h̃3

3 :) exp(: h̃4
3 :) exp(: h̃5

3 :) · · · ×
exp(: h̃4

4 :) exp(: h̃5
4 :) exp(: h̃6

4 :) · · · ×
exp(: h̃5

5 :) exp(: h̃6
5 :) exp(: h̃7

5 :) · · · . (9.4.92)

Here Rh is a linear map whose associated matrix is Rh, and

h2
1(z) = h1(z). (9.4.93)

The second two factors in (4.92) can be rearranged using the results of Section 9.2,

Rh exp(: h̃3
1 + h̃4

1 + h̃5
1 + · · · ) = exp(: ȟ1 :)Rh (9.4.94)

where

ȟ1 = Rh(h̃
3
1 + h̃4

1 + h̃5
1 + · · · ). (9.4.95)
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Consequently, Mh can also be written in the form

Mh = exp(: h2
1 + ȟ1 :)×

Rh exp(: h̃3
2 :) exp(: h̃4

2 :) exp(: h̃5
2 :) · · · ×

exp(: h̃3
3 :) exp(: h̃4

3 :) exp(: h̃5
3 :) · · · ×

exp(: h̃4
4 :) exp(: h̃5

4 :) exp(: h̃6
4 :) · · · ×

exp(: h̃5
5 :) exp(: h̃6

5 :) exp(: h̃7
5 :) · · · . (9.4.96)

Finally, the factors appearing in each of the lines in (4.96) beyond the first line may be
combined using the concatenator for origin preserving maps in the original 2n-dimensional
phase space to obtainMh in the final form (1.6). We have constructed a shrinker based on
the assumption that the terms h̃m` appearing in (4.91) can be found.

Illustration for the quotient algebra L0/L3

What remains to be shown is how the h̃m` can be computed from the ĥm in (4.83) and (4.90)
using the concatenator for origin preserving maps in the enlarged (2n+2)-dimensional phase
space. Since the procedure requires several steps, it is best illustrated first for a relatively
simple example. Suppose we are working in the quotient algebra L0/L3. Then N̂ĥ has the
form

N̂ĥ = exp(: h3
3 + qn+1h

3
2 + q2

n+1h
3
1 + q3

n+1h
3
0 :)×

exp(: h4
4 + qn+1h

4
3 + q2

n+1h
4
2 + q3

n+1h
4
1 + q4

n+1h
4
0 :). (9.4.97)

Since the generators have no pn+1 dependence, they are in involution with powers of qn+1,
and these powers may be removed to the far right so that we may also write

N̂ĥ = exp(: h3
3 + qn+1h

3
2 + q2

n+1h
3
1 :)×

exp(: h4
4 + qn+1h

4
3 + q2

n+1h
4
2 + q3

n+1h
4
1 :)×

exp(: q3
n+1h

3
0 :) exp(: q4

n+1h
4
0 :). (9.4.98)

Now we are ready to begin.

Isolation of linear in z generators

The linear in z generator q2
n+1h

3
1, which produces a translation in the 2n-dimensional phase

space, may be isolated by writing the identity

N̂ĥ = exp(: q2
n+1h

3
1 :)[exp(− : q2

n+1h
3
1 :)N̂ĥ] (9.4.99)

and making the definition
1N̂ĥ = [exp(− : q2

n+1h
3
1 :)N̂ĥ]. (9.4.100)

Upon manipulating exponents using the BCH theorem we find that 1N̂ĥ has the form

1N̂ĥ = exp(: 1h3
3 + qn+1

1h3
2 :)×

exp(: 1h4
4 + qn+1

1h4
3 + q2

n+1
1h4

2 + q3
n+1

1h4
1 :)×

exp(: q3
n+1

1h3
0 :) exp(: q4

n+1
1h4

0 :), (9.4.101)
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and we conclude that
h̃3

1 = h3
1. (9.4.102)

Here the superscript 1 in 1N̂ĥ indicates that one isolation step has been taken; and the
superscript 1 in 1hm` indicates that one isolation step has been taken and that the 1hm` may
differ from the previous hm` .

Next the linear in z generator q3
n+1

1h4
1, which which also produces a translation in the

2n-dimensional phase space, may be isolated by writing the identity

1N̂ĥ = exp(: q3
n+1

1h4
1 :)[exp(− : q3

n+1
1h4

1 :) 1N̂ĥ] (9.4.103)

and making the definition

2N̂ĥ = [exp(− : q3
n+1

1h4
1 :) 1N̂ĥ]. (9.4.104)

Again, upon manipulating exponents using the BCH theorem, we find that 2N̂ĥ has the form

2N̂ĥ = exp(: 2h3
3 + qn+1

2h3
2 :)×

exp(: 2h4
4 + qn+1

2h4
3 + q2

n+1
2h4

2 :)×
exp(: q3

n+1
2h3

0 :) exp(: q4
n+1

2h4
0 :), (9.4.105)

and we conclude that
h̃4

1 = 1h4
1. (9.4.106)

Here the superscript 2 in 2N̂ĥ indicates that a second isolation step has been taken; and the
superscript 2 in 2hm` indicates that a second isolation step has been taken and that the 2hm`
may differ from the previous 1hm` .

Inspection of (4.105) indicates that all linear in z generators have now been isolated
away. We are ready to begin isolating the quadratic in z generators.

Isolation of quadratic in z generators

The quadratic in z generator qn+1
2h3

2, which produces a linear transformation in the 2n-
dimensional phase space, may be isolated by writing the identity

2N̂ĥ = exp(: qn+1
2h3

2 :)[exp(− : qn+1
2h3

2 :) 2N̂ĥ] (9.4.107)

and making the definition

3N̂ĥ = [exp(− : qn+1
2h3

2 :) 2N̂ĥ]. (9.4.108)

Now use of the BCH theorem shows that 3N̂ĥ has the form

3N̂ĥ = exp(: 3h3
3 :)×

exp(: 3h4
4 + qn+1

3h4
3 + q2

n+1
3h4

2 :)×
exp(: q3

n+1
3h3

0 :) exp(: q4
n+1

3h4
0 :), (9.4.109)

and we conclude that
h̃3

2 = 2h3
2. (9.4.110)
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Next the quadratic in z generator q2
n+1

3h4
2, which also produces a linear transformation

in the 2n-dimensional phase space, may be isolated by writing the identity

3N̂ĥ = exp(: q2
n+1

3h4
2 :)[exp(− : q2

n+1
3h4

2 :) 3N̂ĥ] (9.4.111)

and making the definition

4N̂ĥ = [exp(− : q2
n+1

3h4
2 :) 3N̂ĥ]. (9.4.112)

Now use of the BCH theorem shows that 4N̂ĥ has the form

4N̂ĥ = exp(: 4h3
3 :)×

exp(: 4h4
4 + qn+1

4h4
3 :)×

exp(: q3
n+1

4h3
0 :) exp(: q4

n+1
4h4

0 :), (9.4.113)

and we conclude that

h̃4
2 = 3h4

2. (9.4.114)

Inspection of (4.113) indicates that all quadratic in z generators have now been isolated
away. We are ready to begin isolating the cubic in z generators.

Isolation of cubic in z generators

The cubic in z generator 4h3
3, which produces a quadratic plus higher-order transformation

in the 2n-dimensional phase space, may be isolated by writing the identity

4N̂ĥ = exp(: 4h3
3 :)[exp(− : 4h3

3 :) 4N̂ĥ] (9.4.115)

and making the definition
5N̂ĥ = [exp(− : 4h3

3 :) 4N̂ĥ]. (9.4.116)

Now use of the BCH theorem shows that 5N̂ĥ has the form

5N̂ĥ = exp(: 5h4
4 + qn+1

5h4
3 :)×

exp(: q3
n+1

5h3
0 :) exp(: q4

n+1
5h4

0 :), (9.4.117)

and we conclude that

h̃3
3 = 4h3

3. (9.4.118)

Next the cubic in z generator qn+1
5h4

3, which also produces a quadratic plus higher-order
transformation in the 2n-dimensional phase space, may be isolated by writing the identity

5N̂ĥ = exp(: qn+1
5h4

3 :)[exp(− : qn+1
5h4

3 :) 5N̂ĥ] (9.4.119)

and making the definition

6N̂ĥ = [exp(− : qn+1
5h4

3 :) 5N̂ĥ]. (9.4.120)
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Now use of the BCH theorem shows that 6N̂ĥ has the form

6N̂ĥ = exp(: 6h4
4 :)×

exp(: q3
n+1

6h3
0 :) exp(: q4

n+1
6h4

0 :), (9.4.121)

and we conclude that

h̃4
3 = 5h4

3. (9.4.122)

Inspection of (4.121) indicates that all cubic in z generators have now been isolated away.
We are ready to begin isolating the quartic in z generators.

Isolation of quartic in z generators

The remaining quartic in z generator 6h4
4, which produces a cubic plus higher-order trans-

formation in the 2n-dimensional phase space, may be isolated by writing the identity

6N̂ĥ = exp(: 6h4
4 :)[exp(− : 6h4

4 :) 6N̂ĥ] (9.4.123)

and making the definition
7N̂ĥ = [exp(− : 6h4

4 :) 6N̂ĥ]. (9.4.124)

Now use of the BCH theorem shows that 7N̂ĥ has the form

7N̂ĥ = exp(: q3
n+1

7h3
0 :) exp(: q4

n+1
7h4

0 :), (9.4.125)

and we conclude that

h̃4
4 = 6h4

4. (9.4.126)

Overview

Inspection of (4.125) indicates that, in the case of L0/L3, we have achieved our goal. Namely,
by repeated isolating and concatenating, we eventually achieved the factorization (4.91). All
z-dependent generators have been isolated away, and all that remains are generators that
depend solely on qn+1. These remaining generators have no effect on the the 2n-dimensional
phase space variables z, and therefore 7N̂ĥ acts as the identity map I on the z phase space.

We note that while these steps are somewhat difficult to characterize analytically (which
is to be expected because the results of Section 9.3 were complicated), they are easy to
implement numerically.

Is there a pattern in what we have done? Review of the steps we have taken shows that
we have extracted the h̃m` in a particular order. Let r be a running index. Table 4.1 below
shows the order in which we have extracted the h̃m` . Here we have defined the difference d
by the relation

d = m− ` (9.4.127)

so that qn+1 and h̃m` occur in the combination qdn+1 h̃
m
` .

Let us make the definition
0N̂ĥ = N̂ĥ. (9.4.128)
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Table 9.4.1: Order in which the h̃m` are to be extracted for the case L0/L3.

r ` m d
1 1 3 2
2 1 4 3
3 2 3 1
4 2 4 2
5 3 3 0
6 3 4 1
7 4 4 0

Then we may view the whole process as being recursive. At any given stage a map r−1N̂ĥ
and a pair of indices `(r) and m(r) are provided as input, and a map rN̂ĥ and polynomial h̃m`
are produced as output. See Figure 4.2. The polynomial h̃m` is determined by examination
of r−1N̂ĥ and given by the rule

h̃m` = r−1hm` . (9.4.129)

The map rN̂ĥ is given by carrying out the concatenation

rN̂ĥ = exp(− : qdn+1h̃
m
` :) × r−1N̂ĥ. (9.4.130)

Recursive Step

-

-

-

-

r−1N̂ĥ rN̂ĥ

`(r), m(r) h̃m`

Figure 9.4.2: A recursive step that takes a map r−1N̂ĥ and a pair of indices `(r) and m(r)

as input, and produces a map rN̂ĥ and polynomial h̃m` as output.

Shrinking in the General Case

It is now a simple matter to generalize to higher-order cases. For example, Table 4.2 shows
the extraction order to be used when working with maps through 7th order, the order that
is available using the concatenation rules provided by (8.4.31) through (8.4.36).

Finally, we note that the procedure is self checking. For the final value of r the corre-
sponding map rN̂ĥ will have the property that all its generators have no z dependence; they

can depend only on qn+1. We have already seen this for the map 7N̂ĥ when working with

third-order maps. See (4.125). The same will be true of the map 33N̂ĥ when working with
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maps through 7th order. Conversely, if all the factors in (4.91) are concatenated together,
the result must be the original map N̂ĥ.

Table 9.4.2: Order in which the h̃m` are to be extracted for the case L0/L7.

r ` m d r ` m d
1 1 3 2 19 4 4 0
2 1 4 3 20 4 5 1
3 1 5 4 21 4 6 2
4 1 6 5 22 4 7 3
5 1 7 6 23 4 8 4
6 1 8 7 24 5 5 0
7 2 3 1 25 5 6 1
8 2 4 2 26 5 7 2
9 2 5 3 27 5 8 3
10 2 6 4 28 6 6 0
11 2 7 5 29 6 7 1
12 2 8 6 30 6 8 2
13 3 3 0 31 7 7 0
14 3 4 1 32 7 8 1
15 3 5 2 33 8 8 0
16 3 6 3
17 3 7 4
18 3 8 5
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Exercises

9.4.1. Verify that maps M̂ satisfying (4.2) form a group.

9.4.2. Prove (4.5) in detail.

9.4.3. Verify that the symplectic condition requires the relations (4.16).

9.4.4. Verify (4.25) through (4.30).

9.4.5. Verify (4.38) and (4.39).

9.4.6. Verify (4.41) through (4.43).

9.4.7. Verify (4.44) through (4.46).

9.4.8. Verify (4.53) through (4.62).

9.4.9. Verify (4.65).

9.4.10. Consider two linear symplectic maps M̂f̂ and M̂ĝ of the factored form

M̂f̂ = exp(: αf̂2q
2
n+1 :) exp(: qn+1f1(z) :)Řf̂ , (9.4.131)

M̂ĝ = exp(: αĝ2q
2
n+1 :) exp(: qn+1g1(z) :)Řĝ, (9.4.132)

where Řf̂ and Řĝ leave the qn+1, pn+1 subspace invariant,

Řf̂qn+1 = qn+1, etc., (9.4.133)

Řf̂pn+1 = pn+1, etc. (9.4.134)

Show that (4.106) and (4.107) plus the symplectic condition require that the associated

matrices Řf̂ etc. be of the general form (4.50). Let M̂ĥ be the product of M̂f̂ and M̂ĝ,

M̂ĥ = M̂f̂M̂ĝ = exp(: αf̂2q
2
n+1 :) exp(: qn+1f1(z) :)Řf̂ ×

exp(: αĝ2q
2
n+1 :) exp(: qn+1g1(z) :)Řĝ. (9.4.135)

Show, by manipulating the various factors involved, that M̂ĥ can be re-expressed in the
factored form

M̂ĥ = exp{: q2
n+1 : (αf̂2 + αĝ2 + [f1(z), Řf̂g1(z)]/2) :} ×

exp{: qn+1(f1(z) + Řf̂g1(z)) :}Řf̂Řĝ. (9.4.136)

Thus, if we write M̂ĥ as

M̂ĥ = exp(: αĥ2q
2
n+1 :) exp(: qn+1h1(z) :)Řĥ, (9.4.137)

there are the relations
αĥ2 = αf̂2 + αĝ2 + [f1(z), Řf̂g1(z)]/2, (9.4.138)

h1(z) = f1(z) + Řf̂g1(z), (9.4.139)

Řĥ = Řf̂Řĝ. (9.4.140)

Carry out the indicated multiplication in (4.68) and verify that your results are equivalent
to those found above.
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9.4.11. Problem about the relation between the inhomogeneous symplectic map Lie algebra
εL0/εL` in 2n dimensions and the subgroup of the homogeneous symplectic map Lie algebra
L0/L` in 2n + 2 dimensions produced by all pn+1 independent generators.

9.4.12. Verify that a factorization of the form (4.91) is possible.

9.4.13. Verify the relations (4.93) through (4.96).

9.4.14. Verify that N̂ĥ has the form (4.97) when one works in the quotient algebra L0/L3.

9.4.15. Verify (4.98) through (4.103).

9.4.16. Verify that extracting the h̃m` in the order given by Table 4.1 or 4.2 never results,
during the extraction process, in the ”reappearance” in the subsequent maps rN̂ĥ of any of
the previously removed terms.
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9.5 Map Inversion and Reverse and Mixed

Factorizations

Much of the discussion of this section is analogous to that of Section 8.5. Suppose, as in
(1.1), that the map Mf is written in the standard factored product form

Mf = exp(: f1 :)Rf exp(: f3 :) exp(: f4 :) · · · . (9.5.1)

Here, as in Section 8.5, Rf denotes the map

Rf = exp(: f c2 :) exp(: fa2 :) (9.5.2)

with the associated matrix Rf given by the relation

Rf = exp(JSa) exp(JSc). (9.5.3)

It follows immediately from (5.1) that the inverse of Mf has the representation

(Mf )
−1 = · · · exp(− : f4 :) exp(− : f3 :)(Rf )

−1 exp(− : f1 :). (9.5.4)

As before we observe that (5.4) gives a representation for the inverse of Mf in the form of
a reverse factorization, and that we would also like to have a representation in the standard
forward factorization

(Mf )
−1 = exp(: h1 :)Rh exp(: h3 :) exp(: h4 :) · · · . (9.5.5)

See Section 7.8. This is easily accomplished with the aid of the concatenation formulas of
the previous section. We simply write (5.4) and (5.5) in the form

· · · [exp(− : f4 :)][exp(− : f3 :)][(Rf )
−1][exp(− : f1 :)] =

exp(: h1 :)Rh exp(: h3 :) exp(: h4 :) · · · (9.5.6)

where we have used square brackets to indicate that the various maps are to be concatenated
together. Note that in this case (8.5.7) no longer holds because of the feed-down terms
produced by moving the f1 factor in (5.6) to the left.

The relation (5.5) also provides a procedure for reverse factorizing a map. Suppose we
wish to represent Mf in reverse factorized form. That is, we wish to find generators gm
such that

Mf = exp(: f1 :)Rf exp(: f3 :) exp(: f4 :) · · · =
· · · exp(: g4 :) exp(: g3 :)Rg exp(: g1 :). (9.5.7)

Simply take the inverse of both sides of (5.7) and use (5.5) to get the relation

exp(− : g1 :)(Rg)
−1 exp(− : g3 :) exp(− : g4 :) · · · =

exp(: h1 :)Rh exp(: h3 :) exp(: h4 :) · · · . (9.5.8)
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From (5.8) we find the desired results

Rg = (Rh)
−1, (9.5.9)

gm = −hm. (9.5.10)

We close this section with a remark about mixed factorizations. See Section 7.8. Suppose,
for example, we desire a mixed factorization for Mf of the form

Mf = Rf ′ exp(: f ′3 :) exp(: f ′4 :) · · · exp(: f ′1). (9.5.11)

That is, we wish to move the f1 term in (5.1) to the far right, but keep the remaining factors
in ascending order. Comparison of (5.7) and (5.11) gives the result

f ′1 = g1, (9.5.12)

and the relation

Rf ′ exp(: f ′3 :) exp(: f ′4 :) · · · = · · · exp(: g4 :) exp(: g3 :)Rg. (9.5.13)

The remaining factors Rf ′, : f ′3 :, : f ′4 : · · · can be gotten by applying the concatenation
formulas of Section 8.4 to the right side of (5.13). That is, we write (5.13) in the form

Rf ′ exp(: f ′3 :) exp(: f ′4 :) = · · · [exp(: g4 :)][exp(: g3 :)][Rg]. (9.5.14)

where the square brackets indicate that the various maps are to be concatenated together.
There is a relation between f1 and f ′1 that could have been examined in the previous

section, or even in Section 7.7, but can just as conveniently be discussed here. See Exercises
5.1 and 5.2. Let us write (5.1) and (5.11) in the forms

Mf = exp(: f1 :)Sf , (9.5.15)

Mf = Sf ′ exp(: f ′1 :), (9.5.16)

with
Sf = Rf exp(: f3 :) exp(: f4 :) · · · , (9.5.17)

Sf ′ = Rf ′ exp(: f ′3 :) exp(: f ′4 :) · · · . (9.5.18)

Following Section 7.7, let us also write f1 and f ′1 in the forms

f1(z) = −(δ, Jz), (9.5.19)

f ′1(z) = −(δ′, Jz). (9.5.20)

Then we have the relations
δ′a = Sfza|z=δ , (9.5.21)

δa = (Sf )−1za
∣∣
z=δ′

. (9.5.22)

To see the truth of (5.21) and (5.22), apply Mf in both its representations (5.15) and
(5.16) to the origin. Consider first the representation (5.16). We know that by construction,
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see (5.18), the map Sf ′ sends the origin into itself. Therefore, since maps act in the order
in which they occur when read from left to right (see Section 8.3), the first factor in (5.16)
acts on the origin and leaves it in peace. Also, from Section 7.7, we know that exp(: f ′1 :)
sends the origin into δ′. Consequently, we find the result

Mfza|z=0 = δ′a. (9.5.23)

Consider next the representation (5.15). The first factor, exp(: f1 :), sends the origin into δ.
Subsequently Sf acts on δ to give the net result

Mfza|z=0 = Sfza|z=δ . (9.5.24)

Upon comparing (5.23) and (5.24) we see that (5.21) and (5.22) are indeed correct. For
another set of similar relations, see Exercise 5.3.

Exercises

9.5.1. Derive (5.21) starting with (7.7.13) and (7.7.23).

9.5.2. Consider a 2-dimensional phase space and suppose that Sf ′ has the simple form

Sf ′ = exp(: q4 :). (9.5.25)

Working within the quotient group generated by the Lie algebra L0/L3, use (3.18) and (3.22)
to verify (5.21).

9.5.3. Verify the relations
Mfza |z=−δ = 0 , (9.5.26)

(Mf )
−1za |z=0 = −δa . (9.5.27)

Derive the relations
−δ′a = Sf ′za|z=−δ , (9.5.28)

− δa = (Sf ′)−1 za
∣∣
z=−δ′ . (9.5.29)

Hint: Apply Mf as given by (5.15) and (5.16) to the phase-space point (−δ).
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9.6 Taylor and Hybrid Taylor-Lie Concatenation and

Inversion

This section extends the results of Section 8.6 to the case where the map to be treated may
have constant terms. Again all the possibilities illustrated in Figure 8.6.1 may arise, and we
will discuss those of greatest interest.

Suppose, as described in the beginning of Section 8.6, that both the maps M1 and M2

are in Taylor form, and we also desire to represent their product in Taylor form. We consider
first the best of all possible circumstances. In that circumstance M1 sends the phase-space
point z0 to the intermediate point z0,

M1 : z0 → z0, (9.6.1)

and we assume that M1 has a known Taylor expansion about z0. Also, M2 sends the
intermediate point z0 to the final point z

0
,

M2 : z0 → z
0
, (9.6.2)

and we assume thatM2 has a known Taylor expansion about z0. What we desire is a Taylor
expansion about the point z0 for the product map M3 that sends z0 immediately to z

0
,

M3 : z0 → z
0
. (9.6.3)

This desire is easily met. Introduce the deviation variables ζa by writing

za = z0
a + ζa. (9.6.4)

Then, by assumption, M1 has a known truncated Taylor expansion of the form

za = za(z) = z0
a +

D∑
m=1

g1
a(m; ζ). (9.6.5)

Introduce as well the deviation variables ζa by writing

za = z0
a + ζa. (9.6.6)

Then M2 is assumed to have the known truncated Taylor expansion

=
za=

=
za (z) =

=
z

0

a +
D∑

m′=1

g2
a(m

′; ζ). (9.6.7)

Now use (6.5) and (6.6) to write the relation

ζa = ζa(ζ) =
D∑

m=1

g1
a(m; ζ). (9.6.8)
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Also introduce the deviation variables
=

ζa, defined by

=
za=

=
z

0

a +
=

ζa, (9.6.9)

to rewrite (6.7) in the form

=

ζa=
=

ζa (ζ) =
D∑

m′=1

g2
a(m

′; ζ). (9.6.10)

Then M3 has the expansion

=
za=

=
za (z) =

=
z

0

a +
=

ζa (ζ) =
=
z

0

a +
D∑

m′′=1

g3
a(m

′′; ζ) (9.6.11)

where the polynomials g3
a are given by the relations

g3
a(m

′′; ζ) = Pm′′
D∑

m′=1

g2
a(m

′; ζ(ζ)). (9.6.12)

As before, Pm′′ denotes a projection operator that retains only terms of degree m′′ in the
variables ζ. Also, all the required operations can again be carried out using TPSA. We
see that the relations (6.8), (6.10), and (6.12) are completely analogous to the relations
(8.6.2), (8.6.4), and (8.6.7) for the case of no translations. Indeed, with the use of deviation
variables, all the methods of Section 8.6 can be employed. For example, a deviation variable
map of the form (6.8) can be inverted by the recursion method.

Often the optimal circumstance we have just treated does not hold. It may be thatM1

sends z0 to z0 andM2 sends z0 to z
0

as before and as described by (6.1) and (6.2). However,
it may happen that M2 does not have a known Taylor expansion about z0. Instead, we
assume that M2 has a known Taylor expansion about a point z′ that is near z0. With the
introduction of suitable deviation variables if necessary, and without loss of generality, we
may consider truncated Taylor series of the form

za = za(z) =
D∑

m=0

g1
a(m; z) (9.6.13)

and

=
za=

=
za (z) =

D∑
m′=0

g2
a(m

′; z). (9.6.14)

The relations (8.6.2) and (8.6.4) have simply been modified so that all summations over m
and m′ begin with 0 instead of 1, and we assume that the constant term g1

a(0; z) is small.
See Exercise 6.*. Finally, we make the expansion

=
za=

=
za (z) =

D∑
m′′=0

g3
a(m

′′; z) (9.6.15)
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and find that the polynomials g3
a are given by the relations

g3
a(m

′′; z) = Pm′′
D∑

m′=0

g2
a(m

′; z(z)). (9.6.16)

Suppose the mapsM1 andM2 are symplectic. Then, in the terminology of Section 7.5,
the truncated Taylor series (6.13) and (6.14) are symplectic D-jets (about the origin). It
is important to remark at at this juncture that the concatenation of two symplectic D-jets
does not generally yield a symplectic D-jet if M1 has nonvanishing constant terms g1

a(0; z)
so thatM1 does not send the origin into itself. Correspondingly, the factorization theorems
of Sections 7.6 and 7.7 generally do not apply to the D-jet (6.15) for M3. The problem
is that truncation of the Taylor expansion of a symplectic map, in this case the map M2,
generally violates the symplectic condition, and this violation can feed down to low orders
in the presence of translations. See, for example, Exercise 6.*.

There is a second point that we should also recognize. Suppose that the Taylor expansion
forM2 is not truncated. That is, consider letting D →∞ in (6.14) and (6.16). Then it may
happen that the series (5.16) diverges. This will happen if the point za(0) lies outside the
convergence domain of the homogeneous polynomial expansion for M2. See Exercise 1.4.4
and Chapter 26. We conclude that translations must be handled with care.

Let J3 denote the D-jet (6.15). We expect that if the translation part of M1 is small,
then J3 will be nearly symplectic. It should therefore be possible to construct a D-jet that
is symplectic and near J3 in the sense that the two jets differ only by appropriate powers
of the small translation terms. Indeed, this is what the method of Section 9.3 accomplishes
when maps are represented in Lie form. That is, suppose the two maps M1 and M2 are
written in Lie form and are concatenated using the method of Section 9.3, and suppose that
the resulting map is then expanded as a Taylor series about the origin and truncated beyond
terms of degree D. This resulting D-jet will be symplectic, and will be near J3.

Given a D-jet that is nearly a symplectic jet, there are many procedures for constructing
nearby jets that are symplectic. The method just described is only one such procedure.
Another convenient procedure is to employ methods analogous to those used in Section 7.6
to prove the factorization theorem.

Let J ′3 be the jet obtained from J3 by removing its translation part. That is, J ′3 sends

z to
=
z
′

according to the rule

=
z
′
a=

D∑
m=1

g3
a(m; z), (9.6.17)

and thus sends the origin into itself. Examine the matrix (linear) part of J ′3 described by
the terms g3

a(1; z). These terms correspond to a matrix that is nearly symplectic. Replace
this matrix by a matrix that is exactly symplectic using one of the matrix symplectification
methods of Chapter 4. Call this matrix R, and let R be its corresponding linear symplectic
map. Finally, let J ′′3 be the jet that results from replacing the g3

a(1; z) terms in (6.17) by
(Rz)a.

Next apply R−1 to J ′′3 to get a result of the form

(R−1J ′′3 z)a = za + ra(> 1), (9.6.18)
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which is analogous to (7.6.19). As before, the remainder term ra(> 1) will have a quadratic
piece and still higher degree terms,

ra(> 1) = ĝa(2; z) + ra(> 2). (9.6.19)

Because J3 is not a symplectic jet, the quadratic piece will generally not satisfy the analog
of (7.6.23). However, we may still define an f3 by the rule

f3 = −(1/3)
∑
ab

ĝa(2; z)Jabzb, (9.6.20)

which is analogous to (7.6.26). (Indeed, Section 17.11 shows that this prescription is unique.)
From this f3 we produce the quadratic polynomials g̃a(2; z) by the rules

g̃a(2; z) =: f3 : za. (9.6.21)

Because J3 is nearly symplectic, the polynomials ĝa(2; z) and g̃a(2; z) will be nearly the
same. We therefore may replace ĝa(2; z) by g̃a(2, z) and, in so doing, obtain a nearby map
that is more nearly symplectic.

It should now be as clear to the reader as it is to the writer that the steps just described
can be applied repeatedly to yield a sequence of homogeneous polynomials f3, f4 · · · fD+1.
Also, by Section 7.7, there is an f1 polynomial that will reproduce the translation part
g3
a(0; z) in (6.15). Consequently, we have found the approximate result

M3 ' R exp(: f3 :) · · · exp(: fD+1 :) exp(: f1 :). (9.6.22)

Finally, the map on the right side of (6.22) may be expanded in a Taylor series and truncated
beyond terms of degree D. Doing so yields a symplectic D-jet that is close to J3.

After this pleasant digression, let us return to the subject of map concatenation. In
analogy to the discussion of Section 8.6, the next topic to be treated is the case whereM1 is
in Lie form and M2 is in Taylor form. See Figure 8.6.2. In this case the definition (8.6.11)
must be extended to become

TDa (z) =
D∑

m′=0

g2
a(m

′; z) (9.6.23)

to include the possibility that M2 may have a translation part. The remaining relations
(8.6.10) and (8.6.12) through (8.6.14) continue to hold. In particular, we still have the result

=
za (z) =M1T

D
a (z). (9.6.24)

Again, there are three common ways that M1 may be specified in Lie form. First
suppose, as before, that M1 is given in terms of a single exponent,

M1 = exp(: h :), (9.6.25)

where h now has a homogeneous polynomial expansion of the form

h = h1 + h2 + · · ·hD+1. (9.6.26)
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We still have the relation (8.6.17) and the result

g3
a(m; z) = Pm

D∑
m′=0

∞∑
`=0

(1/`!) : h :` g2
a(m

′; z). (9.6.27)

As before, there are caveats about the rate at which the sum over ` converges. Moreover, as
illustrated for a special example in Section 10.5, the sum over ` may also fail to converge.
As in Section 10.5, this possible divergence is not due to any defect in the method of
direct Taylor summation, but rather indicates that M1 may fail to exist, and shows that
Hamiltonians for which h1 6= 0 must be treated with care.

Next we suppose, as a second possibility, thatM1 is given in the factored product form

M1 = exp(: f1 :)Rf exp(: f3 :) · · · exp(: fD+1 :). (9.6.28)

Handling this possibility is straight forward. Suppose that exp(: f1 :) has the effect

exp(: f1 :)za = za + ka. (9.6.29)

Then the results (8.6.20) through (8.6.25) continue to hold except that the sums over m and
m′ begin at 0 instead of 1, and (8.6.27) is modified to become

g3
a(m; z) = Pm

D∑
m′=0

g̃a[m
′;Rf (z + k)]. (9.6.30)

The third possibility is thatM1 arises as a result of some symplectic integration approx-
imation and is therefore given as a product of Lie transformations of the form

M1 = exp[(w1h : A :) exp(w2h : B :) · · · exp(wmh : A :). (9.6.31)

As before, B typically has a homogeneous polynomial expansion consisting of terms of degree
three and higher. However, ifM1 has a translation part, A will contain terms of degree one
as well as a second-degree terms. In this case we make use of (2.4) or (2.62) to factorize the
terms of the form exp(wjh : A :). With this accomplished, we may proceed as before using
the tools already developed.

At this point we should remark that ifM1 has a translation part, then the D-jet produced
forM3 in each of the three possibilities just described will again not be a symplectic D-jet,
and for the same reason as before. Also, nearby symplectic D-jets can again be constructed.
For example, the procedure based on the methods of the factorization theorem will work as
before.

The last topic to be discussed in this section is the inversion of maps in Taylor form
including the possibility of translations. When translations are included, (8.6.40) takes the
form

zb′ = kb′ +
∑
b

Rb′bzb +Nb′(z). (9.6.32)

This equation can be partially solved to give the result

za = [R−1(z − k)]a + Ña(z) (9.6.33)
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where Ña is again given by (8.6.41), and therefore contains terms only of degree 2 and higher.
Now form the recursion relation

z(m+1)
a (z) = [R−1(z − k)]a + T m+1Ña[z

(m)(z)] (9.6.34)

with the starting relation
z(1)
a (z) = [R−1(z − k)]a. (9.6.35)

Here the translation quantities kb are to be treated as small, and a monomial in all the
variables za and kb is regarded as having degree d if the sum of all the exponents in the
monomial adds up to d. Correspondingly, the operator T d in (6.34) is now defined in terms
of this total degree. Application of the recursion relation (6.34) D times produces a D-jet
representation for the map M−1

1 .
As the reader should expect by now, ifM1 has a translation part (as we have assumed),

then the D-jet for M−1
1 obtained in this way will generally not be symplectic. But again,

nearby symplectic D-jets can be constructed from this D-jet.
Finally, we remark that the concatenation and inversion methods of this section can, if

desired, be employed in the formulas of Section 9.4 to compute reverse and mixed factoriza-
tions.

Exercises

9.6.1.

9.7 The Lie Algebra of the Group of all Symplectic

Maps Is Simple

Section 8.9 described what it means for a Lie algebra to be simple. In this section we will
show that ispm(2n,R), the Lie algebra of the group of all symplectic maps, is simple.
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Chapter 10

Computation of Transfer Maps

Much of the material in the previous chapters dealt with the general problem of representing
and manipulating symplectic maps. This chapter, along with some that follow, deals with
the computation of transfer maps. For the most part we will deal with the symplectic
case, but there are ready extensions to the general case that can be found by replacing
Hamiltonian vector fields by general vector fields.

10.1 Equation of Motion

10.1.1 Background and Derivation

Let H(z, t) be a general, possibly time-dependent, Hamiltonian. We know from Theorem
6.4.1 that following the flow specified by H produces a symplectic transfer map M(t). Let
zi denote a general initial condition. Then we have the relations

z(t) =M(t)zi, (10.1.1)

M(ti) = I. (10.1.2)

Our goal is to find an equation of motion for M.
Suppose g(z) is any function of the phase-space variables z (but not explicitly of the

time t). By (8.3.52) we have the relation

g(z) = g(Mzi) =Mg(zi). (10.1.3)

Now differentiate both sides of (1.3) along the flow specified by H. We find the result

ġ(z) = Ṁg(zi). (10.1.4)

But from (1.7.4) we also have the relation

ġ(z) = [g(z), H(z, t)]. (10.1.5)

With the aid of (1.1), (8.3.52), and (8.3.53) this relation can be rewritten in the form

ġ(z) = [g(z), H(z, t)] = [g(Mzi), H(Mzi, t)]

= [Mg(zi),MH(zi, t)] =M[g(zi), H(zi, t)]

= M[−H(zi, t), g(zi)] =M : −H(zi, t) : g(zi). (10.1.6)

1035
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Now compare (1.4) and (1.6). Doing so gives the result

Ṁg(zi) =M : −H(zi, t) : g(zi). (10.1.7)

However, g is an arbitrary function. We conclude that (1.7) is equivalent to the operator
equation of motion

Ṁ =M : −H : . (10.1.8)

We note that this result agrees with the result (7.4.9) that was obtained earlier for the
special case of autonomous Hamiltonians.

10.1.2 Perturbation/Splitting Theory and Reverse Factorization

In some cases the Hamiltonian can be split into the sum of two terms so that it can be
written in the form

H(z, t) = H0(z, t) +H1(z, t). (10.1.9)

Often the motion governed by H0 can be determined and the effect of H1 may be viewed as
a perturbation. Let M0 be the map produced by H0. That is, M0 satisfies the equation of
motion

Ṁ0 =M0 : −H0 : (10.1.10)

with the initial condition
M0(ti) = I. (10.1.11)

For the M produced by H let us write the representation

M =M1M0 (10.1.12)

where the map M1 remains to be determined. We will call the Ansatz (1.12) a reverse
factorization.

What is the equation of motion forM1? From (1.8), (1.9), and (1.12) we find the result

Ṁ = Ṁ1M0 +M1Ṁ0 =M : −H :=M1M0 : −H :

= M1M0 : −H0 : + M1M0 : −H1 : . (10.1.13)

Use of (1.10) gives the relation

M1Ṁ0 =M1M0 : −H0 :, (10.1.14)

and consequently (1.13) can be reduced to the relation

Ṁ1M0 =M1M0 : −H1 : (10.1.15)

from which it follows that
Ṁ1 =M1M0 : −H1 :M−1

0 . (10.1.16)

Given H1 and M0, let us define an interaction Hamiltonian H int
1 by the rule

H int
1 (zi, t) = H1(M0z

i, t). (10.1.17)
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[We note that, becauseM0(t) is time dependent, in general H int
1 will depend on time even if

H1 happens to be time independent.] Then, as a consequence of (8.2.25), we have the result

M0 : −H1 :M−1
0 =: −H int

1 : . (10.1.18)

Upon combining (1.16) and (1.18) we find the equation of motion

Ṁ1 =M1 : −H int
1 : . (10.1.19)

Finally, we observe from (1.2) and (1.11) that M1 also has the initial condition

M1(ti) = I. (10.1.20)

10.1.3 Perturbation/Splitting Theory and Forward Factorization

For the M produced by H let us write, instead of (1.12), the representation

M =M0N1 (10.1.21)

where the map N1 remains to be determined. We will call the Ansatz (1.21) a forward
factorization.

Note that the N1 in (1.21) and theM1 in (1.12) are generally different. Indeed, we may
rewrite (1.12) in the form

M =M1M0 =M0M−1
0 M1M0 (10.1.22)

from which it follows that
N1 =M−1

0 M1M0. (10.1.23)

We see that if a reverse factorization has been found so that both M0 and M1 are known,
then (1.21) and (1.23) provide the associated forward factorization.

10.2 Series (Dyson) Solution

Readers familiar with Quantum Mechanics will recognize a similarity between equations
(1.8), (1.17), and (1.19) and analogous quantum mechanical results. This is to be expected
because Quantum Mechanics and Classical Mechanics have closely related Lie algebraic
structures. Because of this similiarity, many mathematical tools originally developed for
Quantum Mechanics can also be applied in Classical Mechanics. Indeed, these tools could
have (and, in retrospect, should have) been developed first in the context of Classical Me-
chanics.

One such tool is Neumann iteration. Suppose both sides of (1.8) are integrated with
respect to time from the initial time ti to the variable time t. So doing, and making use of
(1.2), gives the integral equation

M(t) = I +

∫ t

ti
dt′M(t′) : −H(t′) : . (10.2.1)
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(Here, for notational simplicity, we have suppressed the fact that H also depends on zi.)
Now iterate (2.1) by substituting the right side back into the integral. If this is done once,
we obtain the result

M(t) = I +

∫ t

ti
dt′ : −H(t′) : +

∫ t

ti
dt′
∫ t′

ti
dt′′M(t′′) : −H(t′′) :: −H(t′) : . (10.2.2)

Evidently, repeated iteration gives the result

M(t) = I +

∫ t

ti
dt′ : −H(t′) : +

∫ t

ti
dt′
∫ t′

ti
dt′′ : −H(t′′) :: −H(t′) : + · · · . (10.2.3)

Note that (2.3) is in effect an expansion in powers of H, and that the factors in the integrands
occur in chronological order – with earlier times preceding later times. We conclude thatM
can be expressed as an infinite sum of multiple time-ordered integrals over the Lie operators
: −H(t) :. In the context of Quantum Mechanics, the analog of the series (2.3) is the
Dyson series. Also note that Neumann iteration is the map counterpart of Picard iteration.
Compare (1.3.8) and (1.3.9) with (2.1) through (2.3).

The series (2.3) bears a certain resemblance to the exponential series. Consider m-
dimensional Euclidean space. It is easily verified that the volume of the region ti ≤ tm ≤
tm−1 ≤ · · · ≤ t2 ≤ t1 ≤ t is related to the volume of the region [ti, t] × [ti, t] × [ti, t] · · · (m
factors) by the proportionality constant (m!). Indeed, we have the relation∫ t

ti
dt1

∫ t1

ti
dt2

∫ t2

ti
dt3 · · ·

∫ tm−1

ti
dtm = (1/m!)

∫ t

ti
dt1

∫ t

ti
dt2 · · ·

∫ t

ti
dtm

= (1/m!)

[∫ t

ti
dt′
]m

. (10.2.4)

Consequently, we may write the identity∫ t

ti
dt1

∫ t1

ti
dt2 · · ·

∫ tm−1

ti
dtm : −H(tm) :: −H(tm−1) : · · · : −H(t1) :

= (1/m!)

∫ t

ti
dt1

∫ t

ti
dt2 · · ·

∫ t

ti
dtmT : −H(tm) :: −H(tm−1) : · · · : −H(t1) :

= (1/m!)T

[∫ t

ti
dt′ : −H(t′) :

]m
. (10.2.5)

Here the time-ordering symbol T indicates that the factors in the operator product
: −H(tm) : · · · : −H(t1) : are to be rearranged so that operators with earlier times precede
those with later times. Finally, with the aid of (2.5), we may write the series (2.3) in the
form

M(t) = I + T

∞∑
m=1

(1/m!)

[∫ t

ti
dt′ : −H(t′) :

]m
= T exp

[∫ t

ti
dt′ : −H(t′) :

]
. (10.2.6)

The right side of (2.6) is often called a time-ordered exponential. However, as neat as this
expression may appear to be, in reality it is simply the series (2.3).
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We close this section by noting that our discussion of the series solution to (1.8) applies
equally well to (1.19). Consequently, M1 has the series solution

M1(t) = T exp

[∫ t

ti
dt′ : −H int

1 (t′) :

]
. (10.2.7)

This result for M1 may be viewed as an expansion in powers of H int
1 .

Exercises

10.2.1. Verify (2.4) by performing the indicated integrations on each side.

10.2.2. Suppose F (z, t) and G(z, t) are two Hamiltonians that are in involution. That is,
we assume

[F (z, t), G(z, t′)] = 0 for all t, t′. (10.2.8)

Correspondingly, there will be the Lie operator commutation relation

{: F (z, t) :, : G(z, t′) :} = 0 for all t, t′. (10.2.9)

LetMF (tin, tfin) andMG(tin, tfin) be the maps generated by F andG, respectively. Define
a sum Hamiltonian H(z, t) by writing

H(z, t) = F (z, t) +G(z, t), (10.2.10)

and let MH(tin, tfin) be the map generated by H. Your task is to show that

MH(tin, tfin) =MF (tin, tfin)MG(tin, tfin) =MG(tin, tfin)MF (tin, tfin). (10.2.11)

Begin by making the Ansatz

MH(tin, t) =M?(t
in, t)MG(tin, t) (10.2.12)

where the map M?(t
in, t) remains to be determined. Verify that taking the time derivative

of both sides of (2.12) produces the result

ṀH = Ṁ?MG +M?ṀG =MH : −H :=M?MG : −H :

= M?MG : −F : + M?MG : −G : . (10.2.13)

Next find the equation of motion for M?. To do so, verify that

M?ṀG =M?MG : −G :, (10.2.14)

and consequently (2.13) can be reduced to the relation

Ṁ?MG =M?MG : −F : . (10.2.15)
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At this point imagine that the series solution (2.3) is used to represent MG. Verify that
doing so gives the result

MG(tin, t) = I +

∫ t

tin
dt′ : −G(t′) : +

∫ t

tin
dt′
∫ t′

tin
dt′′ : −G(t′′) :: −G(t′) : + · · · . (10.2.16)

Employ the assumption (2.9) and the representation (2.16) to conclude that

MG : −F :=: −F :MG, (10.2.17)

from which it follows that (2.15) can be rewritten in the form

Ṁ?MG =M? : −F :MG, (10.2.18)

and consequently
Ṁ? =M? : −F : . (10.2.19)

Finally, observe from (2.12) that M? has the initial condition

M?(t
in, tin) = I. (10.2.20)

It follows from (2.19) and (2.20) that

M?(t
in, tfin) =MF (tin, tfin), (10.2.21)

and insertion of (2.21) into the Ansatz (2.12) proves the first part of (2.11).
In an analogous way, prove the second part of (2.11) by making the Ansatz

MH(tin, t) =M?(t
in, t)MF (tin, t). (10.2.22)

10.3 Exponential (Magnus) Solution

The series solutions (2.6) and (2.7) for the transfer map, or equivalently (2.3), have the defect
that they are not manifestly symplectic. Indeed, if the series are truncated, the resulting
maps are generally not symplectic. Moreover, maps in series form are somewhat difficult
to concatenate. For these reasons, it is also useful to have solutions in exponential form.
Possibilities include the single exponential form and various factored product forms. Here
we consider the single exponential form.

Let us seek a solution to the equation of motion (1.8), or (1.19), of the form

M(t) = exp(: F (zi, t) :). (10.3.1)

We know that in general there is no such solution. Indeed, even in the simplest linear
case of Sp(2), maps cannot generally be written in single exponent form. See Section 8.7.
Nevertheless we will pursue the assumption (3.1) to see where it leads. We will find an
expansion for F in terms of powers ofH, and the convergence of this expansion will determine
the validity of the assumption.
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Let us differentiate both sides of (3.1). Doing so gives the relation

Ṁ = exp(: F :)iex(−#F#) : Ḟ :=Miex(−#F#) : Ḟ : . (10.3.2)

Here we have used results from Appendix C. Now insert the equation of motion (1.8) into
(3.2) to get the relation

: −H := iex(−#F#) : Ḟ : . (10.3.3)

This relation can be solved to produce an equation of motion for the Lie operator : F :,

: Ḟ := [iex(−#F#)]−1 : −H : . (10.3.4)

According to Appendix C, the operator [iex(−#F#)]−1 has an expansion in powers of #F#
of the form

[iex(−#F#)]−1 =
∞∑
m=0

bm(#F#)m. (10.3.5)

Consequently, (3.4) can be rewritten in the form

: Ḟ :=
∞∑
m=0

bm(#F#)m : −H : = : [
∞∑
m=0

bm : F :m (−H)] : . (10.3.6)

Here we have also used (8.2.2). Now remove the outside colons from both sides of (3.6). So
doing gives an equation of motion for F ,

Ḟ =
∞∑
m=0

bm : F :m (−H) = [iex(− : F :)]−1(−H), (10.3.7)

which could have been deduced directly by “decolonizing” (3.4). This equation is to be
solved with the initial condition

F (ti) = 0, (10.3.8)

which follows from (1.2).
Let us try to solve (3.7) by perturbation theory. Replace H by εH, and assume F has

an expansion of the form

F =
∞∑
n=1

εnFn. (10.3.9)

(This procedure is equivalent to the introduction of a grading, and the expansion obtained
is often called the Magnus expansion. See Section 8.9.) Put the expansion (3.9) into (3.7)
to get the result

∞∑
n=1

εnḞn =
∞∑
m=0

bm(:
∞∑
n=1

εnFn :)m(−εH). (10.3.10)

Now equate powers of ε. So doing gives the results

Ḟ1 = −H, (10.3.11)

Ḟ2 = (1/2) : F1 : (−H), (10.3.12)
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Ḟ3 = (1/12) : F1 :2 (−H) + (1/2) : F2 : (−H), (10.3.13)

Ḟ4 = (1/2) : F3 : (−H) + (1/12)(: F1 :: F2 : + : F2 :: F1 :)(−H), (10.3.14)

Ḟn = something involving H and the : Fm : with m < n. (10.3.15)

Here we have used the values for the coefficients bm given in Appendix C. The equations
(3.11) through (3.15) are to be solved with the initial conditions

Fn(ti) = 0. (10.3.16)

The equations for the Ḟn can be integrated numerically or solved by quadrature. Evi-
dently (3.11) with the initial condition (3.16) has the solution

F1(t) =

∫ t

ti
dt1[−H(t1)]. (10.3.17)

Now substitute (3.17) into (3.12) to get the result

Ḟ2(t1) = (1/2)

∫ t1

ti
dt2 : −H(t2) : [−H(t1)]

= (1/2)

∫ t1

ti
dt2[−H(t2),−H(t1)]. (10.3.18)

This equation can be integrated, again with the initial condition (3.16), to give the result

F2(t) = (1/2)

∫ t

ti
dt1

∫ t1

ti
dt2[−H(t2),−H(t1)]. (10.3.19)

Let us introduce the short-hand notation −j for the quantity −H(tj). With this notation,
(3.19) can be written in the more compact form

F2(t) = (1/2)

∫ t

ti
dt1

∫ t1

ti
dt2[−2,−1]. (10.3.20)

Similarly, again using this notation, we find the result

F3(t) = (1/6)

∫ t

ti
dt1

∫ t1

ti
dt2

∫ t2

ti
dt3×

{2[−3, [−2,−1]]− [−2, [−3,−1]]}

= (1/6)

∫ t

ti
dt1

∫ t1

ti
dt2

∫ t2

ti
dt3×

{[−1, [−2,−3]] + [−3, [−2,−1]]}. (10.3.21)

Here 2[−3, [−2,−1]] is short hand for 2[−H(t3), [−H(t2),−H(t1)]], etc. And for F4 we find
the result

F4(t) = (1/12)

∫ t

ti
dt1

∫ t1

ti
dt2

∫ t2

ti
dt3

∫ t3

ti
dt4×

{+3[−4, [−3, [−2,−1]]]− [−4, [−2, [−3,−1]]]

−[−3, [−4, [−2,−1]]]− [−3, [−2, [−4,−1]]]

−[−2, [−4, [−3,−1]]] + [−2, [−3, [−4,−1]]]}. (10.3.22)
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See Exercise 3.3.
At this point at least three comments are in order. First, we recognize from the struc-

ture of the equations (3.11) through (3.15) that the quantity ε serves only as a “counting”
parameter that counts powers of H, and therefore we may now set ε = 1. The net result
is an expansion of F in powers of H. Next we see from (3.15) that the Fn can be deter-
mined successively, and consequently a solution by numerical methods or by quadrature is
always possible. Third, we see that all the quantities on the right side of the equations
(3.11) through (3.15) lie in the Lie algebra generated by the H(zi, t) for different values of t.
(That is, all the quantities consist of H and Poisson brackets involving only factors of H.)
In particular, if all the H(zi, t) are in involution,

[H(zi, t), H(zi, t′)] = 0, (10.3.23)

then we have the results
Fn = 0 for n > 1, (10.3.24)

and

M(t) = exp

[∫ t

ti
dt′ : −H(t′) :

]
. (10.3.25)

Note that (3.25) is consistent with (2.6) because if (3.23) holds, then time ordering makes
no difference. Finally, if the Hamiltonian is autonomous, then the integral in (3.25) can be
done to give the result (7.4.7).

We close this section with the reminder that the discussion we have just given for the
solution of (1.8) for M applies equally well to the solution of (1.19) for M1. In the case of
M1, the associated exponential quantity F can be developed as an expansion in powers of
H int

1 . And, since H int
1 may be small, it could be the case that M1 can be written in single

exponent form.

Exercises

10.3.1. Verify (3.11) through (3.15).

10.3.2. Verify (3.17) through (3.20).

10.3.3. Verify (3.21) through (3.22). Hint: To do so, use the identity (5.3.14) and the Jacobi
identity; and verify and employ integral identities of the form∫ t

ti
dt1

∫ t

ti
dt2 ∗ ∗ =

∫ t

ti
dt1

∫ t1

ti
dt2 ∗ ∗+

∫ t

ti
dt2

∫ t2

ti
dt1 ∗ ∗, (10.3.26)

where ∗∗ denotes some common integrand.

10.4 Factored Product Solution: Powers of H

Expansion

As before, let us replace H by εH so that the the equation of motion (1.8) becomes

Ṁ =M : −εH : . (10.4.1)
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Suppose also that we factor M in the form

M =M1M2M3M4 · · · (10.4.2)

where
Mm = exp(: εmGm :) (10.4.3)

and the functions Gm are to be determined. [Note that (4.2) is a forward factorization.]
Next differentiate the Ansatz (4.2) to find the result

Ṁ = Ṁ1M2M3M4 · · ·+M1Ṁ2M3M4 · · ·
+M1M2Ṁ3M4 · · ·+M1M2M3Ṁ4 · · ·
+ · · · , (10.4.4)

from which it follows using (4.1) and (4.2) that

M−1Ṁ = · · ·M−1
4 M−1

3 M−1
2 M−1

1 Ṁ1M2M3M4 · · ·
+ · · ·M−1

4 M−1
3 M−1

2 Ṁ2M3M4 · · ·
+ · · ·M−1

4 M−1
3 Ṁ3M4 · · ·

+ · · ·M−1
4 Ṁ4 · · ·

+ · · · = : −εH : . (10.4.5)

The various terms in (4.5) can be simplified by the use of adjoint operators. For example,
we have the result

· · ·M−1
4 M−1

3 M−1
2 M−1

1 Ṁ1M2M3M4 · · · =
· · · exp(−#ε4G4#) exp(−#ε3G3#) exp(−#ε2G2#)M−1

1 Ṁ1.

(10.4.6)

Also, there are relations of the form

M−1
m Ṁm = iex (−#εmGm#) : εmĠm : . (10.4.7)

Upon using (4.7) and relations of the form (4.6) we find that (4.5) can be rewritten in the
form

· · · exp(−#ε4G4#) exp(−#ε3G3#) exp(−#ε2G2#) iex(−#εG1#) : εĠ1 :

+ · · · exp(−#ε4G4#) exp(−#ε3G3#) iex (−#ε2G2#) : ε2Ġ2 :

+ · · · exp(−#ε4G4#) iex (−#ε3G3#) : ε3Ġ3 :

+ · · · iex(−#ε4G4#) : ε4Ġ4 : + · · · = : −εH : . (10.4.8)

The colons can now be removed from both sides of (4.8) to give the equivalent result

· · · exp(− : ε4G4 :) exp(− : ε3G3 :) exp(− : ε2G2 :) iex(− : εG1 :)εĠ1

+ · · · exp(− : ε4G4 :) exp(− : ε3G3 :) iex (− : ε2G2 :)ε2Ġ2

+ · · · exp(− : ε4G4 :) iex (− : ε3G3 :)ε3Ġ3

+ · · · iex(− : ε4G4 :)ε4Ġ4 + · · · = − εH. (10.4.9)
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Recall that the integrated exponential function has the expansion.

iex(w) =

∫ 1

0

dτ exp(τw) = (ew − 1)/w =
∞∑
m=0

wm/(m+ 1)!

= 1 + w/2 + w2/3 + w3/4 + w4/5 + · · · . (10.4.10)

Using this expansion we may expand each of the lines in (4.9) as a Taylor series in ε. We
find, for example, the results

· · · exp(− : ε4G4 :) exp(− : ε3G3 :) exp(− : ε2G2 :) iex(− : εG1 :)εĠ1 =

εĠ1 + ε2[−(1/2) : G1 : Ġ1] + ε3[∗] + ε4[∗] + · · · , (10.4.11)

· · · exp(− : ε4G4 :) exp(− : ε3G3 :) iex (− : ε2G2 :)ε2Ġ2 =

ε2Ġ2 + ε3[∗] + ε4[∗] + · · · , (10.4.12)

· · · exp(− : ε4G4 :) iex (− : ε3G3 :)ε3Ġ3 =

ε3Ġ3 + ε4[∗] + · · · , (10.4.13)

· · · iex(− : ε4G4 :)ε4Ġ4 =

ε4Ġ4 + · · · . (10.4.14)

Next equate powers of ε on both sides of (4.9). So doing gives, for example through
powers of ε4, the results

εĠ1 = −εH, (10.4.15)

ε2[Ġ2 − (1/2) : G1 : Ġ1] = 0, (10.4.16)

ε3[Ġ3+] = 0, (10.4.17)

ε4[Ġ4+] = 0. (10.4.18)

We conclude that the Gn obey the equations of motion

Ġ1 = −H, (10.4.19)

Ġ2 = (1/2) : G1 : Ġ1 = (1/2) : G1 : (−H), (10.4.20)

Ġ3 =?(1/12) : G1 :2 (−H) + (1/2) : G2 : (−H), (10.4.21)

Ġ4 =?(1/2) : G3 : (−H) + (1/12)(: G1 :: G2 : + : G2 :: G1 :)(−H), · · · (10.4.22)

Ġn = something involving H and the : Gm : with m < n. (10.4.23)

These equations of motion are to be solved with the initial conditions

Gn(ti) = 0. (10.4.24)
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The equations for the Ġn can be integrated numerically or solved by quadrature. Evi-
dently (4.19) with the initial condition (4.24) has the solution

G1(t) =

∫ t

ti
dt1[−H(t1)]. (10.4.25)

Now substitute (4.25) into (4.20) to get the result

Ġ2(t1) = (1/2)

∫ t1

ti
dt2 : −H(t2) : [−H(t1)]

= (1/2)

∫ t1

ti
dt2[−H(t2),−H(t1)]. (10.4.26)

This equation can be integrated, again with the initial condition (4.24), to give the result

G2(t) = (1/2)

∫ t

ti
dt1

∫ t1

ti
dt2[−H(t2),−H(t1)]. (10.4.27)

Let us introduce the short-hand notation −j for the quantity −H(tj). With this notation,
(4.27) can be written in the more compact form

G2(t) = (1/2)

∫ t

ti
dt1

∫ t1

ti
dt2[−2,−1]. (10.4.28)

Similarly, again using this notation, we find the result

G3(t) =?(1/6)

∫ t

ti
dt1

∫ t1

ti
dt2

∫ t2

ti
dt3×

{2[−3, [−2,−1]]− [−2, [−3,−1]]}

= (1/6)

∫ t

ti
dt1

∫ t1

ti
dt2

∫ t2

ti
dt3×

{[−1, [−2,−3]] + [−3, [−2,−1]]}. (10.4.29)

Here 2[−3, [−2,−1]] is short hand for 2[−H(t3), [−H(t2),−H(t1)]], etc. And for G4 we find
the result

G4(t) =? (1/12)

∫ t

ti
dt1

∫ t1

ti
dt2

∫ t2

ti
dt3

∫ t3

ti
dt4×

{+3[−4, [−3, [−2,−1]]]− [−4, [−2, [−3,−1]]]

−[−3, [−4, [−2,−1]]]− [−3, [−2, [−4,−1]]]

−[−2, [−4, [−3,−1]]] + [−2, [−3, [−4,−1]]]}. (10.4.30)

See Exercise 4.1.
At this point at least three comments are in order. First, we recognize from the struc-

ture of the equations (4.19) through (4.23) that the quantity ε serves only as a “counting”
parameter that counts powers of H, and therefore we may now set ε = 1. Next we see
from (4.23) that the Gn can be determined successively, and consequently a solution by
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numerical methods or by quadrature is always possible. Third, we see that all the quantities
on the right side of the equations (4.19) through (4.23) lie in the Lie algebra generated by
the H(zi, t) for different values of t. (That is, all the quantities consist of H and Poisson
brackets involving only factors of H.) In particular, if all the H(zi, t) are in involution,

[H(zi, t), H(zi, t′)] = 0, (10.4.31)

then we have the results
Gn = 0 for n > 1, (10.4.32)

and we again find the result

M(t) = exp

[∫ t

ti
dt′ : −H(t′) :

]
. (10.4.33)

Finally, if the Hamiltonian is autonomous, then the integral in (4.33) can be done to give
the result (7.4.7).

We close this section with the reminder that the discussion we have just given for the
solution of (1.8) for M applies equally well to the solution of (1.19) for M1. In the case of
M1, the associated quantities Gn can be developed as expansions in powers of H int

1 . Note
that in this context we have put ourselves in a notationally awkward position: The M1

appearing in (1.12) is different from and should not be confused with the M1 appearing in
(4.2).

Exercises

10.4.1. Suppose that M obeys the equation of motion (4.1) and that M is factored in the
reversed product form

M = · · ·M4M3M2M1 (10.4.34)

where
Mm = exp(: εmGrev

m :) (10.4.35)

and the functions Grev
m are to be determined. Find equations of motion for these functions.

10.5 Factored Product Solution: Taylor Expansion

about Design Orbit

10.5.1 Background

The discussion so far has been quite general in that no particular use has been made of
Taylor expansions in the phase-space variables z. In this section we will explore the use of
factored product representations such as those described in Sections 7.6 and 7.8.

Let H(z, t) be a general, possibly time-dependent, Hamiltonian. Suppose that zd(t) is
some given trajectory (which is assumed to be known and will be called the design tra-
jectory), and that our task is to characterize all trajectories near zd. Introduce 2n new
deviation variables ζ by the rule

z = zd + ζ. (10.5.1)



1048 10. COMPUTATION OF TRANSFER MAPS

The transformation (5.1) is canonical. Consequently, the time evolution of the deviation
variables ζ will also be described by some Hamiltonian. Call this Hamiltonian Hnew(ζ, t).
Evidently, the problem of studying trajectories near zd is equivalent to studying the trajec-
tories governed by Hnew(ζ, t) in the case where ζ is small.

What is the relation between H(z, t) and Hnew(ζ, t)? Define a function H̄(ζ, t) by the
rule

H̄(ζ, t) = H[zd(t) + ζ, t]. (10.5.2)

Here the time dependence of H̄(ζ, t) arises both from the possible time dependence of H
and the time dependence of the design orbit zd(t). Next suppose that the quantity H̄(ζ, t)
is expressed as a power series in ζ by making the expansion

H̄(ζ, t) =
∞∑
m=0

H̄m(ζ, t). (10.5.3)

Here each quantity H̄m(ζ, t) is a homogeneous polynomial of degree m in the components of
ζ. Then we claim that Hnew(ζ, t) is given by the relation

Hnew(ζ, t) =
∞∑
m=2

H̄m(ζ, t). (10.5.4)

There are at least two ways to verify the truth of (5.4). In analogy with (4.8.2), let us
write

zd = (β1 · · · βn, α1 · · ·αn), (10.5.5)

ζ = (Q1 · · ·Qn, P1 · · ·Pn). (10.5.6)

Introduce the mixed-variable generating function F2(q, P, t) by the rule

F2(q, P, t) =
n∑
`=1

[α`(t)q` − β`(t)P` + q`P`]. (10.5.7)

Then, following the rules (4.8.4) and (4.8.5), we find the results

Q` = ∂F2/∂P` = q` − β`(t), (10.5.8)

p` = ∂F2/∂q` = P` + α`(t), (10.5.9)

which are equivalent to the relation (5.1). Also, following the standard rules, the transformed
Hamiltonian produced by the symplectic (canonical) transformation associated with (5.7) is
given by the relation

Hnew(Q,P, t) = Hnew(ζ, t) = Hold(zd + ζ, t) + ∂F2/∂t = H̄(ζ, t) + ∂F2/∂t. (10.5.10)

But from (5.7) we find the result

∂F2/∂t =
n∑
`=1

[α̇`(t)q` − β̇`(t)P`] =
n∑
`=1

[α̇`(t)β`(t) + α̇`(t)Q` − β̇`P`] (10.5.11)
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so that

Hnew(Q,P, t) = Hnew(ζ, t) = H̄(ζ, t) +
n∑
`=1

[α̇`(t)β`(t) + α̇`(t)Q` − β̇`P`]. (10.5.12)

We see that the second term on the far right of (5.12), the ∂F2/∂t component of Hnew,
consists only of terms independent of ζ and terms linear in ζ. Consequently, consistent
with the claim made in (5.2) through (5.4), the quadratic and higher-order terms in ζ that
appear in the expansions of H̄(ζ, t) and Hnew(ζ, t) agree. Also, again consistent with (5.4),
we know that Hnew(ζ, t) cannot contain terms linear in ζ, for otherwise ζ = 0 would not
be a possible trajectory for the equations of motion generated by Hnew. Finally, terms in
Hnew independent of ζ make no contribution to the equations of motion and, consistent with
(5.4), can simply be dropped.

A second way to verify the truth of (5.4) is simply to examine equations of motion.
According to (5.2.3) a general trajectory satisfies the equation of motion

ż = J∂zH(z, t), (10.5.13)

and the given trajectory zd satisfies the equation of motion

żd = J∂zH(z, t)
∣∣
z=zd

. (10.5.14)

Also, as is easily verified from (5.2) and (5.3), we have the result

∂zH(z, t)|z=zd = ∂ζH̄1(ζ, t). (10.5.15)

Now let us insert (5.1) through (5.3) into (5.13) to get the relation

ż = żd + ζ̇ = J∂zH(z, t) = J∂ζH(zd + ζ, t) = J∂ζH̄(ζ, t) = J∂ζ

∞∑
m=1

H̄m(ζ, t). (10.5.16)

Finally, subtract (5.14) from (5.16) and use (5.15) and (5.4) to find the result

ζ̇ = J∂ζ

∞∑
m=1

H̄m(ζ, t)− J∂ζH̄1(ζ, t) = J∂ζ

∞∑
m=2

H̄m(ζ, t) = J∂ζH
new(ζ, t). (10.5.17)

We see that the time evolution of the deviation variables ζ is indeed governed by Hnew, as
claimed. We also note that, according to (5.14) and (5.15), the equation of motion for the
design trajectory itself is provided by the relation

żd = J∂ζH̄1(ζ, t). (10.5.18)

We close this subsection by observing that there is a variant definition of Hnew that is
often convenient. The relation (5.4) can be rewritten in the form

Hnew(ζ, t) =
∞∑
m=2

H̄m(ζ, t) = H̄(ζ, t)− H̄0(ζ, t)− H̄1(ζ, t). (10.5.19)

Since term H̄0(ζ, t) is independent of ζ, it makes no contribution to the equations of motion
and therefore may be dropped. Consequently we may make the alternate definition

Hnew(ζ, t) = H̄(ζ, t)− H̄1(ζ, t). (10.5.20)

Note that all the definitions (5.12), (5.19), and (5.20) are in closed form and do not actually
involve the summation of infinite series.
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10.5.2 Term by Term Procedure

To continue the general discussion, let us write Hnew as given by (5.4) in the form

Hnew = H2 +H3 +H4 + · · · = H2 +Hr. (10.5.21)

Alternatively, we may expand Hnew as given by (5.10) or (5.20) in homogeneous polynomials
(in the components of ζ) and omit any irrelevant H0 term to obtain the same result. Let
M be the transfer map associated with Hnew. In accord with the spirit of (1.9) and (1.12),
let us factor M in the form

M =MrM2. (10.5.22)

Here, as in (5.21), we use the subscript “r” to denote “remaining” terms. [Note that (5.22)
is a reverse factorization.] Following the discussion of Section 10.1, we will require thatM2

obey the equation of motion
Ṁ2 =M2 : −H2 : . (10.5.23)

Correspondingly, Mr will obey the equation of motion

Ṁr =Mr : −H int
r :, (10.5.24)

where the interaction Hamiltonian H int
r is given by rule

H int
r (ζ i, t) = Hr(M2ζ

i, t). (10.5.25)

We will now describe how to compute M2 and Mr. Let us begin with M2. Since H2

is a quadratic Hamiltonian, its associated transfer map M2 must be linear. Let ζ(t) be the
result of M2(t) acting on ζ i. Then there is a symplectic matrix R such that

ζa(t) =M2(t)ζ ia =
∑
b

Rab(t)ζ
i
b, (10.5.26)

or, in more compact vector and matrix notation,

ζ(t) = R(t)ζ i. (10.5.27)

Thus, the computation of M2 is equivalent to finding the matrix R. Since H2 is quadratic,
there is an associated symmetric matrix S(t) such that H2 is given by the relation

H2(ζ i, t) = (1/2)
∑
a,b

Sab(t)ζ
i
aζ
i
b. (10.5.28)

In analogy with (8.3.64) and (8.3.66), we have the result

: −H2 : ζ i = JSζ i. (10.5.29)

Suppose both sides of (5.23) are applied to the quantity ζ i. For the left side we find the
result

Ṁ2ζ
i = ζ̇ = Ṙζ i. (10.5.30)
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For the right side we find the result

M2 : −H2 : ζ i =M2JSζ
i = JSM2ζ

i = JSRζ i. (10.5.31)

Now compare the right sides of (5.30) and (5.31). Since ζ i is an arbitrary vector, we conclude
that R must obey the matrix differential equation

Ṙ = JSR. (10.5.32)

Also, the requirement that M2 be the identity operator I when t = ti makes R subject to
the initial condition

R(ti) = I. (10.5.33)

The differential equation (5.32) with the initial condition (5.33) has a unique solution
whose computation, in most cases, requires numerical integration. [The system (5.32) is
equivalent to (2n)2 first-order coupled and time-dependent linear equations.] In the special
case when the matrices JS(t) and JS(t′) commute for all times t and t′, one has, in analogy
to (3.25), the explicit solution

R(t) = exp

[∫ t

ti
JS(t′)dt′

]
. (10.5.34)

[Indeed, it can be shown that the solution to (5.32) depends entirely upon the Lie algebra
generated by the matrices JS(t).] In the even more special case that S (and therefore H2)
is time independent, the integration required in (5.34) is immediate, and one obtains the
result

R = exp[(t− ti)JS]. (10.5.35)

In either of the cases corresponding to (5.34) and (5.35) one can write

M2 = exp(: f2 :), (10.5.36)

with f2 given by the relation

f2 = −
∫ t

ti
H2(t′)dt′. (10.5.37)

In the general case, if desired, one may polar decompose R in analogy to (6.2.2) and, in
analogy to (7.2.10), write M2 in the form

M2 = exp(: f c2 :) exp(: fa2 :). (10.5.38)

We turn now to the calculation of Mr. We begin by making the computation of H int
r

more explicit. By definition, Hr consists of terms of degree 3 and higher,

Hr = H3 +H4 + · · · . (10.5.39)

Also, in view of (5.25) and the fact that M2 produces a linear transformation when acting
on ζ i [see (5.26) and (5.27)], it follows that H int

r has the decomposition

H int
r = H int

3 +H int
4 + · · · , (10.5.40)
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where each term H int
m is a homogeneous polynomial of degree m given by the relation

H int
m (ζ i, t) = Hm(M2ζ

i, t). (10.5.41)

[We note in passing that the operations involved in computing (5.41) using (5.26) are anal-
ogous to those employed in (8.4.23) except that R−1 is replaced by R.]

To see how this works out in a specific case, consider the computation of H int
3 . The terms

of still higher degree are handled analogously. Suppose that H3 is written in the explicit
form

H3(ζ i, t) =
∑
abc

Tabc(t)ζ
i
aζ
i
bζ
i
c, (10.5.42)

where Tabc is a set of (possibly time-dependent) coefficients. Then use of (5.41) gives the
relation

H int
3 (ζ i, t) =

∑
abc

Tabc(M2ζ
i
a)(M2ζ

i
b)(M2ζ

i
c). (10.5.43)

However, thanks to (5.26), the terms on the right side of (5.43) may be evaluated explicitly
so that H int

3 can be expressed in the form

H int
3 (ζ i, t) =

∑
abc

∑
a′b′c′

TabcRaa′Rbb′Rcc′ζ
i
a′ζ

i
b′ζ

i
c′ . (10.5.44)

Finally, the sums in (5.44) can be grouped so that H int
3 can be written in the final form

H int
3 (ζ i, t) =

∑
a′b′c′

T int
a′b′c′(t) ζ

i
a′ζ

i
b′ζ

i
c′ , (10.5.45)

where T int is defined by the equation

T int
a′b′c′(t) =

∑
abc

Tabc(t)Raa′(t)Rbb′(t)Rcc′(t). (10.5.46)

As mentioned earlier, because of the time dependence of R, note that H int
3 is in general time

dependent even if H3 is not.
Let us write Mr in reversed factorized form. See Section 7.8. Since H int

r consists of
terms of degree 3 and higher, Mr can be written as the product

Mr = · · ·M5M4M3, (10.5.47)

where each factor Mm is generated by the homogeneous polynomial function fm(ζ i),

Mm = exp(: fm :). (10.5.48)

[Note that (5.47) is also a reversed factorization.] Our goal is to find equations of motion
for the fm.

From the factorization (5.47) and the product rule for differentiation, it follows that Ṁr

can be written in the form

Ṁr = · · ·+ · · · Ṁ5M4M3 + · · ·M5Ṁ4M3 + · · ·M5M4Ṁ3. (10.5.49)
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Suppose (5.49) is substituted into the equation of motion (5.24) and both sides of the
resulting relation are multiplied by M−1

r . So doing gives the result

M−1
r Ṁr = · · ·+M−1

3 M−1
4 M−1

5 Ṁ5M4M3 +M−1
3 M−1

4 Ṁ4M3 +M−1
3 Ṁ3

= : −H int
r : . (10.5.50)

The various terms appearing in (5.50) can be simplified by the use of adjoint operators. For
example, we have the result

M−1
3 M−1

4 M−1
5 Ṁ5M4M3 = exp(−#f3#) exp(−#f4#)M−1

5 Ṁ5. (10.5.51)

See (8.2.23). Also, we have the relation

M−1
m Ṁm = iex(−#fm#) : ḟm : . (10.5.52)

See Appendix C. Upon using (5.51) and (5.52) in (5.50), we find that (5.50) can be rewritten
in the form

· · · + exp(−#f3#) exp(−#f4#) iex(−#f5#) : ḟ5 :

+ exp(−#f3#) iex(−#f4#) : ḟ4 :

+ iex(−#f3#) : ḟ3 :=: −H int
r : . (10.5.53)

At this stage the colons can be removed from both sides of (5.53) to give the result

· · · + exp(− : f3 :) exp(− : f4 :) iex(− : f5 :)ḟ5

+ exp(− : f3 :) iex(− : f4 :)ḟ4

+ iex(− : f3 :)ḟ3 = −H int
r . (10.5.54)

Let us examine both sides of (5.54) with the aim of equating terms of like degree. From
the expansion (8.8.9) we find the result

iex(− : fm :)ḟm = (1− : fm : /2! + : fm :2 /3!− · · · )ḟm. (10.5.55)

According to (7.6.16), the terms of the right side of (5.55) have degrees m, 2m− 2, 3m− 4,
etc. Consequently, upon using (5.40), and equating terms of like degree in (5.54), we find
the result

Pm[· · · + exp(− : f3 :) exp(− : f4 :) iex(− : f5 :)ḟ5

+ exp(− : f3 :) iex(− : f4 :)ḟ4

+ iex(− : f3 :)ḟ3] = −H int
m . (10.5.56)

Here Pm denotes a projection operator that projects out terms of degree m. For example,
we have the results

P3[· · ·+ iex(− : f3 :)ḟ3] = ḟ3, (10.5.57)

P4[· · ·+ iex(− : f3 :)ḟ3] = ḟ4 − (: f3 : /2!)ḟ3, (10.5.58)

P5[· · ·+ iex(− : f3 :)ḟ3] = ḟ5− : f3 : ḟ4 + (: f3 :2 /3!)ḟ3. (10.5.59)
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The relations (5.56) can now be solved for the various ḟm. We find, for example, through
m = 8, the results

ḟ3 = −H int
3 , (10.5.60)

ḟ4 = −H int
4 + (: f3 : /2)(−H int

3 ), (10.5.61)

ḟ5 = −H int
5 + : f3 : (−H int

4 ) + (1/3) : f3 :2 (−H int
3 ), (10.5.62)

ḟ6 = − H int
6 + : f3 : (−H int

5 ) + (1/2) : f4 : (−H int
4 )

+ (1/4) : f4 :: f3 : (−H int
3 ) + (1/2) : f3 :2 (−H int

4 )

+ (1/8) : f3 :3 (−H int
3 ), (10.5.63)

ḟ7 = − H int
7 + : f3 : (−H int

6 )+ : f4 : (−H int
5 )+ : f4 :: f3 : (−H int

4 )

+ (1/3) : f4 :: f3 :2 (−H int
3 ) + (1/2) : f3 :2 (−H int

5 )

+ (1/6) : f3 :3 (−H int
4 ) + (1/30) : f3 :4 (−H int

3 ), (10.5.64)

ḟ8 = − H int
8 + : f3 : (−H int

7 )+ : f4 : (−H int
6 )+ : f4 :: f3 : (−H int

5 )

+ (1/2) : f4 :: f3 :2 (−H int
4 ) + (1/8) : f4 :: f3 :3 (−H int

3 )

+ (1/2) : f5 : (−H int
5 ) + (1/2) : f5 :: f3 : (−H int

4 )

+ (1/6) : f5 :: f3 :2 (−H int
3 ) + (1/2) : f3 :2 (−H int

6 )

+ (1/3) : f4 :2 (−H int
4 ) + (1/6) : f4 :2: f3 : (−H int

3 )

+ (1/6) : f3 :3 (−H int
5 ) + (1/24) : f3 :4 (−H int

4 )

+ (1/144) : f3 :5 (−H int
3 ), (10.5.65)

ḟm = something involving Hm and the f` and H` with ` < m. (10.5.66)

What have we accomplished? From (5.22), (5.38), (5.47), and (5.48) we see thatM has
been computed in a reverse factorized product form; and we have found how to calculate
the Mm. To find M2 we need to integrate the equations (5.32) with the initial condition
(5.33). Here it is assumed that zd(t) is known so that H2 and hence S is known. See (5.28).
If this is not the case, then we must also integrate the equations (5.14) or (5.18). That
is, we must integrate the equations (5.14) [or (5.18)] and (5.32) as a coupled set. To find
the fm that defineMr according to (5.47) and (5.48), we must also integrate the equations
of motion for the fm as given by (5.60) through (5.66). The requirement that Mr be the
identity operator I when t = ti makes the fm subject to the initial condition

fm(ti) = 0. (10.5.67)

We note from the form of equations (5.60) through (5.66) that the computation of the fm
requires a knowledge of the H int

` with ` ≤ m. The computation of H int
` (t) in turn requires

a knowledge of R(t). [See, for example, (5.43) through (5.46).] Consequently, the equations
of motion (5.60) through (5.66) for the fm must be integrated simultaneously with the
equations (5.32) for R. [Moreover, in general zd(t) must also be known to compute H int

` (t).
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Thus, if zd(t) is not known explicitly, then the equations (5.14) or (5.18) must in general
also be in the set of equations to be integrated.]

We close this section with the observation that the equations of motion (5.60) through
(5.66) for the fm, like equations (3.11) through (3.15) for the Fn, have the property that the
fm can be determined successively. This property has two consequences. First, a solution
of the equations of motion for R, f3, f4, · · · fm by numerical methods is always possible for
any m. Moreover, solution by quadrature is also possible. For example, assuming that R
has already been determined, (5.60) can be integrated immediately to give the result

f3(ζ i, t) =

∫ t

ti
dt1[−H int

3 (ζ i, t1)]. (10.5.68)

Here we have used (5.67). Next, this result for f3 can be substituted into (5.61) and the
resulting expression for ḟ4 can be integrated to give the relation

f4(ζ i, t) =

∫ t

ti
dt1[−H int

4 (ζ i, t1)]+(1/2)

∫ t

ti
dt1

∫ t1

ti
dt2[−H int

3 (ζ i, t2),−H int
3 (ζ i, t1)]. (10.5.69)

Similarly, one finds for f5 the result

f5 =

∫ t

ti
dt1[−H int

5 (t1)]

+

∫ t

ti
dt1

∫ t1

ti
dt2[−H int

3 (t2),−H int
4 (t1)]

+ (1/3)

∫ t

ti
dt1

∫ t1

ti
dt2

∫ t2

ti
dt3[−H int

3 (t3), [−H int
3 (t2),−H int

3 (t1)]]

+ (1/3)

∫ t

ti
dt1

∫ t1

ti
dt2

∫ t2

ti
dt3[−H int

3 (t2), [−H int
3 (t3),−H int

3 (t1)]].

(10.5.70)

Evidently, one can find explicit integral representations for all the fm. We note that to
determine any fm it is necessary to know only the H int

` with ` ≤ m. Moreover, if the H int
`

do not commute (are not in involution) at different times, which is usually the case, there
are feed-up effects: lower-order terms in the Hamiltonian can contribute to higher-order Lie
generators. Specifically, we see that the fm all lie in the Lie algebra generated by the H int

` .
Finally, suppose the time dependencies of the various H int

` are sufficiently simple that all
the integrations occurring in (5.68), (5.69), (5.70), and analogous expressions for the other
fm can be carried out analytically. Then the equations of motion (5.60) through (5.66)
can in principle be solved directly by symbolic manipulation to obtain complete analytic
expressions for all desired fm.

We close this subsection by noting that for simplicity we have derived formulas for R
and the fm when the map M is written in reversed factorized product form. That is, we
have written M in the form

M = · · ·M5M4M3M2. (10.5.71)
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See (5.22) and (5.47). Of course, once we have foundM is reversed factorized product form,
we can convert it to the forward factorized product form

M =M′
2M′

3M′
4M′

5 · · · (10.5.72)

by means of concatenation formulas. Recall Section 8.4. Alternatively, as will be seen in the
next section, there are formulas for the associated R′ and f ′m, analogous to those for R and
the fm, when M is written in forward factorized product form. Finally we note, from the
work of Section 8.5, that there is a standard procedure for passing from forward to reverse
factorized forms.

Exercises

10.5.1. The purpose of this exercise is to verify the relation (5.18) from another perspective.
Begin by showing that by Taylor’s theorem there is the relation

H̄1(ζ, t) =
∑
a

[∂H(z, t)/∂za]|z=zd(t)ζa, (10.5.73)

and consequently
∂H̄1(ζ, t)/∂ζa = [∂H(z, t)/∂za]|z=zd(t). (10.5.74)

Now verify it follows that

J∂ζH̄1(ζ, t) = J [∂zH(z, t)]|z=zd(t) = żd. (10.5.75)

10.5.2. Consider a general Hamiltonian system with Hamiltonian H(z, t), and suppose
zd(t) is any particular trajectory for (solution to) the equations of motion associated with
this Hamiltonian. Form the variational equations about the trajectory zd(t). Show that
the variational equations also arise from a Hamiltonian, and that this Hamiltonian is the
quadratic Hamiltonian H̄2 that appears in the sum (5.3). Show that integrating (5.32) with
the initial condition (5.33) provides all possible solutions to the variational equations.

10.6 Forward Factorization and Lie Concatenation

Revisited

10.6.1 Preliminary Discussion

The previous section derived a reversed factorized product solution to the equation of motion
(1.8) for M. For this present section, and other purposes as well, it is useful to also have
formulas for a forward factorized product solution. We begin by finding them.

The main purpose of this section, which is really a diversion from the logical presenta-
tion of methods for the computation of maps, is to provide another derivation of the Lie
concatenation formulas of Section 8.4. Subsequent sections will return to the main subject
of this chapter.
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10.6.2 Forward Factorization

As before we write
M =MrM2 (10.6.1)

and require that M2 again satisfy (5.23). Then we find, as before, that Mr obeys the
equation of motion

Ṁr =Mr : −H int
r : (10.6.2)

with H int
r again given by (5.25). Now, however, we writeMr in the forward factorized form

Mr =M3M4M5 · · · (10.6.3)

with
Mm = exp(: fm :). (10.6.4)

We will obtain equations of motion for the fm shortly, but imagine for the moment that
they have already been found and solved. Then we may write M in the form

M = exp(: f3 :) exp(: f4 :) exp(: f5 :) · · ·M2. (10.6.5)

Algebraic manipulation now gives the equivalent result

M = M2M−1
2 exp(: f3 :)M2M−1

2 exp(: f4 :)M2M−1
2 exp(: f5 :) · · ·M2

= M2 exp(: f tr3 :) exp(: f tr4 :) exp(: f tr5 :) · · · (10.6.6)

where
f trm =M−1

2 fm. (10.6.7)

We see thatM as given by (6.6) and (6.7) is in the desired forward factorized product form.
It remains to find the fm. Differentiating (6.3) gives the result

Ṁr = Ṁ3M4M5 · · ·+M3Ṁ4M5 · · ·+M3M4Ṁ5 · · ·+ · · · . (10.6.8)

Next, substitution of (6.8) into the equation of motion (6.2) produces the relation

M−1
r Ṁr = · · ·M−1

5 M−1
4 M−1

3 Ṁ3M4M5 · · ·+ · · ·M−1
5 M−1

4 Ṁ4M5 · · ·
+ · · ·M−1

5 Ṁ5 · · ·+ · · · =: −H int
r : . (10.6.9)

As in the previous section, the various terms in (6.9) can be simplified by the use of adjoint
operators. For example, we have the result

· · ·M−1
5 M−1

4 M−1
3 Ṁ3M4M5 · · · = · · · exp(−#f5#) exp(−#f4#)M−1

3 Ṁ3. (10.6.10)

Again we recall the relation

M−1
m Ṁm = iex (−#fm#) : ḟm : . (10.6.11)

Upon using (6.10) and (6.11) in (6.9) we find that it can be rewritten in the form

· · · exp(−#f5#) exp(−#f4#) iex(−#f3#) : ḟ3 :

+ · · · exp(−#f5#) iex (−#f4#) : ḟ4 :

+ · · · iex(−#f5#) : ḟ5 :=: −H int
r : . (10.6.12)
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The colons can now be removed from both sides of (6.12) to give the equivalent result

· · · exp(− : f5 :) exp(− : f4 :) iex(− : f3 :)ḟ3

+ · · · exp(− : f5 :) iex (− : f4 :)ḟ4

+ · · · iex(− : f5 :)ḟ5

+ · · · = −H int
r . (10.6.13)

Finally, similar to the procedure in the previous section, we equate terms of like degree
in (6.13). So doing gives the equations of motion

ḟ3 = −H int
3 , (10.6.14)

ḟ4 = −H int
4 + (: f3 : /2)(−H int

3 ), (10.6.15)

ḟ5 = −H int
5 − (1/6) : f3 :2 (−H int

3 ) + : f4 : (−H int
3 ), (10.6.16)

ḟ6 = −H int
6 + (1/24) : f3 :3 (−H int

3 ) + (1/2) : f4 : (−H int
4 )

−(1/4) : f4 :: f3 : (−H int
3 ) + : f5 : (−H int

3 ), (10.6.17)

ḟ7 = −H int
7 − (1/120) : f3 :4 (−H int

3 ) + (1/6) : f4 :: f3 :2 (−H int
3 )

−(1/2) : f4 :2 (−H int
3 ) + : f5 : (−H int

4 ) + : f6 : (−H int
3 ), (10.6.18)

ḟ8 = −H int
8 + (1/720) : f3 :5 (−H int

3 )− (1/24) : f4 :: f3 :3 (−H int
3 )

−(1/6) : f4 :2 (−H int
4 ) + (1/6) : f4 :2: f3 : (−H int

3 ) + (1/2) : f5 : (−H int
5 )

+(1/12) : f5 :: f3 :2 (−H int
3 )− (1/2) : f5 :: f4 : (−H int

3 )+ : f6 : (−H int
4 )

+ : f7 : (−H int
3 ), (10.6.19)

ḟm = expression involving H int
m and the f` and H int

` with ` < m. (10.6.20)

As before, these equations can be integrated with the initial condition (5.67).

10.6.3 Alternate Derivation of Lie Concatenation Formulas

The tools are now in hand to carry out the main task of this section: an alternate derivation
of the Lie concatenation formulas. According to (8.4.26) in Section 8.4, the problem is to
find the hm in the relation

exp(: h3 :) exp(: h4 :) · · · = exp(: f tr3 :) exp(: f tr4 :) · · · exp(: g3 :) exp(: g4 :) · · · . (10.6.21)

[Note that here the f trm are given by (8.4.23) and not by (6.7).] To do this, we employ a
trick. Define a one-parameter family of maps N (λ) by the rule

N (λ) = exp(λ : f tr3 :) exp(λ : f tr4 :) · · · exp(λ : g3 :) exp(λ : g4 :) · · · . (10.6.22)

Then, by construction, N (λ) has the properties

N (0) = I, (10.6.23)
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N (1) = exp(: h3 :) exp(: h4 :) · · · , (10.6.24)

N−1(λ) = · · · exp(−λ : g4 :) exp(−λ : g3 :) · · · exp(−λ : f tr4 :) exp(−λ : f tr3 :). (10.6.25)

From Section 6.4 we know that there is an associated Hamiltonian H(λ). In this case,
in analogy to (1.8), it can be found from the relation

: −H := N−1Ṅ (10.6.26)

where a dot denotes differentiation with respect to λ. From (6.22) we find the result

Ṅ = exp(λ : f tr3 :) : f tr3 : exp(λ : f tr4 :) · · · exp(λ : g3 :) exp(λ : g4 :) · · ·
+ exp(λ : f tr3 :) exp(λ : f tr4 :) : f tr4 : · · · exp(λ : g3 :) exp(λ : g4 :) · · ·
+ · · ·
+ exp(λ : f tr3 :) exp(λ : f tr4 :) · · · exp(λ : g3 :) : g3 : exp(λ : g4 :) · · ·
+ exp(λ : f tr3 :) exp(λ : f tr4 :) · · · exp(λ : g3 :) exp(λ : g4 :) : g4 : · · ·
+ · · · . (10.6.27)

Consequently the Hamiltonian Lie operator : −H : is given by

: −H : = N−1Ṅ
= · · · exp(−λ : g4 :) exp(−λ : g3 :) · · · ×

exp(−λ : f tr4 :) : f tr3 : exp(λ : f tr4 :) · · · exp(λ : g3 :) exp(λ : g4 :) · · ·
+ · · · exp(−λ : g4 :) exp(−λ : g3 :) · · · : f tr4 : · · · exp(λ : g3 :) exp(λ : g4 :) · · ·
+ · · ·
+ · · · exp(−λ : g4 :) : g3 : exp(λ : g4 :) · · ·
+ · · · : g4 : · · ·
+ · · · . (10.6.28)

This result can also be written more compactly with the aid of adjoint operators to take the
form

: −H : = · · · exp(−λ#g4#) exp(−λ#g3#) · · · exp(−λ#f tr4 #) : f tr3 :

+ · · · exp(−λ#g4#) exp(−λ#g3#) · · · : f tr4 :

+ · · ·
+ · · · exp(−λ#g4#) : g3 :

+ · · · : g4 :

+ · · · . (10.6.29)

The colons can now be removed from both sides of (6.29) to give the equivalent result

−H = · · · exp(−λ : g4 :) exp(−λ : g3 :) · · · exp(−λ : f tr4 :)f tr3

+ · · · exp(−λ : g4 :) exp(−λ : g3 :) · · · f tr4

+ · · ·
+ · · · exp(−λ : g4 :)g3

+ · · · g4

+ · · · . (10.6.30)
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Finally, equating terms of like degree on both sides of (6.30) yields the results

−H2 = 0, (10.6.31)

−H3 = f tr3 + g3, (10.6.32)

−H4 = −λ : g3 : f tr3 + f tr4 + g4, (10.6.33)

−H5 = f tr5 + g5 − λ : f tr4 : f tr3 − λ : g3 : f tr4

+ (1/2)λ2 : g3 :2 f tr3 − λ : g4 : f tr3 − λ : g4 : g3, etc. (10.6.34)

Evidently the hm in (6.24) can be regarded as the solutions to differential equations of the
form (6.14) through (6.20) with H given by (6.31) through (6.34). Also, as a consequence
of (6.31), we have the result

H int
m = Hm. (10.6.35)

It follows that the hm satisfy the differential equations

ḣ3 = −H3 = f tr3 + g3, (10.6.36)

ḣ4 = −H4 + (: h3 : /2)(−H3)

= −λ : g3 : f tr3 + f tr4 + g4 + (: h3 : /2)(f tr3 + g3), (10.6.37)

ḣ5 = −H5 − (1/6) : h3 :2 (−H3)+ : h4 : (−H3)

= f tr5 + g5 − λ : f tr4 : f tr3 − λ : g3 : f tr4 + (1/2)λ2 : g3 :2 f tr3 − λ : g4 : f tr3

− λ : g4 : g3 − (1/6) : h3 :2 (f tr3 + g3) + : h4 : (f tr3 + g3), etc. (10.6.38)

These equations can now be solved. Equation (6.36) has the immediate solution

h3(λ) = λ(f tr3 + g3). (10.6.39)

When this solution is substituted into (6.37), the result is that h4 satisfies the differential
equation

ḣ4 = −λ : g3 : f tr3 + f tr4 + g4 (10.6.40)

with the solution
h4(λ) = λ(f tr4 + g4)− (λ2/2) : g3 : f tr3 . (10.6.41)

Next, with this knowledge of h3(λ) and h4(λ), the equation of motion for h5 becomes

ḣ5 = f tr5 + g5 − 2λ : g3 : f tr4 + λ2 : g3 :2 f tr3 − (λ2/2) : f tr3 :2 g3, (10.6.42)

with the solution

h5(λ) = λ(f tr5 + g5)− λ2 : g3 : f tr4 + (λ3/3) : g3 :2 f tr3 − (λ3/6) : f tr3 :2 g3. (10.6.43)

The hm(λ) for m = 6, 7, · · · can be found in an analogous way. We conclude that all the
hm(λ) can be computed recursively for any value of m.

Finally, the quantities hm(1) yield the desired hm in (6.21). Compare, for example,
(8.4.31) through (8.4.33) with the hm(1) computed from (6.39), (6.41), and (6.43). The
virtue of this method for deriving the Lie concatenation formulas is that no knowledge of
the BCH series coefficients is required and the results are immediately obtained in Lie form.
Only the Taylor coefficients in the exp and iex functions are needed, and these are known
to all orders. And since the equations to be integrated are polynomial in λ, all calculations
can be carried out to any desired order by symbolic manipulation.
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Exercises

10.6.1.

10.7 Direct Taylor Summation

We now return to the task of computing maps. Suppose the Hamiltonian H is autonomous
(time independent) and is analytic in z about the origin z = 0. Then it has an expansion in
homogeneous polynomials of the form

H =
∞∑
`=1

H`(z). (10.7.1)

(Here we have omitted a possible constant term since it has no dynamic effect.) We know
from Section 7.4 that in this case the associated transfer mapM can be written formally as

M = exp(−τ : H :) (10.7.2)

where we have used the short-hand notation

τ = t− ti. (10.7.3)

The purpose of this section, among other things, is to explore what happens when there are
singularities in τ .

Let us write
zfa =Mzia (10.7.4)

and make the Taylor expansion

zfa = ka +
∑
b

Rabz
i
b +
∑
bc

Tabcz
i
bz
i
c +
∑
bcd

Uabcdz
i
bz
i
cz
i
d + · · · . (10.7.5)

We also have the result

zfa = exp(−τ : H :)zia =
∞∑
j=0

[(−τ)j/j!] : H :j zia. (10.7.6)

Here H is to be regarded as a function of the zi,

H = H(zi) = H1(zi) +H2(zi) +H3(zi) + · · · . (10.7.7)

If we substitute (7.7) into (7.6), carry out all the indicated Poisson brackets, and then group
terms by degree, we will find the Taylor coefficients k, R, T , U , etc. that appear in (7.5).
Once the Taylor coefficients are known, there is (according to the Factorization Theorem of
Sections 7.6 through 7.8) a standard procedure for finding the homogeneous polynomials f1,
f c2 , fa2 , f3, f4, · · · such that M can be written in the form

M = exp(: f1 :) exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · . (10.7.8)



1062 10. COMPUTATION OF TRANSFER MAPS

What we wish to investigate at this point is the convergence of the series (7.6) in the sense
that it produces series for the Taylor coefficients k, R, T , U , etc. Note that this issue is
separate from the convergence of the Taylor series (7.5) with regard to the variables zi.

To facilitate this investigation, it is convenient to employ the basis monomials Gr in-
troduced in Sections 7.3 and 8.3. With the aid of these monomials and the inner product
(8.3.32), introduce the infinite dimensional matrices M and H by the rules

Msr = 〈Gs,MGr〉, (10.7.9)

Hsr = 〈Gs, : H : Gr〉. (10.7.10)

Then, as a result of (8.3.41), the operator relation (7.2) has the equivalent matrix formulation

M = exp(−τH) =
∞∑
j=0

(τ j/j!)Hj. (10.7.11)

[Here, to test the reader’s mental agility, the symbol H stands not for the Hamiltonian (7.7)
but rather for the matrix (7.10).] Moreover, the various Taylor coefficients k, R, T , U , etc.
in (7.5) are just matrix elements of the form 〈Gs,MG1

a〉 where we have used the notation
G1
a to denote the linear functions za.

In any practical calculation with power series it is necessary to truncate them at some
stage. Operations performed on and with truncated power series will be referred to as
Truncated Power Series Algebra (TPSA). In this context it is useful to introduce a projection
operator PD. Let m(r) denote the degree of the monomial Gr. It is defined by the relation

m(r) =
∑

(ui + vi). (10.7.12)

See (7.3.33) and (7.3.34). We now define PD to be the linear operator with the property

PDGr = Gr if m(r) ≤ D,

PDGr = 0 if m(r) > D. (10.7.13)

That is, PD retains monomials having degree D or less, and discards those with degree
larger than D. In terms of the earlier notation associated with (8.9.68) and (8.9.69), PD is
just the truncation operator T (> D). Let θ be a step function given by the rule

θ(x) = 0 for x < 0,

θ(x) = 1 for x ≥ 0. (10.7.14)

Then we also have the equivalent definition

PDGr = θ(D −m)Gr. (10.7.15)

Evidently PD has the property

(PD)2 = PD. (10.7.16)
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Now let A be any linear operator. In TPSA this operator is realized by its truncated
counterpart DA defined by the rule

DA = PDAPD. (10.7.17)

Following (7.3.33) through (7.3.35), let us also use the modified notation Gm
r for the basis

monomials. Consider the vector space V D spanned by the monomials G0
r, G

1
r, · · · GD

r . From
the definition (7.17) we evidently have the result

〈Gm
r ,

DAGm′

r′ 〉 = 0 if either m > D or m′ > D. (10.7.18)

It follows that DA maps V D into itself, and consequently has a representation as a finite
dimensional matrix DA acting on V D. Indeed, the matrix DA has the entries

DAsr = 〈Gs,
DAGr〉 with m(s),m(r) ≤ D. (10.7.19)

Supppose A, B, and C are three linear operators related by the equation

C = AB. (10.7.20)

Then in general one has the inequalities

DC 6= DA DB, (10.7.21)

DC 6= DA DB. (10.7.22)

However, if either A or B commute with PD, then (7.21) and (7.22) become equalities.
Indeed, from (7.16) and the definitions (7.13) we have the result

DA DB = PDAPDPDBPD = PDAPDBPD. (10.7.23)

Evidently if one can move the middle factor PD either to the left or to the right with
impunity, then (7.21) and (7.22) become equalities.

The truncated counterparts of Lie operators are also not derivations. Consider, for
example, the case of a 2-dimensional phase space. We have in accord with (5.3.7) the
relation

: q : p4 = (: q : p2)p2 + p2 : q : p2. (10.7.24)

Suppose D = 3. Then the counterpart of the left side of (7.24) has the value

(3: q :)p4 = (P3 : q : P3)p4 = 0. (10.7.25)

On the other hand, the counterpart of the right side of (7.24) is the quantity

[(3: q :)p2]p2 + p2 (3: q :)p2 = 4p3. (10.7.26)

Thus (3: q :) is not a derivation. It follows from analogous calculations that no truncated
Lie operator of the form (D: f1 :) is a derivation.

However, any (D: f` :) with ` ≥ 2 does at least enjoy the property

(D: f` :) = PD : f` : PD = PD : f` : when ` ≥ 2. (10.7.27)
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Let Gm
r be any monomial. From (7.6.16) and (7.15) we find the results

(D: f` :)Gm
r = PD : f` : PDGm

r = PD : f` : θ(d−m)Gm
r

= θ(D −m)PD
∑
r′

cr′G
m+`−2
r′

= θ(D −m)θ(D + 2− `−m)
∑
r′

cr′G
m+`−2
r′ , (10.7.28)

PD : f` : Gm
r = PD

∑
r′

cr′G
m+`−2
r′ = θ(D + 2− `−m)

∑
r′

cr′G
m+`−2
r′ . (10.7.29)

Here the cr′ are certain coefficients whose exact values need not concern us. But from (7.14)
we conclude that

θ(D −m)θ(D + 2− `−m) = θ(D + 2− `−m) for ` ≥ 2. (10.7.30)

Consequently, (7.27) holds when ` ≥ 2.
How close does (D: f` :) with ` ≥ 2 come to being a derivation? Let g and h be any two

polynomials and suppose ` ≥ 2. We find from (4.3.7) and (7.7) the result

(D: f` :)(gh) = PD : f` : (gh) = PD[(: f` : g)h+ g : f` : h]

= PD{[(D: f` :)g]h+ g (D: f` :)h} when ` ≥ 2. (10.7.31)

We see in general that the factor of PD cannot be removed from the right side of (7.31),
and thus no (D: f` :) is a derivation. Finally, as the counter example (7.24) through (7.26)
shows, neither (7.22) nor (7.31) hold when ` = 1.

The stage is now set to study the question of convergence. Consider the operator M̂
defined by the equation

M̂ = exp[−τ (D: H :)], (10.7.32)

which is the truncated analog of (7.2). Let us compute the matrix element 〈Gs,M̂Gr〉 with
the assumption that

m(s),m(r) ≤ D. (10.7.33)

We find the result

〈Gs,M̂Gr〉 =
∞∑
j=0

[(−τ j/j!]〈Gs, (
D: H :)jGr〉. (10.7.34)

Let DH be the matrix associated with (D: H :),

(DH)sr = 〈Gs, (D: H :)Gr〉. (10.7.35)

With this notation (7.17) takes the form

〈Gs,M̂Gr〉 = [exp(−τ DH)]sr. (10.7.36)

Since DH is a finite dimensional matrix, the exponential series for exp(−τ DH) converges for
all τ . See Section 3.7. It follows that all the matrix elements 〈Gs,M̂Gr〉, and in particular
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the matrix elements 〈Gs,M̂G1
a〉, are well defined for all H of the form (7.7) and any τ and

any D.
What happens to the matrix elements in the limit D → ∞ when truncation no longer

occurs? We need to distinguish the two cases H1 = 0 and H1 6= 0. Suppose H1 = 0. Then,
according to (7.27), (D: H :) has the property

(D: H :) = PD : H : . (10.7.37)

Consequently, from (7.16) and (7.37), (D: H :) also has the property

(D: H :)j = PD : H :j PD = [D(: H :j)]. (10.7.38)

Now make use of this property in either (7.32) or its series and matrix element equivalent.
Doing so gives the result

M̂ = DM. (10.7.39)

It follows that all matrix elements

(DM)rs = 〈Gr,
DMGs〉 = 〈Gr,M̂Gs〉 (10.7.40)

are well defined and are independent of D once D is large enough to satisfy (7.33).
In particular, suppose we wish to compute the coefficients in the Taylor series (7.5)

through terms of degree D. Then we need the matrix elements 〈Gm
s ,MG1

a〉 for m ≤ D. We
know that all the constant terms k will vanish since we have assumed H1 = 0. Also, all
terms H`(z) in (7.1) with ` > (D+ 1) may be discarded since, in view of (7.6) and (7.6.16),
they make no contribution to the desired terms having degree D and lower. Similarly, if we
compute the terms (: H :j)zia in (7.6) recursively by the relation

: H :j+1 zia =: H : (: H :j zia) = [H, : H :j zia], (10.7.41)

then we may discard at each step all those terms that would produce results having degree
larger than D. Thus, all operations may be carried out within TPSA. Finally, since we know
that the exponential series is convergent, it is only necessary to carry out the Poisson bracket
operation (7.41) and the summation in (7.6) for successive values of j until some convergence
criterion is met. Of course, all the caveats described in Section 4.1 concerning the use of
Taylor series to evaluate the exponential function also apply here. Thus, as described in the
next section, we may wish to consider approaches other than direct Taylor summation.

The caseH1 6= 0 is more complicated. In this case there are simple examples for which not
even the constant terms k in (7.5) are well defined. Consider the example of two-dimensional
phase space and the Hamiltonian

H = p2/2− (q + q0)4/2 + q4
0/2 = −2qq3

0 + (p2/2− 3q2q2
0)− 2q3q0 − q4/2

= H1 +H2 +H3 +H4 (10.7.42)

where q0 is some constant. Assume that

q0 > 0, (10.7.43)
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and examine the trajectory with the initial conditions

ti = qi = pi = 0. (10.7.44)

From energy conservation we have the result

q̇ = [(q + q0)4 − q4
0]1/2, (10.7.45)

and hence the time t along the trajectory is given by the integral

t(q) =

∫ q

0

dq′[(q′ + q0)4 − q4
0]−1/2. (10.7.46)

This integral is well defined and finite for all q ≥ 0 including q = +∞. That is, the trajectory
reaches q = ∞ in finite time. Moreover, the trajectory also has infinite momentum at this
time. Thus both k1 and k2 in (7.5) are divergent as τ approaches t(∞). Put other way, if in
this example we set τ = t(∞) in (7.36) and then let D → ∞, we will get divergent results
for at least some of the matrix elements, including the matrix elements that yield k1 and
k2. Note that this nonexistence of at least some of the matrix elements of M is not due to
any defect in the method of direct Taylor summation. It is inherent in M, and must occur
no matter how M is computed. We conclude that Hamiltonians for which H1 6= 0 must be
handled with care and on a case by case basis.

Exercises

10.7.1.

10.8 Scaling, Splitting, and Squaring

Let us assume that H is autonomous and that H1 = 0. Then we know that all matrix
elements are in principle well defined. However, we also know from Section 4.1 that direct
computation of exp(−τ DH) by simply summing the exponential series can be problematic.
We therefore wish to explore alternatives.

One approach is to use scaling and squaring. In this section we will try to generalize,
for the case of operators, the method used to exponentiate matrices in Section 4.1. The
matrix elements corresponding to the Taylor coefficients in (7.5), and in fact all the matrix
elements of DM , can be computed reliably from the exponential series if τ is sufficiently
small. Indeed, as described earlier, to compute the Taylor coefficients one simply carries out
within TPSA the Poisson brackets indicated in (7.6) for successive values of j until some
convergence criterion is met; and if τ is sufficiently small we know that this convergence
criterion is met for modest values of j. However, successively squaring the resulting map is
not so easy: We might consider computing the full matrix DM for a small (scaled) value of
τ and then successively squaring the result. The full matrix DM has dimension [S(D, d) +
1]× [S(D, d)+1], and this number can be very large. (See Section 7.9 and Table 7.2.) Thus,
computing and successively squaring it requires considerable effort. Alternatively, one might
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consider squaring the map using the Taylor form (7.5). In this case one must successively
substitute Taylor series into themselves. This process too might be quite time consuming.
Yet another approach is to compute the Taylor series for the scaled map, factorize the scaled
map, and then successively square the map in the factorized Lie form (7.6.3). This process
might be faster.

At this point, and after some thought, one wonders if it might be possible to compute
the Lie generators for the scaled map directly without going through the intermediate steps
of computing the scaled Taylor map and then factorizing the result. If so, such an approach
might both be considerably faster and require less storage. The first part of this section is
devoted to describing such a procedure. It is then applied to scaling and squaring.

We know that, as a special case of the previous discussion in Section 10.5, the map (7.2)
has the representation

M = exp(t : −H :) = · · · exp(: f5 :) exp(: f4 :) exp(: f3 :)R. (10.8.1)

Here we have replaced the symbol τ by t since we will soon need τ for other purposes. We
have also assumed H1 = 0. Equation (8.1) may be viewed as a kind of splitting formula that
writes exp(t : −H :) as a product of factors having desirable properties. (We will learn more
about other splitting formulas in Section 10.10.) As such, it has three advantages: First,
(as a consequence of the Factorization Theorem) its form is fixed and potentially exact. See
Section 7.6. Second, it can be concatenated easily with other maps of the same form. See
Section 8.4. Consequently, it can be squared repeatedly with relative ease. Third, the exact
f` are entire (analytic everywhere except at ∞) functions of t, and have rapidly convergent
Taylor expansions in t for small t.

We will now describe how to find the Taylor expansions (in t) for the f`. Let us begin
with f2, which is equivalent to determining R. From (5.18), (5.31), and (5.32) we find the
result

R =M2 = exp(: f2 :) (10.8.2)

with
f2(zi, t) = −tH2(zi). (10.8.3)

Evidently f2 is entire in t.
According to the equations of motion (5.60) through (5.66) for the remaining f`, we need

to know the interaction Hamiltonian terms H int
m . Following (5.41), they are given by the

relations

H int
m (zi, t) = Hm(M2z

i) =M2Hm(zi) = exp(t : −H2 :)Hm(zi). (10.8.4)

We note that because H is assumed to be autonomous, the time dependence of the H int
m

comes entirely from the factor exp(t : −H2 :). From (8.4) we see that each H int
m has the

Taylor expansion

H int
m =

∞∑
`=0

(1/`!)(−t)` : H2 :` Hm. (10.8.5)

From (8.4) and (5.25) through (5.35) we know that H int
m can be written as well in the form

H int
m = Hm(M2z

i) = Hm(Rzi) (10.8.6)
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with
R = exp(tJS). (10.8.7)

We know that the matrix exponential function converges and therefore is analytic for all t.
Finally, Hm is a polynomial in zi. It follows that H int

m is entire in t and consequently (8.5)
converges for all t.

Let us next compute f3. From (5.60) and the initial condition f3(0) = 0 we obtain the
result

f3 = −
∫ t

0

dt′H int
3 . (10.8.8)

This integral can be done using the representation (8.5) to give the series

f3 =
∞∑
`=1

(1/`!)(−t)` : H2 :`−1 H3. (10.8.9)

Since the right side of (5.60), namely H int
3 , is entire in t, it follows from Poincaré’s Theorem

1.3.3 that f3 is entire in t. More simply, we just observe that the integral of an entire function
is also an entire function. Either way, we conclude that (8.9) converges for all t.

The computation of f4 is a bit more involved. From (5.61) and the initial condition
f4(0) = 0 we find that f4 contains two terms:

f4 = −
∫ t

0

dt′H int
4 − (1/2)

∫ t

0

dt′ : f3 : H int
3 . (10.8.10)

We will refer to the first term as the direct term since it is produced by H int
4 , which is of the

same degree as f4. The second term will be called a feed-up term since it arises from the
combined effect of the lower-degree term H int

3 and the lower-degree term f3 (which comes
from H int

3 ). Thus we write
f4 = fd

4 + f fu
4 . (10.8.11)

For fd
4 we use (8.5) to get a result analogous to that for f3,

fd
4 =

∞∑
`=1

(1/`!)(−t)` : H2 :` H4. (10.8.12)

Again we know that fd
4 is entire in t and the series (8.12) converges for all t. For the feed-up

term we use the series representations (8.5) and (8.9) to get the result

f fu
4 = −(1/2)

∫ t

0

dt′ : f3 : H int
3 = −(1/2)

∫ t

0

dt′[f3, H
int
3 ]

= −(1/2)

∫ t

0

dt′
∞∑
`=1

∞∑
m=1

(1/`!)(1/m!)(−t′)`+m[: H`−1
2 : H3, : H2 :m H3]

= (1/2)
∞∑
`=1

∞∑
m=0

(1/`!)(1/m!)[1/(`+m+ 1)](−t)`+m+1[: H2 :`−1 H3, : H2 :m H3]

= −(1/12)t3[H3, : H2 : H3] + (1/24)t4[H3, : H2 :2 H3]− t5{(1/80)[H3, : H2 :3 H3]

+ (1/120)[: H2 : H3, : H2 :2 H3]}+ · · · . (10.8.13)
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The quantity f fu
4 is also entire in t and the series (8.13) converges for all t.

The computation of the remaining fj is similar. In each case there is a direct term
analogous to (8.9) and (8.12). There are also feed-up terms arising from multiple Poisson
brackets involving lower degree terms in the Hamiltonian. By contrast, there are no feed-
down terms. To find a given f`, it is only necessary to know the H`′ with `′ ≤ `. We also
observe that all the formulas for the f` are expressible entirely in terms of Poisson brackets.
All formulas involve only operations within the Poisson bracket Lie algebra generated by
the Hm. Such results are to be expected in general as a consequence of the BCH theorem.
Analogous formulas, but involving instead commutators of vector fields, are to be expected
in the non-Hamiltonian case. The coefficients in the various series should be universal. Also,
all the series represent entire functions and therefore converge for all values of t. Finally,
we note that the rate of convergence of the various series depends only on the properties of
t : H2 : (and hence tH2), because that is the only term that appears infinitely often in the
series.

To fix these ideas more clearly in the mind, we will also consider in some detail the
computation of f5. From (5.62) we find the result

f5 = fd
5 + f fu

5 (10.8.14)

where

fd
5 = −

∫ t

0

dt′H int
5 (10.8.15)

and

f fu
5 =

∫ t

0

dt′[: f3 : (−H int
4 ) + (1/3) : f3 :2 (−H int

3 )]. (10.8.16)

The direct term has the expansion

fd
5 =

∞∑
`=1

(1/`!)(−t)` : H2 :`−1 H5. (10.8.17)

To find the expansion for the feed-up term we insert the previously obtained expressions for
H int

3 , H int
4 , f3, and f4 in (8.16) to obtain the result

f fu
5 =

∞∑
`=1

∞∑
m=0

(1/`!)(1/m!)[1/(`+m+ 1)](−t)`+m+1[: H2 :`−1 H3, : H2 :m H4]

− (1/3)
∞∑
`=1

∞∑
m=0

∞∑
n=1

(1/`!)(1/m!)(1/n!)[1/(`+m+ n+ 1)]

(−t)`+m+n+1[: H2 :`−1 H3, [: H2 :m H3, : H2 :n−1 H3]]

= (1/2)t2[H3, H4]− t3{(1/3)[H3, : H2 : H4] + (1/6)[: H2 : H3, H4]}
+ t4{(−1/24)[H3, [: H2 : H3, H3]] + (1/8)[H3, : H2 :2 H4]

+ (1/8)[: H2 : H3, : H2 : H4] + (1/24)[: H2 :2 H3, H4]}
+ t5{(1/45)[H3, [: H2 :2 H3, H3]]− (1/30)[H3, : H2 :3 H4]

+ (1/60)[: H2 : H3, [: H2 : H3, H3]]− (1/20)[: H2 : H3, : H2 :2 H4]

− (1/30)[: H2 :2 H3, : H2, H4 :]− (1/120)[: H2 :3 H3, H4]}+ · · · . (10.8.18)



1070 10. COMPUTATION OF TRANSFER MAPS

At this point we might quote formulas for the fj for the next few higher values of j and
up to some power in t. Instead we observe that, rather than the reverse factorization (8.1)
which we write in the form

M = exp(t : −H :) = · · · exp[: f5(t) :] exp[: f4(t) :] exp[: f3(t) :]R(t), (10.8.19)

it is often more convenient to have results for the forward factorization

M = exp(t : −H :) = R′(t) exp[: g3(t) :] exp[: g4(t) :] exp[: g5(t) :] · · · . (10.8.20)

The relation between the two factorizations is immediate. Suppose we invert both sides of
(8.19). Doing so gives the result

exp(t : +H :) = R−1(t) exp[− : f3(t) :] exp[− : f4(t) :] exp[− : f5(t) :] · · · . (10.8.21)

Next replace t by −t in (8.21) to find the relation

exp(t : −H :) = R−1(−t) exp[− : f3(−t) :] exp[− : f4(−t) :] exp[− : f5(−t) :] · · · . (10.8.22)

Since the factorization (8.20) is unique, comparison of the first factors on the right sides of
(8.20) and (8.22) shows that

R′(t) = R−1(−t). (10.8.23)

But from (8.2) and (8.3) we find that

R−1(−t) = R(t) (10.8.24)

so that
R′(t) = R(t). (10.8.25)

This result is also evident on general grounds. Finally, upon comparing the remaining factors
in (8.20) and (8.22), we conclude that

gm(t) = −fm(−t). (10.8.26)

We now quote formulas, obtained by symbolic manipulation, for the first few gm through
terms of order t5. Again each gm is the sum of a direct and a feed-up term,

gm = gd
m + gfu

m. (10.8.27)

For the direct terms we have in general the formula

gd
m = −

∞∑
`=1

(1/`!)t` : H2 :`−1 Hm. (10.8.28)

For the feed-up terms gfu
3 through gfu

6 we find, through terms of order t5, the result

gfu
3 = 0, (10.8.29)
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gfu
4 = −(1/2)

∞∑
`=1

∞∑
m=0

(1/`!)(1/m!)[1/(`+m+ 1)]t`+m+1[: H2 :`−1 H3, : H2 :m H3]

= (1/12)t3[: H2 : H3, H3] + (1/24)t4[: H2 :2 H3, H3]

+ t5{(1/80)[: H2 :3 H3, H3] + (1/120)[: H2 :2 H3, : H2 : H3]}+ · · · , (10.8.30)

gfu
5 = −(1/2)t2[H3, H4]− t3{(1/3)[H3, : H2 : H4] + (1/6)[: H2 : H3, H4]}
− t4{(−1/24)[H3, [: H2 : H3, H3]] + (1/8)[H3, : H2 :2 H4]

+ (1/8)[: H2 : H3, : H2 : H4] + (1/24)[: H2 :2 H3, H4]}
+ t5{(1/45)[H3, [: H2 :2 H3, H3]]− (1/30)[H3, : H2 :3 H4]

+ (1/60)[: H2 : H3, [: H2 : H3, H3]]− (1/20)[: H2 : H3, : H2 :2 H4]

− (1/30)[: H2 :2 H3, : H2, H4 :]− (1/120)[: H2 :3 H3, H4]}+ · · · , (10.8.31)

gfu
6 = −(1/2)t2[H3, H5]

+ t3{(−1/6)[H3, [H3, H4]]− (1/3)[H3, : H2 : H5]

− (1/3)[H3, : H2 : H5]− (1/6)[: H2 : H3, H5]

+ (1/12)[: H2 : H4, H4]}
− t4{(1/8)[H3, [H3, : H2 : H4]] + (1/6)[H3, [: H2 : H3, H4]]

+ (1/8)[H3 : H2 :2 H5]− (1/48)[H4, [: H2 : H3, H3]]

+ (1/16)[: H2 : H3, [H3, H4]] + (1/8)[: H2 : H3, : H2 : H5]

+ (1/24)[: H2 :2 H3, H5]− (1/24)[: H2 :2 H4, H4]}
+ t5{(1/80)[H3, [H3, [: H2 : H3, H3]]]− (1/20)[H3, [H3, : H2 :2 H4]]

− (1/20)[H3, [: H2 : H3, : H2 : H4]]− (1/60)[H3, [: H2 :2 H3, H4]]

− (1/30)[H3, : H2 :3 H5] + (1/80)[H4, [: H2 :2 H3, H3]]

− (1/20)[: H2 : H3, [H3, : H2 : H4]]− (1/40)[: H2 : H3, [: H2 : H3, H4]]

− (1/20)[: H2 : H3, : H2 :2 H5] + (1/240)[: H2 : H4, [: H2 : H3, H3]]

− (1/60)[: H2 :2 H3, [H3, H4]]− (1/30)[: H2 :2 H3, : H2 : H5]

+ (1/20)[: H2 :2 H4, : H2 : H4]− (1/120)[: H2 :3 H3, H5]

+ (1/180)[: H2 :3 H4, H4]}+ · · · . (10.8.32)

These results were obtained using a Mathematica program. See Appendix E.
We have derived the splitting formula (8.1) with the fm given by (8.9), (8.11) through

(8.18), and analogous expressions. Equivalently, we have also derived the splitting formula
(8.20) with the gm given by (8.27) through (8.32) and analogous expressions. How are these
formulas to be used? With the aid of scaling and squaring we have the result

M = exp(t : −H :) = {exp[(t/2n) : −H :]}2n

= {· · · {{exp[(t/2n) : −H :]}2}2 · · · }2 (n squarings). (10.8.33)

See Section 4.1 and (4.1.6). Now define a quantity τ by writing

τ = t/2n. (10.8.34)
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Next insert, for example, the splitting formula (8.20) into (8.33). Doing so gives the result

M = exp(t : −H :) = R(t) exp[: g3(t) :] exp[: g4(t) :] exp[: g5(t) :] · · · (10.8.35)

= {R(τ) exp[: g3(τ) :] exp[: g4(τ) :] exp[: g5(τ) :] · · · }2n

= {· · · {{R(τ) exp[: g3(τ) :] exp[: g4(τ) :] exp[: g5(τ) :] · · · }2}2 · · · }2 (n squarings).

Finally, suppose we choose n to be large enough so that τ is sufficiently small that the
truncated series (8.28) through (8.32) give accurate results for the gm(τ). Then (8.35) gives
an accurate result for M.

How large must n be (or, equivalently, how small must τ be) for the truncated series to
give accurate results for the gm(τ)? We have already observed that the convergence of these
series depends only on the properties of τH2. Let us explore what can be said about terms
of the form (τ : H2 :)`Hm, which are the common ingredient of all the series. As before we
write H2 in a form analogous to (5.28) except that S is now a constant time-independent
matrix. We then find, in analogy to (5.29), the relation

: H2 : za = −
∑
b

(JS)abzb. (10.8.36)

Consider the matrix (−JS)T . In general, barring degeneracy, it has 2n eigenvectors vj with
eigenvalues λj:

(−JS)Tvj = λjv
j. (10.8.37)

(Here, for the moment, n is the number of degrees of freedom, and not the number of
squarings.) Define 2n first-degree polynomials hj1 by the rule

hj1 =
∑
a

vjaza. (10.8.38)

In general, again barring degeneracy, the hj1 will be functionally independent and will span
the space of all first-degree polynomials. Let us compute the effect of : H2 : on the hj1. From
(8.36) through (8.38) we find the result

: H2 : hj1 =
∑
a

vja : H2 : za =
∑
a,b

vja(−JS)abzb

=
∑
b

{
∑
a

[(−JS)T ]bav
j
a}zb = λj

∑
b

vjbzb

= λjh
j
1. (10.8.39)

We know from (7.6.14) that the (linear) operator : H2 : maps the space Pm into itself. (Note
that here Pm denotes a vector space and not a projection operator.) What is its largest
eigenvalue when acting on this space? Consider for example, the degree 3 homogeneous
polynomials hijk3 defined by the relation

hijk3 = hi1h
j
1h

k
1. (10.8.40)
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In general, these polynomials will span the space of third-degree polynomials. Since : H2 :
is a derivation, and in view of (8.39), we find the result

: H2 : hijk3 = (: H2 : hi1)hj1h
k
1 + hi1(: H2 : hj1)hk1 + hi1h

j
1(: H2 : hk1)

= (λi + λj + λk)h
ijk
3 . (10.8.41)

Let λmax be the modulus of the eigenvalue with the largest absolute value,

λmax = max
j
|λj|. (10.8.42)

We conclude from relations of the form (8.41) that the eigenvalues of : H2 : when acting on
Pm are bounded by the quantity (mλmax).

In general, given the matrix (−JS)T , one can compute its eigenvalues. However, this
computation requires some work, and often an estimate that requires less computation is
sufficient. Let λk be the eigenvalue of (−JS)T having the largest absolute value. Then from
(8.39) we have the result

λkv
k = (−JS)Tvk = (SJ)vk. (10.8.43)

Here we have used the fact that S is symmetric and J is antisymmetric. Now take norms
of both sides of (8.43) to get the result

‖λkvk‖ = ‖SJvk‖ ≤ ‖SJ‖‖vk‖. (10.8.44)

The left side of (8.44) can be manipulated using (3.7.8) and (8.42) to give the relation

‖λkvk‖ = |λk|‖vk‖ = λmax‖vk‖, (10.8.45)

and we conclude upon comparison with (8.44) that λmax has the bound

λmax ≤ ‖SJ‖. (10.8.46)

Moreover, we may also write the equation

SJ = −JJSJ. (10.8.47)

Now take the norm of both sides of (8.47) to get the bound

‖SJ‖ = ‖ − JJSJ‖ = ‖JJSJ‖ ≤ ‖J‖‖JS‖‖J‖. (10.8.48)

Suppose the matrix norm ‖ ‖ to be employed has the property

‖J‖ = 1, (10.8.49)

which is true of the norm (3.7.15). Then (8.46) through (8.49) may be combined to give the
bound

λmax ≤ ‖JS‖. (10.8.50)

We now have all the tools in hand to examine the convergence of series that involve terms
of the form (τ : H2 :)`Hm. According to the previous discussion the convergence of such
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series is governed by the size of the terms (mτλmax)` with λmax bounded by (8.50). Suppose,
for example, we truncate the series (8.28) for gdm(τ) by selecting some N and discarding all
terms with ` > N . Let us estimate the error committed in doing so by examining the size
of the first neglected term,

first neglected term = −[1/(N + 1)!]τN+1 : H2 :N Hm. (10.8.51)

We know from our previous discussion that (: H2 :N Hm) behaves at worst according to the
estimate

: H2 :N Hm ∼ (mλmax)NHm. (10.8.52)

Also, we expect from the first term in (8.28) that gdm(τ) itself will be of order (τHm).
Consequently, using (8.51) and (8.52), we should make the comparison

τHm
?↔ [1/(N + 1)!]τN+1(mλmax)NHm. (10.8.53)

We conclude that the relative error in computing gdm(τ), and hence also M(t), has the
estimate

relative error ∼ [1/(N + 1)!](τmλmax)N . (10.8.54)

Finally, let us define a quantity λ by the rule

λ = tλmax. (10.8.55)

By (8.50) it has the estimate
λ ≤ ‖tJS‖, (10.8.56)

and is dimensionless. With the aid of (8.34), (8.54), and (8.55) we see that the relative error
can be written in the form

relative error ∼ [1/(N + 1)!](mλ/2n)N . (10.8.57)

Suppose, for example, we set N = 5, limit our attention to the cases m ≤ 8, and select n
such that

(8λ/2n) < (1/20). (10.8.58)

[Note that λ and hence the required n can be computed in advance using (8.58).] Then we
find from (8.57) that the relative error has the estimate

relative error ∼ (1/6!)(1/20)5 ' 4× 10−10. (10.8.59)

Although we have only estimated the error due to truncating the series for gdm, we expect
that the result of truncating the other series at the same N will be comparable as long as
(8.58) is satisfied. We conclude from (8.59) that (just as scaling and squaring works well
for matrix exponentiation) scaling, splitting, and squaring works well for computing M in
the factorized product forms (8.1) and (8.20). It has high, controllable, and predictable
accuracy. Of course, the n required to satisfy a relation of the form (8.58) varies from
Hamiltonian to Hamiltonian. However, just as in the matrix case, the n required to achieve
some specific accuracy grows only logarithmically with the norm of (tJS), and for any given
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Hamiltonian the accuracy increases very rapidly for increasing n. Correspondingly, because
the number of required operations is relatively small and no cancellations are required to
occur between large terms, problems with round-off error are minimized. Finally, with regard
to computational speed, the method of scaling, splitting, and squaring is far faster than
numerical integration. (Of course, numerical integration is required in the nonautonomous
case.) It is also faster and, as expected, far more reliable than direct use of the Taylor series
(7.6). The price that has been paid for this good performance is that one must know the
expansions of the form (8.28) through (8.32) as well as concatenation formulas of the form
(8.4.31) through (8.4.36). By contrast, the implementation of the Taylor series (7.6) to any
order is straightforward.

Exercises

10.8.1. Show that if the matrix norm has the property (8.49), then one has the equation

‖JS‖ = ‖SJ‖ = ‖S‖. (10.8.60)

10.9 Canonical Treatment of Errors

Let H(z, t) be a general, possibly time-dependent, Hamiltonian that is analytic about the
origin and consequently has an expansion in homogeneous polynomials in z of the form

H(z, t) =
∞∑
m=1

Hm(z, t). (10.9.1)

(Here we drop a possible z independent term H0 since it has no effect on the equations of
motion.) Moreover, we shall assume that H1 is small so that z = 0 is close to being a solution
to the equation of motion generated by H. Such Hamiltonians often arise in connection with
the description of errors. For example, we will see in Chapter 26 that both mispowered dipole
bending magnets and dipole steering magnets are described by Hamiltonians of this form.

Hamiltonians of the form (9.1) with H1 small can be treated by the method of Section
10.5 and, in the autonomous case, also by the method of Section 10.7. The method of
Section 10.5 requires determination of the design trajectory zd(t), and then provides an
expansion about this trajectory. However, since z = 0 is nearly a trajectory, we may prefer
an expansion of the transfer map M about z = 0. Such an expansion is provided, in the
autonomous case, by the method of Section 10.7, but requires the summation of Taylor series
for the exponential function. We have seen that the use of such series may be problematic.

The purpose of this section is to develop a method for expanding the transfer map about
z = 0 under the assumption that H1 is small. In essence, we will produce a simultaneous
expansion both in z and in powers of some parameter that characterizes the smallness of
H1. This method is applicable to both the time dependent and time independent cases.

The method is based on an enlargement of 2n dimensional phase space to include the
extra variables qn+1 and pn+1. This is the same enlargement that was used in Section 9.4,
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and the method based on it will be referred to as a canonical treatment of errors. As before,
let us use the symbol ẑ to denote the coordinates in this enlarged phase space,

ẑ = (q1 · · · qn, qn+1, p1 · · · pn, pn+1). (10.9.2)

Next, modify the Hamiltonian (9.1) to obtain the Hamiltonian Ĥ defined by the rule

Ĥ(ẑ, t) = (qn+1)H1(z, t) +
∞∑
m=2

Hm(z, t). (10.9.3)

We will see that the transfer map for the Hamiltonian Ĥ, which we will call M̂, can be com-
puted using the methods we have developed previously, and that M̂ contains the information
we seek.

We being by noting that ẑ = 0 is a trajectory for Ĥ, and hence the transfer map M̂
produced by Ĥ maps the origin of the enlarged phase space into itself. Indeed, with respect
to the enlarged phase-space variables, the Hamiltonian Ĥ has the expansion

Ĥ(ẑ, t) =
∞∑
m=2

Ĥm(ẑ, t) (10.9.4)

with
Ĥ2(ẑ, t) = (qn+1)H1(z, t) +H2(z, t), (10.9.5)

Ĥm(ẑ, t) = Hm(z, t) for m > 2. (10.9.6)

Observe that this expansion begins with homogeneous polynomials of degree two. Corre-
spondingly, the transfer map M̂ can be written in the factored product form

M̂ = R̂ exp(: f̂3 :) exp(: f̂4 :) exp(: f̂5 :) · · · . (10.9.7)

Here the f̂m denote homogeneous polynomials of degree m in the enlarged phase-space
variables ẑ. The map M̂ can be computed in both the time dependent and time independent
cases using the method of Section 10.5, and in the time independent case using the methods
of Sections 10.7 and 10.8.

By construction Ĥ is independent of pn+1, and therefore there is the obvious equation of
motion

q̇n+1 = ∂Ĥ/∂pn+1 = 0. (10.9.8)

It follows that M̂ leaves qn+1 unchanged,

qfn+1 = M̂qin+1 = qin+1. (10.9.9)

But now the reasoning presented in the beginning of Section 9.4 applies. We conclude that
R̂ must satisfy the relation

R̂qn+1 = qn+1, (10.9.10)

and its associated matrix R̂ must (for the case n = 3) be of the general form (9.4.84). Also,
the f̂m in (9.7) must be independent of pn+1,

∂f̂m/∂pn+1 = 0. (10.9.11)
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They will depend only on the zi and qin+1. Finally, we see that the relation

ẑf = M̂ẑi (10.9.12)

provides an expansion of zf in terms of zi and qin+1, and pin+1 does not occur in this expansion.
Evidently the size of qin+1 governs the effect of the term (qn+1)H1 in (9.3), and an expan-

sion in powers of qn+1 is, in effect, an expansion in terms of powers of H1. Thus, after some
final result for M̂ (or some consequence of M̂) has been obtained as a series in qn+1 up to
some order, we may set qn+1 = 1 in this series to obtain a result appropriate to the original
Hamiltonian (9.1) when H1 in this Hamiltonian is treated as a perturbation through the
same order.

A simple example helps clarify this approach. Consider the displaced one-dimensional
harmonic oscillator described by the Hamiltonian

H = (p2
1 + q2

1)/2 + δq1 (10.9.13)

where δ is a small quantity, not to be confused with the δa in Section 9.4. It is easily verified
that the equations of motion associated with (9.13) have the solution

q1(t) = −δ + (qi1 + δ) cos t+ pi1 sin t, (10.9.14)

p1(t) = −(qi1 + δ) sin t+ pi1 cos t, (10.9.15)

where the initial time is taken to be ti = 0. According to (9.3) the modified Hamiltonian
associated with (9.13) is given by the relation

Ĥ = (p2
1 + q2

1)/2 + δq1q2. (10.9.16)

Since Ĥ is time independent, and all the Ĥm with m > 2 happen to vanish in this simple
case, we have the immediate result

M̂ = exp(−t : Ĥ :) = exp(−t : Ĥ2 :) = R̂(t). (10.9.17)

The map R̂(t) is in turn described by the matrix R̂(t) given by

R̂ = exp(tĴ Ŝ). (10.9.18)

Here we have placed a hat over J to indicate that the 4 × 4 J is to be used. Also, for
convenience, we have used the ordering (9.4.15). Correspondingly, Ĵ is of the form (3.2.10).
With this convention, and according to (5.28), Ŝ is the matrix

Ŝ =


1 0 δ 0
0 1 0 0
δ 0 0 0
0 0 0 0

 . (10.9.19)

The exponentiation (9.18) can be carried out to give the result

R̂ =


cos t sin t δ(cos t− 1) 0
− sin t cos t −δ sin t 0

0 0 1 0
−δ sin t δ(cos t− 1) δ2(t− sin t) 1

 . (10.9.20)
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Correspondingly, in analogy with (5.27), we find the relations

q1(t) = qi1 cos t+ pi1 sin t+ qi2δ(cos t− 1), (10.9.21)

p1(t) = −qi1 sin t+ pi1 cos t− qi2δ sin t, (10.9.22)

q2(t) = qi1, (10.9.23)

p2(t) = −qi1δ sin t+ pi1δ(cos t− 1) + qi2δ
2(t− sin t) + pi2. (10.9.24)

We see, as advertised, that (9.21) and (9.22) reduce to (9.14) and (9.15), respectively, when
we set q2 = 1. Also, (9.23) is consistent with (9.8) and (9.9). Finally, although of no
particular interest for our purposes, (9.24) is consistent with the equation of motion

ṗ2 = −∂Ĥ/∂q2 = −δq1. (10.9.25)

In this example we have been able to solve for the map M̂ exactly, and have found that
the result for z(t) when qn+1 is set to one agrees with the corresponding trajectory, which we
were also able to find exactly, for the original problem. For most cases we will only compute
M̂ to some order in the phase-space variables including the variable qn+1. In such cases we
expect that the correspondingly results for z(t) will be correct through the same order in δ
where δ measures the size of H1.

There is one last observation to be made. In the example just described the computation
of R̂ was somewhat complicated because it was 4×4, and the information about p2(t), which
was contained in R̂, was of no interest. Is there a way of bypassing such complications? In
some cases the answer is yes. For the example problem let us rewrite (9.17) in the form

R̂(t) = exp(: f̂2 :) (10.9.26)

with f̂2 defined by
f̂2 = −tĤ2 = −t[(pi1)2 + (qi1)2]/2− tδqi1qi2. (10.9.27)

When f̂2 is regarded as a function of qi1 and pi1, which are the dynamical variables of interest,
we see that it can be written in the form

f̂2 = f
(2)
1 + f

(2)
2 (10.9.28)

where f
(2)
1 is a homogeneous polynomial of degree 1 in the variables of interest,

f
(2)
1 = −tδqi2qi1, (10.9.29)

and f
(2)
2 is a polynomial of degree 2 in these variables,

f
(2)
2 = −t[(pi1)2 + (qi1)2]/2. (10.9.30)

Here we have used a subscript on f to indicate degree in the variables of interest, and a
superscript to indicate overall degree. This notation is similar to that of Section 9.3 where
the subscript served the same purpose and the superscript indicated overall grade. Indeed,
at this stage, we may simply view qi2 as a parameter that plays the same role as ε did in
Section 9.3.
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With the decomposition (9.28) we may rewrite M̂, which we now simply callM because
we are no longer treating q2 and p2 as dynamical variables, in the form

M = exp(: f
(2)
1 + f

(2)
2 :). (10.9.31)

At this stage we use (9.2.4) to rewrite M in the form

M = exp(: f2 :) exp(: f1 :) (10.9.32)

where, according to (9.2.7) and (9.2.9),

f2 = f
(2)
2 = −(t/2)[(pi1)2 + (qi1)2], (10.9.33)

f1 = iex (− : f
(2)
2 :)f

(2)
1 . (10.9.34)

Simple calculation gives the result

exp(−τ : f
(2)
2 :)f

(2)
1 = exp[(τt/2) : (pi1)2 + (qi1)2 :](−tδqi2qi1)

= −tδqi2 exp[(τt/2) : (pi1)2 + (qi1)2 :]qi1
= −tδqi2[qi1 cos(tτ)− pi1 sin(tτ)]. (10.9.35)

Consequently, we find for f1 the explicit result

f1 = iex (− : f
(2)
2 :)f

(2)
1 =

∫ 1

0

dτ exp(−τ : f
(2)
2 :)f

(2)
1

= −tδqi2
∫ 1

0

dτ [qi1 cos(tτ)− pi1 sin(tτ)]

= −δqi2[qi1 sin t+ pi1(cos t− 1)]. (10.9.36)

Here we have used (8.7.9). Let us now find the effect of M, with M given by (9.32), when
it acts on qi1 and pi1. We find for exp(: f1 :) and exp(: f2 :) the results

exp(: f1 :)qi1 = qi1 + δqi2(cos t− 1), (10.9.37)

exp(: f1 :)pi1 = pi1 − δqi2 sin t, (10.9.38)

exp(: f2 :)qi1 = qi1 cos t+ pi1 sin t, (10.9.39)

exp(: f2 :)pi1 = −qi1 sin t+ pi1 cos t. (10.9.40)

Consequently we find for M the net results

q1(t) =Mqi1 = δqi2(cos t− 1) + qi1 cos t+ pi1 sin t, (10.9.41)

p1(t) =Mpi1 = −δqi2 sin t− qi1 sin t+ pi1 cos t. (10.9.42)

Let us compare these results with those of (9.14) and (9.15), which can be written in the
form

q1(t) = δ(cos t− 1) + qi1 cos t+ pi1 sin t, (10.9.43)
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p1(t) = −δ sin t− qi1 sin t+ pi1 cos t. (10.9.44)

We see that (9.41) and (9.43), and (9.42) and (9.44), agree when we set qi2 = 1. Note
that, had we wished, we could have set qi2 = 1 at an earlier stage before carrying out the
calculations (9.37) through (9.42).

There is a moral to be learned from this last exercise. Quite generally, we see that once
M̂ is computed in the form (9.7) with the aid of the auxiliary variable qn+1, then each f̂m
may be decomposed in the form

f̂m = fmm (z) + (qn+1)fmm−1(z) + · · ·+ (qn+1)mfm0 . (10.9.45)

Here, as in Section 9.4, the superscript m on fm` indicates that the quantity is associated

with f̂m, and the subscript ` indicates that the quantity is homogeneous of degree ` in the
variables z. After this is done, we may view qn+1 as playing the role of ε and use the calculus
of Section 9.3 to manipulate the (qn+1)m−`fm` to produce a map of the form

M = exp(: f1 :)R exp(: f3 :) exp(: f4 :) · · · , (10.9.46)

and then set qn+1 = 1 in all the fm to obtain a final map that involves only the variables z.
Better yet, we may simply use the shrinker of Section 9.4 to obtain M from M̂.

Exercises

10.9.1. Verify that (9.20) is of the form (9.4.46).

10.9.2. The map (9.32), with f1 and f2 given by (9.33) and (9.36), is written in reverse
factorized form. See Section 7.8. Rewrite the map in forward factorized form. See (9.2.30).
Before doing so, set qi2 = 1. Verify that use of the forward factorized map also gives (9.43)
and (9.44).

10.10 Wei-Norman and Fer Methods

10.10.1 Wei-Norman Equations

Exercises

10.10.1. Exercise on Wei-Norman equations.

10.10.2 Accelerated Procedure: The Fer Expansion

10.11 Symplectic Integration

Symplectic numerical integration methods, like the numerical integration methods described
in Chapter 2, seek to compute trajectories accurately through some order in the time step h
or with some prescribed over all accuracy. However, they are special in that they are designed
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for Hamiltonian systems and seek to satisfy the requirement that the resulting transfer map
M between initial and final conditions be exactly (to machine precision) symplectic.

Many aspects of the construction of symplectic integrators involve map-like methods
including Zassenhaus formulas. Moreover, for some symplectic integration methods, in the
course of computing a trajectory it is also possible to compute in a natural way the transfer
map about this trajectory. Thus, symplectic integration and symplectic maps are closely
related, and their discussion could logically form part of this chapter. However, the subject
is sufficiently vast to deserve a chapter if its own, and will be treated in Chapter 12.

10.12 Taylor Methods and the Complete Variational

Equations

The work of the previous sections dealt for the most part with Hamiltonian systems and the
representation of their associated symplectic transfer mapsM by Lie transformations. In this
section we will work with differential equations that are not necessarily Hamiltonian in form.
This may occur if the dynamical system under consideration is intrinsically non-Hamiltonian.
Also, there is the possibility that the dynamical system does have a Hamiltonian description,
but we do not wish to use it. For example, we may want to consider charged-particle motion
but do not wish to be concerned with scalar and vector potentials. Rather, we would
prefer to work only in terms of electric and magnetic fields E and B. One such option
is to employ the first-order set of equations (1.6.68) and (1.6.69). Another is to employ a
first-order set of equations obtained from the second-order set (1.6.74) by the usual means.
Finally, the equations may be Hamiltonian in form, but we do not wish to exploit their
Hamiltonian structure. However the equations arise, we will seek Taylor representations for
their associated transfer maps

Let us recapitulate some of the contents of Section 1.3. Consider any set of m first-order
differential equations of the form

ża = fa(z1, · · · , zm; t;λ1, · · · , λn), a = 1, · · · ,m. (10.12.1)

Here t is the independent variable and the za are dependent variables. Unlike the Hamilto-
nian case, the za need not be canonical variables and they need not be even in number. See
(1.3.4). The λb are possible parameters.

Let the quantities z0
a be initial conditions specified at some initial time t = t0,

za(t
0) = z0

a. (10.12.2)

Then, under mild conditions imposed on the functions fa that appear on the right side of
(12.1) and thereby define the set of differential equations, there exists a unique solution

za(t) = ga(z
0
1 , · · · , z0

m; t0, t;λ1, · · · , λn), a = 1,m (10.12.3)

of (12.1) with the property

za(t
0) = ga(z

0
1 , · · · , z0

m; t0, t0;λ1, · · · , λn) = z0
a, a = 1,m. (10.12.4)
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Now assume that the functions fa are analytic (within some domain) in the quantities
za, the time t, and the parameters λb. Then, according to Poincaré’s theorem, the solution
given by (12.3) will be analytic (again within some domain) in the initial conditions z0

a, the
times t0 and t, and the parameters λb.

If the solution za(t) is analytic in the initial conditions z0
a and the parameters λb, then it

is possible to expand it in the form of a Taylor series, with time-dependent coefficients, in
the variables z0

a and λb. The aim of this section is to describe how these Taylor coefficients
can be found as solutions to what we will call the complete variational equations.

To aid further discussion, it is useful to also rephrase our goal in the context of maps.
Suppose we rewrite the set of first-order differential equations (12.1) in the more compact
vector form

ż = f(z; t;λ). (10.12.5)

Then, again using vector notation, their solution can be written in the form

z(t) = g(z0; t0, t;λ). (10.12.6)

That is, the quantities z(t) at any time t are uniquely specified by the initial quantities z0

given at the initial time t0.
We capitalize on this fact by introducing a slightly different notation. First, use ti instead

of t0 to denote the initial time. Similarly use zi to denote initial conditions by writing

zi = z0 = z(ti). (10.12.7)

Next, let tf be some final time, and define final conditions zf by writing

zf = z(tf ). (10.12.8)

Then, with this notation, (12.6) can be rewritten in the form

zf = g(zi; ti, tf ;λ). (10.12.9)

We now view (12.9) as a map that sends the initial conditions zi to the final conditions
zf . This map will be called the transfer map between the times ti and tf , and will be
denoted by the symbolM. What we have emphasized is that a set of first-order differential
equations of the form (12.5) can be integrated to produce a transfer map M. We express
the fact that M sends zi to zf in symbols by writing

zf =Mzi, (10.12.10)

Recall the analogous discussion in Section 1.4 We also note that M is always invertible:
Given zf , tf , and ti, we can always integrate backward in time from the moment t = tf to
the moment t = ti and thereby find the initial conditions zi.

In the context of maps, our goal is to find a Taylor representation forM. If parameters
are present, we may wish to have an expansion in them as well. Initially, we will seek
Taylor expansions of final conditions in terms of initial conditions. Subsequently, we will
seek expansions of final conditions in terms of both initial conditions and parameters.
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10.12.1 Case of No or Ignored Parameter Dependence

Suppose the equations (12.1) do not depend on any parameters λb or we do not wish to
make expansions in them. We may then suppress their appearance to rewrite (12.1) in the
form

ża = fa(z, t), a = 1,m. (10.12.11)

Suppose, as in Section 10.5, that zd is some given design solution to these equations, and
we wish to study solutions in the vicinity of this solution. As before, we introduce deviation
variables ζa by writing

za = zda + ζa. (10.12.12)

Then the equations of motion (12.11) take the form

żda + ζ̇a = fa(z
d + ζ, t). (10.12.13)

We assume that the right side of (12.11) is analytic about zd. See Theorem 3.3 of Section
1.3. Then we may write the relation

fa(z
d + ζ, t) = fa(z

d, t) + ga(z
d, t, ζ) (10.12.14)

where each ga has a Taylor expansion of the form

ga(z
d, t, ζ) =

∑
r

gra(t)Gr(ζ). (10.12.15)

Here the Gr(ζ) are the various monomials in the variables ζb labeled by an index r using
some convenient labeling scheme. (See, for examples, Tables 12.1 and 12.3. For more detail
about monomial labeling schemes, see Section 39.2 and Appendix S.2.1.) And the gra are
(generally) time-dependent coefficients that we will call forcing terms.1 By construction, all
the monomials occurring in the right side of (12.15) have degree one or greater. We note
that the gra are known once zd(t) is given. By assumption, zd is a solution of (12.11) and
therefore satisfies the relations

żda = fa(z
d, t). (10.12.16)

It follows that the deviation variables satisfy the equations of motion

ζ̇a = ga(z
d, t, ζ) =

∑
r

gra(t)Gr(ζ). (10.12.17)

These equations are evidently generalizations of the usual variational equations (see Exercise
4.6 of Section 1.4), and will be called the complete variational equations.

Consider the solution to the complete variational equations with initial conditions ζ ib
specified at some initial time ti. Under the conditions of Theorem 3.3 in Section 1.3 we
expect that this solution will be an analytic function of the initial conditions ζ ib. (Here we
have used the notation of Section 1.4.) Also, since the right side of (12.17) vanishes when
all ζb = 0 [all the monomials Gr appearing in (12.17) have degree one or greater], ζ(t) = 0 is

1Here and in what follows the quantities ga are not to be confused with those appearing in (12.3).
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a solution to (12.17). It follows that the solution to the complete variational equations has
a Taylor expansion of the form

ζa(t) =
∑
r

hra(t)Gr(ζ
i) (10.12.18)

where the hra(t) are functions to be determined, and again all the monomials that occur have
degree one or greater. When the quantities hra(t) are evaluated at some final time tf , (12.18)
provides a representation of the transfer map M about the design orbit in the Taylor form

ζfa = ζa(t
f ) =

∑
r

hra(t
f )Gr(ζ

i). (10.12.19)

10.12.2 Inclusion of Parameter Dependence

What can be done if we desire to have an expansion in parameters as well? Suppose that
there are n such parameters, or that we wish to have expansions in n of them. The work of
the previous section can be extended to handle this case by means of a simple trick: View
the n parameters as additional variables, and “augment” the set of differential equations by
additional differential equations that ensure these additional variables remain constant.

In detail, suppose we label the parameters so that those in which we wish to have an
expansion are λ1 · · ·λn. Introduce n additional variables zm+1, · · · z` where ` = m + n by
making the replacements

λb → zm+b, b = 1, n. (10.12.20)

Next augment the equations (12.1) by n more of the form

ża = 0, a = m+ 1, `. (10.12.21)

By this device we can rewrite the equations (12.1) in the form

ża = fa(z, t), a = 1, ` (10.12.22)

with the understanding that

fa = fa(z; t;λrem) a = 1,m, (10.12.23)

where λrem denotes the other remaining parameters, if any, and

fa = 0, a = m+ 1, `. (10.12.24)

For the first m equations we impose, as before, the initial conditions

za(t
i) = zia, a = 1,m. (10.12.25)

For the remaining equations we impose the initial conditions

za(t
i) = λa−m, a = m+ 1, `. (10.12.26)
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Note that the relations (12.21) then ensure that the za for a > m retain these values for all
t.

To continue, let zd(t) be some design solution. Then, by construction, we have the result

zda(t) = λda−m = λa−m, a = m+ 1, `. (10.12.27)

Again introduce deviation variables by writing

za = zda + ζa a = 1, `. (10.12.28)

Then the quantities ζa for a > m will describe deviations in the parameter values about
the values λda−m. Moreover, because we have assumed analyticity in the parameters as well,
relations of the forms (12.14) and (12.15) will continue to hold except that the Gr(ζ) are
now the various monomials in the ` variables ζb. Relations of the forms (12.16) and (12.17)
will also hold with the provisos (12.24) and

gra(t) = 0, a = m+ 1, `. (10.12.29)

Therefore, we will only need to integrate the equations of the forms (12.16) and (12.17) for
a ≤ m. Finally, relations of the form (12.19) will continue to hold for a ≤ m supplemented
by the relations

ζfa = ζ ia, a = m+ 1, `. (10.12.30)

Since the Gr(ζ
i) now involve ` variables, the relations of the form (12.19) will provide an

expansion of the final quantities ζfa (for a ≤ m) in terms of the initial quantities ζ ia (for
a ≤ m) and also the parameter deviations ζ ia with a = m+ 1, `.

10.12.3 Solution of Complete Variational Equations Using
Forward Integration

This subsection and Subsection 12.5 describe two methods for the solution of the complete
variational equations. This subsection describes the method that employs integration for-
ward in time, and is the conceptually simpler of the two methods.

To determine the functions hra, let us insert the expansion (12.18) into both sides of
(12.17). With r′′ as a dummy index, the left side becomes the relation

ζ̇a =
∑
r′′

ḣr
′′

a (t)Gr′′(ζ
i). (10.12.31)

For the right side we find the intermediate result

∑
r

gra(t)Gr(ζ) =
∑
r

gra(t) Gr

(∑
r′

hr
′

1 (t)Gr′(ζ
i), · · ·

∑
r′

hr
′

m(t)Gr′(ζ
i)

)
. (10.12.32)

However, since the Gr are monomials, there are relations of the form

Gr

(∑
r′

hr
′

1 (t)Gr′(ζ
i), · · ·

∑
r′

hr
′

m(t)Gr′(ζ
i)

)
=
∑
r′′

U r′′

r (hsn)Gr′′(ζ
i), (10.12.33)
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and therefore the right side of (12.17) can be rewritten in the form∑
r

gra(t)Gr(ζ) =
∑
r′′

∑
r

gra(t)U
r′′

r (hsn)Gr′′(ζ
i). (10.12.34)

The notation U r′′
r (hsn) is employed to indicate that these quantities might (at this stage of

the argument) depend on all the hsn with n ranging from 1 to `, and s ranging over all
possible values.

Now, in accord with (12.17), equate the right sides of (12.31) and (12.34) to obtain the
relation ∑

r′′

ḣr
′′

a (t)Gr′′(ζ
i) =

∑
r′′

∑
r

gra(t)U
r′′

r (hsn)Gr′′(ζ
i). (10.12.35)

Since the monomials Gr′′(ζ
i) are linearly independent, we must have the result

ḣr
′′

a (t) =
∑
r

gra(t)U
r′′

r (hsn). (10.12.36)

We have found a set of differential equations that must be satisfied by the hra. Moreover,
from (12.18), there is the relation

ζa(t
i) =

∑
r

hra(t
i)Gr(ζ

i) = ζ ia. (10.12.37)

Thus, all the functions hra(t) have a known value at the initial time ti, and indeed are mostly
initially zero. When the equations (12.36) are integrated forward from t = ti to t = tf to
obtain the quantities hra(t

f ), the result is the transfer mapM about the design orbit in the
Taylor form (12.19).

Let us now examine the structure of this set of differential equations. A key observation
is that the functions U r′′

r (hsn) are universal. That is, as (12.33) indicates, they describe
certain combinatorial properties of monomials. They depend only on the dimension ` of
the system under study, and are the same for all such systems. As (12.17) shows, what are
peculiar to any given system are the forcing terms gra(t).

10.12.4 Application of Forward Integration to the Two-Variable
Case

To see what is going on in more detail, it is instructive to work out the first nontrivial case,
that with ` = 2. For two variables, all monomials in (ζ1, ζ2) are of the form (ζ1)j1(ζ2)j2 .
Here, to simplify notation, we have dropped the superscript i. Table 12.1 below shows a
convenient way of labeling such monomials, and for this labeling we write

Gr(ζ) = (ζ1)j1(ζ2)j2 (10.12.38)

with
j1 = j1(r) and j2 = j2(r) (10.12.39)

and D(r) denotes the degree of each monomial.
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Table 10.12.1: A labeling scheme for monomials through degree three in two variables.

r j1 j2 D
1 1 0 1
2 0 1 1
3 2 0 2
4 1 1 2
5 0 2 2
6 3 0 3
7 2 1 3
8 1 2 3
9 0 3 3

Thus, for example,
G1 = ζ1, (10.12.40)

G2 = ζ2, (10.12.41)

G3 = ζ2
1 , (10.12.42)

G4 = ζ1ζ2, (10.12.43)

G5 = ζ2
2 , etc. (10.12.44)

Again, for more detail about monomial labeling schemes, see Section 39.2 and Appendix
S.2.1.

Let us now compute the first few U r′′
r (hsn). From (12.33) and (12.40) we find the relation

G1

(∑
r′

hr
′

1 Gr′(ζ),
∑
r′

hr
′

2 Gr′(ζ)

)
=
∑
r′

hr
′

1 Gr′(ζ) =
∑
r′′

U r′′

1 Gr′′(ζ). (10.12.45)

It follows that there is the result
U r′′

1 = hr
′′

1 . (10.12.46)

Similarly, from (12.33) and (12.41), we find the result

U r′′

2 = hr
′′

2 . (10.12.47)

From (12.33) and (12.42) we find the relation

G3

(∑
r′

hr
′

1 Gr′(ζ),
∑
r′

hr
′

2 Gr′(ζ)

)
=

(∑
r′

hr
′

1 Gr′(ζ)

)2

=
∑
s,t

hs1h
t
1Gs(ζ)Gt(ζ) =

∑
r′′

U r′′

3 Gr′′(ζ). (10.12.48)

Use of (12.48) and inspection of (12.40) through (12.44) yield the results

U1
3 = 0, (10.12.49)
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U2
3 = 0, (10.12.50)

U3
3 = (h1

1)2, (10.12.51)

U4
3 = 2h1

1h
2
1, (10.12.52)

U5
3 = (h2

1)2. (10.12.53)

From (12.33) and (12.43) we find the relation

G4

(∑
r′

hr
′

1 Gr′(ζ),
∑
r′

hr
′

2 Gr′(ζ)

)
=

(∑
r′

hr
′

1 Gr′(ζ)

)(∑
r′

hr
′

2 Gr′(ζ)

)
=

∑
s,t

hs1h
t
2Gs(ζ)Gt(ζ) =

∑
r′′

U r′′

4 Gr′′(ζ). (10.12.54)

It follows that there are the results
U1

4 = 0, (10.12.55)

U2
4 = 0, (10.12.56)

U3
4 = h1

1h
1
2, (10.12.57)

U4
4 = h1

1h
2
2 + h2

1h
1
2, (10.12.58)

U5
4 = h2

1h
2
2. (10.12.59)

Finally, from (12.33) and (12.44), we find the results

U1
5 = 0, (10.12.60)

U2
5 = 0, (10.12.61)

U3
5 = (h1

2)2, (10.12.62)

U4
5 = 2h1

2h
2
2, (10.12.63)

U5
5 = (h2

2)2. (10.12.64)

Two features now become apparent. As in Table 12.1, let D(r) be the degree of the
monomial with label r. Then, from the examples worked out, and quite generally from
(12.33), we see that there is the relation

U r′′

r = 0 when D(r) > D(r′′). (10.12.65)

It follows that the sum on the right side of (12.36) always terminates. Second, for the
arguments hsn possibly appearing in U r′′

r (hsn), we see that there is the relation

D(s) ≤ D(r′′). (10.12.66)

It follows, again see (12.36), that the right side of the differential equation for any hr
′′
a

involves only the hsn for which (12.66) holds. Therefore, to determine the coefficients hra(t
f )

of the Taylor expansion (12.19) through terms of some degree D, it is only necessary to
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integrate a finite number of equations, and the right sides of these equations involve only
the coefficients for this degree and lower.

For example, to continue our discussion of the case of two variables, the equations (12.36)
take the form

ḣ1
1(t) =

2∑
r=1

gr1(t)U1
r = g1

1(t)h1
1(t) + g2

1(t)h1
2(t), (10.12.67)

ḣ1
2(t) =

2∑
r=1

gr2(t)U1
r = g1

2(t)h1
1(t) + g2

2(t)h1
2(t), (10.12.68)

ḣ2
1(t) =

2∑
r=1

gr1(t)U2
r = g1

1(t)h2
1(t) + g2

1(t)h2
2(t), (10.12.69)

ḣ2
2(t) =

2∑
r=1

gr2(t)U2
r = g1

2(t)h2
1(t) + g2

2(t)h2
2(t), (10.12.70)

ḣ3
1(t) =

5∑
r=1

gr1(t)U3
r

= g1
1(t)h3

1(t) + g2
1(t)h3

2(t) + g3
1(t)[h1

1(t)]2

+ g4
1(t)h1

1(t)h1
2(t) + g5

1(t)[h1
2(t)]2, (10.12.71)

ḣ3
2(t) =

5∑
r=1

gr2(t)U3
r

= g1
2(t)h3

1(t) + g2
2(t)h3

2(t) + g3
2(t)[h1

1(t)]2

+ g4
2(t)h1

1(t)h1
2(t) + g5

2(t)[h1
2(t)]2, (10.12.72)

ḣ4
1(t) =

5∑
r=1

gr1(t)U4
r

= g1
1(t)h4

1(t) + g2
1(t)h4

2(t) + 2g3
1(t)h1

1(t)h2
1(t)

+ g4
1(t)[h1

1(t)h2
2(t) + h2

1(t)h1
2(t)] + 2g5

1(t)h1
2(t)h2

2(t), (10.12.73)

ḣ4
2(t) =

5∑
r=1

gr2(t)U4
r

= g1
2(t)h4

1(t) + g2
2(t)h4

2(t) + 2g3
2(t)h1

1(t)h2
1(t)

+ g4
2(t)[h1

1(t)h2
2(t) + h2

1(t)h1
2(t)] + 2g5

2(t)h1
2(t)h2

2(t), (10.12.74)

ḣ5
1(t) =

5∑
r=1

gr1(t)U5
r

= g1
1(t)h5

1(t) + g2
1(t)h5

2(t) + g3
1(t)[h2

1(t)]2

+ g4
1(t)h2

1(t)h2
2(t) + g5

1(t)[h2
2(t)]2, (10.12.75)
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ḣ5
2(t) =

5∑
r=1

gr2(t)U5
r

= g1
2(t)h5

1(t) + g2
2(t)h5

2(t) + g3
2(t)[h2

1(t)]2

+ g4
2(t)h2

1(t)h2
2(t) + g5

2(t)[h2
2(t)]2, etc. (10.12.76)

From (12.37) we have the initial conditions

hra(t
i) = δra. (10.12.77)

We see that if we desire only the degree one terms in the expansion (12.18), then it is
only necessary to integrate the equations (12.67) through (12.70) with the initial conditions
(12.77). [A moment’s reflection shows that, for the case of two variables and no parameters,
these are just the (linear) variational equations for the matrix L in Exercise 4.6 of Section
1.4.] We see that if we desire only the degree one and degree two terms in the expansion
(12.18), then it is only necessary to integrate the equations (12.67) through (12.76) with the
initial conditions (12.77), etc.

10.12.5 Solution of Complete Variational Equations Using
Backward Integration

There is another method of determining the hra that is surprising, ingenious, and in some
ways superior to that just described. It involves integrating backward in time.2

Let us rewrite (12.19) in the slightly more explicit form

ζfa =
∑
r

hra(t
i, tf )Gr(ζ

i) (10.12.78)

to indicate that there are two times involved, ti and tf . From this perspective, (12.36) is
a set of differential equations for the quantities (∂/∂t)hra(t

i, t) that is to be integrated and
evaluated at t = tf . An alternate procedure is to seek a set of differential equations for the
quantities (∂/∂t̄)hra(t̄, t

f ) that is to be integrated and evaluated at t̄ = ti.
As a first step in considering this alternative, rewrite (12.78) in the form

ζfa =
∑
r

hra(t̄, t
f )Gr(ζ(t̄)). (10.12.79)

Now reason as follows: If t̄ is varied and at the same time the quantities ζ(t̄) are varied
(evolve) so as to remain on the solution to (12.17) having final conditions ζf , then the
quantities ζf must remain unchanged. Consequently, there is the differential equation result

0 = dζfa /dt̄ =
∑
r

[(∂/∂t̄)ha(t̄, t
f )]Gr(ζ(t̄)) +

∑
r

hra(t̄, t
f )(d/dt̄)Gr(ζ(t̄)). (10.12.80)

Let us introduce the notation ḣra(t̄, t
f ) for (∂/∂t̄)hra(t̄, t

f ) so that the first term on the
right side of (12.80) can be rewritten in the form∑

r

[(∂/∂t̄)hra(t̄, t
f )]Gr(ζ) =

∑
r

ḣraGr(ζ). (10.12.81)

2To integrate backward numerically, simply replace h by −h where h is the step size. See Chapter 2.
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Next, begin working on the second term on the right side of (12.80) by replacing the sum-
mation index r by the dummy index r′,∑

r

hra(t̄, t
f )(d/dt̄)Gr(ζ(t̄)) =

∑
r′

hr
′

a (t̄, tf )(d/dt̄)Gr′(ζ(t̄)). (10.12.82)

Now carry out the indicated differentiation using the chain rule and the relation (12.17)
which describes how the quantities ζ vary along a solution,

(d/dt̄)Gr′(ζ(t̄)) =
∑
b

(∂Gr′/∂ζb)(dζb/dt̄) =
∑
br′′

(∂Gr′/∂ζb)g
r′′

b (t̄)Gr′′(ζ(t̄)). (10.12.83)

Watch closely: Since the Gr are simply standard monomials in the ζ, there must be relations
of the form

[(∂/∂ζb)Gr′(ζ)]Gr′′(ζ) =
∑
r

Cr
br′r′′Gr(ζ) (10.12.84)

where the Cr
br′r′′ are universal constant coefficients that describe certain combinatorial prop-

erties of monomials. As a result, the second term on the right side of (12.80) can be written
in the form∑

r′

hr
′

a (t̄, tf )(d/dt̄)Gr′(ζ(t̄)) =
∑
r

Gr(ζ)
∑
br′r′′

Cr
br′r′′g

r′′

b (t̄)hr
′

a (t̄, tf ). (10.12.85)

Since the monomials Gr are linearly independent, the relations (12.80) through (12.85) imply
the result

ḣra(t̄, t
f ) = −

∑
br′r′′

Cr
br′r′′g

r′′

b (t̄)hr
′

a (t̄, tf ). (10.12.86)

This is a set of differential equations for the hra that are to be integrated from t̄ = tf back
to t̄ = ti. Also, evaluating (12.79) for t̄ = tf gives the results

ζfa =
∑
r

hra(t
f , tf )Gr(ζ

f
a ), (10.12.87)

from which it follows that (with the usual polynomial labeling) the hra satisfy the final
conditions

hra(t
f , tf ) = δra. (10.12.88)

Therefore the solution to (12.86) is uniquely defined. Finally, it is evident from the definition
(12.84) that the coefficients Cr

br′r′′ satisfy the relation

Cr
br′r′′ = 0 unless [D(r′)− 1] +D(r′′) = D(r). (10.12.89)

Consequently, since D(r′′) ≥ 1 in (12.86), it follows from (12.89) that the only hr
′
a that occur

on the right side of (12.86) are those that satisfy

D(r′) ≤ D(r). (10.12.90)

Similarly, the only gr
′′

b that occur are those that satisfy

D(r′′) ≤ D(r). (10.12.91)
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Therefore, as before, to determine the coefficients hra of the Taylor expansion (12.19) through
terms of some degree D, it is only necessary to integrate a finite number of equations, and
the right sides of these equations involve only the coefficients for this degree and lower.

Comparison of the differential equation sets (12.36) and (12.86) shows that the latter has
the remarkable property of being linear in the unknown quantities hra. This feature means
that the evaluation of the right side of (12.86) involves only the retrieval of certain universal
constants Cr

br′r′′ and straight-forward multiplication and addition. By contrast, the use of
(12.36) requires evaluation of the fairly complicated nonlinear functions U r′′

r (hsn). Finally,
it is easier to insure that a numerical integration procedure is working properly for a set of
linear differential equations than it is for a nonlinear set.

The only complication in the use of (12.86) is that the equations must be integrated
backwards in t̄. Correspondingly the equations (12.16) for the design solution must also be
integrated backwards since they supply the required quantities gra through use of (12.14) and
(12.15). This is no problem if the final quantities zd(tfin) are known. However if only the
initial quantities zd(tin) are known, then the equations (12.16) for zd must first be integrated
forward in time to find the final quantities zd(tfin).

10.12.6 The Two-Variable Case Revisited

For clarity, let us also apply this second method to the two-variable case. Table 12.2 shows
the nonzero values of Cr

br′r′′ for r ∈ [1, 5] obtained using (12.40) through (12.44) and (12.84).
Note that the rules (12.89) hold. Use of this Table shows that in the two-variable case the
equations (12.86) take the form

ḣ1
1(t̄, tf ) = − g1

1(t̄)h1
1(t̄, tf )− g1

2(t̄)h2
1(t̄, tf ), (10.12.92)

ḣ1
2(t̄, tf ) = − g1

1(t̄)h1
2(t̄, tf )− g1

2(t̄)h2
2(t̄, tf ), (10.12.93)

ḣ2
1(t̄, tf ) = − g2

1(t̄)h1
1(t̄, tf )− g2

2(t̄)h2
1(t̄, tf ), (10.12.94)

ḣ2
2(t̄, tf ) = − g2

1(t̄)h1
2(t̄, tf )− g2

2(t̄)h2
2(t̄, tf ), (10.12.95)

ḣ3
1(t̄, tf ) = − 2g1

1(t̄)h3
1(t̄, tf )− g3

1(t̄)h1
1(t̄, tf )− g1

2(t̄)h4
1(t̄, tf )− g3

2(t̄)h2
1(t̄, tf ), (10.12.96)

ḣ3
2(t̄, tf ) = − 2g1

1(t̄)h3
2(t̄, tf )− g3

1(t̄)h1
2(t̄, tf )− g1

2(t̄)h4
2(t̄, tf )− g3

2(t̄)h2
2(t̄, tf ), (10.12.97)

ḣ4
1(t̄, tf ) = − g1

1(t̄)h4
1(t̄, tf )− 2g2

1(t̄)h3
1(t̄, tf )− g4

1(t̄)h1
1(t̄, tf )

− 2g1
2(t̄)h5

1(t̄, tf )− g2
2(t̄)h4

1(t̄, tf )− g4
2(t̄)h2

1(t̄, tf ), (10.12.98)

ḣ4
2(t̄, tf ) = − g1

1(t̄)h4
2(t̄, tf )− 2g2

1(t̄)h3
2(t̄, tf )− g4

1(t̄)h1
2(t̄, tf )

− 2g1
2(t̄)h5

2(t̄, tf )− g2
2(t̄)h4

2(t̄, tf )− g4
2(t̄)h2

2(t̄, tf ), (10.12.99)

ḣ5
1(t̄, tf ) = − g2

1(t̄)h4
1(t̄, tf )− g5

1(t̄)h1
1(t̄, tf )− 2g2

2(t̄)h5
1(t̄, tf )− g5

2(t̄)h2
1(t̄, tf ), (10.12.100)

ḣ5
2(t̄, tf ) = − g2

1(t̄)h4
2(t̄, tf )− g5

1(t̄)h1
2(t̄, tf )− 2g2

2(t̄)h5
2(t̄, tf )− g5

2(t̄)h2
2(t̄, tf ), etc. (10.12.101)

As advertised, the right sides of (12.92) through (12.101) are indeed simpler than those of
(12.67) through (12.76).
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Table 10.12.2: Nonzero values of Cr
br′r′′ for r ∈ [1, 5] in the two-variable case.

r b r′ r′′ C
1 1 1 1 1
1 2 2 1 1
2 1 1 2 1
2 2 2 2 1
3 1 1 3 1
3 1 3 1 2
3 2 2 3 1
3 2 4 1 1
4 1 1 4 1
4 1 3 2 2
4 1 4 1 1
4 2 2 4 1
4 2 4 2 1
4 2 5 1 2
5 1 1 5 1
5 1 4 2 1
5 2 2 5 1
5 2 5 2 1

10.12.7 Application to Duffing’s Equation

As an extension of our discussion of the case of two variables (and no parameters), let us
apply the results obtained so far to Duffing’s equation (1.4.27) described earlier in Section
1.4. Recall that by a suitable change of variables this equation can be brought to the form

q′′ + 2βq′ + q + q3 = −ε sinωτ. (10.12.102)

Here, for notational convenience, a prime denotes d/dτ . For our purposes, particularly for
the parameter expansion soon to be made in the next subsection, it is useful to make the
further change of variables

q = ωQ, (10.12.103)

ω = 1/σ, (10.12.104)

ωτ = t. (10.12.105)

When this is done, there are the relations

q′ = ω2Q̇ (10.12.106)

and

q′′ = ω3Q̈ (10.12.107)
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where now a dot denotes d/dt. [Note that the variable t here is different from that in
(1.4.27).] Correspondingly, Duffing’s equation takes the form

Q̈+ 2βσQ̇+ σ2Q+Q3 = −εσ3 sin t. (10.12.108)

Finally, this equation can be converted to a first-order pair of the form (12.11) by writing

Q = z1, (10.12.109)

Q̇ = z2. (10.12.110)

Doing so gives the system
ż1 = z2, (10.12.111)

ż2 = −2βσz2 − σ2z1 − z3
1 − εσ3 sin t, (10.12.112)

and we see that there are the relations

f1(z, t) = z2, (10.12.113)

f2(z, t) = −2βσz2 − σ2z1 − z3
1 − εσ3 sin t. (10.12.114)

Now we are ready to carry out the expansions (12.14) and (12.15). We find the results

f1(zd + ζ, t) = zd2 + ζ2, (10.12.115)

f2(zd + ζ, t) = −2βσ(zd2 + ζ2)− σ2(zd1 + ζ1)− (zd1 + ζ1)3 − εσ3 sin t

= −[2βσzd2 + σ2zd1 + (zd1)3 + εσ3 sin]− {[σ2 + 3(zd1)2]ζ1 + 2βσζ2}
−3zd1ζ

2
1 − ζ3

1 . (10.12.116)

Note that the right sides of (12.115) and (12.116) contain only terms of degree 3 and lower
in the deviation variables ζa. It follows that for Duffing’s equation the only nonzero forcing
terms are given by the relations

g2
1 = 1, (10.12.117)

g1
2 = −σ2 − 3(zd1)2, (10.12.118)

g2
2 = −2βσ, (10.12.119)

g3
2 = −3zd1 , (10.12.120)

g6
2 = −1. (10.12.121)

And, according to (12.16), the design solution zd obeys the equations (12.111) and (12.112)
with z = zd.

At this point we pause to look particularly at the lowest-degree (linear) variational equa-
tions because they have a special simplicity in the Duffing case. Let L be the matrix defined
by the relation

L =

(
h1

1 h2
1

h1
2 h2

2

)
(10.12.122)
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so that

ζ(t) = L(t)ζ i +O[(ζ i)2]. (10.12.123)

See (12.18). Then equations (12.67) through (12.70) are equivalent to the matrix equation

L̇ = AL (10.12.124)

where A is the matrix

A =

(
g1

1 g2
1

g1
2 g2

2

)
. (10.12.125)

From (12.125) and (12.117) through (12.121), we find the result

tr A = g1
1 + g2

2 = −2βσ. (10.12.126)

Also, in the Duffing case, we may set ti = 0 and require the initial condition

L(0) = I. (10.12.127)

Based on the results of Exercise 1.4.6, we conclude that there is the relation

detL(t) = exp(−2βσt), (10.12.128)

and, in particular, for t = tf = 2π there is the relation

detL(2π) = exp(−4πβσ) = exp(−4πβ/ω). (10.12.129)

Thus, for the Duffing equation, we are able to find the determinant of the linear part of the
transfer map analytically. Note also the remarkable feature that for the Duffing equation the
determinant of the linear part of the transfer map does not depend on zd. The determinant
is the same for any trajectory.

Returning to our main discussion, suppose, for example, that we specify the values of
β, ε, and ω, and then integrate the system (12.111) and (12.112) from t = 0 to t = 2π.
So doing produces an example of the stroboscopic map M described in Subsection 1.4.3.
Suppose, further, that we require that the design solution zd be periodic (with period 2π)
thus yielding a fixed point of M,

zda(2π) = zda(0). (10.12.130)

We will see in Chapter 28 that such fixed points exist. Using this zd(t), we may integrate
from t = ti = 0 to t = tf = 2π the equations (12.67) through (12.76), etc., with the gra given
by (12.117) through (12.121) and the initial conditions given by (12.77). Alternatively, we
may integrate (12.92) though (12.101), etc. from t̄ = tf = 2π back to t̄ = ti = 0 with the
final conditions (12.88). Carrying out either method determines the quantities hra(0, 2π),
and we see from (12.19) or (12.78) that we have found a Taylor expansion forM about the
fixed point zd(0).
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10.12.8 Application to Duffing’s Equation Including some
Parameter Dependence

Suppose, as described in Subsection 12.2, we wish to include some parameter dependence.
Figures 28.8.5 and 28.8.6 in Chapter 28 show, for example, a portion of the Feigenbaum
diagram for Duffing’s equation as ω is varied. Evidently ω is a parameter and therefore,
according to Theorem 3.3 of Section 1.3, it should be possible to Taylor expand the solution
to Duffing’s equation with respect to ω as well as with respect to the initial conditions.
Equivalently, we will seek an expansion of the solution of (12.108) with respect to the
parameter σ. See (12.104).

Following the method of Subsection 12.2, we augment the first-order equation set asso-
ciated with (12.108) by adding the equation

σ̇ = 0. (10.12.131)

Then we may view σ as a variable, and (12.131) guarantees that this variable remains a
constant. Taken together, (12.108) and (12.131) may be converted to a first-order triplet of
the form (12.22) by writing (12.109), (12.110), and

σ = z3. (10.12.132)

Doing so gives the system

ż1 = z2, (10.12.133)

ż2 = −2βz3z2 − z2
3z1 − z3

1 − εz3
3 sin t, (10.12.134)

ż3 = 0, (10.12.135)

and we see that there are the relations

f1(z, t) = z2, (10.12.136)

f2(z, t) = − 2βz3z2 − z2
3z1 − z3

1 − εz3
3 sin t, (10.12.137)

f3(z, t) = 0. (10.12.138)

As before, we introduce deviation variables using (12.12) and carry out the steps (12.13)
through (12.19). In particular, we write

z3 = zd3 + ζ3 = σd + ζ3. (10.12.139)

This time we are working with monomials in the three variables ζ1, ζ2, and ζ3. [That is, a
ranges from 1 to 3 in (12.18).] They are conveniently labeled using the indices r given in
Table 12.3 below. We see, for example, that if we desire to work with monomials through
degree 2, the index r should range from 1 through 9.

With regard to the expansions (12.14) and (12.15), we find the results

f1(zd + ζ, t) = zd2 + ζ2, (10.12.140)
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Table 10.12.3: A labeling scheme for monomials through degree three in three variables.

r j1 j2 j3 D
1 1 0 0 1
2 0 1 0 1
3 0 0 1 1
4 2 0 0 2
5 1 1 0 2
6 1 0 1 2
7 0 2 0 2
8 0 1 1 2
9 0 0 2 2
10 3 0 0 3
11 2 1 0 3
12 2 0 1 3
13 1 2 0 3
14 1 1 1 3
15 1 0 2 3
16 0 3 0 3
17 0 2 1 3
18 0 1 2 3
19 0 0 3 3

f2(zd + ζ, t) = − 2β(zd3 + ζ3)(zd2 + ζ2)− (zd3 + ζ3)2(zd1 + ζ1)

−(zd1 + ζ1)3 − ε(zd3 + ζ3)3 sin t

= [−2βzd2z
d
3 − zd1(zd3)2 − (zd1)3 − ε(zd3)3 sin t]

−[3(zd1)2 + (zd3)2]ζ1 − 2βzd3ζ2 − [2βzd2 + 2zd1z
d
3 + 3ε(zd3)2 sin t]ζ3

−2βζ2ζ3 − (zd1 + 3εzd3)ζ2
3 − zd3ζ1ζ2 − 3zd1ζ

2
1

−ζ3
1 − ζ1ζ

2
3 − ε(sin t)ζ3

3 . (10.12.141)

f3(zd + ζ, t) = 0. (10.12.142)

Note the right sides of (12.140) through (12.142) are at most cubic in the deviation variables
ζa. Therefore, from Table 12.3, we see that the index r for the gra should range from 1
through 19. It follows that for Duffing’s equation (with σ parameter expansion) the only
nonzero forcing terms are given by the relations

g2
1 = 1, (10.12.143)

g1
2 = −3(zd1)2 − (zd3)2, (10.12.144)

g2
2 = −2βzd3 , (10.12.145)

g3
2 = −2βzd2 − 2zd1z

d
3 − 3ε(zd3)2 sin t, (10.12.146)
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g4
2 = −3zd1 , (10.12.147)

g6
2 = −2zd3 , (10.12.148)

g8
2 = −2β, (10.12.149)

g9
2 = −zd1 − 3εzd3 sin t, (10.12.150)

g10
2 = −1, (10.12.151)

g15
2 = −1, (10.12.152)

g19
2 = −ε sin t. (10.12.153)

If we choose to use forward integration, and again restrict our attention to monomials
through degree 2, the relevant U r′′

r (hsn) are given by the relations

U r′′

1 = hr
′′

1 , (10.12.154)

U r′′

2 = hr
′′

2 , (10.12.155)

U r′′

3 = hr
′′

3 , (10.12.156)

U r
4 = 0 for r ≤ 3, (10.12.157)

U4
4 = (h1

1)2, (10.12.158)

U5
4 = 2h1

1h
2
1, (10.12.159)

U6
4 = 2h1

1h
3
1, (10.12.160)

U7
4 = (h2

1)2, (10.12.161)

U8
4 = 2h2

1h
3
1, (10.12.162)

U9
4 = (h3

1)2, (10.12.163)

U r
5 = 0 for r ≤ 3, (10.12.164)

U4
5 = h1

1h
1
2, (10.12.165)

U5
5 = h1

1h
2
2 + h2

1h
1
2, (10.12.166)

U6
5 = h3

1h
1
2 + h1

1h
3
2, (10.12.167)

U7
5 = h2

1h
2
2, (10.12.168)

U8
5 = h3

1h
2
2 + h2

1h
3
2, (10.12.169)

U9
5 = h3

1h
3
2, (10.12.170)

U r
6 = 0 for r ≤ 3, (10.12.171)

U4
6 = h1

1h
1
3, (10.12.172)

U5
6 = h1

1h
2
3 + h2

1h
1
3, (10.12.173)

U6
6 = h3

1h
1
3 + h1

1h
3
3, (10.12.174)

U7
6 = h2

1h
2
3, (10.12.175)
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U8
6 = h2

1h
3
3 + h3

1h
2
3, (10.12.176)

U9
6 = h3

1h
3
3, (10.12.177)

U r
7 = 0 for r ≤ 3, (10.12.178)

U4
7 = (h2

1)2, (10.12.179)

U5
7 = 2h1

2h
2
2, (10.12.180)

U6
7 = 2h1

2h
3
2, (10.12.181)

U7
7 = (h2

2)2, (10.12.182)

U8
7 = 2h2

2h
3
2, (10.12.183)

U9
7 = (h3

2)2, (10.12.184)

U r
8 = 0 for r ≤ 3, (10.12.185)

U4
8 = h1

2h
1
3, (10.12.186)

U5
8 = h1

2h
2
3 + h2

2h
1
3, (10.12.187)

U6
8 = h3

2h
1
3 + h1

2h
3
3, (10.12.188)

U7
8 = h2

2h
2
3, (10.12.189)

U8
8 = h2

2h
3
3 + h3

2h
2
3, (10.12.190)

U9
8 = h3

2h
3
3, (10.12.191)

U r
9 = 0 for r ≤ 3, (10.12.192)

U4
9 = (h1

3)2, (10.12.193)

U5
9 = 2h1

3h
2
3, (10.12.194)

U6
9 = 2h1

3h
3
3, (10.12.195)

U7
9 = (h2

3)2, (10.12.196)

U8
9 = 2h2

3h
3
3, (10.12.197)

U9
9 = (h3

3)2. (10.12.198)

As before, the rules (12.65) and (12.66) hold.
The relevant equations for the hra become

ḣr
′′

a =
3∑
r=1

graU
r′′

r for r′′, a ∈ [1, 3], (10.12.199)

ḣr
′′

a =
9∑
r=1

graU
r′′

r for r′′ ∈ [4, 9] and a ∈ [1, 3]. (10.12.200)

The initial conditions are

hra(t
i) = δra for a ∈ [1, 3] and r ∈ [1, 9]. (10.12.201)
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Note that because of (12.135) and (12.201) we can actually restrict a in the differential
equations (12.199) and (12.200) for the hr

′′
a to the values a = 1 and a = 2 since we have the

relations
hr3(t) = δr3 for all t. (10.12.202)

For the use of backward integration in the three-variable case, Table 12.4 gives the
nonzero values of Cr

br′r′′ for r ∈ [1, 9]. In this method the equations (12.86) are to be
integrated from t̄ = tfin back to t̄ = tin with the final conditions (12.88). From these
equations, and the information about the gr

′′

b given by (12.143) through (12.153), it is not
immediately obvious that there is the relation

hr3(t̄, tf ) = δr3 for all t̄, (10.12.203)

which is consistent with (12.202). (And perhaps this is one minor drawback of this method.)
However inspection of Table 12.4 for the cases b = 1 and b = 2 [the possibility b = 3 need
not be considered because, as can be checked, gr3 = 0 for all r] reveals there is no nonzero
coefficient with r′ = 3. Therefore, ḣr3(t̄, tf ) = 0 is the solution to (12.86) and (12.88) with
a = 3 for the gr

′′

b in question. Correspondingly, as before, only the equations (12.86) with
a = 1 and a = 2 need be integrated.

For further detail including numerical examples, see Section 29.12.



10.12. TAYLOR METHODS AND THE COMPLETE VARIATIONAL EQUATIONS 1101

Table 10.12.4: Nonzero values of Cr
br′r′′ for r ∈ [1, 9] in the three-variable case.

r b r′ r′′ C
1 1 1 1 1
1 2 2 1 1
1 3 3 1 1
2 1 1 2 1
2 2 2 2 1
2 3 3 2 1
3 1 1 3 1
3 2 2 3 1
3 3 3 3 1
4 1 1 4 1
4 1 4 1 2
4 2 2 4 1
4 2 5 1 1
4 3 3 4 1
4 3 6 1 1
5 1 1 5 1
5 1 4 2 2
5 1 5 1 1
5 2 2 5 1
5 2 5 2 1
5 2 7 1 2
5 3 3 5 1
5 3 6 2 1
5 3 8 1 1
6 1 1 6 1
6 1 4 3 2
6 1 6 1 1
6 2 2 6 1
6 2 5 3 1
6 2 8 1 1
6 3 3 6 1
6 3 6 3 1
6 3 3 1 2
7 1 1 7 1
7 1 5 2 1
7 2 2 7 1
7 2 7 2 2
7 3 3 7 1
7 3 8 2 1
8 1 1 8 1
8 1 5 3 1
8 1 6 2 1



1102 10. COMPUTATION OF TRANSFER MAPS

r b r′ r′′ C
8 2 2 8 1
8 2 7 3 2
8 2 8 2 1
8 3 3 8 1
8 3 8 3 1
8 3 9 2 2
9 1 1 9 1
9 1 6 3 1
9 2 2 9 1
9 2 8 3 1
9 3 3 9 1
9 3 9 3 2

10.12.9 Taylor Methods for the Hamiltonian Case

Suppose the equations of motion (12.1) arise from some Hamiltonian H. Then we may
introduce deviation variables ζ as in Section 10.5, and employ the Hamiltonian Hnew(ζ, t)
of (5.4) to find the evolution of the variables ζ. Expand Hnew in terms of the monomials
Gr′′ by writing

Hnew(ζ, t) =
∑
r′′

Hr′′(t)Gr′′(ζ). (10.12.204)

According to (5.4), all the Gr′′ have degree two or greater. From Hamilton’s equations of
motion we have the result

ζ̇a = [ζa, H
new] =

∑
r′′

Hr′′(t)[ζa, Gr′′ ]. (10.12.205)

Since the monomials Gr form a basis, there is an expansion of the form

[ζa, Gr′′ ] =
∑
r

Er
ar′′Gr (10.12.206)

where the Er
ar′′ are universal coefficients that again describe certain combinatorial properties

of monomials. With the aid of these coefficients (12.205) can be rewritten in the form

ζ̇a =
∑
r

(
∑
r′′

Hr′′Er
ar′′)Gr. (10.12.207)

Comparison of (12.17) and (12.207) gives the result

gra(t) =
∑
r′′

Er
ar′′H

r′′(t). (10.12.208)

This result for the gra may now be used to find the hra in (12.19) by employing either forward
or backward integration.
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For the method of backward integration there is a further simplification. In its derivation
we had to compute the quantities (d/dt̄)Gr′(ζ(t̄)). See (12.83). In the Hamiltonian case this
quantity is given by the rule

(d/dt̄)Gr′(ζ(t̄)) = [Gr′ , H
new]. (10.12.209)

See (1.7.4). Next insert the expansion (12.204) into (12.209) to find the result

(d/dt̄)Gr′(ζ(t̄)) =
∑
r′′

Hr′′(t̄)[Gr′ , Gr′′ ]. (10.12.210)

Again, there are universal coefficients F r
r′r′′ describing certain monomial combinatorial prop-

erties such that
[Gr′ , Gr′′ ] =

∑
r

F r
r′r′′Gr. (10.12.211)

Note that as a consequence of (7.6.14) there is the restriction

F r
r′r′′ = 0 unless D(r′) +D(r′′)− 2 = D(r). (10.12.212)

As a result of (12.210) and (12.211) we may write the relation

(d/dt̄)Gr′(ζ(t̄) =
∑
r

(∑
r′′

F r
r′r′′H

r′′(t̄)

)
Gr. (10.12.213)

As a last step combine (12.80) through (12.82) and (12.213) to get the result

ḣra(t̄, t
f ) = −

∑
r′r′′

F r
r′r′′H

r′′(t̄)hr
′

a (t̄, tf ). (10.12.214)

These equations are the Hamiltonian analog of the general equations (12.86). As before,
they are to be integrated from t̄ = tf back to t̄ = ti with the final conditions (12.88).

Let us compare the method just described for Taylor maps in the Hamiltonian case and
that for factored product maps given in Section 10.5. Inspection of the equations (5.60)
through (5.66) for the Lie generators show that they become ever more complicated with
increasing order. By contrast, the equations (12.214) for the Taylor coefficients can be found
easily to any desired order since the coefficients F r

r′r′′ , which describe the monomial Poisson
bracket results (12.211), can be obtained easily using Truncated Power Series Algebra. See
Section 39.8. The price that must be paid for this ease of programming and computing to
any desired order is the need to integrate many more differential equations. The numbers
of equations that must be integrated in the Taylor and Lie methods are the same as those
required to specify a map in Taylor or factored product Lie form, respectively. See Table
7.10.2.

Of course, no matter how a Taylor map is computed, if it arises from Hamiltonian
equations it will be symplectic. And we know from the factorization Theorem of Section
7.6 that once a symplectic map is known in Taylor form, it can be rewritten in the factored
product Lie form (7.6.3).
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Exercises

10.12.1. Verify the entries in Table 12.2.

10.12.2. Consider the differential equation

ẋ = tx2 (10.12.215)

with the initial condition xi at the initial time ti. Verify that a particular solution is given
by xd = 0, and is the solution with x(ti) = 0. Show that it has the general solution

xf = xi/{1− (xi/2)[(tf )2 − (ti)2]}. (10.12.216)

Find the first few terms in the Taylor expansion of xf in powers of xi. This expansion is,
in essence, an expansion about the solution xd. Also compute the Taylor expansion of xf in
powers of xi using both the methods of forward and backward integration. Verify that all
your results agree.

10.12.3. Verify the derivation of (12.214).

10.12.4. Let (η1, η2, · · · η2n) be 2n “dummy” variables. Define functions Za(t̄, t
f ; η) by the

rule
Za(t̄, t

f ; η) =
∑
r

hra(t̄, t
f )Gr(η), (10.12.217)

which can also be written in the equivalent form

Za(t̄, t
f ; η) =

∑
r′

hr
′

a (t̄, tf )Gr′(η). (10.12.218)

Also define a function Hnew(t̄, η) by the rule

Hnew(t̄, η) =
∑
r′′

Hr′′(t̄)Gr′′(η). (10.12.219)

Using (12.218), (12.219), (12.211), and (12.214) show that

[Za, H
new]η =

∑
r

(∑
r′r′′

hr
′

aH
r′′F r

r′r′′

)
Gr = −

∑
r

ḣra(t̄, t
f )Gr(η). (10.12.220)

Hence, show that (12.114) is equivalent to the differential equation

∂Za/∂t̄ = −[Za, H
new]η. (10.12.221)

10.12.5. Suppose the complete variational equations (12.17) happen to be autonomous.
That is, the functions gra do not depend on time. In the Hamiltonian case assume, equiv-
alently, that the Hr do not depend on time. This will be the case for idealized beam-line
elements. See Chapters 13 and 14. In the case of equation (12.86), define quantities Krr′ by
the rule

Krr′ =
∑
br′′

Cr
br′r′′g

r′′

b . (10.12.222)
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They will be time independent since, by hypothesis, the gr
′′

b are time independent. In the
case of equation (12.214), define quantities Krr′ by the rule

Krr′ =
∑
r′′

F r
r′r′′H

r′′ . (10.12.223)

They too will be time independent if the Hr′′ are. Show that in either case, equation (12.86)
or equation (12.214), there is the common result

ḣra = −
∑
r′

Krr′h
r′

a (10.12.224)

which, when written in vector form, becomes the vector-matrix equation

ḣa = −Kha. (10.12.225)

Verify that (12.225) has the solution

ha(t̄, t
f ) = e−(t̄−tf )Kha(t

f , tf ), (10.12.226)

and consequently there is the result

ha(t
i, tf ) = e−(ti−tf )Kha(t

f , tf ). (10.12.227)

Also, according to (12.88), the vectors ha(t
f , tf ) are given by the relation

hra(t
f , tf ) = δra. (10.12.228)

Thus, the Taylor map can be found explicitly in the autonomous case in terms of the matrix
exp[−(ti − tf )K]. This matrix can be computed using the scaling and squaring method of
Section 4.1. Compare the results above for the Hamiltonian case with those found in Section
10.7, and in particular that of (7.11). Hint: For simplicity consider the two-variable case
and suppose Hnew consists of only an H2 and an H3.
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Chapter 11

Geometric/Structure-Preserving
Integration: Integration on Manifolds

Overview

The subject of geometric integration, also sometimes called structure-preserving integra-
tion, deals both with the construction of numerical integrators on manifolds and with the
construction of numerical integrators that respect various group properties. This chapter
provides an introduction to the subject of numerical integration on manifolds, mostly by
way of three examples: rigid body motion, spin and qubits, and motion of a charged particle
in a static magnetic field. Symplectic integration, the main topic of the next chapter, is a
special case of geometric integration that respects a particular group property.1

Suppose a set of first-order ordinary differential equations is formulated in terms of
coordinates in some ambient space and suppose it is known that, when these equations are
integrated exactly, some class of trajectories is confined to a lower dimensional manifold in
the ambient space, often a manifold associated with some group. If these same equations are
integrated numerically with the aid of some integrator that is locally accurate through terms
of order hm one may expect, unless the integrator has special properties, that trajectories
will deviate, at each integration step, from this lower dimensional manifold by terms of order
hm+1. In this context, a geometric numerical integrator is an integrator that, even though
it may make local errors of order hm+1, is guaranteed to produce trajectories that remain
on the desired manifold, perhaps exactly to machine precision, or at least to substantially
higher order in h. The construction and study of such numerical integrators is the subject
of numerical integration on manifolds.2

Again suppose a set of first-order ordinary differential equations is formulated in terms
of coordinates, call them z, in some ambient space. Let ti and tf be initial and final times.
Now suppose it is known that the relation/map between zi = z(ti) and zf = z(tf ) for

1Although for brevity we will not do so, for precision we should use the terms geometric numerical
integration and, by association, symplectic numerical integration. Strictly speaking, this distinction is
necessary because the term geometric integration can also refer to the extension of the integration procedures
of ordinary calculus to integration over manifolds based on the use of differential forms.

2From this perspective numerical integrators that preserve integrals of motion, such as energy and angular
momentum, are special instances of geometric integrators.
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MANIFOLDS

variable zi, arising from exactly integrating initial conditions from t = ti to t = tf , belongs
to some group G that acts on the ambient space. What happens if these same equations
are integrated numerically with the aid of some integrator that is locally accurate through
terms of order hm? Let tb be the time at the beginning of some integration step. We may
expect, unless the integrator has special properties, that the relation/map between z(tb) and
z(tb+h) will differ from an element of G by terms of order hm+1. In this context, a geometric
integrator is an integrator with the property that, even though it may make local errors of
order hm+1, the relation/map between z(tb) and z(tb+h), for each integration step, is a map
that belongs to G, perhaps exactly to machine precision, or at least to substantially higher
order in h. Since for such a geometric integrator the maps for all successive integration steps
belong to G, their product will also belong to G, and thus the map relating z(ti) and z(tf )
will also belong to G.3 In the Hamiltonian case, the ambient space is phase space, the group
G is the group of all symplectic maps, and a symplectic numerical integrator is an integrator
designed to produce a relation between zi and zf that is a symplectic map.

11.1 Numerical Integration on Manifolds:

Rigid-Body Motion

As a first example of integration on manifolds, we will consider the problem of determining
the motion of a rigid body with one point fixed and subject to an external torque N about
the fixed point. We begin with the kinematics of rigid-body motion, and then follow with
the dynamics of rigid-body motion.4 Subsequent discussion treats various formulations of
the equations of motion and various methods for their numerical integration.

11.1.1 Angular Velocity and Rigid-Body Kinematics

To describe rigid-body kinematics, suppose e1, e2, e3 is an orthonormal right-hand triad of
vectors that is fixed in space, and suppose f1(t), f2(t), f3(t) is an orthonormal right-hand
triad of vectors that is fixed in the body.5 The fj(t) will generally be time dependent because
the body is expected to rotate, and they will be taken to have the initial values

fj(t
0) = ej. (11.1.1)

Since the ej and the fj(t) are both orthonormal basis sets, there is a unique orthogonal
matrix R(t) such that

fj(t) = R(t)ej. (11.1.2)

3Note that unlike the case of Chapter 10, we do not seek here, at least primarily, to compute the transfer
mapM that relates z(ti) and z(tf ). Rather, we seek trajectories but require that, were all trajectories to be
considered, the relation between zi and zf for all possible initial conditions zi would be a map that belongs
to G.

4The kinematic equations are the analog of the single-particle equations v = dr/dt or dr/dt = v, and
the dynamic equations are the analog of the equations dv/dt = F /m.

5We require that the space-fixed and body-fixed triads have the fixed point of the body as their common
origin.
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See Section 3.6.3. In view of (1.1) there is the relation

R(t0) = I (11.1.3)

and therefore, by continuity, R(t) ∈ SO(3,R).
Let (ωbf1 , ω

bf
2 , ω

bf
3 ) be the components of the angular velocity in the body-fixed frame.

They are defined by the rules
ωbfj (t) = −fk(t) · ḟ`(t) (11.1.4)

where j, k, ` is any cyclic permutation of 1, 2, 3. Some implications of this definition of
angular velocity are explored in Exercise 1.1. Here we examine how the ωbfj (t) are related
to R(t). From (1.2) there are the relations

ḟ`(t) = Ṙ(t)e`, (11.1.5)

and therefore (1.4) can be rewritten in the form

ωbfj (t) = −[R(t)ek] · [Ṙ(t)e`] = −ek · [RT (t)Ṙ(t)e`] = −ek · [R−1(t)Ṙ(t)e`]. (11.1.6)

Define a matrix A(t) by the rule

A(t) = R−1(t)Ṙ(t) = RT (t)Ṙ(t). (11.1.7)

With its use, (1.6) can be written in the yet more compact form

ωbfj (t) = −ek · A(t)e`. (11.1.8)

What can be said about the matrix A(t)? From the orthogonality condition

RT (t)R(t) = I (11.1.9)

we conclude that
ṘT (t)R(t) +RT (t)Ṙ(t) = 0; (11.1.10)

and from (1.7) we conclude that

AT (t) = ṘT (t)R(t). (11.1.11)

See Exercise 1.1. It follows from (1.10) that A(t) is antisymmetric,

AT (t) + A(t) = 0, (11.1.12)

and therefore can be written in the form

A(t) = a1(t)L1 + a2(t)L2 + a3(t)L3 = a ·L (11.1.13)

where the coefficients aj(t) are to be determined. Here we have used the notation of Exercise
3.7.30. Now insert (1.13) into (1.8). Computation using the properties of the Lj gives the
results

aj(t) = ωbfj (t). (11.1.14)
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For example,

ωbf1 = −e2 · Ae3 = −e2 · [(a ·L)e3] = −e2 · (a× e3)

= e2 · (e3 × a) = (e2 × e3) · a = e1 · a = a1. (11.1.15)

To complete the discussion of rigid-body kinematics, rewrite (1.7) in the form

Ṙ = RA (11.1.16)

and introduce the notation

A = a1L
1 + a2L

2 + a3L
3 = ωbf1 L

1 + ωbf2 L
2 + ωbf3 L

3 = ωbf ·L. (11.1.17)

By substituting (1.17) into (1.16) we find for R(t) the kinematic differential equation of
motion

Ṙ = R ωbf ·L. (11.1.18)

Note that, since R is 3×3, the matrix differential equation (1.18) amounts to nine first-order
differential equations. Also note, in passing, that ωbf ·L ∈ so(3,R).

11.1.2 Angular Velocity and Rigid-Body Dynamics

We now turn to the dynamics of rigid-body motion. Suppose the body-fixed frame is oriented
in the body in such a way that the moment of inertia tensor is diagonal with diagonal entries
I1, I2, I3. (Caution! We will also continue to use, as we have already done, the symbol I
without a subscript to denote the 3× 3 identity matrix.) Then, from the work of Euler, we
know that there are the dynamic equations of motion

ω̇bf1 = N bf
1 /I1 + ωbf2 ω

bf
3 (I2 − I3)/I1, (11.1.19)

ω̇bf2 = N bf
2 /I2 + ωbf3 ω

bf
1 (I3 − I1)/I2, (11.1.20)

ω̇bf3 = N bf
3 /I3 + ωbf1 ω

bf
2 (I1 − I2)/I3. (11.1.21)

Here the N bf
j (R,ωbf , t) are the components of N in the body-fixed frame.6

11.1.3 Problem of Integrating the Combined Kinematic and
Dynamic Equations

Taking both the kinematic and dynamic equations into account, our task is to integrate
the nine kinematic differential equations (1.18) and the three dynamic differential equations
(1.19) through (1.21) given, at time ti, some initial orientation R(ti) and some initial angular
velocity ωbf (ti). In this context, the ambient space is 9 + 3 = 12 dimensional.

But now we see that there is a computational problem. We know that R must be an
orthogonal matrix. See (1.9). Also, it easily verified that exact integration of the matrix

6Note that we have allowed the possibility that N is ωbf dependent, and therefore have gone beyond a
Lagrangian/Hamiltonian formulation in allowing for the possibility of dissipative forces.
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differential equations (1.18), no matter how ωbf depends on the time t, maintains the orthog-
onality condition (1.9) if the initial matrix R(ti) is orthogonal. See Exercise 1.2. Thus we
know that, although R has nine entries, it must lie on the 3-dimensional manifold SO(3,R).
However, if some numerical integration method is used that is locally accurate only through
terms of order hm, then we expect that the orthogonality condition (1.9) will also be main-
tained only through terms of order hm. Thus, in the course of numerical integration, R
may be expected to move off the manifold SO(3,R). Moreover, if R is not orthogonal, then
the quantities N bf

j (R,ωbf , t) required in (1.19) through (1.21) are not defined since they are
only physically specified when R is orthogonal.7

11.1.4 Solution by Projection

What to do? One approach is to orthogonalize the R provided after or during the course of
each integration step, whenever an orthogonal R is needed to compute the N bf

j or the actual
orientation of the body. The orthogonalization can be done, for example, using any of the
methods of Section 3.6.4 and Exercise 4.5.7. This process of orthogonalization is an example
of a general problem: Given a submanifold embedded in some larger manifold (or ambient
space), and given an element in the larger manifold, how does one find a related element in
the submanifold, and what is the optional choice for such an element? In the nomenclature
of geometric integration, the process for determining such an element is called projection.8

11.1.5 Solution by Parameterization: Euler Angles

Another approach is to parameterize R in such a way that it is guaranteed to be orthogonal.
For example, suppose we employ the Euler parameterization (3.7.207). Then use of (1.18),
rewritten in the form

ωbf ·L = R−1Ṙ, (11.1.22)

gives the relations

ωbf1 = −φ̇ sin θ cosψ + θ̇ sinψ, (11.1.23)

ωbf2 = φ̇ sin θ sinψ + θ̇ cosψ, (11.1.24)

ωbf3 = φ̇ cos θ + ψ̇, (11.1.25)

7Note that a similar problem arises in the numerical integration of (10.4.28) with the initial condition
(10.4.29). Although the ambient space is (2n)2 dimensional, the solution of (10.4.28) is required to originate
and remain in the n(2n+ 1) dimensional submanifold Sp(2n,R).

8For the problem at hand we need some projection E9 → SO(3,R) where E9 denotes 9-dimensional

Euclidean space. Recall also the problem of matrix symplectification, projections E(2n)2 → Sp(2n,R),
treated in Subsection 3.6.5 and Chapter 4. Observe that all the integration methods of Chapter 2 require
the evaluation of the right side f at intermediate points, and generally these points will not be on the
desired manifold, but only nearby. Therefore f may not even be defined at these points unless f can be
extrapolated off the manifold to nearby points in the ambient space. Alternatively, the intermediate points
can be projected from the ambient space onto the manifold, and f is then computed at these projected
intermediate points. In either case one has to ensure that extrapolation or projection does not spoil the
desired accuracy of the integration method.



1114
11. GEOMETRIC/STRUCTURE-PRESERVING INTEGRATION: INTEGRATION ON

MANIFOLDS

from which it follows that

φ̇ = (1/ sin θ)(ωbf2 sinψ − ωbf1 cosψ), (11.1.26)

θ̇ = ωbf1 sinψ + ωbf2 cosψ, (11.1.27)

ψ̇ = ωbf3 + (cot θ)(ωbf1 cosψ − ω2 sinψ). (11.1.28)

See Exercise 1.3. In terms of Euler angles, our task is to integrate the equations (1.26)
through (1.28) and (1.19) through (1.21) where now

N bf
j = N bf

j (φ, θ, ψ, φ̇, θ̇, ψ̇, t). (11.1.29)

11.1.6 Problem of Kinematic Singularities

Have we achieved our goal? Only in a fashion. It is true that equations (1.26) through (1.28)
and (1.19) through (1.21) constitute a set of six first-order equations of motion, which is what
we expect for a system with three degrees of freedom. Also, R(φ, θ, ψ) is guaranteed to be
orthogonal no matter how inaccurately the equations of motion are numerically integrated.
However, note that the factor (1/ sin θ) in (1.26) and the factor (cot θ) in (1.28) become
singular when θ = 0 or θ = π. Therefore these equations are unsuitable for numerical
integration whenever θ ' 0 or θ ' π. The singularity at θ = 0 is particularly alarming
because it means that Euler angles do not provide a good coordinate patch in the vicinity
R ' I.

Now there is nothing a priori to prevent θ ' 0 or θ ' π from happening over the course
of a rigid body’s motion. (For example, a top is allowed to be vertical or inverted.) These
singularities are kinematic in the sense that they are an artifact of our choice of coordinate
system, and are not intrinsic to the motion of the system being considered. (See Exercise
8.2.11.) However, it can be shown from topological considerations that singularities of this
type must arise no mater how R is parameterized if only three parameters are used. A global
three-variable and singularity-free parameterization of SO(3,R) is impossible. Consequently,
if only three variables are used, it is necessary to change coordinate patches whenever a
singularity of the coordinate system in current use is approached.9 This complication might
appear to make it difficult to write a robust three-variable numerical integration procedure
that would apply for all possible rigid-body motions.10 However, we will eventually entertain
the possibility of changing the coordinate system frequently, and perhaps at every integration
step.

9Moreover, even if a trajectory does not pass directly through a kinematic singularity, the presence of a
singularity still affects the integration of nearby trajectories because numerical integration is based on the
assumption of analyticity and the use of Taylor series, and nearby singularities affect the convergence of
Taylor series.

10We also remark that the kind of problem we have encountered here is expected to occur quite generally
whenever one seeks to numerically integrate trajectories that are known, and hence required, to lie within
some group manifold. Because group manifolds do not generally have the topology of Euclidean space, there
is generally no global singularity-free coordinate system that can be used.
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11.1.7 Quaternions to the Rescue

Our ancestors have discovered that, for rigid-body motion, this troublesome singularity
problem can be overcome in an optimum way by the use of (unit) quaternion parameters
w = (w0, w1, w2, w3). Again see Exercise 8.2.11. Note that there are now four parameters,
rather then three as in the Euler-angle case, and they are related by the constraint

w · w =
3∑
j=0

w2
j = 1. (11.1.30)

Quaternion parameters and SO(3,R) matrices are connected by (8.2.73). Quaternion and
angle-axis parameters are connected by the relations

w0 = cos(θ/2), (11.1.31)

w = −n sin(θ/2). (11.1.32)

Quaternion and Euler-angle parameters are connected by the relations

w0 = cos(θ/2) cos[(1/2)(φ+ ψ)], (11.1.33)

w1 = − sin(θ/2) sin[(1/2)(−φ+ ψ)], (11.1.34)

w2 = − sin(θ/2) cos[(1/2)(−φ+ ψ)], (11.1.35)

w3 = − cos(θ/2) sin[(1/2)(φ+ ψ)]. (11.1.36)

See Exercise 1.4.
More to the point for our purposes, the angular velocities are given in terms of quaternion

parameters by the relations

ωbf1 = 2(w1ẇ0 − w0ẇ1 + w3ẇ2 − w2ẇ3), (11.1.37)

ωbf2 = 2(w2ẇ0 − w0ẇ2 + w1ẇ3 − w3ẇ1), (11.1.38)

ωbf3 = 2(w3ẇ0 − w0ẇ3 + w2ẇ1 − w1ẇ2). (11.1.39)

See Exercise 1.5. To these relations we add the further relation

0 = −
3∑
j=0

wjẇj, (11.1.40)

which follows from differentiating (1.30). Together the equations (1.37) through (1.40) can
be written in the vector/matrix form

0

ωbf1 /2

ωbf2 /2

ωbf3 /2

 =


−w0 −w1 −w2 −w3

w1 −w0 w3 −w2

w2 −w3 −w0 w1

w3 w2 −w1 −w0




ẇ0

ẇ1

ẇ2

ẇ3

 . (11.1.41)
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Remarkably, the 4× 4 matrix on the right side of (1.41) is orthogonal! See Exercise 1.6.
Consequently (1.41) can be inverted easily to give the relation

ẇ0

ẇ1

ẇ2

ẇ3

 =


−w0 w1 w2 w3

−w1 −w0 −w3 w2

−w2 w3 −w0 −w1

−w3 −w2 w1 −w0




0

ωbf1 /2

ωbf2 /2

ωbf3 /2

 . (11.1.42)

Taking components of (1.42) yields the four kinematic equations of motion

ẇ0 = (1/2)(ωbf1 w1 + ωbf2 w2 + ωbf3 w3), (11.1.43)

ẇ1 = (1/2)(−ωbf1 w0 − ωbf2 w3 + ωbf3 w2), (11.1.44)

ẇ2 = (1/2)(ωbf1 w3 − ωbf2 w0 − ωbf3 w1), (11.1.45)

ẇ3 = (1/2)(−ωbf1 w2 + ωbf2 w1 − ωbf3 w0). (11.1.46)

It is these four kinematic equations, along with the three dynamic equations (1.19) through
(1.21), that are to be integrated. Note that equations (1.43) through (1.46) are singularity
free. Indeed, they are linear in the wj. They are therefore ideal for numerical integration.
For further elaboration on this point, see the discussion at the end of Exercise 1.13.

It is easily verified that exact integration of the differential equations (1.43) through
(1.46) preserves the unit sphere condition (1.30) if this condition is satisfied at some initial
time ti. See Exercise 1.8. However, if we are integrating the equations of motion numerically
by some routine that is only exact through order hm, we may expect that the condition (1.30)
will be violated by terms of order hm+1 at each integration step. That is, instead of remaining
on the unit sphere S3, w will become a general point in the ambient four-dimensional space
E4. One simple procedure to overcome this problem is to repeatedly project, by simple
scaling, w ∈ E4 back onto the unit sphere S3 any time a unit w is required to compute
R(w). So doing requires little computational overhead.

11.1.8 Modification of the Quaternion Kinematic Equations of
Motion

Another procedure is to modify the kinematic equations of motion. Define an error quantity
ε that measures the departure of w from S3 by the rule

ε = 1− w · w. (11.1.47)

Replace equations (1.43) through (1.46) by the modified equations

ẇ0 = (1/2)(ωbf1 w1 + ωbf2 w2 + ωbf3 w3) + kεw0, (11.1.48)

ẇ1 = (1/2)(−ωbf1 w0 − ωbf2 w3 + ωbf3 w2) + kεw1, (11.1.49)

ẇ2 = (1/2)(ωbf1 w3 − ωbf2 w0 − ωbf3 w1) + kεw2, (11.1.50)

ẇ3 = (1/2)(−ωbf1 w2 + ωbf2 w1 − ωbf3 w0) + kεw3, (11.1.51)
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where k is some constant satisfying k > 0. Evidently the modified equations have the
same solutions as the original equations as long as ε = 0. But, if for some reason ε 6= 0,
the modified equations drive ε to 0 if k is positive! Again see Exercise 1.8. Thus, even
when integrated numerically, the modified equations (1.48) through (1.51) along with (1.19)
through (1.21) provide a satisfactory description of rigid body motion, and are commonly
used for this purpose in applications that range from inertial guidance (including space craft
orientation/control) through robotics to virtual reality.

11.1.9 Local Coordinate Patches

So far, in the case of rigid-body motion, we have been able to finesse the problem of main-
taining the manifold condition (1.9) either by some projection E9 → SO(3,R) or the use of
a remarkable coordinate system, namely quaternions, and the simpler projection E3 → S3

by scaling, or by modification of the quaternion kinematic equations of motion. Are there
other approaches, and in particular are there approaches that are also applicable in a more
general context?

One procedure is to introduce a local coordinate patch at each integration step. Suppose,
for a given integration step, we write

R(t) = RbRv(t). (11.1.52)

Here

Rb = R(tb) (11.1.53)

where tb is the time at the beginning of the integration step, and Rv is a variable rotation
matrix near the identity with the property

Rv(tb) = I. (11.1.54)

From (1.52) we have the relation

Ṙ = RbṘv, (11.1.55)

and substituting this result and (1.52) into (1.18) yields the relation

Ṙv = Rv ωbf ·L. (11.1.56)

We wish to integrate (1.56) to find Rv(tb + h) starting with the initial condition (1.54).
Then, having done so, we have from (1.52) the result

R(tb + h) = RbRv(tb + h). (11.1.57)

Note that in view of (1.54) what is needed in any given instance, if parameters are to be
employed, is a local coordinate patch in the vicinity of the identity.
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11.1.10 Canonical Coordinates of the Second Kind: Tait-Bryan
Angles

In the case of SO(3,R), how can we parameterize Rv near the identity? One possibility is
to employ canonical coordinates of the second kind (see Section 7.9) to write, for example,
the Ansatz

Rv(λ) = exp(λ1L
1) exp(λ2L

2) exp(λ3L
3) (11.1.58)

with the quantities λj being parameters. [In the context of rigid-body motion, the quantities
λj in (1.58) are called Tait-Bryan or Cardan angles.] Unlike the Euler-angle parameteriza-
tion, application of the BCH formula shows that such parameterizations are well defined for
Rv near I and the λj near 0 since all three Lj are employed.11

For these coordinates use of (1.22) yields the relations

ωbf1 = λ̇1 cos(λ2) cos(λ3) + λ̇2 sin(λ3), (11.1.59)

ωbf2 = −λ̇1 cos(λ2) sin(λ3) + λ̇2 cos(λ3), (11.1.60)

ωbf3 = λ̇1 sin(λ2) + λ̇3. (11.1.61)

And inverting the relations (1.59) through (1.61) yields the kinematic equations of motion

λ̇1 = [1/ cos(λ2)][ωbf1 cos(λ3)− ωbf2 sin(λ3)], (11.1.62)

λ̇2 = ωbf1 sin(λ3) + ωbf2 cos(λ3), (11.1.63)

λ̇3 = ωbf3 − tan(λ2)[ωbf1 cos(λ3)− ωbf2 sin(λ3)]. (11.1.64)

See Exercise 1.9. In terms of these coordinates our task is to integrate the equations (1.62)
through (1.64) and (1.19) through (1.21) where now

N bf
j = N bf

j (λ1, λ2, λ3, λ̇1, λ̇2, λ̇3, t). (11.1.65)

Observe, as anticipated, that the equations of motion are nonsingular for small λj. How-
ever they are singular when λ2 = ±π/2. (For the source of these singularities, again see
Exercise 1.9.) Thus, like the case for Euler angles, these coordinates cannot be used globally.

11.1.11 Canonical Coordinates of the First Kind: Angle-Axis
Parameters

Alternatively, inspired by the angle-axis parameterization (3.7.199), another possibility is to
introduce parameters λ1, λ2, λ3 and make the Ansatz

Rv(λ) = exp(λ1L
1 + λ2L

2 + λ3L
3) = exp(λ ·L). (11.1.66)

11Canonical coordinates of the first and second kind are both well defined near the origin for any finite-
dimensional Lie group. However, we know that in some cases canonical coordinates of the first kind cannot
be set up globally. See Section 3.8. The global status of canonical coordinates of the second kind is less
clear. In general there is a global polar decomposition, which amounts to a hybrid of canonical coordinates
of the first and second kinds.
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That is, we have expressed Rv ∈ SO(3,R) and near the identity in terms of elements in the
Lie algebra so(3,R); and we have parameterized the Lie algebra. Since the map between
group elements near the identity and Lie elements near the origin is well defined, we know
that this parameterization is well defined for Rv near I and the λj near 0. As described in
Section 7.9, this parameterization amounts to using canonical coordinates of the first kind.

This parameterization yields the remarkably symmetric looking kinematic equations of
motion

λ̇ = ωbf + (1/2)(λ× ωbf ) + [(λ · ωbf )λ− (λ · λ)ωbf ]{1/|λ|2 − [1/(2|λ|)] cot(|λ|/2)}.
(11.1.67)

See Exercise 1.10. For the inverse relation that expresses ωbf in terms of λ and λ̇, see
Exercise 1.11.

Observe, again as anticipated, that the equations of motion are nonsingular for small λj,
namely when |λ| < 2π. But they are singular when |λ| = 2π. We expect this singularity to
occur because we see from (3.7.188) and (3.7.202) that the individual components of n are
not defined in terms of v or R when θ = |λ| = 2π.

We reiterate that even when coordinates can be set up globally, as in the case of SO(3,R)
using either Euler angles or angle-axis parameters, there may still be singularities in the
equations of motion because at some points the inverse map from the group to the Lie
algebra may not be well defined. We have seen an example of this problem in the case of
Euler angles. Every element of SO(3,R) can be written in Euler form, but at θ = 0 and
θ = π the inverse map is not well defined. The same is true for angle-axis parameters. Every
element of SO(3,R) can be written in angle-axis form, but at θ = 2π the inverse map is not
well defined.

11.1.12 Cayley Parameters

Quadratic groups, including SO(3,R) and SU(2), can also be parameterized near the iden-
tity in terms of Cayley parameters. When Cayley parameters are used for SO(3,R) or
SU(2), call them µj, the task is to find differential equations that specify the µ̇j in terms of
the µj and ωbf .

We first consider the case of SO(3,R) and employ the Cayley parameterization

Rv(µ) = (I + µ ·L)(I − µ ·L)−1. (11.1.68)

For this parameterization it can be shown that there are the kinematic equations of motion

µ̇ = (1/2)[ωbf + (µ× ωbf ) + (µ · ωbf )µ]. (11.1.69)

See Exercise 1.13.
Next consider the case of SU(2) and employ the Cayley parameterization

uv(µ) = (I + µ ·K)(I − µ ·K)−1. (11.1.70)

Here we have again used the notation of Exercise 3.7.30. In this case there are the kinematic
equations of motion

µ̇ = (1/2)[ωbf + (µ× ωbf ) + (1/2)(µ · ωbf )µ− (1/4)(µ · µ)ωbf ]. (11.1.71)



1120
11. GEOMETRIC/STRUCTURE-PRESERVING INTEGRATION: INTEGRATION ON

MANIFOLDS

Again see Exercise 1.13.

What can be said about the singularity structure of the kinematic equations of motion
(1.69) and (1.71)? Strangely enough, both sets appear to be singularity free! However, this
appearance is deceptive because both sets of kinematic equations of motion are singular in
µ at infinity, and there is the possibility that this singularity can be encountered in finite
time. Yet again see Exercise 1.13.

11.1.13 Summary of Integration Using Local Coordinates

Upon employing (1.58) or (1.66) in (1.56) we can find first-order differential equations that,
analogous to the relations (1.26) through (1.28), specify λ̇1, λ̇2, λ̇3 in terms of the λj and ωbfj .
Moreover, these equations will be singularity free in the neighborhood the origin in λ space.
What we have done is to convert the group-space differential equation (1.56) into a set of
differential equations for the parameters λj. These equations, with the initial conditions

λj(t
b) = 0, (11.1.72)

see (1.54), can be integrated numerically for one integration step using any convenient
method to find the quantities λj(t

b + h). If h is sufficiently small, the λ(t) for t ∈ [tb, tb + h]
will remain small, and the differential equations specifying the λ̇j will remain singularity free
over the course of integration. Once the quantities λj(t

b + h) have been found, R(tb + h) is
given, depending on what type of canonical parameterization has been employed, by either
(1.58) or (1.66).

As a modification of this procedure, one may integrate for k steps to find λj(t
b+kh) and

subsequently R(tb + kh). What is required then is continual checking that the λj have not
come too close to singular values.

Evidently generalizations of the methods just described can in principle be employed
for any Lie group. The difficulties encountered lie only in determining the equations that
specify the λ̇j, see for example Exercises 1.9 and 1.10, and in evaluating the exponentials
that occur with the use of (1.58) or (1.66). Assuming these exponentials can be evaluated
accurately, the result for Rv(tb + h) will lie on the group manifold to high accuracy even
though the λj(t

b + h) are only exact through terms of order hm. Finally, we must assume
that the group multiplications involved in (1.57) can also be carried out with high accuracy.

Similarly, with the use of Cayley parameters, the difficulties lie only in determining the
equations that specify the µ̇j [see for example (1.69) and (1.71)], and in carrying out the
matrix inversions and multiplications that occur with the use of a Cayley representation
[see (1.68) and (1.70)]. Assuming these inversions and multiplications can be evaluated
accurately, the results for Rv(tb+h) or uv(tb+h) will lie on the associated group manifold to
high accuracy even though the µj(t

b +h) are only exact through terms of order hm. Finally,
we must again assume that the group multiplications involved in (1.57), for example, can
also be carried out with high accuracy.
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11.1.14 Integration in the Lie Algebra: Exponential
Representation

With a suitable translation of the origin in time, the differential equation (1.56) with the
initial condition (1.54) is a special case of the general differential equation of the form

Ṁ(t) = M(t)A(t) (11.1.73)

with the initial condition
M(0) = I, (11.1.74)

and our goal is to find M(h). Here M(t) is expected to belong to some Lie group G and is
near the identity for small t; and A(t) belongs to the Lie algebra of G, which we denote by
L(G). See Appendix C. In particular, we wish to obtain M(h) by numerical means with a
possible local error of order hm+1 and, despite this possible error, we want to guarantee that
M(h) is in G.

Since M(t) is near the identity, we may write

M(t) = exp[B(t)] (11.1.75)

where B(t) is in L(G) and is small (near the origin). If we can find B(h) with a local error
of order hm+1 and if, despite this possible error, we can assure that B(h) is in L(G), then
we know that M(h) = exp[B(h)] will have the desired local accuracy and is guaranteed to
be in G. We will now see that a suitable B(h) can be found by converting the differential
equation (1.73), a group differential equation for the group elements M(t) in terms of the
group elements M(t) and the Lie elements A(t), into a Lie differential equation for the Lie
elements B(t) in terms of the Lie elements B(t) and the Lie elements A(t).

Before proceeding further, here is a chance to learn some terminology: Thinking geomet-
rically, we may view M(t) as a path in G, and we may view B(t) as a path in L(G). In this
context, the path B(t) is said to be a lift of the path M(t). That is, we may view L(G), the
Lie algebra of G, as lying “above” the group G. Correspondingly, we may say that the path
B(t) is obtained by “lifting” the path M(t) in the group G up to a path in L(G). Upon
solving (1.75) for B in terms of M , we have the relation

B(t) = log[M(t)], (11.1.76)

and we see that the lift in question is accomplished by the logarithmic function. Conversely,
in view of (1.75), the exponential function “lowers” the path B(t) in L(G) down to the path
M(t) in the group G.

Let us continue. Given the differential equation (1.73) for the path M(t), what is the
associated differential equation for the path B(t)? The relation (1.75) can be differentiated
to yield the result

Ṁ(t) = M(t) iex[−#B(t)#]Ḃ(t). (11.1.77)

See (*) in Appendix C. Also, in view of (1.73), the relation (1.77) can be rewritten in the
form

iex[−#B(t)#]Ḃ(t) = A(t). (11.1.78)
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Finally, as in Section 10.3, the relation (1.78) can be inverted to become

Ḃ(t) = {iex[−#B(t)#]}−1A(t). (11.1.79)

We have obtained a (somewhat fearsome looking) differential equation for B in terms of B
and A. Our task is to integrate this equation from t = 0 to t = h with, in view of (1.74),
the initial condition

B(0) = 0. (11.1.80)

What can we make of (1.79)? The function [iex(−w)]−1 has an expansion of the form

[iex(−w)]−1 =
∞∑
`=0

b`w
` (11.1.81)

where the coefficients b` are known. Again see Appendix C. Correspondingly, the differential
equation (1.79) is equivalent to the equation

Ḃ(t) =
∞∑
`=0

b`[#B(t)#]`A(t)

= {b0 + b1[#B(t)#] + b2[#B(t)#]2 + · · · }A(t)

= b0A(t) + b1{B(t), A(t)}+ b2{B(t), {B(t), A(t)}}+ · · · . (11.1.82)

In general, all terms in the expansion (1.82) need to be retained. That is, in general, we
need to sum the series (1.82) which, in the general case, can be a formidable task.12

However, suppose we only wish to obtain B(h) through some order in h. From the
Magnus expansion, see Section 10.3, we know that B(t) is of order h for t ∈ [0, h]. It follows
that the term b`[#B(t)#]`A(t) is of order h` and therefore contributes a term of order h`+1

to B(h). Suppose we truncate the series (1.82) beyond ` = n with n even. Then the size of
the first omitted term will be of order hn+3.13 The result is the replacement of the differential
equation (1.82) with the truncated equation

Ḃ(t) =
`=n∑
`=0

b`[#B(t)#]`A(t)

= b0A(t) + b1{B(t), A(t)}+ b2{B(t), {B(t), A(t)}}+ · · ·
+ bn{B(t), {B(t), {· · · {B(t), A(t)} · · · }}}, (11.1.83)

and the understanding is that this truncated equation is to be integrated only over the
interval t ∈ [0, h]. Then the B(h) so obtained will be correct through order hm with m =
n+ 2. We have obtained a tractable problem. We have also been introduced to a new idea:
the equation of motion to be integrated may be modified depending on the desired local
accuracy for the integrated result.

12Exercise 1.10 shows, in effect, how this summation can be done for the cases of the Lie algebras su(2)
and so(3,R).

13Examination of the b`, see Appendix C, reveals (save for b1 = 1/2) that they all vanish for odd `.
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Still it might appear that, even with all our efforts, not much has been accomplished.
We will soon see that progress has indeed been made. First, let us perform a sanity check
on the results obtained so far. Suppose that B(t) ∈ L(G). From the definition

Ḃ(t) = lim
ε→0

[B(t+ ε)−B(t)]/ε (11.1.84)

we see that only vector space operations are involved in the calculation of Ḃ(t), and therefore
Ḃ(t), which appears on the left side of (1.83), must also be in L(G). But is the right side
of (1.83) in L(G)? We know that A(t) is in L(G). Also, all the rest of the right side of
(1.83) involves sums of commutators of B(t) with A(t). By definition, L(G) is closed under
addition and commutation. Therefore the right side of (1.83) is also in L(G). We conclude
(1.83) is sane at least to the extent that both sides are in L(G).

But now we make a key observation: Suppose (1.83) is integrated by some numerical
integrator to find B(t). Examination of the various numerical integration schemes (for ex-
ample all those discussed in Chapter 2) reveals that they all involve just linear combinations
of the right side of the differential equation in question evaluated at various times and coor-
dinate values. We know, by definition, that L(G) is closed under addition. Therefore, if the
right side of the differential equation is known to be in L(G) at all evaluation points, then
the result of numerically integrating such an equation is guaranteed to be in L(G). Since
we have verified that the right side of (1.83) is in L(G), it follows that the B(t) obtained by
numerical integration, whatever the accuracy of the method, is guaranteed to be in L(G).
Finally, if we wish to obtain B(h) with an accuracy of some desired order in h, we may
truncate (1.82) to obtain (1.83) with a known accuracy, and then integrate (1.83) using any
integrator whose order equals or exceeds the accuracy of (1.83).

In summary, where conveniently feasible, integration in the Lie algebra is advantageous
compared to integration in the group because numerical integration schemes, no matter their
accuracy, generally preserve Lie algebraic structure.14 Put another way, suppose the matrices
A and B are k×k. Then (1.83) is a differential equation in an ambient k2 dimensional space.
Numerical integration of (1.83) by any of the standard methods produces a sequence of points
in this ambient space corresponding to the times tn. We have seen that if the initial point
is in the subspace L(G), then all subsequent points will also be in L(G). In our case, the
initial point is given by (1.80), and is obviously in L(G). Therefore all subsequent points
will also be in L(G).15

11.1.15 Integration in the Lie Algebra: Cayley Representation

We have used the exponential and logarithmic functions to relate G and L(G). For quadratic
groups, which are often of interest, one may also use a Cayley representation to provide a

14Note that the work of Subsection 10.4.2 essentially employs a hybrid of canonical coordinates of the
first and second kinds for the the nonlinear part of a symplectic map and formulates differential equations
in the Lie algebra. The work of Section 10.3 and Subsection 10.4.3 also formulates differential equations in
the Lie algebra.

15In the context of the exponential representation and in the case of finite-dimensional groups, the strategy
of integrating in the Lie algebra and making the truncation (1.83) was pioneered by Munthe-Kaas; and the
use of Runge-Kutta in this setting is often referred to as RKMK integration.
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map between group elements near the identity and Lie algebra elements near the origin.
That is, lowering and lifting can be done using the Cayley transformation and its inverse.
See Section 3.12. Where possible, employing this approach yields a Lie algebraic differential
equation analogous to (1.82), but with the advantage that only three terms appear on the
right side. Therefore, no truncation is required. See Exercise 1.12.

We again seek to integrate equations of the form (1.73) with the initial condition (1.74)
where now M(t) is expected to belong to some quadratic Lie group G, and A(t) belongs to
its associated Lie algebra. What we again desire is a way of numerically integrating (1.73)
that guarantees M(t) is in G even though the numerical solution may be locally exact only
through terms of order hm.

When M belongs to a quadratic group G, we may employ the Cayley parameterization

M = (I + V )(I − V )−1, (11.1.85)

where V is in the Lie algebra of G. The challenge now is is to find the equation of motion
for V . In Exercise 1.12 you will show that the desired result is the equation of motion

V̇ = (1/2)(A+ {V,A} − V AV ). (11.1.86)

Note that, in contrast to (1.82) whose right side contains an infinite number of terms,
the right side of (1.86) contains only three terms. Therefore no truncation is necessary and,
unlike the case of B(t), the accuracy to which V (t) is calculated depends only on the method
of integration.

Is this result sane? For a quadratic group G we know that V is in the Lie algebra. By
an argument identical to that made in Subsection 1.14 for the case of Ḃ(t), it follows that
V̇ (t) must also be in the Lie algebra of G. But is the right side of (1.86) in the Lie algebra
of G? Evidently, since A is in the Lie algebra of G, the first two terms on the right side of
(1.86) are in the Lie algebra of G. What about the third term V AV ? It can be shown that
for a quadratic group the quantity V AV is also in the Lie algebra of G. Again see Exercise
1.12. Therefore (1.86) is sane at least to the extent that both its sides are in the Lie algebra
of G.

Suppose (1.86) is integrated by some numerical integrator to find V (t) under the assump-
tion that V is initially in the Lie algebra of G. We repeat the key observation of Subsection
1.14: Examination of the usual numerical integration schemes, see Chapter 2, reveals that
they all involve just linear combinations of the right side of the differential equation in
question evaluated at various times and coordinate values. Therefore, if the right side is
known to be in the Lie algebra of G for all evaluation points, then the result of numerically
integrating such an equation is guaranteed to be in the Lie algebra of G, no matter what the
local accuracy of the integrator or the step size employed. Since we have verified that the
right side of (1.86) is in the Lie algebra of G, it follows that V (t) will be in the Lie algebra
of G if it is initially in the Lie algebra of G. Finally, since V (t) is in the Lie algebra of G, it
follows that M(t) given by (1.85) is in G.

We have achieved our goal of, in effect, numerically integrating (1.73) in such a way that
M(t) is guaranteed to be in G. All that is required is accurate matrix multiplication in the
calculation of the right side of (1.86) and accurate matrix inversion and multiplication in the
evaluation of (1.85). Note, however, that this procedure cannot be carried out globally since
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the Cayley parameterization (1.85) cannot be made globally. It may therefore be necessary
to change coordinate systems (by left or right group translation) from time to time during
the course of a numerical integration in order to stay clear of the singularities associated
with any given Cayley parametrization.16

11.1.16 Parameterization of G and L(G)

To reiterate a point, if the matrices M or B are k × k, then equations of the kind (1.73) or
(1.82) involve k2 variables. By contrast, the group G, and correspondingly its Lie algebra
L(G), generally have much smaller dimension. Therefore it may be advantageous to param-
eterize the group or Lie algebra and to convert the differential equations for the group or Lie
algebra into (usually) far fewer differential equations for the parameters. This is what was
done for the case of SO(3,R) by the use of quaternion parameters, the use of Tait-Bryan
angles, and the use of angle-axis parameters.

By the introduction of a basis it is also possible to parameterize the Lie elements that
occur in a Cayley formulation. That is, we parameterize the A and V appearing in (1.86).
Again, as illustrated in Subsection 1.12, the result is (usually) far fewer equations that need
to be integrated. See also Exercise 1.13.

11.1.17 Quaternions Revisited

We close this subsection by remarking that, in the case of SO(3,R) and in the context of
local coordinates, there is a still better approach, which again uses quaternions: Namely,
suppose we again write (1.56) but now parameterize Rv in terms of quaternions. In this case
the relations(1.43) through (1.46) will continue to hold and, in view of (1.54), there will be
the initial conditions

w0(tb) = 1, (11.1.87)

wj(t
b) = 0 for j = 1, 2, 3. (11.1.88)

Also, if h is sufficiently small, the wj for j = 1, 2, 3 will remain small over the course of a
single integration step. We may therefore enforce the condition (1.30) by writing

w0 = [1− (w2
1 + w2

2 + w2
3)]1/2 (11.1.89)

and insert this result into (1.44) through (1.46). So doing gives the modified equations of
motion

ẇ1 = (1/2){−ωbf1 [1− (w2
1 + w2

2 + w2
3)]1/2 − ωbf2 w3 + ωbf3 w2}, (11.1.90)

ẇ2 = (1/2){ωbf1 w3 − ωbf2 [1− (w2
1 + w2

2 + w2
3)]1/2 − ωbf3 w1}, (11.1.91)

ẇ3 = (1/2){−ωbf1 w2 + ωbf2 w1 − ωbf3 [1− (w2
1 + w2

2 + w2
3)]1/2}. (11.1.92)

These three kinematic equations, whose right sides depend only on (w1, w2, w3) and on
(ωbf1 , ω

bf
2 , ω

bf
3 ), along with the three dynamic equations (1.19) through (1.21), are to be

16It might appear the the right side of (1.86) is singularity free. However, it is singular at infinity, and
this singularity can be reached in finite time. See the discussion in Exercise 1.13.
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integrated over the interval t ∈ [tb, tb + h]. (And any kind of integrator can be used.)
Whenever w0 is needed, it is to be computed from (1.89). Note that in view of (8.2.73),
no exponentials need be computed to find Rv(t). Also, the kinematic equations are mostly
linear and involve, at worst, the calculation of a square root. Moreover, if desired, the
equivalent of matrix multiplication in SO(3,R) can be carried out at the quaternion level
where the operations are computationally simpler. See (5.10.24) and Exercises 8.2.10 and
8.2.11. For all these reasons, relatively few floating-point operations are needed to carry out
an integration step. Finally, although the quaternion parameters (w1, w2, w3) may only be
computed with a local error of order hm+1, the resulting matrix Rv(t

b+h) will be orthogonal
to a very high accuracy limited only by roundoff error.

Exercises

11.1.1. The purpose of this exercise is to explore some of the consequences of the definition
of angular velocity given in Subsection 1.1. The first task is a bit of housekeeping. In
deriving (1.10) through (1.12) it was tacitly assumed that

[(d/dt)R]T = (d/dt)(RT ). (11.1.93)

That is, the operations of differentiating and transposing commute. Verify that this is so
for any matrix.

Now move on to the main task. The components ωbfj (t) of the angular velocity in the
body-fixed frame are defined by the rule (1.4). Accordingly, define the angular velocity vector
ω(t) by the rule

ω(t) =
∑
j

ωbfj (t)fj(t). (11.1.94)

Let us compute the vector ω × f1. Verify the chain of relations

ω × f1 = ωbf2 f2 × f1 + ωbf3 f3 × f1 = −ωbf2 f3 + ωbf3 f2

= (f3 · ḟ1)f3 − (f1 · ḟ2)f2

= (f3 · ḟ1)f3 + (f2 · ḟ1)f2 + (f1 · ḟ1)f1

= ḟ1. (11.1.95)

Here we have used the fact

f1 · f2 = 0 (11.1.96)

from which it follows that

ḟ1 · f2 + f1 · ḟ2 = 0, (11.1.97)

and the fact

f1 · f1 = 1 (11.1.98)

from which it follows that

f1 · ḟ1 = 0. (11.1.99)
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It is easily checked that there are two more relations like (1.95), and that they together give
the general equations of motion

ḟj(t) = ω(t)× fj(t). (11.1.100)

Verify from (1.100) that

fj × ḟj = fj × (ω × fj) = ω − (ω · fj)fj, (11.1.101)

and therefore ∑
j

fj × ḟj = 3ω −
∑
j

(ω · fj)fj = 3ω − ω = 2ω. (11.1.102)

Conclude that ω is also given by the relation

ω = (1/2)
∑
j

fj × ḟj. (11.1.103)

Moreover, suppose v(t) is any vector that is “fixed” in the body. That is, suppose v(t) has
an expansion of the form

v(t) =
∑
j

vjfj(t) (11.1.104)

where the components vj are constant numbers. Show that it follows from (1.100) that v
obeys the equation of motion

v̇(t) = ω(t)× v(t). (11.1.105)

Let us compute the ωbfj (t) for a special case. Suppose R(t) is of the form

R(t) = exp[θ(t)n ·L] (11.1.106)

where n is a constant vector. Verify that

Ṙ(t) = exp[θ(t)n ·L] θ̇(t)n ·L. (11.1.107)

Show, from (1.22), that in this case

ωbfj (t) = θ̇(t)nj. (11.1.108)

This special case illustrates why the name angular velocity is appropriate.
What can be said more generally? Suppose R(t) is a time-dependent matrix in SO(3,R).

Show that

R(t+ dt) = R(t) + Ṙ(t)dt+O[(dt)2] = R(t)[I +R−1(t)Ṙ(t)dt] +O[(dt)2]

= R(t)[I + (dt)ωbf (t) ·L] +O[(dt)2]

= R(t) exp[(dt)ωbf (t) ·L] +O[(dt)2]. (11.1.109)

You have shown that, through terms of order dt, R(t+dt) is gotten from R(t) by translating
R(t) on the right with the near-identity element exp[(dt)ωbf (t) ·L].
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Can R(t + dt) and R(t) instead be related by translating R(t) on the left with a near-
identity element? Show that the answer is yes. Verify the manipulations

R(t+ dt) = R(t) + Ṙ(t)dt+O[(dt)2] = [I + dtṘ(t)R−1(t)]R(t) +O[(dt)2]

= {I + dtR(t)[R−1(t)Ṙ(t)]R−1(t)}R(t) +O[(dt)2]

= {I + dtR(t)[ωbf (t) ·L]R−1(t)}R(t) +O[(dt)2]. (11.1.110)

Next verify that
R(t)[ωbf (t) ·L]R−1(t) = ωsf (t) ·L (11.1.111)

where ωsf (t) is defined by the relation

ωsf (t) = R(t)ωbf (t). (11.1.112)

See (8.2.59). Combine (1.110) through (1.112) to get the result

R(t+ dt) = {I + dtR(t)[ωbf (t) ·L]R−1(t)}R(t) +O[(dt)2]

= {I + dtωsf (t) ·L}R(t) +O[(dt)2]

= exp[(dt)ωsf (t) ·L]R(t) +O[(dt)2]. (11.1.113)

You have shown that, through terms of order dt, R(t+dt) is gotten from R(t) by translating
R(t) on the left with the near-identity element exp[(dt)ωsf (t) · L]. Verify also that (1.113)
implies the relation

ωsf (t) ·L = Ṙ(t)R−1(t), (11.1.114)

which is to be compared with (1.22).
According to (1.112), the quantities we have called ωsfj are related to the ωbfj by the rule

ωsfj =
∑
k

Rjkω
bf
k . (11.1.115)

What is their significance? Recall the angular velocity vector ω(t) defined by (1.94). Rewrite
this definition using the dummy index k to obtain the equivalent definition

ω(t) =
∑
k

ωbfk (t)fk(t). (11.1.116)

Since the space-fixed vectors ej form a basis, we may make the expansion

ω(t) =
∑
j

[ej · ω(t)]ej. (11.1.117)

Use the representation (1.116) to compute the expansion coefficients [ej ·ω(t)]. Verify that
so doing gives the result

ej · ω(t) =
∑
k

ωbfk (t)[ej · fk(t)] =
∑
k

ωbfk (t){ej · [R(t)ek(t)]}

=
∑
k

ωbfk (t)Rjk(t) =
∑
k

Rjk(t)ω
bf
k (t) = ωsfj (t), (11.1.118)
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where use has been made of (1.2) and (1.115). By putting everything together, show that
(1.117) can be rewritten in the form

ω(t) =
∑
j

ωsfj (t)ej. (11.1.119)

We conclude that the quantities ωsfj (t) are the space-fixed components of the angular velocity
vector ω(t).

Finally show, for the special case (1.106), that

ωsfj (t) = ωbfj (t). (11.1.120)

11.1.2. The purpose of this exercise is to show that the matrix differential equation (1.18)
preserves the orthogonality condition (1.9), and conversely.

Begin with the converse. We already know from the orthogonality assumption (1.9) that
the matrix (R−1Ṙ) must be antisymmetric. See (1.12). Therefore for orthogonal 3 × 3
matrices a relation of the form (1.18) must hold.

Now prove the main assertion. Show, by taking transposes, that (1.18) implies the
relation

(d/dt)RT = −ωbf ·L RT . (11.1.121)

Next show that there is the relation

(d/dt)(RRT ) = [(d/dt)R]RT +R(d/dt)RT = R(ωbf ·L)RT −R(ωbf ·L)RT = 0. (11.1.122)

Here use has been made of (1.18) and (1.121). Assume that R is orthogonal at the initial
time ti,

R(ti)R(ti)T = I = RT (ti)R(ti). (11.1.123)

Verify that the solution to the differential equation (1.122) with the initial condition (1.123)
is

R(t)R(t)T = I = RT (t)R(t). (11.1.124)

You have shown that (1.18) preserves orthogonality.

11.1.3. The purpose of this exercise is to derive equations (1.23) through (1.28), the ex-
pressions for the ωbfj in terms of Euler angles. Recall the Euler-angle parameterization
(3.7.207),

R(t) = exp[φ(t)L3] exp[θ(t)L2] exp[ψ(t)L3]. (11.1.125)

According to (1.22), we must compute the quantities ωbfj defined by the relation

ωbf ·L = R−1Ṙ. (11.1.126)

Verify that R−1 is given by the relation

R−1 = exp(−ψL3) exp(−θL2) exp(−φL3). (11.1.127)
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Show that Ṙ is given by the relation

Ṙ = φ̇L3 exp(φL3) exp(θL2) exp(ψL3)

+ exp(φL3)θ̇L2 exp(θL2) exp(ψL3)

+ exp(φL3) exp(θL2) exp(ψL3)ψ̇L3. (11.1.128)

Now begins the fun. Verify that R−1Ṙ is given by the seemingly hopeless expression

R−1Ṙ = exp(−ψL3) exp(−θL2) exp(−φL3)φ̇L3 exp(φL3) exp(θL2) exp(ψL3)

+ exp(−ψL3) exp(−θL2) exp(−φL3) exp(φL3)θ̇L2 exp(θL2) exp(ψL3)

+ exp(−ψL3) exp(−θL2) exp(−φL3) exp(φL3) exp(θL2) exp(ψL3)ψ̇L3.

(11.1.129)

Simplify each of the three lines in (1.129) so that they become

exp(−ψL3) exp(−θL2) exp(−φL3)φ̇L3 exp(φL3) exp(θL2) exp(ψL3)

= φ̇ exp(−ψL3) exp(−θL2)L3 exp(θL2) exp(ψL3), (11.1.130)

exp(−ψL3) exp(−θL2) exp(−φL3) exp(φL3)θ̇L2 exp(θL2) exp(ψL3)

= θ̇ exp(−ψL3)L2 exp(ψL3), (11.1.131)

exp(−ψL3) exp(−θL2) exp(−φL3) exp(φL3) exp(θL2) exp(ψL3)ψ̇L3

= ψ̇L3. (11.1.132)

Line (1.132) is as simple as we could desire. The next more complicated line is (1.131).
Show, using the machinery of Exercise 8.2.10, that

exp(−ψL3)L2 exp(ψL3) = cos(ψ)L2 + sin(ψ)L1. (11.1.133)

Thus, the right side of (1.131) becomes

θ̇[cos(ψ)L2 + sin(ψ)L1]. (11.1.134)

Finally, work on line (1.130). Show that

exp(−θL2)L3 exp(θL2) = cos(θ)L3 − sin(θ)L1. (11.1.135)

Next show that

exp(−ψL3)[cos(θ)L3 − sin(θ)L1] exp(ψL3)

= cos(θ)L3 − sin(θ) exp(−ψL3)L1 exp(ψL3)

= cos(θ)L3 − sin(θ)[cos(ψ)L1 − sin(ψ)L2].

(11.1.136)
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By combining (1.135) and (1.136), verify that

exp(−ψL3) exp(−θL2)L3 exp(θL2) exp(ψL3)

= cos(θ)L3 − sin(θ)[cos(ψ)L1 − sin(ψ)L2].

(11.1.137)

Thus, the right side of (1.130) becomes

φ̇{cos(θ)L3 − sin(θ)[cos(ψ)L1 − sin(ψ)L2]}. (11.1.138)

All the necessary ingredients are at hand. By combining (1.129) through (1.138), show
that

R−1Ṙ = φ̇{cos(θ)L3 − sin(θ)[cos(ψ)L1 − sin(ψ)L2]}
+ θ̇[cos(ψ)L2 + sin(ψ)L1]

+ ψ̇L3

= (−φ̇ sin θ cosψ + θ̇ sinψ)L1

+ (φ̇ sin θ sinψ + θ̇ cosψ)L2

+ (φ̇ cos θ + ψ̇)L3. (11.1.139)

Verify, upon equating coefficients of the Lj in (1.126) and (1.139), that the relations (1.23)
through (1.25) follow. Finally, verify that inverting the relations (1.23) through (1.25) yields
the relations (1.26) through (1.28).

11.1.4. The purpose of this exercise is to derive equations (1.31) and (1.32), the relation
between quaternion and angle-axis parameters, and equations (1.33) through (1.36), the
relation between quaternion and Euler-angle parameters. For this purpose, it is convenient to
exploit the homomorphism between SO(3,R) and SU(2). Review Exercises 3.7.30, 5.10.13,
8.2.10, and 8.2.11.

Suppose u ∈ SU(2) is parameterized in terms of angle-axis parameters by writing

u = exp(θn ·K) = I cos(θ/2) + 2(n ·K) sin(θ/2). (11.1.140)

See (3.7.186) and (3.7.188). Suppose that u is also parameterized in terms of unit quaternion
matrices by writing

u(w) = w0σ
0 + iw · σ. (11.1.141)

Equate (1.140) and (1.141) and employ the relations

I = σ0, (11.1.142)

K = (−i/2)σ. (11.1.143)

Use the linear independence of the matrices σ0 through σ3 to verify (1.31) and (1.32).
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Next suppose u ∈ SU(2) is parameterized in terms of Euler angles as in (3.7.195) in
Exercise 3.7.30. Verify that there is the decomposition

u(φ, θ, ψ) =

(
cos(θ/2) exp[−(i/2)(φ+ ψ)] − sin(θ/2) exp[(i/2)(−φ+ ψ)]

sin(θ/2) exp[−(i/2)(−φ+ ψ)] cos(θ/2) exp[(i/2)(φ+ ψ)]

)
= cos(θ/2) cos[(1/2)(φ+ ψ)]

(
1 0
0 1

)
− i sin(θ/2) sin[(1/2)(−φ+ ψ)]

(
0 1
1 0

)
−i sin(θ/2) cos[(1/2)(−φ+ ψ)]

(
0 −i
i 0

)
− i cos(θ/2) sin[(1/2)(φ+ ψ)]

(
1 0
0 −1

)
.

(11.1.144)

Thus, using the definition of the Pauli matrices, verify that

u = σ0{cos(θ/2) cos[(1/2)(φ+ ψ)]}
− iσ1{sin(θ/2) sin[(1/2)(−φ+ ψ)]}
− iσ2{sin(θ/2) cos[(1/2)(−φ+ ψ)]}
− iσ3{cos(θ/2) sin[(1/2)(φ+ ψ)]}.

(11.1.145)

Finally, verify that comparison of (1.141) and (1.145), and use of the linear independence of
the matrices σ0 through σ3, yields (1.33) through (1.36).

11.1.5. The purpose of this exercise is to derive equations (1.37) through (1.39), the expres-
sions for the angular velocities ωbfj in terms of quaternion parameters. Surprisingly, this task
turns out to be computationally simpler than the Euler-angle case of Exercise 1.3. Review
Exercise 1.4 above for notation.

The relation (1.22) specifies the ωbfj in terms of SO(3,R) quantities. Based on the
homomorphism between SO(3,R) and SU(2) (see Exercises 3.7.30, 5.10.13, 8.2.10, and
8.2.11), verify that there is an associated SU(2) relation given by the formula

u−1u̇ = ωbf1 K
1 + ωbf2 K

2 + ωbf3 K
3 = ωbf ·K. (11.1.146)

Indeed, suppose u is parameterized in terms of Euler angles by writing

u(t) = exp[φ(t)K3] exp[θ(t)K2] exp[ψ(t)K3]. (11.1.147)

See (3.7.194). Show that then use of (1.147) in (1.146) reproduces the results of Exercise
1.3.

Instead, we will parameterize u in terms of unit quaternion matrices by writing (1.141).
Then we have the results

u−1 = u† = w0σ
0 − iw · σ (11.1.148)

and

u̇(w) = ẇ0σ
0 + iẇ · σ. (11.1.149)
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Verify that carrying out the required multiplication u−1u̇ yields the intermediate result

u−1u̇ = [w0σ
0 − iw · σ][ẇ0σ

0 + iẇ · σ]

= w0ẇ0σ
0 + iw0ẇ · σ − iẇ0w · σ + (w · σ)(ẇ · σ).

(11.1.150)

Now use (5.7.44) to write

(w · σ)(ẇ · σ) = (w · ẇ)σ0 + i(w × ẇ) · σ. (11.1.151)

Substitute (1.151) into (1.150) to yield the next intermediate result

u−1u̇ = (w0ẇ0 +w · ẇ)σ0 + i(w0ẇ − ẇ0w +w × ẇ) · σ.
(11.1.152)

But in view of (1.40), which follows from the requirement that u be a unit quaternion, the
first term on the right of (1.152) vanishes, and (1.152) therefore becomes

u−1u̇ = i(w0ẇ − ẇ0w +w × ẇ) · σ.
(11.1.153)

There is also the result (1.143), and therefore (1.153) can be written as

u−1u̇ = −2(w0ẇ − ẇ0w +w × ẇ) ·K.

(11.1.154)

Upon comparing (1.146) and (1.154), show that

ωbfj = −2(w0ẇ − ẇ0w +w × ẇ) · ej. (11.1.155)

Verify that (1.37) through (1.39) are equivalent to (1.155).

11.1.6. The purpose of this exercise is to verify that the 4× 4 matrices appearing in (1.41)
and (1.42) are orthogonal. Suppose (w0, w1, w2, w3)T is a unit four vector. That is, suppose
(1.30) is satisfied. Consider the mapping of this four vector into the space of 4× 4 matrices
given by the rule 

w0

w1

w2

w3

→M(w) =


w0 −w1 −w2 −w3

w1 w0 w3 −w2

w2 −w3 w0 w1

w3 w2 −w1 w0

 . (11.1.156)

Verify that all the columns of M are unit vectors. Verify that all the columns of M are
mutually orthogonal. It follows that M is an orthogonal matrix,

MTM = I. (11.1.157)

Verify that the matrices appearing in (1.41) and (1.42) are −MT and −M , and hence both
are also orthogonal.
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11.1.7. Intrigued by the remarkable mapping (1.156), this exercise is devoted to a further
exploration of what is going on. We will learn that what is involved is a mapping of a pair
of unit quaternions into SO(4,R).

Show that since M is orthogonal, it must satisfy

detM = ±1. (11.1.158)

Let e0 be the unit vector
e0 = (1, 0, 0, 0)T . (11.1.159)

Verify that
M(e0) = I, (11.1.160)

and therefore
detM(e0) = +1. (11.1.161)

Show that any unit vector w ∈ S3 is connected to e0 by a continuous path in S3. [Hint:
Show, for example, that SO(4,R) acts transitively on S3.] Verify that the mapping (1.156)
is continuous. Show that it follows, by continuity, that

detM(w) = +1, (11.1.162)

and therefore M(w) ∈ SO(4,R). That is, (1.156) produces a map

S3 → SO(4,R). (11.1.163)

Can all elements of SO(4,R) be written in the form M(w)? No, because w ∈ S3 involves
three parameters, and we know that SO(4,R) is six dimensional. What elements in SO(4,R)
can be written in the form M(w)? Let’s see. Define three matrices D1, D2, D3 by the rules

D1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , (11.1.164)

D2 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , (11.1.165)

D3 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 . (11.1.166)

Verify the relation
M(w) = w0I + w1D

1 + w2D
2 + w3D

3. (11.1.167)

Show that the matrices Dj satisfy the relations

(Dj)2 = −I, (11.1.168)
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D1D2 = −D2D1 = −D3, (11.1.169)

D2D3 = −D3D2 = −D1, (11.1.170)

D3D1 = −D1D3 = −D2. (11.1.171)

By employing these relations, show that

M(w)M(w′) = M(w′′) (11.1.172)

with

w′′0 = w0w
′
0 − w1w

′
1 − w2w

′
2 − w3w

′
3,

w′′1 = w0w
′
1 + w′0w1 − w2w

′
3 + w3w

′
2,

w′′2 = w0w
′
2 + w′0w2 − w3w

′
1 + w1w

′
3,

w′′3 = w0w
′
3 + w′0w3 − w1w

′
2 + w2w

′
1,

(11.1.173)

which, with the notation w = (w1, w2, w3), can be written more compactly in the form

w′′0 = w0w
′
0 −w ·w′, (11.1.174)

w′′ = w0w
′ + w′0w −w ×w′. (11.1.175)

Show that if w ∈ S3 and w′ ∈ S3, then w′′ ∈ S3. Show also that

M(w + w′) = M(w) +M(w′). (11.1.176)

Observe that the relations (1.174) and (1.175) are exactly those for quaternion matrix
multiplication. See Section 5.10.4 and Exercise 5.10.15. Verify that there is the correspon-
dence

I ↔ e,

−D1 ↔ j,

−D2 ↔, k
−D3 ↔ `. (11.1.177)

That is, the 4×4 matrices I,−D1,−D2,−D3 provide a representation for quaternion algebra.
Observe that, unlike the 2 × 2 representation given by the complex matrices in (5.10.64),
these 4× 4 matrices are all real.

Verify that the Dj are antisymmetric,

(Dj)T = −Dj. (11.1.178)

Verify that
[M(w)]T = M(w∗) (11.1.179)

with the definitions

w∗0 = w0, w∗1 = −w1, w∗2 = −w2, w∗3 = −w3. (11.1.180)
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Verify that
(w∗)∗ = w. (11.1.181)

Verify that w∗ ∈ S3 if w ∈ S3, and verify the relation

M(w∗) = [M(w)]−1. (11.1.182)

Thus, verify that the M(w) for w ∈ S3 form a group.
Finally, what elements in SO(4,R) can be written in the form M(w)? We know from

Exercise 5.10.13 that unit quaternions form a group that is isomorphic to SU(2). We also
know from Exercises 4.4.19 and 4.3.20 that so(4,R) is the direct sum of two commuting
su(2) Lie algebras. From these same exercises we know that the Hj generate the SU(2)
associated with one of these su(2) Lie algebras. Verify from (4.3.152) and (1.161) through
(1.163) that there is the relation

Dj = −2Hj. (11.1.183)

Show that it follows that the elements in SO(4,R) that can be written in the form M(w) are
those that belong to the SU(2) subgroup generated by the Hj. Verify, in the terminology
of Exercises 4.3.19 and 4.3.20, that these are all elements of the form exp(t ·H). Find the
relation between w ∈ S3 and t. Lastly verify that, as expected from the work of Exercise
4.3.19, that all M(w) with w ∈ S3 are also symplectic with respect to the J of (4.3.65).

But wait, as they say in infomercials, there’s more! As just stated, we know from
Exercises 4.3.19 and 4.3.20 that SO(4,R) is the direct product of two commuting SU(2)
subgroups, and we know from Exercise 5.10.13 that any SU(2) has an associated unit quater-
nion equivalent. Therefore, there should be two unit quaternions associated with SO(4,R).
How can the second unit quaternion be found/employed?

Motivated by (1.183), we might define matrices Ej by the rule

Ej ?
= −2Gj (11.1.184)

with the Gj given by (4.3.151). This is a workable possibility. However, a choice that yields
more aesthetic results is to make the definitions

E1 = 2G3,

E2 = −2G2,

E3 = −2G1. (11.1.185)

The Ej have the explicit form

E1 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (11.1.186)

E2 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , (11.1.187)
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E3 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 . (11.1.188)

Form the matrix N(w) by the rule

N(w) = w0I + w1E
1 + w2E

2 + w3E
3. (11.1.189)

Verify that N(w) has the explicit form

N(w) =


w0 w1 w2 w3

−w1 w0 w3 −w2

−w2 −w3 w0 w1

−w3 w2 −w1 w0

 . (11.1.190)

Check that the columns of N(w) are mutually orthogonal and, if w ∈ S3, are also unit
vectors. It follows that N(w) is an orthogonal matrix if w ∈ S3. Check that

N(e0) = I, (11.1.191)

and therefore show, as was done for M(w), that N(w) ∈ SO(4,R). Thus the correspondence
w0

w1

w2

w3

→ N(w) =


w0 w1 w2 w3

−w1 w0 w3 −w2

−w2 −w3 w0 w1

−w3 w2 −w1 w0

 (11.1.192)

also provides a mapping
S3 → SO(4,R). (11.1.193)

Review the relations (1.168) through (1.182). Show that there are completely analogous
relations for the Ej and N(w). Among other things, the 4 × 4 matrices I,−E1,−E2,−E3

also provide a representation for quaternion algebra. Also verify that M(w′) and N(w)
commute.

Finally, in analogy with (4.3.166) and (4.3.174), define a matrix O(w,w′) by the rule

O(w,w′) = N(w)M(w′). (11.1.194)

Call the pair (w,w′) = S3 × S3 a double three-sphere. The relation (1.194) provides a
two-to-one mapping of the double three-sphere into SO(4,R),

S3 × S3 → SO(4,R). (11.1.195)

11.1.8. The purpose of this exercise is to determine the behavior of w ·w when w evolves as
in equations (1.42) or in equations (1.48) through (1.51), and to explore the nature of these
equations. Let Ω be the vector

Ω =


0

ωbf1 /2

ωbf2 /2

ωbf3 /2

 . (11.1.196)
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Verify that the equations (1.48) through (1.51) can be written in the compact form

ẇ = −M(w)Ω + kεw (11.1.197)

with M(w) defined by (1.156). It follows that

(w, ẇ) = −(w,M(w)Ω) + kε(w,w). (11.1.198)

Verify that
MT (w)w = e0 (11.1.199)

with e0 given by (1.159). Next verify that

(w,M(w)Ω) = (MT (w)w,Ω) = (e0,Ω) = 0. (11.1.200)

It follows that
(1/2)(d/dt)(w,w) = (w, ẇ) = kε(w,w), (11.1.201)

and therefore w ·w is conserved if k = 0, which is the case for the equations of motion (1.42).
In particular, if w · w = 1 initially, it will remain so.

What about the evolution of w · w when k 6= 0? Verify that

ε̇ = −2(w, ẇ). (11.1.202)

Show that, consequently, (1.201) and (1.202) together yield the relation

ε̇ = −2kε(1− ε). (11.1.203)

Verify that (1.203) has the implicit solution

ε(t)/[1− ε(t)] = [ε0/(1− ε0)] exp[−2k(t− t0)] (11.1.204)

where
ε0 = ε(t0). (11.1.205)

To solve (1.204) explicitly for ε(t), let

r(t) = [ε0/(1− ε0)] exp[−2k(t− t0)]. (11.1.206)

Show that
ε(t) = r(t)/[1 + r(t)]. (11.1.207)

Evidently, for k > 0, ε(t) → 0 as t → +∞, essentially exponentially. Correspondingly,
w · w → 1 as t→ +∞.

There is an alternate way of looking at the equations (1.43) through (1.46) or (1.47)
through (1.51) that emphasizes linearity in w. Let A(ωbf ) be the matrix defined by the rule

A(ωbf ) = (1/2)


0 ωbf1 ωbf2 ωbf3
−ωbf1 0 ωbf3 −ωbf2
−ωbf2 −ωbf3 0 ωbf1
−ωbf3 ωbf2 −ωbf1 0

 . (11.1.208)
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Show that (1.43) through (1.46) can be written in the vector/matrix form

ẇ = A(ωbf )w. (11.1.209)

Verify that A is antisymmetric, and therefore it immediately follows from (1.209) that

(w, ẇ) = (w,Aw) = 0. (11.1.210)

Similarly, show that (1.48) through (1.51) can be written in the form

ẇ = A(ωbf )w + kεw. (11.1.211)

In this case, it follows directly from (1.211) and the antisymmetry of A that

(w, ẇ) = (w,Aw) + kε(w,w) = kε(w,w), (11.1.212)

as before.

11.1.9. The aim of the this exercise is to find the ωbfj corresponding to the Tait-Bryan angle
parameterization (1.58). The tools for this purpose will be very similar to those employed
in Exercise 1.3, which you should review. Our discussion begins with the key relation

(Rv)−1Ṙv = ωbf ·L. (11.1.213)

Show that this relation follows from (1.56).
For Rv given by (1.58), verify that

(Rv)−1 = exp(−λ3L
3) exp(−λ2L

2) exp(−λ1L
1) (11.1.214)

and

Ṙv = λ̇1L
1 exp(λ1L

1) exp(λ2L
2) exp(λ3L

3)

+ exp(λ1L
1)λ̇2L

2 exp(λ2L
2) exp(λ3L

3)

+ exp(λ1L
1) exp(λ2L

2) exp(λ3L
3)λ̇3L

3. (11.1.215)

Next verify that (Rv)−1Ṙv is given by the expression

(Rv)−1Ṙv = exp(−λ3L
3) exp(−λ2L

2) exp(−λ1L
1)λ̇1L

1 exp(λ1L
1) exp(λ2L

2) exp(λ3L
3)

+ exp(−λ3L
3) exp(−λ2L

2) exp(−λ1L
1) exp(λ1L

1)λ̇2L
2 exp(λ2L

2) exp(λ3L
3)

+ exp(−λ3L
3) exp(−λ2L

2) exp(−λ1L
1) exp(λ1L

1) exp(λ2L
2) exp(λ3L

3)λ̇3L
3.

(11.1.216)

Simplify each of the three lines in (1.216) so that they become

exp(−λ3L
3) exp(−λ2L

2) exp(−λ1L
1)λ̇1L

1 exp(λ1L
1) exp(λ2L

2) exp(λ3L
3)

= λ̇1 exp(−λ3L
3) exp(−λ2L

2)L1 exp(λ2L
2) exp(λ3L

3), (11.1.217)



1140
11. GEOMETRIC/STRUCTURE-PRESERVING INTEGRATION: INTEGRATION ON

MANIFOLDS

exp(−λ3L
3) exp(−λ2L

2) exp(−λ1L
1) exp(λ1L

1)λ̇2L
2 exp(λ2L

2) exp(λ3L
3)

= λ̇2 exp(−λ3L
3)L2 exp(λ3L

3), (11.1.218)

exp(−λ3L
3) exp(−λ2L

2) exp(−λ1L
1) exp(λ1L

1) exp(λ2L
2) exp(λ3L

3)λ̇3L
3

= λ̇3L
3. (11.1.219)

Line (1.219) is as simple as we could desire. The next more complicated line is (1.218).
Show, using the machinery of Exercise 8.2.10, that

exp(−λ3L
3)L2 exp(λ3L

3) = cos(λ3)L2 + sin(λ3)L1. (11.1.220)

Thus, the right side of (1.218) becomes

λ̇2[cos(λ3)L2 + sin(λ3)L1]. (11.1.221)

Finally, work on line (1.217). Show that

exp(−λ2L
2)L1 exp(λ2L

2) = cos(λ2)L1 + sin(λ2)L3. (11.1.222)

Next show that

exp(−λ3L
3)[cos(λ2)L1 + sin(λ2)L3] exp(λ3L

3)

= sin(λ2)L3 + cos(λ2) exp(−λ3L
3)L1 exp(λ3L

3)

= sin(λ2)L3 + cos(λ2)[cos(λ3)L1 − sin(λ3)L2].

(11.1.223)

By combining (1.222) and (1.223), verify that

exp(−λ3L
3) exp(−λ2L

2)L1 exp(λ2L
2) exp(λ3L

3)

= sin(λ2)L3 + cos(λ2)[cos(λ3)L1 − sin(λ3)L2].

(11.1.224)

Thus, the right side of (1.217) becomes

λ̇1{sin(λ2)L3 + cos(λ2)[cos(λ3)L1 − sin(λ3)L2]}. (11.1.225)

Now we have everything we need. By combining (1.216) through (1.225), show that

(Rv)−1Ṙv = λ̇1{sin(λ2)L3 + cos(λ2)[cos(λ3)L1 − sin(λ3)L2]}
+ λ̇2[cos(λ3)L2 + sin(λ3)L1]

+ λ̇3L
3

= [λ̇1 cos(λ2) cos(λ3) + λ̇2 sin(λ3)]L1

+ [−λ̇1 cos(λ2) sin(λ3) + λ̇2 cos(λ3)]L2

+ [λ̇1 sin(λ2) + λ̇3]L3. (11.1.226)
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Verify, upon equating coefficients of the Lj in (1.213) and (1.226), that there are the relations

ωbf1 = λ̇1 cos(λ2) cos(λ3) + λ̇2 sin(λ3), (11.1.227)

ωbf2 = −λ̇1 cos(λ2) sin(λ3) + λ̇2 cos(λ3), (11.1.228)

ωbf3 = λ̇1 sin(λ2) + λ̇3. (11.1.229)

Finally, verify that inverting the relations (1.227) through (1.229) yields the equations of
motion

λ̇1 = [1/ cos(λ2)][ωbf1 cos(λ3)− ωbf2 sin(λ3)], (11.1.230)

λ̇2 = ωbf1 sin(λ3) + ωbf2 cos(λ3), (11.1.231)

λ̇3 = ωbf3 − tan(λ2)[ωbf1 cos(λ3)− ωbf2 sin(λ3)]. (11.1.232)

Verify that these equations of motion are nonsingular for small λj. Note, however, that
there are singularities when λ2 = ±π/2. What causes these singularities? Show that

exp(λ1L
1) exp[(π/2)L2] exp(λ3L

3)

= exp(λ1L
1) exp[(π/2)L2] exp(λ3L

3) exp[−(π/2)L2] exp[(π/2)L2]

= exp(λ1L
1) exp(λ3L

1) exp[(π/2)L2]

= exp[(λ1 + λ3)L1] exp[(π/2)L2], (11.1.233)

exp(λ1L
1) exp[−(π/2)L2] exp(λ3L

3)

= exp(λ1L
1) exp[(−π/2)L2] exp(λ3L

3) exp[(π/2)L2] exp[−(π/2)L2]

= exp(λ1L
1) exp(−λ3L

1) exp[−(π/2)L2]

= exp[(λ1 − λ3)L1] exp[−(π/2)L2]. (11.1.234)

Verify that only the combination (λ1 + λ3) is well defined when λ2 = π/2, and only the
combination (λ1 − λ3) is well defined when λ2 = −π/2. Therefore the parameterization
(1.58) fails when λ2 = ±π/2.

11.1.10. The aim of this exercise, which is not easy, is to find the λ̇j in terms of the ωbfj
for the angle-axis parameterization (1.66). Although not essential, it is convenient for this
purpose to use the SU(2) version (1.146) of the SO(3,R) relation (1.22). In analogy to
(1.66), begin by writing

u(λ) = exp(λ ·K). (11.1.235)

From the rule for differentiating the exponential function there is the result

(d/dt)u = u iex(−#λ ·K#)(d/dt)(λ ·K), (11.1.236)

which can be rewritten in the form

u̇ = u iex(−#λ ·K#)(λ̇ ·K). (11.1.237)

See Appendix C. Combine (1.146) and (1.237) to show that

ωbf ·K = iex(−#λ ·K#)(λ̇ ·K). (11.1.238)
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Now for some daring steps. Show that, as in Section 10.3, the relation (1.238) can be
inverted to become

λ̇ ·K = [iex(−#λ ·K#)]−1(ωbf ·K)

= [I + (1/2)#λ ·K# + (1/12)(#λ ·K#)2 + · · · ](ωbf ·K)

= (ωbf ·K) + (1/2){(λ ·K), (ωbf ·K)}
+(1/12){(λ ·K), {(λ ·K), (ωbf ·K)}}+ · · · . (11.1.239)

The result (1.239) is quite general in the sense that analogous results hold for any Lie group.
For the specific case of SU(2) we will seek to explicitly sum the series (1.239).

From Appendix C we know that there is the expansion

[iex(−#λ ·K#)]−1 =
∞∑
m=0

bm(#λ ·K#)m. (11.1.240)

Verify that insertion of (1.240) into (1.239) gives the result

λ̇ ·K = [
∞∑
m=0

bm(#λ ·K#)m](ωbf ·K)

= b0(ωbf ·K) + b1(#λ ·K#)(ωbf ·K)

+b2(#λ ·K#)2(ωbf ·K) + b3(#λ ·K#)3(ωbf ·K)

+b4(#λ ·K#)4(ωbf ·K) + b5(#λ ·K#)5(ωbf ·K) + · · · . (11.1.241)

Now evaluate the terms appearing in (1.241). Show that there are the results

(#λ ·K#)(ωbf ·K) = {λ ·K,ωbf ·K} = (λ× ωbf ) ·K, (11.1.242)

(#λ ·K#)2(ωbf ·K) = {λ ·K, (λ× ωbf ) ·K} = [λ× (λ× ωbf )] ·K
= (λ · ωbf )(λ ·K)− (λ · λ)(ωbf ·K), (11.1.243)

(#λ ·K#)3(ωbf ·K) = (#λ ·K#)(#λ ·K#)2(ωbf ·K)

= −(λ · λ){λ ·K,ωbf ·K}
= −(λ · λ)(λ× ωbf ) ·K
= (iλ · iλ)(#λ ·K#)(ωbf ·K), (11.1.244)

(#λ ·K#)4(ωbf ·K) = (#λ ·K#)(#λ ·K#)3(ωbf ·K)

= (#λ ·K#)(−1)(λ · λ)(#λ ·K#)(ωbf ·K)

= (iλ · iλ)(#λ ·K#)2(ωbf ·K), etc. (11.1.245)

Note the similarity of (3.7.201) and (1.244).
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Verify that putting everything together gives the net result

[
∞∑
m=0

bm(#λ ·K#)m](ωbf ·K) = b0(ωbf ·K)

+b1(#λ ·K#)(ωbf ·K) + b3(#λ ·K#)3(ωbf ·K) + · · ·
+b2(#λ ·K#)2(ωbf ·K) + b4(#λ ·K#)4(ωbf ·K) + · · ·

= b0(ωbf ·K)

+[(#λ ·K#)(ωbf ·K)][b1 + b3(iλ · iλ) + b5(iλ · iλ)2 · · · ]
+[(#λ ·K#)2(ωbf ·K)][b2 + b4(iλ · iλ) + b6(iλ · iλ)2 · · · ]

= b0(ωbf ·K)

+[(λ× ωbf ) ·K][b1 + b3(iλ · iλ) + b5(iλ · iλ)2 · · · ]
+[(λ · ωbf )(λ ·K)− (λ · λ)(ωbf ·K)][b2 + b4(iλ · iλ) + b6(iλ · iλ)2 · · · ].

(11.1.246)

Also verify that combining (1.241) and the last result in (1.246) gives the relation

λ̇ = b0ω
bf

+(λ× ωbf )[b1 + b3(iλ · iλ) + b5(iλ · iλ)2 · · · ]
+[(λ · ωbf )λ− (λ · λ)ωbf ][b2 + b4(iλ · iλ) + b6(iλ · iλ)2 · · · ]. (11.1.247)

What remains to be done is to sum the series in (1.247). Begin by defining a quantity w
by the rule

w =
√

(iλ · iλ) = i|λ|. (11.1.248)

With this definition we have the relations

[b1 + b3(iλ · iλ) + b5(iλ · iλ)2 · · · ] = (1/w)
∑

odd m

bmw
m, (11.1.249)

[b2 + b4(iλ · iλ) + b6(iλ · iλ)2 · · · ] = (1/w2)
∑

even m>0

bmw
m. (11.1.250)

We also know, see Appendix C, that

∞∑
m=0

bmw
m = w/[1− exp(−w)], (11.1.251)

from which it follows that ∑
m>0

bmw
m = w/[1− exp(−w)]− 1. (11.1.252)

(Here we have used the result b0 = 1, which you should check.) Verify the identity

w/[1− exp(−w)] = w exp(w/2)/[exp(w/2)− exp(−w/2)]

= (w/2)[cosh(w/2) + sinh(w/2)]/ sinh(w/2)

= w/2 + (w/2) coth(w/2). (11.1.253)
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Use this identity to show that∑
m>0

bmw
m = [w/2] + [(w/2) coth(w/2)− 1]. (11.1.254)

From (1.254), by equating odd and even parts, show that∑
odd m

bmw
m = w/2, (11.1.255)

∑
even m>0

bmw
m = (w/2) coth(w/2)− 1. (11.1.256)

Use these results to show that

(1/w)
∑

odd m

bmw
m = 1/2, (11.1.257)

(1/w2)
∑

even m>0

bmw
m = [1/(2w)] coth(w/2)− 1/w2. (11.1.258)

Verify that employing (1.248) in (1.258) yields the result

(1/w2)
∑

even m>0

bmw
m = 1/|λ|2 − [1/(2|λ|)] cot(|λ|/2). (11.1.259)

At last, verify the final (and amazing) result

λ̇ = ωbf + (1/2)(λ× ωbf ) + [(λ · ωbf )λ− (λ · λ)ωbf ]{1/|λ|2 − [1/(2|λ|)] cot(|λ|/2)}.
(11.1.260)

Check that wherever |λ| appears in (1.260), it appears as an even power. Therefore, there is
no overall ambiguity in (1.260) despite the sign ambiguity present in the definition (1.248).
Show, moreover, that the right side of (1.260) is analytic in the components of λ for |λ| < 2π,
but is singular when |λ| = 2π. As stated earlier, we expect this singularity to occur because
we see from (3.7.188) and (3.7.202) that the individual components of n are not defined in
terms of v or R when θ = |λ| = 2π.

There is another way of writing (1.260) that is of interest. Define a function f(λ) by the
rule

f(λ) = 1/|λ|2 − [1/(2|λ|)] cot(|λ|/2). (11.1.261)

Verify that f(λ) is even in |λ|, is analytic in the components of λ for |λ| < 2π, and is
singular when |λ| = 2π. Define a 3× 3 matrix M(λ) by the rule

M(λ) = I + (1/2)(λ ·L) + f(λ)(λ ·L)2. (11.1.262)

Verify that (1.260) can also be written in the form

λ̇ = M(λ)ωbf , (11.1.263)

which highlights linearity in ωbf and the role of the matrix λ ·L.
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11.1.11. Review Exercise 1.10. It found the λ̇j in terms of the ωbfj for the parameterization

(1.66). For some purposes it is useful to also find the ωbfj in terms of the λ̇j. That is the
aim of this exercise.

There are at least two ways to proceed. The first begins with the relation (1.238) and
makes an expansion of the form

iex(−#λ ·K#) =
∞∑
m=0

dm(#λ ·K#)m. (11.1.264)

This expansion is then manipulated, in the spirit of Exercise 1.10, to find and sum expansions
that specify the ωbfj in terms of the λ̇j.

A second way exploits more of what we already know from Exercise 1.10. Suppose we
could invert the matrix M(λ) given in (1.262). Then we could rewrite (1.263) in the form

ωbf = [M(λ)]−1λ̇, (11.1.265)

and we would have found the ωbfj in terms of the λ̇j.
We now proceed to construct [M(λ)]−1. Let N(λ) be a 3× 3 matrix of the form

N(λ) = I + a(λ)(λ ·L) + b(λ)(λ ·L)2 (11.1.266)

where a(λ) and (λ) are coefficients to be determined. Next form the product of M(λ) and
N(λ). Verify that so doing yields the result

MN = I + (1/2)(λ ·L) + f(λ ·L)2

+ a(λ ·L) + (1/2)a(λ ·L)2 + af(λ ·L)3

+ b(λ ·L)2 + (1/2)b(λ ·L)3 + bf(λ ·L)4.

(11.1.267)

Verify the property
(λ ·L)3 = −|λ|2λ ·L, (11.1.268)

and employ it in (1.267) to achieve the net result

MN = I + (1/2)(λ ·L) + f(λ ·L)2

+ a(λ ·L) + (1/2)a(λ ·L)2 − |λ|2af(λ ·L)

+ b(λ ·L)2 − |λ|2(1/2)b(λ ·L)− |λ|2bf(λ ·L)2

= I + [(1/2) + a− |λ|2af − |λ|2(1/2)b](λ ·L)

+ [f + (1/2)a+ b− |λ|2bf ](λ ·L)2.

(11.1.269)

Suppose we can arrange that the coefficients of (λ ·L) and (λ ·L)2 in the net result (1.269)
vanish. So doing requires the conditions

(1/2) + a− |λ|2af − |λ|2(1/2)b = 0 (11.1.270)
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and

f + (1/2)a+ b− |λ|2bf = 0. (11.1.271)

If these conditions are met, it follows that MN = I, and therefore

N(λ) = [M(λ)]−1. (11.1.272)

Verify that the linear equations (1.270)and (1.271) can be written in the standard form

(1− |λ|2f)a− (|λ|2/2)b = −1/2, (11.1.273)

(1/2)a+ (1− |λ|2f)b = −f. (11.1.274)

Show from the definition (1.261) of f that

(1− |λ|2f) = (|λ|/2) cot(|λ|/2). (11.1.275)

Show that (1.273) and (1.274) have the solution

a = −(2/|λ|2) sin2(|λ|/2), (11.1.276)

b = (1/|λ|2)[1− (1/|λ|) sin(|λ|)]. (11.1.277)

Evaluate a(0) and b(0) and verify that both a(λ) and b(λ) are analytic in the components
of λ everywhere except at ∞.

11.1.12. The aim of this exercise is to explore the use of Cayley transforms and parame-
terizations for the purpose of integration on manifolds. Review Section 3.12 and Exercises
3.12.1, 3.12.5, and 3.12.6 to recall the subject of Cayley transforms for quadratic groups
G. We will begin with the general case. Then in a following exercise, we will study in
more detail the cases of SO(3,R) and SU(2), which are more tractable. Specifically, in this
exercise we will study equations of motion of the form

Ṁ(t) = M(t)A(t) (11.1.278)

where M(t) is expected to belong to some quadratic Lie group G and A(t) belongs to
its associated Lie algebra. What we seek is a way of numerically integrating (1.278) that
guarantees M(t) is in G even though the numerical solution may be locally exact only
through terms of order hm.

We could also study the related equations of motion of the form

Ṅ(t) = Ā(t)N(t) (11.1.279)

but, as will be seen from some of the work of Exercise 2.7, this case is equivalent to the case
(1.278) under the substitutions N = M−1 and Ā = −A.

From Appendix C we know in general that exact integration of (1.278) assures that M(t)
is in G. Here, before going further, your first task is to provide a simple proof of this fact
in the case of quadratic groups.
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Begin with the converse claim. Let M(t) be some path in matrix space. By Taylor’s
theorem there is the result

M(t+ dt) = M(t) + dtṀ(t) +O[(dt)2]. (11.1.280)

Define a matrix A(t) by the rule

A(t) = M−1(t)Ṁ(t). (11.1.281)

Verify that (1.278) follows from (1.281). What remains is to determine the properties of
A(t).

For M(t) to belong to a quadratic group G it must satisfy a relation of the form

MT (t)LM(t) = L. (11.1.282)

See Exercise 3.12.5. From (1.282) verify that

MT (t+ dt)LM(t+ dt) = L. (11.1.283)

Since M(t) and M(t+ dt) are nearby matrices, it follows that the product M−1(t)M(t+ dt)
must be near the identity. Indeed, verify that we may write

M−1(t)M(t+ dt) = M−1(t)[M(t) + dtṀ(t)] +O[(dt)2]

= I + dtM−1(t)Ṁ(t) +O[(dt)2]

= I + dtA(t) +O[(dt)2]

= exp[dtA(t)] +O[(dt)2]. (11.1.284)

Rewrite (1.284) in the form

M(t+ dt) = M(t) exp[dtA(t)] +O[(dt)2]. (11.1.285)

Show that employing this relation in (1.283) and equating powers of dt yields the condition

AT (t)L+ LA(t) = 0, (11.1.286)

which demonstrates that A(t) belongs to the Lie algebra of G.
Next consider the direct claim. Suppose that M(t) satisfies (1.278) and that A(t) satisfies

(1.286). Assume also that at some time t0 there is the relation

MT (t0)LM(t0) = L. (11.1.287)

Such will be the case, in particular, if M(t0)=I. Your task is to show that then (1.282) must
hold for all t.

Begin by showing that (1.287) can be rewritten in the form

[M−1(t0)]TL[M−1(t0)] = L. (11.1.288)

Next, from the identity
M−1(t)M(t) = I (11.1.289)



1148
11. GEOMETRIC/STRUCTURE-PRESERVING INTEGRATION: INTEGRATION ON

MANIFOLDS

and (1.278), show that
(d/dt)[M−1(t)] = −A(t)M−1(t). (11.1.290)

As a further step show that

(d/dt)[(M−1)TLM−1] = {(d/dt)[(M−1)T ]}LM−1 + (M−1)TL(d/dt)(M−1)

= [(d/dt)(M−1)]TLM−1 + (M−1)TL(d/dt)(M−1)

= [−AM−1]TLM−1 + (M−1)TL[−AM−1]

= −(M−1)T [ATL+ LA]M−1 = 0. (11.1.291)

Verify that the unique solution to the differential equation (1.291) with the initial condition
(1.288) is the relation

[M−1(t)]TL[M−1(t)] = L. (11.1.292)

Finally, show that (1.282) follows from (1.292).
With this background work out of the way, the main task of this exercise is to consider use

of the Cayley parameterization. Specifically, for M we employ the Cayley parameterization

M = (I + V )(I − V )−1, (11.1.293)

see (3.12.36), and your task is to find the equation of motion for V . In particular, you are
to show how this may be done starting from (1.278) rewritten as(1.281).

Begin by writing M in the form
M = BC (11.1.294)

where
B = I + V (11.1.295)

and
C = D−1 (11.1.296)

with
D = I − V. (11.1.297)

Show that the product differentiation rule yields the result

Ṁ = ḂC +BĊ. (11.1.298)

Simple calculation with (1.295) yields the result

Ḃ = V̇ . (11.1.299)

The calculation of Ċ is more involved. Show from (1.296) and the product differentiation
rule that

CD = I, (11.1.300)

ĊD + CḊ = 0, (11.1.301)

and therefore
Ċ = −CḊC. (11.1.302)
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Show that use of (1.297) gives the result

Ḋ = −V̇ , (11.1.303)

and therefore
Ċ = CV̇ C. (11.1.304)

Verify that combining the results obtained so far gives the next conclusion

Ṁ = V̇ C +BCV̇ C. (11.1.305)

Manipulate some more. Verify the steps

Ṁ = V̇ C +BCV̇ C = C−1CV̇ C +BCV̇ C = (C−1 +B)CV̇ C

= (D +B)CV̇ C = [(I − V ) + (I + V )]CV̇ C = 2CV̇ C. (11.1.306)

According to (1.281) what is needed is the quantity M−1Ṁ . Show that

M−1 = C−1B−1 (11.1.307)

and therefore
M−1Ṁ = 2C−1B−1CV̇ C. (11.1.308)

Verify that B and C commute and therefore B−1 and C−1 commute. It follows that

C−1B−1C = B−1C−1C = B−1 (11.1.309)

so that
M−1Ṁ = 2C−1B−1CV̇ C = 2B−1V̇ C, (11.1.310)

from which we conclude, with the aid of (1.281), that

A = 2B−1V̇ C. (11.1.311)

Solve (1.311) for V̇ to yield the result

V̇ = (1/2)BAC−1 = (1/2)(I + V )A(I − V ) = (1/2)(A+ V A− AV − V AV ),

(11.1.312)

which can be written as
V̇ = (1/2)(A+ {V,A} − V AV ). (11.1.313)

You have found V̇ in terms of A. Note that, in contrast to (1.82) whose right side contains
an infinite number of terms, the right side of (1.313) contains only three terms.

Is this result sane? For a quadratic group G we know that V is in the Lie algebra. From
the definition

V̇ (t) = lim
ε→0

[V (t+ ε)− V (t)]/ε (11.1.314)

we see that only vector space operations are involved in the calculation of V̇ (t), and therefore
V̇ (t) must also be in the Lie algebra of G. But is the right side of (1.313) in the Lie algebra
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of G? Evidently, since A is in the Lie algebra of G, the first two terms on the right side
of (1.313) are in the Lie algebra of G. What about the third term V AV ? According to
Exercise 3.12.4 the condition for A and V to be in the Lie algebra of G is that

L−1ATL = −A, (11.1.315)

L−1V TL = −V. (11.1.316)

See (3.12.34). Verify it follows by matrix manipulation that

L−1(V AV )TL = −V AV, (11.1.317)

and therefore V AV is also in the Lie algebra of G. Therefore (1.313) is sane at least to the
extent that both its sides are in the Lie algebra of G.

To return to the main discussion, suppose (1.313) is integrated by some numerical in-
tegrator to find V (t) under the assumption that V is initially in the Lie algebra of G. We
repeat the key observation of Subsection 1.14: Examination of the usual numerical integra-
tion schemes, see Chapter 2, reveals that they all involve just linear combinations of the
right side of the differential equation in question evaluated at various times and coordinate
values. Therefore, if the right side is known to be in the Lie algebra of G for all evaluation
points, then the result of numerically integrating such an equation is guaranteed to be in
the Lie algebra of G, no matter what the local accuracy of the integrator or the step size
employed. Since we have verified that the right side of (1.313) is in the Lie algebra of G,
it follows that V (t) will be in the Lie algebra of G if it is initially in the Lie algebra of G.
Finally, since V (t) is in the Lie algebra of G, it follows that M(t) given by (1.293) is in G.

We have achieved our goal of, in effect, numerically integrating (1.278) in such a way that
M(t) is guaranteed to be in G. Note, however, that this procedure cannot be carried out
globally since the Cayley parameterization (1.293) cannot be made globally. It may therefore
be necessary to change coordinate systems (by left or right group translation) from time to
time during the course of a numerical integration in order to stay clear of the singularities
associated with any given Cayley parametrization.

Although we have achieved our goal, there is still one undesirable feature of our proce-
dure. Namely, if A and V are k × k matrices, then the integration of (1.313) involves the
integration of k2 equations. Generally the group G has dimension considerably less than
k2. What we would like is a way of parameterizing the Lie algebra of G and a procedure
that only involves the integration of differential equations for these parameters. In the next
exercise we will illustrate such a procedure for the cases of SO(3,R) and SU(2) where the
necessary operations can be carried out relatively easily.

We close this exercise with a small variation. Suppose the relations (1.293) through
(1.307) remain in force, but the task is to find

Ā = ṀM−1 (11.1.318)

rather than (1.281). Verify, using (1.306) and (1.307), that

ṀM−1 = 2CV̇ CC−1B−1 = 2CV̇ B−1. (11.1.319)
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Show that solving (1.319) for V̇ with the aid of (1.318) yields the result

V̇ = (1/2)C−1ĀB = (1/2)DĀB = (1/2)I − V )Ā(I + V )

= (1/2)(Ā− {V, Ā} − V ĀV ). (11.1.320)

This result will be of use in Subsection 2.9.

11.1.13. The aim of this exercise is to apply the methods of the previous exercise to the
cases of SO(3,R) and SU(2) including parameterization of the associated Lie algebras. In
the case of SO(3,R) we seek to integrate the equation

Ṙ = R ωbf ·L. (11.1.321)

Recall (1.18). And in the case of SU(2) we seek to integrate (1.146) rewritten in the form

u̇ = u ωbf ·K. (11.1.322)

In these two cases we write the Cayley parameterizations

R(µ) = (I + µ ·L)(I − µ ·L)−1 (11.1.323)

and
u(µ) = (I + µ ·K)(I − µ ·K)−1. (11.1.324)

What you are to find is the relation between µ̇ and ωbf for these two cases. At this point
you should review Exercise 1.12 if you have not previously studied it.

For the case of SO(3,R) compare (1.321) with (1.278) and compare (1.323) with (1.293).
Show that in this case there are the correspondences

A = ωbf ·L, (11.1.325)

V = µ ·L, V̇ = µ̇ ·L. (11.1.326)

For the case of SU(2) compare (1.322) with (1.278) and compare (1.324) with (1.293). Show
that in this case there are the correspondences

A = ωbf ·K, (11.1.327)

V = µ ·K, V̇ = µ̇ ·K. (11.1.328)

What remains is to insert these results into (1.313) and to work out the consequences.
Begin with the case of SO(3,R). Show that use of (1.325) and (1.326) in (1.313) yields the
result

µ̇ ·L = (1/2)[ωbf ·L+ {µ ·L,ωbf ·L} − (µ ·L)(ωbf ·L)(µ ·L)]. (11.1.329)

Next manipulate the terms appearing on the right side of this equation. The commutator
term is easy. It has the value

{µ ·L,ωbf ·L} = (µ× ωbf ) ·L. (11.1.330)
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See (3.7.183). The evaluation of

(µ ·L)(ωbf ·L)(µ ·L) = ? (11.1.331)

is more tedious. By using the 3×3 matrix form for each of the factors in (1.331), multiplying
out the matrices, and rewriting the result in the form c ·L, show that

(µ ·L)(ωbf ·L)(µ ·L) = −(µ · ωbf )(µ ·L). (11.1.332)

Verify that combining (1.329) through (1.332) gives the result

µ̇ ·L = (1/2)[ωbf + (µ× ωbf ) + (µ · ωbf )µ] ·L. (11.1.333)

From this result it follows that there are the equations of motion

µ̇ = (1/2)[ωbf + (µ× ωbf ) + (µ · ωbf )µ]. (11.1.334)

We have achieved the desired goal for the case of SO(3,R). Note that, since R is 3× 3
real, the integration of (1.321), and its Cayley counterpart (1.313), involves 9 real differential
equations. By contrast, the integration of (1.334) involves only 3 real differential equations.
Although (1.313) and its integration preserves lie algebraic structure, it does not exploit this
structure. By contrast, based on the introduction of a basis, (1.334) exploits Lie algebraic
structure. And, of course, if local errors of order hm+1 arise in the numerical integration
of (1.334), the resulting R(µ) is still guaranteed to be in SO(3,R) because of the Ansatz
(1.323).

The case of SU(2) requires more calculations, but these calculations involve only results
already known. Verify that inserting (1.327) and (1.328) into (1.313) yields the relation

µ̇ ·K = (1/2)[ωbf ·K + {µ ·K,ωbf ·K} − (µ ·K)(ωbf ·K)(µ ·K)]. (11.1.335)

Now manipulate the terms in (1.335) using known results. Recall that

{µ ·K,ωbf ·K} = (µ× ωbf ) ·K. (11.1.336)

See (3.7.182). Next recall that

(µ ·K)(ωbf ·K) = −(1/4)(µ · ωbf )I + (1/2)(µ× ωbf ) ·K. (11.1.337)

See (3.7.176). It follows that

(µ ·K)(ωbf ·K)(µ ·K) = −(1/4)(µ · ωbf )(µ ·K) + (1/2)[(µ× ωbf ) ·K](µ ·K).

(11.1.338)

Verify that

[(µ× ωbf ) ·K](µ ·K) = −(1/4)[(µ× ωbf ) · µ]I + (1/2)[(µ× ωbf )× µ] ·K
= 0− (1/2)[µ× (µ× ωbf )] ·K = −(1/2)[(µ · ωbf )µ− (µ · µ)ωbf ] ·K,

(11.1.339)
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and that, consequently,

(µ ·K)(ωbf ·K)(µ ·K)

= −(1/4)(µ · ωbf )(µ ·K)− (1/4)[(µ · ωbf )µ− (µ · µ)ωbf ] ·K
= [−(1/2)(µ · ωbf )µ+ (1/4)(µ · µ)ωbf ] ·K.

(11.1.340)

Verify that combining (1.335) through (1.340) gives the result

µ̇ ·K = (1/2)[ωbf + (µ× ωbf ) + (1/2)(µ · ωbf )µ− (1/4)(µ · µ)ωbf ] ·K. (11.1.341)

From this result it follows that there are the equations of motion

µ̇ = (1/2)[ωbf + (µ× ωbf ) + (1/2)(µ · ωbf )µ− (1/4)(µ · µ)ωbf ]. (11.1.342)

We have achieved our goal for the case of SU(2). Note that, since u is 2 × 2 complex,
the integration of (1.322), and its Cayley counterpart, involves 8 real differential equations.
By contrast, the integration of (1.342) again involves only 3 real differential equations. And,
again, if local errors of order hm+1 arise in the numerical integration of (1.342), the resulting
u(µ) is still guaranteed to be in SU(2) because of the Ansatz (1.324).

What can be said about the singularity structure of Cayley parameterization? Evidently
(1.293) is singular when

det(I − V ) = 0, (11.1.343)

that is, when V has +1 as an eigenvalue. Also, (1.311) can be rewritten in the form

A = 2(I + V )−1V̇ (I − V )−1 (11.1.344)

so that the relation between A and V̇ is singular when

det(I + V ) = 0 and det(I − V ) = 0. (11.1.345)

Strangely enough, the general equation of motion (1.313), and the specific SO(3,R)
and SU(2) equations of motion (1.334) and (1.342), appear to be singularity free. This
appearance is deceptive, because, for example, (1.334) and (1.342) are singular in µ at
infinity, and there is the possibility that this singularity can be encountered in finite time.

To realize this possible singularity in the case of SO(3,R), suppose that

ωbfj = Ωδj3, (11.1.346)

where Ω is a constant, and make the Ansatz

µj = f(t)δj3 (11.1.347)

where f satisfies the initial condition

f(0) = 0, (11.1.348)
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but is otherwise to be determined. Show that putting this Ansatz into the equation of
motion (1.334) yields the result

ḟ = (1/2)Ω(1 + f 2). (11.1.349)

Show that the solution to (1.349) with the initial condition (1.348) is

f = tan(Ωt/2). (11.1.350)

Review Exercise 3.12.6. Show that the corresponding λ is given by

λj = Ωtδj3 (11.1.351)

and therefore R is given by

R = exp(ΩtL3). (11.1.352)

See (3.12.61). Observe that (1.350), and hence (1.347), are singular when Ωt = π and
therefore when |λ| = π which, according to Exercise 3.12.6, is the expected condition for
singularity in the case of SO(3,R).

To realize this possible singularity in the case of SU(2), suppose that (1.346) through
(1.348) continue to hold. Show that putting this Ansatz into (1.342) yields the differential
equation

ḟ = (Ω/2)(1 + f 2/4), (11.1.353)

and that this equation has the solution

f = 2 tan(Ωt/4). (11.1.354)

Show that the corresponding λ is again given by

λj = Ωtδj3 (11.1.355)

and therefore u is given by

u = exp(ΩtK3). (11.1.356)

See (3.12.73). Observe that (1.354), and hence (1.347), are singular when Ωt = 2π and
therefore when |λ| = 2π which, according to Exercise 3.12.6, is the expected condition for
singularity in the case of SU(2).

At this point you, the observant reader, might object that the quaternion parameter
equations of motion (1.43) through (1.46), which were lauded as being wonderful, are also
singular in the components of w at infinity. They are indeed singular at infinity, but this
singularity cannot be reached in real time because these equations preserve the condition
w · w = 1. This singularity can be reached in complex time, but because the equations
of motion are linear in w, the time must be infinite complex. Therefore, for quaternion
parameterization, there are no singularities in finite time, real or complex.
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11.2 Numerical Integration on Manifolds: Spin and

Qubits

As a second example of integration on manifolds, we consider an equation that occurs in
several contexts. Let s(t) be a time-dependent 3-dimensional vector that evolves according
to the rule

ds/dt = ω̄(t)× s (11.2.1)

where ω̄(t) is some other specified, possibly time dependent, 3-dimensional vector. This
equation is called the Bloch equation in the context of nuclear magnetic resonance (NMR
or MRI) and electron spin resonance (ESR), and the Bargmann-Michel-Telegdi (BMT or
Thomas-BMT or Thomas-Frenkel -BMT) equation in the context of determining the evolu-
tion of a particle’s spin polarization vector as it traverses some accelerator or beam line. It
also occurs in the context of rigid-body motion. See (1.105) in Exercise 1.1. Finally, it is
relevant to the general quantum mechanical treatment of two level systems (qubits), and
therefore plays a prominent role in quantum information theory and quantum computation.
See Exercises 2.15 and 2.16. Note also that the equation of motion (1.6.112) can be written
as

dv/dt = [−(q/m∗)B]× v, (11.2.2)

which also appears to be of the form (2.1). See Section 3 for further discussion of this
observation.

Suppose our task is to find s(t) given ω̄(t) and the initial vector

s0 = s(t0) (11.2.3)

at time t0.17 It is easily verified that the equations of motion (2.1) preserve s · s. Define a
quantity s∗ by the rule

s∗ =
√
s0 · s0, (11.2.4)

and let S2∗ denote the two-sphere of radius s∗ imbedded in the ambient space E3. With this
notation, we may say that the equations of motion (2.1) preserve S2∗, and are equations of
motion on the manifold S2∗ embedded in the ambient space E3. Note also that the equations
of motion (2.1) are linear. Therefore, for many applications, there is no loss in generality
in taking s0 to be a unit vector: s0 ∈ S2 where, as usual, S2 denotes the unit two-sphere
(s∗ = 1). Solutions corresponding to initial conditions that are not unit vectors can be
obtained by simple scaling of the solutions corresponding to unit-vector initial conditions.
Therefore, unless specifically specified otherwise, we will work with the S2 case. However,
where useful, we will treat explicitly the general S2∗ case.

Our task is to integrate (2.1) numerically in such a way that, even if local errors of order
hm+1 are made, the solution is guaranteed to be in S2. One procedure for so doing is to
employ any of the standard methods of Chapter 2 for one step at a time (thereby making
local errors of order hm+1) and to then project after each step the resulting s back onto S2

by simple scaling. Alternatively, we may consider other approaches that parameterize S2 or
exploit other features of the problem. The purpose of this section is to describe several such
approaches.

17For a discussion of the inverse problem, namely given s(t) find ω̄(t), see Exercise 2.1.
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11.2.1 Constrained Cartesian Coordinates Are Not Global

In Cartesian coordinates (2.1) yields the three coupled linear equations

ṡ1 = ω̄2s3 − ω̄3s2, (11.2.5)

ṡ2 = ω̄3s1 − ω̄1s3, (11.2.6)

ṡ3 = ω̄1s2 − ω̄2s1. (11.2.7)

To recapitulate, if they are integrated numerically by a method that makes local errors of
order hm+1, the quantity s ·s will generally be locally preserved only through terms of order
hm. If we wish to preserve the condition s ∈ S2 to machine precision, one simple procedure
is to project s ∈ E3 back onto S2 by simple scaling after each integration step.

Another procedure, assuming s0 ∈ S2, is to enforce the condition s ∈ S2 by making the
definition

s1 = +(1− s2
2 − s2

3)1/2 (11.2.8)

and inserting this definition/constraint into the equations (2.6) and (2.7) to yield the equa-
tions of motion

ṡ2 = ω̄3(1− s2
2 − s2

3)1/2 − ω̄1s3, (11.2.9)

ṡ3 = ω̄1s2 − ω̄2(1− s2
2 − s2

3)1/2. (11.2.10)

In essence, we have parameterized S2 by the coordinates s2 and s3. If s is initially in the front
hemisphere, s1 > 0, these equations for s2 and s3 can be integrated as long as (s2

2 + s2
3) < 1.

However, they become singular if s crosses the plane s1 = 0 (which divides the front and rear
hemispheres), as is certainly mathematically/physically possible, and they therefore cannot
be generally used to produce a global solution.

11.2.2 Polar-Angle Coordinates Are Not Global

Yet another possibility is to parameterize s ∈ S2 by the use of polar-angle coordinates θ
and φ. Make the Ansatz

s1 = sin(θ) cos(φ), (11.2.11)

s2 = sin(θ) sin(φ), (11.2.12)

s3 = cos(θ). (11.2.13)

This Ansatz guarantees s ∈ S2. From (2.11) through (2.13) we find the relations

ṡ1 = θ̇ cos(θ) cos(φ)− φ̇ sin(θ) sin(φ), (11.2.14)

ṡ2 = θ̇ cos(θ) sin(φ) + φ̇ sin(θ) cos(φ), (11.2.15)

ṡ3 = −θ̇ sin(θ). (11.2.16)

Solving these relations for θ̇ and φ̇ yields the results

θ̇ = −[1/ sin(θ)]ṡ3, (11.2.17)



11.2. NUMERICAL INTEGRATION ON MANIFOLDS: SPIN AND QUBITS 1157

φ̇ = −[1/ sin(θ)][ṡ1 sin(φ)− ṡ2 cos(φ)]. (11.2.18)

Finally, combining (2.5) through (2.7) and (2.11) through (2.13) with (2.17) and (2.18) yields
the equations of motion

θ̇ = −ω̄1 sin(φ) + ω̄2 cos(φ), (11.2.19)

φ̇ = ω̄3 − [cos(θ)/ sin(θ)][ω̄1 cos(φ) + ω̄2 sin(φ)]. (11.2.20)

Observe that (2.20) is singular at the poles θ = 0 and θ = π. (Note that φ is ill defined at the
poles, and consequently these singularities are to be expected). Therefore these equations
are also not suitable for finding global solutions.

11.2.3 Local Tangent-Space Coordinates

One way to insure that a numerical trajectory will remain on an invariant manifold is to
introduce local coordinates in the ambient space at some point on the manifold, locally
parameterize the manifold, formulate differential equations for these parameters, and finally
numerically integrate the differential equations for the parameters. By so doing, even if
single-step errors of order hm+1 occur in the parameters over the process of integration, the
resulting trajectory is guaranteed to remain on the manifold. We will illustrate this process
for the equation of motion (2.1) and, for future use, we will explicitly treat the general case
S2∗.

Let sb be some point on the the manifold S2∗ at the beginning of an integration step to
be initiated at time tb. Parameterize points in the ambient space and in the vicinity of sb

by writing
s(t) = sb + sv(t) (11.2.21)

where sv(t) is a variable vector with the property

sv(tb) = 0. (11.2.22)

Next work to insure that s(t) remains on S2∗ as t varies. Let e1, e2, e3 be a fixed right-
hand triad of orthonormal vectors. Construct a second right-hand triad of orthonormal
vectors f1, f2, f3 associated with sb as follows: Begin by defining

f1 = sb/s∗. (11.2.23)

Next examine the quantities ej ·f1 and select the ej for which ej ·f1 has the least magnitude.
This will the ej that is most nearly perpendicular to sb. Use this ej, call it ek, to define the
unit vector

f2 = (ek × f1)/|ek × f1|. (11.2.24)

By construction f2 is perpendicular to f1,

f1 · f2 = 0. (11.2.25)

Finally, define the unit vector f3 by the rule

f3 = f1 × f2. (11.2.26)
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Continue on by expressing sv(t) in the form

sv(t) = svf1 (t)f1 + svf2 (t)f2 + svf3 (t)f3. (11.2.27)

Here the superscript f reminds us that the fj have been employed as a basis. That is, the

svfj are the components of sv with respect to the fj basis. By construction, vectors of the
form

stan = sb + svf2 f2 + svf3 f3 (11.2.28)

comprise the tangent space to S2∗ at sb; and we may view svf2 and svf3 as being tangent-space
coordinates. Combining (2.21) and (2.27) gives the result

s(t) = [s∗ + svf1 (t)]f1 + svf2 (t)f2 + svf3 (t)f3. (11.2.29)

Now enforce the condition that s(t) lie in S2∗ . So doing gives the relation

[s∗ + svf1 (t)]2 + [svf2 (t)]2 + [svf3 (t)]2 = (s∗)2, (11.2.30)

from which it follows that

svf1 (t) = {(s∗)2 − [svf2 (t)]2 − [svf3 (t)]2}1/2 − s∗. (11.2.31)

We see that in the vicinity of sb the manifold S2∗ can be parameterized by svf2 and svf3

providing (2.31) is used to specify svf1 .
What remains is to find equations of motion for svf2 and svf3 . The first step is to expand

ω̄(t) in terms of the fj by writing

ω̄(t) =
∑
j

[ω̄(t) · fj]fj =
∑
j

ω̄fj (t)fj (11.2.32)

where we have made the definition

ω̄fj (t) = ω̄(t) · fj (11.2.33)

and again the superscript f reminds us that the fj has been employed as a basis. Use of
(2.29) gives for the left side of (2.1) the result

ds(t)/dt = ṡvf1 (t)f1 + ṡvf2 (t)f2 + ṡvf3 (t)f3. (11.2.34)

Use of (2.29) and (2.32) gives for the right side side of (2.1) the result

ω̄(t)× s = [ω̄f2 (t)svf3 (t)− ω̄f3 (t)svf2 (t)]f1

+ {ω̄f3 (t)[s∗ + svf1 (t)]− ω̄f1 (t)svf3 (t)}f2

+ {ω̄f1 (t)svf2 (t)− ω̄f2 (t)[s∗ + svf1 (t)]}f3. (11.2.35)

Now equate the second and third components of (2.34) and (2.35) to find the relations

ṡvf2 (t) = ω̄f3 (t)[s∗ + svf1 (t)]− ω̄f1 (t)svf3 (t), (11.2.36)
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ṡvf3 (t) = ω̄f1 (t)svf2 (t)− ω̄f2 (t)[s∗ + svf1 (t)]. (11.2.37)

Finally, employing (2.31) in (2.36) and (2.37) yields the equations of motion

ṡvf2 (t) = ω̄f3 (t){(s∗)2 − [svf2 (t)]2 − [svf3 (t)]2}1/2 − ω̄f1 (t)svf3 (t), (11.2.38)

ṡvf3 (t) = ω̄f1 (t)svf2 (t)− ω̄f2 (t){(s∗)2 − [svf2 (t)]2 − [svf3 (t)]2}1/2. (11.2.39)

It is these equations that are to be numerically integrated from the time tb to the time
tb + h (or perhaps tb + kh) starting with the initial conditions svf2 (tb) = svf3 (tb) = 0.18 Then,
once sv(tb + h) [or perhaps sv(tb + kh)] has been obtained, s(tb + h) [or perhaps s(tb + kh)]
is given by (2.21).19 At this point, the whole process just described is repeated as often as
desired. That is, the vectors fj are reconstructed based on the most recently obtained s,
etc.

We close this subsection by noting that, as was the case with constrained Cartesian
coordinates and polar-angle coordinates, there are only two equations to be integrated,
namely (2.38) and (2.39), whereas working in the ambient space E3 as in (2.5) through (2.7)
required the integration of three equations.

11.2.4 Exploiting Connection with Rigid-Body Kinematics

We next consider approaches related to those used in the rigid-body case. Suppose we seek
the general solution of (2.1). Observe, with the aid of the matrices Lj, that (2.1) can be
written in the form

ds/dt = (ω̄ ·L)s. (11.2.40)

Recall (3.7.200). Also, since (2.1) is linear, we may make the general Ansatz

s(t) = S(t)s0 (11.2.41)

where S is a 3×3 matrix to be determined. Now insert (2.41) into (2.40) to find the relation

Ṡ(t)s0 = (ω̄ ·L)S(t)s0. (11.2.42)

Since we wish s0 to be an arbitrary unit vector and (2.42) is linear, the relation (2.42) is
equivalent to the matrix differential equation

Ṡ(t) = (ω̄ ·L)S(t), (11.2.43)

and from (2.3) and (2.41) we find the initial condition

S(t0) = I. (11.2.44)

In summary, solving (2.43) with the initial condition (2.44) provides the general solution to
(2.1). This approach has the advantage that once S(t) has been found, s(t) can be found

18Observe that the equations of motion (2.38) and (2.39) agree with the equations of motion (2.9) and
(2.10) in the case where the fj agree with the ej and s∗ = 1, which is a nice check of our work.

19If k > 1 is attempted, one must monitor [(sv2)2 + (sv3)2] to ensure that the square root singularity in
(2.31) is not approached too closely.
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for all initial conditions s0 by the easy computation (2.41). In essence, S(t) is the transfer
map associated with the differential equation (2.1). By contrast, if (2.5) through (2.7), or
(2.9) and (2.10), or (2.19) and (2.20), or (2.38) and (2.39) are employed, these differential
equations must be integrated afresh for each different initial s0.

At this point we observe that (2.43) and (1.18) are quite similar. Indeed, suppose we
pass back and forth between matrices R and S by the rule

R = S−1 or S = R−1, (11.2.45)

from which it follows that
R(t0) = I. (11.2.46)

Then it can be shown from (2.43) that there is the relation

Ṙ = R(ωbf ·L) (11.2.47)

with
ωbf = −ω̄. (11.2.48)

See Exercise 2.7.
We know that R is orthogonal and therefore, from (2.45), we conclude that S is also

orthogonal. We also observe that in the orthogonal case the relation (2.45) is equivalent to
the computationally simpler relation

R = ST or S = RT . (11.2.49)

We see that all the machinery developed for and the conclusions drawn about rigid body
motion in Section 1 are also applicable here.

11.2.5 What Just Happened? Generalizations

In the last subsection we saw that the problem of determining the path s(t) in the manifold
S2 and satisfying the manifold differential equation (2.1) [or, equivalently (2.40)] with the
initial condition (2.3) was converted into finding a path S(t) in the group SO(3,R) that sat-
isfied the group differential equation (2.43) with the initial condition (2.44). We also observe
that the group SO(3,R) acts transitively on the manifold S2. (Evidently any point in S2 can
be rotated into any other point in S2.) Therefore S2 is a homogeneous space with respect to
the group SO(3,R), and is in fact isomorphic to the coset space SO(3,R)/SO(2,R). Recall
the discussion of homogeneous spaces in Subsections 5.12.3 through 5.12.5.

Observe moreover that (2.41) is a relation that sends the path S(t) in the group SO(3,R)
to the path s(t) in the manifold S2. The path S(t) begins at the identity, see (2.44), and the
path s(t) begins at s0. In the language of manifold theory, the relation (2.41) is said to push
forward the path S(t) ∈ SO(3,R) to produce the path s(t) ∈ S2.20 Correspondingly, the
group differential equation (2.43) is the pullback to SO(3,R) of the S2 manifold differential
equation (2.1). Finally, since SO(3,R) acts on and preserves S2, we are guaranteed that
s(t) will be in S2 if S(t) is in SO(3,R). Therefore a numerical integrator that preserves

20Put another way, s(t) is the orbit of s0 under the action of the SO(3,R) group elements S(t).
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the SO(3,R) group manifold for any group differential equation automatically produces a
pushed-forward path that is guaranteed to lie in the S2 manifold.

It should now be evident that this strategy has some general applicability. Suppose we
are given a manifold, call it Γ, perhaps embedded in some larger ambient space, and a first-
order differential equation for a path, call it γ(t), that from the differential equation and the
initial condition γ0 can be shown to lie in Γ. Suppose we can find a group, call it G, such
that G acts transitively on Γ so that Γ is a homogeneous space with respect to G. Introduce
the notation G(t) to denote a path in G with the beginning point

G(t0) = I. (11.2.50)

Then this path in G may be pushed forward to produce a path γ(t) in Γ. In a notation
analogous to that of Subsection 5.12.4, we write

γ(t) = TG(t)(γ
0) (11.2.51)

where TG describes the action of G on Γ. With some suitable parameterization of G, perhaps
involving an embedding in an ambient space of its own, the differential equation for γ(t)
can be pulled back to produce a group differential equation for G(t). And if this group
differential equation can be integrated numerically in such a way that the group manifold
is preserved, say either by parameterizing G or its Lie algebra or by integrating in its Lie
algebra, then the γ(t) given by (2.51) will be (locally) accurate through terms of order
hm and is guaranteed to lie in Γ. Thus, whatever means can be found to integrate group
differential equations numerically in such a way that the group manifold is preserved, by the
same means one has found a procedure to numerically integrate in a manifold preserving
way all differential equations defined on the homogeneous spaces associated with G.

11.2.6 Exploiting an Important Simplification: Lie Taylor
Factorization and Lie Taylor Runge Kutta

We observe that there is one way in which the context for (2.43) is simpler than that for
(1.18). Namely, in (2.43) ω̄ is assumed to be a given function of t independent of S whereas
in (1.18) ωbf must be determined dynamically from the Euler equations (1.19) through (1.21)
which themselves may depend on R. This simplification can be used to good advantage in
integrating (2.43) numerically. Of course, since S(t) is orthogonal when computed exactly,
we will want a numerical integrator that guarantees this property for the numerical solution.
In this subsection we will see how this simplification can be exploited to perform what we
call Lie Taylor factorization, and in so doing we will produce in effect a special kind of
Runge Kutta that we will call Lie Taylor Runge Kutta.

Subsequently, in the next two subsections, we will explore how this requirement that
ω̄(t) be known in advance can be relaxed in the context of two other special forms of Runge
Kutta that we will call factored Lie Runge Kutta and Magnus Lie Runge Kutta. A final
subsection revisits the use of integration in the Lie algebra.

For the purposes of this subsection it is convenient to capitalize on the homomorphism
between SO(3,R) and SU(2). Let u be the 2×2 matrix that satisfies the differential equation

u̇(t) = (ω̄ ·K)u(t) (11.2.52)
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with the initial condition
u(t0) = I. (11.2.53)

By the results of Section 1.3, u(t) is uniquely defined. Also, it can be shown that u(t) is
in SU(2) for all t. See Exercise 2.4. Next, use the homomorphism between SO(3,R) and
SU(2) to define S(t) by the rule

Sαβ(t) = Sαβ[u(t)] = (1/2)tr[u†(t)σαu(t)σβ]. (11.2.54)

See (8.2.54). Then it can be shown that S(t) satisfies (2.43) with the initial condition (2.44).
See Exercise 2.5.21

Since u is a 2 × 2 complex matrix, it lives in the ambient space C4 = E8. However,
we know that u is also in SU(2) for all t. Therefore (2.52) is an equation of motion on
the three-dimensional manifold SU(2) imbedded in the ambient space E8. Based on the
assumption that ω̄ is a given function of t, what we seek is a method, beyond those already
described, for numerically integrating (2.52) in such a way that u is guaranteed to remain
in SU(2).22 Such a method is presented below.

In the language of Section 2.6, let H be the duration of a meso integration step, and
suppose H is divided into M micro steps each of duration h = H/M . Let tb be the time at
which a meso step is to be initiated so that we wish to integrate from tb to tb +H. We also
suppose that

ub = u(tb) (11.2.55)

is known and is an element of SU(2).
Introduce a relative time τ by the rule

t = tb + τ (11.2.56)

so that, in terms of τ , we wish to integrate from τ = τ 0 = 0 to τ = τM = H. Also, define a
quantity ω̂(τ) by the rule

ω̂(τ) = ω̄(tb + τ). (11.2.57)

In the spirit of (1.52), write
u(t) = uv(t)ub (11.2.58)

with uv being a variable matrix near the identity satisfying

uv(tb) = I. (11.2.59)

21Why can we move from SO(3,R) matrices to SU(2) matrices? It can be shown that the solution to
any matrix differential equation of the forms dM/dt = AM or dM/dt = MA is governed by the Lie algebra
generated by the A(t) at different times. See the paper by E. Wichmann cited in the Bibliography for
Chapter 10. See also Section 10.3 and Appendix C. We may therefore use any set of matrices that obey
the Lie algebra in question. In our case this Lie algebra is so(3,R) or, equivalently, su(2). Why should we
move from SO(3,R) to SU(2)? It is computationally advantageous to use the matrices that have the lowest
dimension. In this case, the matrices with lowest dimension that satisfy su(2) commutation rules are the
Kj .

22By methods “already described” we mean that u, like R, can be parameterized in terms of Euler or
Tait-Bryan angles or angle-axis or quaternion or Cayley parameters, or can be integrated in its Lie algebra;
and so doing produces equations of motion analogous to those for rigid-body motion.



11.2. NUMERICAL INTEGRATION ON MANIFOLDS: SPIN AND QUBITS 1163

Finally, define a variable matrix ûv(τ) by the rule

ûv(τ) = uv(tb + τ). (11.2.60)

It then follows from (2.52), (2.53), and (2.55) through (2.60) that ûv(τ) obeys the equation
of motion

dûv(τ)/dτ = [ω̂(τ) ·K]ûv(τ) (11.2.61)

with the initial condition
ûv(0) = I. (11.2.62)

Suppose the M + 1 vectors ω̂n are given with

ω̂n = ω̂(τ (n)) (11.2.63)

and
τ (n) = nh for n = 0, 1, · · ·M. (11.2.64)

We want to use this information to find a numerical approximation to ûv(H) that is both
accurate and exactly in SU(2). How to proceed? First use the M + 1 vectors ω̂n to produce
a polynomial fit to ω̂(τ) of the form

ω̂fit(τ) =
M∑
m=0

cmτ
m. (11.2.65)

Here we have introduced the notation τ (n) to denote the nth sampling point and the notation
τm to denote the mth power of τ . We also remark that some sampling procedure other than
equal spacing could be used to obtain the expansion (2.65). All we need for present purposes
are the expansion coefficients cm in (2.65), and need not specify how they are to be obtained.

Next, assume that ûv(τ) has a factorized Taylor approximation of the form

ûv(τ) ' ûvfac(τ) = exp(τM+1dM ·K) exp(τMdM−1 ·K) · · · exp(τd0 ·K). (11.2.66)

Note that this Ansatz satisfies the relation

ûvfac(0) = I, (11.2.67)

as is desirable in view of (2.62).23 Finally, insert (2.65) and (2.66) into (2.61) to yield the
approximate relation

dûvfac(τ)/dτ = [ω̂fit(τ) ·K]ûvfac(τ), (11.2.68)

which can also be written in the form

[dûvfac(τ)/dτ ][ûvfac(τ)]−1 = ω̂fit(τ) ·K. (11.2.69)

23The justification for the Ansatz (2.66) is as follows: Under the assumption that ω̂(τ) is analytic in τ ,
the solution ûv(τ) to (2.61) will be analytic in τ . See Section 1.3. It follows that the logarithm of ûv(τ),
the su(2) element corresponding to ûv(τ), can be expanded as a power series in τ assuming ûv(τ) is near
the origin, which it is for small τ . See Subsection 3.7.1. Finally, we may pass from a power series in the
exponent to a product of exponentials with the aid of the BCH series, thereby yielding the factorization
(2.66).
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The strategy now is to equate powers of τ on both sides of (2.69) to determine the vectors
dn in terms of the vectors cm.

As an example, let us see how this procedure plays out for the case M = 3. Then there
are the results

ω̂fit(τ) = c0 + c1τ + c2τ
2 + c3τ

3, (11.2.70)

ûvfac(τ) = exp(τ 4d3 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K) exp(τd0 ·K), (11.2.71)

[ûvfac(τ)]−1 = exp(−τd0 ·K) exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K), (11.2.72)

dûvfac(τ)/dτ = exp(τ 4d3 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K)(d0 ·K) exp(τd0 ·K)

+ exp(τ 4d3 ·K) exp(τ 3d2 ·K)(2τd1 ·K) exp(τ 2d1 ·K) exp(τd0 ·K)

+ exp(τ 4d3 ·K)(3τ 2d2 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K) exp(τd0 ·K).

+ (4τ 3d3 ·K) exp(τ 4d3 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K) exp(τd0 ·K).

(11.2.73)

Next, in view of (2.69), combine (2.72) and (2.73) to yield the result

[dûvfac(τ)/dτ ][ûvfac(τ)]−1 =

exp(τ 4d3 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K)(d0 ·K) exp(τd0 ·K)×
exp(−τd0 ·K) exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K)

+ exp(τ 4d3 ·K) exp(τ 3d2 ·K)(2τd1 ·K) exp(τ 2d1 ·K) exp(τd0 ·K)×
exp(−τd0 ·K) exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K)

+ exp(τ 4d3 ·K)(3τ 2d2 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K) exp(τd0 ·K)×
exp(−τd0 ·K) exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K)

+(4τ 3d3 ·K) exp(τ 4d3 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K) exp(τd0 ·K)×
exp(−τd0 ·K) exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K).

(11.2.74)

After cancellations of various factors in (2.74) against their inverses, (2.74) simplifies to
become

[dûvfac(τ)/dτ ][ûvfac(τ)]−1 =

exp(τ 4d3 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K)(d0 ·K)×
exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K)

+ exp(τ 4d3 ·K) exp(τ 3d2 ·K)(2τd1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K)

+ exp(τ 4d3 ·K)(3τ 2d2 ·K) exp(−τ 4d3 ·K)

+(4τ 3d3 ·K). (11.2.75)

Now expand the various terms on the right side of (2.75) as power series in τ through
terms of order τ 3. The first term becomes

exp(τ 4d3 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K)(d0 ·K)×
exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K) =

exp(τ 3d2 ·K) exp(τ 2d1 ·K)(d0 ·K) exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) +O(τ 4).

(11.2.76)
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Observe that

exp(τ 2d1 ·K)(d0 ·K) exp(−τ 2d1 ·K) = d0 ·K + τ 2{d1 ·K),d0 ·K}+O(τ 4)

= d0 ·K + τ 2(d1 × d0) ·K +O(τ 4).

(11.2.77)

See (3.7.182) and (8.2.5). It follows that

exp(τ 3d2 ·K) exp(τ 2d1 ·K)(d0 ·K) exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) =

exp(τ 3d2 ·K)(d0 ·K) exp(−τ 3d2 ·K) + τ 2(d1 × d0) ·K +O(τ 4) =

d0 ·K + τ 3{d2 ·K),d0 ·K}+ τ 2(d1 × d0) ·K +O(τ 4) =

d0 ·K + τ 3(d2 × d0) ·K + τ 2(d1 × d0) ·K +O(τ 4).

(11.2.78)

The net result is that the first term has the expansion

exp(τ 4d3 ·K) exp(τ 3d2 ·K) exp(τ 2d1 ·K)(d0 ·K)×
exp(−τ 2d1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K) =

d0 ·K + τ 2(d1 × d0) ·K + τ 3(d2 × d0) ·K +O(τ 4).

(11.2.79)

What remains is to expand the second and third terms. The second term has the expan-
sion

exp(τ 4d3 ·K) exp(τ 3d2 ·K)(2τd1 ·K) exp(−τ 3d2 ·K) exp(−τ 4d3 ·K) =

2τd1 ·K +O(τ 4).

(11.2.80)

The third term has the expansion

exp(τ 4d3 ·K)(3τ 2d2 ·K) exp(−τ 4d3 ·K) = 3τ 2d2 ·K +O(τ 4). (11.2.81)

The fourth term, 4τ 3d3 ·K, is already as simple as possible.
Now gather all the terms together. The result, as a power series in τ , is that (2.75)

becomes

[dûvfac(τ)/dτ ][ûvfac(τ)]−1 =

d0 ·K + 2τd1 ·K + τ 2[3d2 + (d1 × d0)] ·K + τ 3[4d3 + (d2 × d0)] ·K +O(τ 4).

(11.2.82)

We are ready to equate powers of τ on both sides of (2.69). So doing yields the relations

d0 = c0, (11.2.83)

2d1 = c1, (11.2.84)
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3d2 + (d1 × d0) = c2, (11.2.85)

4d3 + (d2 × d0) = c3; (11.2.86)

and these relations have the solution
d0 = c0, (11.2.87)

d1 = c1/2, (11.2.88)

d2 = (1/3)c2 + (1/6)(c0 × c1), (11.2.89)

d3 = (1/4)c3 + (1/12)(c0 × c2) + (1/24)[c0 × (c0 × c1)]. (11.2.90)

In the case M = 3 we have found the approximation

ûv(H) ' ûvfac(H) =

exp(H4d3 ·K) exp(H3d2 ·K) exp(H2d1 ·K) exp(Hd0 ·K)

(11.2.91)

with the coefficients d0 through d3 given by (2.87) through (2.90). And in general we have
the result

ûv(H) ' ûvfac(H) =

· · · exp(Hn+1dn ·K) exp(Hndn−1 ·K) · · · exp(Hd0 ·K). (11.2.92)

What can be said about the error in this approximation? We begin by observing that
any given dn depends only on the cm with m ≤ n, and is independent of M as long as
M ≥ n. Also if we use (M + 1) sampling points to find (M + 1) values of ω̂, and use these
values to compute c0 through cM , then we can find d0 through dM using relations of the
kind (2.87) through (2.90). With this information we can compute ûv(H) given by

ûv(H) ' ûvfac(H) = exp(HM+1dM ·K) exp(HMdM−1 ·K) · · · exp(Hd0 ·K), (11.2.93)

which is locally accurate through terms of order HM+1, and exactly in SU(2). In effect,
we have produced a special kind of Runge Kutta that we will call Lie Taylor Runge Kutta.
Indeed, in the terminology of Runge-Kutta integration, we may think of (M + 1) as being
the number of stages. Thus, the local accuracy of ûv(H) equals the number of stages.
Comparison of this result with the entries of Table 2.3.1 shows that this performance of Lie
Taylor Runge Kutta equals or exceeds that of ordinary explicit Runge-Kutta; and reference
to (T.166) and (T.169) shows that Lie Taylor Runge Kutta has one order lower accuracy
than Newton Cotes for odd values of M + 1, and equal accuracy for even values of M + 1.24

There is one other observation that is worth consideration. In determining the c0 through
cM there is no need for the sampling points to lie within the interval of meso-step integration
as was done in (2.64). Suppose, for example, that we wish to integrate from the time t = t0

to the time t = t0 + T using N meso steps each of duration

H = T/N. (11.2.94)

24Note that here we are demanding more than the integration of an equation of the form (T.157) since in
this instance the right side of (2.52) depends on u as well as t.
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Also suppose that over the full interval t ∈ [t0, t0 + T ] the vector function ω̄(t) can be well
fit by a polynomial of degree M in t with vector coefficients. Under this assumption, the
coefficients of this polynomial can be obtained by evaluating ω̄(t) at (M+1) sampling points.
Use this global polynomial to form the local expansion (2.65) for each meso-step integration,
and use a relation of the form (2.93) to find the result for each meso-step integration. Then
the local error for each meso step is of order HM+2, and the global error in integrating from
the time t = t0 to the time t = t0 + T is given by

global error ≈ NHM+2 = N(T/N)M+2 = T (T/N)M+1. (11.2.95)

We see that the global integration error can be made arbitrarily small by increasing N (and,
correspondingly, decreasing H) without changing the number of sampling points (M + 1).
Put another way, for sufficiently large N , the full global error is only the error associated
with making the global polynomial fit to ω̄(t) in the full interval t ∈ [t0, t0 + T ]. The
goodness of this polynomial fit in turn depends only on the analytic properties of ω̄(t). In
particular, a good fit is easiest to achieve when ω̄(t) does not vary too rapidly over the
interval [t0, t0 + T ].25 Finally, we may truncate (2.93) at M ′ with M ′ < M and still achieve
convergence, but at the slower rate of

global error ≈ NHM ′+2 = N(T/N)M
′+2 = T (T/N)M

′+1. (11.2.96)

In this case we only need to work out formulas for the dn with n ≤M ′

Where applicable, employing the ideas just described should result in a substantial sav-
ings in computer time because only (M + 1) evaluations of ω̄(t) are required for the full
integration run.

11.2.7 Factored Lie Runge Kutta

Purpose, Motivation, and Plan

The purpose of this subsection is to describe a special form of Runge Kutta designed to
preserve group properties. We will see that for integrating equations of the form (2.43),
unlike Lie Taylor Runge Kutta, it does not require the values of ω̄(t) in advance.

By way of motivation, suppose we seek to integrate (2.43) by the simplest Runge-Kutta
method, namely the crude Euler method of Section 2.2. Doing so yields the stepping formula

Sn+1 = Sn + hṠn = Sn + h[ω̄(tn) ·L]Sn = {I + h[ω̄(tn) ·L]}Sn. (11.2.97)

Observe that {I + h[ω̄(tn) · L]} is generally not an orthogonal matrix. Consequently, Sn+1

will generally not be orthogonal even if Sn is. Consider, instead, the modified stepping
formula

Sn+1 = exp[hω̄(tn) ·L]Sn. (11.2.98)

As can be seen by expanding exp[hω̄(tn) ·L] in powers of h, (2.98) and (2.97) agree through
terms of order h. Therefore, use of (2.98) provides an integration algorithm that is of the

25More precisely, ω̄(t) needs to be analytic in the complex t plane in a disk of radius T/2 and centered
on t = t0 + T/2.
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same order as the Euler method (2.97). However the algorithm (2.98), even though (like
Euler) it makes local errors of order h2, preserves SO(3,R) exactly because exp[hω̄(tn) ·L]
is orthogonal.

The relation (2.98) provides an example of what we call a factored Lie Runge-Kutta
algorithm designed to preserve some group, in this case SO(3,R).26 We now discuss the
possibility of finding such algorithms that are of order hm with m > 1.

The equation (2.43) is a special case of a more general equation, and some results are
known about factored Lie Runge Kutta for this more general equation. Our plan is to discuss
this more general equation, and then apply the known results for the more general equation
to the special case (2.43).

Factored Lie Runge Kutta

Let G be some Lie group of n× n matrices, and let Y denote matrices in G. Next assume
that there is some n× n matrix function A(Y, t) such that A(Y, t) is in the Lie algebra of G
for all Y ∈ G and all t. Let t0 be some initial time and let Y 0 be some initial matrix in G.
Consider the matrix differential equation

Ẏ (t) = A(Y, t)Y (t). (11.2.99)

Then it can be shown that the solution to (2.99) lies in G for all time.27 See Exercise 2.8.
Comparison of (2.43) and (2.99) shows that (2.43) is a special case of (2.99) with S playing
the role of Y and [ω̄(t) ·L] playing the role of A(Y, t):

S ↔ Y, (11.2.100)

[ω̄(t) ·L]↔ A(Y, t). (11.2.101)

Note that for the special case (2.43) the matrices A(Y, t) are in fact independent of Y .
Crouch, Grossman, and others have developed factored Lie Runge-Kutta algorithms for

the numerical integration of (2.99). These algorithms are constructed in such a way that,
although they may make local errors of order hm+1, Y (t) is guaranteed to lie in G to machine
precision and evaluations of A(Y, t) are required only for matrices Y in G.

Applying crude Euler to (2.99) produces the stepping rule

Y n+1 = Y n + hẎ n = [I + hA(Y n, tn)]Y n (11.2.102)

which, to the same order in h, can be rewritten in the exponential form

Y n+1 = {exp[hA(Y n, tn)]}Y n. (11.2.103)

Suppose Y n ∈ G. Then, by assumption, A(Y n, tn) is in the Lie algebra of G, from which
it follows that {exp[hA(Y n, tn)]} ∈ G, and therefore Y n+1 ∈ G. The stepping rule (2.103)
preserves G.

26The significance of the adjective factored will become apparent subsequently. See (2.113).
27Note that there is a consistency consideration here. If the solution Y (t) were to leave G even though

the initial matrix Y 0 is in G, then A(Y, t) could become undefined.
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Consider a single-stage Butcher tableau of the form

c1 a11

b1
. (11.2.104)

It describes crude Euler when c1 = a11 = 0 and b1 = 1. See Exercise 2.3.3. Define quantities
Y n

1 and K1 by the rules
Y n

1 = Y n, (11.2.105)

K1 = A(Y n
1 , t

n + hc1) = A(Y n
1 , t

n) = A(Y n, tn), (11.2.106)

Then we see that (2.103) can be written in the form

Y n+1 = exp(hb1K1)Y n. (11.2.107)

Thus, there is a correspondence between (2.103) and the Butcher tableau for crude Euler.
Next consider a two-stage Butcher tableau of the form

c1 0 0
c2 a21 0

b1 b2

. (11.2.108)

Note that the matrix a is strictly lower triangular, and therefore the associated Runge-Kutta
method is explicit, as is the single-stage method specified by (2.104) when a11 = 0. Also, we
continue to enforce the consistency condition (2.3.16) so that, in fact, c1 = 0. Corresponding
to the Butcher tableau (2.108), consider the following rule for stepping from Y n to Y n+1:

Y n
1 = Y n, (11.2.109)

K1 = A(Y n
1 , t

n + hc1) = A(Y n
1 , t

n) = A(Y n, tn), (11.2.110)

Y n
2 = [exp(ha21K1)]Y n, (11.2.111)

K2 = A(Y n
2 , t

n + hc2), (11.2.112)

Y n+1 = [exp(hb2K2) exp(hb1K1)]Y n. (11.2.113)

Observe that the term appearing in square brackets on the right side of (2.113) is factored
into a product of group elements, each in exponential form.

Let us examine the ingredients in this rule. Assuming Y n ∈ G, we see from (2.109) that
Y n

1 ∈ G. Next, we see from (2.110) that K1 is in the Lie algebra of G. Now look at (2.111).
Since K1 is in the Lie algebra, [exp(ha21K1)] is in G, and therefore Y n

2 ∈ G. With regard
to (2.112), we see that the arguments of A are in its domain of definition, and therefore
K2 is well defined and in the Lie algebra of G. Finally, examination of (2.113) shows that
Y n+1 ∈ G. Our goal has at least been partially achieved: Starting from Y 0 ∈ G, we have
produced a sequence of matrices Y 1, Y 2, · · · , all of which are in G to machine precision.

What about the error associated with this rule? It can be shown that this algorithm is
locally correct through terms of order h2 (local error of order h3) if the coefficients a, b, and
c satisfy the consistency condition (2.3.16) and the order conditions (2.3.42), and (2.3.43).
Thus, in the case of explicit one and two-stage methods, the order conditions on the Butcher
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tableau and the local accuracy for factored Lie Runge-Kutta are the same as those for the
ordinary Runge-Kutta methods of Chapter 2.

To continue our discussion, consider a three-stage explicit Butcher tableau of the form

c1 0 0 0
c2 a21 0 0
c3 a31 a32 0

b1 b2 b3

(11.2.114)

Corresponding to the Butcher tableau (2.114), we make the following rule for stepping from
Y n to Y n+1:

Y n
1 = Y n, (11.2.115)

K1 = A(Y n
1 , t

n + hc1) = A(Y n
1 , t

n) = A(Y n, tn), (11.2.116)

Y n
2 = [exp(ha21K1)]Y n, (11.2.117)

K2 = A(Y n
2 , t

n + hc2), (11.2.118)

Y n
3 = [exp(ha32K2)][exp(ha31K1)]Y n, (11.2.119)

K3 = A(Y n
3 , t

n + hc3), (11.2.120)

Y n+1 = exp(hb3K3) exp(hb2K2) exp(hb1K1)Y n. (11.2.121)

Again we see that the Y n
j are in G, the arguments of A are in its domain of definition,

and consequently the Kj are well defined and in the Lie algebra of G. And examination of
(2.121) shows that therefore Y n+1 ∈ G. We conclude that our goal has again at least been
partially achieved.

What about the error associated with this rule? It can be shown that this algorithm
is locally correct through terms of order h3 (local error of order h4) if the Butcher tableau
satisfies the consistency condition (2.3.16), the order conditions (2.3.42) through (2.3.45),
and the additional order condition

Additional Order 3: ∑
i

b2
i ci + 2

∑
i<j

bicibj = 1/3. (11.2.122)

We know that the consistency condition (2.3.16) and the order conditions (2.3.42) through
(2.3.45) are necessary and sufficient for the three-stage explicit ordinary Runge-Kutta meth-
ods of Chapter 2 to be locally accurate through terms of order h3. Because of the additional
order condition (2.122), more is required for the case of factored Lie Runge Kutta to achieve a
local accuracy through terms of order h3. Fortunately, there are three-stage explicit Butcher
tableaux that meet the requirements (2.3.16), (2.3.42) through (2.3.45), and (2.122). Two
such Butcher tableaux, found by Crouch and Grossman, are given below:

0 0 0 0
−1/24 −1/24 0 0
17/24 161/24 −6 0

1 −2/3 2/3

, (11.2.123)
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0 0 0 0
3/4 3/4 0 0

17/24 119/216 17/108 0
13/51 −2/3 24/17

. (11.2.124)

Note the curious feature that use of Butcher tableau (2.123) entails the evaluation of A out-
side the temporal interval [tn, tn+h], the interval over which integration is being performed,
because for this tableau c2 < 0.

At this point we are prepared to state the general recipe for factored Lie Runge-Kutta
methods. We have already discussed the cases of s = 1 or s = 2 or s = 3 stages. Consider
a Butcher tableau with s stages with s > 3 and again suppose that the matrix a is strictly
lower triangular. Use this tableau to make the following stepping rule: For 1 ≤ j ≤ 3 define,
as before, Y n

j and Kj by the rules (2.115) through (2.120). And for 4 ≤ j ≤ s make the
definitions

Y n
j = exp(haj,j−1Kj−1) exp(haj,j−2Kj−2) · . . . · exp(haj,1K1)Y n, (11.2.125)

Kj = A(Y n
j , t

n + hcj). (11.2.126)

Finally, step from Y n to Y n+1 using the rule

Y n+1 = exp(hbsKs) exp(hbs−1Ks−1) · . . . · exp(hb1K1)Y n. (11.2.127)

What can be said about the error in this case? For an optimum choice of coefficients, how
many stages are required to achieve order m? That is, what is the analog of Table 2.3.1 for
the case of factored Lie Runge-Kutta methods? This is a difficult question. For factored Lie
Runge-Kutta and for m ≥ 3, compared to the ordinary Runge-Kutta methods of Chapter
2, there are many more conditions that the entries in the Butcher tableau must meet to
achieve order m. For example, to achieve m = 4 there are 5 more order conditions for
factored Lie Runge Kutta compared to ordinary Runge-Kutta. And, unlike ordinary Runge
Kutta, it is impossible with only 4 stages to satisfy all the factored Lie Runge-Kutta order
conditions required to achieve m = 4. At least s = 5 stages are required for factored Lie
Runge Kutta to achieve order m = 4, some 5-stage Butcher tableaux with this property have
been obtained by Owren and Marthinsen, and they have published one of them. Finally, It
is believed that the minimum number of stages required for factored Lie Runge Kutta to
achieve an order m with m > 4 grows rapidly with increasing m.

Application of Factored Lie Runge Kutta

As described at the beginning of this subsection, our goal is to find higher-order versions of
(2.98). This is now easily done based on what we have learned of factored Lie Runge Kutta.
From (2.101) and (2.126) we see for the case of (2.43) that we may write

Kj ↔ ω̄(tn + hcj) ·L. (11.2.128)

And, using (2.127), we see that there is the stepping rule

Sn+1 = exp[hbsω̄(tn + hcs) ·L] exp[hbs−1ω̄(tn + hcs−1) ·L]×
. . .× exp[hb1ω̄(tn + hc1) ·L]Sn. (11.2.129)
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We have achieved our objective. Given an s-stage factored Lie Runge-Kutta method of
order m, (2.129) provides a stepping rule that may make local errors of order hm+1, but is
guaranteed to preserve SO(3,R) to machine precision.

For example, based on the Butcher tableau (2.124), there is the third-order (but exactly
orthogonality-preserving) stepping rule

Sn+1 = exp{(24/17)hω̄[tn + (17/24)h] ·L} exp{−(2/3)hω̄[tn + (3/4)h] ·L} ×
exp{(13/51)hω̄[tn] ·L}Sn. (11.2.130)

We close this subsection with two comments. The first is based on the observation
that the Butcher tableau for a factored Lie Runge-Kutta method can also be used as a
Butcher tableau for an ordinary Runge Kutta method. This result follows because the order
conditions for factored Lie Runge Kutta contain as a subset all the order conditions for
ordinary Runge Kutta. Therefore if a factored Lie Runge-Kutta method is used to track
particle spin, which amounts to use of the rule (2.129) to track particle spin, then the same
algorithm (the same Butcher tableau) could be used for an ordinary Runge-Kutta routine to
compute the particle trajectory. In this way, the same times (tn + hcj) would occur in both
the spin and particle trajectory routines, thus facilitating the computation of the required
quantities ω̄(tn + hcj).

There is a corollary to this observation. In the previous subsection ω̄(t) was assumed to
be a given function of t. With the use of factored Lie Runge Kutta this assumption is no
longer necessary since there is no need with this method for an explicit fit of the form (2.65)
with known coefficients. All that is required at each step are the sampling-point values
ω̄(tn + hcj). This is true even if the ω̄(tn + hcj) need be determined dynamically.

At this point it is tempting to imagine that this approach could be applied to the case of
spin if there were spin-orbit coupling (Stern-Gerlach effect) so that the equations of motion
for the particle trajectory could be visualized as depending on S as well as the particle’s
position and momentum. However, there are quantum-mechanical reasons why this approach
is not applicable.

The Stern-Gerlach effect is an example of quantum entanglement. Conceptually, and
in a fully quantum treatment, when entering a Stern-Gerlach apparatus a single particle
(assumed to have spin 1/2) is described by an initial state vector that is the tensor product
of a spin state eigenvector (an eigenvector with eigenvalue +1 for n · σ for some specified
unit vector n) and an orbital state vector for a wave packet well localized (consistent within
the uncertainty principle) both in position and momentum about some initial point zi in
phase space. After passing through the Stern-Gerlach apparatus the particle is no longer
described by a product state vector. That is, the outgoing final quantum state vector
cannot be written in tensor product form. Rather, it is described by a superposition of
two vectors, each expressible in tensor product form. The first vector has a spin state
that is an eigenvector with eigenvalue +1 for m ·σ for some specified unit vector m that is
determined by the orientation of the Stern-Gerlach apparatus, and an orbital part consisting
of a well localized packet about some final point zf+. The second vector has a spin state
that is an eigenvector of m · σ with eigenvalue −1 and an orbital part consisting of a well
localized packet about some final point zf−. Moreover, if the Stern-Gerlach experiment is a
success, the points zf+ and zf− are sufficiently separated and the associated wave packets
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sufficiently localized so that there is little overlap between them. Finally, there is a definite
phase relation between the two vectors. This state of affairs has no classical analog, and
therefore cannot be treated classically.

We also remark that the Stern-Gerlach experiment, which is intended to separate a
(single) beam of particles (with different particles characterized by different initial vectors
n) into two well-separated beams with the first consisting of particles in spin eigenstates
characterized bym and the second consisting of particles in spin eigenstates characterized by
−m, may not necessarily be possible for all kinds of particles. The original Stern-Gerlach
experiment was performed with silver atoms that are both heavy and were neutral (not
ionized). There is an argument, due to Bohr and generalized by others, to the effect that
it is not possible to magnetically separate a beam, consisting of particles with various spin
orientations, into two beams with specified polarizations if the particles are charged and too
light, or have too small a magnetic moment. For example, it is argued that it is not possible
to achieve a Stern-Gerlach effect with electrons.

The essence of the argument, which is semiclassical, is as follows: Particles that are
both charged and have a magnetic moment experience two forces when they move in a
magnetic field, a Lorentz force due to the field itself and a Stern-Gerlach force due to field
inhomogeneities. Since the magnetic field must be divergence free, desirable inhomogeneity
(inhomogeneity transverse to the beam direction and in the direction of the main field)
employed to produce a Stern-Gerlach force must lead to undesirable inhomogeneity in the
other transverse direction. This undesirable field inhomogeneity leads to an undesirable
Lorentz force that tends to spread the beam. Therefore the beam must be made small
so that only small field variations are actually encountered by particles in the beam. But
then, by the quantum uncertainty principle, there will be a corresponding spread in velocity
space. This spread in velocity space again leads to an uncertainty in the Lorentz force. It
may happen, if the particle mass is too small (thereby leading to a very large spread in
velocity space and a corresponding large uncertainty in the Lorentz force) or if the magnetic
moment is too small, that the uncertainty in the Lorentz force exceeds the Stern-Gerlach
force. The net effect then (if the argument is to be believed) is that only a single final beam is
produced whose spread due to the quantum-related uncertainty in the Lorentz force exceeds
the splitting expected from the Stern-Gerlach force, thereby washing out any anticipated
Stern-Gerlach effect.

The moral to be drawn from these considerations is that a full quantum treatment is
required to find reliably the complete effect of an inhomogeneous magnetic field on a beam
of particles that are charged and possibly too light or have too small a magnetic moment.
See the references to the Stern-Gerlach effect at the end of this chapter.28

Although the Stern-Gerlach effect cannot be treated classically, there is a classical prob-
lem that is somewhat analogous, namely that of rigid-body motion, for which factored Lie
Runge Kutta can be used to good advantage. As described earlier, in the case of rigid-body
motion there is the complication that the ωbf must be determined dynamically from the Eu-
ler equations (1.19) through (1.21), which themselves may depend on R. This complication

28In fact, the semiclassical arguments that are used to describe the Stern-Gerlach effect even in the case
of a neutral beam are suspect because they do not include beam spreading due to the uncertainty principle,
the Stern-Gerlach force in the other transverse direction due to the undesirable field inhomogeneity, and the
precession of the magnetic moment in the main field. See Exercise 2.17.
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causes no problem if both the kinematic equations (1.18) and the dynamic equations (1.19)
through (1.21) are integrated using the same factored Lie Runge-Kutta Butcher tableau.
In fact, all that is really required is that both the kinematic equations (1.18) and the dy-
namic equations (1.19) through (1.21) be integrated using Runge-Kutta Butcher tableaux
that have the same sampling times, i.e. the same vector c. However, it is important to
recognize that the integration method(s) must be capable, as factored Lie Runge Kutta is,
of producing the intermediate values Y n

j so that values of R are available when needed in
the various Runge-Kutta stages.

The second comment is that the s = 5 and m = 4 factored Lie Runge-Kutta Butcher
tableau published by Owren and Marthinsen has for its b and c entries the values

b1 = (1 + κ+ κ2)/(2κ+ 2κ2), (11.2.131)

b2 = 0, (11.2.132)

b3 = −(1 + 2κ+ κ2)/(12 + 6κ+ 6κ2), (11.2.133)

b4 = −1/(2κ+ 2κ2), (11.2.134)

b5 = b1 = (1 + κ+ κ2)/(2κ+ 2κ2), (11.2.135)

c1 = 0, (11.2.136)

c2 = 3/2, (11.2.137)

c3 = 2/3 + κ/3 + κ2/6 ' ∗ · · · , (11.2.138)

c4 = 1/3− κ/3− κ2/6 ' − ∗ · · · , (11.2.139)

c5 = 1, (11.2.140)

where

κ = 21/3. (11.2.141)

Note that b2 = 0. Thus, when (2.129) is used in this case as a stand-alone formula, it is
effectively a four stage (s = 4) m = 4 formula. Observe, however, that c3 > 1. Therefore
use of this Butcher tableau involves an evaluation of ω̄(t) outside the interval [tn, tn + h].
One might also worry that c2 > 1, which also leads to t values outside [tn, tn+h]. But, since
b2 = 0, this is not a concern. Finally, observe that c4 < 0, so a second evaluation of ω̄(t)
outside the interval [tn, tn + h] is also required.

11.2.8 Magnus Lie Runge Kutta

The use of factored Lie Runge Kutta is not particularly attractive for our purposes because
only relatively low-order results are available and because sometimes some evaluation points
lie outside the interval [tn, tn+1]. But factored Lie Runge Kutta is designed to handle the case
(2.99) for which A is allowed to depend on Y . What happens if we relax this requirement,
and consider only equations of the simpler form

Ẏ (t) = A(t)Y (t)? (11.2.142)



11.2. NUMERICAL INTEGRATION ON MANIFOLDS: SPIN AND QUBITS 1175

Note that, in view of (2.101), our problem of particular interest, namely (2.61), is of this
simpler form.29 We will learn that for the case (2.142) there are far more attractive results.

Our approach will be to combine all the exponents in the Lie Taylor factorization (2.93)
to write ûvfac(H) in single-exponent form. For example, in the case M = 3, suppose we write

ûv(H) ' ûvfac(H) = exp(H4d3 ·K) exp(H3d2 ·K) exp(H2d1 ·K) exp(Hd0 ·K)

' exp[G(H)]

(11.2.143)

where

G(H) = H4e3 ·K +H3e2 ·K +H2e1 ·K +He0 ·K. (11.2.144)

Since the use of a single-exponent representation is in the spirit of the Magnus equations
and our results will eventually be cast in Runge-Kutta form, we will refer to this procedure
as Magnus Lie Runge Kutta. Indeed, the quantities en could be found in terms of the cm by
integrating the Magnus equations. See Section 10.3. Equivalently, they could be found by
making temporal Taylor expansions of equations of the forms (1.67) or (1.83) and equating
like powers of t.

Alternatively, since we already know the dn, as a first step we can convert the left side
of (2.143) to the right side of (2.143) using the BCH formula (3.7.41). So doing will provide
the en in terms of the dm. Also, according to (2.87) through (2.90), the dm are already
known in terms of the c`. Therefore, in a second step, we can find the en in terms of the cm
by simple algebraic substitution. We will now carry out this task.

Begin by observing that

exp(H2d1 ·K) exp(Hd0 ·K) ' exp(E) (11.2.145)

with

E = H2d1 ·K +Hd0 ·K + (1/2)H3{d1 ·K,d0 ·K}
+(1/12)H4{d0 ·K, {d0 ·K,d1 ·K}}

= Hd0 ·K +H2d1 ·K + (1/2)H3{d1 ·K,d0 ·K}
+(1/12)H4{d0 ·K, {d0 ·K,d1 ·K}}

= Hd0 ·K +H2d1 ·K + (1/2)H3(d1 × d0) ·K
+(1/12)H4[d0 × (d0 × d1)] ·K. (11.2.146)

Next we find that

exp(H3d2 ·K) exp(H2d1 ·K) exp(Hd0 ·K) '
exp(H3d2 ·K) exp(E) = exp(F ) (11.2.147)

29Note also that (10.4.28) is of this form.
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with

F ' H3d2 ·K + E + (1/2){H3d2 ·K, E} '
H3d2 ·K + E + (1/2)H4{d2 ·K,d0 ·K} =

H3d2 ·K + E + (1/2)H4(d2 × d0) ·K =

Hd0 ·K +H2d1 ·K +H3[d2 ·K + (1/2)(d1 × d0) ·K]

+H4{(1/2)(d2 × d0) ·K + (1/12)[d0 × (d0 × d1)] ·K}. (11.2.148)

Finally, we see that

exp(H4d3 ·K) exp(H3d2 ·K) exp(H2d1 ·K) exp(Hd0 ·K) '
exp(H4d3 ·K) exp(F ) = exp(G) (11.2.149)

with
G ' H4d3 ·K + F. (11.2.150)

The net result, through terms of order H4, is that

G = Hd0 ·K +H2d1 ·K +H3[d2 ·K + (1/2)(d1 × d0) ·K]

+H4{d3 ·K + (1/2)(d2 × d0) ·K + (1/12)[d0 × (d0 × d1)] ·K}. (11.2.151)

Upon comparing (2.144) and (2.151), we conclude that there are the relations

e0 = d0, (11.2.152)

e1 = d1, (11.2.153)

e2 = d2 + (1/2)(d1 × d0), (11.2.154)

e3 = d3 + (1/2)(d2 × d0) + (1/12)[d0 × (d0 × d1)]. (11.2.155)

The first step is complete. To finish our task, we employ the relations (2.87) through
(2.90) in the relations (2.152) through (2.155) to find the results

e0 = c0, (11.2.156)

e1 = c1/2, (11.2.157)

e2 = (1/3)c2 − (1/12)(c0 × c1), (11.2.158)

e3 = (1/4)c3 − (1/12)(c0 × c2). (11.2.159)

Remarkably, although there are double cross products in the intermediate results (2.90) and
(2.155), there is (due to cancelations) no double cross product in the final results (2.156)
through (2.159).

And there is a further remarkable result. Define a vector Ω by the rule

Ω(H) = He0 +H2e1 +H3e2 +H4e3 (11.2.160)

so that G can be written the form

G(H) = Ω(H) ·K. (11.2.161)
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By (2.156) through (2.159) we may also write

Ω(H) = Hc0 + (1/2)H2c1 + (1/3)H3c2 + (1/4)H4c3

−(1/12)H3(c0 × c1)− (1/12)H4(c0 × c2).

(11.2.162)

Next, in accord with the stipulation that M = 3, define a vector ω̂fit3(τ) by the rule

ω̂fit3(τ) =
3∑

m=0

cmτ
m = c0 + c1τ + c2τ

2 + c3τ
3, (11.2.163)

which is the M = 3 version of (2.65). Observe that∫ H

0

ω̂fit3(τ) dτ = Hc0 + (1/2)H2c1 + (1/3)H3c2 + (1/4)H4c3, (11.2.164)

and that the right side of (2.164) also appears on the right side of right (2.162). Therefore
we many rewrite (2.162) in the form

Ω(H) =

∫ H

0

ω̂fit3(τ) dτ − (1/12)H3(c0 × c1)− (1/12)H4(c0 × c2).

(11.2.165)

Enter Legendre Gauss

The occurrence of the integral (2.164) suggests the application of quadrature formulas.
Suppose we define two sampling times τi by the rule

(τ1, τ2) = (Hx1, Hx2) (11.2.166)

where x1 and x2 are the k = 2 Legendre-Gauss sampling points. See (T.1.29). Then, since
k = 2 Legendre Gauss has `max = 3, see (T.1.11), there is the relation∫ H

0

ω̂fit3(τ) dτ = (H/2)[ω̂fit3(τ1) + ω̂fit3(τ2)]. (11.2.167)

See (T.1.72).
Also, it can be verified that there is the result

ω̂fit3(τ1)× ω̂fit3(τ2) = (1/
√

3)[H(c0 × c1) +H2(c0 × c2)] +O(H3). (11.2.168)

See Exercise 2.12. It follows that

−(
√

3/12)H2[ω̂fit3(τ1)× ω̂fit3(τ2)] =

−(1/12)[H3(c0 × c1) +H4(c0 × c2)] +O(H5). (11.2.169)

Comparison of (2.165) with (2.167) and (2.169) now reveals that, through terms of order
H4, there is the even more remarkable result

Ω(H) = (H/2)[ω̂fit3(τ1) + ω̂fit3(τ2)]− (
√

3/12)H2[ω̂fit3(τ1)× ω̂fit3(τ2)]. (11.2.170)
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The ingredients for computing Ω(H) through terms of order H4 can be obtained by comput-
ing the value of ω̂fit3(τ) at just two sampling points! By contrast, the utilization of M = 3
Lie Taylor factorization requires the evaluation of ω̂(τ) at M + 1 = 4 sampling points.

Let us summarize what has been accomplished. From (2.143) and (2.161) we have the
result

ûv(H) = exp[G(H)] = exp[Ω(H) ·K] (11.2.171)

where, through terms of order H4, Ω(H) is given by (2.170). Upon making in (2.170) the
substitution

ω̂fit3(τi) ' ω̂(τi) (11.2.172)

we obtain, in effect, a two-stage explicit fourth-order Runge Kutta method for computing
ûv(H) with the guarantee that ûv(H) is exactly in SU(2). Note that order 4 is the highest
order that can be obtained even for the simplest problem of k = 2 quadrature of ordinary
functions. Again see (T.1.72).

At this point we make two remarks. The first is that (2.164), the first term in (2.165),
is what might be expected if the quantities ω̂(τ) ·K at various times τ all commuted. It
is the analog of the term (10.3.17) in the Magnus expansion. Correspondingly (2.169), the
remaining terms in (2.165), takes into account the possibility that the quantities ω̂(τ) ·K
at various times may not all commute. It is the analog of the term (10.3.19) in the Magnus
expansion.

The second remark is that if (2.170) through (2.172) are to be used to track particle
spin, then Gauss4 could be used to compute the particle trajectory. See the Butcher tableau
(2.3.19). This is possible because both algorithms would then use the common sampling
times tn + τ1 and tn + τ2, and Gauss4 is a collocation method so that the results at each
stage produce accurate values for the orbit and hence accurate values for ω̂ at the sampling
times. See Exercise 2.3.12. Moreover Gauss4, when applied to Hamiltonian systems, has
the further important property of being symplectic. See Section *.

Enter Newton Cotes

With the idea of quadrature still in mind, we recall from Table T.1.1 that k = 3 Newton
Cotes also has `max = 3. Suppose we now define three sampling times τi by the rule

(τ1, τ2, τ3) = (Hx1, Hx2, Hx3) (11.2.173)

where x1, x2, and x3 are the k = 3 Newton-Cotes sampling points. See (T.1.15). Then we
have the relation∫ H

0

ω̂fit3(τ) dτ = (H/6)[ω̂fit3(τ1) + 4ω̂fit3(τ2) + ω̂fit3(τ3)]. (11.2.174)

See (T.1.16) and (T.1.66). Also, there is the result

ω̂fit3(τ1)× ω̂fit3(τ3) = ω̂fit3(0)× ω̂fit3(H)

= c0 × [c0 + c1H + c2H
2 + c3H

3]

= H(c0 × c1) +H2(c0 × c2) +O(H3). (11.2.175)
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It follows that

−(1/12)H2[ω̂fit3(τ1)× ω̂fit3(τ3)] = −(1/12)[H3(c0 × c1) +H4(c0 × c2)] +O(H5).

(11.2.176)

Comparison of (2.165) with (2.174) and (2.176) reveals that, through terms of order H4,
there is also the result

Ω(H) = (H/6)[ω̂fit3(τ1) + 4ω̂fit3(τ2) + ω̂fit3(τ3)]

− (1/12)H2[ω̂fit3(τ1)× ω̂fit3(τ3)]. (11.2.177)

The ingredients for computing Ω(H) through terms of order H4 can be obtained by comput-
ing the value of ω̂fit3(τ) at the three sampling times (2.173). Moreover, we observe that these
sampling times are the same as those for classic RK4. See the Butcher tableau (2.3.14). It
follows that use of (2.171), (2.172), and (2.177) are ideal for tracking particle spin when the
particle trajectory is computed using classic RK4 equipped with dense output. See Section
2.3.4. The dense output feature would be used to provide values for the coordinates and
hence the ω̂ at the times τi, and since classic RK4 (although not a collocation method)
employs the same sampling times, these interpolated values are expected to be especially
accurate.

One can also evaluate the integral on the left side of (2.174) using k = 4 Newton Cotes,
which also has `max = 3. See (T.1.20) through (T.1.22) and Table T.1.1. So doing produces
a k = 4 formula for Ω(H) that involves four sampling times τi given by the rule

(τ1, τ2, τ3, τ4) = (Hx1, Hx2, Hx3, Hx4) (11.2.178)

where the xi are the k = 4 Newton-Cotes sampling points. See (T.1.20). Use of these
sampling points gives, through terms of order H4, the relation

Ω(H) = (H/8)[ω̂fit3(τ1) + 3ω̂fit3(τ2) + 3ω̂fit3(τ3) + ω̂fit3(τ4)]

− (1/12)H2[ω̂fit3(τ1)× ω̂fit3(τ4)]. (11.2.179)

And, in this case, one can use for trajectory integration the explicit RK4 version given by
the Butcher tableau (2.3.15), again equipped with dense output, since this RK4 (although
again not a collocation method) has the same sampling times τ1 through τ4.

We close this subsection with two final remarks. The first remark is that the results we
have just found for spin readily generalize to all equations of the form (2.142). Suppose we
seek to integrate (2.142) using a stepping rule of the form

Y n+1 = Y (tn +H) = exp(Gn)Y n. (11.2.180)

Then it can be shown, for example and in analogy with (2.170), that through terms of order
H4 there is the rule

Gn = (H/2)[A(tn + τ1) + A(tn + τ2)]− (
√

3/12)H2{A(tn + τ1), A(tn + τ2)}. (11.2.181)

There are also rules analogous to (2.177) and (2.179).
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The second remark is that there is a systematic procedure for finding the coefficients of
the expansion of G(H) in powers of H in terms of the Taylor expansion of A(t) in powers
of t, which we have just done for M ≤ 3, and some specific results are known for the next
few orders including the cases M ≤ 6. See the paper of Blanes, Casas, and Ros listed under
the references to Magnus Lie Runge Kutta in the Bibliography at the end of this chapter.
When translated to the context of spin tracking, they provide higher-order generalizations
of (2.170), (2.177), and (2.179). For example, a three-stage sixth-order generalization of
(2.170) could be constructed that could be used in conjunction with Gauss6.

11.2.9 Integration in the Lie Algebra Revisited

In the previous Subsection 2.8 we studied the integration of the equation of motion

Ẏ (t) = A(t)Y (t). (11.2.182)

We also mentioned earlier, and you will prove in Exercise 2.7, that one can work equally
well with an equation of motion having the form

Ṁ(t) = M(t)A(t). (11.2.183)

Moreover, from the work of Subsections 1.14 and 1.15 , we know how to integrate (2.183) in
its Lie algebra. It follows that we also know how to integrate (2.182) in its Lie algebra. The
purpose of this subsection is to study how a generalization of (2.182), namely an equation
of motion of the form

Ẏ (t) = A(Y, t)Y (t), (11.2.184)

can be integrated in its Lie algebra.30 In so doing we will describe an alternative to factored
Lie Runge Kutta. Recall Subsection 2.7 and (2.99).

For the purposes of Runge Kutta it is sufficient to describe how to take one step. In the
spirit of Subsection 2.6, let tb be the time at which an integration step is to be initiated so
that we wish to integrate from tb to tb + h. We also suppose that

Y b = Y (tb) (11.2.185)

is known and is an element of the group in question. Write

Y (t) = Y v(t)Y b (11.2.186)

with Y v being a variable matrix near the identity satisfying

Y v(tb) = I. (11.2.187)

Then it follows from (2.184) and (2.186) that Y v(t) obeys the equation of motion

Ẏ v(t) = A(Y vY b, t)Y v(t) (11.2.188)

with the initial condition (2.187).

30See Exercise 2.14 for the treatment of a related problem equivalent to the generalization of (2.183).
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Next introduce a relative time τ by the rule

t = tb + τ. (11.2.189)

Also, define quantities Ŷ v and Â by the rules

Ŷ v(τ) = Y v(tb + τ), (11.2.190)

Â(Ŷ v, τ) = A[Y v(tb + τ)Y b, tb + τ ] = A[Ŷ v(τ)Y b, tb + τ ]. (11.2.191)

It follows from these definitions and (2.188) that Ŷ v(τ) obeys the equation of motion

dŶ v(τ)/dτ = Â(Ŷ v, τ)Ŷ v(τ) (11.2.192)

with the initial condition
Ŷ v(0) = I. (11.2.193)

Our task is to integrate (2.192) from τ = 0 to τ = h in such a way that Ŷ v(h) is accurate
through terms of order hm, has possible errors of order hm+1, but is still exactly in the group
in question, or at least is in the group through terms of substantially higher order than hm.

Integration in the Lie Algebra: Exponential Representation

Begin by making the exponential Ansatz

Ŷ v(τ) = exp[Ω(τ)]. (11.2.194)

The relation (2.194) can be differentiated and manipulated to yield the result

[dŶ v(τ)/dτ ][Ŷ v(τ)]−1 = iex(#Ω#)(dΩ/dτ). (11.2.195)

See (*) in Appendix C. Also, the equation of motion (2.192) can be rewritten in the form

[dŶ v(τ)/dτ ][Ŷ v(τ)]−1 = Â(Ŷ v, τ). (11.2.196)

Comparison of (2.195) and (2.196) and use of (2.194) give the result

iex(#Ω#)(dΩ/dτ) = Â[exp(Ω), τ ]. (11.2.197)

Finally, solving (2.197) for dΩ/dτ yields the equation of motion

dΩ/dτ = [iex(#Ω#)]−1Â[exp(Ω), τ ]; (11.2.198)

and use of (2.193) and (2.194) gives the initial condition

Ω(0) = 0. (11.2.199)

The function [iex(w)]−1 has an expansion of the form

[iex(w)]−1 =
∞∑
`=0

c`w
` (11.2.200)
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with c0 = 1, c1 = −1/2, c2 = 1/12, and c` = b` for ` > 1. Again see Appendix C. With the
aid of this expansion, (2.198) becomes

dΩ/dτ =
∞∑
`=0

c`[#Ω(τ)#]`Â[exp(Ω), τ ]. (11.2.201)

As in the work of Subsection 1.14, the sum in (2.201) can be truncated beyond an even
number n to obtain a result that is correct through order hm with m = n+ 2. Thus, to this
accuracy, the equation to be solved is

dΩ/dτ =
`=n∑
`=0

c`[#Ω(τ)#]`Â[exp(Ω), τ ]

= c0Â[exp(Ω), τ ] + c1{Ω(τ), Â[exp(Ω), τ ]}
+c2{Ω(τ), {Ω(τ), Â[exp(Ω), τ ]}}+ · · ·
+ cn{Ω(τ), {Ω(τ), {· · · {Ω(τ), Â[exp(Ω), τ ]} · · · }}},

(11.2.202)

and the understanding is that this truncated equation is to be integrated only over the
interval τ ∈ [0, h].

For the sake of pedagogy, let us work out a specific case in detail. Suppose we take n = 2,
in which case we expect a local accuracy through terms of order h4. Then (2.202) becomes

dΩ/dτ = Â[exp(Ω), τ ]− (1/2){Ω(τ), Â[exp(Ω), τ ]}
+(1/12){Ω(τ), {Ω(τ), Â[exp(Ω), τ ]}}. (11.2.203)

Correspondingly, we will use classic RK4 for integration. To do so, and to conform to
previous notation, it is convenient to write (2.203) in the form

dΩ/dτ = f(Ω, τ) (11.2.204)

where

f(Ω, τ) = Â[exp(Ω), τ ]− (1/2){Ω, Â[exp(Ω), τ ]}
+(1/12){Ω, {Ω, Â[exp(Ω), τ ]}}. (11.2.205)

For the first stage of classic RK4, in this instance, and adopting a notation analogous to
that of (2.3.8) through (2.3.10), we have the results

τ1 = 0, (11.2.206)

Ω1 = 0, (11.2.207)

K1 = f(Ω1, τ1) = f(0, 0) = Â[I, 0]. (11.2.208)

See (2.201) and (2.3.9), and note that according to (2.3.14) the first row in the Butcher
tableau for classic RK4 vanishes. For the second stage there are the results

τ2 = h/2, (11.2.209)
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Ω2 = (h/2)K1, (11.2.210)

K2 = f(Ω2, τ2)

= Â[exp(Ω2), h/2]− (1/2){Ω2, Â[exp(Ω2), h/2]}
+(1/12){Ω2, {Ω2, Â[exp(Ω2), h/2]}}. (11.2.211)

For the third stage there are the results

τ3 = h/2, (11.2.212)

Ω3 = (h/2)K2, (11.2.213)

K3 = f(Ω3, τ3)

= Â[exp(Ω3), h/2]− (1/2){Ω3, Â[exp(Ω3), h/2]}
+(1/12){Ω3, {Ω3, Â[exp(Ω3), h/2]}}. (11.2.214)

For the fourth stage there are the results

τ4 = h, (11.2.215)

Ω4 = hK3, (11.2.216)

K4 = f(Ω4, τ4)

= Â[exp(Ω4), h]− (1/2){Ω4, Â[exp(Ω4), h]}
+(1/12){Ω4, {Ω4, Â[exp(Ω4), h]}}. (11.2.217)

The net result of the full RK4 step is that

Ω(h) = (h/6)K1 + (h/3)K2 + (h/3)K3 + (h/6)K4. (11.2.218)

See (2.3.11).
Finally, from (2.194), we find that, through terms of order h4,

Ŷ v(h) = exp[Ω(h)]. (11.2.219)

Also, from the definitions (2.186), (2.189), and (2.190), we have the relation

Y (tb + h) = Y v(tb + h)Y b = Ŷ v(h)Y b. (11.2.220)

Therefore, upon setting tb = tn and making the identification

Y b = Y n, (11.2.221)

we obtain the stepping rule
Y n+1 = exp[Ω(h)]Y n. (11.2.222)
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Let us reflect on what has been accomplished. Let G be the group in question and let
L(G) be its Lie algebra. From (2.207) we see that Ω1 ∈ L(G). Also, since I ∈ G, we see
from (2.208) that Â is evaluated in its domain, and therefore K1 ∈ L(G). Next look at the
second stage results. By (2.210), Ω2 ∈ L(G) since K1 ∈ L(G). Also, since Ω2 ∈ L(G), there
is the result that exp(Ω2) ∈ G and therefore again Â is evaluated in its domain. See the
right side of (2.211). It follows that all the ingredients in the right side of (2.211) are in
L(G). Moreover they are combined there in such a way that the full right side of (2.211)
is in L(G), and therefore K2 ∈ L(G). Evidently analogous results hold for all the stages so
that Â is always evaluated in its domain and all the Kj are in L(G). Therefore, by (2.218),
Ω(h) ∈ L(G) from which it follows that exp[Ω(h)] ∈ G. And from (2.222) we conclude
that Y n+1 ∈ G if Y n ∈ G. Despite generally having made local errors of order h5, arising
both from the truncation of (2.201) and the use of RK4, we have preserved G to machine
precision.

Finally we note that, contrary to appearances, the relation (2.222) between Y n+1 and
Y n is generally not linear. This is the case because generally Ω(h) depends on Y n. See the
far right side of (2.191) and recall (2.221).

Integration in the Lie Algebra: Cayley Representation

Suppose G is a quadratic group. The results (2.185) through (2.193), since they are general,
continue to hold. But if G is a quadratic group, then we may also make, in place of (2.194),
the Ansatz

Ŷ v(τ) = cay[V (τ)], (11.2.223)

where
cay(V ) = (I + V )(I − V )−1. (11.2.224)

Note that here the definition of cay(V ) given by (2.224) differs by a sign from that given in
(3.12.45). Again V will be in L(G) if Ŷ v is in G, and conversely.

From (2.223) and (2.224) it follows that

[dŶ v(τ)/dτ ][Ŷ v(τ)]−1 = 2C(dV/dτ)B−1, (11.2.225)

where B and C are given in terms of V by the relations (1.295) through (1.297). See the
calculations at the end of Exercise 1.12. Recall also that (2.192) can be rewritten in the
form (2.196). Combining (2.196) and (2.225) gives the relation

2C(dV/dτ)B−1 = Â[cay(V ), τ ]. (11.2.226)

Finally, solving (2.226) for dV/dτ yields the equation of motion

dV/dτ = (1/2)Â[cay(V ), τ ]− (1/2){V, Â[cay(V ), τ ]} − (1/2)V Â[cay(V ), τ ]V. (11.2.227)

See (1.320) at the end of Exercise 1.12. And use of (2.193) and (2.223) gives the initial
condition

V (0) = 0. (11.2.228)

Note that the right side of (2.227), unlike (2.201), involves only a finite number of terms,
namely three, and therefore in this case no truncation is required.
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Because no truncation of the equation of motion has occurred, the only source of error
in this case is that associated with numerical integration. Suppose we write (2.227) in the
form

dV/dτ = f(V, τ) (11.2.229)

where

f(V, τ) = (1/2)Â[cay(V ), τ ]− (1/2){V, Â[cay(V ), τ ]} − (1/2)V Â[cay(V ), τ ]V.

(11.2.230)

And suppose for purposes of illustration that we again use classic RK4 for integration. For
the first stage of classic RK4, and again adopting a notation analogous to that of (2.3.8)
through (2.3.10), we now have the results

τ1 = 0, (11.2.231)

V1 = 0, (11.2.232)

K1 = f(V1, τ1) = f(0, 0) = (1/2)Â[I, 0]. (11.2.233)

See (2.228). For the second stage there are the results

τ2 = h/2, (11.2.234)

V2 = (h/2)K1, (11.2.235)

K2 = f(V2, τ2)

= (1/2)Â[cay(V2), h/2]− (1/2){V2, Â[cay(V2), h/2]}
−(1/2)V2Â[cay(V2), h/2]V2. (11.2.236)

For the third stage there are the results

τ3 = h/2, (11.2.237)

V3 = (h/2)K2, (11.2.238)

K3 = f(V3, τ3)

= (1/2)Â[cay(V3), h/2]− (1/2){V3, Â[cay(V3), h/2]}
−(1/2)V3Â[cay(V3), h/2]V3. (11.2.239)

For the fourth stage there are the results

τ4 = h, (11.2.240)

V4 = hK3, (11.2.241)

K4 = f(V4, τ4)

= (1/2)Â[cay(V4), h]− (1/2){V4, Â[cay(V4), h]}
−(1/2)V4Â[cay(V4), h]V4. (11.2.242)
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The net result of the full RK4 step is that

V (h) = (h/6)K1 + (h/3)K2 + (h/3)K3 + (h/6)K4. (11.2.243)

Finally, from (2.223), we find that, through terms of order h4,

Ŷ v(h) = cay[V (h)]. (11.2.244)

Look again at the relations (2.220) and (2.221). Combining them with (2.244) yields the
stepping rule

Y n+1 = cay[V (h)]Y n. (11.2.245)

Let us again reflect on what has been accomplished. Let G be the group in question and
let L(G) be its Lie algebra. From (2.232) we see that V1 ∈ L(G). Also, since I ∈ G, we
see from (2.233) that Â is evaluated in its domain, and therefore K1 ∈ L(G). Next look at
the second stage results. By (2.235), V2 ∈ L(G) since K1 ∈ L(G). Also, since V2 ∈ L(G),
there is the result that cay(V2) ∈ G and therefore again Â is evaluated in its domain. See
the right side of (2.236). It follows that all the ingredients in the right side of (2.236) are in
L(G). Moreover they are combined there in such a way that the full right side of (2.236) is in
L(G), and therefore K2 ∈ L(G). Recall the discussion in Exercise 1.12. Evidently analogous
results hold for all the stages so that Â is always evaluated in its domain and all the Kj are
in L(G). Therefore, by (2.243), V (h) ∈ L(G) from which it follows that cay[V (h)] ∈ G. And
from (2.245) we conclude that Y n+1 ∈ G if Y n ∈ G. Despite generally having made local
errors of order h5 arising from the use of RK4, we have preserved G to machine precision.

Finally we note again that, contrary to appearances, the relation (2.245) between Y n+1

and Y n is generally not linear. This is the case because generally V (h) depends on Y n.
Again see the far right side of (2.191) and recall (2.221).

Exercises

11.2.1. Much of Section 2 discussed the problem of finding s(t) given ω̄(t), the equation of
motion (2.1), and the initial condition (2.3). The aim of this exercise is to treat the inverse
control theory problem: given s(t), can one find an ω̄(t) such that solving (2.1) yields s(t)?
Stated geometrically, given a path in S2, is there an ω̄(t) such that solving (2.1) yields this
path? You are to show that the answer to this question is yes, and that there are in fact
many such ω̄(t). Then you are to show that a knowledge of two paths suffices to define ω̄(t)
uniquely.31 Treatment of the two-path case employs some of the machinery of Exercise 1.1,
which you should review.

Begin by showing that, since by assumption s(t) ∈ S2, there is the condition

s(t) · ṡ(t) = 0. (11.2.246)

Next show that (2.1) can be rewritten in the forms

ds/dt = ω̄(t)× s = −s× ω̄(t) = −[s(t) ·L]ω̄(t), (11.2.247)

31The idea of considering two paths, as well as the relation (1.103), were suggested by Sateesh Mane.



11.2. NUMERICAL INTEGRATION ON MANIFOLDS: SPIN AND QUBITS 1187

[s(t) ·L]ω̄(t) = −ṡ(t). (11.2.248)

According to (2.248), given s(t) and ṡ(t), we seek to find a vector ω̄(t) such that the
vector/matrix equation (2.248) is satisfied.

Evidently, at any moment t′, there are three possibilities:

s(t′) ∈ S2 and s(t′) = +e3, (11.2.249)

s(t′) ∈ S2 and s(t′) = −e3, (11.2.250)

s(t′) ∈ S2 and s(t′) 6= ±e3. (11.2.251)

First consider the nongeneric possibilities (2.249) and (2.250). Verify that then the relation
(2.248) becomes

± L3ω̄(t′) = −ṡ(t′). (11.2.252)

Write out ω̄(t′) and ṡ(t′) in component form,

ω̄(t′) =

 ω̄1(t′)
ω̄2(t′)
ω̄3(t′)

 , (11.2.253)

ṡ(t′) =

 ṡ1(t′)
ṡ2(t′)

0

 . (11.2.254)

Here, in writing (2.254), we have used the fact ṡ3(t′) = 0 which follows from (2.249), (2.250),
and the condition (2.246). Show that

L3ω̄(t′) =

 −ω̄2(t′)
ω̄1(t′)

0

 . (11.2.255)

Therefore verify (2.252) is satisfied in the possibilities (2.249) and (2.250) providing that
(respectively)

ω̄1(t′) = ∓ṡ2(t′), (11.2.256)

ω̄2(t′) = ±ṡ1(t′), (11.2.257)

ω̄3(t′) = anything. (11.2.258)

What remains is the generic possibility (2.251). For this possibility parameterize s(t′) ∈
S2 in terms of polar angle coordinates as in (2.11) through (2.13), and verify that both θ(t′)
and φ(t′) are well defined. Show that, in terms of the Euler angle parameterization (3.7.207),
the rotation R(φ, θ, 0) relates s(t′) ∈ S2 and e3 by the equation

s(t′) = R[φ(t′), θ(t′), 0]e3. (11.2.259)

See (3.7.208). Next verify that

RL3R−1 = R(e3 ·L)R−1 = [(Re3) ·L] = s(t′) ·L. (11.2.260)
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Recall (8.2.59). Show that inserting this result into (2.248) yields, at the generic moment
t = t′, the relation

[RL3R−1]ω̄(t′) = −ṡ(t′) (11.2.261)

from which it follows that
L3[R−1ω̄(t′)] = −R−1ṡ(t′). (11.2.262)

Introduce the notation
u = R−1ω̄(t′), (11.2.263)

v = R−1ṡ(t′), (11.2.264)

so that (2.262) becomes
L3u = −v. (11.2.265)

Verify also that
e3 · v = [R−1s] · [R−1ṡ] = s · ṡ = 0. (11.2.266)

Here we have used the orthogonality of R. Consequently, verify that we may write

u =

 u1

u2

u3

 , (11.2.267)

v =

 v1

v2

0

 . (11.2.268)

We are back to the first case we considered, and conclude that

u1 = −v2, (11.2.269)

u2 = v1, (11.2.270)

u3 = anything. (11.2.271)

Verify that (2.269) through (2.271) can be written in the vector/matrix form

u(t′) = L3v(t′) + g(t′)e3 (11.2.272)

where g is any function. We are almost done. Show that inserting (2.263) and (2.264) into
(2.272) yields the result

R−1ω̄(t′) = L3R−1ṡ(t′) + g(t′)e3, (11.2.273)

from which it follows, for any generic time t = t′, that

ω̄(t) = RL3R−1ṡ(t) + g(t)Re3

= [s(t) ·L]ṡ(t) + g(t)s(t)

= s(t)× ṡ(t) + g(t)s(t). (11.2.274)

If all has been done correctly, (2.274) provides the general solution to (2.248). Verify that
this general solution also covers the nongeneric possibilities (2.249) and (2.250) for which the
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polar angles were not well defined. Verify, by direct computation, that the general solution
satisfies (2.248). Hint: Use (3.7.200). In practice we might require that g(t) be continuous,
and for convenience we might set g(t) = 0.

You have shown that there is a choice of ω̄(t) that will produce any desired path s(t) ∈ S2,
and that this choice is not unique. What if there are two different paths r(t) ∈ S2 and
s(t) ∈ S2 that are supposed to be produced by the same ω̄(t). That is, s(t) satisfies (2.1)
and r(t) satisfies the analogous relation

dr/dt = ω̄(t)× r. (11.2.275)

Is ω̄(t) then uniquely determined? You are to show that the answer is yes.
Can r(t) ∈ S2 and s(t) ∈ S2 be specified arbitrarily and independently? The answer is

no. There are some mutual restrictions on r(t) ∈ S2 and s(t) ∈ S2 since they are supposed
to be produced by the same differential equation, namely (2.1) and (2.275). We will call a
path on S2 that satisfies this differential equation an allowable path.

First, we must assume that r0 6= ±s0. In the first case the initial conditions would be the
same and therefore r(t) and s(t) would be identical. In the second case, since by linearity
−s(t) is an allowable path if s(t) is, we have again gained no new information. Therefore
we may assume that r0 and s0 are linearly independent. Show that it follows that

− 1 < r0 · s0 < 1 (11.2.276)

and
|r0 × s0| 6= 0. (11.2.277)

Consider the quantity r(t) · s(t). Verify that

(d/dt)[r(t) · s(t)] = ṙ(t) · s(t) + r(t) · ṡ(t)

= [ω̄(t)× r(t)] · s(t) + r(t) · [ω̄(t)× s(t)]

= [ω̄(t)× r(t)] · s(t) + [r(t)× ω̄(t)] · s(t) = 0.

(11.2.278)

Conclude that
r(t) · s(t) = r0 · s0. (11.2.279)

The dot product of the two time-dependent vectors associated with two allowable paths
(and also the dot product of such a vector with itself) remains constant as the paths are
traversed.

Next consider the vector r(t)× s(t). Verify that

(d/dt)[r(t)× s(t)] = ṙ(t)× s(t) + r(t)× ṡ(t)

= [ω̄(t)× r(t)]× s(t) + r(t)× [ω̄(t)× s(t)]

= −{s(t)× [ω̄(t)× r(t)]}+ {r(t)× [ω̄(t)× s(t)]}
= −{ω̄(t)[r(t) · s(t)]− r(t)[ω̄(t) · s(t)]}

+{ω̄(t)[r(t) · s(t)]− s(t)[ω̄(t) · r(t)]}
= r(t)[ω̄(t) · s(t)]− s(t)[ω̄(t) · r(t)]

= ω̄(t)× [r(t)× s(t)]. (11.2.280)
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You have shown, apart from normalization, that r(t)× s(t) is an allowable path if r(t) and
s(t) are allowable paths. Argue, from the results of the previous paragraph, that there is
also the result

|r(t)× s(t)| = |r0 × s0|. (11.2.281)

Define three fixed vectors by the rules

e1 = r0, (11.2.282)

e2 = (r0 × s0)/|(r0 × s0)|, (11.2.283)

e3 = e1 × e2. (11.2.284)

Verify that together the ej form a right-hand triad of orthonormal vectors. That is,

ej · ek = δjk, (11.2.285)

ej × ek = e`, (11.2.286)

where j, k, ` is any cyclic permutation of 1, 2, 3.
Define three time-dependent vectors by the rules

f1(t) = r(t), (11.2.287)

f2(t) = [r(t)× s(t)]/|(r0 × s0)|, (11.2.288)

f3(t) = f1(t)× f2(t). (11.2.289)

Based on the work above, show that the fj(t) have the initial conditions

fj(t
0) = ej (11.2.290)

and are all allowable paths,
dfj/dt = ω̄(t)× fj. (11.2.291)

Show that they also form a right-hand triad of orthonormal vectors at each instant t,

fj · fk = δjk, (11.2.292)

fj × fk = f`, (11.2.293)

where j, k, ` is any cyclic permutation of 1, 2, 3.
Next observe that since the ej and fj(t) both form triads of orthonormal vectors, they

must be related by an orthogonal transformation R(t),

fj(t) = R(t)ej, (11.2.294)

with R(t0) = I. Moreover, (2.294) specifies R(t) uniquely. See Section 3.6.3. By continuity
R(t) must satisfy detR(t) = 1, and therefore R(t) ∈ SO(3,R). Thus, from a knowledge of
two allowable paths, we are able to define a rigid body motion.

Also, from the work of Exercise 1.1, we know that there is the relation

Ṙ(t)R−1(t) = ωsf (t) ·L. (11.2.295)
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See (1.114). Are ω̄(t), ωsf (t), ωbf (t), and ω(t) related? And, if so, how? From (2.294) and
(2.295) show that

ḟj = Ṙej = ṘR−1Rej = [ωsf ·L]fj = ωsf × fj. (11.2.296)

Upon comparing (2.291) and (2.296) we are led to make the conjecture

ω̄(t)
?
= ωsf (t). (11.2.297)

Note that in writing the far right side of (2.296) some explanation must be given as to what
is meant by ωsf (t) when it is employed in a cross product. We will see that it is the vector
with the components ωsfj (t) when the ej are used as a basis. We also observe that, according
to (1.103), ω(t) is specified once the fj(t) are known.

Because there are two basis sets involved, namely the ej and the fj(t), let us make this
conjecture precise. From the definition (1.4), and the fact that the fj(t) are all allowable
paths, verify that

ωbfj (t) = −fk(t) · ḟ`(t) = −fk(t) · [ω̄(t)× f`(t)]
= fk(t) · [f`(t)× ω̄(t)] = [fk(t)× f`(t)] · ω̄(t)]

= fj(t) · ω̄(t) (11.2.298)

where j, k, ` is any cyclic permutation of 1, 2, 3. Show, since the fj(t) form an orthonormal
basis, it follows that

ω̄(t) =
∑
j

[fj(t) · ω̄(t)]fj(t) =
∑
j

ωbfj (t)fj(t) =
∑
j

ωsfj (t)ej = ω(t). (11.2.299)

Here we have again used the results and notation of Exercise 1.1. We conclude that a
knowledge of two allowable paths completely specifies ω̄(t).

As an interesting side calculation, verify that there are also the relations

−f2(t) · {f1(t)× ḟ2(t)} = −f2(t) · {f1(t)× [ω̄ × f2(t)]}
= −f2(t) · {−f2(t)[f1(t) · ω̄(t)]}
= f1(t) · ω̄(t), (11.2.300)

−f3(t) · {f2(t)× ḟ3(t)} = −f3(t) · {f2(t)× [ω̄ × f3(t)]}
= −f3(t) · {−f3(t)[f2(t) · ω̄(t)]}
= f2(t) · ω̄(t), (11.2.301)

−f1(t) · {f3(t)× ḟ1(t)} = −f1(t) · {f3(t)× [ω̄ × f1(t)]}
= −f1(t) · {−f1(t)[f3(t) · ω̄(t)]}
= f3(t) · ω̄(t). (11.2.302)
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There is one last observation. Suppose q0 is any point in S2. Since the ej form a basis
in E3, any such q0 can be written as a linear combination of the ej,

q0 =
3∑
j=1

αjej (11.2.303)

with
αj = ej · q0 (11.2.304)

and
3∑
j=1

α2
j = 1. (11.2.305)

It follows that q(t) given by

q(t) =
3∑
j=1

αjfj(t) (11.2.306)

will be an allowable path on S2 with initial condition q0. Alternatively, we may write

q(t) = R(t)q0. (11.2.307)

We conclude that at t = t0 every point on S2 can be viewed as the starting point for a unique
allowable path. Conversely, since R(t) is in SO(3,R) and therefore invertible at each time
t, every point on S2 at time t may be viewed as lying on a unique allowable path. Or, put
another way, all allowable paths may be viewed as arising from a time-dependent rotation
of S2. Finally, we have learned that R(t), and all allowable paths q(t), can be built from
the two allowable paths r(t) and s(t).

11.2.2. Verify that the equations of motion (2.5) through (2.7) follow from assuming the
validity of (2.8) through (2.10). That is, if (2.8) through (2.10) are satisfied, then (2.5)
through (2.7) are satisfied.

11.2.3. Verify (2.11) through (2.20).

11.2.4. The aim of this exercise is to verify that (2.52) preserves SU(2). Begin by assuming
that u(t) belongs to SU(2) at some time t = t0:

u†(t0)u(t0) = I (11.2.308)

and
det[u(t0)] = 1. (11.2.309)

First show that (2.52) preserves the determinant of u. Verify from (2.52) that

u(t+ dt) = u(t) + u̇(t)dt+O[(dt)2]

= u(t) + (ω̄ ·K)u(t)dt+O[(dt)2]

= exp[(dt)ω̄ ·K]u(t) +O[(dt)2]. (11.2.310)
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Show that taking the determinant of both sides of (2.310) yields the result

det[u(t+ dt)] = det{exp[(dt)ω̄ ·K]u(t)}+O[(dt)2]

= det{exp[(dt)ω̄ ·K]} det[u(t)] +O[(dt)2]

= exp[(dt) tr(ω̄ ·K)] det[u(t)] +O[(dt)2]

= det[u(t)] +O[(dt)2]. (11.2.311)

(Recall that the Kj are traceless.) Show from (2.311) that

{det[u(t+ dt)]− det[u(t)]}/dt = O(dt) (11.2.312)

and therefore
d{det[u(t)]}/dt = 0. (11.2.313)

Verify that the solution to the differential equation (2.313) with the initial condition (2.309)
is the relation

det[u(t)] = 1. (11.2.314)

What remains to be verified is that (2.52) preserves unitarity. Show from (2.52) that

(d/dt)u†(t) = −u†(t)(ω̄ ·K). (11.2.315)

Next verify from (2.52) and (2.315) that

(d/dt)[u†(t)u(t)] = [(d/dt)u†(t)]u(t)] + u†(t)(d/dt)u(t)

= −u†(t)(ω̄ ·K)u(t) + u†(t)(ω̄ ·K)u(t) = 0. (11.2.316)

Finally, verify that the solution to the differential equation (2.316) with the initial condition
(2.308) is the relation

u†(t)u(t) = I. (11.2.317)

11.2.5. The purpose of this exercise is to prove that S defined by (2.54) satisfies (2.43)
and (2.44) providing u satisfies (2.52) and (2.53). You will need some of the ingredients of
Exercise 2.4 above. Begin by verifying that (2.44) is satisfied because

(1/2)tr[u†(t0)σαu(t0)σβ] = (1/2) tr[σασβ] = δαβ = Sαβ(t0). (11.2.318)

Next work on proving that S satisfies (2.43). Show that

Ṡαβ(t) = (1/2)tr(u̇†σαuσβ) + (1/2)tr(u†σαu̇σβ). (11.2.319)

Verify that employing (2.52) and (2.315) in (2.319) yields the result

Ṡαδ(t) = −(1/2)tr[u†(ω̄ ·K)σαuσδ] + (1/2)tr[u†σα(ω̄ ·K)uσδ]

= (1/2)tr[u†{σα, (ω̄ ·K)}uσδ]. (11.2.320)

Verify that

{σα, (ω̄ ·K)} =
∑
β

ω̄β{σα, σβ} =
∑
βγ

ω̄βεαβγσ
γ. (11.2.321)
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Recall (1.143) and (5.7.39). Insert (2.321) into (2.320) and use (3.7.181) to show that

Ṡαδ(t) =
∑
βγ

ω̄βεαβγ(1/2)tr[u†σγuσδ]

=
∑
βγ

ω̄βεβαγSγδ =
∑
βγ

ω̄βεαβγSγδ

=
∑
βγ

ω̄βL
β
αγSγδ =

∑
γ

(ω̄ ·L)αγSγδ, (11.2.322)

or, in more compact matrix form,
Ṡ = (ω̄ ·L)S. (11.2.323)

11.2.6. This exercise is in part a continuation of Exercises 1.7 and 1.8, which you should
review. Our aim here is to explore the analogy between (2.40), which describes rotations in
E3, and (1.209), which will be seen to be related to rotations in E4.

Verify that A(ωbf ) as given by (1.208) is 4× 4 and antisymmetric, and therefore belongs
to the Lie algebra so(4,R). Recall that (ω̄ · L) is 3 × 3 and antisymmetric, and therefore
belongs to the Lie algebra so(3,R). Thus, (1.209) appears to be a four-dimensional analog of
(2.40). Moreover because A(ωbf ) ∈ so(4,R), (1.209) describes, as asserted, (at least some)
rotations in E4. Therefore it is no wonder that (1.209) preserves w · w (preserves S3) just
as (2.40) preserves S2.

Verify, however, that A(ωbf ) is given by

A(ωbf ) = (1/2)(ωbf1 E
1 + ωbf2 E

2 + ωbf3 E
3) = (1/2)ωbf ·E, (11.2.324)

and therefore A belongs to one of the su(2) Lie algebras in so(4,R). Thus the matrices A
given by (1.208) do not span all of so(4,R). [Recall that so(4,R) is six dimensional.]

We have seen that the vector equation (2.40) has the corresponding matrix equation
(2.43). Similarly, the vector equation (1.209) has the 4× 4 matrix equation counterpart

Ṫ = A(ωbf )T (11.2.325)

with the initial condition
T (t0) = I. (11.2.326)

Therefore part of our task is also to explore the analogy between (2.43) and (2.325).
Verify that T (t) ∈ SO(4,R), but that not all SO(4,R) matrices can be produced in this

fashion because the matrices A given by (1.208) do not span all of so(4,R). Therefore the
analogy between (2.40) and (1.209), and between (2.43) and (2.325), is not complete.32

The observation that A belongs to an su(2) Lie algebra begs further exploration because
we know that what counts, when solving differential equations, is not the matrix size of A
but rather the Lie algebra to which it belongs. (The same reasoning led to the replacement

32Although the analogy between (2.40) and (1.209) is not complete, it can be shown that any path in
S3 can be produced by solution of (1.209) for some choice of ωbf (t) when employed in A[ωbf (t)]. This is
possible for two reasons: First, as manifolds, SU(2) and S3 are the same. Recall Exercise 5.10.3. Second,
SU(2) acts transitively on itself (as does any group) by both left and right multiplication.
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of the Lj by the Kj in Exercise 1.5 and in Subsection 2.6.) Thus, we expect that there
must be an SU(2) formulation of the equations of motion (2.325). There is. Verify the
commutation rules

{(−Ej/2), (−Ek/2)} = (−E`/2) (11.2.327)

where j, k, ` are any cyclic permutation of 1,2,3. Evidently these commutation rules are the
same as those for the Kj, see (3.7.172, and therefore we may make the correspondence

(−Ej/2)↔ Kj. (11.2.328)

Consequently, in view of (2.324), there is also the correspondence

A(ωbf )↔ −ωbf ·K = ω̄ ·K (11.2.329)

with
ω̄ = −ωbf . (11.2.330)

It follows that the SU(2) analog of (2.325) is the differential equation

u̇(t) = (ω̄ ·K)u(t) (11.2.331)

with the initial conditions
u(t0) = I (11.2.332)

where u is a complex 2× 2 matrix.
We know from Exercise 2.4 that u(t), the solution to (2.331) with the initial condition

(2.332), will be in SU(2) for all t. Moreover from Exercise 2.5 we know that, because of the
homomorphism between SU(2) and SO(3,R), the S associated with u by the rule (2.54)
satisfies the equation of motion (2.43) with the initial condition (2.44). Thus, we have come
full circle back to (2.43).

There are other interesting paths we can take. For example, Exercise 2.15 below shows
that there is a connection between quaternion parameters and solutions to the general
Schroedinger equation in a two-dimensional complex Hilbert space.

11.2.7. The aim of this exercise is to explore the relations between matrix differential equa-
tions of the form

Ṁ(t) = M(t)A(t) (11.2.333)

with the initial condition
M(0) = I, (11.2.334)

and matrix differential equations of the form

Ṅ(t) = Ā(t)N(t) (11.2.335)

with the initial condition
N(0) = I. (11.2.336)

Begin with N(t), the solution to (2.335) with the initial condition (2.336). Define a
matrix M(t) by the rule

M = N−1, (11.2.337)
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from which it follows that
M(0) = I (11.2.338)

and
MN = I. (11.2.339)

Verify that differentiating both sides of (2.339) gives the result

ṀN +MṄ = 0, (11.2.340)

and therefore
Ṁ = −MṄN−1 = −MĀNN−1 = −MĀ. (11.2.341)

Here we have also used (2.335). Evidently (2.341) agrees with (2.333) providing we make
the identification

A = −Ā. (11.2.342)

Let us pause for a side check on consistency with previous results. For the case of
SO(3,R), verify that what we have just found is consistent with the relations (1.18) and
(1.121). For the Cayley parameterization (1.293) in the case of quadratic groups, verify that
the substitution

M ↔M−1 (11.2.343)

is equivalent to the substitution
V ↔ −V. (11.2.344)

Verify that, under the substitution (2.344) and the substitution

A↔ −Ā, (11.2.345)

the relation (1.313) is transformed into the relation (1.320).
Continue on. The only possible difficulty in making the transition between the two cases

(2.333) and (2.335) is the inversion (2.337). It can be shown that matrices that satisfy
differential equations of the form (2.333) and (2.335) must generally be invertible, and
therefore the transition is generally possible. Your next task is to prove this result.

Review Exercise 1.4.6. Using the methods of that exercise show, starting with (2.335),
that there is the relation

detN(t) = [detN(t0)] exp[

∫ t

t0
dr′ tr Ā(t′)]. (11.2.346)

Assume that Ā(t′) is finite for all t′. Show it follows that the factor exp[
∫ t
t0
dr′ tr Ā(t′)] is

finite and nonzero. Verify it follows that if N(t0) is invertible at any time t0, detN(t0) 6= 0,
then N(t) is invertible at all times t. Show, starting with (2.333), that an analogous result
holds for M(t).

Although matrix inversion is generally computationally intensive, it can be carried out
easily if M (and consequently also N) belong to various groups. Let us recall some groups
for which inverse elements are easily computed. The unitary group comes first to mind. If
M is unitary, then

M−1 = M †. (11.2.347)
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And, if M is orthogonal,
M−1 = MT . (11.2.348)

Finally, if M belongs to a quadratic group, then

M−1 = L−1MTL. (11.2.349)

See (3.12.32).

11.2.8. The purpose of this exercise is to prove that the exact solution to (2.99) preserves
G. Verify that (2.103) solves, over the interval [tn, tn+1], the equation (2.99) through terms
of order h. It may make local errors of order h2, but verify that it preserves G. In the
terminology of Sections 2.1 and 2.2, let h→ 0 and correspondingly N →∞ to find Y (t0+T ).
Verify that this result is the exact solution of (2.99) evaluated at t = t0 + T and that this
result is in G.

11.2.9. We have claimed that the two-stage Lie Runge Kutta routine (2.109) through (2.113)
has order m = 2. Verify, for example, that this is true in the case of (2.43), when (2.100)
and (2.101) hold, and the Butcher tableau (2.3.36) is employed.

11.2.10. Verify that the entries in the Butcher tableau (2.124) satisfy the consistency re-
lation (2.3.16), the order conditions (2.3.42) through (2.3.45), and the additional order 3
condition (2.122).

11.2.11. Verify that (2.156) through (2.159) follow from (2.87) through (2.90) and (2.152)
through (2.155).

11.2.12. Verify (2.168) using (2.163), (2.166), and (T.1.29).

11.2.13. Emboldened by the remarkable results in Subsection 2.8, achieved by combining
everything into one Lie element using the exponential map, the purpose to the exercise is to
explore what happens when everything is combined into one Lie element using the Cayley
map. We will call the result Cayley Lie Runge Kutta. Again we will concentrate our efforts
on SU(2) for ease of computation.

Begin by assuming that ûv(τ) has a Cayley Taylor approximation of the form

ûv(τ) ' ûvcay(τ) = (I + µ ·K)/(I − µ ·K) (11.2.350)

where
µ(τ) = f0τ + f1τ

2 + · · ·+ fMτM+1, (11.2.351)

µ(H) = f0H + f1H
2 + · · ·+ fMHM+1, (11.2.352)

and the coefficients fn are to be determined. See (3.12.71).
The coefficients fn could be determined in terms of the cm by integrating equations of the

form (11.1.71). [.] Alternatively, we may assume that we already know ûv(H) in exponential
form and therefore can use a relation of the form (3.12.73). Specifically, show that we may
write

µ = 2(Ω/|Ω|) tan(|Ω|/4)

= 2(Ω/|Ω|)[(|Ω|/4) + (1/3)(|Ω|/4)3 + (2/15)(|Ω|/4)5 + · · · ]
= (1/2)(Ω)[1 + ∗|Ω|2 + ∗|Ω|4 + · · · ] (11.2.353)
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with Ω given, through terms of order H4, by (2.162). Show , through terms of order H4,
that

|Ω|2 =, (11.2.354)

|Ω|4 =, (11.2.355)

Use these relations and (2.312) to obtain the results

f0 =, (11.2.356)

f1 =, (11.2.357)

f2 =, (11.2.358)

f3 = . (11.2.359)

11.2.14. Subsection 2.9 treated the integration of (2.183) in its Lie algebra using both
exponential and Cayley representations. Carry out the analogous tasks for the equation of
motion

Ẏ (t) = Y (t)A(Y, t). (11.2.360)

Hint: Use (*) in Appendix C and (1.312) in Exercise 1.12.

11.2.15. The Schroedinger equation reads

dψ/dt = (−iH/~)ψ. (11.2.361)

Here the state vector ψ is supposed to belong to some Hilbert space (a vector space equipped
with an inner product), and (−iH/~) is supposed to be an anti-Hermitian operator with
respect to this inner product. Consider the case for which the Hilbert space is two dimen-
sional. Then ψ is a two-component vector, and we may take the inner product 〈∗, ∗〉 to be
the usual complex inner product for finite-dimensional vector spaces over the complex field.
Also, (−iH/~) is then a 2 × 2 anti-Hermitian matrix. Show that the most general such
matrix is of the form

− iH/~ = iδ(t)I + ω̌(t) ·K (11.2.362)

where δ is any real possibly time-dependent number and ω̌ is any real possibly time-
dependent three-dimensional vector. Thus, for a two-dimensional Hilbert space, the most
general Schroedinger equation reads

dψ/dt = [iδ(t)I + ω̌(t) ·K]ψ. (11.2.363)

Out task is to find ψ(t) given
ψ0 = ψ(t0). (11.2.364)

Since (2.172) is linear, we may write ψ(t) in the form

ψ(t) = v(t)ψ0 (11.2.365)

where v is a 2× 2 matrix to be determined. Show that the general solution to (2.172) is of
the form (2.174) providing v satisfies the equation

v̇ = [iδ(t)I + ω̌(t) ·K]v (11.2.366)
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with the initial condition
v(t0) = I. (11.2.367)

Verify that v defined by (2.175) and (2.176) is an element in U(2), and therefore 〈ψ, ψ〉 is
preserved as is necessary for a probability interpretation of the state vector.33

Suppose that the δ term in (2.172) and (2.175) is omitted to yield differential equations
of the form

ψ̇′ = ω̌ ·Kψ′, (11.2.368)

with the same initial condition
ψ′(t0) = ψ0, (11.2.369)

and
v̇′ = ω̌(t) ·Kv′, (11.2.370)

with the same initial condition
v′(t0) = I. (11.2.371)

We already know from Exercise 2.3 that v′ defined by (2.179) and (2.180) is an element in
SU(2). Verify that

ψ′(t) = v′(t)ψ0. (11.2.372)

How are ψ and ψ′, and v and v′, related? Define a quantity ∆(t) by the rule

∆(t) =

∫ t

t0
dt′δ(t′). (11.2.373)

Verify the relations
ψ(t) = exp[i∆(t)]ψ′(t) (11.2.374)

and
v(t) = exp[i∆(t)]v′(t). (11.2.375)

We see that ψ and ψ′, and also v and v′, differ only by a phase factor. Since overall phase
factors are supposed to be unobservable in quantum mechanics, we conclude there is no loss
in generality in omitting the δ term. Thus, without loss of quantum-mechanical generality,
we may drop primes and require that v satisfies the differential equation

v̇ = ω̌(t) ·Kv (11.2.376)

with the initial condition (2.176). Correspondingly, the Schroedinger equation now reads

ψ̇ = ω̌ ·Kψ, (11.2.377)

and has the general solution (2.174) with v ∈ SU(2).
By construction, the relations (2.185) and (2.186) entail each other. But we now observe

that the relations (2.185) and (2.176) have the same form as (2.52) and (2.53). Therefore,
relations of the form (2.52) and (2.53) may also be viewed as arising from the most general
Schroedinger equation in the case of a two-dimensional Hilbert space.

33That is why (−iH/~) is required to be anti-Hermitian.
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What can be said about the nature of two-dimensional Hilbert space? Let ψ↑ and ψ↓ be
the orthonormal basis vectors

ψ↑ =

(
1
0

)
, (11.2.378)

ψ↓ =

(
0
1

)
. (11.2.379)

Write the most general ψ in the form

ψ = αψ↑ + βψ↓. (11.2.380)

Since both α and β are complex, they each have the topology of C = E2, and together they
have the topology of C × C = E4. Show that requiring that ψ be a unit vector, which is
necessary for a probability interpretation of quantum mechanics, yields the restriction

|α|2 + |β|2 = (<α)2 + (=α)2 + (<β)2 + (=β)2 = 1. (11.2.381)

Observe that (2.190) is the equation for S3, the three-dimensional surface of a sphere in E4.
Thus the topology of unit vectors in two-dimensional Hilbert space is that of S3.

Show that the general solution to the restriction (2.190) is given by

α = exp(iγ) cos(θ/2), (11.2.382)

β = exp(iγ) exp(iφ) sin(θ/2), (11.2.383)

where γ, θ, and φ are real, but otherwise arbitrary. Actually, not all values of γ, θ, and φ are
required for full generality. Show that all possibilities are covered by making the restrictions
γ ∈ [0, 2π], θ ∈ [0, π], φ ∈ [0, 2π]. Moreover, since overall phase factors are unobservable, we
may set γ = 0 if we wish, and without loss of quantum-mechanical generality. Thus, the set
(collection of equivalence classes) of all unit rays can be written in the form

ψ = cos(θ/2)ψ↑ + exp(iφ) sin(θ/2)ψ↓ (11.2.384)

with
θ ∈ [0, π] and φ ∈ [0, 2π]. (11.2.385)

(Recall that a unit ray is the equivalence class of a unit vector multiplied by an arbitrary
phase factor.) The quantities θ and φ with the restrictions (2.194) may be regarded as
the polar angles for points on S2, the unit sphere in E3. That is, in terms of Cartesian
coordinates for E3, we may write

x1 = sin(θ) cos(φ), (11.2.386)

x2 = sin(θ) sin(φ), (11.2.387)

x3 = cos(θ). (11.2.388)

Thus, the topology of unit rays in two-dimensional Hilbert space is that of S2. In the context
of quantum mechanics, this S2 is frequently called the Bloch sphere. (It is the Poincaré sphere
in the the context of describing polarized light.) Show that the north pole (0, 0, 1) of the
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Bloch sphere corresponds to the state ψ↑ and the south pole (0, 0,−1) corresponds (up to
an irrelevant phase factor) to the state ψ↓. Show that points on the equator correspond to
the states (1/

√
2)(ψ↑+ exp(iφ)ψ↓). Show that the vectors ψ corresponding to diametrically

opposite points on the Bloch sphere are orthogonal.
Let ψ(θ, φ) denote the vector given by (2.384). Show that, in terms of the Euler-angle

parameterization given by (3.7.194) and (3.7.195), there is the relation

ψ(θ, φ) = v(φ, θ,−φ)ψ↑. (11.2.389)

Let n denote the unit vector defined by the relation

n = R(φ, θ,−φ)e3 = cosφ sin θe1 + sinφ sin θe2 + cos θe3. (11.2.390)

See (3.7.208) and note the resemblance between (2.390) and (2.386) through (2.388). Show
that there is the relation

(n · σ)ψ(θ, φ) = ψ(θ, φ). (11.2.391)

That is, ψ(θ, φ) is an eigenvector of n · σ with eigenvalue +1.
Verify the coset relation

SU(2)/U(1) = S2. (11.2.392)

See Subsection 5.12..4. Show that the correspondence between unit rays in a two-dimensional
Hilbert space and points in S2 is a consequence of this coset relation.

We are ready for a parenthetical remark about the field of quantum computing and
quantum information. Let |0〉 and |1〉 be the qubit (quantum bit) states corresponding to
the states 0 and 1 of a classical bit.34 In this field it is conventional to define the vectors |0〉
and |1〉 by the relations

|0〉 = ψ↑, (11.2.393)

|1〉 = ψ↓; (11.2.394)

and a general qubit state |ψ〉 takes the superposition form

|ψ〉 = cos(θ/2)|0〉+ exp(iφ) sin(θ/2)|1〉. (11.2.395)

Back to the main thread. There is still more to be said. Define a three-component vector
s by the rule

s = 2i〈ψ,Kψ〉 = 〈ψ,σψ〉. (11.2.396)

Show that s is real, and does not depend on the phase of ψ. Show that using (2.193) for ψ
and evaluating (2.201) gives the results (2.10) through (2.12). Thus, s is a unit vector with
polar angles θ and φ. We see that s is a point on the Bloch sphere, and can be any point
on the Bloch sphere. Conversely, given any point on the Bloch sphere, we can determine its
polar angles θ and φ, and from these angles we can determine ψ up to an overall phase factor.

34A qubit is a quantum-mechanical system that is well described by a two-dimensional Hilbert space.
Examples include spin 1/2 particles and polarized light, plus more complicated systems, including atoms
and superconducting devices, that can be effectively regarded as two-state systems consisting of a ground
state and first excited state, with higher excited states ignorable because they are well separated in energy
from these states.
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Therefore, for a two-dimensional Hilbert space, knowledge of a unit ray and knowledge of a
unit vector s are equivalent.

Finally, suppose ψ evolves according to (2.186). How does the corresponding s evolve?
Show, using (2.186) and (2.201), that in terms of components

ṡα = 2i[〈ψ̇,Kαψ〉+ 〈ψ,Kαψ̇〉]
= 2i[〈ω̌ ·Kψ,Kαψ〉+ 〈ψ,Kαω̌ ·Kψ〉]
= 2i[〈ψ, (ω̌ ·K)†Kαψ〉+ 〈ψ,Kαω̌ ·Kψ〉]
= 2i[〈ψ, (−ω̌ ·K)Kαψ〉+ 〈ψ,Kαω̌ ·Kψ〉]
= 2i〈ψ, {Kα, ω̌ ·K}ψ〉.

(11.2.397)

Next verify that

{Kα, ω̌ ·K} =
∑
β

{Kα, Kβ}ω̌β =
∑
βγ

εαβγω̌βK
γ. (11.2.398)

Now combine (2.202) and (2.203) to show that

ṡα = 2i
∑
βγ

εαβγω̌β〈ψ,Kγψ〉 =
∑
βγ

εαβγω̌βsγ = (ω̌ × s)α. (11.2.399)

In vector notation, you have demonstrated that

ṡ = ω̌ × s, (11.2.400)

a relation of the form (2.1). Moreover, since a knowledge of s determines ψ up to a phase,
given the equation (2.205) we may view it as arising from the Schroedinger equation (2.186).
That is, given the ω̌ appearing in (2.205), we may insert it into the Schroedinger equation
(2.186) to find ψ(t), and this ψ(t) will yield s(t) by way of (2.201). Thus, we may also view
(2.186) and (2.205) as entailing each other.

Your last task in this exercise is to verify a relation between components of ψ and
quaternion parameters w. Let ψu(t) and ψd(t) be solutions to the Schroedinger equation
(2.186) with the initial conditions

ψu(t0) = ψ↑, (11.2.401)

ψd(t0) = ψ↓. (11.2.402)

Here the superscript mnemonics u and d stand for up and down. Suppose v is parameterized
in terms of quaternions in analogy to (1.132). Verify, using (1.174), (2.187), (2.188), and
(5.10.29), that there are the relations

〈ψ↑, ψu〉 = v11 = w0 + iw3, (11.2.403)

〈ψ↑, ψd〉 = v12 = iw1 + w2, (11.2.404)

〈ψ↓, ψu〉 = v21 = iw1 − w2, (11.2.405)

〈ψ↓, ψd〉 = v22 = w0 − iw3. (11.2.406)
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Solve (2.208) through (2.211) to yield the relations

w0(t) = (1/2)(〈ψ↑, ψu〉+ 〈ψ↓, ψd〉), (11.2.407)

w1(t) = (−i/2)(〈ψ↑, ψd〉+ 〈ψ↓, ψu〉), (11.2.408)

w2(t) = (1/2)(〈ψ↑, ψd〉 − 〈ψ↓, ψu〉) (11.2.409)

w3(t) = (−i/2)(〈ψ↑, ψu〉 − 〈ψ↓, ψd〉). (11.2.410)

11.2.16. Exact solutions to (2.52).

11.2.17. Consider a Stern-Gerlach apparatus in which the beam propagates in the y direc-
tion, the main magnetic field is in the z direction, and also has a gradient in the z direction.
Such a field, when expanded about the beam axis (taken to be x = z = 0) and near the beam
axis, consists essentially of a (skew) quadrupole field superimposed on a dipole field. That
is, ignoring end effects, the magnetic field has, to the lowest nontrivial order, the expansion

B(r) = Bdez +Qq(zez − xex). (11.2.411)

Here Bd is the strength of the main (dipole) field, and Qq is the strength (field gradient)
of the quadrupole field. Verify that this field is divergence and curl free as is desired. Note
that there is a desired field gradient in the z direction, intended to produce a Stern-Gerlach
force along the z direction, as well as an “undesirable” gradient along the x direction that
will produce a Stern-Gerlach force along the x direction.

Ψ = f ↑(r, t)ψ↑ + f ↓(r, t)ψ↓. (11.2.412)

The Schroedinger equation reads

∂Ψ/∂t = (−i/~)HΨ (11.2.413)

where
H = p · p/(2m) + µB(r) · σ. (11.2.414)

Here m is the particle mass and µ is a measure of its magnetic moment. Indeed, suppose
we ignore the kinetic energy term in (2.414). Then we find that

− iH/~ ≈ −i(µ/~)B(r) · σ = (2µ/~)B(r) ·K. (11.2.415)

Upon comparing (2.362) with (2.415) we see that we should make the identification

ω̌ = (2µ/~)B. (11.2.416)

∂f ↑(r, t)/∂t = (−i/~){[~2/(2m)]∇2f ↑(r, t) + µ(Bd +Qqz)f ↑(r, t) + µQqxf ↓(r, t)},
(11.2.417)

∂f ↓(r, t)/∂t = (−i/~){[~2/(2m)]∇2f ↓(r, t)− µ(Bd +Qqz)f ↓(r, t) + µQqxf ↑(r, t)}.
(11.2.418)
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11.3 Numerical Integration on Manifolds: Charged

Particle Motion in a Static Magnetic Field

Overview

Sections 1.1 and 1.2 treated the problem of integrating on manifolds largely either by pro-
jection or by integration in the Lie algebra or by parameterizing the manifold in question,
finding the associated differential equation for the parameters, and integrating these equa-
tions using standard integration algorithms such as those described in Chapter 2. The only
exception to this approach was the work of Subsections 2.6 through 2.8. The purpose of the
section is to describe how manifold-preserving integration methods may be applied to the
problem of charged-particle motion in a static magnetic field.

The reader may have been somewhat puzzled by the assertion (made at the beginning
of Section 1.2) that (1.80) was like (1.79). The equation of motion (1.6.112) is equivalent to
the pair

dr/dt = v, (11.3.1)

dv/dt = ω̄(r)× v, (11.3.2)

with

ω̄(r) = −(q/m∗)B(r). (11.3.3)

Since ω̄ depends on r and, according to (1.148), r in turn depends on v, the ω̄ appearing
in (1.149) is not a given function of t independent of everything else including v. However,
it is the case that the pair (1.148) and (1.149) does preserve the quantity v · v. That is, the
pair preserves the manifold

Γ = E3 × S2∗ (11.3.4)

with r ∈ E3 and v ∈ S2∗. Here S2∗ denotes a 2-sphere whose radius is given by v∗ = |v0|,
or equivalently, is determined by γ = m∗/m with

γ = 1/
√

1− |v0|2/c2. (11.3.5)

See (1.6.113) and (1.6.114).

In Subsection 3.1 we will describe how the methods already developed in Sections 1 and 2
can be exploited to provide numerical integrators that preserve Γ. In Subsection 3.2 we will
describe splitting methods that also preserve Γ but are more akin to some of the methods
for symplectic integration to be described in Chapter 12.

11.3.1 Exploitation of Previous Results

The purpose of this subsection is to describe how the methods of Sections 1 and 2 can be
applied to the computation of charged-particle motion in static magnetic fields. We will
begin with the use of local tangent-space coordinates as illustrated in Subsection 2.3.
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Use of Local Tangent-Space Coordinates

In analogy with the work of Subsection 2.3, let vb be the velocity at the beginning of an
integration step, and write

v(t) = vb + vv(t) (11.3.6)

with
vb = v(tb) (11.3.7)

and
vv(tb) = 0. (11.3.8)

(Here we apologize for our notation: As before, when v appears as a superscript, it stands
for variable. Elsewhere it denotes vector or scalar velocity.) It follows that we may also
write

vv(t) = vvf1 (t)f1 + vvf2 (t)f2 + vvf3 (t)f3 (11.3.9)

and
v(t) = [v∗ + vvf1 (t)]f1 + vvf2 (t)f2 + vvf3 (t)f3 (11.3.10)

with
vvf1 (t) = {(v∗)2 − [vvf2 (t)]2 − [vvf3 (t)]2}1/2 − v∗. (11.3.11)

Here, mutatis mutandis, the vectors fj are constructed as in Subsection 2.3.

We have (locally) parameterized S2∗ in terms of vvf2 and vvf3 . Put another way, we have
changed variables from v to vvf2 and vvf3 in such a way that the S2∗ manifold condition is
built in. Corresponding to this change of variables, the v equations of motion (3.2) becomes
the pair

v̇vf2 (t) = ω̄f3 (r){(v∗)2 − [vvf2 (t)]2 − [vvf3 (t)]2}1/2 − ω̄f1 (r)vvf3 (t), (11.3.12)

v̇vf3 (t) = ω̄f1 (r)vvf2 (t)− ω̄f2 (r){(v∗)2 − [vvf2 (t)]2 − [vvf3 (t)]2}1/2. (11.3.13)

For the r variables make the decomposition

r(t) = rb + rv(t) (11.3.14)

with
rb = r(tb) (11.3.15)

and
rv(tb) = 0. (11.3.16)

For rv make the expansion
rv = rvf1 f1 + rvf2 f2 + rvf3 f3. (11.3.17)

Then, in view of (3.13) and (3.14), the equations of motion (3.1) for r become the set

ṙvf1 = vvf1 = {(v∗)2 − [vvf2 (t)]2 − [vvf3 (t)]2}1/2 − v∗, (11.3.18)

ṙvf2 = vvf2 , (11.3.19)

ṙvf3 = vvf3 . (11.3.20)
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It is these five equations that are to be numerically integrated from the time tb to the
time tb +h (or perhaps tb +kh) starting with the initial conditions vvf2 (tb) = vvf3 (tb) = 0 and
rvf1 (tb) = rvf2 (tb) = rvf3 (tb) = 0. Then, once vv(tb + h) and rv(tb + h) [or perhaps vv(tb + kh)
and rv(tb + kh)] have been obtained, v(tb + h) and r(tb + h) [or perhaps v(tb + kh) and
r(tb + kh)] are given by (2.20) and * .35 At this point, the whole process just described is
repeated as often as desired. That is, the vectors fj are reconstructed based on the most
recently obtained v, etc. Note that any numerical integration method may be used to carry
out the desired integration. By construction, although the numerical integration may make
local errors of order hm+1 in finding v(tb + h) and r(tb + h), these quantities are guaranteed
to be in the manifold Γ = E3 × S2∗ to machine precision.

Use of Connection with Rigid-Body Kinematics

An alternative to the use of local tangent-space coordinates to ensure that v and r lie in
Γ is to make an Ansatz for v that involves rotations. We will seek to use the results of
Subsections 2.4 and 2.5.

Again let vb be the velocity at the beginning of an integration step,

vb = v(tb), (11.3.21)

and write
v(t) = R(t;vb, rb)vb (11.3.22)

with and R(t;vb, rb) being a rotation to be determined subject to the initial condition

R(tb;vb, rb) = I. (11.3.23)

At this point, explanations are in order both about the notation R(t;vb, rb) and the general-
ity of the Ansatz (3.27). The notation is meant to indicate that the relation (3.27) between
v(t) and vb need not (and generally will not) be linear because R(t;vb, rb) can depend on
vb and rb.

11.3.2 Splitting: Exploitation of Future Results

Exercises

However, before doing so, let us consider the cost of implementing (1.156). The evaluation of
exp[hω̄(rn) ·L] can be performed using the Rodrigues formula (3.7.202). This evaluation is
fairly expensive because it involves, among other the things, the evaluation of trigonometric
functions. Alternatively, (1.153) could be rewritten in the form

vn+1 = [I + hω̄(rn) ·L]vn. (11.3.24)

To the same accuracy, one could orthogonalize the matrix [I + hω̄(rn) · L] using one of
the methods of Subsection 3.6.4, and then apply this matrix to vn to obtain vn+1. These

35If k > 1 is attempted, one must monitor [(vvf2 )2 + (vvf3 )2] to ensure that the square root singularity in
(2.30) is not approached too closely.
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methods involve the computation of square roots. Finally, as already mentioned, at each
step one could simply renormalize the vn+1 in (1.153) by simple scaling to project it back
onto S2∗. So doing requires the evaluation of a square root.

11.3.1. Exercise on the growth of v dot v based on Euler result (1.154).
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Chapter 12

Geometric/Structure-Preserving
Integration: Symplectic Integration

Overview

Imagine we wish to compute, by numerical integration, a trajectory governed by some Hamil-
tonian. Suppose zi is an initial condition and zf is an associated final condition. A numerical
integrator is called a symplectic integrator for this Hamiltonian if the relation between zi

and zf produced by use of this integrator is (to within roundoff errors) a symplectic map.
Sometimes we will want an integrator to be a symplectic integrator for general Hamilto-
nians. Often, as we will see, it suffices to have a symplectic integrator for some class of
Hamiltonians.

There are many things that might be said about symplectic integrators. Indeed, books
have been and are being written on the subject. However, we must limit our discussion
to a single chapter. Are symplectic integrators important, and if so, why? The answers
to these questions are not fully known. As we have seen in Chapter 6, the production of
symplectic maps is a key feature of Hamiltonian systems, and the preservation of this feature
by any approximation scheme, including numerical integration, would appear to be highly
desirable. To date, much experience with symplectic integrators, particularly when one is
concerned with studying the long-term behavior of trajectories, seems to confirm this belief.
A particular aspect of this subject is discussed in Chapter 34. For a broader discussion,
see the references listed at the end of the present chapter. However, as might be feared,
satisfying the symplectic condition comes at a cost. We will see that in general mth-order but
exactly symplectic integrators require much more work (many more function evaluations)
than the mth-order methods of Chapter 2, and are therefore considerably slower.1

What can be said about the numerical integration methods of Chapter 2 when applied
to Hamiltonian systems? In general, they are not symplectic. Typically, at each step, they
violate the symplectic condition by an amount of order hm+1 if the integration method is

1It is sometimes argued that this cost is compensated by the possibility of using larger step sizes in
symplectic integration. Although the solution thereby obtained may not be particularly accurate, it is at
least qualitatively correct whereas solutions obtained by other integration methods may exhibit spurious
damping or spurious growth. Whether this trade-off can be realized or is acceptable depends on the problem
being considered.

1211
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locally correct through terms of order hm. Consequently, they are not exactly symplectic
for any finite value of h.2

Are there modifications of the integration methods of Chapter 2 that make them sym-
plectic? It is known that, for general Hamiltonians, there are no explicit Runge-Kutta meth-
ods that are symplectic. See Exercise 3.1. However, we will learn that there are implicit
Runge-Kutta methods that are symplectic. Like corrector methods, at each step implicit
Runge-Kutta methods require iteration, which may be slow, in order to solve a set of implicit
equations.

What about the usual predictor-corrector finite-difference methods? It is known that
they cannot be modified to be symplectic. However, as will be discussed, it is possible to
use a predictor (that employs, as usual, previously stored trajectory data) along with an
implicit symplectic Runge-Kutta method that serves the role of a corrector.

Finally, little seems to be known about possible symplectic modifications of extrapolation
methods.

12.1 Splitting, T + V Splitting, and Zassenhaus

Formulas

This chapter is devoted to symplectic integration and the use of Zassenhaus formulas. In
this section we begin with some background material, and then explore the case where the
Hamiltonian is of the special but frequently encountered form H = T + V .

We have seen that if H(z) is a time-independent (autonomous) Hamiltonian, the transfer
map M associated with H can be written formally as

M = exp(t : −H :). (12.1.1)

(Here, for convenience, we have taken the initial time to be t = 0, which can be done
without loss of generality since H by assumption does not depend on t.) Suppose H is time
dependent. Then we know that we may introduce a new independent variable τ , extend the
phase space to include t and pt as dynamical variables, and introduce the new Hamiltonian
K defined by the relation

K(t, q; pt, p) = pt +H(q, p, t). (12.1.2)

(See Exercise 1.6.5.) SinceK does not depend on τ , we may write the transfer map associated
with K formally as

M = exp(τ : −K :). (12.1.3)

At this point a remark is in order: Because (1.1) and (1.3) have identical structures, there
seems to be no loss of generality in considering only the autonomous case. This assertion
is correct if we have no particular concern about the form of the Hamiltonian. However, as
seen in the last chapter, for the case (1.1) we are able to employ certain methods under the
assumptions that H can be expanded about the origin z = 0 and the term H1 is absent or

2Of course, in the limit h→ 0 they are symplectic because they are then exact. They are also symplectic
to machine precision, ignoring round-off error, when h is small enough for the integrator to be accurate to
machine precision.



12.1. SPLITTING, T + V SPLITTING, AND ZASSENHAUS FORMULAS 1213

small, and these methods make it possible to find expansions for M that can be evaluated
explicitly. By contrast, these methods fail for the Hamiltonian (1.2) because the presence in
K of the (linear) term pt with a coefficient of one means that K1 cannot be regarded as being
small. Nevertheless, if a method is capable of handling sufficiently general Hamiltonians,
then there is no loss in generality in considering only autonomous Hamiltonians. Such will
be the case for the methods in this section and therefore, without loss in generality, we
assume that H is time independent.

As in Section 2.1, let us subdivide the t or τ axis, whichever the case may be, into equal
steps of duration h. Then, again employing the notation of Chapter 2, we have the exact
marching rule

zn+1 = exp(h : −H :)zn. (12.1.4)

Here H is to be viewed as a function of the variables zn.
Equation (1.4) provides a stepping formula that can be used for numerical integration

providing we have some method of computing or approximating exp(h : −H :). Suppose
the Hamiltonian H can be split into (written as the sum of) two terms A and B,

H(q, p) = A(q, p) +B(q, p), (12.1.5)

in such a way that both the maps exp(−h : A :) and exp(−h : B :) can be evaluated explicitly
or have some other desirable property. For example, suppose that H can be written as a
sum of kinetic and potential energies,

H(q, p) = T (p) + V (q). (12.1.6)

(See Exercise 1.1 for a review of when this is possible.) Then we have the exact results

exp(−h : T :)qi = qi + h∂T/∂pi, (12.1.7)

exp(−h : T :)pi = pi, (12.1.8)

exp(−h : V :)qi = qi, (12.1.9)

exp(−h : V :)pi = pi − h∂V/∂qi. (12.1.10)

Consider making the simple Zassenhaus approximation

exp(h : −H :) = exp(−h : A : −h : B :) ' exp(−h : A :) exp(−h : B :). (12.1.11)

See Section 8.8. From the BCH formula (3.7.34) we have the result

exp(−h : A :) exp(−h : B :) = exp[−h : A : −h : B : +(h2/2){: A :, : B :}+O(h3)].
(12.1.12)

We see that, as a stepping formula, (1.4) with the approximation (1.11) makes local errors
of order h2. Thus, like the crude Euler method of Section 2.2, it can be used for numerical
integration providing the step size is made sufficiently small. However, unlike crude Euler,
the combination of (1.4) and (1.11) provides a method that is exactly symplectic. That is,
the relation between zf and zi produced by this method is (apart from numerical roundoff
errors) exactly a symplectic map for any value of h. See Exercise 1.2.
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With this general background in mind, we now turn to the task of improving the approx-
imation (1.11) to obtain integrators that are again exactly symplectic, but have higher order
(in h) accuracy. We will seek improved formulas of the Zassenhaus type, but will discover a
method that is, in fact, more general. From the BCH formula we find the result

exp[−(h/2) : A :] exp(−h : B :) exp[−(h/2) : A :]

= exp[h : −(A+B) : + h3({: A :, {: A :, : B :}}/24

−{: B :, {: B :, : A :}}/12) +O(h4)]. (12.1.13)

Consequently, making the approximation

exp(h : −H :) ' exp[−(h/2) : A :] exp(−h : B :) exp[−(h/2) : A :], (12.1.14)

sometimes called Strang splitting, produces a stepping formula that is again exactly sym-
plectic (again assuming the individual factors can be evaluated exactly), but makes local
errors of order h3. This method, in somewhat different guise as the leap-frog algorithm, has
been known for a long time, and long before the formal advent of symplectic integrators.
See Exercise 1.3.

There is a reason why the coefficient of the h2 term on the right side of (1.13) vanishes.
Introduce the notation

S2(h) = exp[−(h/2) : A :] exp(−h : B :) exp[−(h/2) : A :]. (12.1.15)

It is easily verified that the map S2 satisfies the relation

S−1
2 (h) = S2(−h). (12.1.16)

A map that has the property
S−1(h) = S(−h) (12.1.17)

is called symmetric, and we have used the symbol S for this reason.3 We have also appended a
subscript of 2 in (1.15) because, as we have seen, the use of S2 furnishes us with an integrator

3 Any integrator that is exact must satisfy (1.17) because exact integration backwards must send the
final conditions back to the initial conditions. However, we are dealing with approximate integration that is
only accurate through some power in h, and therefore (1.17) may or may not not be true depending on what
integration method is employed. It is not true for the explicit Runge-Kutta methods or Adams predictor-
corrector methods or extrapolation methods described in Chapter 2. For any such method (1.17) holds only
through terms of order hm assuming any such method is locally accurate through terms of order hm. We
also remark that the property (1.17) is also sometimes referred to as reversibility or time reversibility. We
avoid this usage, which can lead to confusion, because, properly speaking, reversibility and time reversibility
are properties of particular dynamical systems, and not others. See Chapter 36. Being symmetric is a
property of an integrator, and being reversible or time reversible is a property of a dynamical system, and
therefore also of its associated (and exact) transfer map. Of course, if we are integrating a reversible or
time reversible system by some approximate integrator, the resulting approximate transfer map may or may
not be reversible or time reversible. In this context, it can be shown that there is an interplay between the
symmetry of the integrator and the reversibility or time reversibility of the resulting approximate transfer
map. Finally, we note that some authors call an integration method symmetric if its global error has an
expansion in h that contains only even powers, as is the case for the extrapolation method of Section 2.6. See
(2.6.10). This terminology is also potentially confusing because the extrapolation method is not symmetric
in the sense (1.17) used here.
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that is locally correct through terms of order h2. We claim that any map that satisfies (1.17),
when written in exponential form, must have an exponential expansion that involves only
odd powers of h. That is, if we write

S(h) = exp[C(h)], (12.1.18)

then C(h) must be odd in h

C(−h) = −C(h). (12.1.19)

To see the truth of this assertion, make the expansion

C(h) =
∞∑
m=1

Cmhm. (12.1.20)

The series (1.20) has no constant term because, as can be seen from (1.4) and (1.15), we
want to impose the condition

S(0) = I. (12.1.21)

Now insert the representation (1.18) into (1.17). Doing so gives the result

exp[−C(h)] = exp[C(−h)]. (12.1.22)

We conclude from (1.22) that (1.19) must hold as a result of the uniqueness of the exponent.
See Appendix C. [At this point it may be remarked, in passing, that the O(h4) term indicated
in (1.13) must actually vanish so that the next possibly nonvanishing term must be of O(h5).]

We are now ready to describe a method, sometimes called the triplet construction, for
parlaying a symmetric integrator of order 2k into a symmetric integrator of order (2k + 2).
It is also sometimes called the Yoshida trick or Yoshida construction in recognition of one
of its discoverers. Suppose an order 2k symmetric integrator S2k is known. Then the map
S2k+2 defined by writing

S2k+2(h) = S2k(αh)S2k(βh)S2k(αh) (12.1.23)

is a symmetric integrator of order (2k + 2) providing α and β are the numbers

α = 1/[2− 21/(2k+1)], (12.1.24)

β = −[21/(2k+1)]α. (12.1.25)

Why is this true? First we verify the relation

S−1
2k+2(h) = S−1

2k (αh)S−1
2k (βh)S−1

2k (αh)

= S2k(−αh)S2k(−βh)S2k(−αh) = S2k+2(−h), (12.1.26)

which follows from the assumed symmetry of S2k,

S−1
2k (h) = S2k(−h). (12.1.27)
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We see that S2k+2 is symmetric by construction. Next, because by hypothesis S2k is an
integrator of order 2k, we have the result

S2k(h) = exp(h : −H : + C2k+1h
2k+1 + · · · ). (12.1.28)

Consequently we conclude from (1.23), (1.28), the BCH series, and symmetry that S2k+2

must have the form

S2k+2 = exp[(2α + β)h : −H : +(2α2k+1 + β2k+1)C2k+1h
2k+1 +O(h2k+3)]. (12.1.29)

Evidently S2k+2 will be an integrator of order (2k + 2) if α and β satisfy the relations

2α + β = 1, (12.1.30)

2α2k+1 + β2k+1 = 0. (12.1.31)

Finally, the relations (1.30) and (1.31) have the solutions (1.24) and (1.25).
Note that nowhere does the demonstration just given depend on any property of S2k

other than symmetry and that it is indeed an integrator of order 2k. Therefore, if we can
produce a symmetric integrator of order 2k by any method whatsoever [not necessarily
of Zassenhaus type and not necessarily making the splitting assumption (1.5)], then (1.23)
through (1.25) produce from it a symmetric integrator of order (2k+2). Finally, suppose S2k

is a symplectic integrator. Then, since any product of symplectic maps is again a symplectic
map, (1.23) shows that S2k+2 will also be a symplectic integrator.

As an example of the use of (1.23), let us construct a 4th-order Zassenhaus integrator
S4 from the known 2nd-order integrator S2 given by (1.15). From (1.23) through (1.25) we
get the result

S4(h) = S2(αh)S2(βh)S2(αh) (12.1.32)

with
α = 1/(2− 21/3), (12.1.33)

β = −(21/3)/(2− 21/3). (12.1.34)

Now carry out the multiplications indicated in (1.32) to obtain the final Zassenhaus relation

S4(h) = exp(w1h : A :) exp(w2h : B :) exp(w3h : A :) exp(w4h : B :)×
exp(w5h : A :) exp(w6h : B :) exp(w7h : A :). (12.1.35)

Here the weights wi have the values

w1 = w7 = −1/[2(2− 21/3)], w3 = w5 = (1− 21/3)w1,

w2 = w6 = 2w1, w4 = −21/3w2. (12.1.36)

By construction they must have the remarkable property that

S4(h) = exp[h : −H : + O(h5)]. (12.1.37)

The procedure (1.23) gives a general way of constructing even-order symmetric integra-
tors, but we might also desire odd-order integrators; and we might be willing to give up the
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prescription (1.23) or even the symmetry condition in favor of having fewer factors in the
Zassenhaus product. How does one find general Zassenhaus formulas of the form (1.35)?
That is, having decided in advance how many factors we wish to allow in a Zassenhaus
product, how do we select weights wi to achieve a formula of maximum order? For example,
there is the 3rd-order formula

exp(−h : H :) = exp(w1h : A :) exp(w2h : B :) exp(w3h : A :) exp(w4h : B :)×
exp(w5h : A :) exp(w6h : B :)× [1 +O(h4)] (12.1.38)

with

w1 = −7/24, w3 = −3/4, w5 = 1/24,

w2 = −2/3, w4 = 2/3, w6 = −1. (12.1.39)

The general answer to this question is difficult, but results are known through modest order,
and are discussed in some of the references cited at the end of this chapter.4

We also note that if some commutators of the form C = {: A :, {: A :, : B :}} or
D = {: B :, {: B :, : A :}} are readily computable, and if the maps exp(τC) or exp(τD)
can be computed exactly, then one can also construct higher-order symplectic integrators
using these quantities. Such methods are sometimes called force gradient algorithms. They
are known for some examples to have superior accuracy compared to triplet constructed
algorithms of the same order. Moreover, there are symmetric force gradient algorithms
which can then be employed in a triplet construction to go to still higher order.

Exercises

12.1.1. Hamiltonians of the form H = T (p) + V (q) commonly occur in the case of nonrel-
ativistic motion in a force field derivable from a potential. However, they can also occur in
some cases of relativistic motion in an electromagnetic field. Verify from (1.5.30) in Exercise
1.5.3 that H is of the T + V form when there is only an electric field (no magnetic field so
that A = 0) and the time t is taken to be the independent variable. Verify from (1.6.16)
in Exercise 1.6.1 that H is of the T + V if ψ = 0, and the magnetic field B is of the form
that it can be derived from a vector potential such that only Az 6= 0, and the coordinate z
is taken to be the independent variable.

12.1.2. Show that crude Euler is not symplectic. Show that integration using (1.4) and
(1.11) is symplectic.

12.1.3. Leapfrog exercise.

12.1.4. Verify that S2, as given by (1.46), satisfies (1.16).

12.1.5. Verify (1.29).

4We remark that the methods we have been describing are sometimes referred to as composition methods
because exp(−h : H :) is written as the composition of several factors or as fractional-step methods because
a step of duration h is accomplished by taking several steps whose durations are sometimes fractions of h.
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12.1.6. Verify that (1.30) and (1.31) have the solution (1.24) and (1.25).

12.1.7. Verify (1.35) and (1.36).

12.1.8. Exercise for case where V is time dependent.

12.1.9. For the S2 given by (1.15), show that

S2H = H + h3G+O(h4) (12.1.40)

where

G = −[A, [A, [A,B]]]/24− [B, [B, [A,B]]]/12− [A, [B, [A,B]]]/8. (12.1.41)

Evaluate G for the case

A = p2/2 , B = q2/2. (12.1.42)

You have verified a particular case of the general theorem that symplectic integration does
not conserve the value of the Hamiltonian.

12.1.10. Verify that the weights of the “A” and “B” terms in (1.36) and (1.39) sum sepa-
rately to -1. Why should this be?

12.1.11. Review the discussion of backward error analysis that appears near the end of
Section 2.7. For a two-dimensional phase space, let H be the Hamiltonian

H = (1/2)ap2 + (1/2)bq2 = T (p) + V (q), (12.1.43)

and let S2(H, h) be the symplectic integrator

S2(H, h) = exp : −(h/2)T : exp : −hV : exp : −(h/2)T : . (12.1.44)

Show that there are functions α(h) and β(h) such that

S2(H, h) = exp : −hH̄ : (12.1.45)

where

H̄ = (1/2)αp2 + (1/2)βq2. (12.1.46)

Find α(h) and β(h) explicitly. Thus, S2(H, h) produces exact trajectories for the modified
Hamiltonian H̄. Find a Hamiltonian Ĥ of the form

Ĥ = (1/2)A(h)p2 + (1/2)B(h)q2 (12.1.47)

such that S2(Ĥ, h) produces exact trajectories for the Hamiltonian H.

12.1.12. Exercise on using BCH to combine exponents and backward error analysis to find
effective Hamiltonian.
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12.2 Symplectic Runge-Kutta Methods for T + V

Split Hamiltonians: Partitioned Runge Kutta

and Nyström Runge Kutta

The integration methods of the Zassenhaus type, for the special Hamiltonians of the form
T + V , are explicit and symplectic. They can also be viewed as being Runge-Kutta-like in
that they involve multiple evaluations of the effects of T and V in the course of making a
single integration step. For these special Hamiltonians there are also other methods, called
partitioned Runge Kutta and Nyström Runge Kutta, that are explicit and symplectic. · · · .

12.3 Symplectic Runge-Kutta Methods for General

Hamiltonians

So far, the construction of symplectic integrators has been based on the assumption that
the Hamiltonian can be split in the T + V form (1.6). This assumption is not true for
a broad class of problems of interest for Accelerator Physics, namely motion in a general
electromagnetic field. It is not true for the Hamiltonian (1.5.30), assuming A 6= 0, and it is
not true for the Hamiltonian (1.6.16) except in the special case ψ = Ax = Ay = 0. In this
subsection we will describe briefly symplectic Runge-Kutta methods that are applicable to
general Hamiltonians.5

12.3.1 Background

Let us begin by setting up a notation that is convenient for working with differential equa-
tions in Hamiltonian form. Suppose the canonical variables are ordered as in (1.7.9) and
Hamilton’s equations of motion are written in the form (2.1.1). That is, we make the iden-
tification

y = (q1, q2, · · · q`; p1, p2, · · · p`), (12.3.1)

and therefore, from ẏ = f(y, t), it follows that

f = J∂H/∂y. (12.3.2)

Write the Runge-Kutta procedure in terms of canonical variables by introducing the notation

yn+1 = (Q1, Q2, · · ·Q`;P1, P2, · · ·P`) (12.3.3)

and the slightly modified notation

yn = (q1, q2, · · · q`; p1, p2, · · · p`). (12.3.4)

5We remark that the Hamiltonian for the restricted 3-body problem, when formulated in a rotating
coordinate system in order to exploit the existence of the Jacobi integral that appears in this formulation,
also cannot be split in the form T + V .
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As in Sections 4.8 and 6.5.1, it is also convenient to employ the notation

z = (q;p), (12.3.5)

Z = (Q;P ). (12.3.6)

In this terminology, performing a Runge-Kutta step from t = tn to t = tn+1 sends the old
pair q,p to the new pair Q,P . Or, equivalently, it sends z to Z. In map notation, this
transformation can be expressed in the form

Z =MRKz. (12.3.7)

We would like the map MRK to be exactly symplectic.
As further notation, decompose the vector f into q-like and p-like components,

f = (f q;f p). (12.3.8)

Also, introduce the `-component vectors Hq and Hp by the rules

Hq(q,p, t) = ∂H(q,p, t)/∂q, (12.3.9)

Hp(q,p, t) = ∂H(q,p, t)/∂p. (12.3.10)

With these definitions, in view of (3.2), we have the relations

f q = Hp, (12.3.11)

f p = −Hq. (12.3.12)

Recall that a Runge-Kutta method is specified by a Butcher tableau. Review Section
2.3.4. From (2.3.6) we see that application of the Runge-Kutta stepping formula gives the
relations

Q = q + h

s∑
i=1

bik
q
i , (12.3.13)

P = p+ h

s∑
i=1

bik
p
i . (12.3.14)

Here we have introduced the notation

ki = (kqi ;k
p
i ) (12.3.15)

to indicate that the ki also have q-like and p-like components. In terms of this notation,
(2.3.7), (3.11), and (3.12) yield the definitions

kqi = f q(qi,pi, ti) = Hp(qi,pi, ti), (12.3.16)

kpi = f p(qi,pi, ti) = −Hq(qi,pi, ti). (12.3.17)



12.3. SYMPLECTIC RUNGE-KUTTA METHODS FOR GENERAL . . . 1221

For each value of i the right sides of (3.16) and (3.17) are to be evaluated at the points
(qi,pi, ti) specified by the relations

qi = q + h

s∑
j=1

aijk
q
j , (12.3.18)

pi = p+ h

s∑
j=1

aijk
p
j , (12.3.19)

ti = tn + cih. (12.3.20)

We will see, in view of (3.16) and (3.17) and results to follow, that the relations (3.18) and
(3.19) are implicit if the integrator is to be symplectic. They therefore must be solved by
simple iteration or the more involved Newton’s method.

12.3.2 Condition for Symplecticity

We will subsequently see that a necessary and sufficient condition for a Runge-Kutta method
to be symplectic is that the entries in the matrix a and the vector b satisfy the relations

biaij + bjaji − bibj = 0 for i, j = 1, · · · , s. (12.3.21)

As usual, the entries c are given by (2.3.11). From the condition (3.21) it is easy to prove
that there are no explicit symplectic Runge-Kutta methods. See Exercise 3.1.

Note that the condition (3.21) makes no mention of the number of equations being in-
tegrated. Of course, in the Hamiltonian case, one is always integrating an even number
equations, say ` for the q’s and ` for the p’s. When the number of equations is odd, it
makes no sense to talk about a symplectic condition. However, it can be shown that in gen-
eral a Runge-Kutta integrator satisfying (3.21) has additional desirable stability properties
compared to other Runge-Kutta integrators, and therefore the condition (3.21) is also of
interest when any set of differential equations, including non-Hamiltonian or odd numbers
of equations, is being integrated.

12.3.3 The Single-Stage Case

Before verifying the necessity and sufficiency of the condition (3.21), let us consider the
simplest case, the one-stage case s = 1. In this case the Butcher tableau has the general
form

c1 a11

b1
, (12.3.22)

and use of (3.21) yields the relation

2a11b1 = (b1)2. (12.3.23)

But, in order for the method to at least be of order 1, we must have b1=1. See (2.3.31). It
follows from (3.23) that a11 = 1/2. Thus, if (3.21) holds, the Butcher tableau for a one-stage
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symplectic Runge-Kutta method is

1/2 1/2
1

. (12.3.24)

Here we have also used (2.3.11).
We have seen this Butcher tableau before. Look at (2.3.12) and (2.3.13) to see that this

method is the implicit midpoint rule. And, as we learned from Exercise 2.3.7, this method
is of order two. We will soon observe that this method is related to Gaussian quadrature,
and for this reason we will refer to it as Gauss2. And, given equations of motion, we will call
MG2 the transfer map that arises from integrating these equations of motion using Gauss2.

Let us now verify, in the Hamiltonian context, that MG2 is a symplectic map. For the
coefficients (3.24), and in the Hamiltonian case, the Runge-Kutta relations become

Q = q + hkq1, (12.3.25)

P = p+ hkp1, (12.3.26)

where
kq1 = Hp(q1,p1, t1), (12.3.27)

kpi = −Hq(q1,p1, t1), (12.3.28)

with
q1 = q + (h/2)kq1, (12.3.29)

p1 = p+ (h/2)kp1, (12.3.30)

t1 = tn + h/2. (12.3.31)

Suppose small changes dq and dp are made in q and p. Then, there will be related small
changes dQ and dP in Q and P . What we wish to verify is that the matrix MG2 in the
relation

dZ = MG2dz (12.3.32)

is symplectic, and therefore the map MG2 is symplectic.
According to (3.25) and (3.26), there will be the relations

dQ = dq + hdkq1, (12.3.33)

dP = dp+ hdkp1. (12.3.34)

From (3.27) and (3.28) we find the relations

dkq1 = Hpq(q1,p1, t1)dq1 +Hpp(q1,p1, t1)dp1, (12.3.35)

dkp1 = −Hqq(q1,p1, t1)dq1 −Hqp(q1,p1, t1)dp1. (12.3.36)

Here Hqq, Hpq, etc. are the `× ` Hessian block matrices,

Hqq(q,p, t) = ∂2H(q,p, t)/∂q∂q,

Hpq(q,p, t) = Hqp(q,p, t) = ∂2H(q,p, t)/∂p∂q,

Hpp(q,p, t) = ∂2H(q,p, t)/∂p∂p. (12.3.37)
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And, from (3.29) and (3.30), we find the relations

dq1 = dq + (h/2)dkq1, (12.3.38)

dp1 = dp+ (h/2)dkp1. (12.3.39)

Now substitute (3.38) and (3.39) into (3.35) and (3.36) to yield the results

dkq1 = Hpq[dq + (h/2)dkq1] +Hpp[dp+ (h/2)dkp1], (12.3.40)

dkp1 = −Hqq[dq + (h/2)dkq1]−Hqp[dp+ (h/2)dkp1], (12.3.41)

which can be rewritten in the form

[1− (h/2)Hpq]dkq1 − (h/2)Hppdkp1 = Hpqdq +Hppdp, (12.3.42)

(h/2)Hqqdkq1 + [1 + (h/2)Hqp]dkp1 = −Hqqdq −Hqpdp. (12.3.43)

Our goal is to solve the relations (3.42) and (3.43) for dkq1 and dkp1, and then substitute
the results into (3.33) and (3.34). To do so it is convenient to rewrite (3.42) and (3.43) in
matrix/vector form. Let A be the matrix

A =

(
Hpq Hpp
−Hqq −Hqp

)
. (12.3.44)

Then (3.42) and (3.43) can be written in the form

[I − (h/2)A]dk1 = Adz, (12.3.45)

and therefore
dk1 = [I − (h/2)A]−1Adz. (12.3.46)

Correspondingly, (3.33) and (3.34) become

dZ = MG2dz (12.3.47)

with
MG2 = I + h[I − (h/2)A]−1A = [I − (h/2)A]−1[I + (h/2)A]. (12.3.48)

We claim that MG2 is a symplectic matrix. Correspondingly, in this Hamiltonian case,
MG2 is a symplectic map. To verify this claim, observe that A can be written in the form

A = JS (12.3.49)

where

S =

(
Hqq Hqp
Hpq Hpp

)
. (12.3.50)

As the notation is intended to indicate, and because of the equality of mixed partial deriva-
tives, S is a symmetric matrix. Consequently MG2 can also written in the form

MG2 = [I − (h/2)JS]−1[I + (h/2)JS]. (12.3.51)

Reference to Section 3.12 shows that (3.51) is a Cayley representation when we make the
identification

W = (h/2)S, (12.3.52)

and therefore MG2 is indeed a symplectic matrix.
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12.3.4 Two-, Three-, and More-Stage Methods

In Subsection 3.3 we studied the single-stage symplectic Runge-Kutta method, found its
Butcher tableau (3.24), and observed that this method is of order two. Remarkably, it is
also known that, for s stages, there are Runge-Kutta methods of order m = 2s, and these
methods are symplectic when applied to Hamiltonian systems. Butcher tableaux for these
methods, for the cases of two and three stages, are given below.

1/2−
√

3/6 1/4 1/4−
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4
1/2 1/2

, (12.3.53)

1/2−
√

15/10 5/36 2/9−
√

15/15 5/36−
√

15/30

1/2 5/36 +
√

15/24 2/9 5/36−
√

15/24

1/2 +
√

15/10 5/36 +
√

15/30 2/9 +
√

15/15 5/36
5/18 8/18 5/18

. (12.3.54)

They have orders 4 and 6, respectively. Observe that, in tableaux (3.24), (3.53), and (3.54),
the bi are weights and the ci are evaluation points for Gaussian quadrature. This circum-
stance arises from the fact that the Runge-Kutta methods based on these tableaux are
related to Gaussian quadrature. See Appendix T. For this reason these methods are some-
times referred to as Gauss2, Gauss4, and Gauss6. Butcher tableaux for Gauss8 and Gauss10
are also known. See the book of Sanz-Serna and Calvo listed in the Bibliography for this
chapter.

We also remark that these methods are symmetric,

MG2s(−h) = [MG2s(h)]−1. (12.3.55)

See the book of Hairer, Nørsett, and Wanner listed in the Bibliography for this chapter.

Exercises

12.3.1. The purpose of this exercise is to verify that a Runge-Kutta, in order to be sym-
plectic, must be implicit. Set j = i in (3.21) to obtain the condition

biaii + biaii − bibi = 0 for i = 1, · · · , s, (12.3.56)

from which it follows that
2biaii = (bi)

2 for i = 1, · · · , s. (12.3.57)

Verify that, for a Runge-Kutta method to be explicit, the matrix a must be lower triangular.
In particular, it must satisfy the condition

aii = 0 for i = 1, · · · , s. (12.3.58)

Combine (3.56) and (3.57) to conclude that

bi = 0 for i = 1, · · · , s, (12.3.59)
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in which case, according to (2.3.6), the associated Runge-Kutta method fails to advance the
solution y at all.

12.3.2. Repeat the calculations of Subsection 3.3 for the case of general a11 and general b1.
Show that (3.21) must be satisfied for MG2 to be a symplectic matrix.

12.4 Study of Single-Stage Method

We have already confessed that the integration formulas associated with each of the Butcher
tableaux (3.24), (3.53), and (3.54) are implicit, and therefore must be made explicit (repeat-
edly solved) at each integration step in order to actually produce a trajectory. Let us see
what is involved by first examining the simplest case, that of Gauss2 specified by the single-
stage Butcher tableau (3.24). Application of (2.3.6) and (2.3.7) shows that Gauss2 employs
the stepping formula

yn+1 = yn + hk1 (12.4.1)

where, at each step,
k1 = f [yn + h(1/2)k1, t

n + (1/2)h]. (12.4.2)

Let us now examine how to deal with/solve the implicit relation (4.2). Suppose we have
some initial guess, which we will call k0

1, for k1. It might be f(yn, tn), but we could hope
for something better. Let us convert (4.2) into a recursion relation by making the rule

kj+1
1 = f [yn + h(1/2)kj1, t

n + (1/2)h]. (12.4.3)

It can be verified that (4.3) is a contraction map for small enough h. Therefore, providing
the initial guess k0

1 is in the basin of attraction, we have the result

k1 = lim
j→∞

kj1. (12.4.4)

Finally, having found k1, yn+1 is given by (4.1).
To learn a bit more about the nature of the iteration process (4.3) and (4.4) for the

solution of (4.2), it is instructive to study a simple example, that of the harmonic oscillator
with Hamiltonian

H = (p2 + q2)/2. (12.4.5)

For this case, with y = (q, p), we find the results

f1 = ẏ1 = q̇ = ∂H/∂p = p = y2, (12.4.6)

f2 = ẏ2 = ṗ = −∂H/∂q = −q = −y1, (12.4.7)

which can be written more compactly in the matrix form

ẏ = f = Jy. (12.4.8)

Here J is the matrix J2 given by (3.2.11). Correspondingly, application of (4.2) yields the
relations

{k1}1 = {f [yn + h(1/2)k1, t
n + (1/2)h]}1 = {yn}2 + h(1/2){k1}2, (12.4.9)
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{k1}2 = {f [yn + h(1/2)k1, t
n + (1/2)h]}2 = −{yn}1 − h(1/2){k1}1, (12.4.10)

which can be conveniently written together in the matrix form

k1 = J [yn + h(1/2)k1], (12.4.11)

and solved for k1 to yield the result

k1 = (I − hJ/2)−1Jyn. (12.4.12)

Note that in general we are only able to explicitly solve for k1 in the case that the right side
of (4.2) is linear in k1, as is true for this special example.

At this point we cannot resist the urge to employ (4.12) in (4.1) to obtain the explicit
stepping relation

yn+1 = Iyn + h(I − hJ/2)−1Jyn = (I + hJ/2)(I − hJ/2)−1yn = MG2y
n (12.4.13)

with
MG2 = (I + hJ/2)(I − hJ/2)−1. (12.4.14)

Observe that MG2 is in the Cayley form (3.12.5) with

W = (h/2)I. (12.4.15)

Since W is symmetric, it follows that MG2 is symplectic, as expected. See (3.12.6).
We also know from Section 3.12 that MG2 can be written in the form

MG2 = exp(JS) (12.4.16)

with S given by
S = −2J tanh−1(JW ). (12.4.17)

See (3.12.4). Use of (4.15) in (4.17) yields the result

S = −2J tanh−1[(h/2)J ] = (−2J)[(hJ/2) + (hJ/2)3/3 + (hJ/2)5/5 + · · · ]
= 2[(h/2)− (h/2)3/3 + (h/2)5/5 + · · · ]I
= 2 tan−1(h/2)I = h(2/h) tan−1(h/2)I = h(1− h2/12 + h4/80− · · · )I.

(12.4.18)

It follows that, for H given by (4.5), MG2 can be written in the form

MG2 = exp(JS) = exp[(2/h) tan−1(h/2)hJ ]. (12.4.19)

Consider the Hamiltonian H ′ defined by

H ′ = ω(p2 + q2)/2. (12.4.20)

It can be verified that the exact solution to the equation of motion generated by H ′ is given
by the relation

ytrue(t) = exp[ω(t− t0)J ]y0
true, (12.4.21)
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and therefore
yn+1

true = exp(ωhJ)yntrue. (12.4.22)

Upon comparing (4.13) and (4.19) with (4.22), we conclude that use of Gauss2 to integrate
the equations of motion generated by the Hamiltonian H gives the exact solution to the
equations of motion generated by H ′ with

ω = (2/h)tan−1(h/2) = 1− h2/12 + h4/80− · · · . (12.4.23)

We observe that H ′ is conserved and therefore, since H and H ′ are proportional, H is
also conserved by Gauss2. Finally, according to (4.23), the trajectory given by Gauss2,
since it is the exact trajectory for H ′, differs from the exact trajectory for H only by a
reparameterization of the time.

Also, here we have an instance of backward error analysis. Approximately but symplecti-
cally integrating the equations of motion generated by H yields the exact trajectory for the
equations of motion generated by H ′ with H ′ being a small (when h is small) modification
of H. See the discussion of backward error analysis in Section 2.7. Conversely, given H, it
should be possible to find a related Hamiltonian H ′′ such that symplectically integrating the
equations of motion generated by H ′′ yields the exact trajectory for the equations of motion
generated by H. See Exercise 4.1.

With this diversion behind us, let us return to an analysis of the iteration process (4.3).
By reasoning analogous to that which produced (4.11), the iteration process (4.3) for the
case of H given by (4.5) yields the matrix relation

kj+1
1 = J [yn + h(1/2)kj1]. (12.4.24)

We may view it as a mapping with fixed point k1. How do points near this fixed point
behave under the influence of this map? Introduce deviation variables δj by writing

kj1 = k1 + δj. (12.4.25)

In terms of these variables, (4.24) takes the form

δj+1 = (hJ/2)δj. (12.4.26)

This recursion relation has the solution

δj = (hJ/2)jδ0. (12.4.27)

The eigenvalues of J are ±i, and therefore the eigenvalues of hJ/2 are ±ih/2. These eigen-
values lie within the unit circle as long as the step size satisfies |h/2| < 1, and therefore the
fixed point k1 is attracting under this condition. That is, if |h/2| < 1, then

lim
j→∞

δj = 0. (12.4.28)

Moreover, examination of (4.27) shows that, for theH of this example, the basin of attraction
is the entire δ0 plane, and therefore also the entire k0

1 plane.
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There remains the problem of constructing a good initial guess k0
1. Suppose we begin

with the initial guess
k0

1 = Jyn. (12.4.29)

Doing so is equivalent to ignoring the order h terms in the argument of the right side of
(4.2) thereby setting k0

1 = f(yn, tn). We then find the results

k1
1 = Jyn + (h/2)Jk0

1 = Jyn + Jh(1/2)Jyn = (I + hJ/2)Jyn, (12.4.30)

k2
1 = Jyn + (h/2)Jk1

1 = Jyn + (hJ/2)(I + hJ/2)Jyn

= [I + (hJ/2) + (hJ/2)2]Jyn, etc. (12.4.31)

Observe that (4.12) has the expansion

k1 = (I − hJ/2)−1Jyn = [I + (hJ/2) + (hJ/2)2 + · · · ]Jyn. (12.4.32)

Evidently, the iterative process, with the initial guess (4.29), reproduces this expansion in
such a way that each iteration produces one more term in the expansion.

Suppose instead we begin with the guess

k0
1 = (I + hJ/2)Jyn. (12.4.33)

Then we find

k1
1 = Jyn+(h/2)Jk0

1 = Jyn+(hJ/2)(I+hJ/2)Jyn = [I+(hJ/2)+(hJ/2)2]Jyn. (12.4.34)

Evidently, this is a better guess because it moves us one further step down the chain of
iterations.

How could we have anticipated that this would be a better guess? We have remarked
that the Butcher tableaux (3.24), (3.53), and (3.54) are related to Gaussian quadrature.
Integrate both sides of (2.1.1) over the interval [tn, tn+1]. So doing yields the result

yn+1 − yn =

∫ tn+1

tn
dτ ẏ(τ) =

∫ tn+1

tn
dτf [y(τ), τ ]. (12.4.35)

Estimate the integral on the right side of (4.35) using lowest-order Gaussian quadrature,
which amounts to the midpoint rule, to find the approximation

yn+1 − yn =

∫ tn+1

tn
dτf [y(τ), τ ] ' hf [y(tn + h/2), tn + h/2] = hf [y(tn + c1h), tn + c1h].

(12.4.36)
Comparison of (4.36) with (4.1) suggests that a good first guess in the one-stage case would
be

k0
1 = f [y(tn + h/2), tn + h/2]. (12.4.37)

Here y is the exact solution to (2.1.1). But, of course, we do not know the exact solution.
However, we can imagine having computed and stored fn as given by (2.1.4). Then, in
predictor-corrector terminology with N = 0 (see Section 2.4), we can construct a predictor
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formula using jet formulation (see Section 2.5.3) that will produce ypred(tn + h/2) with a
local error of order h2 [see (2.4.38)].6 With a knowledge of ypred(tn + h/2) we can define k0

1

by the rule

k0
1 = f [ypred(tn + h/2), tn + h/2]. (12.4.38)

Use of the N = 0 predictor in jet formulation gives the result

ypred(tn + h/2) = yn + (h/2)fn. (12.4.39)

For the current example,

yn + (h/2)fn = (I + hJ/2)yn. (12.4.40)

Combining (4.38) through (4.40) yields the result

k0
1 = f [ypred(tn + h/2), tn + h/2]

= f [yn + (h/2)fn, tn + h/2]

= f [(I + hJ/2)yn]

= (I + hJ/2)Jyn, (12.4.41)

in agreement with (4.33). With this k0
1 in hand, we can proceed to carry out the iterations

(4.3) to yield, depending on the number of iterations made, some approximation to k1, and
then finally determine yn+1 using (4.1). Note that, if we wish, we may view (4.3) as a kind
of corrector formula.

Let us make two last comments about the solution of (4.2). First, as we have seen from
the harmonic oscillator example, its solution by iteration, as in (4.3) and (4.4), requires an
infinite number of iterations. Therefore if we, as we must, make only make a finite number
iterations, the result of the integration method will not be exactly symplectic. It will only
be symplectic to some high power of h depending on how many iterations are made at each
step. Each iteration makes the method exactly symplectic through terms of yet one order
higher in h. Of course, no matter how many iterations are made, the result is only locally
accurate through terms of order h2. That is, although the result may be highly symplectic,
depending on the number of iterations, an error of order h3 is still made at each step. Second,
in order to speed convergence, we might attempt to solve (5.2) by Newton’s method. This
is possible at the cost of extra programming.7 For an introduction to Newton’s method, see
Section 29.4.3.

6One might wonder about storing more previous f values so that ypred(tn + h/2) would be given with
yet higher order accuracy. The use of an additional f value would yield an h2 contribution to k0

1 and an
h3 contribution to k1

1. However, there would seem to be no point in doing so. We know that the predictor
is attempting to integrate the trajectories associated with H and the symplectic Runge-Kutta procedure
integrates the trajectories associated with H ′, and these Hamiltonians differ by terms of order h2. Therefore,
the higher-order terms produced by a higher-order predictor would not be expected to improve the guess of
k0

1.
7Of course, whatever method is used to solve (4.2), it can, if desired, be solved to machine precision in

a finite number of steps.
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Exercises

12.4.1. This is a study in backward error analysis for the harmonic oscillator when its
equations of motion are integrated using Gauss2. We have learned, when integrating the
equations of motion associated with the Hamiltonian H given by (4.5), that use of Gauss2
yields exact trajectories for the nearby Hamiltonian H ′ given by (4.20) and (4.23). Find a
Hamiltonian H ′′ whose equations of motion, when integrated using Gauss2, produces the
exact trajectories for the Hamiltonian H.

12.4.2. This is a study in backward error analysis for the general static quadratic Hamilto-
nian when its associated equations of motion are integrated using Gauss2. Review Subsection
3.3. There we were able to find MG2, the matrix for the linear part of MG2, for a general
trajectory generated by a general Hamiltonian. Verify that if the equations of motion are
linear, as will be the case if the Hamiltonian is quadratic, then the various implicit equations
that have to be solved using Gauss2 are all linear. Moreover, again because the Hamiltonian
is assumed to be quadratic, the matrix S given by (3.50) will have constant entries. Cor-
respondingly, the map MG2 will be linear, and will be completely represented by its linear
part MG2 with MG2 given by (3.51).

Verify, at least when H is quadratic and static, that MG2 is symmetric,

MG2(−h) = [MG2(h)]−1. (12.4.42)

As stated earlier, an analogous result is known to hold in general when any Gauss2s is used
to integrate any set of differential equations.

How does MG2 compare with the exact map M? In the case that H is static, we know
that

M = exp(−h : H :). (12.4.43)

Recall (1.4). Show that if H is quadratic, then M will be linear and will be described by
the matrix M given by

M = exp(hJS). (12.4.44)

We can now compare MG2 and M. From (3.12.1) through (3.12.5) show that

MG2 = exp(hJS ′) (12.4.45)

with
JS ′ = (2/h)tanh−1[(h/2)JS], (12.4.46)

and therefore
S ′ = −J(2/h)tanh−1[(h/2)JS]. (12.4.47)

Consequently, show that use of Gauss2 to integrate the equations of motion associated with
the quadratic Hamiltonian H given by

H(z) = (1/2)(z, Sz) (12.4.48)

produces the exact trajectory for the equations of motion associated with the Hamiltonian
H ′ given by

H ′(z) = (1/2)(z, S ′z). (12.4.49)
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(Here, as before, we assume that S is time independent.)
Use the results of Exercise 3.12.1, the machinery of (5.5.1) through (5.5.13), and (4.45)

to show that
[H,H ′] = 0, (12.4.50)

and therefore MG2 conserves H.
Given a quadratic time independent H, find a Hamiltonian H ′′ such that integrating

its associated equations of motion using Gauss2 produces the exact trajectories for the
Hamiltonian H.

12.5 Study of Two-Stage Method

Now that we have explored the behavior of the single-stage method Gauss2, let us make
a similar exploration of the two-stage method Gauss4. Doing so will give us a general
understanding of what to expect in the multi-stage case. For the two-stage case use of
(2.3.6) and (2.3.7) and the Butcher tableau (3.53) provides the stepping formula

yn+1 = yn + h(1/2)k1 + h(1/2)k2 (12.5.1)

where, at each step,

k1 = f [yn + h(1/4)k1 + h(1/4−
√

3/6)k2, t
n + h(1/2−

√
3/6)], (12.5.2)

k2 = f [yn + h(1/4 +
√

3/6)k1 + h(1/4)k2, t
n + h(1/2 +

√
3/6)]. (12.5.3)

Like (4.2) in the single-stage case, the relations (5.2) and (5.3) are implicit. To solve
them numerically, we may make initial guesses k0

1 and k0
2 for k1 and k2, respectively, and

set up the recursion relations

kj+1
1 = f [yn + h(1/4)kj1 + h(1/4−

√
3/6)kj2, t

n + h(1/2−
√

3/6)], (12.5.4)

kj+1
2 = f [yn + h(1/4 +

√
3/6)kj1 + h(1/4)kj2, t

n + h(1/2 +
√

3/6)]. (12.5.5)

It can be shown that the relations (5.4) and (5.5) constitute a contraction map for sufficiently
small h. Consequently, assuming that the k0

i are in the basin of attraction, there will be the
result

ki = lim
j→∞

kji . (12.5.6)

Alternatively, to achieve more rapid convergence at the expense of a more involved proce-
dure, we may solve (5.2) and (5.3) by Newton’s method, which will also be convergent for
sufficiently small h and a sufficiently good guess for the k0

i . Finally, having found the ki by
whatever method, yn+1 is given by (5.1).

It is again instructive to apply this method to the harmonic oscillator example with the
Hamiltonian (4.5) and the equations of motion (4.8). In this case the relations (5.2) and
(5.3) take the specific form

k1 = J [yn + h(1/4)k1 + h(1/4−
√

3/6)k2], (12.5.7)
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k2 = J [yn + h(1/4 +
√

3/6)k1 + h(1/4)k2]. (12.5.8)

As they stand these relations, because of their vector/matrix form, comprise four linear
equations in four unknowns, namely the components of the two two-dimensional vectors k1

and k2. With sufficient effort, linear equations can always be solved. In this case there is a
trick that simplifies the problem. First rewrite (5.8) to bring all terms involving k2 to the
left and all other terms to the right. So doing yields the relation

(I − hJ/4)k2 = J [yn + h(1/4 +
√

3/6)k1]. (12.5.9)

Next solve (5.9) for k2 in terms of everything else to find the result

k2 = (I − hJ/4)−1J [yn + h(1/4 +
√

3/6)k1]. (12.5.10)

Now substitute (5.10) into (5.7) to obtain a relation involving only k1,

k1 = J{yn + h(1/4)k1 + h(1/4−
√

3/6)(I − hJ/4)−1J [yn + h(1/4 +
√

3/6)k1]}. (12.5.11)

Manipulate this relation to find, as intermediate steps, the results

k1 − Jh(1/4)k1 + h(1/4−
√

3/6)(I − hJ/4)−1h(1/4 +
√

3/6)k1

= J [yn + h(1/4−
√

3/6)(I − hJ/4)−1Jyn], (12.5.12)

or,

[I − Jh(1/4)− h2(1/48)(I − hJ/4)−1]k1

= [J − h(1/4−
√

3/6)(I − hJ/4)−1]yn, (12.5.13)

and, as a last step, the explicit solution

k1 = [I − hJ/4− (h2/48)(I − hJ/4)−1]−1[J − h(1/4−
√

3/6)(I − hJ/4)−1]yn.

(12.5.14)

(Here we have used the relation J2 = −I.) Finally, insert (5.14) into (5.10) to yield an
explicit result for k2,

k2 = . (12.5.15)

Exercises

12.5.1.

12.5.2.
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12.6 Numerical Examples for One- and Two-Stage

Methods

12.7 Proof of Condition for Symplecticity

There are at least three ways to verify that (3.21) is a necessary and sufficient condition for
MRK to be symplectic. The first requires making a brute force calculation of the Jacobian
matrix MRK associated with MRK followed by a verification that MRK is a symplectic
matrix. That is what we have just done for the simplest case s = 1. See also Exercise 3.2.
The second, far more elegant and compact, makes use of differential forms. The third, which
we will employ here, uses the contents of the Butcher tableau to define a generating function
F2. It then demonstrates that the generating produced by F2 reproduces the Runge-Kutta
step for the Butcher tableau provided the contents of the Butcher tableau satisfy (3.21).

Consider the generating function F2(q,P , tn;h) defined by writing

F2(q,P , tn;h) = q · P +G2(q,P , tn;h), (12.7.1)

where
G2 = G1

2 +G2
2 (12.7.2)

with

G1
2 = h

s∑
i=1

biH(qi,pi, ti), (12.7.3)

G2
2 = −h2

s∑
i,j=1

biaij[Hq(qi,pi, ti) ·Hp(qj,pj, tj)]. (12.7.4)

The thoughtful reader may find the definition given by (7.1) through (7.4) puzzling
because the terms on the right sides of (7.3) and (7.4) are functions of the old phase-space
variables variables q,p while the phase-space arguments of G2 are specified as being the
mixed pair q,P . Here is what is meant: The relation (3.14) specifies P as a function of
q,p, tn; and h,

P = P (q,p, tn;h). (12.7.5)

This relation is to be partially inverted to yield p as a function of q,P , tn and h,

p = p(q,P , tn;h). (12.7.6)

From the form of (3.14) we see, by the inverse function theorem, that such an inversion is
possible for small enough h because then p ' P . Finally, the right side of (7.6) is to be
substituted for p in the right sides of (7.3) and (7.4) to yield G2(q,P , tn;h).

Suppose we use F2(q,P , tn;h) to produce a transformation that sends q,p to Q,P by
the standard rules (6.5.5),

pk = ∂F2/∂qk , Qk = ∂F2/∂Pk. (12.7.7)

From the work of Section 6.5.1 we know that so doing will produce a symplectic map, which
we will call M. With a view to implementing (7.7), let us compute (save for holding tn

fixed) the total differential of G2(q,P , tn;h).
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12.8 Symplectic Integration of General Hamiltonians

Using Generating Functions

Section 6.7.3 on the Hamilton-Jacobi equation studied the relation between Hamiltonians
and generating functions. There it was shown, once a Darboux matrix α has been selected,
that there is a unique relation between the Hamiltonian H(Z, t) and the source function
g(u, t). Given H, some time tn, some phase-space point zn, and a time step h, we wish
to find zn+1 at time tn+1 = tn + h in such a way that the relation between zn+1 and zn is
symplectic and zn+1 is very nearly (with error of order hm+1) equal to the result found by
exactly integrating the equations generated by H starting with initial conditions zn at t = tn

and integrating to t = tn + h. We assume that the trajectory generated by H is analytic in
t, which will be the case if H(z, t) is analytic in the phase-space variables z and the time t.
(See Poincaré’s theorem in Section 1.3.) Then z(tn + h) will have a Taylor expansion in h.

12.9 Special Symplectic Integrator for Motion in

General Electromagnetic Fields

We have seen that there are implicit symplectic Runge-Kutta integrators for general Hamil-
tonians, and hence also for motion in general electromagnetic fields. Remarkably, there
are explicit symplectic integrators for the Hamiltonian (1.6.192) and, by extension, for the
Hamiltonian (1.6.77).

We begin with the simpler case, the Hamiltonian (1.6.192), which can be written in the
form

H = Hx +Hy +Hz (12.9.1)

where

Hx = (px − qAx)2/(2m∗), (12.9.2)

Hy = (py − qAy)2/(2m∗), (12.9.3)

Hz = (pz − qAz)2/(2m∗). (12.9.4)

Since H is time independent, the relation (1.1) still holds. Moreover, we may again subdivide
the time axis into equal steps of duration h to obtain the exact marching rule (1.4). However,
since in the present context the symbol z is being used to denote a coordinate, we rewrite
(1.4) in the form

wn+1 = exp(h : −H :)wn (12.9.5)

where w denotes the collection of phase-space variables

w = (x, y, z, ; px, py, pz). (12.9.6)

We next make the approximation

exp(h : −H :) ∼= S2(h) (12.9.7)
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where S2(k) is now defined by the rule

S2(h) = exp[−(h/2) : Hx :] exp[−(h/2) : Hy :]×
exp[−h : Hz :] exp[−(h/2) : Hy :] exp[−(h/2) : Hx :]. (12.9.8)

Upon combining the exponents on the right side of (9.8) to first order in h, we see that
the exponent on the left side of (9.7) is regained. Also, by construction, S2 satisfies (1.16).
Therefore, as the notation is intended to indicate, S2 is a symmetric integrator that is locally
correct through terms of order h2. Note other permutations of Hx, Hy, and Hz could have
been used in the definition of S2. There are thus 3! possible formulas of the kind (9.8).

We are still faced with the problem of evaluating the action of the individual factors
on the right side of (9.8). Define functions Ux(x, y, z), Uy(x, y, z), and Uz(x, y, z) by the
requirements

Ax = ∂Ux/∂x , Ay = ∂Uy/∂y , Az = ∂Uz/∂z. (12.9.9)

There are many such functions, and we may choose among them at will at each integration
step. For example, we may write

Ux =

∫ x

Ax(x
′, y, z)dx′ (12.9.10)

and add to it any function of y and z. Use the U ’s to make symplectic maps Ax, Ay, and
Az defined by the relations

Ax = exp(−q : Ux :) , Ay = exp(−q : Uy :) , Az = exp(−q : Uz :). (12.9.11)

These maps produce gauge transformations. See Exercise 6.2.8. It is easily verified, for
example, that Ax and A−1

x have the phase-space actions

Axx = x , Axy = y , Axz = z, (12.9.12)

A−1
x x = x , A−1

x y = y , A−1
x z = z, (12.9.13)

Axpx = px − q : Ux : px = px − q[Ux, px] = px − q(∂Ux/∂x) = px − qAx, (12.9.14)

A−1
x px = px + q : Ux : px = px + qAx, (12.9.15)

Axpy = py − q : Ux : py = py − q[Ux, py] = py − q(∂Ux/∂y), (12.9.16)

A−1
x py = py + q : Ux : py = py + q(∂Ux/∂y), (12.9.17)

Axpz = pz − q : Ux : pz = pz − q[Ux, pz] = pz − q(∂Ux/∂z), (12.9.18)

A−1
x pz = pz + q : Ux : pz = pz + q(∂Ux/∂z). (12.9.19)

In particular, it follows from (9.14) and (9.15) that Ax has the property

Ax exp[−(h/2) : p2
x/(2m

∗) :]A−1
x = exp[−(h/2) : (px − qAx)2/(2m∗)]

= exp[−(h/2) : Hx :]. (12.9.20)

We note at this point that it does not matter what special choice is made for Ux, see (9.10),
because from (9.20) it is evident that all allowed choices yield the same net result.
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As a consequence of (9.20) and similar relations, S2 can be rewritten in the factored
product form

S2 = Ax exp[−(h/2) : H̄x :]A−1
x ×

Ay exp[−(h/2) : H̄y :]A−1
y ×

Az exp[−h : H̄z :]A−1
z ×

Ay exp[−(h/2) : H̄y :]A−1
y ×

Ax exp[−(h/2) : H̄x :]A−1
x , (12.9.21)

where we have used the notation

H̄x = p2
x/(2m

∗), (12.9.22)

H̄y = p2
y/(2m

∗), (12.9.23)

H̄z = p2
z/(2m

∗). (12.9.24)

We have already seen that the phase-space actions of the A’s and A−1’s can be evaluated
exactly using relations of the form (9.12) through (9.19). Evidently the actions of the maps
exp[−(h/2) : H̄x :], exp[−(h/2) : H̄y :], and exp[−h : H̄z :] can also be evaluated exactly.
See Exercises 5.4.1 and 5.4.2. Therefore, use of the approximation (9.7) with S2 given by
(9.21) produces a symmetric integrator that is locally correct through terms of order h2 and
is exactly symplectic.

At this point, two remarks are in order. The first is that, with S2(k) in hand, the triplet
construction can be used to produce higher-order symmetric and symplectic integrators. For
example, S4 is given by (1,32) through (1.34).

The second remark is less triumphant. For a symmetric integrator there is the general
relation

S2k(h) = exp[h : −H : +O(h2k+1)]. (12.9.25)

Moreover, the error term does not commute with : H : so that for each integration step
there is the result

S2k(h)H = H +O(h2k+1) (12.9.26)

where the error term is nonzero. In fact Ge and Marsden have essentially shown that it is
impossible to construct an integrator that is exactly symplectic and also exactly conserves
H.8 In some applications this may not much matter. Indeed, it is sometimes argued that
a symplectic integrator can be used with a larger time step h than a nonsymplectic inte-
grator of the same order because the symplectic integrator at least respects the underlying
structure of any Hamiltonian system. And the fact (hope) that a larger time step can be
used compensates for the relatively large amount of work associated with each time step.

8Ge and Marsden have shown that if a symplectic integrator conserves H, it must be exact or, at
worst, produce exact trajectories up to a reparameterization of the time. (See Section 4 for an example
where this happens.) Now in general a symplectic integrator cannot produce exact trajectories because in
general it makes errors of some order in h. Moreover, it is unlikely that these errors only amount to a
reparameterization of the time. Therefore, generally H is not conserved. Of course, one can easily check
during the course of an integration to see if the value H is changing, and in general, as expected, one finds
that it is.
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[Moreover, the variation in H during symplectic integration is often observed to be essen-
tially periodic when the trajectory being integrated is essentially periodic, and this good
behavior can be understood using the BCH series. By contrast, the value of H typically
grows (or damps) linearly or quadratically, or eventually even exponentially, in time when
nonsymplectic integration is employed.] However, for the Hamiltonian (1.6.192) we know
that the only physically meaningful trajectories are those for which H has the value (1.6.193.
Therefore in this case it is necessary to use a time step h that is sufficiently small to ensure
that over the course of integration H obeys (1.6.193) to high accuracy. In particular, one
should monitor the value of H during the course of integration to verify that (1.6.193) is
met with sufficient accuracy.

While in the mode of exploring difficulties associated with this approach, we should
also consider how much effort is required to carry out the integrations of the form (9.10)
required to compute the functions Ux(x, y, z) through Uz(x, y, z). If the vector potentialA(r)
is known in analytic form and has a sufficiently simple structure, then these integrals can be
evaluated analytically in terms of elementary functions prior to any use of the symplectic
integrator. However for most if not all realistic applications, these integrations yield higher
transcendental functions that are expensive to evaluate, or these integrations must be carried
out numerically. And these evaluations/numerical integrations must be performed with
high accuracy if the symplecticity of the overall integration process is to be assured. These
evaluations/integrations further add to the already high computational overhead associated
with symplectic integration. (See Exercise 9.3.) The considerations of this and the previous
paragraph make one wonder if the computational burden for symplectic integration of the
kind just described for trajectories in realistic electromagnetic fields is so high as to make
nonsymplectic, but high-order, integration superior to symplectic integration. The answer
to this question is presumably problem dependent. Its answer for any realistic problem
would require the comparison of symplectic integration and high accuracy (probably not
Runge-Kutta) nonsymplectic integration. When such explorations are made, one should
also consider symplectic (but implicit) Runge-Kutta methods and symplectic generating
function methods of the kind described in the previous subsections.

We close this section with an analogous discussion of the Hamiltonian (1.6.77), which
can be written in the form

HR = Hx +Hy +Hz +Ht (12.9.27)

where
Hx = (px − qAx)2/(2mc), (12.9.28)

Hy = (py − qAy)2/(2mc), (12.9.29)

Hz = (pz − qAz)2/(2mc), (12.9.30)

Ht = −(p4 + qA4)2/(2mc), (12.9.31)

and w becomes the collection of phase-space variables

w = (x, y, z, x4; px, py, pz, p4). (12.9.32)

Since HR is τ independent, the transfer map associated with HR is given by the relation

M = exp(τ : −HR :). (12.9.33)
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As expected, we subdivide the τ axis into steps of equal amount h to obtain the exact
marching rule (9.5).

In analogy with (9.7) and (9.8), we next make the approximation

exp(h : −HR :) ∼= S2(h) (12.9.34)

where S2(h) is now defined by the rule

S2(h) = exp[−(h/2) : Hx :] exp[−(h/2) : Hy :]×
exp[−(h/2) : Hz :] exp[−h : Ht :] exp[−(h/2) : Hz :]×
exp[−(h/2) : Hy :] exp[−(h/2) : Hx :]. (12.9.35)

By construction this S2 is a symmetric integrator that is locally correct through terms of
order h2. Other permutations of Hx through Ht could have been used in the definition of
S2, and there are therefore 4! possible integrators of this kind.

We again define functions Ux through Uz by the requirements (9.10), and we add to their
collection the function U4 defined by the requirement

A4 = −∂U4/∂x4. (12.9.36)

The symplectic maps Ax through Az are also again defined by (9.11), and to their collection
we add the symplectic map A4 defined by

A4 = exp : −qU4 : . (12.9.37)

This map has the property

A4p4 = p4 − q : U4 : p4 = p4 − q[U4, p4] = p4 − q∂U4/∂x4 = p4 + qA4, (12.9.38)

from which it follows that

exp(−h : Ht :) = A4 exp[h : p2
4/(2mc) :]A−1

4 . (12.9.39)

We are now able to proceed as before to express S2 as a product of maps, all of which
can be evaluated explicitly,

S2 = Ax exp[−(h/2) : H̄x :]A−1
x ×

Ay exp[−(h/2) : H̄y :]A−1
y ×

Az exp[−(h/2) : H̄z :]A−1
z ×

A4 exp[−h : H̄t :]A−1
4 ×

Az exp[−(h/2) : H̄z :]A−1
z ×

Ay exp[−(h/2) : H̄y :]A−1
y ×

Ax exp[−(h/2) : H̄x :]A−1
x . (12.9.40)

Here we have used the notation
H̄x = p2

x/(2mc),
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H̄y = p2
y/(2mc),

H̄z = p2
z/(2mc),

H̄t = −p2
4/(2mc). (12.9.41)

We must again be aware that trajectories generated by HR are only physically meaningful
when HR has a special value, namely that given by the (mass shell) condition (1.6.92), and
that this value cannot be maintained exactly by any symplectic integrator. Therefore it is
again necessary to choose h sufficiently small to ensure that over the course of integration
HR obeys (1.6.92) to high accuracy. Moreover there is again added overhead. Now we must
compute the functions Ux through U4. See Exercise 9.3.

Exercises

12.9.1. Exercise on what happens when, in HR, A4 = 0 and A is static.

12.9.2. Show that in the nonrelativistic approximation the Lagrangian (1.5.1) may be re-
placed by the Langrangian

LNR = (1/2)mv2 − qψ(r, t) + qv ·A(r, t). (12.9.42)

Find the associated Hamiltonian HNR. Show that HNR is conserved if the electromagnetic
fields are static. Construct a symplectic integrator for HNR. Show that this integrator does
not conserve HNR. Perhaps this nonconservation is not so important in the nonrelativistic
case because it might be argued that HNR has no fundamental significance. Moreover,
HNR is not conserved anyway for the exact motion if the electromagnetic fields are time
dependent.

12.9.3. Exercise on what exactly is involved in computing the integrals Ux through Uz or
Ux through U4.

12.10 Zassenhaus Formulas and Map Computation

The discussion so far has dealt mostly with the use of Zassenhaus formulas of the kinds
(1.14), (1.35), (1.38), (9.21), and (9.40) as symplectic integrators. However, Zassenhaus
formulas can also be used to compute maps both in Taylor and factored product form.

12.10.1 Case of T + V or General Electromagnetic Field
Hamiltonians

As a simple example, suppose that H has the T + V decomposition (1.6). Then, the Taylor
maps for exp(σ : T :) and exp(σ : V :), where σ is some parameter, can be computed exactly
by formulas analogous to (1.7) through (1.10); and therefore we can find the net Taylor map
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for any factored map of the kinds (1.14), (1.35), or (1.38). Also, we can expand T and V in
homogeneous polynomials. For example, we can write

T =
∞∑
m=0

Tm (12.10.1)

with a similar expansion for V . Then we have the factored product representation

exp(σ : T :) = exp(σ : T1 :) exp(σ : T2 :) exp(σ : T3 :) · · · , (12.10.2)

with a similar representation for exp(σ : V :). It follows that each of the factors appearing
in any approximation of the kinds (1.14), (1.35), or (1.38) for the map exp(h : −H :) can be
written in factored product form. The resulting factors can then be concatenated together
to yield for the map exp(h : −H :) a final approximation that is also in factored product
form.

After some reflection, we see that the same procedure can be applied to the symplectic
integrators (9.21) and (9.40). Each of the factors can be be expanded in Taylor form or
written in factored product form, and these maps can then be concatenated to yield a net
map either in Taylor or factored product form.

There is one last remark to be made: As explained in Section 1.6, it is often convenient
to have maps for which some coordinate is the independent variable, and in this subsection
we have been using the time t or some world-line parameter τ as the independent variable. If
we wish to compute maps rather than trajectories (apart from the reference trajectory) this
problem can be overcome with the use of matching maps. When the map for some element
has been computed using t or τ as an independent variable, the necessary conversion can be
made by preceding the map with a matching map that transforms from phase-space variables
for which some coordinate is the independent variable to phase-space variables for which
t or τ is the independent variable, and following the map by a second matching map that
transforms back to the phase-space variables for which some coordinate is the independent
variable. See Section *.*.

12.10.2 Case of Hamiltonians Expanded in Homogeneous
Polynomials

Zassenhaus formulas can also be used to provide factored product approximations forM =
exp(h : −H :) when H is decomposed into homogeneous polynomials as in (10.9.1). Here
we will consider the autonomous case. The nonautonomous case is best treated using the
methods of Sections 10.5.2 and 10.6.2.

Derivation

Define A and B by writing the equations

A = H1 +H2, (12.10.3)

B = Hr = H3 +H4 + · · · . (12.10.4)
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Evidently, any map of the kind exp(−h : A :) with A given by (10.3) can be written in
factored product form using the methods of Section 9.2. See (9.2.4), (9.2.7), and (9.2.9).
What about maps of the kind exp(−h : B :) with B given by (10.4)? How do we find
generators fm such that

exp(−h : B :) = exp(−h : H3 +H4 + · · · :) = exp(: f3 :) exp(: f4 :) · · ·? (12.10.5)

We note that, since there is no H2 term in (10.4), we may use the methods of Section 10.6.2
with the understanding that

M2 = I (12.10.6)

and therefore
H int
m = Hm. (12.10.7)

It follows from (10.6.14) through (10.6.20) that

f3 = −hH3, (12.10.8)

f4 = −hH4, (12.10.9)

f5 = −hH5 − (h2/2)[H3, H4], (12.10.10)

f6 = −hH6 − (h2/2)[H3, H5]− (h3/6)[H3, [H3, H4]], (12.10.11)

f7 = −hH7 − (h2/2)([H3, H6] + [H4, H5])− h3(H3, [H3, H5]]/6 + [H4, [H3, H4]/3)

− (h4/24)[H3, [H3, [H3, H4], (12.10.12)

f8 = −hH8 − (h2/2)([H3, H7] + [H4, H6])

− h3([H3, [H3, H6]]/6 + [H4, [H3, H5]]/3 + [H5, [H3, H4]]/12)

− h4([H3, [H3, [H3, H5]]]/24 + [H4, [H3, [H3, H4]]]/8)

− (h5/120)[H3, [H3, [H3, [H3, H4]]]], (12.10.13)

fm = expression involving Hm and the H` with ` < m. (12.10.14)

See Exercise 10.1.
We conclude that all the factors in a Zassenhaus representation can themselves be written

in factored product form. These maps can now be concatenated together to yield a final
approximation for exp(h : −H :) that is also in factored product form and is accurate
through some order in h. (Note that if H1 terms are present in H, then we must at this
point assume they are small in order to use the concatenation formulas of Section 9.3.) The
net result of our discussion is that the use of Zassenhaus symplectic integrator formulas
makes it possible to find “linear” maps R(h) and generators fm(h) such that exp(−h : H :)
has the factorization

exp(−h : H :) = exp[: f1(h) :]R(h) exp[: f3(h) :] exp[: f4(h) :] · · ·×[1+O(hN+1)] (12.10.15)

where (N + 1) is the order of the error in the Zassenhaus formula.
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Application to Scaling, Splitting, and Squaring

For the autonomous case that we have just been considering, we are now able to use scaling,
splitting, and squaring (as in Section 10.7) with (10.17) now playing the role of a splitting
formula. As before, we define τ by writing

τ = t/2n, (12.10.16)

and find the approximation

M = exp(t : −H :) = [exp(τ : −H :)]2
n

= {· · · {{exp[: f1(τ) :]R(τ) exp[: f3(τ) :] exp[: f4(τ) :] · · · }2}2 · · · }2

(n squarings). (12.10.17)

[Note: The quantity τ as given by (10.16) should not be confused with that used in (1.3)
or (9.33.]

What will be the relative error for this approximation? We expect that it will scale as
(1/2n)N . For a more precise result we need an estimate for the error term in the underlying
Zassenhaus formula. Suppose, for example, we use the Zassenhaus formula S4 as given
by (1.35). Although we have discussed Zassenhaus formulas in the context of symplectic
integrators, they are really operator identities that hold for any set of linear operators.
(Consequently, they may be used in other contexts including the construction of integrators
designed to preserve group properties for any Lie group. For example, they may be used in
the context of rigid-body motion to preserve the orthogonality condition and in the context
of quantum dynamics to preserve the unitarity condition.) To emphasize this fact, let us
introduce the notation

S4(hA, hB) = exp(w1hA) exp(w2hB) exp(w3hA) exp(w4hB)×
exp(w5hA) exp(w6hB) exp(w7hA), (12.10.18)

where A and B are any pair of linear operators. Then we have a result of the form

S4(hA, hB) = exp[−h(A+ B) + C5h
5 +O(h7)]. (12.10.19)

What we need for error analysis is an estimate for the term C5. In analogy to the error term
in (9.13) and based on the general properties of the BCH series, we expect that C5 will be
made of multiple commutators of A and B. First there will be a term with four A’s and one
B. Next there will be terms with three A’s and two B’s, etc. Finally, there will be a term
with one A and four B’s. Consequently, C5 can be written in the form

C5(A,B) = d1#A#4B + · · ·+ dlast#B#4A. (12.10.20)

Here, in accord with the notation of Chapter 8, #A# denotes the adjoint of A as defined
in terms of the commutator,

#A#B = {A,B}. (12.10.21)

Thus, to specify C5, we need to determine the coefficients d1 · · · dlast.
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The determination of all the coefficients d1 · · · dlast is a sizable algebraic task. However,
we can find d1 and dlast fairly easily. Since (10.16) is an operator identity, as we have just
discussed, it must hold for any linear operators A and B. In particular, it must hold for
2× 2 matrices. Left F and G be the matrices

F =

(
1 0
0 −1

)
, (12.10.22)

G =

(
0 1
0 0

)
. (12.10.23)

They satisfy the commutation rules

#F#G = {F,G} = 2G, (12.10.24)

#G#F = {G,F} = −{F,G} = −2G. (12.10.25)

It follows from these rules that

C5(F,G) = d1#F#4G+ · · ·+ dlast#G#4F = 24d1G, (12.10.26)

C5(G,F ) = d1#G#4F + · · ·+ dlast#F#4G = 24dlastG. (12.10.27)

That is, only the first term in the expansion (10.17) contributes to C5(F,G), and only the
last term contributes to C5(G,F ). Consequently, we have the matrix identity

S4(hF, hG) = exp[−h(F +G) + 16d1Gh
5 +O(h7)]

= exp[−h(F +G)] exp[16d1Gh
5 +O(h6)]

= exp[−h(F +G)][1 + 16d1Gh
5 +O(h6)]. (12.10.28)

From (10.25) it follows that

16d1Gh
5 = S4(hF, hG)− exp[−h(F +G)] +O(h6). (12.10.29)

Similarly, we have the result

16dlastGh
5 = S4(hG, hF )− exp[−h(F +G)] +O(h6). (12.10.30)

At this point we observe that the right sides of (10.26) and (10.27) can be evaluated
exactly. First, it is easily verified that the matrix (F +G) has the property

(F +G)2 = I. (12.10.31)

Consequently, we have the relation

exp[−h(F +G)] = cosh[h(F +G)]− sinh[h(F +G)] = I cosh(h)− (F +G) sinh(h)

=

(
exp(−h) − sinh(h)

0 exp(h)

)
. (12.10.32)
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Now take 1,2 matrix elements of both sides of (10.26) and (10.27) to get the results

16d1h
5 = [S4(hF, hG)]12 + sinh(h), (12.10.33)

16dlasth
5 = [S4(hG, hF )]12 + sinh(h). (12.10.34)

Next, we have the relations

exp(σF ) =

(
exp(σ) 0

0 exp(−σ)

)
, (12.10.35)

exp(σG) =

(
1 σ
0 1

)
. (12.10.36)

Consequently, all the factors in S4(hF, hG) and S4(hG, hF ) are known, and the multiplica-
tions indicated in (10.15) can be carried out exactly. Finally, we can expand the right sides
of (10.30) and (10.31) as power series in h and extract the terms of degree 5. Doing so gives
the results

d1 = (1/16)[18(2)2/3 − 40(21/3) + 22]/[9360(2)2/3 − 7200(2)1/3 − 5760] ' 4.14× 10−4,
(12.10.37)

dlast = (1/16)(1/12){(1/10) + [14(21/3)− 11(22/3)]/[2− (21/3)]5 ' 4.68× 10−3. (12.10.38)

We are now prepared to make an error analysis similar to that of Section 10.7. For A
and B given by (10.3) and (10.4), and assuming H1 = 0 for simplicity, we find for C5 the
result

C5 = d1#H2#4 : Hr : + · · ·+ dlast#Hr#
4 : H2 : . (12.10.39)

We know, in this context, that C5 must be a Lie operator. Let C be the function associated
with C5,

C5 =: C : . (12.10.40)

With this notation, (10.39) is equivalent to the relation

C = d1 : H2 :4 Hr + · · ·+ dlast : Hr :4 H2. (12.10.41)

We will also focus our attention on the first term in (10.41), which is equivalent to the
assumption that H2 has a larger effect than Hr. Then, in view of (9.36) and in line with our
assumption, we want to make the comparison

hHr
?↔ h5d1 : H2 :4 Hr (12.10.42)

where, according to (10.13) and (10.14),

h = τ = t/2n. (12.10.43)

By making use of (7.52) and (7.55), and looking at (10.39), we see that the relative error
can be written in the form

relative error ∼ d1(mλ/2n)4. (12.10.44)
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Suppose, as in Section 10.7, we limit our attention to the case m ≤ 8 and select n so that
(7.57) is satisfied. Then we find the result

relative error ∼ d1(1/20)4 ' 3× 10−9. (12.10.45)

This error is somewhat larger than that given by (7.59). However, the relations (10.6)
through (10.11) are simpler than the relations (7.28) through (7.32). Consequently, the
use of Zassenhaus formulas for splitting is easier to program. Of course both errors can be
decreased substantially, if desired, by a modest increase in the number of squarings n.

Exercises

12.10.1. The aim of this exercise is to show that the results (10.8) through (10.14) can be
obtained from (10.6.14) through (10.6.20). What you are to do is to integrate the equations
(10.6.14) through (10.6.20) with respect to t over the interval t = 0 to t = h. Let us begin.
Verify that integrating (10.6.14), remembering (10.7) and that H3 is assumed to be time
independent, gives the result

f3 =

∫ h

0

dt ḟ3 = −
∫ h

0

dt H3 = −hH3. (12.10.46)

Therefore (10.8) follows from (10.6.14). Next consider f4. From (10.46) we know that

f3(t) = −tH3. (12.10.47)

With regard to the ingredients of (10.5.15), show, in view of (10.7) and (10.47), that in our
case

(: f3 : /2)(−H int
3 ) = 0. (12.10.48)

Verify, therefore, that integration of (10.6.15) in our case yields the result

f4 =

∫ h

0

dt ḟ4 = −
∫ h

0

dt H4 = −hH4, (12.10.49)

in agreement with (10.9). Move on to the case of f5. Verify that in our case some of the
ingredients in (10.6.16) also vanish so that there is the result

f5 =

∫ h

0

dt ḟ5 = −
∫ h

0

dt H5 +

∫ h

0

dt t[H4, H3] = −hH5 − (h2/2)[H3, H4], (12.10.50)

in agreement with (10.10). What about f6? Verify that in our case several of the ingredients
in (10.6.17) vanish so that there is the result

f6 =

∫ h

0

dt ḟ6 = −
∫ h

0

dt H6 +

∫ h

0

dt : f5 : (−H3)

= −hH6 −
∫ h

0

dt : tH5 + (t2/2)[H3, H4] : (−H3)

= −hH6 − (h2/2)[H3, H5]− (h3/6)[H3, [H3, H4]], (12.10.51)

in agreement with (10.11). Show that (10.12) and (10.13) can be obtained analogously.

12.10.2.
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12.11 Other Zassenhaus Formulas and Their Use

There is a somewhat different class of Zassenhaus formulas that also merits discussion.
Suppose we rewrite (9.13) in the more general form

exp[(s/2)A] exp(tB) exp[(s/2)A] = exp[(sA+ tB) + C(sA, tB)] (12.11.1)

where

C = (s2t/24){A, {A,B}} − (st2/12){B, {B,A}}+ · · · . (12.11.2)

Here, as before, A and B are any pair of linear operators, and s and t are expansion
parameters. We see that the left side of (11.1) produces the desired result exp(sA+ tB) save
for an error C that contains, among other things, terms linear in s (but higher order in t)
and terms linear in t (but higher order is s). Examination of (10.15) through (10.17) shows
that the higher order Zassenhaus integrator formulas have similar properties. For example,
reference to (10.16) and (10.17) shows that the S4 given by (10.15) has errors linear in t
that are proportional to s4, errors quadratic in t that are proportional to s3, etc.

Suppose we set for ourselves what will turn out to be an easier goal: find Zassenhaus
approximations that are only correct through terms linear in t, but the term that is indepen-
dent of t and the term that is linear in t should be correct to high order in s. Our starting
point is the relation (8.8.13). See Section 8.8. This relation has the generalization

exp(sA+ tB) = exp[O(t2)] exp[iex(s#A#)(tB)] exp(sA) (12.11.3)

where

iex(s#A#)(tB) =

∫ 1

0

dτ exp(τs#A#)(tB). (12.11.4)

By construction we know that the term in (11.3) that is independent of t and the term that
is linear in t are both exact in s.

The next step is to convert the integral (11.4) into a finite sum with the aid of a quadrature
formula. Suppose we wish to integrate some function (operator) G(τ). A quadrature formula
is a set of k successive sampling points τi in the interval [0, 1] and weights wi such that

∫ 1

0

dτG(τ) '
k∑
i=1

wiG(τi). (12.11.5)

In our case

G(τ) = exp(τs#A#)(tB). (12.11.6)

Shortly we will consider how the τi and wi might be chosen. First, let us see how a quadrature
formula can be used. With the aid of (11.5) and (11.6) we find the result

exp[iex(s#A#)(tB) = exp[

∫ 1

0

dτG(τ)] ' exp

[
k∑
i=1

wiG(τi)

]
= exp[O(t2)] exp[w1G(τ1)] exp[w2G(τ2)] · · · exp[wkG(τk)]. (12.11.7)
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Note that the operators G(τi) generally do not commute. Therefore the conversion of the
exponential of a sum into a product of exponentials, which occurs as the last step in (11.7),
produces correction terms that involve commutators. However, since the G(τi) are linear in
t, these commutators are O(t2) as indicated in (11.7).

For each factor in (11.7) we have the result

exp[wiG(τi)] = exp[exp(τis#A#)(witB)]

= exp[exp(τisA)(witB) exp(−τisA)]

= exp(τisA) exp(witB) exp(−τisA). (12.11.8)

Putting all these results together gives the relation

exp(sA+ tB) ' exp[O(t2)] exp(τ1sA) exp(w1tB) exp(−τ1sA)×
exp(τ2sA) exp(w2tB) exp(−τ2sA) · · · ×
exp(τksA) exp(wktB) exp(−τksA) exp(sA). (12.11.9)

Finally, carrying out the indicated multiplications gives the result

exp(sA+ tB) ' exp[O(t2)] exp(τ1sA) exp(w1tB)

exp[(τ2 − τ1)sA] exp(w2tB) exp[(τ3 − τ2)sA] · · ·
exp(wktB) exp[(1− τk)sA]. (12.11.10)

This is the desired Zassenhaus approximation.
We must still consider how to select the τi and wi. One possibility is to space the τi

evenly with τ1 = 0 and τk = 1,
τi = (i− 1)/(k − 1). (12.11.11)

In this case we should use Newton-Cotes weights. See Appendix T. For example, for the
case k = 3 we have the celebrated Simpson’s rule 1-4-1 formula∫ 1

0

dτG(τ) ' (1/6)G(0) + (4/6)G(1/2) + (1/6)G(1). (12.11.12)

Another appealing possibility is not to space the τi evenly, but rather to select them (as
well as the weights wi) in such a way that (for a fixed k) the order is maximized. This choice
produces the family of Legendre-Gauss quadrature formulas. Again see Appendix T. For
example, for k = 3 there is the formula∫ 1

0

dτG(τ) ' (5/18)G(1/2−
√

15/10)+(8/18)G(1/2)+(5/18)G(1/2+
√

15/10). (12.11.13)

As another example, consider the case k = 2. Then there is the formula∫ 1

0

dτG(τ) ' (1/2)G(1/2−
√

3/6) + (1/2)G(1/2 +
√

3/6). (12.11.14)

Because (11.5) replaces an integral by a sum, the term in the Zassenhaus approximation
(11.10) that is linear in t is no longer exact in s. (However, the term independent of t still
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is exact.) We can estimate the error made in s from formulas of the kind (11.14), (11.16),
and (11.18). Taylor series expansion of G(τ) as given by (11.6) provides the result

k∑
i=1

wiG(τi) =
∞∑
n=0

(sn/n!)#A#ntB
k∑
i=1

wiτ
n
i . (12.11.15)

Let ck be the error term in the relation

k∑
i=1

wi(τi)
`max+1 = 1/(`max + 2) + ck. (12.11.16)

Again see Appendix T, and the example relations (T.1.6), (T.1.12), and (T.1.15). From
(12.15) and (12.16) we find the error estimate

k∑
i=1

wiG(τi) = iex(s#A#)(tB) + [ck/(`max + 1)!]s(`max+1)(#A#)(`max+1)(tB) +O[t(s)(`max+2)].

(12.11.17)
Consequently, to examine relative error, we must make the comparison

tB ?↔ [ck/(`max+1 + 1)!]s(`max+1)(#A#)`max+1(tB). (12.11.18)

For example, suppose that A is the Lie operator : H2 : for a quadratic Hamiltonian, and
(tB) is the Lie operator : Hr : for the remaining piece as in (10.4). Let JS be the matrix
associated with H2. In analogy to (7.56), define λ by the relation

λ = ‖sJS‖. (12.11.19)

Also, suppose that Hr does not contain terms beyond degree m. Then, in analogy to (6.5.2),
we have the estimate

s`max+1(#A#)`max+1(tB) ∼ (mλ)`max+1(tB). (12.11.20)

Consequently, we conclude that the relative error in the Zassenhaus approximation (11.10)
has the estimate

relative error ∼ [ck/(`max + 1)!](mλ)(`max+1). (12.11.21)

What uses can be made of Zasshaus approximations of the form (11.10)? In the context
of Accelerator Physics, we will see in Chapters 12 and 12 that Hr becomes small in the limit
of high energies. Therefore, at least three possible uses come to mind.

First, in the autonomous case, these Zassenhaus approximations can be used as splitting
formulas for map computation by scaling, splitting, and squaring. Second, they can be
used as symplectic integrators. The autonomous case can be treated using the form (11.10),
and the nonautonomous case can be treated using related formulas. See Exercise 11.*. In
the context of symplectic integrators, employing the Gaussian sampling points and weights
seems particularly attractive because doing so minimizes (for a given k) the number of
operators exp(witB), whose evaluation is relatively expensive.
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Finally, these Zassenhaus approximations can be used as the basis of an accelerator
lattice correction scheme. Suppose we find Hr, or some terms in Hr, to be offensive. Then
we can counter the effect of these terms on the performance of an accelerator lattice by
placing, at the sampling points, local correctors having these same offensive properties.
These correctors should be powered with strengths proportional to (−wi) in such a way that
the net effect of the correctors and the offensive terms in Hr cancel to first order in t and
high order in s. See Exercise *.*. In this case perhaps, although not necessarily, use of the
Newton-Cotes sampling points might be more convenient from an engineering perspective.

Exercises

12.11.1.
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eds., pp. 74-86, Springer-Verlag (1993).

[27] M. Glasner, D. Yevick, and B. Hermansson, “Sixth Order generalized propagation tech-
niques”, Electron. Lett., vol. 27, pp. 475-478, 1991.

[28] M. Glasner, D. Yevick, and B. Hermansson, “High Order generalized propagation tech-
niques”, J. Opt. Soc. B, vol. 8, pp. 413-415, 1991.

http://chaosbook.org/library/SuzukiJMP91.pdf
http://chaosbook.org/library/SuzukiJMP91.pdf


BIBLIOGRAPHY 1253

[29] M. Glasner, D. Yevick, and B. Hermansson, “Generalized propagation formulas of ar-
bitrarily high order”, J. Chem. Phys., vol. 95, pp. 8266-8272, 1991.

[30] M. Glasner, D. Yevick, and B. Hermansson, “Computer generated generalized propa-
gation techniques”, Appl. Math. Lett., vol. 4, pp. 85-90, 1991.

[31] M. Glasner, D. Yevick, and B. Hermansson, “Generalized propagation techniques for
longitudinally varying refractive index distributions”, Math. and Comp. Modelling, vol.
16, pp. 179-184, 1992.

[32] P. Saha and S. Tremaine, “Symplectic integrators for solar system dynamics”, Astron.
J. 104, 1633 (1992).

[33] M. Austin, P.S. Krishnaprasad, and L.-S. Wang, “On Symplectic and Almost Poisson
Integration of Rigid Body Systems”, University of Maryland Systems Research Center,
technical report TR91-45 (1991).

[34] Qin Meng-Zhao and Zhu Wen-Jie, “Construction of Higher Order Schemes for Ordi-
nary Differential Equations by Composing Self-adjoint Lower Order Ones”, preprint,
Computing Center, Academia Sinica, Beijing.

[35] Qin Meng-Zhao, “A Difference Scheme for the Hamiltonian Equation”, J. Comp. Math.
5, 203 (1987).

[36] Feng Kang and Qin Meng-Zhao, “The Symplectic Methods for the Computation of
Hamiltonian Equations”, in Numerical Methods for partial differential equations, Lect.
Notes Math 1297, 1, Springer (1987).

[37] Feng Kang and Qin Meng-Zhao, “Hamiltonian algorithms for Hamiltonian systems
and a comparative numerical study”, Computer Physics Communications 65, 173-187
(1991).

[38] H. De Raedt, Product Formula Algorithms for Solving the Time Dependent Schrödinger
Equation, Computer Physics Reports 7, (North Holland, Amsterdam 1987).

[39] H. De Raedt and B. De Raedt, Phys. Rev. A 28, 3575 (1983).

[40] H. De Raedt, “Quantum Dynamics in Nanoscale Devices”, in Computational Physics,
K.H. Hoffmann and M. Schreiber, Eds., Springer (1996).

[41] J. Candy and W. Rozmus, “A Symplectic Integration Algorithm for Separable Hamil-
tonian Functions”. J. Comput. Phys. 92, 230 (1991).

[42] S. Mikkola and P. Wiegert, “Regularizing time transformations in symplectic and com-
posite integration”, Celest. Mech. Dyn. Astron. 82, 375 (2002).

[43] J. Wisdom and M. Holman, “Symplectic maps for the n-body problem: Stability anal-
ysis”, Astron. J. 104, 2022 (1992).



1254 BIBLIOGRAPHY

[44] R.I. McLachlan, “On the numerical integration of ordinary differential equations by
symmetric composition methods”, SIAM J. Sci. Comp. 16, 151-168, (1995). Also avail-
able on the Web at http://www.massey.ac.nz/~rmclachl/sisc95.pdf.

[45] R.I. McLachlan, “Composition methods in the presence of small parameters”, BIT 35,
258-268, (1995).

[46] R. I. McLachlan and P. Atela, “The accuracy of symplectic integrators”, Nonlinearity
5, 541-562 (1992).

[47] R.I. McLachlan and G.R.W. Quispel, “Splitting methods”, Acta Numerica 11, 341-434
(2002).

[48] R.I. McLachlan and G.R.W. Quispel, “Explicit geometric integration of polynomial
vector fields”, BIT 44, 515-538, (2004).

[49] R.I. McLachlan and G.R.W. Quispel, “Geometric integrators for ODEs”, Journal of
Physics A 39, 5251-5285, (2006).

[50] G.R.W. Quispel and R.I. McLachlan, Eds., Special Issue on Geometric Numerical In-
tegration of Differential Equations, Journal of Physics A 39 (2006).

[51] S. Blanes, F. Casas, and J. Ros, “Symplectic Integration with Processing: A General
Study”, SIAM J. Sci. Comput. (1998).

[52] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure
Preserving Algorithms for Ordinary Differential Equations, Springer (2002), corrected
second printing 2004.

[53] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge University
Press (2004).

[54] S. Reich, “Backward error analysis for numerical integrators”, SIAM J. Numer. Anal.
36, 1549-1570 (1999).

[55] A. Iserles, H. Munthe-Kaas, S. Nørsett, and A. Zanna, “Lie-group methods”, Acta
Numerica 14, 1–148, (2005). Also available on the Web at http://www.damtp.cam.

ac.uk/user/na/NA_papers/NA2000_03.pdf.

[56] I.P. Omelyan, I.M. Mryglod, and R. Folk, “Symplectic Analytically Integrable Decom-
position Algorithms: Classification, Derivation, and Application to Molecular Dynam-
ics, Quantum and Celestial Mechanics Simulations”, Computer Physics Communica-
tions, vol. 151, 273-314 (2003).

[57] S.-H. Tsai, H.K. Lee, and D.P. Landau, “Molecular and Spin Dynamics Simulations
using Modern Integration Methods”, Am. J. Physics, vol. 73, 615-624 (2005).

[58] L. Gauckler, E. Hairer, and C. Lubich, “Dynamics, Numerical Analysis, and some
Geometry”, preprint (10 October 2017) https://arxiv.org/abs/1710.03946

http://www.massey.ac.nz/~rmclachl/sisc95.pdf
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2000_03.pdf
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2000_03.pdf
https://arxiv.org/abs/1710.03946


BIBLIOGRAPHY 1255

[59] S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration,
CRC Press (2016).

Triplet Construction

[60] M. Creutz and A. Gocksch, “Higher-order Hybrid Monte Carlo Algorithms”, Phys. Rev.
Lett. 63, 9 (1989).

[61] H. Yoshida, “Construction of higher order symplectic integrators”, Phys. Lett. A 150,
262 (1990).

[62] E. Forest, J. Bengtsson, and M. Reusch, “Application of the Yoshida-Ruth techniques to
implicit integration and multi-map explicit integration”, Phys. Lett. A 158, 99 (1991).

Force Gradient Algorithms

[63] S.A. Chin and D.W. Kidwell, “Higher-order Force Gradient Symplectic Algorithms”,
Phys. Rev. E 62, 8746 (2000).

[64] S.A. Chin and C.R. Chen, “Forward Symplectic Integrators for Solving Gravitational
Few-Body Problems”, Celestial Mechanics and Dynamical Astronomy 91, 301-322
(2005).

Partitioned Runge Kutta and Symplectic Runge Kutta

[65] B. Blanes and P.C. Moan, “Practical symplectic partitioned Runge-Kutta and Runge-
Kutta-Nyström methods”, Journal of Computational and Applied Mathematics 142,
313-330 (2002).

[66] A. Iserles, “Efficient Runge-Kutta Methods for Hamiltonian Equations”, in Advances on
Computer Mathematics and its Applications, E. Lipitakis, Ed., World Scientific (1993).

[67] M. Sofroniou and W. Oevel, “Symplectic Runge-Kutta Schemes I: Order Conditions”,
SIAM Journal of Numerical Analysis 34(5) (1997).

[68] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure
Preserving Algorithms for Ordinary Differential Equations, Springer (2002), corrected
second printing 2004.

[69] X. Tan, “Almost symplectic Runge-Kutta schemes for Hamiltonian systems”, Journal
of Computational Physics 203, 250-273 (2005).

[70] R. McLachlan, “A New Implementation of Symplectic Runge-Kutta Methods”, SIAM
Journal on Scientific Computing, Volume 29, Issue 4, 1637-1649 (2007).

[71] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, Second Edition,
John Wiley (2008). http://www.math.auckland.ac.nz/~butcher/ODE-book-2008/.

[72] D. Okunbor and R.D. Skeel, “Explicit Canonical Methods for Hamiltonian Systems”,
Mathematics of Computation 59, 439-455 (1992).

http://www.math.auckland.ac.nz/~butcher/ODE-book-2008/


1256 BIBLIOGRAPHY

[73] Lin-Yi Chou and P. W. Sharp, “On order 5 symplectic explicit Runge-Kutta Nyström
methods”, Journal of Applied Mathematics & Decision Sciences 4, 143-150 (2000).

Symplectic Integrator for Motion in a Magnetic Field

[74] Y.K. Wu, E. Forest, and D.S. Robin, “Explicit symplectic integrator for s-dependent
static magnetic field”, Phys. Rev. E 68, 046502, (2003).

[75] M. Aichinger, S.A. Chin, and E. Krotscheck, “Fourth-order Algorithms for Solving
Local Schroedinger Equations in a Strong Magnetic Field”, Comp. Phys. Comm. 171,
197 (2005).

[76] E. Chacon-Golcher and F. Neri, “A symplectic integrator with arbitrary vector and
scalar potentials”, Physics Letters A 372, 4661-4666, (2008).

Conservation of H

[77] Z. Ge and J. Marsden, “Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integra-
tors”, Phys. Lett. A, 133, 134-139, (1988).

[78] G. Benettin and A. Giorgilli, “On the Hamiltonian interpolation of near to the identity
symplectic mappings with application to symplectic integration algorithms”, J. Statist.
Phys. 74, 1117 (1994).

[79] S. Reich, “Backward error analysis for numerical integrators”, SIAM J. Numer. Anal.
36, 1549-1570 (1999).

Symplectic Integration Using Generating Functions

[80] Feng Kang and Qin Meng-Zhao, “The Symplectic Methods for the Computation of
Hamiltonian Equations”, in Numerical Methods for partial differential equations, Lect.
Notes Math 1297, 1, Springer (1987).

[81] Feng Kang, Wu Hua-mo, Qin Meng-shao, and Wang Dao-liu, “Construction of Canoni-
cal Difference Schemes for Hamiltonian Formalism via Generating Functions”, Journal
of Computational Mathematics 11, p. 71 (1989).

[82] Feng Kang, “The Calculus of Generating Functions and the Formal Energy for Hamil-
tonian Algorithms”, Journal of Computational Mathematics 16, p. 481 (1998).

[83] Feng Kang and Mengzhao Qin, Symplectic Geometric Algorithms for Hamiltonian Sys-
tems, Zhejiang Publishing and Springer-Verlag (2010).

[84] P. J. Channell and C. Scovel, “Symplectic integration of Hamiltonian systems”, Non-
linearity 3, 231-259 (1990).

Local Correction

[85] D. Neuffer and E. Forest, Phys. Lett. A 135, 197, (1989).



BIBLIOGRAPHY 1257

[86] D. Neuffer, Nucl. Instr. and Meth. A 274, 400, (1989).

[87] D. Neuffer, Proceedings of the Workshop on Effects of Errors in Accelerators, Corpus
Christi, TX, 1991, A. Chao, Ed., AIP Conf. Proc. 255, 215, (1992).

[88] E. Forest, Beam Dynamics, Section 11.4, Harwood Academic (1998).





Chapter 13

Transfer Maps for Idealized Straight
Beam-Line Elements

13.1 Background

In this chapter we will describe the computation of transfer maps for idealized straight
beam-line elements. Here we make two assumptions: First, the element geometry is such
that Cartesian coordinates can conveniently be employed. Second, the design orbit is a
straight line, which we take to be the z axis. For simplicity we will treat only magnetic
elements, but the case of straight electric elements or straight electromagnetic elements can
be handled similarly. Since the design orbit is assumed to be a straight line, the case of
magnetic dipole fields is excluded.

We further assume that the design orbit is traversed in time with constant velocity v0
z . In

particular, to ensure that the velocity v0
z is indeed constant we also assume that the electric

scalar potential vanishes, ψ = 0. For the same reason, the vector potential A is taken to be
time independent. See (1.5.2). More complicated situations where v0

z is not constant, such
as occurs in RF accelerating cavities, can be treated in an analogous way.

Since the design orbit is taken to lie along the z axis, it is convenient to take z as the
independent variable. In this case, according to (1.6.16), the Hamiltonian K is given by the
relation

K = −[(pcan
t )2/c2 −m2c2 − (pcan

x − qAx)2 − (pcan
y − qAy)2]1/2 − qAz. (13.1.1)

Here we have taken care to indicate that the momenta employed are canonical. The ideal-
izations we will make in this chapter are that the vector potential A is z independent and
fringe-field effects can be neglected. These restrictions will be removed in the subsequent
Chapters 15 through 21.

13.1.1 Specification of Design Orbit

Under the assumptions made about the design orbit, we may write the relations

xd = yd = 0. (13.1.2)
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Also, the transverse velocities and therefore the transverse mechanical momenta will vanish
on the design orbit. We further assume that the fields and selected gauge for the vector
potential are such that the transverse components of the vector potential vanish on the
design orbit. It follows that in this case the transverse canonical momenta will also vanish
on the design orbit,

pcan d
x = pcan d

x = 0. (13.1.3)

With regard to the the momentum pcan
t , since we have assumed that ψ = 0 and v0

z is constant,
we may write

pcan d
t = p0

t (13.1.4)

where p0
t is the value of pcan

t on the design orbit.
To complete our description of the design orbit, we need to find the time t as a function

of z on this orbit. We may write

(dt/dz)|design orbit = 1/[(dz/dt)|design orbit] = 1/v0
z . (13.1.5)

Here, as described earlier, v0
z is the design velocity on the design orbit, from which it follows

that there is the relation

v0
z = (c2γmv0

z)/(γmc
2) = −c2p0/p0

t (13.1.6)

where γ denotes the usual relativistic factor and p0 is the value of pmech
z on the design orbit.

[This same result can be obtained from (1.1) by observing that pcan
x , pcan

y , Ax, and Ay all
vanish on the design orbit. See Exercise *.] Note also that there are the relations

p0
t = −[m2c4 + (p0)2c2]1/2, (13.1.7)

p0 = [(p0
t/c)

2 −m2c2]1/2. (13.1.8)

Since v0
z is constant, integration of (1.5) yields the relation

td(z) = z/v0
z (13.1.9)

where we have taken the origin in time to be such that the design orbit passes through z = 0
at the time t = 0.

13.1.2 Deviation Variables

Under the assumptions just made about the design orbit, we may introduce transverse
coordinate deviation variables ξ, η by the definitions

ξ = x− xd = x, (13.1.10)

η = y − yd = y. (13.1.11)

We also introduce transverse momentum deviation variables pξ, pη by the definitions

pξ = pcan
x − pcan d

x = pcan
x , (13.1.12)
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pη = pcan
y − pcan d

y = pcan
y . (13.1.13)

With the results and definitions (1.2) through (1.4) and (1.9) through (1.13) in hand, we
are now able to introduce a full set of of deviation variables (ξ, η, T ; pξ, pη, pT ) by adding to
the definitions (1.10) through (1.13) the definitions

T = t− td = t− z/v0
z , (13.1.14)

pT = pcan
t − pcan d

t = pcan
t − p0

t . (13.1.15)

Note that by construction the deviation variables all vanish on the design orbit as desired.
Since the relations (1.9) through (1.14) simply amount to a phase-space translation, it follows
that the relation between the original variables and the deviation variables is a canonical
transformation.

13.1.3 Deviation Variable Hamiltonian

Since the transformation given by (1.9) through (1.14) is canonical, the equations of mo-
tion for the deviation variables must also arise from a Hamiltonian, which we will call
Knew(ξ, η, T, pξ, pη, pT ; z). Our task is to find Knew in terms of K. To do so, we will use the
machinery of Subsection 10.4.1.

Following (10.4.2), define a function K̄(ξ, η, T, pξ, pη, pT ; z) by the rule

K̄(ξ, η, T, pξ, pη, pT ; z) = K(ξ, η, z/v0
z + T, pξ, pη, p

0
t + pT ; z). (13.1.16)

Then, according to (10.4.20), the new Hamiltonian is given by the rule

Knew(ξ, η, T, pξ, pη, pT ; z) =

K̄(ξ, η, T, pξ, pη, pT ; z)− K̄1(ξ, η, T, pξ, pη, pT ; z). (13.1.17)

Let us work out the implications of this rule for the case where K is given by (1.1). For K̄
we find the result

K̄(ξ, η, T, pξ, pη, pT ; z) =

− [(p0
t + pT )2/c2 −m2c2 − (pξ − qAx)2 − (pη − qAy)2]1/2 − qAz. (13.1.18)

We next assume that A is time independent, the expansions of Ax and Ay begin with linear
terms, and the expansion of Az begins with quadratic terms. In that case A does not
contribute to K̄1(ξ, η, T, pξ, pη, pT ; z), and we find from (1.17) the result

K̄1(ξ, η, T, pξ, pη, pT ; z) = −(p0
t/c

2)[(p0
t/c)

2 −m2c2]−1/2pT

= −(p0
t/c

2)(1/p0)pT

= pT/v
0
z . (13.1.19)

Here we have used (1.6) and (1.8). Finally, combining (1.17) through (1.19) gives the result

Knew(ξ, η, T, pξ, pη, pT ; z) =

− [(p0
t + pT )2/c2 −m2c2 − (pξ − qAx)2 − (pη − qAy)2]1/2 − qAz − pT/v0

z .

(13.1.20)
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13.1.4 Dimensionless Scaled Deviation Variables

For many purpose it is useful to describe trajectories and maps in terms of dimension-
less variables. Let ` be some convenient scale length.1 Introduce dimensionless variables
(X, Y, τ ;Px, Py, Pτ ), defined in terms of the deviation variables and the scale length, by the
rules

X = ξ/`, (13.1.21)

Y = η/`, (13.1.22)

τ = cT/`; (13.1.23)

Px = pξ/p
0, (13.1.24)

Py = pη/p
0, (13.1.25)

Pτ = pT/(p
0c). (13.1.26)

At this point it is useful to relate Pτ , which may be viewed as a scaled energy deviation
(with a minus sign), to the momentum deviation parameter δ of Exercise 1.7.6. They are
connected by the relations

Pτ = −(1/β0){[1 + (2δ + δ2)β2
0 ]1/2 − 1}

= −β0δ + (δ2/2)(β3
0 − β0)− (δ3/2)(β5

0 − β3
0) + · · · , (13.1.27)

δ = (1− 2Pτ/β0 + P 2
τ )1/2 − 1

= −Pτ/β0 + (P 2
τ /2)(1− β−2

0 ) + · · · . (13.1.28)

Here β0 is the usual relativistic factor evaluated on the design orbit,

β0 = v0
z/c = −cp0/p0

t . (13.1.29)

Note that in the ultra relativistic limit β0 → 1 there are the relations

Pτ = −δ, (13.1.30)

δ = −Pτ . (13.1.31)

See Exercise *.

13.1.5 Scaled Deviation-Variable Hamiltonian

We will now seek equations of motion for the scaled deviation variables. We will learn that
they also can be derived from what we will call scaled deviation-variable Hamiltonian and
will denote by the symbol Hs. To do so requires some care.

Although the Poisson brackets of the new coordinates with each other and the Poisson
brackets of the new momenta with each other all vanish, the transformation given by (2.54)

1Here the coordinate scale factor ` is not to be confused with the “path length” ` of Exercise 1.7.6. Note
also that in this subsection we use the notation p0 to denote the quantity pmech

0 of Exercise 1.7.6.
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through (2.59) is not canonical because the Poisson brackets of the new coordinates with
their corresponding new momenta do not have the value 1. Instead they have the common
value

[X,Px] = [Y, Py] = [τ, Pτ ] = (p0`)−1. (13.1.32)

Nevertheless, it is still possible to obtain the equations of motion for the deviation variables
from a Hamiltonian providing the Hamiltonian, which we now denote by H, is taken to be
the function

Hs = Knew/(p0`), (13.1.33)

and we treat the deviation variables as being canonically conjugate. That is, the Poisson
brackets of the new coordinates with each other and the Poisson brackets of the new momenta
with each other all vanish, and the Poisson brackets of the new coordinates with their
corresponding new momenta are taken to have the value 1,

[X,Px] = [Y, Py] = [τ, Pτ ] = 1. (13.1.34)

See Exercise *.
Let us apply the Ansatz (2.66) to the Hamiltonian H̄ given by (2.53) and (1.1). So doing

gives the preliminary result

H(X, Y, τ, Px, Py, Pτ ; z) = [1/(p0`)][K − (pT + p0
t )/v

0
z ]

= [1/(p0`)]K − [1/(p0`)](pT + p0
t )/v

0
z . (13.1.35)

We will work separately on each of the two terms appearing on the far right side of (2.68).
Save for the 1/` factor the first term takes the form

(1/p0)K = −{[(pcan
t /p0c)2 − (mc/p0)2 − (pcan

x /p0 − Asx)2 − (pcan
y /p0 − Asy)2]1/2 + Asz}

(13.1.36)

where As is a scaled vector potential given by

As(X, Y, z) = (q/p0)A(`X, `Y, z). (13.1.37)

Further manipulation employing (2.45) and (2.59) produces the relation

[pcan
t /(p0c)]2 − (mc/p0)2 = [(pT + p0

t )/(p
0c)]2 − (mc/p0)2

= [(p0cPτ + p0
t )/(p

0c)]2 − (mc/p0)2

= [Pτ + p0
t/(p

0c)]2 − (mc/p0)2. (13.1.38)

From (2.62) there is the relation

p0
t/(p

0c) = −1/β0. (13.1.39)

There is also the relation

mc/p0 = mc/(mγ0β0c) = 1/(γ0β0) (13.1.40)
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where γ0 is the usual relativistic factor evaluated on the design orbit. It follows that there
is the relation

[pcan
t /(p0c)]2 − (mc/p0)2 = (Pτ − 1/β0)2 − 1/(γ0β0)2

= P 2
τ − (2Pτ/β0) + 1/β2

0 − 1/(γ0β0)2. (13.1.41)

But, there is the identity

1/β2
0 − 1/(γ0β0)2 = (1/β0)2[1− 1/γ2

0 ] = (1/β0)2[1− (1− β2
0)] = 1. (13.1.42)

Consequently there is the net result

[pcan
t /(p0c)]2 − (mc/p0)2 = P 2

τ − (2Pτ/β0) + 1. (13.1.43)

We conclude that

[1/(p0`)]K = −(1/`){[1− (2Pτ/β0) + P 2
τ − (Px − Asx)2 − (Py − Asy)2]1/2 + Asz} (13.1.44)

where we have also used (2.38), (2.39), (2.57), and (2.58).
What remains is to work on he second term on the right side of (2.68). Save for a (−1/`)

factor it takes the form

(1/p0)(pT + p0
t )/v

0
z = (1/p0)(p0cPτ + p0

t )[−p0
t/(p0c

2)]

= −[p0
t/(p

0c)]Pτ − (p0
t )

2/(p0c)2

= (Pτ/β0)− (1/β2
0). (13.1.45)

Here we have used (2.59) and (2.72). We conclude that

− [1/(p0`)](pT + p0
t )/v

0
z = (1/`)[(Pτ/β0)− (1/β2

0)]. (13.1.46)

We are, at last, ready to compute H. Upon combining (2.68), (2.77), and (2.79) we find
the final result

H = −(1/`){[1− (2Pτ/β0) + P 2
τ − (Px −Asx)2 − (Py −Asy)2]1/2 +Asz + (Pτ/β0)}. (13.1.47)

In the case of no magnetic field (1.45) takes the form

H = −(1/`){[1− (2Pτ/β0) + P 2
τ − P 2

x − P 2
y ]1/2 + (Pτ/β0)}. (13.1.48)

Let us use this Hamiltonian to compute x′. From Hamilton’s equations of motion we find
the result

x′ = dx/dz = `dX/dz = `∂H/∂Px

= Px[1− (2Pτ/β0) + P 2
τ − P 2

x − P 2
y ]−1/2

= Px + PxPτ/β0 + (1/2)Px[P
2
τ (3β−2

0 − 1) + P 2
x + P 2

y ] + · · · . (13.1.49)

We see that x′ agrees with Px in lowest order; but there are second-order chromatic differ-
ences, and third- and higher-order geometric and chromatic differences. Also, X and x′ are
not canonically conjugate, [X, x′] 6= 1.
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Exercises

13.2 Axial Rotation

13.3 Drift

In this subsection we will compute the transfer map for a drift. To do so we begin with
the Hamiltonian (1.1) and employ the vector potential given by (2.7) through (2.10). We
then introduce deviation variables followed by scaled deviation variables. Next we find
the scaled deviation-variable Hamiltonian. Finally, we expand the scaled deviation-variable
Hamiltonian in a Taylor series, and employ this Taylor series to compute the transfer map.

13.4 Solenoid

R = ∗. (13.4.1)

13.5 Wiggler/Undulator

13.6 Quadrupole

13.7 Sextupole

13.8 Octupole

13.9 Higher-Order Multipoles

13.10 Thin Lens Multipoles

13.11 Combined Function Quadrupole

13.12 Radio Frequency Cavity
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Chapter 14

Transfer Maps for Idealized Curved
Beam-Line Elements

14.1 Background

14.2 Sector Bend

14.3 Parallel (Rectangular) Faced Bend

14.4 Hard-Edge Fringe Fields

14.5 Pole Face Rotations

14.6 General Bend

14.7 Combined Function Bend
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Chapter 15

Taylor and Spherical and Cylindrical
Harmonic Expansions

15.1 Introduction

Chapters 13 and 14 treated idealized beam-line elements for which variations in the field
with position along the beam-line element, and fringe-field effects, were neglected. There
are situations for which these neglected effects can be important when accurate modeling
is desired. By developing various mathematical tools, this chapter prepares the way for
Chapters 16 through 21 that describe the calculation of realistic transfer maps for straight
beam-line elements, and Chapter 22 that describes the calculation of realistic transfer maps
for general curved beam-line elements.

Restrictions Discovered by Hamilton (Symplecticity)

In previous chapters we learned that the motion of charged particles through any beam-line
element can be described by the transfer map M for that element. We also learned that
the equations of motion for charged particle motion can be derived from a Hamiltonian, and
therefore M cannot be an arbitrary map, but must be a symplectic map. Consequently,
through aberrations of order (n− 1), such a map has the Lie representation

M = R2 exp(: f3 :) exp(: f4 :) · · · exp(: fn :) (15.1.1)

where R2 describes the linear part of the map. The linear map R2 and the Lie generators
f` are determined by solving the equation of motion

Ṁ =M : −H : (15.1.2)

where

H = H2 +H3 +H4 + · · · (15.1.3)

is the Hamiltonian expressed in terms of deviation variables and expanded in a homoge-
neous polynomial series. See Sections 10.1 and 10.4. The deviation variable Hamiltonian
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H is determined in turn by the Hamiltonian K for which some coordinate is the indepen-
dent variable. For example, in Cartesian coordinates and with z taken as the independent
variable, K is given by the relation

K = −[(pt + qψ)2/c2 −m2c2 − (px − qAx)2 − (py − qAy)2]1/2 − qAz. (15.1.4)

Here ψ and A are the electric scalar and magnetic vector potentials, respectively. See
(1.6.16). We conclude that (in the case of no electric fields, ψ = 0) what we need are Taylor
expansions for the vector potential components Ax, Ay, Az in the deviation variables x and
y.

Restrictions Associated with Maxwell’s Equations

For common beam-line elements the charged particles move in an evacuated beam pipe, and
therefore the electric and magnetic fields controlling particle motion are source free in the
vicinity of the beam. Correspondingly, the source-free Maxwell equations impose restrictions
on what fields can be employed. This chapter begins with a discussion of harmonic functions
and the use of spherical coordinates to obtain spherical harmonic expansions thereby leading
to suitable Taylor expansions for source-free magnetic fields and their scalar and vector
potentials. For our purposes this material is of particular use in terminating end fields. See
Sections 16.7 and 22.8. It has other general uses as well including the treatment of ambient
fields.

Next we will find, for the case of straight beam-line elements, expressions for the re-
quired Taylor expansions in terms of on-axis gradients with the aid of cylindrical harmonic
expansions.1 The on-axis gradients themselves are generally unspecified functions of z. In
some simple cases they can be found analytically, as illustrated in Chapter 16. However,
in general they must be determined numerically. Chapters 17 through 21 describe how this
can be done in terms of magnetic field or magnetic potential values determined numerically
at points on some regular 3-dimensional grid with the aid of some electromagnetic code.

In this part of the present chapter we will first learn how to characterize the magnetic
scalar potential in terms of cylindrical harmonics described by on-axis gradients. Next we
will find field expansions in terms of cylindrical harmonics. Then we will relate vector
potentials to on-axis gradients. The work of this part of the chapter concludes with the
treatment of an analytically soluble model problem, that of the magnetic monopole doublet,
which will be used in Chapter 19 to benchmark the methods to be developed in Chapters
17 through 21.

The chapter ends with some closing remarks meant to provide added perspective.

1In this chapter we will use the word cylindrical to mean circular cylindrical. In subsequent chapters we
will distinguish between circular, elliptic, and rectangular cylinders.
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15.2 Spherical Expansion

15.2.1 Harmonic Functions and Absolute and Expansion
Coordinates

In a current-free region the magnetic field B is curl free, and can therefore be described
most simply in terms of a magnetic scalar potential Ψ with

B = +∇Ψ. (15.2.1)

Because B is also divergence free, Ψ must obey the Laplace equation,

∇2Ψ = ∇ ·B = 0. (15.2.2)

Functions Ψ that obey the Laplace equation are said to be harmonic.
At this point it is convenient to introduce an “absolute” coordinateR and an “expansion”

coordinate r about some “reference/expansion” point R0 by writing

R = R0 + r. (15.2.3)

In terms of these variables we may define a related scalar potential ψ by writing

ψ(x, y, z;R0) = Ψ(R0 + r) (15.2.4)

where
r = xex + yey + zez. (15.2.5)

Like Ψ, the related scalar potential ψ satisfies the relations

B = +∇ψ, (15.2.6)

and
∇2ψ = 0. (15.2.7)

Here, ψ is not to be confused with the ψ that was used in other sections to describe an
electric field. Note also the + sign in (2.1 and (2.6) compared to the − sign in (1.4.2). These
sign choices are a matter of convention. Also, strictly speaking, the derivatives in (2.1) and
(2.2) are to be taken with respect to the components of R, and the derivatives in (2.6) and
(2.7) are to be taken with respect to the components of r. Moreover, in subsequent work,
we will sometimes suppress the dependence of ψ on R0 and simply write ψ(x, y, z).

Finally we note that, since we will assume that R0 is in a current free region, B will
be analytic is this region. Consequently, Ψ will be analytic in this region. Correspondingly,
B(r) and ψ(r) will be analytic about r = 0. See Chapter 35 and Appendix F.

15.2.2 Spherical and Cylindrical Coordinates

Introduce spherical coordinates r,θ,φ by the usual rules

r2 = x2 + y2 + z2, (15.2.8)
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x = r sin(θ) cos(φ), (15.2.9)

y = r sin(θ) sin(φ), (15.2.10)

z = r cos θ. (15.2.11)

Also, for future use, introduce cylindrical coordinates ρ, φ, and z by the usual rules

ρ2 = x2 + y2, (15.2.12)

x = ρ cosφ, (15.2.13)

y = ρ sinφ. (15.2.14)

Note these two coordinate systems have the coordinate φ in common. In both cases there
is the φ-defining pair of relations

sinφ = y/
√
x2 + y2, (15.2.15)

cosφ = x/
√
x2 + y2. (15.2.16)

The other coordinates are related by (2.11) and the equations

r2 = ρ2 + z2, (15.2.17)

ρ = r sin θ. (15.2.18)

We also record results for the orthonormal triads er, eθ, eφ and eρ, eφ, ez, and their
relation to r. For the spherical orthonormal triad there are the results

er = sin(θ) cos(φ)ex + sin(θ) sin(φ)ey + cos(θ)ez

= (1/r)(xex + yey + zez) = r/r,

eθ = cos(θ) cos(φ)ex + cos(θ) sin(φ)ey − sin(θ)ez,

eφ = − sin(φ)ex + cos(φ)ey,

r = rer. (15.2.19)

For the cylindrical orthonormal triad there are the results

eρ = cosφ ex + sinφ ey = (1/ρ)(xex + yey),

eφ = − sinφ ex + cosφ ey = (1/ρ)(−yex + xey),

r = ρeρ + zez. (15.2.20)

See Exercises 2.1 and 2.2.
Finally, with regard to the relation between Cartesian and cylindrical coordinates, if one

defines Cartesian and cylindrical components for any vector A by writing

A = Axex + Ayey + Azez = Aρeρ + Aφeφ + Azez, (15.2.21)

then there are the component relations

Aρ = eρ ·A = cosφ Ax + sinφ Ay, (15.2.22)

Aφ = eφ ·A = − sinφ Ax + cosφ Ay, (15.2.23)

and their inverses
Ax = ex ·A = cosφ Aρ − sinφ Aφ, (15.2.24)

Ay = ey ·A = sinφ Aρ + cosφ Aφ. (15.2.25)
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15.2.3 Harmonic Polynomials, Harmonic Polynomial
Expansions, and General Spherical Polynomials

Polynomials in x, y, and z that are harmonic are called harmonic polynomials or solid
harmonics. In complex form these polynomials, call them Hm

` , can be defined in terms of
the spherical harmonics Y m

` (θ, φ) and the associated Legendre functions Pm
` by the rule

Hm
` (r) = r`Y m

` (θ, φ)

= r`{[(2`+ 1)(`−m)!]/[4π(`+m)!]}1/2Pm
` (cos θ) exp(imφ)

with − ` ≤ m ≤ `. (15.2.26)

The Hm
` are homogeneous polynomials of degree ` in the variables x, y, and z.2 For example,

there are the definitions
H0

0 (r) = 1/
√

4π; (15.2.27)

H1
1 (r) =

√
3/(4π)(−1/

√
2)(x+ iy) = −

√
3/(8π)(x+ iy),

H0
1 (r) =

√
3/(4π)z,

H−1
1 (r) =

√
3/(4π)(1/

√
2)(x− iy) =

√
3/(8π)(x− iy); (15.2.28)

H2
2 (r) =

√
15/(32π)(x+ iy)2,

H1
2 (r) = −

√
15/(8π)(x+ iy)z,

H0
2 (r) =

√
5/(16π)(2z2 − x2 − y2),

H−1
2 (r) =

√
15/(8π)(x− iy)z,

H−2
2 (r) =

√
15/(32π)(x− iy)2. (15.2.29)

See Appendix U. Because thy are defined in terms of the Y m
` and powers of r, the harmonic

polynomials Hm
` have well-defined properties under the action of the rotation group SO(3).3

From potential theory we know that any harmonic function analytic at the origin r = 0
can be expanded in harmonic polynomials. Thus, under the assumption that a harmonic
function ψ is analytic at the origin, it has the expansion

ψ(x, y, z) =
∞∑
`=0

∑̀
m=−`

g`mH
m
` (r) (15.2.30)

where the coefficients g`m are arbitrary.
We can also define real versions of harmonic polynomials, call them Hm,α

` where m ≥ 0
and α = c or s, by writing

Hm,c
` (x, y, z) = {[(2`+ 1)(`−m)!]/[4π(l +m)!]}1/2r`Pm

` (cos θ) cos(mφ)

with ` = 0, 1, · · · ,∞ and m = 0, 1, · · · , ` (15.2.31)

2Note that although we initially work with spherical coordinates, the final result is in the form of power
series in Cartesian coordinates.

3We note that the spherical harmonics Y m` could better be called surface harmonics. Then we could use
the name spherical harmonics to refer to the functions Hm

` .
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and

Hm,s
` (x, y, z) = {[(2`+ 1)(`−m)!]/[4π(l +m)!]}1/2r`Pm

` (cos θ) sin(mφ)

with ` = 1, 2, · · · ,∞ and m = 1, 2, · · · , `. (15.2.32)

These definitions yield, for example, the results

H0,c
0 = 1/

√
4π; (15.2.33)

H1,c
1 = −[3/(8π)]1/2x,

H0,c
1 = [3/(4π)]1/2z,

H1,s
1 = −[3/(8π)]1/2y; (15.2.34)

H2,c
2 = (1/4)[15/(2π)]1/2(x2 − y2),

H1,c
2 = −[15/(8π)]1/2xz,

H0,c
2 = (1/2)[5/(4π)]1/2(2z2 − x2 − y2),

H2,s
2 = (1/2)[15/(2π)]1/2xy,

H1,s
2 = −[15/(8π)]1/2yz; (15.2.35)

H3,c
3 = −(1/4)[35/(4π)]1/2(x3 − 3xy2),

H2,c
3 = (1/4)[105/(2π)]1/2[z(x2 − y2)],

H1,c
3 = −(1/4)[21/(2π)]1/2[x(4z2 − x2 − y2)],

H0,c
3 = (1/2)[7/(4π)]1/2[2z3 − 3z(x2 + y2)],

H3,s
3 = (1/4)[35/(4π)]1/2(y3 − 3x2y),

H2,s
3 = (1/2)[105/(2π)]1/2(xyz),

H1,s
3 = −(1/4)[21/(4π)]1/2[y(4z2 − x2 − y2)]. (15.2.36)

In terms of these polynomials any harmonic function ψ analytic at the origin has an
expansion of the form

ψ(x, y, z) =
∞∑
`=0

∑̀
m=0

g`,m,cH
m,c
` (r) +

∞∑
`=1

∑̀
m=1

g`,m,sH
m,s
` (r), (15.2.37)

where the coefficients g`,m,α are arbitrary.
It is also convenient to define general spherical polynomials Smn`(r) in terms of the spher-

ical harmonics and powers of r by making the definition

Smn`(r) = rnY m
` (θ, φ). (15.2.38)

See Subsection U.2.4. The Smn`(r) are evidently of degree n. They form a basis for the space
of all functions that are anaytic at the origin, and harmonic polynomials comprise special
cases for which ` = n,

Hm
n (r) = Smnn(r). (15.2.39)
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Therefore, we may also write (2.30) in the form

ψ(x, y, z) =
∞∑
n=0

n∑
m=−n

gnmS
m
nn(r). (15.2.40)

Finally, because they are constructed from the Y m
` and powers of r, the Smn`(r) also have

well-defined properties under the action of SO(3).

15.2.4 Spherical Polynomial Vector Fields

We have been working with scalar fields such as ψ(r). Just as it is possible to construct
scalar polynomial fields Smn`(r) having well-defined properties under the action of SO(3), it
is also possible to construct polynomial vector fields that have well-defined properties under
the action of SO(3). We call such polynomial vector fields spherical polynomial vector fields
and denote them by the symbols SMn`J(r). These are vector fields whose components are
homogenous polynomials of degree n in the components of r. See Subsections U.3.2 and
U.3.3 for their definition and some examples.

Any vector field analytic at the origin can be expanded in terms of spherical polynomial
vector fields. In particular, both the magnetic fieldB(r) and any associated vector potential
A(r) can be expanded in terms of spherical polynomial vector fields.

Because of their properties under the action of SO(3), there are well-organized relations
between spherical polynomials and spherical polynomial vector fields. For example, there is
the relation

∇Hm
n (r) = ∇Smnn(r) =

√
n(2n+ 1)Smn−1,n−1,n(r). (15.2.41)

See (U.5.6). Upon combining (2.40) and (2.41) we see that a general source-free field B has
a spherical polynomial vector field expansion of the form

B(r) = ∇ψ =
∞∑
n=0

n∑
m=−n

gnm
√
n(2n+ 1)Smn−1,n−1,n(r). (15.2.42)

Note that the n = 0 term does not actually contribute, as expected.

15.2.5 Determination of Minimum Vector Potential: the
Poincaré-Coulomb Gauge

Suppose we are given a magnetic field, specified either by a scalar potential presented in the
forms (2.30) or (2.40), or equivalently by a spherical polynomial vector field expansion of
the form (2.42). And suppose, in order to treat charged-particle motion in this field using
a Hamiltonian formulation, we wish to find an associated vector potential. We know that
in principle there are many such vector potentials, all of which are related by gauge trans-
formations. Given B(r) in some region, the goal of this subsection is to find an associated
vector potential Amin(r) that is, at least locally, as minimal/small as possible in the sense
that Amin(r) is small if B(r) is small. The reason for this goal is that, according to (1.5.30),
mechanical and canonical momenta differ by the vector potential; and there are situations
where we would like this difference to be as small as possible. See Sections 16.7 and 22.8.
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Conceptually, our plan is as follows: Make Taylor expansions, with initially unknown
coefficients, for the Cartesian components of Amin(r), organize these expansions into homo-
geneous polynomials, and then further organize them as spherical polynomial vector fields.
Then use this representation to compute and organize ∇×Amin in terms of spherical poly-
nomial vector fields. At the same time parameterize B(r) in terms of a scalar potential ψ
expanded in harmonic polynomials. Finally, compare the two expansions for B(r) given by
B = ∇ψ and B = ∇ ×Amin, equate coefficients of like terms, and thereby determine the
coefficients in the Taylor expansion for the components of Amin in terms of the coefficients
in the expansion for ψ. Do all this while keeping the minimal/small goal in mind. For the
notation and machinery required for the execution of this plan, again see Appendix U. What
lies ahead may seem complicated, but the final result will prove to be remarkably simple.

Construction of Minimum Vector Potential

We begin with the harmonic polynomial expansion (2.40) for the scalar potential ψ, which
we rewrite in the form

ψ(r) =
nmax∑
n=1

∑
m

gnmS
m
nn(r). (15.2.43)

Here we assume an expansion through terms of degree nmax, and omit n = 0 terms since
constant terms make no contribution to B as given by (2.42).

For the associated vector potential Amin we make the spherical polynomial vector field
expansion

Amin(r) =
nmax∑
n=1

∑
`

∑
J

∑
M

fn`JMS
M
n`J(r). (15.2.44)

Again see Appendix U. Given the coefficients gnm, our task is to use the equality

∇×Amin(r) = ∇×
nmax∑
n=1

∑
`

∑
J

∑
M

fn`JMS
M
n`J(r) = ∇

nmax∑
n=1

∑
m

gnmS
m
nn(r) = ∇ψ(r)

(15.2.45)

to find the coefficients fn`JM in terms of the gnm.
We already know the result of evaluating the right side of (2.45). Use of (2.42) gives the

result

B(r) = ∇ψ(r) = ∇
nmax∑
n=1

∑
m

gnmS
m
nn(r) =

nmax∑
n=1

∑
m

gnm
√
n(2n+ 1)Smn−1,n−1,n(r).

(15.2.46)

Next work on evaluating the left side of (2.45). This is a more complicated task. In
accord with the range rules (U.3.7) and (U.3.8), we decompose the expansion into the sum
of four pieces with each containing a particular kind of term:

a) All terms for which ` = 0 and hence J = 1. Also, therefore, n = 2k with k > 0. The
associated spherical polynomial vectors are of the form SM2k,0,1(r).
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b) All terms for which ` > 0 and J = ` + 1. The associated spherical polynomial vectors
are of the form SMn,`,`+1(r).

c) All terms for which ` > 0 and J = `. The associated spherical polynomial vectors are of
the form SMn,`,`(r).

d) All terms for which ` > 0 and J = ` − 1. The associated spherical polynomial vectors
are of the form SMn,`,`−1(r).

Thus, we write
Amin = Amin a +Amin b +Amin c +Amin d (15.2.47)

where

Amin a(r) =
kmax∑
k=1

∑
M

f2k,0,1,MS
M
2k,0,1(r), (15.2.48)

Amin b(r) =
nmax∑
n=1

∑
`>0

∑
M

fn,`,`+1,MS
M
n,`,`+1(r), (15.2.49)

Amin c(r) =
nmax∑
n=1

∑
`>0

∑
M

fn,`,`,MS
M
n,`,`(r), (15.2.50)

Amin d(r) =
nmax∑
n=1

∑
`>0

∑
M

fn,`,`−1,MS
M
n,`,`−1(r). (15.2.51)

We are ready to proceed. For the Amin a term we find, using (U.5.20), the result

∇×Amin a(r) = ∇×
kmax∑
k=1

∑
M

f2k,0,1,MS
M
2k,0,1(r) =

kmax∑
k=1

∑
M

f2k,0,1,M [i(
√

2/3)(2k)]SM2k−1,1,1(r).

(15.2.52)

For the Amin b term we find, using (U.5.17), the result

∇×Amin b(r) = ∇×
nmax∑
n=1

∑
`>0

∑
M

fn,`,`+1,MS
M
n,`,`+1(r) =

nmax∑
n=1

∑
`>0

∑
M

fn,`,`+1,M [i
√

(`+ 2)/(2`+ 3)(n− `)]SMn−1,`+1,`+1(r). (15.2.53)

For the Amin c term we find, using (U.5.18), the result

∇×Amin c(r) = ∇×
nmax∑
n=1

∑
`>0

∑
M

fn,`,`,MS
M
n,`,`(r) =

nmax∑
n=1

∑
`>0

∑
M

fn,`,`,M [i
√

(`+ 1)/(2`+ 1)(n+ `+ 1)]SMn−1,`−1,`(r)

+
nmax∑
n=1

∑
`>0

∑
M

fn,`,`,M [i
√
`/(2`+ 1)(n− `)]SMn−1,`+1,`(r).

(15.2.54)
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Finally, for the Amin d term we find, using (U.5.19), the result

∇×Amin d(r) = ∇×
nmax∑
n=1

∑
`>0

∑
M

fn,`,`−1,MS
M
n,`,`−1(r) =

nmax∑
n=1

∑
`>0

∑
M

fn,`,`−1,M [i
√

(`− 1/(2`− 1)(n+ `+ 1)]SMn−1,`−1,`−1(r). (15.2.55)

We can now equate coefficients of like terms. Let us begin with the first few corresponding
to small values of n. The first of these, corresponding to n = 0, is SM0,0,1. For the right side
of (2.45) we see from (2.46) that

coefficient of SM0,0,1 in ∇ψ =
√

3 g1M . (15.2.56)

Next, for the left side, examine the terms in ∇ ×Amin: From (2.52) we see that there
are no terms of the desired kind, namely terms involving SM0,0,1, in ∇×Amin a. From (2.53)
we see that there are no terms of the desired kind in ∇ ×Amin b. From (2.54) we see that
there are terms of the desired kind in ∇×Amin c, and find the result

coefficient of SM0,0,1 in ∇×Amin c = i
√

6 f1,1,1,M . (15.2.57)

Finally, from (2.55) we see that there are no terms of the desired kind in ∇×Amin d.
Upon comparing (2.56) and (2.57) we conclude that there must be the relation

i
√

6 f1,1,1,M =
√

3 g1M , (15.2.58)

and therefore

f1,1,1,M = −i
√

1/2 g1M . (15.2.59)

Note that this relation is consistent with (U.6.39). Moreover, we conclude that the six
remaining n = 1 coefficients in Amin, namely f1,1,0,0 and the f1,1,2,M , can be anything since
there are the relations (U.6.38) and (U.6.40). In pursuit of our minimal/small goal, we set
these coefficients to zero. Then, so far, we have the result

Amin(r) =
∑
M

(−i)
√

1/2 g1M SM111(r) + terms of degree > 1. (15.2.60)

In terms of Cartesian components, (2.60) yields the relation

Amin(r) = −(1/2)r ×B(0) + terms of degree > 1. (15.2.61)

Here we have used (2.42), (2.43), and (U.6.25) evaluated for n = 1.
Let us push on to the case n = 1; in which case there are the spherical polynomial vector

fields S0
110, SM111 with −1 ≤ M ≤ 1, and SM112 with −2 ≤ M ≤ 2. First see where/how they

occur in ∇ψ. Examination of (2.46) shows that the only such term in ∇ψ is SM112, and we
have the relation

coefficient of SM1,1,2 in ∇ψ =
√

10 g2M . (15.2.62)
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We next examine the terms in ∇×Amin: From (2.52) we see that there are no terms of
the desired kind, namely terms involving SM1,1,2, in ∇×Amin a. From (2.53) we see that there
are no terms of the desired kind in ∇×Amin b. From (2.54) we see that there are terms of
the desired kind in ∇×Amin c, and find the relation

coefficient of SM1,1,2 in ∇×Amin c = i
√

15 f2,2,2,M . (15.2.63)

Finally, from (2.55) we see that there are no terms of the desired kind in ∇×Amin d.
Upon comparing (2.62) and (2.63) we conclude that there must be the relation

i
√

15 f2,2,2,M =
√

10 g2M , (15.2.64)

and therefore

f2,2,2,M = −i
√

2/3 g2M . (15.2.65)

What can be said about the thirteen remaining n = 2 coefficients in Amin, namely the
coefficients f201M , f2,2,3,M , and f2,2,1,M? It can be shown that ∇×SM223(r) = 0, and therefore
the terms with coefficients f2,2,3,M make no contribution to B(r). See Exercise (U.6.21). In
further pursuit of our minimal/small goal, we set these coefficients to zero. It can be shown
that terms with the coefficients f201M and f2,2,1,M produce terms in B(r) having nonzero
curl. Again see Exercise (U.6.21). We also set these coefficients to zero to ensure that B(r)
is curl free. Putting everything together we have learned so far yields the result

Amin(r) =
∑
M

(−i)
√

1/2 g1M SM111(r) +
∑
M

(−i)
√

2/3 g2M SM222(r) + terms of degree > 2.

(15.2.66)
The pattern should now be clear. There are the general relations

∇SMnn(r) =
√
n(2n+ 1)SMn−1,n−1,n(r) (15.2.67)

and

∇× SMn,n,n(r) = i
√

(n+ 1)(2n+ 1)SMn−1,n−1,n(r). (15.2.68)

Therefore there is the general relation

Amin(r) =
nmax∑
n=1

n∑
M=−n

(−i)
√
n/(n+ 1) gnMS

M
nnn(r). (15.2.69)

We have found a formula for the vector potentialAmin(r) in terms of the harmonic expansion
coefficients for the scalar potential ψ(r).

Properties of Minimum Vector Potential

It can be verified that this particular choice of Amin(r) has the property

∇ ·Amin(r) = 0. (15.2.70)
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See (U.5.11). Therefore Amin(r) is in a Coulomb/solenoidal gauge.4 It also has the property

r ·Amin(r) = 0. (15.2.71)

See (U.6.9). This is the condition that Amin(r) be in what is called a Poincaré gauge.5

Taken together, we will say that a vector potential that satisfies both (2.70) and (2.71) is in
the Poincaré-Coulomb gauge.6

At this point we observe that any vector potential A(r) that obeys the Poincaré gauge
condition

r ·A(r) = 0 (15.2.72)

must vanish at the origin,
A(0) = 0. (15.2.73)

That is, it has no constant part. Note that, according to (2.3), r = 0 corresponds to the
expansion point R = R0, and we again assume analyticity so that A is analytic at the
origin.

To see that A(r) has no constant part, expand it in homogeneous polynomials of degree
n by writing

A(r) =
∞∑
n=0

An(r). (15.2.74)

Combining (2.72) and (2.74) gives the relation

r ·A(r) =
∞∑
n=0

r ·An(r) = 0, (15.2.75)

from which it follows, upon equating terms of like degree, that

r ·An(r) = 0 (15.2.76)

for all n. In particular, there is the result

r ·A0(r) = r ·A(0) = 0 (15.2.77)

for all r, from which (2.73) follows.

Evaluation of Work

Have we achieved our goal of finding a minimal vector potential? We have, in the following
sense: Inspection of (2.46) shows that it provides an expansion of B(r) in terms of spherical
polynomial vector fields Smn−1,n−1,n(r) with expansion coefficients proportional to the gnm.
Inspection of (2.69) shows that it provides an expansion of Amin(r) in terms of spherical

4Fields that are divergence free are also called solenoidal.
5A Poincaré gauge is also sometimes called a multipolar gauge.
6It is interesting to observe that these two conditions have related “Fourier analogs”. In Fourier space

the condition (2.70) becomes k · Ãmin(k) = 0 and the condition (2.71) becomes ∇k · Ãmin(k) = 0. Here a
tilde denotes a Fourier transform. See Exercise 22.2.23.
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polynomial vector fields SMnnn(r) with expansion coefficients again proportional to the gnM .
As shown above, the vector potentialAmin(r) has no constant part. We also see that its non-
constant parts are directly proportional to the coefficients gnm that describe the constant
and non-constant parts of B(r). Moreover, there is an order-by-order relation. Terms of
order n in Amin(r) are proportional to terms of order n− 1 in B(r). Thus, Amin(r) is small
if B(r) is small. In particular, if high-order terms in B(r) are negligible, they will also be
negligible in Amin(r).

There is yet another sense in which the vector potential we have found is minimal.
Suppose, for example, that we confine our attention to the case of a vector potential that is
homogeneous of degree 1, which is the case we need to produce a constant magnetic field.
When n = 1 we see from Table U.3.1 that ` = 1 and J = 0, 1, 2. Therefore, such a vector
potential, call it A1, can be written in the form

A1(r) =
∑
J

∑
M

f11JMS
M
11J(r). (15.2.78)

Recall (2.44). Let us compute the norm of A1 as defined by the rule

||A1(r)||2 =

∫
dΩ [A1(r)]∗ ·A1(r). (15.2.79)

Since the SM11J(r) are mutually orthogonal under angular integration, we find from (2.78),
(U.3.18), and (U.4.3) the result

||A1(r)||2 = r2
∑
J

∑
M

|f11JM |2. (15.2.80)

We know the value of f111M is fixed by (2.59), and we have chosen to set the remaining f11JM

to zero. We now see, since (2.80) is a sum of squares, that doing so minimizes ||A1(r)||.
Similar computations may be made for other values of n. The result is that the choice we
have made for Amin minimizes ||An(r)|| for each value of n.

A Further Simplification

We close this subsection by observing that the relation (2.69) can be further manipulated
using (U.6.25). Doing so gives the pleasing result

Amin(r) = −
nmax∑
n=1

n∑
M=−n

[1/(n+ 1)]gnM [r ×∇SMnn(r)]

= −
nmax∑
n=1

n∑
M=−n

[1/(n+ 1)]gnM [r ×∇HM
n (r)]. (15.2.81)

Note that this result has the virtue that none of the extensive machinery of Appendix U is
required for its evaluation.
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15.2.6 Uniqueness of Poincaré-Coulomb Gauge

Is a vector potential in the Poincaré-Coulomb gauge unique? It is. Suppose A and A′ are
two vector potentials associated with the same field B. Then we know they are related by
a gauge transformation of the form

A′(r) = A(r) +∇χ(r). (15.2.82)

If we require that both A and A′ be in the Coulomb gauge, then χ must be harmonic:
taking the divergence of both sides of (2.82) yields the result

∇2χ = 0. (15.2.83)

See Section 15.6. If we further require that both A and A′ be in the Poincaré-Coulomb
gauge, then there must be the additional relations

r ·A(r) = 0 and r ·A′(r) = 0. (15.2.84)

Requiring (2.84) of (2.82 yields the result that χ must also obey the condition

r · ∇χ = 0. (15.2.85)

Suppose χ is decomposed into homogeneous polynomials of degree n by writing

χ =
∞∑
n=0

χn. (15.2.86)

Then, by Euler’s relation for homogeneous functions, it follows that

r · ∇χ =
∞∑
n=0

nχn. (15.2.87)

Comparison of (2.85) and (2.87) and equating terms of like degree yields the result

nχn = 0, (15.2.88)

from which it follows that χn = 0 for n 6= 0. We see that all that is left in the sum (2.86) and
in the relation (2.82) is the constant term χ0, and this term does not contribute to (2.82).
We therefore conclude that A′(r) = A(r).

15.2.7 Direct Construction of Poincaré-Coulomb Gauge Vector
Potential

Subsection 2.5 obtained the final result (2.81) using the machinery of Appendix U. The
purpose of this subsection is to proceed in reverse. After some stage setting, we will make
an Ansatz that is essentially equivalent to (2.81), and then verify that the vector potential
produced by this Ansatz yieldsB(r) as desired, and has other desired/interesting properties.
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With reference to (2.37), define scalar fields ψ`,m,α by the rule

ψ`,m,α = Hm,α
` (15.2.89)

so that we may write

ψ(x, y, z) =
∞∑
`=0

∑̀
m=0

g`,m,cψ`,m,c +
∞∑
`=1

∑̀
m=1

g`,m,sψ`,m,s. (15.2.90)

Next define related vector fields B`,m,α by the rule

B`,m,α = ∇ψ`,m,α. (15.2.91)

Then, with the aid of (2.90) and (2.91), we may write

B = ∇ψ =
∞∑
`=1

∑̀
m=0

g`,m,cB
`,m,c +

∞∑
`=1

∑̀
m=1

g`,m,sB
`,m,s. (15.2.92)

We now seek individual vector potentials A`,m,α such that

∇×A`,m,α = B`,m,α. (15.2.93)

Simple calculation shows that If we can find them, then we may write

B = ∇×A (15.2.94)

with

A =
∞∑
`=1

∑̀
m=0

g`,m,cA
`,m,c +

∞∑
`=1

∑̀
m=1

g`,m,sA
`,m,s. (15.2.95)

We claim that a solution to (2.93) is given by the Ansatz

A`,m,α = [−1/(`+ 1)][r ×B`,m,α] = [−1/(`+ 1)][r ×∇ψ`,m,α]. (15.2.96)

Let us check this claim. Recall the vector identity

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b. (15.2.97)

Then, with
a = r (15.2.98)

and
b = ∇ψ`,m,α = B`,m,α, (15.2.99)

the identity (2.97) yields the result

∇× (r ×∇ψ`,m,α) = r(∇2ψ`,m,α)−B`,m,α(∇ · r) + (B`,m,α · ∇)r − (r · ∇)B`,m,α.

(15.2.100)
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Moreover, there are the relations
∇2ψ`,m,α = 0, (15.2.101)

∇ · r = 3, (15.2.102)

(B`,m,α · ∇)r = B`,m,α, (15.2.103)

and
(r · ∇)B`,m,α = (`− 1)B`,m,α. (15.2.104)

This last relation follows from the fact that the Cartesian components of B`,m,α are homoge-
nous polynomials of degree (`− 1). We conclude that

∇× (r ×∇ψ`,m,α) = [−3 + 1− (`− 1)]B`,m,α = [−(`+ 1)]B`,m,α. (15.2.105)

Therefore, the A`,m,α defined by (2.96) satisfy (2.93). We also note that the Cartesian
components of the A`,m,α are homogeneous polynomials of degree `.

In addition there is the vector identity

∇ · (a× b) = b · (∇× a)− a · (∇× b). (15.2.106)

From this identity and from (2.96), (2.98), and (2.99) it follows that

∇ ·A`,m,α = 0. (15.2.107)

Thus, the A`,m,α are in the Coulomb gauge. Moreover, from (2.96), there is the relation

r ·A`,m,α(r) = 0. (15.2.108)

Therefore the A`,m,α are also in the Poincaré gauge, and thus in the Poincaré-Coulomb
gauge.

Three final points: First, suppose the magnetic field B(r) is decomposed into homoge-
neous polynomials by writing

B(r) =
∞∑
n=0

Bn(r). (15.2.109)

The vector potential can also be decomposed into homogeneous polynomials by writing

A(r) =
∞∑
n=1

An(r). (15.2.110)

From (2.96) we see that there is the relation

An(r) = −[1/(n+ 1)][r ×Bn−1(r)] for n = 1, 2, · · · . (15.2.111)

Second, suppose that (2.109) and (2.110) are truncated by writing

Btrunc(r) =
N∑
n=0

Bn(r), (15.2.112)



15.2. SPHERICAL EXPANSION 1287

Atrunc(r) =
N+1∑
n=1

An(r), (15.2.113)

with (2.111) continuing to hold for n = 1, 2, · · ·N + 1. It is easy to verify that Btrunc(r) is
curl and divergence free if B(r) is. It is also true that

Btrunc(r) = ∇×Atrunc(r). (15.2.114)

Thus, truncation by degree does not violate the Maxwell equations.
Finally, we note that the relation (2.111) specifies the vector potential order-by-order

in terms of the order-by-order magnetic field. There is an equivalent integral relation that
specifies the full vector potential in terms of the full magnetic field. It is given by the relation

A(r) = −r ×
∫ 1

0

dλ λB(λr). (15.2.115)

See Exercise 2.4.

Exercises

15.2.1. The purpose of this exercise is to verify (2.19). In terms of the spherical coordinates
r, θ, φ defined in Subsection 15.2.2 there is the result

r = xex + yey + zez = r sin(θ) cos(φ)ex + r sin(θ) sin(φ)ey + r cos(θ)ez. (15.2.116)

Verify that there is an associated orthonormal triad er, eθ, eφ obeying the relations

er = [∂r/∂r]/||[∂r/∂r]|| = sin(θ) cos(φ)ex + sin(θ) sin(φ)ey + cos(θ)ez

= (1/r)(xex + yey + zez) = r/r, (15.2.117)

eθ = [∂r/∂θ]/||[∂r/∂θ]|| = cos(θ) cos(φ)ex + cos(θ) sin(φ)ey − sin(θ)ez,

(15.2.118)

eφ = [∂r/∂φ]/||[∂r/∂φ]|| = − sin(φ)ex + cos(φ)ey, (15.2.119)

r = rer. (15.2.120)

15.2.2. The purpose of this exercise is to verify (2.20) and (2.22) through (2.25). In terms
of the cylindrical coordinates ρ, φ, z defined in Section 15.2 there is the result

r = xex + yey + zez = ρ cosφ ex + ρ sinφ ey + zez. (15.2.121)

Verify that there is an associated orthonormal triad eρ, eφ, ez obeying the relations

eρ = [∂r/∂ρ]/||[∂r/∂ρ]|| = cosφ ex + sinφ ey = (1/ρ)(xex + yey), (15.2.122)

eφ = [∂r/∂φ]/||[∂r/∂φ]|| = − sinφ ex + cosφ ey = (1/ρ)(−yex + xey), (15.2.123)

ez = [∂r/∂z]/||[∂r/∂z]||, (15.2.124)

xex + yey = ρeρ, (15.2.125)

r = ρeρ + zez. (15.2.126)

Verify (2.22) through (2.25).



1288 15. TAYLOR AND SPHERICAL AND CYLINDRICAL HARMONIC EXPANSIONS

15.2.3. Define an operator L by the rule

L = r ×∇. (15.2.127)

Show that it has the components

Lx = y∂z − z∂y, (15.2.128)

Ly = z∂x − x∂z, (15.2.129)

Lz = x∂y − y∂x. (15.2.130)

Verify that the components of L satisfy the commutation rules

{Lx, Ly} = −Lz, etc., (15.2.131)

which are a variant of the commutation rules for so(3,R).
Show that (2.96) can be rewritten in the form

A`,m,α = [−1/(`+ 1)][Lψ`,m,α]. (15.2.132)

Verify that L and ∇2 commute, and use this fact to show (as expected, see Section 5) that
all the Cartesian components of A`,m,α are harmonic functions,

∇2A`,m,α = 0. (15.2.133)

Verify that L and r commute,
{L, r} = 0. (15.2.134)

Of course, this result is to be expected since r is invariant under rotations. Next, in view of
(2.31) and (2.32), we may define functions hm,α` (θ, φ) by writing

ψ`,m,α = Hm.α
` = r`hm,α` (θ, φ). (15.2.135)

Show it follows from (2.134) and (2.135) that

Lψ`,m,α = r`Lhm,α` (θ, φ). (15.2.136)

Therefore, if we wish, we can evaluate (2.132) using a raising and lowering operator formal-
ism.

15.2.4. The purpose of this exercise is to verify (2.115) thus showing that the relations
(2.109) through (2.111) can be written in a more compact form. By the definition of homo-
geneity, there is the relation

Bn(λr) = λnBn(r) (15.2.137)

where λ is a scalar. Show from (2.109) that

B(λr) =
∞∑
n=0

λnBn(r). (15.2.138)
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Next integrate both sides of (2.138) to demonstrate that∫ 1

0

dλ λB(λr) =
∞∑
n=0

[1/(n+ 2)]Bn(r) =
∞∑
n=1

[1/(n+ 1)]Bn−1(r). (15.2.139)

Finally, using (2.110), (2.111), and (2.139), verify that there is the integral relation

A(r) = −r ×
∫ 1

0

dλ λB(λr). (15.2.140)

15.2.5. Subsection 2.6 showed that the Poincaré-Coulomb gauge is unique. Accordingly,
starting from the requirement B = ∇×Amin and the requirements (2.70) and (2.71) and the
assumption that B(r) is analytic in a neighborhood of r = 0, it should be possible to derive
the relations (2.111) and (2.115). Do so! Acknowledgement: This exercise was motivated
by a suggestion of Sateesh Mane.

15.2.6. The relations (2.111) and(2.115) specify the minimum vector potentialAminin terms
of the magnetic field B. The purpose of this exercise is to derive relations that specify the
scalar potential ψ in terms of B.

Since B is assumed to be analytic and curl free, show that ψ may be defined by the rule

ψ(r) =

∫ r

0

B(r′) · dr′ (15.2.141)

where the integral (because B is curl free) may be carried out over any path joining 0 and
r. Note that with this definition

ψ(0) = 0. (15.2.142)

Choose the path to be the straight line joining 0 and r by making the Ansatz

r′ = λr with λ ∈ [0, 1]. (15.2.143)

Show that so doing yields the result

ψ(r) = r ·
∫ 1

0

dλ B(λr). (15.2.144)

Assume that B(r) is decomposed into homogeneous polynomials as in (2.109). Show,
using (2.138) and (2.144), that

ψ(r) = r ·
∞∑
n=0

[1/(n+ 1)]Bn(r). (15.2.145)

Suppose that ψ(r) is also decomposed into homogeneous polynomials by writing

ψ(r) =
∞∑
n=1

ψn(r). (15.2.146)
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Show that

ψn(r) = (1/n)r ·Bn−1(r) for n = 1, 2, · · · . (15.2.147)

Verify directly that

∇ψn(r) = Bn−1(r). (15.2.148)

Hint: Use the vector identity

∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + b× (∇× a) (15.2.149)

with

a = r (15.2.150)

and

b = Bn−1(r). (15.2.151)

15.2.7. Review Exercise 1.5.7. There it is found that a uniform vertical magnetic field
B = Bey can be derived from the vector potential

A = −Bxez. (15.2.152)

Recall the definition (2.79), the relations (2.9) through (2.11), and the definition∫
dΩ =

∫ π

0

∫ 2π

0

sin θ dθdφ. (15.2.153)

Show that ∫
x2dΩ =

∫
y2dΩ =

∫
z2dΩ = (4/3)πr2, (15.2.154)

and therefore

||A(r)||2 = (4/3)πB2r2. (15.2.155)

Let APC be the associated vector potential in the Poincaré-Coulomb gauge. Verify that

APC = −(B/2)(xez − zex). (15.2.156)

Show that

||APC(r)||2 = (2/3)πB2r2. (15.2.157)

Comparison of (2.155) and (2.157) shows that the Poincaré-Coulomb gauge vector potential
has a smaller norm, as expected. Show that

APC = A+∇χ (15.2.158)

with

χ = (B/2)xz. (15.2.159)

Verify that χ is harmonic, as expected.
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15.2.8. Review Exercise 1.5.9. There it is found that a quadrupole magnetic field with
midplane symmetry,

B = Qyex +Qxey, (15.2.160)

can be derived from the vector potential

A = −(Q/2)(x2 − y2)ez. (15.2.161)

Recall the definition (2.79), the relations (2.9) through (2.11), and the definition (2.153).
Show that ∫

(x2 − y2)2dΩ = (16/15)πr4, (15.2.162)

and therefore
||A(r)||2 = (4/15)πQ2r4. (15.2.163)

Let APC be the associated vector potential in the Poincaré-Coulomb gauge. Verify that

r ×B = Q[(x2 − y2)ez + zyey − zxex], (15.2.164)

and therefore
APC = −(Q/3)[−zxex + zyey + (x2 − y2)ez]. (15.2.165)

Show that ∫
z2x2dΩ =

∫
z2y2dΩ =

∫
x2y2dΩ = (4/15)πr4, (15.2.166)∫

x4dΩ =

∫
y4dΩ =

∫
z4dΩ = (4/5)πr4, (15.2.167)

and therefore
||APC(r)||2 = (2/3)(4/15)πQ2r4. (15.2.168)

Comparison of (2.163) and (2.168) shows that the Poincaré-Coulomb gauge vector potential
has a smaller norm, as expected. Show that

APC = A+∇χ (15.2.169)

with
χ = (Q/6)z(x2 − y2). (15.2.170)

Verify that χ is harmonic, as expected.

15.2.9. Demonstration that harmonic functions take their extrema on boundaries.

15.3 Cylindrical Harmonic Expansion

In the previous section we employed spherical coordinates to find local expansions (expan-
sions about a point R0) for the scalar potential ψ and the associated magnetic field B. We
also found a suitable vector potential Amin. The goal of this section is to show that it is
possible to obtain semi-global expansions for ψ and B in the case of a straight geometry,
the case of straight beam-line elements. By semi-global we mean that an expansion holds
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all along the vicinity of the beam-line axis (which we take to be the z axis). That is, while
the variables x and y are treated as being small, the variable z need not be small.

For this purpose is convenient to work in cylindrical coordinates ρ, φ, and z as given by
(2.12) through (2.14). We also note, for future use, that (2.13) and (2.14) can be written in
the form

x+ iy = ρ exp(iφ). (15.3.1)

From this form it follows that
ρ2` = (x2 + y2)` (15.3.2)

and, for m ≥ 0,
ρm cosmφ = <[(x+ iy)m], (15.3.3)

ρm sinmφ = =[(x+ iy)m]. (15.3.4)

We see that even powers of ρ and the combinations ρm cosmφ and ρm sinmφ are analytic
(in fact, polynomial) functions of x and y.

15.3.1 Complex Cylindrical Harmonic Expansion

To find the general ψ in cylindrical coordinates that satisfies Laplace’s equation, recall that
the functions exp(imφ) form a complete set for the Hilbert space of functions over the interval
φ ∈ [0, 2π], and the functions exp(ikz) form a complete set for the Hilbert space of functions
over the interval z ∈ [−∞,∞]. Therefore any function ψ in the product Hilbert space can
be written as a superposition of functions of the form Ωm(k, ρ) exp(ikz) exp(imφ) where the
functions Ωm(k, ρ) are yet to be determined. In cylindrical coordinates the Laplacian has
the form

∇2 = (1/ρ)(∂/∂ρ)(ρ∂/∂ρ) + (1/ρ2)(∂2/∂φ2) + ∂2/∂z2. (15.3.5)

Thus if the product Ωm(k, ρ) exp(ikz) exp(imφ) is to satisfy Laplace’s equation, the functions
Ωm(k, ρ) must satisfy the modified Bessel equation,

(1/ρ)(∂/∂ρ)(ρ∂Ωm/∂ρ)− (m2/ρ2)Ωm − k2Ωm = 0. (15.3.6)

The solutions to this equation (that are regular for small ρ) are the modified Bessel functions
Im(kρ). Consequently, in cylindrical coordinates, a general ψ satisfying Laplace’s equation
and analytic in x,y near the z axis has the expansion

ψ(x, y, z) =
∞∑

m=−∞

∫ ∞
−∞

dk Gm(k) exp(ikz) exp(imφ)Im(kρ) (15.3.7)

where the functions Gm(k) are arbitrary. We remark, for future use, that the modified Bessel
functions Im(w) have the property

I−m(w) = Im(w). (15.3.8)

The representation (3.7) is a cylindrical harmonic or cylindrical multipole expansion,
where m is related to the order of the multipole. For example, m = 0 for a ‘monopole’ source
(including a solenoid), m = 1 for a dipole, m = 2 for a quadrupole, etc. We also remark that
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these are what we will call pure multipoles. For example, a real/physical quadrupole (even
one with perfect four-fold symmetry) will have primarily m = 2 components plus smaller
higher-order pure multipole components that are not forbidden by symmetry. Both pole/coil
shape and rotational symmetry matter. See Subsection 3.5. Finally we should remark that
(3.7) could more accurately be called a circular cylinder harmonic expansion. In Section
17.4 we will extend this work to include the case of cylinders with elliptic cross sections,
and in Section 17.5 we will treat the case of cylinders with rectangular cross sections.

As stated at the beginning of this chapter, our ultimate goal is a Taylor expansion of
the vector potential A in the variables x, y. To do this, we first seek an expansion of ψ as a
Taylor series in the variables x, y with coefficients that depend on z. This can be achieved,
by using the Taylor expansions for Im(w), as follows: Using (3.7) we may write

ψ(x, y, z) =
∞∑

m=−∞

∫ ∞
−∞

dk Gm(k) exp(ikz) exp(imφ)Im(kρ)

=
∞∑

m=−∞

exp(imφ)

∫ ∞
−∞

dk Gm(k) exp(ikz)Im(kρ)

=
∞∑

m=−∞

exp(imφ)Ψm(ρ, z) (15.3.9)

where

Ψm(ρ, z) =

∫ ∞
−∞

dk Gm(k) exp(ikz)Im(kρ). (15.3.10)

The modified Bessel functions have the expansions

Im(w) = (1/2)|m|w|m|
∞∑
`=0

w2`/[22``!(`+ |m|)!]. (15.3.11)

Therefore we may also write

Ψm(ρ, z) =

∫ ∞
−∞

dk Gm(k) exp(ikz)Im(kρ) =∫ ∞
−∞

dk Gm(k) exp(ikz)(1/2)|m|(kρ)|m|
∞∑
`=0

(kρ)2`/[22``!(`+ |m|)!] =

∞∑
`=0

{1/[22``!(`+ |m|)!]}ρ2`+|m|(1/2)|m|
∫ ∞
−∞

dk k2`+|m|Gm(k) exp(ikz).

(15.3.12)

Define functions C
[0]
m (z) by writing

C [0]
m (z)

def
= (1/2)|m|(1/|m|!)

∫ ∞
−∞

dk k|m|Gm(k) exp(ikz). (15.3.13)

Also, define functions C
[n]
m (z) by writing

C [n]
m (z) = (∂z)

nC [0]
m (z). (15.3.14)
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Then, by differentiating under the integral sign, we have the result

C [n]
m (z) = (∂z)

nC [0]
m (z) = in(1/2)|m|(1/|m|!)

∫ ∞
−∞

dk kn+|m|Gm(k) exp(ikz) (15.3.15)

and, in particular,

C [2`]
m (z) = (−1)`(1/2)|m|(1/|m|!)

∫ ∞
−∞

dk k2`+|m|Gm(k) exp(ikz). (15.3.16)

Thus, we may also write the relation

(1/2)|m|
∫ ∞
−∞

dk k2`+|m|Gm(k) exp(ikz) = (−1)`|m|!C [2`]
m (z). (15.3.17)

Putting everything together gives the result

Ψm(ρ, z) =
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C [2`]
m (z)ρ2`+|m|. (15.3.18)

Consequently, ψ(x, y, z) has the representation

ψ(x, y, z) =
∞∑

m=−∞

exp(imφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C [2`]
m (z)ρ2`+|m|. (15.3.19)

Note that, in view of (3.2) through (3.4), the terms appearing on the right side of (3.19) are
polynomial in the variables x and y.

From (3.18) we see that

C [0]
m (z) = lim

ρ→0
(1/ρ|m|)Ψm(ρ, z). (15.3.20)

For this reason, the functions C
[0]
m (z) are called the generalized on-axis gradients.7 Note that

the generalized gradients depend on the longitudinal variable z. However we will soon see
that, for fields produced by long well-made magnets, the z dependence will be significant
only at the ends.

15.3.2 Real Cylindrical Harmonic Expansion

So far, for mathematical convenience, we have worked with a possibly complex representation
for ψ. We will now convert our results into equivalent real forms suitable for physical
applications. We begin with the relation (3.19). Suppose we require that ψ(x, y, z) be real.
Forming the complex conjugate of (3.19) gives the result

ψ̄(x, y, z) =
∞∑

m=−∞

exp(−imφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C̄ [2`]
m (z)ρ2`+|m|. (15.3.21)

7Although (3.20) is mathematically correct, it is not a good way to actually compute the on-axis gradients
due to the delicate nature of the limiting process. Indeed, one of the aims of Chapters 17 through 21 is to
provide reliable ways of computing the on-axis gradients.
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The right side of (3.21) can be rewritten to give the relation

∞∑
m=−∞

exp(−imφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C̄ [2`]
m (z)ρ2`+|m| =

∞∑
m=−∞

exp(imφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C̄

[2`]
−m(z)ρ2`+|m|. (15.3.22)

Therefore requiring
ψ̄(x, y, z) = ψ(x, y, z) (15.3.23)

is equivalent to the requirement

C̄
[2`]
−m(z) = C [2`]

m (z), (15.3.24)

or
C

[2`]
−m(z) = C̄ [2`]

m (z). (15.3.25)

Let us now use this information to rewrite ψ. From (3.19) we have, in the general case,

ψ(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
0 (z)ρ2`

+
∑
m 6=0

cos(mφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C [2`]
m (z)ρ2`+|m|

+ i
∑
m 6=0

sin(mφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C [2`]
m (z)ρ2`+|m|.

(15.3.26)

The second sum over m in (3.26) can be rewritten as∑
m6=0

cos(mφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C [2`]
m (z)ρ2`+|m| =

∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
[C [2`]

m (z) + C
[2`]
−m(z)]ρ2`+m. (15.3.27)

Now define functions C
[2`]
m,c(z) by the rule

C [2`]
m,c(z) = C [2`]

m (z) + C
[2`]
−m(z) for m ≥ 1, (15.3.28)

so we may also write∑
m 6=0

cos(mφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C [2`]
m (z)ρ2`+|m| =

∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m. (15.3.29)
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According to (3.25), the functions C
[2`]
m,c(z) will be real if ψ is real. The third sum over m in

(3.26) can be rewritten as

i
∑
m6=0

sin(mφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C [2`]
m (z)ρ2`+|m| =

i

∞∑
m=1

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
[C [2`]

m (z)− C [2`]
−m(z)]ρ2`+m. (15.3.30)

Now define functions C
[2`]
m,s(z) by the rule

C [2`]
m,s(z) = i[C [2`]

m (z)− C [2`]
−m(z)] for m ≥ 1, (15.3.31)

so we may also write

i
∑
m6=0

sin(mφ)
∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
C [2`]
m (z)ρ2`+|m| =

∞∑
m=1

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m. (15.3.32)

According to (3.25), the functions C
[2`]
m,s(z) with m ≥ 1 will be real if ψ is real. Combining

the various results so far gives the representation

ψ(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
0 (z)ρ2`

+
∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m

+
∞∑
m=1

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m.

(15.3.33)

Observe that, according to (3.25), the C
[2`]
0 (z) will be real if ψ is real,

C
[0]
0 (z) = C̄

[0]
0 (z). (15.3.34)

Thus, all the quantities appearing in (3.33) are real if ψ is real. For future use it will be
convenient to extend the definitions (3.28) and (3.31) to the m = 0 case by writing

C
[0]
0,c(z) = C

[0]
0 (z), (15.3.35)

C
[0]
0,s(z) = 0. (15.3.36)

We note that all the functions C
[0]
0 (z), C

[0]
m,c(z), and C

[0]
m,s(z) may be chosen independently,

and any such choice produces a harmonic function when employed in (3.33). Finally, we ob-
serve that all the terms in (3.33) are sums of quantities of the form ρm cos(mφ) or ρm sin(mφ)
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multiplied by powers of ρ2 with z-dependent coefficients C
[2`]
0 (z), C

[2`]
m,c(z), and C

[2`]
m,s(z). Thus,

in view of (3.2) through (3.4), we have achieved our goal of finding a Taylor expansion for
ψ(x, y, z) in powers of x, y with coefficients that depend on z.

We close this subsection by introducing some further notation that will be of future use.
Define quantities Ψ0(ρ, z), Ψm,c(ρ, z), and Ψm,s(ρ, z) by the equations

Ψ0(ρ, z) = Ψ0,c(ρ, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
0 (z)ρ2`, (15.3.37)

Ψm,c(ρ, z) =
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m, (15.3.38)

Ψm,s(ρ, z) =
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m, (15.3.39)

so that, in view of (3.33), we may write

ψ(x, y, z) = Ψ0(ρ, z) +
∞∑
m=1

Ψm,c(ρ, z) cosmφ+
∞∑
m=1

Ψm,s(ρ, z) sinmφ

= ψ0(x, y, z) +
∞∑
m=1

ψm,c(x, y, z) +
∞∑
m=1

ψm,s(x, y, z) (15.3.40)

where
ψ0(x, y, z) = ψ0,c(x, y, z) = Ψ0(ρ, z), (15.3.41)

ψm,c(x, y, z) = ψm,c(ρ, φ, z) = cos(mφ)Ψm,c(ρ, z), (15.3.42)

ψm,s(x, y, z) = ψm,s(ρ, φ, z) = sin(mφ)Ψm,s(ρ, z). (15.3.43)

Finally, there is a variant coefficient relation that will be of subsequent use. Begin by
rewriting (3.07) in the form

ψ(x, y, z) =
∞∑

m=−∞

∫ ∞
−∞

dk Gm(k) exp(ikz) cos(mφ)Im(kρ)

+ i
∞∑

m=−∞

∫ ∞
−∞

dk Gm(k) exp(ikz) sin(mφ)Im(kρ), (15.3.44)

from which it follows that

ψ(x, y, z) =

∫ ∞
−∞

dk G0(k) exp(ikz)I0(kρ)

+
∞∑
m=1

∫ ∞
−∞

dk [Gm(k) +G−m(k)] exp(ikz) cos(mφ)Im(kρ)

+
∞∑
m=1

∫ ∞
−∞

dk [iGm(k)− iG−m](k) exp(ikz) sin(mφ)Im(kρ). (15.3.45)
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Next, with m ≥ 1, introduce the notation

Gm,c(k) = Gm(k) +G−m(k), (15.3.46)

Gm,s(k) = iGm(k)− iG−m(k), (15.3.47)

with the conventions
G0,c(k) = G0(k), (15.3.48)

G0,s(k) = 0. (15.3.49)

In terms of this notation, ψ has the representation

ψ(x, y, z) =
∞∑
m=0

∫ ∞
−∞

dk Gm,c(k) exp(ikz) cos(mφ)Im(kρ)

+
∞∑
m=1

∫ ∞
−∞

dk Gm,s(k) exp(ikz) sin(mφ)Im(kρ). (15.3.50)

We observe that (3.28) and (3.31) can now also be written in the forms

C [n]
m,c(z) = (∂z)

nC [0]
m,c(z) = in(1/2)m(1/m!)

∫ ∞
−∞

dk kn+mGm,c(k) exp(ikz), (15.3.51)

C [n]
m,s(z) = (∂z)

nC [0]
m,s(z) = in(1/2)m(1/m!)

∫ ∞
−∞

dk kn+mGm,s(k) exp(ikz). (15.3.52)

15.3.3 Some Simple Examples: m = 0, 1, 2

Let us seek a physical interpretation for the functions C
[0]
0 (z), C

[0]
m,c(z), and C

[0]
m,s(z) by

computing the associated magnetic fields using (2.6).

The Case m = 0

If only the C
[0]
0 (z) related terms (the m = 0 terms) are present in (3.33), ψ has the expansion

ψ0(x, y, z) = C
[0]
0 (z)− (1/4)(x2 + y2)C

[2]
0 (z) + · · · , (15.3.53)

and therefore
Bx = ∂xψ0 = −(1/2)xC

[2]
0 (z) + · · · , (15.3.54)

By = ∂yψ0 = −(1/2)yC
[2]
0 (z) + · · · , (15.3.55)

Bz = ∂zψ0 = C
[1]
0 (z)− (1/4)(x2 + y2)C

[3]
0 (z) + · · · . (15.3.56)

We see that B is primarily in the z direction and that Bz(0, 0, z), the on-axis z component

of B, has a profile given by C
[1]
0 (z). As long as C

[1]
0 (z) is nearly constant, C

[2]
0 (z) will be

small, and therefore the transverse field components Bx and By will be small. Such would
be the case for the field of a solenoid where the field is primarily longitudinal and only has
transverse components in the fringe-field regions at each end where C

[1]
0 (z) is changing. (See
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Sections 16.1 and 21.1.) We know that for any solenoid-like element (an element having a
nonvanishing m = 0 component in the cylindrical harmonic expansion of its scalar potential
and a nonvanishing longitudinal field somewhere on axis) C

[1]
0 (z) must depend on z because

this on-axis gradient must be nonzero somewhere for such an element and must vanish far
outside any such element because B vanishes there. Therefore the functions C

[2]
0 (z), C

[3]
0 (z),

etc., must be nonzero, at least near the end and fringe-field regions of any such element. We
conclude that, as a consequence of Maxwell’s equations, the scalar potential ψ0 (and as we
will see, the associated vector potential) for any such element must contain terms beyond
degree two in the variables x, y. Correspondingly, the transfer map for any real solenoid
must contain nonlinear terms.

The same set up could also describe some portion of the field due to an off-center dipole
(or any other off-center higher-order multipole) since such magnets would also have an on-

axis Bz component somewhere in the fringe-field regions. In all cases we know that C
[1]
0 (z)

must depend on z because this on-axis gradient must be nonzero somewhere in or near the
element and must vanish far outside the element, again because B vanishes there.

The Case m = 1

Next, suppose that only the C
[0]
1,s(z) related terms are present in (3.33). In this m = 1 case,

ψ has an expansion of the form

ψ1,s(x, y, z) = ρ sin(φ)[C
[0]
1,s(z)− (1/8)(x2 + y2)C

[2]
1,s(z) + · · · ]

= y[C
[0]
1,s(z)− (1/8)(x2 + y2)C

[2]
1,s(z) + · · · ] (15.3.57)

and therefore

Bx = ∂xψ1,s = −(1/4)xyC
[2]
1,s(z) + · · · , (15.3.58)

By = ∂yψ1,s = C
[0]
1,s(z)− (1/8)(x2 + 3y2)C

[2]
1,s(z) + · · · , (15.3.59)

Bz = ∂zψ1,s = y[C
[1]
1,s(z)− (1/8)(x2 + y2)C

[3]
1,s(z) + · · · ]. (15.3.60)

We see that B is primarily in the y direction with a profile given by C
[0]
1,s(z). As long

as C
[0]
1,s(z) is nearly constant, C

[1]
1,s(z) and higher derivatives of C

[0]
1,s(z) will be small, and

therefore the other field components Bx and Bz will be small. Such would be the case for
the field of a (normal) dipole where the field is primarily vertical and only has x and z

components in the fringe-field regions at each end where C
[0]
1,s(z) is changing. (See Exercise

1.5.7.) However, there will always be nonlinear terms at the ends where C
[0]
1,s(z) and higher

derivatives cannot be constant. Correspondingly, the transfer map for any real dipole must
contain nonlinear terms. We end the discussion of the m = 1 case by remarking that the
C

[0]
1,c(z) related terms describe the field of a skew dipole. See Exercise 4.1.
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The Case m = 2

As a last example, suppose that only the C
[0]
2,s(z) related terms are present in (3.33). In this

m = 2 case, ψ has an expansion of the form

ψ2,s(x, y, z) = ρ2 sin(2φ)[C
[0]
2,s(z)− (1/24)(x2 + y2)C

[2]
2,s(z) + · · · ]

= 2xy[C
[0]
2,s(z)− (1/24)(x2 + y2)C

[2]
2,s(z) + · · · ] (15.3.61)

and therefore

Bx = ∂xψ2,s = 2yC
[0]
2,s(z)− (1/12)(3x2y + y3)C

[2]
2,s(z) + · · · , (15.3.62)

By = ∂yψ2,s = 2xC
[0]
2,s(z)− (1/12)(x3 + 3xy2)C

[2]
2,s(z) + · · · , (15.3.63)

Bz = ∂zψ2,s = 2xy[C
[1]
2,s(z)− (1/24)(x2 + y2)C

[3]
2,s(z) + · · · ]. (15.3.64)

We see that B is primarily the field of a (normal) quadrupole with a profile given by

Q = 2C
[0]
2,s(z). See Exercise 1.5.9. As long as C

[0]
2,s(z) is nearly constant, C

[1]
2,s(z) and higher

derivatives of C
[0]
2,s(z) will be small, and therefore the other field components will be small.

Such would be the case for the field of a (normal) quadrupole where the field is primarily
of the form given by (1.5.62) through (1.5.64) and only has z components in the fringe-field

regions at each end where C
[0]
2,s(z) is changing. Again, the transfer map for a real quadrupole

must contain nonlinear terms because C
[0]
2,s(z) must have nonzero derivatives in the fringe-

field regions. We close the discussion of the m = 2 case by remarking that the C
[0]
2,c(z) related

terms describe the field of a skew quadrupole. See Exercise 4.2.

15.3.4 Magnetic Field Expansions for the General Case

General Results

Since ψ is a harmonic function and the operators ∂x, ∂y, ∂z commute with ∇2, it follows from
(2.6) that the (Cartesian) components of B must also be harmonic functions. Consequently
each component ofB must have a cylindrical multipole expansion of the form (3.33). Indeed,
if ψ has the expansion (3.33), then it can be shown that the components of B have the
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expansions

Bx = ∂xψ(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,c (z)ρ2`

+ cos(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
[C

[2`]
2,c (z)− (1/4)C

[2`+2]
0 (z)]ρ2`+1

+
∞∑
m=2

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z)− [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`+m

+ sin(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`+1

+
∞∑
m=2

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z)− [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`+m,

(15.3.65)

By = ∂yψ(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,s (z)ρ2`

+ cos(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`+1

+
∞∑
m=2

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z) + [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`+m

− sin(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
[C

[2`]
2,c (z) + (1/4)C

[2`+2]
0 (z)]ρ2`+1

−
∞∑
m=2

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z) + [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`+m,

(15.3.66)

Bz = ∂zψ(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`+1]
0 (z)ρ2`

+
∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,c (z)ρ2`+m

+
∞∑
m=1

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,s (z)ρ2`+m.

(15.3.67)

See Appendix H.8

8That the components of B should depend on the coordinates ρ, φ, z and the coefficients C
[n]
m,c, C

[n]
m,s in

some fashion is a consequence of (2.6). That they should do so in the particular combinations (3.65) through
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Leading Behavior in Body

Let us compute the leading behavior of the various components of B. For the monopole
(solenoid) case, for which m = 0, we assume C

[1]
0 (z) is constant and all other coefficients are

zero. Then we find from (3.65) through (3.67) the results

B0
x = 0, (15.3.68)

B0
y = 0, (15.3.69)

B0
z = C

[1]
0 . (15.3.70)

For the dipole (m = 1) cases, assuming C
[0]
1,c(z) or C

[0]
1,s(z) is constant and all other

coefficients are zero, we find the results

B1,c
x = C

[0]
1,c, (15.3.71)

B1,c
y = 0, (15.3.72)

B1,c
z = 0; (15.3.73)

B1,s
x = 0, (15.3.74)

B1,s
y = C

[0]
1,s, (15.3.75)

B1,s
z = 0. (15.3.76)

For the m ≥ 2 cases, assuming C
[0]
m,c(z) or C

[0]
m,s(z) is constant and therefore all other

coefficients C
[n]
m,c(z) and C

[n]
m,s(z) vanish for n > 0, we find the results

Bm,c
x = m cos[(m− 1)φ]ρm−1C [0]

m,c = mC [0]
m,c <[(x+ iy)m−1], (15.3.77)

Bm,c
y = −m sin[(m− 1)φ]ρm−1C [0]

m,c = −mC [0]
m,c =[(x+ iy)m−1], (15.3.78)

Bm,c
z = 0; (15.3.79)

Bm,s
x = m sin[(m− 1)φ]ρm−1C [0]

m,s = mC [0]
m,s =[(x+ iy)m−1], (15.3.80)

Bm,s
y = m cos[(m− 1)φ]ρm−1C [0]

m,s = mC [0]
m,s <[(x+ iy)m−1], (15.3.81)

Bm,s
z = 0. (15.3.82)

Here we have used (3.3) and (3.4). Note that, if the relations (3.77) through (3.82) are
evaluated for m = 1, they reproduce the results (3.71) through (3.76). They therefore
actually hold for all m > 0.

When both C
[0]
m,c(z) and C

[0]
m,s(z) are present and constant, and all other coeffciients are

zero, we may write
Bm = Bm,c +Bm,s. (15.3.83)

(3.67) is in part a consequence of the components of B being harmonic. See Exercise 3.4.
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With this notation, the relations (3.71), (3.72), (3.74), (3.75), (3.77), (3.78), (3.80), and
(3.81) can be rewritten in the compact (but complex) form

Bm
y + iBm

x = m(C [0]
m,s + iC [0]

m,c)(x+ iy)m−1. (15.3.84)

It must be emphasized, however, that (3.84) holds only in the body of a pure multipole mag-
net, and not in the fringe-field regions at the ends. Moreover, fringe fields and their nonlinear
contributions to transfer maps are inescapable consequences of Maxwell’s equations.

15.3.5 Symmetry and Allowed and Forbidden Multipoles

There are restrictions on multipole content dictated by symmetry conditions. As a first
example, consider a rectangular bending magnet such as that shown in Figures 1.6.1 and
1.6.2. Suppose the magnet is rotated by 180◦ about the z axis, and simultaneously the
strength of the magnet is reversed in sign (so that ψ is replaced by −ψ). Assuming perfect
symmetry, doing so should produce the same magnetic field as before. Correspondingly, the
scalar potential ψ should remain unchanged. Suppose ψ as given by (3.33) is regarded as a
function of ρ, φ, and z. Then we demand that

− ψ(ρ, φ− π, z) = ψ(ρ, φ, z). (15.3.85)

Inspection of (3.33) shows that the requirement (3.85) forces all the coefficients C
[2`]
m,c and

C
[2`]
m,s to be zero save those for which m = 1, 3, 5, · · · .

Next consider a quadrupole magnet. Again assuming perfect symmetry, its magnet field
should be unchanged if it is rotated by 90◦ about the z axis, and simultaneously the strength
of the magnet is reversed in sign. In this case we demand that

− ψ(ρ, φ− π/2, z) = ψ(ρ, φ, z). (15.3.86)

Now inspection of (3.33) shows that the requirement (3.86) forces all the coefficients C
[2`]
m,c

and C
[2`]
m,s to be zero save those for which m = 2, 6, 10, · · · .

Finally, consider a perfectly symmetric 2n-pole magnet for n = 1, 2, 3, · · · . In this case
a rotation by (360/2n)◦ and reversing the strength should leave the field unchanged. Now
we conclude all multipole coefficients must vanish save possibly those for which

m = n(2j + 1) with j = 0, 1, 2, 3, · · · . (15.3.87)

In addition to rotational symmetry, there is the consideration of midplane symmetry
in which one observes what happens when y → −y, or equivalently, in view of (2.13) and
(2.14), φ → −φ. From (3.2) and (3.37) through (3.39) we see that the functions Ψ0, Ψm,c,
and Ψm,s are invariant under this operation. It follows from (3.41) through (3.43) that there
are the relations

ψ0(x,−y, z) = ψ0(x, y, z), (15.3.88)

ψm,c(x,−y, z) = ψm,c(x, y, z), (15.3.89)

ψm,s(x,−y, z) = −ψm,s(x, y, z). (15.3.90)
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We will say that a magnetic fieldB has midplane symmetry if it arises from a scalar potential
that only has terms of the form ψm,s,

B = ∇
∞∑
m=1

ψm,s. (15.3.91)

Such a field is also said to be normal or produced by normal multipoles. Correspondingly,
fields of the form

B = ∇
∞∑
m=1

ψm,c (15.3.92)

are said to be skew or produced by skew multipoles. From (2.6) we see that normal fields
have the symmetry property

Bnormal
x (x,−y, z) = −Bnormal

x (x, y, z), (15.3.93)

Bnormal
y (x,−y, z) = Bnormal

y (x, y, z), (15.3.94)

Bnormal
z (x,−y, z) = −Bnormal

z (x, y, z); (15.3.95)

and skew fields have the property

Bskew
x (x,−y, z) = Bskew

x (x, y, z), (15.3.96)

Bskew
y (x,−y, z) = −Bskew

y (x, y, z), (15.3.97)

Bskew
z (x,−y, z) = Bskew

z (x, y, z). (15.3.98)

The same conclusions can be drawn from (3.65) through (3.67). Observe that, by these
definitions, the field arising from ψ0, for example the field of a solenoid, is also skew.

We note that, multipole by multipole, skew elements are related to normal elements and
vice versa by rotations about the z axis. From (3.42) and (3.43) we find the relations

ψm,c[ρ, φ− π/(2m), z] = sin(mφ)Ψm,c(ρ, z), (15.3.99)

ψm,s[ρ, φ− π/(2m), z] = − cos(mφ)Ψm,s(ρ, z). (15.3.100)

We see that a skew element is converted into a normal element, but with on-axis gradients
C

[2`]
m,c(z); and a normal element is converted into a skew element, but with on-axis gradients

−C [2`]
m,s(z).
Finally, we observe that a similar discussion could be given to the possible symmetry

operation x→ −x, for which the properties of ψm,c and ψm,s are interchanged.

15.3.6 Relation between Harmonic Polynomials in Spherical and
Cylindrical Coordinates

Equation (2.26) defined Harmonic polynomials in terns of a radius r and the spherical
harmonics Y m

` (θ, φ), thereby providing a description in terms of spherical coordinates; and
the relations (2.27) through (2.29) illustrate that the results of this definition are indeed
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polynomials in the Cartesian coordinates x, y, z. Suppose these polynomials are re-expressed
in terms of cylindrical coordinates. This could be done using the z axis as the axis of the
cylinder as in the relations (2.13) and (2.14), or with some other axis taken to be the axis of
the cylinder as in Exercise 1.5.4.. What would be the appearance of such expansions? And
how are such expansions related to the cylindrical harmonic expansions found in (3.19) and
(3.33)? The answers to these questions are the subject of this section.

Suppose the substitutions (2.13) and (2.14) are made in the relations (2.27) through
(2.29). So doing and employing (3.1) yields the results

H0
0 (r) = 1/

√
4π; (15.3.101)

H1
1 (r) = −

√
3/(8π)ρ exp(iφ),

H0
1 (r) =

√
3/(4π)z,

H−1
1 (r) =

√
3/(8π)ρ exp(−iφ); (15.3.102)

H2
2 (r) =

√
15/(32π)ρ2 exp(2iφ),

H1
2 (r) = −

√
15/(8π)zρ exp(iφ),

H0
2 (r) =

√
5/(16π)(2z2 − ρ2),

H−1
2 (r) =

√
15/(8π)zρ exp(−iφ),

H−2
2 (r) =

√
15/(32π)ρ2 exp(−2iφ). (15.3.103)

How are these results related to cylindrical harmonic expansions? For the expansion
(3.19) consider the special case in which C0

m(z) 6= 0 for only one value of m, and suppose

for this value of m that C
[0]
m (z) has the special form

C [0]
m (z) = amn fn(z) (15.3.104)

with
fn(z) = zn. (15.3.105)

Call the result ψmn (x, y, z). That is, make the Ansatz

ψmn (x, y, z) = amn ρ
|m| exp(imφ)

∞∑
`=0

(−1)`
|m|!

22``!(`+ |m|)!
f [2`]
n (z)ρ2`. (15.3.106)

What are the properties of this Ansatz?
We begin by observing that the combination f

[2`]
n (z)ρ2`+|m| is a monomial in the variables

z and ρ for each value of `, with 2` ≤ n, and all these monomials are of degree n+ |m|. For
example, there are the relations

f
[0]
0 = 1, (15.3.107)

f
[2]
0 = 0; (15.3.108)

f
[0]
1 = z, (15.3.109)
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f
[2]
1 = 0; (15.3.110)

f
[0]
2 = z2, (15.3.111)

f
[2]
2 = 2, (15.3.112)

f
[4]
2 = 0; (15.3.113)

f
[0]
3 = z3, (15.3.114)

f
[2]
3 = 6z, (15.3.115)

f
[4]
3 = 0, etc. (15.3.116)

It follows that there are the results

f
[2`]
0 (z)ρ2` = 1 when ` = 0; (15.3.117)

f
[2`]
1 (z)ρ2` = z when ` = 0; (15.3.118)

f
[2`]
2 (z)ρ2` = z2 when ` = 0, (15.3.119)

f
[2`]
2 (z)ρ2` = 2ρ2 when ` = 1; (15.3.120)

f
[2`]
3 (z)ρ2` = z3 when ` = 0, (15.3.121)

f
[2`]
3 (z)ρ2` = 6zρ2 when ` = 1, etc. (15.3.122)

Now let us use these results to work out the first few ψmn (x, y, z). So doing gives the
relations

ψ0
0(x, y, z) = a0

0 ∝ H0
0 (r); (15.3.123)

ψ1
0(x, y, z) = a1

0ρ exp(iφ) ∝ H1
1 (r), (15.3.124)

ψ0
1(x, y, z) = a0

1z ∝ H0
1 (r), (15.3.125)

ψ−1
0 (x, y, z) = a−1

0 ρ exp(−iφ) ∝ H−1
1 (r); (15.3.126)

ψ2
0(x, y, z) = a2

0ρ
2 exp(2iφ) ∝ H2

2 (r), (15.3.127)

ψ1
1(x, y, z) = a1

1zρ exp(iφ) ∝ H1
2 (r), (15.3.128)

ψ0
2(x, y, z) = a0

2(z2 − ρ2/2) ∝ H0
2 (r), (15.3.129)

ψ−1
1 (x, y, z) = a−1

1 zρ exp(−iφ) ∝ H−1
2 (r), (15.3.130)

ψ−2
0 (x, y, z) = a−2

0 ρ2 exp(−2iφ) ∝ H−2
2 (r). (15.3.131)

These examples illustrate that the Ansatz specified by (3.105) and (3.106) produces the
harmonic polynomials expressed in cylindrical coordinates. There is the general relation

ψmn (x, y, z) ∝ Hm
n+|m|(r) (15.3.132)

where both sides of (3.132) are to be expressed in terms of cylindrical coordinates. Moreover,

we note that the functions (3.105) provide a basis for the set of functions C
[0]
m (z). Therefore,

as we already know from other arguments, harmonic polynomials form a basis for the set of
harmonic functions.
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Exercises

15.3.1. Given (3.65) through (3.67), verify (3.68) through (3.84).

15.3.2. Suppose that some beam line element is described by the magnetic scalar potential
ψ(x, y, z) = ψ(ρ, φ, z) and suppose this element is rotated by angle θ about the z axis. With
regard to sign convention, look down the z axis in the direction of increasing z and suppose
the rotation is made in the clockwise direction by an angle θ when θ is positive. Let ψ̂ be
the magnetic scalar potential for this rotated element. Show that there is the relation

ψ̂(ρ, φ, z) = ψ(ρ, φ− θ, z). (15.3.133)

Suppose that ψ has the expansion given by the first line of (3.40) and that ψ̂ has an expansion
of the form

ψ̂(x, y, z) = Ψ̂0(ρ, z) +
∞∑
m=1

Ψ̂m,c(ρ, z) cosmφ+
∞∑
m=1

Ψ̂m,s(ρ, z) sinmφ. (15.3.134)

Show that
Ψ̂0(ρ, z) = Ψ0(ρ, z), (15.3.135)

Ψ̂m,c(ρ, z) = cos(mθ) Ψm,c(ρ, z)− sin(mθ) Ψm,s(ρ, z), (15.3.136)

Ψ̂m,s(ρ, z) = sin(mθ) Ψm,c(ρ, z) + cos(mθ) Ψm,s(ρ, z). (15.3.137)

With regard to on-axis gradients, suppose the original on-axis gradients are the functions
C

[n]
m,α(z). See (3.33). Suppose that the on-axis gradients for the rotated element are the

functions Ĉ
[n]
m,α(z). Show that there the relations

Ĉ
[n]
0 (z) = C

[n]
0 (z), (15.3.138)

Ĉ [n]
m,c(z) = cos(mθ) C [n]

m,c(z)− sin(mθ) C [n]
m,s(z), (15.3.139)

Ĉ [n]
m,s(z) = sin(mθ) C [n]

m,c(z) + cos(mθ) C [n]
m,s(z). (15.3.140)

15.3.3. Show that the definitions (3.28) and (3.31) can be inverted to give the relations

C [0]
m (z) = (1/2)[C [0]

m,c(z)− iC [0]
m,s(z)] for m ≥ 1, (15.3.141)

C
[0]
−m(z) = (1/2)[C [0]

m,c(z) + iC [0]
m,s(z)] for m ≥ 1. (15.3.142)

15.3.4. The relation (3.5) displays the Laplacian in cylindrical coordinates. Verify that one
may write

∇2 = ∇2
⊥ + ∂2/∂z2 (15.3.143)

where

∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 = (1/ρ)(∂/∂ρ)(ρ∂/∂ρ) + (1/ρ2)(∂2/∂φ2)

= ∂2/∂ρ2 + (1/ρ)∂/∂ρ+ (1/ρ2)(∂2/∂φ2). (15.3.144)
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Define functions χc and χs by the rules

χc = ρ2`+m cosmφ, (15.3.145)

χs = ρ2`+m sinmφ. (15.3.146)

Show that they have the property

∇2
⊥χα = 4`(`+m)χα/ρ

2 (15.3.147)

where α = c, s. Use this property to show that ψ as given by (3.33) satisfies the Laplace
equation (2.7).

15.3.5. Review Exercise 3.4. Next, note the resemblance between the functional forms of
ψ as given by (3.33) and the Cartesian components of the gradient of ψ as given by (3.65)
through (3.67). Looking forward, observe that the Cartesian components of the associ-
ated vector potential in a Coulomb gauge, see (5.89) through (5.94), also have analogous
functional forms. Why should this be?

15.3.6. Suppose the Fourier coefficient Gm(k) appearing in (3.7) has the form

Gm(k) = λδm,m′δ(k)/k|m|. (15.3.148)

Show, using (3.11), that in this case

ψ(x, y, z) = [λ/(2|m
′||m′|!)]ρ|m′| exp(im′φ). (15.3.149)

Verify, by direct calculation, that ψ as given by (3.149) is harmonic.

15.4 Determination of the Vector Potential:

Azimuthal-Free Gauge

Although the description of magnetic fieldsB in terms of the scalar potential ψ is convenient,
it is not what we ultimately need. What we need, if we wish to exploit the symplectic
structure of Hamiltonian dynamics, is a description of B in terms of a vector potential A
such that

B = ∇×A. (15.4.1)

We recall that in cylindrical coordinates the radial and azimuthal components of a vector,
in this case the vector potential A, are related to the transverse Cartesian components by
equations (2.22) through (2.25). Since there is gauge freedom in the choice of a vector
potential, it is sometimes convenient, if possible, to work in a gauge for which the azimuthal
component vanishes,

Aφ = 0. (15.4.2)

According to (2.24) and (2.25), in this gauge we have the relations

Ax = Aρ cosφ, (15.4.3)

Ay = Aρ sinφ. (15.4.4)

We call this gauge the azimuthal-free gauge. We will see that it is possible to find a vector
potential in the azimuthal-free gauge for the magnetic field of any multipole save for m = 0.
(In subsequent sections, we will find a vector potential for the m = 0 case in a Coulomb
gauge.)
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15.4.1 Derivation

We will employ the notation (3.38) and (3.39). With this notation in mind, define vector
potentials Am,c and Am,s by the rules

Am,cρ = −sin(mφ)

m
ρ
∂

∂z
Ψm,c, (15.4.5)

Am,cφ = 0, (15.4.6)

Am,cz =
sin(mφ)

m
ρ
∂

∂ρ
Ψm,c; (15.4.7)

Am,sρ =
cos(mφ)

m
ρ
∂

∂z
Ψm,s, (15.4.8)

Am,sφ = 0, (15.4.9)

Am,sz = −cos(mφ)

m
ρ
∂

∂ρ
Ψm,s. (15.4.10)

(Note that these definitions fail for the m = 0 case. See Exercise 4.5.) Then, it is easily
verified that

∇×Am,c = ∇ψm,c, (15.4.11)

∇×Am,s = ∇ψm,s. (15.4.12)

See Exercise 4.6. Correspondingly, if we define A by the sum

A =
∞∑
m=1

Am,c +
∞∑
m=1

Am,s, (15.4.13)

we have, by linearity and again omitting the m = 0 term, the result,

∇×A = ∇ψ = B. (15.4.14)

At this point we make an important observation. We know that B falls to zero for large
|z| because for large |z| the observation point must be well outside the beam-line element
in question. From (3.65) through (3.67) and the definitions of Ψm,c and Ψm,c, we see that
these Ψ must also fall to zero for large |z|. Correspondingly, from (4.5) through (4.7), we
see that Am,c and Am,s must fall to zero for large |z|. This behavior is important because it
guarantees that, for the azimuthal-free gauge, the canonical and mechanical momenta will
be equal far outside any beam-line element. See (1.5.30).

We close this subsection by presenting explicit formulas for the cylindrical and Cartesian
components of Am,c and Am,s for general m ≥ 1. From (4.5) through (4.10) and the
expansions (3.38) and (3.39) we find the results

Am,cρ = −sin(mφ)

m

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,c (z)ρ2`+m+1, (15.4.15)

Am,cφ = 0, (15.4.16)
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Am,cz =
sin(mφ)

m

∞∑
`=0

(−1)`
(2`+m)(m!)

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m; (15.4.17)

Am,sρ =
cos(mφ)

m

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,s (z)ρ2`+m+1, (15.4.18)

Am,sφ = 0, (15.4.19)

Am,sz = −cos(mφ)

m

∞∑
`=0

(−1)`
(2`+m)(m!)

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m. (15.4.20)

From (4.3), (4.4), and (4.15) through (4.17) we find the results

Am,cx = −(1/m)x=[(x+ iy)m]
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,c (z)(x2 + y2)`, (15.4.21)

Am,cy = −(1/m)y=[(x+ iy)m]
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,c (z)(x2 + y2)`, (15.4.22)

Am,cz = −(1/m)=[(x+ iy)m]
∞∑
`=0

(−1)`
(2`+m)(m!)

22``!(`+m)!
C [2`]
m,c(z)(x2 + y2)`. (15.4.23)

From (4.3), (4.4), and (4.18) through (4.20) we find the results

Am,sx = −(1/m)x<[(x+ iy)m]
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,s (z)(x2 + y2)`, (15.4.24)

Am,sy = −(1/m)y<[(x+ iy)m]
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,s (z)(x2 + y2)`, (15.4.25)

Am,sz = −(1/m)<[(x+ iy)m]
∞∑
`=0

(−1)`
(2`+m)(m!)

22``!(`+m)!
C [2`]
m,s(z)(x2 + y2)`. (15.4.26)

Note that (4.21) through (4.26) provide expansions of the vector potential in terms of

homogeneous polynomials in the variables x, y with z-dependent coefficients C
[n]
m,α(z), and

that the minimum degree of these polynomials is m. Therefore, if the design orbit is on the
z axis, as it will be for all beam-line elements not having m = 1 (dipole) content, only a
finite number of m and ` values are required to to compute the transfer map through some
finite order in the Lie generators.
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15.4.2 Some Simple Examples: m = 1, 2

As a first example of a vector potential in the azimuthal-free gauge, suppose all terms in
(3.33) vanish save for the ‘pure’ dipole terms C

[n]
1,s(z). Then, using (4.24) through (4.26), we

find through terms of degree five that A1,s has the expansion

A1,s
x = x2C

[1]
1,s(z)− (1/8)(x4 + x2y2)C

[3]
1,s(z) + · · · , (15.4.27)

A1,s
y = xyC

[1]
1,s(z)− (1/8)(x3y + xy3)C

[3]
1,s(z) + · · · , (15.4.28)

A1,s
z = −xC [0]

1,s(z) + (3/8)(x3 + xy2)C
[2]
1,s(z)

− (5/192)(x5 + 2x3y2 + xy4)C
[4]
1,s(z) + · · · . (15.4.29)

Note that the results (4.27) through (4.29) agree with (1.5.77) if we make the identification

B = C
[0]
1,s. However, we know that C

[0]
1,s(z) must depend on z because the on-axis gradients

must vanish far outside any magnet. Therefore the functions C
[1]
1,s(z), C

[2]
1,s(z), C

[3]
1,s(z), etc.

must be nonzero, at least near the end and fringe-field regions of any (rectangular) dipole
magnet. We conclude that, as a consequence of Maxwell’s equations, the vector potential
must contain terms beyond degree two in the variables x, y. Correspondingly, as already
stated earlier, the transfer map for any real dipole must contain nonlinear terms.

As a second example of a vector potential in the azimuthal-free gauge, suppose all terms
in (3.33) vanish save for the ‘pure’ (normal) quadrupole terms C

[n]
2,s(z). Then, again using

(4.24) through (4.26), we find through terms of degree four that A2,s has the expansion

A2,s
x = (1/2)(x3 − xy2)C

[1]
2,s(z) + · · · , (15.4.30)

A2,s
y = −(1/2)(y3 − yx2)C

[1]
2,s(z) + · · · , (15.4.31)

A2,s
z = −(x2 − y2)C

[0]
2,s(z) + (1/6)(x4 − y4)C

[2]
2,s(z) + · · · . (15.4.32)

Note that the results (4.30) through (4.32) agree with (1.5.83) if we make the identification

Q/2 = C
[0]
2,s. However, we know that C

[0]
2,s(z) must depend on z because the on-axis gradients

must vanish far outside any magnet. Therefore the functions C
[1]
2,s(z), C

[2]
2,s(z), etc. must

be nonzero, at least near the end and fringe-field regions of any quadrupole magnet. We
conclude again that, as a consequence of Maxwell’s equations, the vector potential must
contain terms beyond degree two in the variables x, y. Correspondingly, the transfer map
for any real quadrupole must contain nonlinear terms. Analogous results hold for the skew
case corresponding to nonvanishing C

[n]
2,c(z).

Exercises

15.4.1. Show that the scalar potential ψ1,c produces a skew dipole magnetic field that is
primarily in the x direction. Assuming the magnet has iron pole faces, sketch the pole faces
and windings required to produce such a field, and label the pole faces N and S. Also sketch
the magnetic field lines and the directions the current must flow in the windings. Compare
your results with those of Exercise 1.5.7.
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15.4.2. Show that the scalar potential ψ2,c produces a skew quadrupole magnetic field.
Assuming the magnet has iron pole faces, sketch the pole faces and windings required to
produce such a field, and label the pole faces N and S. Also sketch the magnetic field lines
and the directions the current must flow in the windings. Compare your results with those
of Exercise 1.5.9.

15.4.3. Verify (3.84).

15.4.4. Consider, as a model, the field of an iron-dominated dipole with very wide (in the
x direction) pole faces. See Figures 1.6.1 and 1.6.2. Based on symmetry one might imagine
that the field of such a magnet would have no Bx component and, correspondingly, ψ for
such a magnet would have no x dependence. Let us make the Ansatz

ψ(y, z) =
∞∑
n=0

(−1)n[1/(2n+ 1)!]y2n+1O[2n](z)

= yO[0](z)− (1/6)y3O[2](z) + (1/120)y5O[4](z) + · · · (15.4.33)

where O[0](z) is, in principle, an arbitrary function, but required in our case to go to zero
as |z| → ∞. Show that this ψ is harmonic. Hint: See Appendix H.

Next, show that this ψ will produce a magnetic field Biwd, the field of an infinite-width
dipole, with components

Biwd
x = 0, (15.4.34)

Biwd
y =

∞∑
n=0

(−1)n[1/(2n)!]y2nO[2n](z)

= O[0](z)− (1/2)y2O[2](z) + (1/24)y4O[4](z) + · · · , (15.4.35)

Biwd
z =

∞∑
n=0

(−1)n[1/(2n+ 1)!]y2n+1O[2n+1](z)

= yO[1](z)− (1/6)y3O[3](z) + (1/120)y5O[5](z) + · · · . (15.4.36)

Thus, Biwd is primarily in the y direction, has no x component, but does have a z component
in the fringe-field regions where O[n](z) 6= 0 for n > 0.

How is the expansion (4.33) related to a cylindrical multipole expansion? Note the
identities

y = ρ sinφ, (15.4.37)

y3 = ρ3 sin3 φ = ρ3[(3/4) sinφ− (1/4) sin 3φ], (15.4.38)

y5 = ρ5 sin5 φ = ρ5[(10/16) sinφ− (5/16) sin 3φ+ (1/16) sin 5φ], etc. (15.4.39)

Show from (3.43) that there the relations

Ψ1,s(ρ, z) = O[0](z)ρ− (1/8)O[2](z)ρ3 + (1/192)O[4](z)ρ5 + · · · , (15.4.40)

Ψ3,s(ρ, z) = (1/24)O[2](z)ρ3 − (1/384)O[4](z)ρ5 + · · · , (15.4.41)
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Ψ5,s(ρ, z) = (1/1920)O[4](z)ρ5 + · · · , etc, (15.4.42)

Using (3.39), show that there are the expansions

Ψ1,s(ρ, z) = C
[0]
1,s(z)ρ− (1/8)C

[2]
1,s(z)ρ3 + (1/192)C

[4]
1,sρ

5 + · · · , (15.4.43)

Ψ3,s(ρ, z) = C
[0]
3,s(z)ρ3 − (1/16)C

[2]
3,s(z)ρ5 + · · · , (15.4.44)

Ψ5,s(ρ, z) = C
[0]
5,s(z)ρ5 + · · · . (15.4.45)

Now derive the relations
C

[n]
1,s(z) = O[n](z), (15.4.46)

C
[n]
3,s(z) = (1/24)O[n+2](z), (15.4.47)

C
[n]
5,s(z) = (1/1920)O[n+4](z), etc. (15.4.48)

Thus the infinite-width dipole has a major contribution from ψ1,s(x, y, z), and further con-
tributions, in the fringe-field regions, from all the ψm,s(x, y, z) with m = 3, 5, · · · ; and all

the relevant C
[n]
m,s(z) are determined by the O[n+m−1](z).

What is the azimuthal-free vector potential for this model field? The vector potential for
ψ1,s has already been found. It is given by (4.27) through (4.29). Show that an analogous
calculation for ψ3,s gives the result

A3,s
x = (1/3)x(x3 − 3xy2)C

[1]
3,s(z) + · · · , (15.4.49)

A3,s
y = (1/3)y(x3 − 3xy2)C

[1]
3,s(z) + · · · , (15.4.50)

A3,s
z = −(x3 − 3xy2)C

[0]
3,s(z) + (5/48)(x5 − 2x3y2 − 3xy4)C

[2]
3,s(z) + · · · ; (15.4.51)

and an analogous calculation for ψ5,s gives the result

A5,s
x = (1/5)x(x5 − 10x3y2 + 5xy4)C

[1]
5,s(z) + · · · , (15.4.52)

A5,s
y = (1/5)y(x5 − 10x3y2 + 5xy4)C

[1]
5,s(z) + · · · , (15.4.53)

A5,s
z = −(x5 − 10x3y2 + 5xy4)C

[0]
5,s(z) + · · · . (15.4.54)

Add all these vector potentials together and use (4.46) through (4.48) to show that the
azimuthal-free vector potential for the model field is given by the relations

Ax = x2O[1](z)− (1/18)(2x4 + 3x2y2)O[3](z) + · · · , (15.4.55)

Ay = xyO[1](z)− (1/18)(2x3y + 3xy3)O[3](z) + · · · , (15.4.56)

Az = −xO[0](z) + (1/6)(2x3 + 3xy2)O[2](z)

− (1/360)(8x5 + 20x3y2 + 15xy4)O[4](z) + · · · . (15.4.57)

We have learned, as inspection of (4.55) through (4.57) illustrates, that in the azimuthal-
free gauge the vector potential associated with even a fairly simple magnetic field, such as
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that of our infinite-width dipole model, is quite complicated. Perhaps other gauges would
give simpler results? Indeed, consider the infinite-width-dipole vector potential Aiwd defined
by the equations

Aiwd
x =

∞∑
n=1

(−1)n[1/(2n)!]y2nO[2n−1](z) = −(1/2)y2O[1](z)+(1/24)y4O[3](z)+· · · , (15.4.58)

Aiwd
y = 0, (15.4.59)

Aiwd
z = −xO[0](z). (15.4.60)

Show that use of this much simpler vector potential also yields the field Biwd given by (4.34)
through (4.36). The question of other gauges will be explored in Sections 15.5 and 15.6.
Also, see Exercise 6.2.

Finally note that, for the vector potentials given either by (4.55) through (4.57) or by
(4.58) through (4.60), the primary component is in the z direction with additional compo-
nents in some transverse direction significant only in the fringe-field regions. This feature is
advantageous when using z as the independent variable, see Exercise 1.6.1, because then the
z component of the vector potential appears only outside the square root that is ubiquitous
in all canonical and relativistic formulations.

15.4.5. Let C be a circle in some plane of constant z and centered on x = y = 0. Show that
for any vector potential A in the azimuthal-free gauge there is the result∫

C
A · dr = 0. (15.4.61)

But, by Stokes’ theorem, there is also the result∫
C
A · dr =

∫
D

(∇×A) · dS =

∫
D
B · dS =

∫
D
BzdS (15.4.62)

where D is the disc in the constant z plane surrounded by C. For the monopole case (m = 0)
we know that the magnetic field is predominantly in the z direction when x, y are near zero.
Therefore the integral (4.62) cannot vanish. Correspondingly, an m = 0 magnetic field
cannot be derived from an azimuthal-free vector potential.

15.4.6. The goal of this exercise is to verify (4.11) and (4.12). Begin with the fact that, by
construction, ψm,c and ψm,s are harmonic. Show, using (3.5), that

[(1/ρ)(∂/∂ρ)(ρ∂/∂ρ) + ∂2/∂z2]Ψm,c = (m/ρ)2Ψm,c, (15.4.63)

with an analogous result for Ψm,s. Using these results, verify (4.11) and (4.12) by employing
the formulas for ∇× and ∇ in cylindrical coordinates.

15.4.7. Assume that (3.77) through (3.83) hold in the body of a pure multipole. Let

Bm = ∇×Am (15.4.64)
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with
Am = Am,c +Am,s. (15.4.65)

Show from (4.21) through (4.26) that in this case (the azimuthal-free gauge case)

Amx = Amy = 0, (15.4.66)

and

Amz = C [0]
m,c=[(x+ iy)m]− C [0]

m,s<[(x+ iy)m]

= −<[(C [0]
m,s + iC [0]

m,c)(x+ iy)m] = =[(C [0]
m,c − iC [0]

m,s)(x+ iy)m]. (15.4.67)

Here the quantities C
[0]
m,α are assumed to be constant (z independent).

15.5 Determination of the Vector Potential:

Symmetric Coulomb Gauge

Sometimes it is convenient to work in a Coulomb gauge rather than the azimuthal-free
gauge. In this section we will find such a vector potential which, for reasons that will
become apparent, we will call the symmetric Coulomb gauge vector potential. Before doing
so, there is an important fact to be noted about Coulomb-gauge vector potentials for source-
free magnetic fields. Suppose that Â is a vector potential for B that satisfies the Coulomb
gauge condition

∇ · Â = 0. (15.5.1)

We know by construction that

∇× (∇× Â) = ∇×B = 0. (15.5.2)

(Here we have assumed that B is source free.) But there is also the vector identity

∇× (∇× Â) = ∇(∇ · Â)−∇2Â. (15.5.3)

It follows from (5.1) through (5.3) that there is the relation

∇2Â = 0. (15.5.4)

That is, each Cartesian component of a Coulomb-gauge vector potential is a harmonic func-
tion. (It need not be true of other components such as spherical and cylindrical components.)
This fact will be useful in the next section.

15.5.1 The m = 0 Case

We now turn to the task of computing vector potentials in a Coulomb gauge. We begin with
the m = 0 case, for which there is no azimuthal-free gauge vector potential. In the m = 0
case ψ takes the form

ψ0(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
0 (z)ρ2`. (15.5.5)
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See (3.33). Define a function U(ρ, z) by the rule

U(ρ, z) = (1/2)
∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)ρ2`. (15.5.6)

Now define a vector potential Â
0

by the Ansatz

Â0
x = −yU, (15.5.7)

Â0
y = xU, (15.5.8)

Â0
z = 0. (15.5.9)

We will soon see that this vector potential produces B and is in a Coulomb gauge. Because
the two transverse components of this vector potential involve the same master function U
in analogous ways, we will refer to this vector potential as the symmetric m = 0 Coulomb
gauge vector potential.

Let us verify that this vector potential produces B. First we have to answer the question

(∇× Â0
)z = ∂xÂ

0
y − ∂yÂ0

x = ∂zψ0? (15.5.10)

From (5.8) we find the result
∂xÂ

0
y = U + x∂xU. (15.5.11)

But, by the chain rule we have the result

∂xU = (∂U/∂ρ)(∂ρ/∂x) = (x/ρ)(∂U/∂ρ). (15.5.12)

Here we have used the relation
∂ρ/∂x = x/ρ. (15.5.13)

See Appendix H. From (5.11) and (5.12) we conclude that

∂xÂ
0
y = U + (x2/ρ)(∂U/∂ρ). (15.5.14)

Similarly, we find that
− ∂yÂ0

x = U + (y2/ρ)(∂U/∂ρ), (15.5.15)

and therefore
∂xÂ

0
y − ∂yÂ0

x = 2U + ρ(∂U/∂ρ). (15.5.16)

But, from the definition (5.6), we see that

ρ(∂U/∂ρ) = (1/2)
∞∑
`=0

(−1)`
2`

22``!(`+ 1)!
C

[2`+1]
0 (z)ρ2` (15.5.17)

and consequently,

∂xÂ
0
y − ∂yÂ0

x = 2U + ρ(∂U/∂ρ) = (1/2)
∞∑
`=0

(−1)`
2`+ 2

22``!(`+ 1)!
C

[2`+1]
0 (z)ρ2`

=
∞∑
`=0

(−1)`
1

22``!`!
C

[2`+1]
0 (z)ρ2` = ∂zψ0 = Bz. (15.5.18)
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Next examine the question

(∇× Â0
)x = ∂yÂ

0
z − ∂zÂ0

y = −∂zÂ0
y = ∂xψ0? (15.5.19)

From (5.8) we see that

− ∂zÂ0
y = −x(∂U/∂z) = −(x/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+2]
0 (z)ρ2`. (15.5.20)

But we also see from the form (5.5) for ψ0 that

∂xψ0 = (∂ψ0/∂ρ)(∂ρ/∂x) = (x/ρ)(∂ψ0/∂ρ). (15.5.21)

Similarly, and for future use, there is the relation

∂yψ0 = (∂ψ0/∂ρ)(∂ρ/∂y) = (y/ρ)(∂ψ0/∂ρ). (15.5.22)

But from the representation (5.5) we see that

(1/ρ)(∂ψ0/∂ρ) =
∞∑
`=0

(−1)`
2`

22``!`!
C

[2`]
0 (z)ρ2`−2

=
∞∑
`=1

(−1)`
2`

22``!`!
C

[2`]
0 (z)ρ2`−2 =

∞∑
n=0

(−1)n+1 (2n+ 2)

2(2n+2)(n+ 1)!(n+ 1)!
C

[2n+2]
0 (z)ρ2n

= (−1/2)
∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
C

[2n+2]
0 (z)ρ2n, (15.5.23)

and consequently

∂xψ0 = (x/ρ)(∂ψ0/∂ρ) = (−x/2)
∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
C

[2n+2]
0 (z)ρ2n. (15.5.24)

Comparison of (5.20) and (5.24) shows that (5.19) is satisfied.
The last question to examine is

(∇× Â0
)y = ∂zÂ

0
x − ∂xÂ0

z = ∂zÂ
0
x = ∂yψ0? (15.5.25)

From (5.7) we see that

∂zÂ
0
x = −y(∂U/∂z) = −(y/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+2]
0 (z)ρ2`. (15.5.26)

But from (5.22) and (5.23) we have

∂yψ0 = (y/ρ)(∂ψ0/∂ρ) = (−y/2)
∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
C

[2n+2]
0 (z)ρ2n. (15.5.27)
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Comparison of (5.26) and (5.27) shows that (5.25) is satisfied.

We can also check that Â
0

is divergence free. From (5.7) through (5.9) we see that

∇ · Â0
= ∂xÂ

0
x + ∂yÂ

0
y + ∂zÂ

0
z = −y∂xU + x∂yU. (15.5.28)

Now use (5.12) and its y analog to find the result

− y∂xU + x∂yU = [(−yx/ρ) + (xy/ρ)](∂U/∂ρ) = 0. (15.5.29)

From (5.6) through (5.8), we see that Â0
x and Â0

y can be written as

Â0
x = − sin(φ)(1/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)ρ2`+1 (15.5.30)

and

Â0
y = cos(φ)(1/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)ρ2`+1. (15.5.31)

Comparison of these expressions with (3.33) shows that both Â0
x and Â0

y are harmonic
functions, as expected.

Inserting (2.13) and (2.14) into (5.30) and (5.31) gives the even more explicit results

Â0
x = −(y/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)(x2 + y2)`

= −(y/2)[C
[1]
0 − (1/8)C

[3]
0 (x2 + y2) + · · · ], (15.5.32)

Â0
y = (x/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)(x2 + y2)`

= (x/2)[C
[1]
0 − (1/8)C

[3]
0 (x2 + y2) + · · · ], (15.5.33)

Â0
z = 0. (15.5.34)

From the relation

Bz = ∂zψ0 =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`+1]
0 (z)ρ2`, (15.5.35)

we see that
C

[1]
0 (z) = Bz(0, 0, z). (15.5.36)

Since we assume that Bz(0, 0, z) falls of for large |z|, the same will be true for C
[1]
0 (z) and

for the C
[2`+1]
0 (z), and hence, according to (5.32) through (5.34), also for Â

0
.

For future work it is also useful to have expressions for Â
0

in cylindrical components.
Using (2.22), (2.23), and (5.7) through (5.9) gives the results

Â0
ρ = 0, (15.5.37)
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Â0
φ = ρU(ρ, z) = (1/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)ρ2`+1, (15.5.38)

Â0
z = 0. (15.5.39)

Note that, in contrast to the azimuthal-free gauge of Section 15.4, this vector potential has
only an azimuthal component.

15.5.2 The m ≥ 1 Cases

Derivation

Let us begin with some notation: Since we will often be dealing with both the skew and
normal cases simultaneously, we will use the symbol α to denote either c or s. For example,
we will use ψm,α to denote either ψm,c or ψm,s. With this convention in mind, the purpose

of the present subsection is to find vector potentials Â
m,α

that are in a Coulomb gauge,

∇ · Âm,α
= 0, (15.5.40)

and also produce the B fields associated with the ψm,α,

∇× Âm,α
= ∇ψm,α. (15.5.41)

The requirements (5.41), when combined with the relations (4.11) and (4.12), yield the
conditions

∇× (Â
m,α −Am,α) = 0, (15.5.42)

from which it follows that there are functions χm,α such that

Â
m,α

= Am,α +∇χm,α. (15.5.43)

Of course, the relations (5.43) are simply gauge transformations. Our strategy will be to
find the functions χm,α and then use (5.43) to yield the desired vector potentials.

Upon taking the divergence of both sides of (5.43), and using the Coulomb conditions
(5.40), we find that the χm,α must satisfy the equations

∇2χm,α = −∇ ·Am,α. (15.5.44)

For an azimuthal-free A, see (4.2), we have the relation

∇ ·A = (1/ρ)(∂/∂ρ)(ρAρ) + (∂/∂z)Az. (15.5.45)

Using the representations (4.5) through (4.10) for the right sides of (5.44) gives the results

∇ ·Am,α = (2/ρ)Am,αρ . (15.5.46)

Consequently, the χm,α must satisfy the relations

∇2χm,α = −(2/ρ)Am,αρ . (15.5.47)
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To find the χm,α, let us make the Ansätze

χm,c = −(sinmφ)dm,c(ρ, z), (15.5.48)

χm,s = (cosmφ)dm,s(ρ, z), (15.5.49)

where the functions dm,α(ρ, z) are yet to be determined. From the representations (5.48)
and (5.49) we find the relations

∇2χm,c = −(sinmφ)[(1/ρ)(∂/∂ρ)(ρ∂/∂ρ)−m2/ρ2 + (∂/∂z)2]dm,s(ρ, z), (15.5.50)

∇2χm,s = (cosmφ)[(1/ρ)(∂/∂ρ)(ρ∂/∂ρ)−m2/ρ2 + (∂/∂z)2]dm,s(ρ, z). (15.5.51)

See (3.5). Upon using (5.47) and comparing (5.50) and (5.51) with (4.5) and (4.8), we find
the relations

[(1/ρ)(∂/∂ρ)(ρ∂/∂ρ)−m2/ρ2 + (∂/∂z)2]dm,α(ρ, z) = (−2/m)(∂/∂z)Ψm,α(ρ, z). (15.5.52)

Next assume that each dm,α(ρ, z) has an expansion of the form

dm,α(ρ, z) =
∞∑
`=0

D2`
m,α(z)ρ2`+m+2 (15.5.53)

where the functions D2`
m,α(z) are yet to be determined. It easily verified that there is the

relation
[(1/ρ)(∂/∂ρ)(ρ∂/∂ρ)−m2/ρ2]ρn = (n2 −m2)ρn−2. (15.5.54)

It follows, by using the expansion (5.53), that there is the relation

[(1/ρ)(∂/∂ρ)(ρ∂/∂ρ)−m2/ρ2 + (∂/∂z)2]dm,α(ρ, z)

=
∞∑
`=0

[(2`+m+ 2)2 −m2]D2`
m,α(z)ρ2`+m +

∞∑
`=0

[(∂/∂z)2D2`
m,α(z)]ρ2`+m+2.

(15.5.55)

The sum consisting of the second set of terms on the right side of (5.55) can be rewritten in
the form

∞∑
`=0

[(∂/∂z)2D2`
m,α(z)]ρ2`+m+2 =

∞∑
n=1

[(∂/∂z)2D2n−2
m,α (z)]ρ2n+m (15.5.56)

or, equivalently, in the form

∞∑
`=0

[(∂/∂z)2D2`
m,α(z)]ρ2`+m+2 =

∞∑
`=0

[(∂/∂z)2D2`−2
m,α (z)]ρ2`+m (15.5.57)

with the understanding that
D−2
m,α = 0. (15.5.58)
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Consequently, we also have the relation

[(1/ρ)(∂/∂ρ)(ρ∂/∂ρ)−m2/ρ2 + (∂/∂z)2]dm,α(ρ, z)

=
∞∑
`=0

{[(2`+m+ 2)2 −m2]D2`
m,α(z) + [(∂/∂z)2D2`−2

m,α (z)]}ρ2`+m.

(15.5.59)

We have found an expansion in powers of ρ for the left side of (5.52). From (3.38) and
(3.39) we already have such an expansion for the right side of (5.52), which we write in the
form

(−2/m)(∂/∂z)Ψm,α(ρ, z) =
∞∑
`=0

r(`,m)C [2`+1]
m,α (z)ρ2`+m (15.5.60)

where
r(`,m) = −2(−1)`(m!)/[m22``!(l +m)!]. (15.5.61)

Equating like powers of ρ on both sides of (5.52) gives the relation

[(2`+m+ 2)2 −m2]D2`
m,α(z) + (∂/∂z)2D2`−2

m,α (z) = r(`,m)C [2`+1]
m,α (z), (15.5.62)

which can be rewritten as the recursion relation

D2`
m,α(z) = s(`,m)C [2`+1]

m,α (z) + t(`,m)(∂/∂z)2D2`−2
m,α (z) (15.5.63)

where s(`,m) and t(`,m) are the coefficients

s(`,m) = r(`,m)/[(2`+m+ 2)2 −m2], (15.5.64)

t(`,m) = −1/[(2`+m+ 2)2 −m2]. (15.5.65)

We find, for the first few terms, the results

D0
m,α(z) = s(0,m)C [1]

m,α(z) = −{1/[2m(m+ 1)]}C [1]
m,α(z), (15.5.66)

D2
m,α(z) = s(1,m)C [3]

m,α(z) + t(1,m)(∂/∂z)2D0
m,α(z)

= s(1,m)C [3]
m,α(z) + t(1,m)s(0,m)C [3]

m,α(z)

= [s(1,m) + t(1,m)s(0,m)]C [3]
m,α(z)

= {1/[8m(m+ 1)(m+ 2)]}C [3]
m,α(z),

(15.5.67)

D4
m,α(z) = s(2,m)C [5]

m,α(z) + t(2,m)(∂/∂z)2D2
m,α(z)

= {s(2,m) + t(2,m)[s(1,m) + t(1,m)s(0,m)]}C [5]
m,α(z),

= −{1/[64m(m+ 1)(m+ 2)(m+ 3)]}C [5]
m,α(z), etc.

(15.5.68)
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We conclude that the D2`
m,α(z) are completely specified in terms of the C

[2`+1]
m,α (z). Indeed,

we have by induction the relation

D2`
m,α(z) = u(`,m)C [2`+1]

m,α (z) (15.5.69)

where the coefficients u(`,m) are given by the recursion relation

u(`,m) = s(`,m) + t(`,m)u(l − 1,m) (15.5.70)

with
u(−1,m) = 0. (15.5.71)

This recursion relation has the solution

u(`,m) = −(−1)`c`{[(m− 1)!]/[(m+ `+ 1)!]} (15.5.72)

where
c` = 1/[(2)(22`)(`!)]. (15.5.73)

We are now able to write explicit series expansions for the dm,α(ρ, z) and the χm,α in

terms of the C
[n]
m,α(z). Upon combining (5.53), (5.69), (5.72), and (5.73), we find the result

dm,α(ρ, z) = −(1/2)
∞∑
`=0

(−1)`
(m− 1)!

22``!(`+m+ 1)!
C [2`+1]
m,α (z)ρ2`+m+2. (15.5.74)

And, with the use of (5.48) and (5.49), we find for the χm,α the expansions

χm,c = (1/2)(sinmφ)
∞∑
`=0

(−1)`
(m− 1)!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+2, (15.5.75)

χm,s = −(1/2)(cosmφ)
∞∑
`=0

(−1)`
(m− 1)!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+2. (15.5.76)

Next, we can compute series expansions for the ∇χm,α. It is convenient to work out the
gradients in cylindrical coordinates. We find from (5.75) and (5.76) the results

(∇χm,c)ρ = ∂ρχm,c

= (1/2)(sinmφ)
∞∑
`=0

(−1)`
(m− 1)!(2`+m+ 2)

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+1, (15.5.77)

(∇χm,c)φ = (1/ρ)∂φχm,c

= (1/2)(cosmφ)
∞∑
`=0

(−1)`
(m)(m− 1)!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+1

= (1/2)(cosmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+1, (15.5.78)
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(∇χm,c)z = ∂zχm,c

= (1/2)(sinmφ)
∞∑
`=0

(−1)`
(m− 1)!

22``!(`+m+ 1)!
C [2`+2]
m,c (z)ρ2`+m+2; (15.5.79)

(∇χm,s)ρ = ∂ρχm,s

= −(1/2)(cosmφ)
∞∑
`=0

(−1)`
(m− 1)!(2`+m+ 2)

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+1, (15.5.80)

(∇χm,s)φ = (1/ρ)∂φχm,s

= (1/2)(sinmφ)
∞∑
`=0

(−1)`
(m)(m− 1)!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+1

= (1/2)(sinmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+1, (15.5.81)

(∇χm,s)z = ∂zχm,s

= −(1/2)(cosmφ)
∞∑
`=0

(−1)`
(m− 1)!

22``!(`+m+ 1)!
C [2`+2]
m,s (z)ρ2`+m+2. (15.5.82)

We have all the ingredients at hand to compute the Â
m,α

. We find, in cylindrical coor-
dinates and using (4.15) through (4.20), (5.43), and (5.77) through (5.82), the results

Âm,cρ = −(1/2)(sinmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+1, (15.5.83)

Âm,cφ = (1/2)(cosmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+1, (15.5.84)

Âm,cz = (sinmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m; (15.5.85)

Âm,sρ = (1/2)(cosmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+1, (15.5.86)

Âm,sφ = (1/2)(sinmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+1, (15.5.87)
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Âm,sz = −(cosmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m. (15.5.88)

Correspondingly, using (2.24) and (2.25), we find for the Cartesian components of the Â
m,α

the results

Âm,cx = −(1/2)[(cosφ)(sinmφ) + (sinφ)(cosmφ)]×
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+1

= −(1/2)[sin(m+ 1)φ]
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+1,

= −(1/2)=[(x+ iy)m+1]
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)(x2 + y2)`,

(15.5.89)

Âm,cy = (1/2)[−(sinφ)(sinmφ) + (cosφ)(cosmφ)]×
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+1

= (1/2)[cos(m+ 1)φ]
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)ρ2`+m+1,

= (1/2)<[(x+ iy)m+1]
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)(x2 + y2)`,

(15.5.90)

Âm,cz = (sinmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m

= =[(x+ iy)m]
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)(x2 + y2)`;

(15.5.91)
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Âm,sx = (1/2)[(cosφ)(cosmφ)− (sinφ)(sinmφ)]×
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+1

= (1/2)[cos(m+ 1)φ]
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+1

= (1/2)<[(x+ iy)m+1]
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)(x2 + y2)`,

(15.5.92)

Âm,sy = (1/2)[(sinφ)(cosmφ) + (cosφ)(sinmφ)]×
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+1

= (1/2)[sin(m+ 1)φ]
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)ρ2`+m+1

= (1/2)=[(x+ iy)m+1]
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)(x2 + y2)`,

(15.5.93)

Âm,sz = −(cosmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m

= −<[(x+ iy)m]
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)(x2 + y2)`.

(15.5.94)

Note four important facts: First, we see that the relations (5.83) through (5.88) for Â
m,α

are also defined for m = 0. When so evaluated they produce, in the case α = c, a result

that agrees with the Â
0

given by (5.37) through (5.39); and [recalling (3.36)] they produce,
in the case α = s, the zero vector. That is, we may make the definitions

Â0,c = Â0, (15.5.95)

Â0,s = 0. (15.5.96)

Second, from their form in (5.89) through (5.94), it is evident that the Cartesian components

of Â
m,α

are all harmonic functions, as expected. Third, we observe that Âm,cx and Âm,cy as
given by (5.89) and (5.90) involve complementary trigonometric functions multiplying the
same master function. The same is true of Âm,sx and Âm,sy as given by (5.92) and (5.93). See
Exercise 5.6. For this reason we refer to the Coulomb gauge vector potential we have found as
being the symmetric Coulomb gauge vector potential. Finally, note again that (5.89) through
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(5.94) provide expansions of the vector potential in terms of homogeneous polynomials in

the variables x, y with z-dependent coefficients C
[n]
m,α(z), and that the minimum degree of

these polynomials is m. In summary, we have found formulas for the χm,α and the Â
m,α

in

terms of the C
[n]
m,α(z).

Symmetric Coulomb Gauge Examples for m = 1, 2

As an example of the use of these relations, let us compute Â
1,s

for the dipole case m = 1.
As before, suppose all terms in (3.33) vanish save for the dipole terms C

[n]
1,s(z). Using (5.92)

through (5.94) we then find, through terms of degree five, that Â
1,s

has the expansion

Â1,s
x = (1/4)(x2 − y2)C

[1]
1,s(z)− (1/48)(x4 − y4)C

[3]
1,s(z) + · · · , (15.5.97)

Â1,s
y = (1/2)xyC

[1]
1,s(z)− (1/24)(x3y + xy3)C

[3]
1,s(z) + · · · , (15.5.98)

Â1,s
z = −xC [0]

1,s(z)+(1/8)(x3+xy2)C
[2]
1,s(z)−(1/192)(x5+2x3y2+xy4)C

[4]
1,s(z)+· · · . (15.5.99)

This expansion should be compared with the azimuthal-free gauge expansion given by (4.27)

through (4.29). Direct calculation verifies that Â
1,s

satisfies (5.1) and (5.4) through terms
of degree four, which is what is expected based on the order of the terms that have been
retained in the expansion.

As a second example of the use of these relations, let us compute Â
2,s

for the (normal)
quadrupole case m = 2. As before, suppose all terms in (3.33) vanish save for the quadrupole

terms C
[n]
2,s(z). Then, again using (5.92) through (5.94), we find, through terms of degree

four, that Â
2,s

has the expansion

Â2,s
x = (1/6)(x3 − 3xy2)C

[1]
2,s(z) + · · · , (15.5.100)

Â2,s
y = −(1/6)(y3 − 3x2y)C

[1]
2,s(z) + · · · , (15.5.101)

Â2,s
z = −(x2 − y2)C

[0]
2,s(z) + (1/12)(x4 − y4)C

[2]
2,s(z) + · · · . (15.5.102)

This expansion should be compared with the azimuthal-free gauge expansion given by (4.30)

through (4.32). Direct calculation again verifies that (5.1) and (5.4) are satisfied by Â
2,s

through the order of the terms that have been retained in the expansion. Finally, we remark

that analogous results can be found for the skew case Â
2,c

.

Exercises

15.5.1. For Â
0

given by (5.37) through (5.39), compute the curl and divergence of Â
0

in
cylindrical coordinates.

15.5.2. Verify that (5.72) and (5.73) satisfy the recursion relation (5.70) with the initial
condition (5.71).

15.5.3. Verify the expansions (5.83) through (5.88) and verify that ∇ · Âm,α
= 0
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15.5.4. Consider the case of straight beam-line elements, such as solenoids, quadrupoles,
sextupoles, octupoles, etc., for which the design orbit lies on the z axis. Suppose we wish to
retain, in the expansion of the Hamiltonian H appearing in (1.3), homogeneous polynomials
in x and y through degree 4. This would be required if we wished to make a Lie factorization
of M that retained all Lie generators of degree 4 and lower,

M = R exp(: f3 :) exp(: f4 :). (15.5.103)

Assuming no particular field symmetries, and working in the Coulomb gauge of this
section, show that the following generalized gradients and their derivatives would then be
required:

C
[0]
0 (z), C

[1]
0 (z), C

[2]
0 (z), C

[3]
0 (z);

C
[0]
1,α(z), C

[1]
1,α(z), C

[2]
1,α(z);

C
[0]
2,α(z), C

[1]
2,α(z), C

[2]
2,α(z);

C
[0]
3,α(z);

C
[0]
4,α(z).

(15.5.104)

Verify that in the m = 0 case the C
[n]
m with n even are actually not needed. See Subsection

5.1. Also, strictly speaking, the dipole terms, the terms in the second row of (5.104), should
actually vanish in order for the design orbit to lie on the z axis. A possible exception could
be the case of a wiggler/undulator where the C

[n]
1,α(z) oscillate in z and nearly average to

zero in such a way that the design orbit does not depart significantly from the z axis.
Suppose, instead, we wish to retain homogeneous polynomials through degree 8. This

would be required if we wished to make a Lie factorization of M that retained all Lie
generators of degree 8 and lower,

M = R exp(: f3 :) exp(: f4 :) exp(: f5 :) exp(: f6 :) exp(: f7 :) exp(: f8 :). (15.5.105)

Assuming no particular field symmetries, and working in the Coulomb gauge of this section,
show that the following generalized gradients and their derivatives would then be required:

C
[0]
0 (z), C

[1]
0 (z), C

[2]
0 (z), C

[3]
0 (z), C

[4]
0 (z), C

[5]
0 (z), C

[6]
0 (z), C

[7]
0 (z);

C
[0]
1,α(z), C

[1]
1,α(z), C

[2]
1,α(z), C

[3]
1,α(z), C

[4]
1,α(z), C

[5]
1,α(z), C

[6]
1,α(z);

C
[0]
2,α(z), C

[1]
2,α(z), C

[2]
2,α(z), C

[3]
2,α(z), C

[4]
2,α(z), C

[5]
2,α(z), C

[6]
2,α(z);

C
[0]
3,α(z), C

[1]
3,α(z), C

[2]
3,α(z), C

[3]
3,α(z), C

[4]
3,α(z);

C
[0]
4,α(z), C

[1]
4,α(z), C

[2]
4,α(z), C

[3]
4,α(z), C

[4]
4,α(z);

C
[0]
5,α(z), C

[1]
5,α(z), C

[2]
5,α(z);

C
[0]
6,α(z), C

[1]
6,α(z), C

[2]
6,α(z);

C
[0]
7,α(z);

C
[0]
8,α(z).

(15.5.106)
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Again verify that in the m = 0 case the C
[n]
m with n even are actually not needed. And

again, with the possible exception of a wiggler/undulator, the dipole terms, the terms in
the second row of (5.106), should actually vanish in order for the design orbit to lie on the
z axis.

15.5.5. Assume that (3.77) through (3.83) hold in the body of a pure multipole (with m > 0).
Let

Bm = ∇× Âm (15.5.107)

with

Âm = Âm,c + Âm,s. (15.5.108)

Show from (5.89) through (5.94) that in this case (the symmetric Coulomb gauge case) there
are the relations

Âmx = Âmy = 0, (15.5.109)

and

Âmz = C [0]
m,c=[(x+ iy)m]− C [0]

m,s<[(x+ iy)m]

= −<[(C [0]
m,s + iC [0]

m,c)(x+ iy)m] = =[(C [0]
m,c − iC [0]

m,s)(x+ iy)m]. (15.5.110)

Here the quantities C
[0]
m,α are assumed to be constant (z independent).

Note that the results (5.109) and (5.110) agree with (4.66) and (4.67). The azimuthal-
free and symmetric Coulomb gauges give the same result in the body for all terms with
m > 0. The difference between the two gauges occurs only in the fringe-field regions.

15.5.6. As a consequence of the symmetry present in the symmetric Coulomb gauge, verify
that the two real relations (5.89) and (5.90) can be combined to produce the single complex
relation

Âm,cx + iÂm,cy = (i/2)(x+ iy)m+1

∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (z)(x2 + y2)`. (15.5.111)

Also verify that the two real relations (5.92) and (5.93) can be combined to produce the
single complex relation

Âm,sx + iÂm,sy = (1/2)(x+ iy)m+1

∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (z)(x2 + y2)`. (15.5.112)

15.6 Nonuniqueness of Coulomb Gauge

There still remains the question of uniqueness. We will see that there are other Coulomb
gauge vector potentials beyond the symmetric one already found.
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15.6.1 The General Case

Suppose λ(x, y, z) is any harmonic function,

∇2λ = 0. (15.6.1)

If we add ∇λ to Â to produce a vector potential Ã, it is easily verified that the result

Ã = Â+∇λ (15.6.2)

also satisfies the desired relations
∇× Ã = B (15.6.3)

and
∇ · Ã = 0. (15.6.4)

Conversely, if we require that the Ansatz (6.2) also yield a vector potential in the Coulomb
gauge, then λ must be harmonic.

We next observe that, by construction, Â falls to zero as |z| → ∞ so that we should
require the same of λ in order for Ã to have the same asymptotic behavior.9 Thanks
to the work already done, it easy to describe all λ satisfying (6.1) that have this property.
Namely, by repeating the arguments leading to the representation of ψ in terms of generalized
gradients, we may write

λ =
∞∑
m=0

Λm,c(ρ, z) cosmφ+
∞∑
m=1

Λm,s(ρ, z) sinmφ (15.6.5)

and set

Λm,α(ρ, z) =
∞∑
`=0

(−1)`
m!

22``!(`+m)!
L[2`]
m,α(z)ρ2`+m. (15.6.6)

Here the functions L
[0]
m,α(z) may be specified at will save for the condition that they fall to

zero for large |z|.
We know that Âx and Ây are harmonic functions because we may write

Âx =
∞∑
m=0

Âm,cx +
∞∑
m=1

Âm,sx , etc. (15.6.7)

and we have already seen that each term in the above sums is harmonic. It is a remarkable
fact that if σ(x, y, z) is a harmonic function that falls off for large |z| and thus can be
written in a form analogous to (6.5), then there is another harmonic function λ with the
same properties such that

∂yλ = σ. (15.6.8)

9As stated earlier, This asymptotic behavior is desirable in order that the canonical and mechanical
momenta be asymptotically the same. See (1.5.30). If we are working with z as the independent variable,
in which case pz is not a dynamical variable and does not appear in the Hamiltonian, we will at least want
the x and y components of Ã to vanish for large |z|.
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Or, if one prefers, there is a λ′ such that

∂xλ
′ = σ. (15.6.9)

See Appendix H. Let us apply this result, for example, to the case

σ = −Ây (15.6.10)

and then use λ to make the gauge transformation (6.2). Doing so, we find the results

Ãx = Âx + ∂xλ, (15.6.11)

Ãy = Ây + ∂yλ = Ây + σ = 0, (15.6.12)

Ãz = Âz + ∂zλ. (15.6.13)

That is, we have found a gauge which is both Coulomb and for which the y component of
the vector potential is zero. We call this the vertical-free Coulomb gauge. Similarly, by
using λ′, one can find a horizontal-free Coulomb gauge for which the x component of the
vector potential is zero.

Even a bit more can be accomplished. Suppose Ã is a vector potential in the vertical-free
Coulomb gauge so that Ãy = 0. Let τ(x, z) be a harmonic function that depends only on x
and z. Such a function can be written in the form

τ(x, z) =
∞∑
n=0

(−1)n[1/(2n+ 1)!]x2n+1O[2n](z) +
∞∑
n=0

(−1)n[1/(2n)!]x2nE[2n](z)

= [xO[0](z)− (1/6)x3O[2](z) + (1/120)x5O[4](z) + · · · ]
+ [E[0](z)− (1/2)x2E[2](z) + (1/24)x4E[4](z) + · · · ] (15.6.14)

where O[0](z) and E[0](z) are arbitrary functions of z save that they fall off for large |z|. See
Appendix H. Now use τ to make a further gauge transformation that sends Ã to Ǎ,

Ǎ = Ã+∇τ. (15.6.15)

By construction,
∂yτ = 0 (15.6.16)

so that Ǎ is also vertical free,
Ǎy = 0. (15.6.17)

And for the x and z components of Ǎ we find the results

Ǎx = Âx + [O[0](z)− (1/2)x2O[2](z) + (1/24)x4O[4](z) + · · · ]
+ [−xE[2](z) + (1/6)x3E[4](z) + · · · ],

(15.6.18)

Ǎz = Âz + [xO[1](z)− (1/6)x3O[3](z) + (1/120)x5O[5](z) + · · · ]
+ [E[1](z)− (1/2)x2E[3](z) + (1/24)x4E[5](z) + · · · ].

(15.6.19)

Evidently, by a suitable choice of O[0](z) and E[0](z), we are able to make some further
adjustments to Ǎx and Ǎz while keeping the gauge Coulomb and vertical free.
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15.6.2 Normal Dipole Example

As an example of the further gauge freedom just described, let us consider the case of a

normal dipole whose Coulomb-gauge vector potential Â
1,s

is given by (5.95) through (5.97).
We will first perform a succession of gauge transformations to make the vector potential
vertical free while maintaining its Coulomb nature. Then we will adjust its x component.

To begin, use a λ, which we will denote by the symbols λ3, for which all the L
[0]
m,α(z) are

zero save for L
[0]
3,c(z). Then, from (6.6), we find through terms of degree six the result

Λ3,c(ρ, z) = L
[0]
3,c(z)ρ3 − (1/16)L

[2]
3,c(z)ρ5 + · · · , (15.6.20)

from which it follows, using (6.5), that

λ3 = (cos 3φ)Λ3,c(ρ, z) = (cos 3φ)[L
[0]
3,c(z)ρ3 − (1/16)L

[2]
3,c(z)ρ5 + · · · ]

= (x3 − 3xy2)L
[0]
3,c(z)− (1/16)(x5 − 2x3y2 − 3xy4)L

[2]
3,c(z) + · · · .

(15.6.21)

This λ3 has the gradients

(∇λ3)x = 3(x2 − y2)L
[0]
3,c(z)− (1/16)(5x4 − 6x2y2 − 3y4)L

[2]
3,c(z) + · · · , (15.6.22)

(∇λ3)y = −6xyL
[0]
3,c(z) + (1/16)(4x3y + 12xy3)L

[2]
3,c(z) + · · · , (15.6.23)

(∇λ3)z = (x3 − 3xy2)L
[1]
3,c(z)− (1/16)(x5 − 2x3y2 − 3xy4)L

[3]
3,c(z) + · · · . (15.6.24)

Let use employ λ3 to produce a transformed vector potential A′ using the relation

A′ = Â
1,s

+∇λ3. (15.6.25)

Then, from (5.95) through (5.97) and (6.22) through (6.25), we find the results

A′x = (x2 − y2)[(1/4)C
[1]
1,s(z) + 3L

[0]
3,c(z)]

− (1/48)(x4 − y4)C
[3]
1,s(z)− (1/16)(5x4 − 6x2y2 − 3y4)L

[2]
3,c(z) + · · · ,

(15.6.26)

A′y = xy[(1/2)C
[1]
1,s(z)− 6L

[0]
3,c(z)]

− (1/24)(x3y + xy3)C
[3]
1,s(z) + (1/16)(4x3y + 12xy3)L

[2]
3,c(z) + · · · ,

(15.6.27)

A′z = −xC [0]
1,s(z) + (1/8)(x3 + xy2)C

[2]
1,s(z)− (1/192)(x5 + 2x3y2 + xy4)C

[4]
1,s(z)

+ (x3 − 3xy2)L
[1]
3,c(z)− (1/16)(x5 − 2x3y2 − 3xy4)L

[3]
3,c(z) + · · · .

(15.6.28)
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Observe that we can make the leading term of A′x vanish by setting

[(1/4)C
[1]
1,s(z) + 3L

[0]
3,c(z)] = 0. (15.6.29)

Or, we can make the leading term of A′y vanish by setting

[(1/2)C
[1]
1,s(z)− 6L

[0]
3,c(z)] = 0. (15.6.30)

Suppose we decide to make the leading term of A′y vanish. Then we have the relation

L
[0]
3,c(z) = (1/12)C

[1]
1,s(z), (15.6.31)

from which it follows that
L

[1]
3,c(z) = (1/12)C

[2]
1,s(z), (15.6.32)

L
[2]
3,c(z) = (1/12)C

[3]
1,s(z), (15.6.33)

L
[3]
3,c(z) = (1/12)C

[4]
1,s(z), etc. (15.6.34)

When this is done, A′ takes the form

A′x = (1/2)(x2 − y2)C
[1]
1,s(z)− (1/192)(9x4 − 6x2y2 − 7y4)C

[3]
1,s(z) + · · · , (15.6.35)

A′y = −(1/48)(x3y − xy3)C
[3]
1,s(z) + · · · , (15.6.36)

A′z = −xC [0]
1,s(z) + (1/24)(5x3 − 3xy2)C

[2]
1,s(z)− (1/96)(x5 − xy4)C

[4]
1,s(z) + · · · .

(15.6.37)

At this point, as a sanity check on the algebra used to yield (6.35) through (6.37), the reader
should verify (through the order of the terms retained) that A′ is still Coulombic and its
components are still harmonic.

Let us see if we can make the next term in A′y vanish by performing an additional gauge
transformation. Suppose we make a further gauge transformation using a λ, which we will
call λ5, for which all the L

[0]
m,α(z) are zero save for L

[0]
5,c(z). Then we find through terms of

degree six the result
Λ5,c(ρ, z) = L

[0]
5,c(z)ρ5 + · · · , (15.6.38)

from which it follows that

λ5 = (cos 5φ)Λ5,c(ρ, z) = (cos 5φ)[L
[0]
5,c(z)ρ5 + · · · ]

= (x5 − 10x3y2 + 5xy4)L
[0]
5,c(z) + · · · . (15.6.39)

This λ has the gradients

(∇λ5)x = (5x4 − 30x2y2 + 5y4)L
[0]
5,c(z) + · · · , (15.6.40)

(∇λ5)y = −20(x3y − xy3)L
[0]
5,c(z) + · · · , (15.6.41)
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(∇λ5)z = (x5 − 10x3y2 + 5xy4)L
[1]
5,c(z). (15.6.42)

Correspondingly, we will define a further transformed vector potential A′′ by writing

A′′ = A′ +∇λ5. (15.6.43)

Then, using (6.35) through (6.37) and (6.40) through (6.43), A′′ takes the form

A′′x = (1/2)(x2 − y2)C
[1]
1,s(z)− (1/192)(9x4 − 6x2y2 − 7y4)C

[3]
1,s(z)

+ (5x4 − 30x2y2 + 5y4)L
[0]
5,c(z) + · · · ,

(15.6.44)

A′′y = −(1/48)(x3y − xy3)C
[3]
1,s(z)− 20(x3y − xy3)L

[0]
5,c(z) + · · · ,

(15.6.45)

A′′z = −xC [0]
1,s(z) + (1/24)(5x3 − 3xy2)C

[2]
1,s(z)− (1/96)(x5 − xy4)C

[4]
1,s(z)

+ (x5 − 10x3y2 + 5xy4)L
[1]
5,c(z) + · · · .

(15.6.46)

We see that A′′y will vanish through terms of degree four provided L
[0]
5,c(z) is selected to satisfy

the relation
L

[0]
5,c(z) = −(1/960)C

[3]
1,s(z), (15.6.47)

from which it follows that

L
[1]
5,c(z) = −(1/960)C

[4]
1,s(z), etc. (15.6.48)

When this condition is met, A′′ takes the form

A′′x = (1/2)(x2 − y2)C
[1]
1,s(z)− (1/96)(5x4 − 6x2y2 − 3y4)C

[3]
1,s(z) + · · · , (15.6.49)

A′′y = 0 + · · · , (15.6.50)

A′′z = −xC [0]
1,s(z) + (1/24)(5x3 − 3xy2)C

[2]
1,s(z)

− (1/960)(11x5 − 10x3y2 − 5xy4)C
[4]
1,s(z) + · · · .

(15.6.51)

(Here the reader should again perform Coulombic and harmonic sanity checks.) We have
achieved, through terms of degree four, a vertical-free Coulomb gauge vector potential for
the normal dipole.

There is still the possibility of adjusting the x (and correspondingly the z component) of
A′′ by making yet another gauge transformation using the harmonic function τ(x, z) given
by (6.14). We define a still further transformed vector potential A′′′ by writing

A′′′ = A′′ +∇τ. (15.6.52)
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So doing gives the result

A′′′x = O[0](z)− xE[2](z) + (1/2)(x2 − y2)C
[1]
1,s(z)− (1/2)x2O[2](z)

+ (1/6)x3E[4](z)− (1/96)(5x4 − 6x2y2 − 3y4)C
[3]
1,s(z) + (1/24)x4O[4](z) + · · · ,

(15.6.53)

A′′′y = 0 + · · · , (15.6.54)

A′′′z = E[1](z)− xC [0]
1,s(z) + xO[1](z)− (1/2)x2E[3](z)

+ (1/24)(5x3 − 3xy2)C
[2]
1,s(z)− (1/6)x3O[3](z) + (1/24)x4E[5](z)

− (1/960)(11x5 − 10x3y2 − 5xy4)C
[4]
1,s(z) + (1/120)x5O[5](z) + · · · .

(15.6.55)

Here the functions O[0](z) and E[1](z) are arbitrary except that they must vanish as |z| → ∞.

Exercises

15.6.1. Verify that the vector potential A′′ given by (6.49) through (6.51) yields the mag-
netic field B given by (3.58) through (3.60), and is Coulombic and harmonic.

15.6.2. Review Exercise 4.4 and, in particular, the vector potential given by (4.58) through
(4.60). Show that this vector potential is in neither the azimuthal-free nor the Coulomb
gauge. Let χ be the function

χ(x, z) = −
∞∑
n=1

(−1)n[1/(2n+ 1)!]x2n+1O[2n−1](z)

= (1/6)x3O[1](z)− (1/120)x5O[3](z) + · · · . (15.6.56)

Define a vector potential Â
iwd

by the making the gauge transformation

Â
iwd

= Aiwd +∇χ. (15.6.57)

Show that

Âiwd
x =

∞∑
n=1

(−1)n[1/(2n)!]y2nO[2n−1](z)−
∞∑
n=1

(−1)n[1/(2n)!]x2nO[2n−1](z)

= −(1/2)(y2 − x2)O[1](z) + (1/24)(y4 − x4)O[3](z) + · · · , (15.6.58)

Âiwd
y = 0, (15.6.59)

Âiwd
z = −

∞∑
n=0

(−1)n[1/(2n+ 1)!]x2n+1O[2n](z)

= −xO[0](z) + (1/6)x3O[2](z)− (1/120)x5O[4](z) + · · · . (15.6.60)
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Thus, the vector potential Â
iwd

is vertical free. Show that Â
iwd

is also in the Coulomb
gauge, and that all its Cartesian components are harmonic functions.

Equations (6.49) through (6.51) give the vector potential in the vertical-free Coulomb

gauge corresponding to the C
[n]
1,s. Change notation to call this result Ā

1,s
,

Ā1,s
x = (1/2)(x2 − y2)C

[1]
1,s(z)− (1/96)(5x4 − 6x2y2 − 3y4)C

[3]
1,s(z) + · · · , (15.6.61)

Ā1,s
y = 0 + · · · , (15.6.62)

Ā1,s
z = −xC [0]

1,s(z) + (1/24)(5x3 − 3xy2)C
[2]
1,s(z)

− (1/960)(11x5 − 10x3y2 − 5xy4)C
[4]
1,s(z) + · · · .

(15.6.63)

Show, by analogous calculations, that the vector potential in the vertical-free Coulomb gauge
corresponding to the C

[n]
3,s is given by the relations

Ā3,s
x = (1/4)(x4 − 6x2y2 + y4)C

[1]
3,s(z) + · · · , (15.6.64)

Ā3,s
y = 0, (15.6.65)

Ā3,s
z = −(x3 − 3xy2)C

[0]
3,s(z) + (1/80)(7x5 − 30x3y2 − 5xy4)C

[2]
3,s(z) + · · · . (15.6.66)

Use these results to find, through terms of degree four, the Coulombic and vertical-free
vector potential for the infinite-width dipole, and show that your results agree with (6.58)
through (6.60).

Note that again, as was the case for the vector potentials found in Exercise 3.4, that the
vector potential is primarily in the z direction.

Study Appendix H.3.3, which finds a Coulombic and horizontal-free vector potential for
the infinite-width dipole.

15.6.3. Review Exercise 4.7. Show that, under the same assumptions, (4.66) and (4.67)
also hold in the Coulomb gauge.

15.6.4. The relations (5.32) through (5.34) provide expansions for the components of Â0,
the m = 0 vector potential in the symmetric Coulomb gauge. Find the first few terms in
the expansions for the components of Ã0, the vector potential for the m = 0 case in the
vertical-free Coulomb gauge. Recall (6.11) through (6.13).

15.7 Determination of the Vector Potential:

Poincaré-Coulomb Gauge

Assuming m 6= 0, the relations (4.15) through (4.26) provide, through all orders, formulas
for the azimuthal-free gauge vector potential in terms of the on-axis gradients. And, for all
values of m, the relations (5.83) through (5.94) provide, again through all orders, formulas
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for the symmetric Coulomb-gauge vector potential in terms of the on-axis gradients. For
general m and through all orders, are there relations that provide formulas for the Poincaré-
Coulomb gauge vector potential in terms of the on-axis gradients? The purpose of this
section is to explore this question.

At this point it is necessary to be precise about what we wish to accomplish. Recall the
vectors R, R0, and r introduced in Subsection 2.1 by writing (2.3). Since the axis of any
of the straight beam-line elements we are considering is supposed to lie along the z axis, we
stipulate that R0 be of the form

R0 = (0, 0, Z0). (15.7.1)

Correspondingly, R then takes the form

R = (x, y, Z0 + z) (15.7.2)

where x and y are assumed to be small, and z may or may not also be small depending on
the choice of Z0.

Let Âm,α be the symmetric Coulomb gauge vector potential of Section 5. In view of (7.2)
we may write

Âm,α(R) = Âm,α(x, y, Z0 + z). (15.7.3)

Assuming it exists, let us introduce the symbols PAm,α(x, y, z;Z0) to denote the Poincaré-
Coulomb gauge counterpart to the vector potential Âm,α. Since we require that these vector
potentials produce the same magnetic field,

∇× Âm,α(x, y, Z0 + z) = ∇× PAm,α(x, y, z;Z0), (15.7.4)

they must be related by a gauge transformation of the form

PAm,α(x, y, z;Z0) = Âm,α(x, y, Z0 + z) +∇χ̂Pm,α (15.7.5)

described by the gauge function χ̂Pm,α(x, y, z;Z0). Here

∇ = (∂/∂x, ∂/∂y, ∂/∂z), (15.7.6)

and
∇χ̂Pm,α = ∇χ̂Pm,α(x, y, z;Z0). (15.7.7)

Since both PAm,α and Âm,α are supposed to be in the Coulomb gauge, i.e. divergence free,
we see from (7.5) that the function χ̂Pm,α must be harmonic,

∇2χ̂Pm,α(x, y, z;Z0) = 0. (15.7.8)

Finally if PAm,α is to be in the Poincaré-Coulomb gauge, then from (7.5) we see that χ̂Pm,α
must satisfy the further condition

r · ∇χ̂Pm,α = −r · Âm,α. (15.7.9)

Our task now is to find the functions χ̂Pm,α(x, y, z;Z0) in terms of the on-axis gradients.
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15.7.1 The m = 0 Case

Observe that the m = 0 symmetric Coulomb gauge vector potential Â0 given by (5.37)
through (5.39) has only a φ component. It follows, from the fact that the eρ, eφ, ez form
an orthonormal triad and (2.20), that there is the relation

r · Â0(R) = 0. (15.7.10)

Alternatively, this same relation follows from (5.32) through (5.34) and (2.5). Either way,
we conclude that Â0, when evaluated with respect to any origin on the z axis, is in the
Poincaré-Coulomb gauge.

Also, Â0 can be expressed in terms of on-axis gradients. Indeed, in terms of the variables
employed in this section, the relations (5.32) through (5.34) and (5.36) take the form

Â0
x(x, y, Z0 + z) = −(y/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (Z0 + z)(x2 + y2)`

= −(y/2)[C
[1]
0 (Z0 + z)− (1/8)C

[3]
0 (Z0 + z)(x2 + y2) + · · · ],

(15.7.11)

Â0
y(x, y, Z0 + z) = (x/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (Z0 + z)(x2 + y2)`

= (x/2)[C
[1]
0 (Z0 + z)− (1/8)C

[3]
0 (Z0 + z)(x2 + y2) + · · · ],

(15.7.12)

Â0
z(x, y, Z0 + z) = 0, (15.7.13)

where

C
[1]
0 (Z0 + z) = Bz(0, 0, Z0 + z). (15.7.14)

15.7.2 The m ≥ 1 Cases

We have seen that for the case m = 0 the symmetric Coulomb gauge vector potential Â0

is in the Poincaré-Coulomb gauge. What can be said about the cases m ≥ 1? Can we
construct, from the on-axis gradients, a vector potential in the Poincaré-Coulomb gauge for
these cases? Here we assume that the expansion point R0 has been selected such that r is
small, at least initially. Subsequently we will require that x and y remain small, but may
allow z to become large.

In cylindrical coordinates the gradient operator takes the form

∇ = eρ(∂/∂ρ) + eφ(1/ρ)(∂/∂φ) + ez(∂/∂z). (15.7.15)

It follows from (2.20) and (7.15) that

r · ∇ = ρ(∂/∂ρ) + z(∂/∂z). (15.7.16)
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Also, we conclude from (2.20) and (2.21) that

r · Âm,α = ρÂm,αρ + zÂm,αz . (15.7.17)

Upon combining (7.9), (7.16), and (7.17) we see that χ̂Pm,α must satisfy the equation

[ρ(∂/∂ρ) + z(∂/∂z)]χ̂Pm,α = −(ρÂm,αρ + zÂm,αz ). (15.7.18)

Since the χ̂Pm,α are known to be harmonic, and in view of (3.33), let us make the Ansätze

χ̂Pm,c(x, y, z;Z0) = − sin(mφ)
∞∑
k=0

(−1)k
m!

22kk!(k +m)!
D[2k]
m,c(z;Z0)ρ2k+m, (15.7.19)

χ̂Pm,s(x, y, z;Z0) = cos(mφ)
∞∑
k=0

(−1)k
m!

22kk!(k +m)!
D[2k]
m,s(z;Z0)ρ2k+m, (15.7.20)

where the functions D
[0]
m,α(z;Z0) are yet to be determined. [Note that these D functions

are not to be confused with those appearing in (5.53).] Recall that in Subsection 15.4.2 we
found the Coulomb gauge results

Âm,cρ = −(1/2)(sinmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (Z0 + z)ρ2`+m+1, (15.7.21)

Âm,cz = (sinmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(Z0 + z)ρ2`+m; (15.7.22)

Âm,sρ = (1/2)(cosmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (Z0 + z)ρ2`+m+1, (15.7.23)

Âm,sz = −(cosmφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(Z0 + z)ρ2`+m. (15.7.24)

[Here we have again employed the variables of this section in writing (7.21) through (7.24).]
We observe that the operator appearing on the left side of (7.18) does not involve the variable
φ. Therefore, we may cancel like trigonometric factors appearing on the right and left sides
of (7.18) to find, in the case α = c, the requirement

[ρ(∂/∂ρ) + z(∂/∂z)][
∞∑
k=0

(−1)k
m!

22kk!(k +m)!
D[2k]
m,c(z;Z0)ρ2k+m] =

−(ρ/2)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,c (Z0 + z)ρ2`+m+1

+z
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(Z0 + z)ρ2`+m; (15.7.25)
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and, in the case α = s, the requirement

[ρ(∂/∂ρ) + z(∂/∂z)][
∞∑
k=0

(−1)k
m!

22kk!(k +m)!
D[2k]
m,s(z;Z0)ρ2k+m] =

−(ρ/2)
∞∑
`=0

(−1)`
m!

22``!(`+m+ 1)!
C [2`+1]
m,s (Z0 + z)ρ2`+m+1

+z
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(Z0 + z)ρ2`+m. (15.7.26)

Note the pleasant fact that the requirements (7.25) and (7.26) are identical in form. The
operator on the left sides of (7.25) and (7.26) may be moved under the summation sign and
allowed to work its will. For example, there is the general result

[ρ(∂/∂ρ) + z(∂/∂z)][D[2k]
m,α(z;Z0)ρ2k+m] = [(2k +m)D[2k]

m,α(z;Z0) + zD[2k+1]
m,α (z;Z0)]ρ2k+m.

(15.7.27)

Also, the indicated multiplications on the right sides of (7.25) and (7.26) can be carried out.
The net result of these two manipulations is the requirement

∞∑
k=0

[(−1)k
m!

22kk!(k +m)!
][(2k +m)D[2k]

m,α(z;Z0) + zD[2k+1]
m,α (z;Z0)]ρ2k+m =

∞∑
`=0

(−1)`+1 m!

22`+1`!(`+m+ 1)!
C [2`+1]
m,α (Z0 + z)ρ2`+m+2

+
∞∑
`=0

(−1)`
m!

22``!(`+m)!
zC [2`]

m,α(Z0 + z)ρ2`+m. (15.7.28)

Let us equate the coefficients of powers of ρ on both sides of (7.28) to obtain, we hope,

relations that will specify the D
[2k]
m,α(z;Z0) in terms of the C

[2`]
m,α(Z0 + z). The lowest power

of ρ on the left side of (7.28) occurs for k = 0, and is ρm. Its coefficient is

Coefficient of ρm on left side = mD[0]
m,α(z;Z0) + zD[1]

m,α(z;Z0). (15.7.29)

The lowest power of ρ on the right side of (7.28) occurs for ` = 0, and is also ρm. Its
coefficient is

Coefficient of ρm on right side = zC [0]
m,α(Z0 + z). (15.7.30)

We conclude, so far, that there is the requirement that D
[0]
m,α(z;Z0) must satisfy the differ-

ential equation

zD[1]
m,α(z;Z0) +mD[0]

m,α(z;Z0) = zC [0]
m,α(Z0 + z). (15.7.31)

We now seek to solve (7.31). Begin by multiplying both sides of (7.31) by zm−1 to yield
the result

zmD[1]
m,α(z;Z0) + zm−1mD[0]

m,α(z;Z0) = zmC [0]
m,α(Z0 + z). (15.7.32)
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Observe that

zmD[1]
m,α(z;Z0) + zm−1mD[0]

m,α(z;Z0) = (d/dz)[zmD[0]
m,α(z;Z0)], (15.7.33)

and therefore zm−1 is an integrating factor for (7.31). It follows that (7.31) can be rewritten
in the form

(d/dz)[zmD[0]
m,α(z;Z0)] = zmC [0]

m,α(Z0 + z) (15.7.34)

with the immediate general solution

zmD[0]
m,α(z;Z0) = constant +

∫ z

0

dz′ (z′)mC [0]
m,α(Z0 + z′), (15.7.35)

or

D[0]
m,α(z;Z0) = constant× z−m +

∫ z

0

dz′ (z′/z)mC [0]
m,α(Z0 + z′). (15.7.36)

If we seek a particular solution that is analytic in z, then we must set the constant term to
zero. Also, suppose we introduce a new variable of integration λ by writing

λ = z′/z. (15.7.37)

When these steps are made, (7.36) takes the final form

D[0]
m,α(z;Z0) = z

∫ 1

0

dλ λmC [0]
m,α(Z0 + λz). (15.7.38)

We arrived at the requirement (7.31) by equating the coefficients of the lowest power of
ρm in (7.28). What happens if we equate the coefficients of the higher powers? We hope

nothing new since D
[0]
m,α(z;Z0) is already specified by (7.38). The next highest power of ρ

appearing on the left side of (7.28) is ρm+2, and occurs for k = 1. Its coefficient is

Coefficient of ρm+2 on left side = −[
m!

4(m+ 1)!
][(m+ 2)D[2]

m,α(z;Z0) + zD[3]
m,α(z;Z0)].

(15.7.39)
The next highest power of ρ appearing on the right side of (7.28) is also ρm+2, and occurs
for ` = 0 in the first term on the right and ` = 1 in the second term. Its coefficient is

Coefficient of ρm+2 on right side = −[
m!

2(m+ 1)!
]C [1]

m,α(Z0 + z)− [
m!

4(m+ 1)!
]zC [2]

m,α(Z0 + z).

(15.7.40)
Equating these two coefficients yields the result

(m+ 2)D[2]
m,α(z;Z0) + zD[3]

m,α(z;Z0) = 2C [1]
m,α(Z0 + z) + zC [2]

m,α(Z0 + z). (15.7.41)

Is this result new? It is not. Differentiating both sides of the previous result (7.31) yields
the relation

∂z[zD
[1]
m,α(z;Z0) +mD[0]

m,α(z;Z0)] = ∂z[zC
[0]
m,α(Z0 + z)] (15.7.42)

which, upon expansion, yields the result

zD[2]
m,α(z;Z0) + (1 +m)D[1]

m,α(z;Z0) = zC [1]
m,α(Z0 + z) + C [0]

m,α(Z0 + z). (15.7.43)
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Next, differentiating both sides of (7.43) yields the relation

∂z[zD
[2]
m,α(z;Z0) + (1 +m)D[1]

m,α(z;Z0)] = ∂z[zC
[1]
m,α(Z0 + z) + C [0]

m,α(Z0 + z)] (15.7.44)

which, upon expansion, yields the result

zD[3]
m,α(z;Z0) + (2 +m)D[2]

m,α(z;Z0)] = zC [2]
m,α(Z0 + z) + 2C [1]

m,α(Z0 + z)]. (15.7.45)

We see that this result agrees with (7.41). Further calculation shows that all the results
obtained by equating the coefficients of like powers of ρ on both sides of (7.28) are consistent
with the relation (7.31) and are identical to results that flow from it upon differentiation.

In summary, the χ̂Pm,α are specified by (7.19) and (7.20) in terms of the D
[0]
m,α(z;Z0),

and the D
[0]
m,α(z;Z0) are specified by (7.38) in terms of the C

[0]
m,α(Z0 + z). What remains,

according to (7.5), is to compute ∇χ̂Pm,α. Introduce the notation

∆Am,α = PAm,α − Âm,α = ∇χ̂Pm,α. (15.7.46)

Then, from (7.15), (7.19), and (7.20), we have the relations

∆Am,cρ = (∂/∂ρ)χ̂Pm,c = − sin(mφ)
∞∑
k=0

(−1)k
m!(2k +m)

22kk!(k +m)!
D[2k]
m,c(z;Z0)ρ2k+m−1, (15.7.47)

∆Am,cφ = (1/ρ)(∂/∂φ)χ̂Pm,c = −m cos(mφ)
∞∑
k=0

(−1)k
m!

22kk!(k +m)!
D[2k]
m,c(z;Z0)ρ2k+m−1,

(15.7.48)

∆Am,cz = (∂/∂z)χ̂Pm,c = − sin(mφ)
∞∑
k=0

(−1)k
m!

22kk!(k +m)!
D[2k+1]
m,c (z;Z0)ρ2k+m; (15.7.49)

∆Am,sρ = (∂/∂ρ)χ̂Pm,s = cos(mφ)
∞∑
k=0

(−1)k
m!(2k +m)

22kk!(k +m)!
D[2k]
m,s(z;Z0)ρ2k+m−1, (15.7.50)

∆Am,sφ = (1/ρ)(∂/∂φ)χ̂Pm,s = −m sin(mφ)
∞∑
k=0

(−1)k
m!

22kk!(k +m)!
D[2k]
m,s(z;Z0)ρ2k+m−1,

(15.7.51)

∆Am,sz = (∂/∂z)χ̂Pm,s = cos(mφ)
∞∑
k=0

(−1)k
m!

22kk!(k +m)!
D[2k+1]
m,s (z;Z0)ρ2k+m. (15.7.52)

These are the results in cylindrical coordinates. Suppose results in Cartesian coordinates
are desired. The relations (7.49) and (7.52) are already in Cartesian form. The remaining
Cartesian-form results may be found using the relations

∆Am,αx = cosφ ∆Am,αρ − sinφ ∆Am,αφ , (15.7.53)

∆Am,αy = sinφ ∆Am,αρ + cosφ ∆Am,αφ . (15.7.54)

Recall (2.24) and (2.25).
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There are two other points that require discussion. The first, a matter of consistency, is
this: We have found formulas for the ∆Am,α in the case m > 0. What happens when these
formulas are evaluated for m = 0? From (7.47) through (7.49) we immediately see that

∆A0,c = 0, (15.7.55)

and therefore
PA0,c = Â0,c. (15.7.56)

This result is consistent with previous results because we know that Â0,c = Â0 is already
in the Poincaré-Coulomb gauge, and this gauge is unique. What about ∆A0,s? From (3.36)

we recall that C
[0]
0,s(Z0 + z) vanishes, and therefore according to (7.38) all the D

[n]
0,s vanish.

Consequently, according to (7.50) through (7.52), ∆A0,s also vanishes,

∆A0,s = 0. (15.7.57)

Therefore, in view of (5.96), there is the result

PA0,s = 0. (15.7.58)

The second point has to do with the nature of the relation between the Poincaré-Coulomb
vector potential we have found (which we know is unique from the work of Subsection 2.6)
and the on-axis gradients. The relations (4.15) through (4.26) and (5.83) through (5.94)
provide, at any point z, formulas for the vector potential in the azimuthal-free and Coulomb
gauges in terms of the on-axis gradients C

[0]
m,α(z) and their first few derivatives at the same

point z. In particular, if expansions in powers of x and y are required only through some finite
order (as is the case), then only a finite number of derivatives of the C

[0]
m,α(z) are required.

In this sense, we may say that these vector potentials depend locally on the C
[0]
m,α(z). By

contrast, according to (7.38), it appears that computation of the D
[0]
m,α(z;Z0), and therefore

of the vector potential in the Poincaré-Coulomb gauge at this value of z, requires a knowledge
of the C

[0]
m,α(Z0 + z′) over the full interval z′ ∈ [0, z]. Thus the z dependence of the vector

potential in the Poincaré-Coulomb gauge appears to be nonlocal in the C
[0]
m,α(Z0 + z′). This

conclusion is correct if z is large, as it may well be. However if z is small, which will be
the case in the vicinity of the expansion point R0, and if we are content with a polynomial
expansion in powers of z, which is all that is required to find a polynomial expansion of the
Poincaré-Coulomb gauge vector potential in the vicinity of R0, then we can do better. By
Taylor’s/Maclaurin’s theorem we may write

C [0]
m,α(Z0 + λz) = C [0]

m,α(Z0) + C [1]
m,α(Z0)(λz) + (1/2!)C [2]

m,α(Z0)(λz)2

+ (1/3!)C [3]
m,α(Z0)(λz)3 + · · · . (15.7.59)

It follows from (7.38) that

D[0]
m,α(z;Z0) = {[1/(m+ 1)]C [0]

m,α(Z0)}z + {[1/(m+ 2)]C [1]
m,α(Z0)}z2

+ {[1/(m+ 3)](1/2!)C [2]
m,α(Z0)}z3 + {[1/(m+ 4)](1/3!)C [3]

m,α(Z0)}z4 + · · · .
(15.7.60)
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Correspondingly we conclude that, in order to obtain a polynomial expansion of the Poincaré-
Coulomb gauge vector potential in the vicinity of R0, only a finite number of the C

[n]
m,α(Z0)

are required.

The fact that the relation between the Poincaré-Coulomb gauge vector potential and the
C

[0]
m,α(Z0) depends on the expansion point R0 should not be entirely surprising. The defining

requirements (4.2) and (5.1) for the azimuthal-free and Coulomb-gauge vector potentials are
required to hold for all z, and are thus z independent. By contrast, the defining requirement
(2.72) for the Poincaré gauge involves r, which in turn involves the expansion point.

15.8 Relations Between Gauges and Associated

Symplectic Maps

We have found three general vector potentials specified in terms of on-axis gradients, namely
the azimuthal free, symmetric Coulomb, and Poincaré-Coulomb gauge vector potentials. The
purpose of this section is to find, in terms of on-axis gradients, the gauge transformation
functions that interrelate these vector potentials. And, once these gauge transformation
functions are known, there are associated symplectic maps given by relations of the form
(6.2.79). See Exercises 6.2.8 and 6.5.3. These results will be of subsequent use. See, for
example, Subsection 16.1.3.

15.8.1 Transformation Between Azimuthal Free Gauge and
Symmetric Coulomb Gauge

The desired results for this subsection have already been found. The azimuthal free gauge
and symmetric Coulomb gauge vector potentials are related by the gauge transformations
(5.43) employing the gauge functions χm,α. And the gauge functions χm,α are given in terms
of on-axis gradients by the relations (5.75) and (5.76).

15.8.2 Transformation Between Symmetric Coulomb Gauge and
Poincaré-Coulomb Gauge

The desired results for this subsection have also already been found. The symmetric Coulomb
gauge vector potentials and the Poincaré-Coulomb gauge vector potentials are related by
the gauge transformations (7.5) employing the gauge functions χ̂Pm,α. In turn, the gauge

functions χ̂Pm,α are given in terms of the functions D
[2k]
m,α by the relations (7.19) and (7.20).

Finally, the functions D
[0]
m,α are given in terms of the on-axis gradients by the relations (7.38)

or, equivalently, (7.60).
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15.8.3 Transformation Between Azimuthal Free Gauge and
Poincaré-Coulomb Gauge

Suppose (5.43) is added to (7.5). Doing so gives the result

PAm,α(x, y, z;Z0) = Am,α(x, y, Z0 + z) +∇χm,α +∇χ̂Pm,α. (15.8.1)

We see that there is the gauge transformation relation

PAm,α(x, y, z;Z0) = Am,α(x, y, Z0 + z) +∇χPm,α (15.8.2)

where χPm,α is the gauge function

χPm,α(x, y, z;Z0) = χm,α(x, y, Z0 + z) + χ̂Pm,α(x, y, z;Z0). (15.8.3)

15.9 Magnetic Monopole Doublet Example

To validate the numerical methods to be presented in Chapters 17 through 20 and Chapters
23 and 24, it will be useful to have a test problem. One such problem is that of the field of a
monopole doublet. This field has rapid spatial field variations, thereby posing a challenge to
numerical methods, and is also exactly computable in analytic form. The monopole-doublet
problem will also illustrate the methods of Sections 2 and 3 of this chapter.

15.9.1 Magnetic Scalar Potential and Magnetic Field

Specifically, suppose two magnetic monopoles having strengths ±4πg are placed at the
(x, y, z) locations

r+ = (0, a, 0), (15.9.1)

r− = (0,−a, 0). (15.9.2)

See Figure 9.1, which also shows a circular cylinder with radius R (the surface ρ = R).
These monopoles generate a scalar potential ψ(x, y, z) described by the relation

ψ(x, y, z) = −g[x2 + (y − a)2 + z2]−1/2 + g[x2 + (y + a)2 + z2]−1/2

= ψ+(x, y, z) + ψ−(x, y, z). (15.9.3)

[Here the notation is such that ψ+ is singular at r+ and ψ− is singular at r−. We have also
introduced a factor of 4π in the specification of the monopole strengths so that subsequent
formulas such as (9.3) will be free of 4π factors.] Correspondingly, they produce a magnetic
field B = ∇ψ having the components

Bx = gx[x2 + (y − a)2 + z2]−3/2 − gx[x2 + (y + a)2 + z2]−3/2, (15.9.4)

By = g(y − a)[x2 + (y − a)2 + z2]−3/2 − g(y + a)[x2 + (y + a)2 + z2]−3/2, (15.9.5)

Bz = gz[x2 + (y − a)2 + z2]−3/2 − gz[x2 + (y + a)2 + z2]−3/2. (15.9.6)
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This field is sketched in Figure 9.2. To provide further insight, Figure 9.3 shows the on-
axis field component By(x = 0, y = 0, z), and Figures 9.4 and 9.5 show the off-axis field
components Bx(ρ = 1/2, φ = π/4, z) and Bz(ρ = 1/2, φ = π/4, z). In Cartesian coordinates,
the field components Bx and Bz are shown along the line x = y =

√
2/4 cm ' .353 cm,

z ∈ [−∞,∞]. Note that the on-axis field component By(x = 0, y = 0, z) falls off as 1/|z|3
for large |z|, as expected for a doublet of opposite strengths.

z

y

x
+g

-g

Figure 15.9.1: A monopole doublet consisting of two magnetic monopoles of equal and
opposite sign placed on the y axis and centered on the origin. Also shown, for future
reference, is a cylinder with circular cross section placed in the interior field.

At this point the reader might object that this field is unphysical since to this time no
magnetic monopoles are known to exist. However, as far as an observer inside an interior
cylinder of the kind shown in Figure 9.1 is concerned, the field he/she sees is perfectly
possible because within the cylinder it obeys ∇ ·B = 0 and ∇×B = 0.

The radial component Bρ(ρ, φ, z) of B is defined by the relation

Bρ(ρ, φ, z) = (cosφ)Bx + (sinφ)By. (15.9.7)

Recall (2.22). Consequently, using (9.4) and (9.5), we find on the surface ρ = R the result

Bρ(R, φ, z) = gR{[z2 +R2 + a2 − 2aR sinφ]−3/2 − [z2 +R2 + a2 + 2aR sinφ]−3/2}
−ga sinφ{[z2 +R2 + a2 − 2aR sinφ]−3/2 + [z2 +R2 + a2 + 2aR sinφ]−3/2}.

(15.9.8)
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!"

#"

Figure 15.9.2: The interior field of a monopole doublet in the z = 0 plane. Also shown is an
ellipse whose purpose will become clear in Sections 17.4 and 19.2.

– 10 – 5 5 10
z (cm)
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– 0.20
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– 0.10

– 0.05

B  (T)y

Figure 15.9.3: The on-axis field component By(x = 0, y = 0, z) for the monopole doublet in
the case that a = 2.5 cm and g = 1 Tesla-(cm)2. The coordinate z is given in centimeters.
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– 10 – 5 5 10
z (cm)

0.005

0.010

0.015

B  (T)x

Figure 15.9.4: The field component Bx on the line ρ = 1/2 cm, φ = π/4, z ∈ [−∞,∞] for
the monopole doublet in the case that a = 2.5 cm and g = 1 Tesla-(cm)2. In Cartesian
coordinates, this is the line x = y ' .353 cm, z ∈ [−∞,∞]. The coordinate z is given in
centimeters.

To provide a feel for the behavior of Bρ(R, φ, z), Figure 9.6 displays Bρ(R = 2, φ, z = 0) as
a function of φ, and Figure 9.7 shows Bρ(R = 2, φ = π/2, z) as a function of z. We see that
the surface field is rather singular. By contrast the fields shown in Figures 9.3 through 9.5,
which are those at locations interior to this surface, are less singular. This is to be expected
because harmonic functions take their extrema on boundaries.

15.9.2 Analytic On-Axis Gradients for Monopole Doublet

In this subsection we will find analytic expressions for the on-axis gradients for the monopole
doublet. In Chapter 19, numerical results for these gradients will be compared against these
analytic results.

In view of the form of the expansion (3.33) for ψ, let us seek power series expansions for
ψ±(x, y, z) in the variable ρ. In the case of ψ+, for example, we may write

ψ+(x, y, z) = −g[x2 + (y − a)2 + z2]−1/2 = −g[(ρ cosφ)2 + (ρ sinφ− a)2 + z2]−1/2

= −g[a2 + z2 − 2aρ sinφ+ ρ2]−1/2

= −g[a2 + z2]−1/2{1− [2aρ/(a2 + z2)] sinφ+ ρ2/(a2 + z2)}
= −g[a2 + z2]−1/2[1− 2wh+ h2]−1/2 (15.9.9)

where

h = ρ/(a2 + z2)1/2 (15.9.10)
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0.02

0.04

B  (T)z

Figure 15.9.5: The field component Bz on the line ρ = 1/2 cm, φ = π/4, z ∈ [−∞,∞] for
the monopole doublet in the case that a = 2.5 cm and g = 1 Tesla-(cm)2. In Cartesian
coordinates, this is the line x = y ' .353 cm, z ∈ [−∞,∞]. The coordinate z is given in
centimeters.

– 3 – 2 – 1 1 2 3

– 4
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2

4

B  (T)ρ

Φ (rad)

Figure 15.9.6: The quantity Bρ(R, φ, z = 0) for the monopole doublet in the case that R = 2
cm, a = 2.5 cm, and g = 1 Tesla-(cm)2.
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Figure 15.9.7: The quantity Bρ(R, φ = π/2, z) for the monopole doublet in the case that
R = 2 cm, a = 2.5 cm, and g = 1 Tesla-(cm)2. The coordinate z is given in centimeters.

and
w = [a/(a2 + z2)1/2] sinφ. (15.9.11)

Next recall the Legendre polynomial generating function expansion

[1− 2wh+ h2]−1/2 =
∞∑
m=0

hmPm(w). (15.9.12)

Combining (9.9) and (9.12) gives the result

ψ+(x, y, z) = −g[x2 + (y − a)2 + z2]−1/2

= −g[a2 + z2]−1/2

∞∑
m=0

[ρ/(a2 + z2)1/2]mPm(w). (15.9.13)

Similarly, there is the result

ψ−(x, y, z) = g[x2 + (y + a)2 + z2]−1/2

= g[a2 + z2]−1/2

∞∑
m=0

[ρ/(a2 + z2)1/2]mPm(−w). (15.9.14)

It follows, taking into account the parity of the the Legendre polynomials, that ψ has the
expansion

ψ(x, y, z) = −2g[a2 + z2]−1/2

∞∑
n=0

[ρ/(a2 + z2)1/2]2n+1P2n+1(w). (15.9.15)
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From (3.37) through (3.43) we know there are the relations

Ψ0(ρ, z) = [1/(2π)]

∫ 2π

0

dφ ψ(x, y, x), (15.9.16)

Ψm,c(ρ, z) = (1/π)

∫ 2π

0

dφ ψ(x, y, x) cosmφ, (15.9.17)

Ψm,s(ρ, z) = (1/π)

∫ 2π

0

dφ ψ(x, y, x) sinmφ. (15.9.18)

For the case of the monopole doublet we see from (9.11) and (9.15) that ψ is an odd function
of φ. Therefore, for the monopole doublet, we conclude that Ψ0(ρ, z) = 0 and Ψm,c(ρ, z) = 0,
and hence

C
[0]
0 (z) = 0,

C [0]
m,c(z) = 0. (15.9.19)

And for Ψm,s(ρ, z) we find the result

Ψm,s(ρ, z) = −(2g/π)[a2 +z2]−1/2

∞∑
n=0

[ρ/(a2 +z2)1/2]2n+1

∫ 2π

0

dφ P2n+1(w) sinmφ. (15.9.20)

To analyze the integral that occurs on the right side of (9.20), introduce the notation

β(z) = a/(a2 + z2)1/2 (15.9.21)

so that

w = β sinφ. (15.9.22)

With this notation, we must study integrals of the form

cm′,m =

∫ 2π

0

dφ Pm′(β sinφ) sinmφ (15.9.23)

with m′ odd.
To begin, we know from the Taylor expansion for the Legendre polynomials that (for

odd m′)

Pm′(w) = {[(2m′)!]/[2m′(m′!)2]}wm′ + lower odd powers of w. (15.9.24)

We also know (again for odd m′) that

(sinφ)m
′
= (−1)(m′−1)/2(1/2)m

′−1 sinm′φ+ lower odd frequency sinusoidal terms. (15.9.25)

It follows that

cm′,m = 0 for m even, (15.9.26)

cm′,m = 0 for m′ < m, (15.9.27)
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and (with m odd)

cm,m = (−1)(m−1)/2{[(2m)!]/[2m(m!)2]}(1/2)m−1βm
∫ 2π

0

dφ sin2(mφ)

= (−1)(m−1)/2π{[(2m)!]/[22m−1(m!)2]}βm. (15.9.28)

An immediate conclusion (consistent with symmetry considerations, see Subsection 3.5) is
that Ψm,s(ρ, z) = 0 for even m, and hence

C [0]
m,s(z) = 0 for m even. (15.9.29)

Let us insert the results obtained so far into (9.20). Doing so yields the relation

Ψm,s(ρ, z) = −(2g/π)[a2 + z2]−1/2[ρ/(a2 + z2)1/2]mcm,m

−(2g/π)[a2 + z2]−1/2

∞∑
n>n′

[ρ/(a2 + z2)1/2]2n+1c2n+1,m (15.9.30)

where (for m odd)
2n′ + 1 = m. (15.9.31)

Also, we know from (3.39) that

C [0]
m,s(z) = lim

ρ→0
(1/ρm)Ψm,s(ρ, z). (15.9.32)

We conclude that (for m odd)

C [0]
m,s(z) = −(2g/π)(a2 + z2)−1/2(a2 + z2)−m/2cm,m

= −g(−1)(m−1)/2{[(2m)!]/[22m−2(m!)2am+1]}β2m+1(z). (15.9.33)

Note that the C
[0]
m,s(z) have the asymptotic fall off

|C [0]
m,s(z)| ∼ 1/|z|2m+1 (15.9.34)

for large |z|.
Suppose we wish to retain, in the expansion of the Hamiltonian H appearing in (1.3),

homogeneous polynomials through degree 8. Then, as we see from (1.4), we must retain
homogeneous polynomials in the variables x, y through degree 7 in the expansions of Ax and
Ay, and homogeneous polynomials in the variables x, y through degree 8 in the expansion
of Az. Inspection of (4.21) through (4.26) or (5.89) through (5.94) shows that for the cases

m = 0 or m odd we then need the C
[n]
m,α(z) with (m + n) ≤ 7. And for the cases of even m

we need the C
[n]
m,α(z) with (m+ n) ≤ 8. In particular, for the case of the monopole doublet,

(for which only the generalized gradients with α = s and m odd are nonzero) we need the
following functions:

C
[0]
1,s(z), C

[1]
1,s(z), C

[2]
1,s(z), C

[3]
1,s(z), C

[4]
1,s(z), C

[5]
1,s(z), C

[6]
1,s(z);

C
[0]
3,s(z), C

[1]
3,s(z), C

[2]
3,s(z), C

[3]
3,s(z), C

[4]
3,s(z);

C
[0]
5,s(z), C

[1]
5,s(z), C

[2]
5,s(z);

C
[0]
7,s(z). (15.9.35)
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(See Exercise 7.1.) Graphs of a selected few of these functions, for the monopole doublet in
the case that a = 2.5 cm and g = 1 Tesla-(cm)2, are shown in Figures 9.8 through 9.15. In

these plots z has units of centimeters. Evidently the C
[0]
m,s become ever more highly peaked

with increasing m. Fortunately, when working through some fixed degree, we need fewer
derivatives with increasing m. Note that we expect that the function C

[n]
m,s(z) should have n

zeroes. This is indeed the case, but some of these zeroes can be hidden in the tails. Figure
9.10 is an enlargement of Figure 9.9 showing a hidden zero for the case of C

[6]
1,s(z).

– 10 – 5 5 10
z (cm)

– 0.30

– 0.25

– 0.20

– 0.15

– 0.10

– 0.05

C   (z)1,s
[0]

Figure 15.9.8: The on-axis gradient function C
[0]
1,s for the monopole doublet in the case that

a = 2.5 cm and g = 1 Tesla-(cm)2.
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– 10 – 5 5 10
z (cm)

– 1.0

– 0.5

0.5

1.0

1.5

2.0

C   (z)1,s
[6]

Figure 15.9.9: The on-axis gradient function C
[6]
1,s for the monopole doublet in the case that

a = 2.5 cm and g = 1 Tesla-(cm)2.

5 6 7 8 9 10
z (cm)

– 0.0015

– 0.0010

– 0.0005

0.0005

0.0010

0.0015

C   (z)1,s
[6]

Figure 15.9.10: An enlargement of a portion of Figure 9.9 showing a zero hidden in a tail.
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– 10 – 5 0 5 10
z (cm)

0.005

0.010

0.015

0.020

0.025

0.030

C   (z)3,s
[0]

Figure 15.9.11: The on-axis gradient function C
[0]
3,s for the monopole doublet in the case that

a = 2.5 cm and g = 1 Tesla-(cm)2.

– 10 – 5 5 10
z (cm)

– 0.05

0.05

0.10

0.15

C   (z)3,s
[4]

Figure 15.9.12: The on-axis gradient function C
[4]
3,s for the monopole doublet in the case that

a = 2.5 cm and g = 1 Tesla-(cm)2.
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– 10 – 5 5 10
z (cm)

– 0.004

– 0.003

– 0.002

– 0.001

C   (z)5,s
[0]

Figure 15.9.13: The on-axis gradient function C
[0]
5,s for the monopole doublet in the case that

a = 2.5 cm and g = 1 Tesla-(cm)2.

– 10 – 5 5 10
z (cm)

– 0.002

0.002

0.004

0.006

C   (z)5,s
[2]

Figure 15.9.14: The on-axis gradient function C
[2]
5,s for the monopole doublet in the case that

a = 2.5 cm and g = 1 Tesla-(cm)2.
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– 10 – 5 0 5 10
z (cm)

0.0001

0.0002

0.0003

0.0004

0.0005

C   (z)7,s
[0]

Figure 15.9.15: The on-axis gradient function C
[0]
7,s for the monopole doublet in the case that

a = 2.5 cm and g = 1 Tesla-(cm)2.

Exercises

15.9.1. Explain why Figures 9.3 and 9.8 should be the same.

15.10 Minimum Vector Potential for Magnetic

Monopole Doublet

The purpose of this section is to find the first few terms in the expansion of the minimum
(Poincaré-Coulomb gauge) vector potential for a magnetic monopole doublet. We will first
find the minimum vector potential in terms of the scalar potential and its associated magnetic
field using the results of Subsection 2.7. Then we will find the minimum vector potential in
terms of the on-axis gradients using the results of Section 7.

In particular, we will be interested in expansions for the fringe-field regions and in the
midplane. Suppose the doublet is located at the origin R = (0, 0, 0) as in Subsection 9.1,
and we seek an expansion about the mid-plane point R0 = (X0, 0, Z0). If Z0 � 0, we will
obtain an expansion in the leading fringe-field region, and if Z0 � 0, we will obtain an
expansion in the trailing fringe-field region. Moreover, if X0 = 0, the expansion will be on
axis; and setting X0 6= 0 allows for expansion about a point on the (curved) design orbit.
See Section 23.3 and Figures 23.3.1 and 24.1.1.
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15.10.1 Computation from the Scalar Potential and Associated
Magnetic Field

We begin by specifying the scalar potential Ψ(R). According to (9.3), it is given by the
relation

Ψ(X, Y, Z) = −g[X2 + (Y − a)2 + Z2]−1/2 + g[X2 + (Y + a)2 + Z2]−1/2. (15.10.1)

Next, according to (2.4), ψ(r) is given by the relation

ψ(x, y, z) = Ψ(R0 + r)

= −g[(X0 + x)2 + (y − a)2 + (Z0 + z)2]−1/2

+g[(X0 + x)2 + (y + a)2 + (Z0 + z)2]−1/2.

(15.10.2)

The right side of (10.2) can now be expanded in powers of the components of r. Doing so
yields, for the first few terms, the result

ψ(r;X0, Z0) = [−2ga/(X2
0 + Z2

0 + a2)3/2]y

+[6ga/(X2
0 + Z2

0 + a2)5/2][y(X0x+ Z0z)]

+ terms of order 3 and higher. (15.10.3)

Note that Ψ(X0, 0, Z0) vanishes so that there is no constant term in the expansion (10.3).
We observe that the first term in (10.3) falls off as (1/|X0|)3 or (1/|Z0|)3 for large |X0| or
|Z0|, and the second falls off as (1/|X0|)4 or (1/|Z0|)4. In general, successive terms fall off
with ever increasing powers of (1/|X0|) or (1/|Z0|).

Let us compute the magnetic field B associated with the first two terms in (10.3). We
find the result

B(r;X0, Z0) = −[2ga/(X2
0 + Z2

0 + a2)3/2]ey

+[6ga/(X2
0 + Z2

0 + a2)5/2](X0x+ Z0z)ey

+[6ga/(X2
0 + Z2

0 + a2)5/2][y(X0ex + Z0ez)]. (15.10.4)

Next let us find the minimum vector potential Amin associated with the first two terms
in (10.3). Begin by decomposing B into homogeneous polynomials by rewriting (10.4) in
the form (2.109) with

B0(r;X0, Z0) = −[2ga/(X2
0 + Z2

0 + a2)3/2]ey (15.10.5)

and

B1(r;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2][(X0x+ Z0z)ey + y(X0ex + Z0ez)]. (15.10.6)

The minimum vector potential associated with this magnetic field is given by the relations
(2.109) through (2.111). Working out the indicated cross products yields the results

Amin 1(r;X0, Z0) = [ga/(X2
0 + Z2

0 + a2)3/2](−zex + xez), (15.10.7)
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Amin 2(r;X0, Z0) = [−2ga/(X2
0 + Z2

0 + a2)5/2]×
[(Z0y

2 − Z0z
2 −X0xz)ex + (X0yz − Z0xy)ey + (X0x

2 + Z0xz −X0y
2)ez].

(15.10.8)

Simple calculation verifies that there are the relations

∇×Amin 1(r;X0, Z0) = B0(r;X0, Z0), (15.10.9)

∇×Amin 2(r;X0, Z0) = B1(r;X0, Z0), (15.10.10)

as desired. We note that Amin 1 falls off as (1/|X0|)3 or (1/|Z0|)3 for large |X0| or |Z0|,
and Amin 2 falls off as (1/|X0|)4 or (1/|Z0|)4. In general, successive Amin n fall off with ever
increasing powers of (1/|X0|) or (1/|Z0|).

15.10.2 Computation from the On-Axis Gradients

The m = 1 and α = s vector potential in the symmetric Coulomb gauge of Section 5 is given
in terms of on-axis gradients by the relation

Â1,s
x (x, y, Z0+z) = (1/4)(x2−y2)C

[1]
1,s(Z0+z)−(1/48)(x4−y4)C

[3]
1,s(Z0+z)+· · · , (15.10.11)

Â1,s
y (x, y, Z0 + z) = (1/2)xyC

[1]
1,s(Z0 + z)− (1/24)(x3y+xy3)C

[3]
1,s(Z0 + z) + · · · , (15.10.12)

Â1,s
z (x, y, Z0 + z) = −xC [0]

1,s(Z0 + z) + (1/8)(x3 + xy2)C
[2]
1,s(Z0 + z)

−(1/192)(x5 + 2x3y2 + xy4)C
[4]
1,s(Z0 + z) + · · · . (15.10.13)

See (5.97) through (5.99). If we expand Â1,s(x, y, Z0 +z) in powers of z, organize the results
into homogeneous polynomials, and retain only terms of degree less than 3, we find the
results

Â1,s
x (x, y, Z0 + z) = (1/4)(x2 − y2)C

[1]
1,s(Z0) + · · · , (15.10.14)

Â1,s
y (x, y, Z0 + z) = (1/2)xyC

[1]
1,s(Z0) + · · · , (15.10.15)

Â1,s
z (x, y, Z0 + z) = −xC [0]

1,s(Z0)− xzC [1]
1,s(Z0) + · · · . (15.10.16)

The gauge function χ̂P1,s that relates the Coulomb-gauge vector potential Â1,s and the
Poincaré-Coulomb gauge vector potential PA1,s is given by the relation

χ̂P1,s(x, y, z;Z0) = cos(φ)
∞∑
k=0

(−1)k
1!

22kk!(k + 1)!
D

[2k]
1,s (z;Z0)ρ2k+1

= ρ cos(φ)[D
[0]
1,s(z;Z0)− (1/8)ρ2D

[2]
1,s(z;Z0) + (∗)ρ4D

[4]
1,s(z;Z0) + · · · ]

= x[D
[0]
1,s(z;Z0)− (1/8)ρ2D

[2]
1,s(z;Z0) + (∗)ρ4D

[4]
1,s(z;Z0) + · · · ].

(15.10.17)
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See (7.5) and (7.20). We have also found, see (7.60), the relation

D
[0]
1,s(z;Z0) = {[1/(1 + 1)]C

[0]
1,s(Z0)}z + {[1/(1 + 2)]C

[1]
1,s(Z0)}z2

+ {[1/(1 + 3)](1/2!)C
[2]
1,s(0)}z3 + {[1/(1 + 4)](1/3!)C

[3]
1,s(Z0)}z4 + · · ·

= (1/2)C
[0]
1,s(Z0)z + (1/3)C

[1]
1,s(Z0)z2 + (1/8)C

[2]
1,s(Z0)z3 + (1/30)C

[3]
1,s(Z0)z4 + · · · ,

(15.10.18)

from which it follows that

D
[2]
1,s(z;Z0) = (2/3)C

[1]
1,s(Z0) + (3/4)C

[2]
1,s(Z0)z + (2/5)C

[3]
1,s(Z0)z2 + · · · , (15.10.19)

D
[4]
1,s(z;Z0) = (4/5)C

[3]
1,s(Z0) + · · · . (15.10.20)

Inserting these results into (10.17) and collecting terms of like degree give the final homo-
geneous polynomial expansion

χ̂P1,s(x, y, z;Z0) = x[(1/2)C
[0]
1,s(Z0)z + (1/3)C

[1]
1,s(Z0)z2 + (1/8)C

[2]
1,s(Z0)z3 + · · · ]

− (1/8)xρ2[(2/3)C
[1]
1,s(Z0) + (3/4)C

[2]
1,s(Z0)z + (2/5)C

[3]
1,s(Z0)z2 + · · · ]

+ (∗)xρ4[(4/5)C
[3]
1,s(Z0) + · · · ] + · · ·

= {[xz(1/2)]C
[0]
1,s(Z0)}+ {[xz2(1/3)− (1/8)xρ2(2/3)]C

[1]
1,s(Z0)}+ · · ·

= {[(1/2)xz]C
[0]
1,s(Z0)}+ {[(1/3)xz2 − (1/12)xρ2]C

[1]
1,s(Z0)}+ · · · .

(15.10.21)

The next step is to compute the ∆A1,s defined by (7.46). From (10.21) we find the
results

∆A1,s
x = (∂/∂x)χ̂P1,s(x, y, z;Z0)

= {[(1/2)z]C
[0]
1,s(Z0)}+ {[(1/3)z2 − (1/12)(3x2 + y2)]C

[1]
1,s(Z0)}+ · · · ,

(15.10.22)

∆A1,s
y = (∂/∂y)χ̂P1,s(x, y, z;Z0)

= +{[−(1/6)xy]C
[1]
1,s(Z0)}+ · · · ,

(15.10.23)

∆A1,s
z = (∂/∂z)χ̂P1,s(x, y, z;Z0)

= {[(1/2)x]C
[0]
1,s(Z0)}+ {[(2/3)xz]C

[1]
1,s(Z0)}+ · · · .

(15.10.24)

Finally, we may obtain PA1,s with the aid of (7.46) and (10.14) through (10.16). Doing so
gives the results

PA1,s
x (x, y, z;Z0) = (1/4)(x2 − y2)C

[1]
1,s(Z0) + {[(1/2)z]C

[0]
1,s(Z0)}

+ {[(1/3)z2 − (1/12)(3x2 + y2)C
[1]
1,s(Z0)}+ · · ·

= {[(1/2)z]C
[0]
1,s(Z0)}+ {[(1/3)z2 − (1/3)y2]C

[1]
1,s(Z0)}+ · · · ,

(15.10.25)
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PA1,s
y (x, y, z;Z0) = (1/2)xyC

[1]
1,s(Z0) + {[−(1/6)xy]C

[1]
1,s(Z0)}+ · · ·

= {[(1/3)xy]C
[1]
1,s(Z0)}+ · · · , (15.10.26)

PA1,s
z (x, y, z;Z0) = −xC [0]

1,s(Z0)− xzC [1]
1,s(Z0) + {[(1/2)x]C

[0]
1,s(Z0)}

+ {[(2/3)xz]C
[1]
1,s(Z0)} · · ·

= {[−(1/2)x]C
[0]
1,s(Z0)} − {[(1/3)xz]C

[1]
1,s(Z0)}+ · · · . (15.10.27)

How do the results (10.25) through (10.27) compare with the results (10.7) and (10.8)
found in the previous subsection? Suppose Amin 1(r;X0, Z0) and Amin 2(r;X0, Z0) as given
by (10.7) and (10.8) are evaluated at X0 = 0. So doing gives the results

Amin 1(r;X0, Z0)|X0=0 = [ga/(a2 + Z2
0)3/2](−zex + xez), (15.10.28)

Amin 2(r;X0, Z0)|X0=0 = [−2ga/(a2 + Z2
0)5/2]×

[(Z0y
2 − Z0z

2)ex + (−Z0xy)ey + (Z0xz)ez].

(15.10.29)

Also, from (8.21) and (8.33), we find the results

C
[0]
1,s(z) = −g{[2!]/[a2]}β3(z) = −2ga/(a2 + z2)3/2, (15.10.30)

from which it follows that

C
[0]
1,s(Z0) = −2ga/(a2 + Z2

0)3/2, (15.10.31)

C
[1]
1,s(Z0) = 6gaZ0/(a

2 + Z2
0)5/2. (15.10.32)

Consequently, (10.28) and (10.29) can be rewritten in the form

Amin 1(r;X0, Z0)|X0=0 = −(1/2)C
[0]
1,s(Z0)(−zex + xez), (15.10.33)

Amin 2(r;X0, Z0)|X0=0 = (−1/3)C
[1]
1,s(Z0)[(y2 − z2)ex + (−xy)ey + (xz)ez].

(15.10.34)

Comparison of (10.33) and (10.34) with (10.25) through (10.27) reveals that (10.33) agrees
with the first-degree terms in (10.25) through (10.27), and (10.34) agrees with the second-
degree terms in (10.25) through (10.27). Therefore the on-axis minimum vector potential
expansion computed from the scalar potential and associated magnetic field agrees with
the on-axis minimum vector potential expansion computed from the on-axis gradients, as
desired and required.

Finally we remind the reader that, although we have been considering the case of a
monopole doublet field, the relations (10.11) through (10.13) and (10.21) through (10.27)
hold for any m = 1 and α = s magnetic field no matter what its source. The same is true
for the relation

C
[0]
1.s(z) = By(0, 0, z). (15.10.35)

Recall (3.59).
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15.11 Calculation of Scalar and Vector Potentials

from Current Data

The previous sections in this chapter have studied how magnetic fields and vector potentials
may be described in terms of terms of scalar potentials and their various expansions. In this
section we will explore the relation between vector and scalar potentials and the currents
that produce them.

15.11.1 Calculation of Vector Potential from Current Data

15.11.1.1 Preliminary Steps

The vector potential A is a vector field with the property

B = ∇×A (15.11.1)

where B is the underlying magnetic field of physical interest. In the static (no time depen-
dence) case B is given in terms of the current density j(r) by the Biot-Savart law

B(r) = [µ0/(4π)]

∫
d3r′ j(r′)× {(r − r′)/[||(r − r′)||3]}. (15.11.2)

If we define A by the rule

A(r) = [µ0/(4π)]

∫
d3r′ j(r′){1/[||(r − r′)||]}, (15.11.3)

then direct computation shows that this A satisfies (11.1). Indeed, we find

∇×A = −[µ0/(4π)]

∫
d3r′ j(r′)×∇{1/[||(r − r′)||]}

= −[µ0/(4π)]

∫
d3r′ j(r′)× {−(r − r′)/[||(r − r′)||3]}

= B(r). (15.11.4)

We can also verify by direct computation that this A is divergence free,

∇ ·A = [µ0/(4π)]

∫
d3r′ j(r′) · ∇{1/[||(r − r′)||]}

= [µ0/(4π)]

∫
d3r′ j(r′) · ∇′{1/[||(r − r′)||]}

= −[µ0/(4π)]

∫
d3r′ [∇′ · j(r′)]{1/[||(r − r′)||]}

= 0. (15.11.5)

Here we have used integration by parts and the current conservation relation

∇′ · j(r′) = 0. (15.11.6)
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See Exercise 11.2. Therefore the vector potential given by (11.3) is in a Coulomb gauge.
From (11.2) it follows that there is (in the static case) the differential relation

∇×B = µ0j. (15.11.7)

Upon combining (11.1) and (11.7) we see that there is the general result

∇× (∇×A) = −∇2A+∇(∇ ·A) = µ0j. (15.11.8)

And, when (11.5) is taken into account, we see that for the A given by (11.3) there is the
result

−∇2A = µ0j. (15.11.9)

In particular, in current-free regions, the Cartesian components of this A are harmonic
functions. Recall the discussion at the beginning of Section 5. We note that the result
(11.9) can also be found directly from the definition (11.3),

−∇2A(r) = −[µ0/(4π)]

∫
d3r′ j(r′)∇2{1/[||(r − r′)||]}

= −[µ0/(4π)]

∫
d3r′ j(r′)(−4π)δ3(r − r′)

= µ0j(r). (15.11.10)

15.11.1.2 Use of Green Function in Cylindrical Coordinates

Suppose we attempt to compute, in cylindrical coordinates, the vector potential A in terms
of j with the aid of (11.3). To do so we will need the volume element d3r′ in cylindrical
coordinates,

d3r′ = dz′dφ′ρ′dρ′. (15.11.11)

We will also need the Green function 1/[||(r − r′)||] in cylindrical coordinates. It can be
shown that it is given by the relation

1/[||(r − r′)||] = (2/π)
∞∑

m=−∞

exp(imφ) exp(−imφ′)
∫ ∞

0

dk cos[k(z − z′)]Im(kρ<)Km(kρ>).

(15.11.12)
Here

ρ< = the lesser of ρ and ρ′ (15.11.13)

and
ρ> = the greater of ρ and ρ′. (15.11.14)

See the books of Jackson and Arfken listed in the bibliography at the end of this chapter.
As it stands, (11.12) is not exactly in the form we need. It can be verified that there is

the relation ∫ ∞
0

dk cos[k(z − z′)]Im(kρ<)Km(kρ>) =

(1/2)

∫ ∞
−∞

dk exp(ikz) exp(−ikz′)Im(|k|ρ<)Km(|k|ρ>). (15.11.15)
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See exercise 11.3. This relation can be employed in (11.12) to bring it to the form

1/[||(r − r′)||] =

(1/π)
∞∑

m=−∞

exp(imφ) exp(−imφ′)
∫ ∞
−∞

dk exp(ikz) exp(−ikz′)Im(|k|ρ<)Km(|k|ρ>).

(15.11.16)

We remark that (11.16) is known to appear in the literature without the absolute value signs
| ∗ | about k in the arguments of Im and Km. Such appearances are incorrect. They are also
ill defined because Km(w) is not well defined for negative values of w due to logarithmic
terms at the origin.

Let us now employ (11.11) and (11.16) in (11.3) to compute A in terms of j. So doing
gives the result

A(r) = (1/π)

∫
dz′dφ′ρ′dρ′ j(ρ′, φ′, z′)×

∞∑
m=−∞

exp(imφ) exp(−imφ′)
∫ ∞
−∞

dk exp(ikz) exp(−ikz′)Im(|k|ρ<)Km(|k|ρ>).

(15.11.17)

This result can be rearranged to take the form

A(r) = (1/π)
∞∑

m=−∞

exp(imφ)×∫ ∞
−∞

dk exp(ikz)Im(|k|ρ)

∫
dz′dφ′ρ′dρ′ j(ρ′, φ′, z′) exp(−imφ′) exp(−ikz′)Km(|k|ρ′).

(15.11.18)

Here we have assumed that the current j lies outside (vanishes inside) a cylinder of radius a
and we are interested in the vector potential inside the cylinder. Then we have the relations
ρ ∈ (0, a) and ρ′ ∈ (a,∞) so that ρ< = ρ and ρ> = ρ′. Finally, (11.18) can be written in the
more compact form

A(r) = (1/π)
∞∑

m=−∞

exp(imφ)

∫ ∞
−∞

dk exp(ikz)Im(|k|ρ)j̃(m, k) (15.11.19)

where

j̃(m, k) =

∫
dz′dφ′ρ′dρ′ j(ρ′, φ′, z′) exp(−imφ′) exp(−ikz′)Km(|k|ρ′). (15.11.20)

15.11.1.3 Complex Cylindrical Harmonic Expansion

We observe that (11.19) is beginning to take on the appearance of a (complex) cylindrical
harmonic expansion. Following the pattern of Section 15.3.1, let us work to enhance the
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appearance of a cylindrical harmonic expansion. Begin by rewriting (11.19) in the form

A =
∞∑

m=−∞

exp(imφ)Ã(m, ρ, z) (15.11.21)

where

Ã(m, ρ, z) = (1/π)

∫ ∞
−∞

dk exp(ikz)Im(|k|ρ)j̃(m, k). (15.11.22)

Next employ the Taylor expansion (15.3.11) in (11.22). As a first step we see that

Im(|k|ρ) = (1/2)|m||k||m|ρ|m|
∞∑
`=0

(|k|ρ)2`/[22``!(`+ |m|)!]

= (1/2)|m||k||m|ρ|m|
∞∑
`=0

(kρ)2`/[22``!(`+ |m|)!]. (15.11.23)

Consequently, we may rewrite (11.22) in the form

Ã(m, ρ, z) = (1/π)

∫ ∞
−∞

dk j̃(m, k) exp(ikz)Im(|k|ρ) =

(1/π)

∫ ∞
−∞

dk j̃(m, k) exp(ikz)(1/2)|m||k||m|ρ|m|
∞∑
`=0

(kρ)2`/[22``!(`+ |m|)!] =

∞∑
`=0

{1/[22``!(`+ |m|)!]}ρ2`+|m|(1/π)(1/2)|m|
∫ ∞
−∞

dk |k||m|k2`j̃(m, k) exp(ikz).

(15.11.24)

Define (vector) functions C [0](m, z) by writing

C [0](m, z) = (1/π)(1/2)|m|(1/|m|!)
∫ ∞
−∞

dk |k||m|j̃(m, k) exp(ikz). (15.11.25)

Also define functions C [n](m, z) by writing

C [n](m, z) = (∂z)
nC [0](m, z). (15.11.26)

Then, by differentiating under the integral sign, we have the result

C [n](m, z) = in(1/π)(1/2)|m|(1/|m|!)
∫ ∞
−∞

dk |k||m|knj̃(m, k) exp(ikz) (15.11.27)

and, in particular,

C [2`](m, z) = (−1)`(1/π)(1/2)|m|(1/|m|!)
∫ ∞
−∞

dk k2`|k||m|j̃(m, k) exp(ikz). (15.11.28)

Therefore we also write the relation

(1/π)(1/2)|m|(1/|m|!)
∫ ∞
−∞

dk k2`|k||m|j̃(m, k) exp(ikz) = (−1)`|m|!C [2`](m, z). (15.11.29)
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Combining (11.24) and (11.29) gives the results

Ã(m, ρ, z) =
∞∑
`=0

(−1)`|m|!{1/[22``!(`+ |m|)!]}ρ2`+|m|C [2`](m, z), (15.11.30)

And then using (11.21) gives the final result

A(ρ, φ, z) =
∞∑

m=−∞

exp(imφ)
∞∑
`=0

(−1)`|m|!{1/[22``!(`+ |m|)!]}ρ2`+|m|C [2`](m, z). (15.11.31)

15.11.1.4 Real Cylindrical Harmonic Expansion

Section 15.3.2

15.11.2 Calculation of Scalar Potential from Current Data

Exercises

15.11.1. Verify (11.1) through (11.4).

15.11.2. Integration by parts.

15.11.3. The aim of this exercise is to arrive at the relation (11.15). Begin by verifying the
equations listed below: ∫ ∞

0

dk cos[k(z − z′)]Im(kρ<)Km(kρ>) =∫ ∞
0

dk (1/2) exp[k(z − z′)]Im(kρ<)Km(kρ>)

+

∫ ∞
0

dk (1/2) exp[−k(z − z′)]Im(kρ<)Km(kρ>); (15.11.32)

∫ ∞
0

dk cos[k(z − z′)]Im(kρ<)Km(kρ>) =∫ ∞
0

dk (1/2) exp[k(z − z′)]Im(|k|ρ<)Km(|k|ρ>)

+

∫ ∞
0

dk (1/2) exp[−k(z − z′)]Im(|k|ρ<)Km(|k|ρ>); (15.11.33)

∫ ∞
0

dk cos[k(z − z′)]Im(kρ<)Km(kρ>) =∫ ∞
0

dk (1/2) exp[ik(z − z′)]Im(|k|ρ<)Km(|k|ρ>)

+

∫ 0

−∞
dk (1/2) exp[ik(z − z′)]Im(|k|ρ<)Km(|k|ρ>); (15.11.34)
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∫ ∞
0

dk cos[k(z − z′)]Im(kρ<)Km(kρ>) =∫ ∞
−∞

dk (1/2) exp[ik(z − z′)]Im(|k|ρ<)Km(|k|ρ>); (15.11.35)

∫ ∞
0

dk cos[k(z − z′)]Im(kρ<)Km(kρ>) =∫ ∞
−∞

dk (1/2) exp(ikz) exp(−ikz′)Im(|k|ρ<)Km(|k|ρ>). (15.11.36)

Finally, verify that (11.15) follows from (11.28).

15.12 Closing Remarks

15.12.1 Caveat about Significance of Integrated Multipoles

Suppose the relations (3.65) and (3.66) are used to compute the integrals of the transverse
field components Bx(x, y, z) and By(x, y, z) over the range z = −∞ to z = +∞. We observe
that for n ≥ 0 there are the relations∫ ∞

−∞
dz C

[n+2]
0 (z) = C

[n+1]
0 (z)|∞−∞, (15.12.1)

∫ ∞
−∞

dz C [n+1]
m,α (z) = C [n]

m,α(z)|∞−∞. (15.12.2)

Also we know that the C
[n+1]
0 (z) and the C

[n]
m,α(z) vanish at z = ±∞. Consequently, all of

the terms in the sums (3.65) and (3.66) integrate to zero save for those that involve C
[1]
0 (z)

and the C
[0]
m,α(z). We these observations in mind, we find the results

∫ ∞
−∞

dz Bx(x, y, z) =
∞∑
m=0

(m+ 1)ρm cos(mφ)

∫ ∞
−∞

dz C
[0]
m+1,c(z)

+
∞∑
m=0

(m+ 1)ρm sin(mφ)

∫ ∞
−∞

dz C
[0]
m+1,s(z)

=
∞∑

m′=1

m′ρm
′−1 cos[(m′ − 1)φ]

∫ ∞
−∞

dz C
[0]
m′,c(z)

+
∞∑

m′=1

m′ρm
′−1 sin[(m′ − 1)φ]

∫ ∞
−∞

dz C
[0]
m′,s(z),

(15.12.3)
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∫ ∞
−∞

dz By(x, y, z) =
∞∑
m=0

(m+ 1)ρm cos(mφ)

∫ ∞
−∞

dz C
[0]
m+1,s(z)

−
∞∑
m=0

(m+ 1)ρm sin(mφ)

∫ ∞
−∞

dz C
[0]
m+1,c(z)

=
∞∑

m′=1

m′ρm
′−1 cos[(m′ − 1)φ]

∫ ∞
−∞

dz C
[0]
m′,s(z)

−
∞∑

m′=1

m′ρm
′−1 sin[(m′ − 1)φ]

∫ ∞
−∞

dz C
[0]
m′,c(z).

(15.12.4)

Note that (11.3) and (11.4) are consistent with (3.77), (3.78), (3.80), and (3.81).
What are we to conclude from these results? The “multipole” content of a magnet is often

specified, in effect, in terms of the integrated multipole quantities
∫∞
−∞ dz C

[0]
m′,α(z) for m′ =

1, 2, · · · . This is because magnet measurements are frequently made using spinning coils
whose length is such that they extend beyond the ends of the magnets to include the fringe-
field regions. (See Appendix K.) Hence, the use of such coils measures

∫∞
−∞ dz Bx(x, y, z)

and
∫∞
−∞ dz By(x, y, z) which, according to (11.3) and (11.4), is equivalent to measuring the

integrated multipoles. Moreover, the size of the integrated multipoles is often taken as a
figure of merit for any given magnet.

Is this reasonable? We know that some terms of the form exp(: f3 :) exp(: f4 :) · · · in
the transfer map can have deleterious effects on the dynamic aperture. Recall, for example,
Section 1.2.3 which illustrated the effect of the term exp(: q3 :) in the simplest nonlinear case.
We also know that the generators f3, f4, · · · arise from H3, H4, · · · terms in the Hamiltonian.
Finally, we know that nonzero on-axis gradients of the form C

[0]
3,α(z), C

[0]
4,α(z), · · · produce

nonzero terms of the form H3, H4, · · · in the Hamiltonian.10 Therefore, if the integrated
multipoles are large for m′ = 3, 4, · · · , we expect that nonlinear terms in the map will be
important and the dynamic aperture is likely be small. Consequently, a good rule of thumb
would appear to be that the integrated m′ = 3, 4, · · · multipole terms should be small to
minimize possibly deleterious nonlinear terms in the transfer map.

But, while minimizing the integrated multipoles would seem to be a possible way of
minimizing the nonlinear terms in the transfer map, so doing is not necessarily sufficient.
Consider, for example, the transfer map for a composite system consisting of two identical
back-to back sextuples save that they are oppositely powered. All integrated multipoles for
such a system would be exactly zero. However, the transfer map for this system could still
have large nonlinear terms including those with f3 6= 0.11 Observe also that fringe-field terms

10However, nonzero on-axis gradients of the form C
[0]
3,α(z), C

[0]
4,α(z), · · · are not the only source of H3, H4, · · ·

terms in the Hamiltonian. Such terms also arise, for example, from the expansion of the square root in (1.4)
and occur even if Ax = Ay = 0.

11There are at least two other instances of this apparently malevolent principle: The first involves super-
conducting dipoles. They are often equipped with multipole-corrector coil packages at each end. Even if
these coils are powered so that the composite system (dipole plus correctors) has net integrated multipole
values of zero for the first few m′ values (with m′ ≥ 3), so doing does not guarantee that the net transfer map
is free of fn terms for the first few values of n ≥ 3. The second concerns room-temperature quadrupoles.
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contribute to H3, H4, · · · , and therefore can produce nonlinear terms in the transfer map.12

However, as noted earlier, all of the terms in the sums (3.65) and (3.66) integrate to zero save

for those that involve C
[1]
0 (z) and the C

[0]
m,α(z). Consequently all fringe-field terms integrate

to zero, and their presence is therefore undetectable solely from an examination of the values
of the integrated multipoles. Note also that m = 0 (solenoid) terms make no contribution
to the integrated multipoles. However, it can be shown that solenoid fringe-fields make
nonlinear contributions to the transfer map.13

We conclude and emphasize that what is needed for a realistic calculation of transfer
maps are the functions C

[1]
0 (z) and the C

[0]
m,α(z) themselves, and not just their integrals.

15.12.2 Need for Generalized Gradients and the Use of Surface
Data

From the work of the previous sections, we have learned that the dynamics of a charged
particle passing through a region of space occupied by a magnetic field described by the scalar
potential (3.33), or the azimuthal-free vector potential A given by (4.21) through (4.26),
or the symmetric Coulomb gauge vector potential Â given by (5.89) through (5.94), or
their vertical-free and possibly further adjusted variants as illustrated for the normal dipole,
are completely determined by a knowledge of the generalized on-axis gradient functions
C

[1]
0 (z) and C

[0]
m,α(z) and their derivatives. In Chapter 16 we will treat cases for which

the generalized gradients can be computed analytically. In Chapters 17 through 21 we
will describe several general methods for computing the generalized gradients and their
derivatives numerically based on the use of numerical field data on a surface. The surfaces
employed will be those of cylinders with circular, elliptical, or rectangular cross sections.
These methods are smoothing. That is, they have the virtue of being relatively insensitive
to errors in the input data. Consequently, they are ideally suited for numerical use.

15.12.3 Limitations Imposed by Symmetry and Hamilton and
Maxwell

In the introduction to this chapter we noted that there are possible limitations on what
transfer maps can be achieved. The first limitation is that the transfer map must be sym-
plectic. The second arises from the fact that, in many instances, the electric and magnetic
fields within beam-line elements must arise from fields that satisfy the source-free Maxwell
equations. These limitations, combined with symmetry assumptions, may place restrictions
upon what can actually be achieved. For example there is a remarkable theorem, due to
Scherzer, which states that any imaging system having cylindrical symmetry must have neg-
ative spherical aberration. Consequently it is impossible to design, using only electric and

Sometimes they are hand-fitted during manufacture with end shims so that the net integrated m′ = 6 mul-
tipole (which, according to Subsection 3.5, is allowed) is in fact zero. So doing does not guarantee that the
net transfer map is free of f6 terms. For a further discussion of correction methods, see Section 12.11.

12For example, dipole fringe-field effects in the hard-edge limit produce an f4 some of whose terms are
infinite.

13For example, solenoid fringe-field effects in the hard-edge limit also produce an f4 some of whose terms
are infinite.
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magnetic elements with cylindrical symmetry, an electron microscope that is free of spheri-
cal aberration. As a practical consequence, the resolution of such microscopes is limited to
a few Angstroms. To achieve zero spherical aberration it is necessary to break cylindrical
symmetry with the careful use of nonlinear elements such as sextuples or octupoles. This is
now done in the highest resolution electron microscopes with the result that it is now pos-
sible to achieve resolution at the atomic and subatomic level. For a discussion of Scherzer’s
theorem, and the possible correction of spherical aberration, see the reference at the end of
the bibliography for this chapter.

Exercises

15.12.1. Verify that the integrated transverse fields satisfy the transverse Laplace equation,

∇2
⊥

∫ ∞
−∞

dz Bx(x, y, z) = ∇2
⊥

∫ ∞
−∞

dz By(x, y, z) = 0. (15.12.5)

Hint: See Exercise 3.4.
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Chapter 16

Realistic Transfer Maps for Straight
Iron-Free Beam-Line Elements

Chapter 15 described cylindrical harmonic expansions for straight elements, and showed
how the scalar potential, magnetic field, and various vector potentials can be described
in terms of generalized on-axis gradients. In most cases these on-axis gradients must be
computed numerically. How this may be done in general for straight elements is described
in Chapters 17 through 21. However, in some iron-free cases the on-axis gradients can
be computed analytically, including their fringe-field behavior. This chapter treats several
of these cases. We remark that although our discussion is limited to magnetic beam-line
elements, electrostatic beam-line elements can be treated in an analogous way.

In principle, the fringe field of any individual beam-line element at either end of the
element has infinite extent. (This is particularly true of iron-free elements, but is also a
consideration even in the case of some iron-dominated elements.) However in practice in
many instances we may wish to regard a beam line as a collection of separated/isolated
elements. To do this it is necessary to make an approximation in which leading and trailing
end fields are “terminated” in some way. The crucial problem is how to relate canonical
coordinates in the absence of a magnetic field with canonical coordinates in the presence of a
magnetic field. The first part of this chapter is devoted to describing how this problem may
be treated in general for straight beam-line elements. The remaining part of the chapter
treats various specific straight iron-free beam-line elements.

16.1 Terminating End Fields

16.1.1 Preliminary Observations

We begin with some preliminary observations. In Cartesian coordinates the Hamiltonian
describing charged-particle motion with z as the independent variable is given by the relation

K = −[(pcan
t )2/c2 −m2c2 − (pcan

x − qAx)2 − (pcan
y − qAy)2]1/2 − qAz. (16.1.1)

Here we have assumed that the electric scalar potential ψ vanishes and A is static so that
there is no electric field. Also, we have used the notation pcan

x , pcan
y , and pcan

t to indicate
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that it is the components of the canonical momenta that are involved in a Hamiltonian
description of motion. See (1.6.16).

According to Hamilton’s equations of motion, the change of a coordinate, say x(z), with
z is given by

dx/dz = ∂K/∂pcan
x

= (pcan
x − qAx)/[(pcan

t )2/c2 −m2c2 − (pcan
x − qAx)2 − (pcan

y − qAy)2]1/2

= (pcan
x − qAx)/[−(K + qAz)]. (16.1.2)

Let us verify that this result agrees with what we already know. Recall that

K = −pcan
z . (16.1.3)

See (1.6.6). It follows that (1.2) can be rewritten in the form

dx/dz = (pcan
x − qAx)/(pcan

z − qAz). (16.1.4)

According to (1.5.27) through (1.5.30) there is the relation

pcan − qA = pmech (16.1.5)

where pmech is the mechanical momentum given by

pmech = γmv. (16.1.6)

Consequently, (1.4) can be rewritten in the form

dx/dz = pmech
x /pmech

z = γmvx/(γmvz) = vx/vz =
dx/dt

dz/dt
. (16.1.7)

Evidently, the far left and far right sides of (1.7) agree. It is also easy to see that results
analogous to those just found also hold for y(z).

To complete the story we need to examine also the equation of motion for t(z). In this
case application of the standard Hamiltonian rules gives the result

dt/dz = ∂K/∂pcan
t

= (−pcan
t /c2)/[(pcan

t )2/c2 −m2c2 − (pcan
x − qAx)2 − (pcan

y − qAy)2]1/2

= (−pcan
t /c2)/[−(K + qAz)]. (16.1.8)

Now use of (1.3), (1.5), (1.6), and (1.6.17) yields the relation

dt/dz = (−pcan
t /c2)/pmech

z = γm/(γmvz) =
1

dz/dt
(16.1.9)

so that the far left and far right sides of (1.9) also agree.
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16.1.2 Matching Conditions

We now consider what matching conditions should be imposed upon entry and exit of fringe-
field regions. To proceed further it is useful to introduce some notation. Let zen denote the
z value where a transition is to be made from a region where the magnetic field is taken to
vanish to the beginning of the leading fringe-field region. That is, any charged particle in
question enters the leading fringe-field region when z = zen. Similarly, let zex denote the
z value where a transition is to be made from the end of a trailing fringe-field region to a
region where the magnetic field is again taken to vanish. That is, any charged particle in
question exits the trailing fringe-field region when z = zex. Our task is to find matching
relations at zen and zex.

16.1.2.1 Entering a Leading Fringe-Field Region

Let us begin with a consideration of the transition between a field-free region and a leading
fringe-field region. Let Kben be the Hamiltonian before entry into the fringe-field region,
and let Kaen be the Hamiltonian after entry into the fringe-field region. Then, since the
magnetic field and its associated vector potential are assumed to vanish before entry, we
have the relation

Kben = −[(pcanben
t )2/c2 −m2c2 − (pcanben

x )2 − (pcanben
y )2]1/2. (16.1.10)

And, since the magnetic field (and therefore also the vector potential) is nonzero after entry,
we have the relation

Kaen = −[(pcanaen
t )2/c2 −m2c2 − (pcanaen

x − qAx)2 − (pcanean
y − qAy)2]1/2 − qAz. (16.1.11)

Here we have added the suffixes ben and aen to the phase-space coordinates to denote their
values before entry and after entry. Our task is to relate these phase-space coordinates.

As a first step, we naturally require that the coordinates be continous at zen,

xaen = xben, (16.1.12)

yaen = yben, (16.1.13)

taen = tben, (16.1.14)

when z = zen. The next step is specify what is to be done with the momenta.
One possibility is to require that the slopes/“velocities” dx/dz, dy/dz, and dt/dz be

continuous at zen. Let us work out the consequences of such a requirement. Before entry we
have the result

dx/dz = ∂Kben/∂pcanben
x =

pcanben
x /[(pcanben

t )2/c2 −m2c2 − (pcanben
x )2 − (pcanben

y )2]1/2, (16.1.15)

and after entry there is the result

dx/dz = ∂Kaen/∂pcanaen
x =

(pcanaen
x − qAx)/[(pcanaen

t )2/c2 −m2c2 − (pcanaen
x − qAx)2 − (pcanaen

y − qAy)2]1/2.

(16.1.16)
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See (1.2). An analogous result holds for dy/dz. Finally, for dt/dz there is the before entry
result

dt/dz = ∂Kben/∂pcanben
t =

(−pcanben
t /c2)/[(pcanben

t )2/c2 −m2c2 − (pcanben
x )2 − (pcanben

y )2]1/2, (16.1.17)

and the after entry result

dt/dz = ∂Kaen/∂pcanaen
t =

(−pcanaen
t /c2)/[(pcanaen

t )2/c2 −m2c2 − (pcanaen
x − qAx)2 − (pcanaen

y − qAy)2]1/2.

(16.1.18)

See (1.8). Now equate the far right sides of (1.15) and (1.16), the far right sides of their
dy/dz counterparts, and the far right sides of (1.17) and (1.18). So doing yields the transition
matching relations

pcanaen
x − qAx = pcanben

x , (16.1.19)

pcanaen
y − qAy = pcanben

y , (16.1.20)

pcanaen
t = pcanben

t . (16.1.21)

In view of (1.5) the relations (1.19) and (1.20) can also be written in the form

pmechaen
x = pmechben

x , (16.1.22)

pmechaen
y = pmechben

y . (16.1.23)

Moreover, under our assumption that the electrical potential ψ = 0, (1.21) and (1.6.17) yield
the relation

pmechaen · pmechaen = pmechben · pmechben. (16.1.24)

This relation, when combined with (1.22) and (1.23), yields the further result

pmechaen
z = pmechben

z . (16.1.25)

We conclude that imposition of the requirement that the slopes/“velocities” be continuous
entails that the mechanical momenta be continuous.

The relation (1.21) is satisfactory because we would hope that the energy would not
change upon entry into the leading fringe-field region. Again recall (1.6.17). However, we
also desire that the phase-space transition matching relations be a symplectic transformation.
Calculation shows that the transformation given by (1.12) through (1.14) and (1.19) through
(1.21) is not symplectic. Compute the Poisson bracket of the left sides of (1.19) and (1.20)
to find the result

[pcanaen
x − qAx, pcanaen

y − qAy] = [pcanaen
x ,−qAy] + [−qAx, pcanaen

y ]

= q{∂Ay/∂xaen − ∂Ax/∂yaen} = qBz. (16.1.26)

[Recall (1.7.40).] While hopefully small, generally Bz(x, y, z
en) differs from zero at the

beginning of the leading fringe-field region. On the other hand, the Poisson bracket of
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the right sides of (1.19) and (1.20) must vanish since pcanben
x and pcanben

y are supposed to
be canonical momenta. Therefore the phase-space transformation given by (1.12) through
(1.14) and (1.19) through (1.21) is generally not symplectic. Review, at this point, Exercise
6.4.11.

We expect that neglect of the magnetic field in the region z < zen will lead to some error
in trajectories. However, we do not want this error to violate the symplectic condition. The
simplest way to maintain the symplectic condition is to retain the relations (1.12) through
(1.14) and replace the relations (1.19) through (1.21) by the relations

pcanaen
x = pcanben

x , (16.1.27)

pcanaen
y = pcanben

y , (16.1.28)

pcanaen
t = pcanben

t . (16.1.29)

In this case the transition matching relations (1.12) through (1.14) and (1.27) through
(1.29) amount to the identity map I, and the symplectic condition is trivially satisfied.
Now, however, the error in trajectories manifests itself in that the slopes/“velocities” dx/dz,
dy/dz, and dt/dz may be expected to be discontinuous at at zen. Inspection of (1.15) and
(1.16), their dy/dz counterparts, and (1.17) and (1.18) shows that, in lowest approximation,
these discontinuities are proportional to components of A(x, y, zen). Indeed, again in view
of (1.3) and (1.5), the transition relations (1.27) and (1.28) can be written in the form

∆pmech
x = pmechaen

x − pmechben
x = qAx(x, y, z

en), (16.1.30)

∆pmech
y = pmechaen

y − pmechben
y = qAy(x, y, z

en). (16.1.31)

Also, in view of (1.29), (1.24) continues to hold. Therefore, upon combining (1.29) through
(1.31), we see that pmechaen

z is given by the relation

pmechaen
z = [(pmechben

z )2 + (pmechben
x )2 − (pmechaen

x )2 + (pmechben
y )2 − (pmechaen

y )2]1/2

= [(pmechben
z )2 − (∆pmech

x )(Σpmech
x )− (∆pmech

y )(Σpmech
y )]1/2

= [(pmechben
z )2 − qAx(x, y, zen)(Σpmech

x )− qAy(x, y, zen)(Σpmech
y )]1/2

(16.1.32)

where

Σpmech
x = pmechaen

x + pmechben
x = 2pmechben

x + qAx(x, y, z
en), (16.1.33)

Σpmech
y = pmechaen

y + pmechben
y = 2pmechben

y + qAy(x, y, z
en). (16.1.34)

We conclude that imposition of continuity in the canonical momenta as expressed by (1.27)
through (1.29) entails a discontinuity in the mechanical momenta, and this discontinuity
depends on the size of A(x, y, zen). It is therefore desirable to work in a gauge where
A(x, y, zen) is as small as possible. Subsequently, we will explore the use of the minimum
vector potential of Section 15.2.5 for this purpose.
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16.1.2.2 Exiting a Trailing Fringe-Field Region

The transition between a trailing fringe-field region and a subsequent field-free region may
be considered in an analogous way. We again require continuity in the coordinates and
canonical momenta. As described earlier, let zex denote the z value where a transition is
to be made from the end of a trailing fringe-field region to a region where the magnetic
field is again taken to vanish. That is, any charged particle in question exits the trailing
fringe-field region when z = zex. We will also add the suffixes aex and bex to the phase-space
coordinates to denote their values after and before exit. In terms of this notation we impose
the matching conditions

xaex = xbex, (16.1.35)

yaex = ybex, (16.1.36)

taex = tbex, (16.1.37)

pcanaex
x = pcanbex

x , (16.1.38)

pcanaex
y = pcanbex

y , (16.1.39)

pcanaex
t = pcanbex

t (16.1.40)

when z = zex. So so doing entails discontinuities in the mechanical momenta given by the
relations

∆pmech
x = pmechaex

x − pmechbex
x = qAx(x, y, z

ex), (16.1.41)

∆pmech
y = pmechaex

y − pmechbex
y = qAy(x, y, z

ex), (16.1.42)

pmechaex
z = [(pmechbex

z )2 + (pmechbex
x )2 − (pmechaex

x )2 + (pmechbex
y )2 − (pmechaex

y )2]1/2

= [(pmechbex
z )2 − (∆pmech

x )(Σpmech
x )− (∆pmech

y )(Σpmech
y )]1/2

= [(pmechbex
z )2 − qAx(x, y, zex)(Σpmech

x )− qAy(x, y, zex)(Σpmech
y )]1/2

(16.1.43)

where
Σpmech

x = pmechaex
x + pmechbex

x = 2pmechbex
x + qAx(x, y, z

ex), (16.1.44)

Σpmech
y = pmechaex

y + pmechbex
y = 2pmechbex

y + qAy(x, y, z
ex). (16.1.45)

That is, imposition of continuity in the canonical momenta as expressed by (1.38) through
(1.40) again entails discontinuities in the associated mechanical momenta. It is therefore
also desirable to work in a gauge where A(x, y, zex) is as small as possible.

16.1.2.3 Modified Hamiltonian, Vector Potential, Magnetic Field, and Current

One way to view the symplectic matching relations (1.12) through (1.14), (1.27) through
(1.29), and (1.35) through (1.40) is to replace the Hamiltonian (1.1) by a modified Hamil-
tonian Kmod given by

Kmod = −[(pcan
t )2/c2 −m2c2 − (pcan

x − qAmod
x )2 − (pcan

y − qAmod
y )2]1/2 − qAmod

z (16.1.46)
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where
Amod(x, y, z) = θ(z − zen)θ(zex − z)A(x, y, z). (16.1.47)

That is, the vector potential is taken to vanish for z < zen, turns on at z = zen, and
again turns off for z > zex. A little thought shows that integrating the equations of motion
associated with this modified Hamiltonian automatically produces the matching relations
(1.12) through (1.14), (1.27) through (1.29), and (1.35) through (1.40).

What is the modified magnetic fieldBmod associated with this modified vector potential?
Evaluation of

Bmod = ∇×Amod (16.1.48)

gives the relations

Bmod
x (x, y, z) = ∂yA

mod
z − ∂zAmod

y

= θ(z − zen)θ(zex − z)Bx(x, y, z)

−[δ(z − zen)− δ(zex − z)]Ay(x, y, z), (16.1.49)

Bmod
y (x, y, z) = ∂zA

mod
x − ∂xAmod

z

= θ(z − zen)θ(zex − z)By(x, y, z)

+[δ(z − zen)− δ(zex − z)]Ax(x, y, z), (16.1.50)

Bmod
z (x, y, z) = ∂xA

mod
y − ∂yAmod

x

= θ(z − zen)θ(zex − z)Bz(x, y, z). (16.1.51)

By the construction (1.48), the modified magnetic field is divergence free,

∇ ·Bmod = 0, (16.1.52)

as required. [Note that making the simple Ansatz Bmod = θ(z − zen)θ(zex − z)B violates
the requirement (1.52). It is this Ansatz that would arise naturally if one were integrating
the non-canonical Lorentz-force equations given in Exercise 1.6.16.]

What current jmod produces this modified magnetic field? It is specified by employing
Bmod as given by (1.49) through (1.51) in the relation

µ0j
mod = ∇×Bmod. (16.1.53)

Doing so directly leads to considerable algebra, which can be bypassed with the use of
suitable vector identities. Proceed as follows: Combining (1.48) and (1.53) gives the relation

µ0j
mod = ∇× (∇×Amod) = ∇(∇ ·Amod)−∇2Amod. (16.1.54)

Let us work on the first term on the right side of (1.54). From the definition (1.47) there
is the result

∇ ·Amod = A · ∇[θ(z − zen)θ(zex − z)] + θ(z − zen)θ(zex − z)∇ ·A. (16.1.55)
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Evaluation of the first term on the right in (1.55) gives the result

A · ∇[θ(z − zen)θ(zex − z)] = Az∂z[θ(z − zen)θ(zex − z)]

= [δ(z − zen)− δ(zex − z)]Az. (16.1.56)

We also assume that A is in a Coulomb gauge, ∇ ·A = 0, so that (1.55) becomes

∇ ·Amod = [δ(z − zen)− δ(zex − z)]Az, (16.1.57)

and therefore

∇(∇ ·Amod) = ex[δ(z − zen)− δ(zex − z)]∂xAz

+ey[δ(z − zen)− δ(zex − z)]∂yAz

+ez[δ(z − zen)− δ(zex − z)]∂zAz

+ez[δ
′(z − zen) + δ′(zex − z)]Az. (16.1.58)

Next we turn to working out −∇2Amod, the second term on the right side of (1.54). For
the x component we have the intermediate result

−∇2Amod
x = −∇2[θ(z − zen)θ(zex − z)Ax]

= −θ(z − zen)θ(zex − z)(∂2
x + ∂2

y)Ax − ∂2
z [θ(z − zen)θ(zex − z)Ax].

(16.1.59)

By the product rule there is the relation

∂z[θ(z − zen)θ(zex − z)Ax] = [δ(z − zen)− δ(zex − z)]Ax

+θ(z − zen)θ(zex − z)∂zAx,

(16.1.60)

from which it follows that

∂2
z [θ(z − zen)θ(zex − z)Ax] = [δ′(z − zen) + δ′(zex − z)]Ax

+2[δ(z − zen)− δ(zex − z)]∂zAx

+θ(z − zen)θ(zex − z)∂2
zAx.

(16.1.61)

Combining (1.59) and (1.61) yields the next intermediate result

−∇2Amod
x = −2[δ(z − zen)− δ(zex − z)]∂zAx − [δ′(z − zen) + δ′(zex − z)]Ax, (16.1.62)

Here we have used the fact that A is harmonic. See (15.5.4). Similarly, there are the
analogous next intermediate results

−∇2Amod
y = −2[δ(z − zen)− δ(zex − z)]∂zAy − [δ′(z − zen) + δ′(zex − z)]Ay, (16.1.63)

−∇2Amod
z = −2[δ(z − zen)− δ(zex − z)]∂zAz − [δ′(z − zen) + δ′(zex − z)]Az. (16.1.64)
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We are now able to combine the two terms on the right side of (1.54), using (1.58) and
(1.62) through (1.64), to yield the desired final results

µ0j
mod
x = [δ(z − zen)− δ(zex − z)][∂xAz − 2∂zAx]

−[δ′(z − zen) + δ′(zex − z)]Ax, (16.1.65)

µ0j
mod
y = [δ(z − zen)− δ(zex − z)][∂yAz − 2∂zAy]

−[δ′(z − zen) + δ′(zex − z)]Ay, (16.1.66)

µ0j
mod
z = −[δ(z − zen)− δ(zex − z)]∂zAz. (16.1.67)

Evidently requiring the vector potential to vanish for z < zen, turn on at z = zen, and again
turn off for z > zex is equivalent to introducing sheet (corresponding to the δ functions) and
double-sheet (corresponding to the δ′ functions) currents at z = zen and z = zex. And the
strengths of these currents are proportional to the values of A and its first derivatives at
z = zen and z = zex.

16.1.3 Changing Gauge

It may be useful to change gauges at various points during the course of integrating a
trajectory and computing an associated transfer map. For example, to minimize end-field
termination effects, it is desirable to change to minimum vector potentials at z = zen and
z = zex. Suppose the gauge is to be changed at the point z = zc. Let xb, yb, and tb denote
coordinate functions before the change, and let xa, ya, and ta denote coordinate functions
after the change. Also, let Ab(xb, yb; z) and Aa(xa, ya; z) be the vector potentials before
(z < zc) and after (z > zc) the change point zc. Finally, let pcanb

x , pcanb
y , pcanb

t be the
canonical momentum functions before the change, and let pcana

x , pcana
y , pcana

t be the canonical
momentum functions after the change. In terms of these quantities, the before and after
Hamiltonians Kb and Ka are given by the relations

Kb = −[(pcanb
t )2/c2−m2c2− (pcanb

x − qAbx)2− (pcanb
y − qAby)2]1/2− qAbz for z < zc, (16.1.68)

Ka = −[(pcana
t )2/c2−m2c2− (pcana

x − qAax)2− (pcana
y − qAay)2]1/2− qAaz for z > zc. (16.1.69)

What should be the matching relations between the phase-space quantities before and
after? Since the choice of gauge should have no physical effect, there is the immediate
requirement that the coordinate functions be continuous:

xa(z) = xb(z) when z = zc,

ya(z) = yb(z) when z = zc,

ta(z) = tb(z) when z = zc. (16.1.70)

For the same reason, we require that the velocities, and hence the mechanical momenta, be
continuous. From (1.5) and (1.6) we see that this requirement is equivalent to the relations

pcana − qAa = pcanb − qAb when z = zc. (16.1.71)
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In terms of components, (1.71) yields the matching relations

pcana
x = pcanb

x + q(Aax − Abx) when z = zc,

pcana
y = pcanb

y + q(Aay − Aby) when z = zc. (16.1.72)

Finally, the total energy cannot change under a gauge transformation and therefore, since
we have assumed that the electric scalar potential ψ vanishes, there is the matching relation

pcana
t = pcanb

t when z = zc. (16.1.73)

We note that this relation also follows from (1.6.17).
We assume there is some common overlap region where both Ab and Aa are defined.

Since they both give rise to the same magnetic field, there is the relation

∇× (Aa −Ab) = 0. (16.1.74)

It follows that there is a function χ such that

Aa −Ab = ∇χ. (16.1.75)

Consequently, the relations (1.72) can be rewritten in the form

pcana
x = pcanb

x + q(∂/∂x)χ when z = zc,

pcana
y = pcanb

y + q(∂/∂y)χ when z = zc. (16.1.76)

There is one last step. Let T c be the symplectic transformation map defined by the relation

T c = exp(q : χ :). (16.1.77)

With aid of this map it is easily verified that the relations (1.70), (1.72), and (1.73) can be
rewritten in the form

xa(z) = exp(q : χ :)xb(z) with z = zc,

ya(z) = exp(q : χ :)yb(z) with z = zc,

ta(z) = exp(q : χ :)tb(z) with z = zc; (16.1.78)

pcana
x (z) = exp(q : χ :)pcanb

x (z) with z = zc,

pcana
y (z) = exp(q : χ :)pcanb

y (z) with z = zc,

pcana
t (z) = exp(q : χ :)pcanb

t (z) with z = zc. (16.1.79)

We have determined that a change in gauge amounts to making a symplectic transformation.
Review Exercises 6.2.8 and 6.5.3.

16.2 Solenoids

The remainder of this chapter is devoted to the treatment of various specific straight beam-
line elements for which the on-axis gradients can be found analytically. We begin with the
case of solenoids.
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16.2.1 Preliminaries

A solenoid is a straight beam-line element whose field is described by a cylindrical harmonic
expansion that contains (ideally) only an m = 0 term. Figure 2.1 illustrates a Cartesian
coordinate system for the treatment of a solenoid. We recall from Section 15.3.3 that in this
case the magnetic scalar potential ψ has the expansion

ψ(x, y, z) = ψ0(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
0 (z)ρ2`

= C
[0]
0 (z)− (1/4)(x2 + y2)C

[2]
0 (z) + · · · (16.2.1)

with
ρ2 = x2 + y2. (16.2.2)

See (15.3.53) and (15.5.5). Correspondingly, the associated magnetic field has the expansion

Bx = ∂xψ0 = −(1/2)xC
[2]
0 (z) + · · · , (16.2.3)

By = ∂yψ0 = −(1/2)yC
[2]
0 (z) + · · · , (16.2.4)

Bz = ∂zψ0 =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`+1]
0 (z)ρ2`

= C
[1]
0 (z)− (1/4)(x2 + y2)C

[3]
0 (z) + · · · . (16.2.5)

In particular, there is the result

B(0, 0, z) = C
[1]
0 (z)ez. (16.2.6)

Also, according to Section 15.5.1, there is a suitable associated vector potential Â
0

(in
the symmetric Coulomb gauge which, in the case of a solenoid, is also the Poincaré-Coulomb
gauge) given by the relation

Â0
x = −yU, (16.2.7)

Â0
y = xU, (16.2.8)

Â0
z = 0, (16.2.9)

where U is defined to be

U(ρ, z) = (1/2)
∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)ρ2`. (16.2.10)

Correspondingly, the vector potential will have an expansion in x and y of the form

Â0
x = −yU = −y(1/2)[C

[1]
0 (z)− (1/8)C

[3]
0 (z)(x2 + y2) + · · · ], (16.2.11)

Â0
y = xU = x(1/2)[C

[1]
0 (z)− (1/8)C

[3]
0 (z)(x2 + y2) + · · · ], (16.2.12)
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Figure 16.2.1: Coordinate system for a solenoid.

Â0
z = 0, (16.2.13)

which can be written in the vector form

Â0(r) = −(1/2)r ×B(0, 0, z) + higher order terms. (16.2.14)

Note the resemblance between (2.14) and (15.2.61). This resemblance should not surprise
us because we know from Section 15.7.1 that Â0 is in the Poincaré-Coulomb gauge with
respect to any origin on the z axis.

From (2.3) through (2.5) and (2.7) through (2.13) we see that both B and Â
0

are com-

pletely specified in terms of a single “master” function C
[1]
0 (z) and its derivatives. Moreover,

according to (2.6), the function C
[1]
0 (z) is given in terms of the longitudinal on-axis field by

the relation

C
[1]
0 (z) = Bz(0, 0, z). (16.2.15)

We observe that for a long uniform solenoid the on-axis field Bz(0, 0, z) will be nearly

constant in the body of the solenoid, and therefore the quantities C
[n]
0 (z) will be small in

this region for n > 1. However, these derivatives may be large in fringe-field regions. We
will next see what can be said more specifically about the master function C

[1]
0 (z) in various

cases.
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16.2.2 Simple Air-Core Solenoid

16.2.2.1 General Properties of the On-Axis Field

For simplicity, consider initially the case of a simple air-core solenoid consisting of a single-
layer circular cylindrical winding of length L and radius ρ = a, and powered so that the
interior field (in the infinite-length limit) is B. For such a solenoid it can be shown that the
on-axis field is given by the relation

Bz(0, 0, z) = B{z/[z2 + a2]1/2 − (z − L)/[(z − L)2 + a2]1/2}/2 (16.2.16)

where the cylinder axis is the z axis and the winding extends from z = 0 to z = L. The on-
axis fields of more general air-core solenoids can be found from (2.16) by superposition. See
Subsection 2.4. Here we assume that the effect of a solenoidal winding is well approximated
by a uniform current sheet (or a collection of uniform current sheets) in the eφ direction.
For a discussion of helical effects, see the book by W. Smythe cited in the references at the
end of this chapter.

Suppose we define a soft-edge “bump” function bump(z, a, L) by the rule

bump(z, a, L) = {z/[z2 + a2]1/2 − (z − L)/[(z − L)2 + a2]1/2}/2 (16.2.17)

so that (2.16) can be written in the form

Bz(0, 0, z) = B bump(z, a, L). (16.2.18)

Then there is also the result

C
[1]
0 (z) = Bz(0, 0, z) = B bump(z, a, L). (16.2.19)

It can be verified that the soft-edge bump function has the properties

bump(z, a, L) ' 1 for z ∈ [0, L], (16.2.20)

bump(z, a, L) ' 0 elsewhere, (16.2.21)

bump(L/2 + w, a, L) = bump(L/2− w, a, L), (16.2.22)

It can also be shown that ∫ ∞
−∞

bump(z, a, L)dz = L. (16.2.23)

See Exercise 2.3. In particular, from the results above, it follows that for a simple air-core
solenoid there is the relation∫ ∞

−∞
C

[1]
0 (z)dz =

∫ ∞
−∞

Bz(0, 0, z)dz = BL. (16.2.24)

At this point two remarks are in order: The first is that we have been using the term
bump function in a slightly different way from that often employed in mathematics. In
mathematics a bump function is generally a smooth (C∞) function with exact value 1 over
some region and exact value 0 slightly outside this region. By contrast, in (2.20) and (2.21),
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we require only that this be approximately true. The second is that the relation (2.24) also
holds in the case of a thick air-core solenoid. See Subsection 2.4 and Exercise 2.9.

We also observe that, according to (2.17), the soft-edge bump function can be written in
the form

bump(z, a, L) = [sgn(z, a)− sgn(z − L, a)]/2 (16.2.25)

where sgn(z, a) is an approximating “signum” function given by the relation

sgn(z, a) = z/[z2 + a2]1/2. (16.2.26)

Figures 2.2 and 2.3 illustrate the behavior of the approximating signum function for two
different values of a. Evidently the approximating signum function becomes the true signum
function in the limit that a goes to zero,

lim
a→0

sgn(z, a) = sgn(z). (16.2.27)

Recall that the true signum function has the definition

sgn(z) = 1 if z > 0,

sgn(z) = 0 if z = 0,

sgn(z) = −1 if z < 0. (16.2.28)

-1.0 -0.5 0.5 1.0
z

-1.0

-0.5

0.5

1.0

sgn

Figure 16.2.2: The approximating signum function (2.26) when a = .2.

In this same limit the soft-edge bump function becomes the hard-edge bump function,

lim
a→0

bump(z, a, L) = bump(z, L). (16.2.29)

The hard-edge bump function has the properties,

bump(z, L) = 1 for z ∈ (0, L),

bump(0, L) = bump(L,L) = 1/2,

bump(z, L) = 0 elsewhere. (16.2.30)
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1.0

sgn

Figure 16.2.3: The approximating signum function (2.26) when a = .02.

Figures 2.4 and 2.5 illustrate the bump-function properties (2.20) through (2.22) for a
fixed value of L and two different values of a. As expected, the simple air-core solenoid
soft-edge bump function approaches a hard-edge bump function in the limit a → 0. We
also see that the quantity a plays the role of a characteristic length that controls the rate of
fall off. The fringe-field region is large if a is large, and vanishes as a goes to zero. Finally,
we note that sgn(z, a) is analytic as a function of z save for branch points at z = ±ia.

Correspondingly, bump(z, a, L) and hence also all the C
[n]
0 (z) are analytic in z save for

branch points at z = ±ia and z = L ± ia. Therefore approximating C
[1]
0 (z) by a series

of straight-line segments, as is sometimes done in the literature, violates its fundamental
analytic properties.

Note also that use of the term fringe field to describe what is going on here can be a
bit misleading. It is true that the field does extend beyond/outside the solenoid boundaries
z = 0 and z = L, but it is also affected/diminished inside the boundaries, particularly
noticeably in the vicinity of the boundaries. Finally note that (2.24) holds for all a and does
not depend on a. Thus, so to speak, whatever on-axis field “disappears” from inside the
boundaries of the solenoid due to fringing behavior is in fact found outside the boundaries.
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Figure 16.2.4: The soft-edge bump function (2.17) when a = .2 and L = 1.
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Figure 16.2.5: The soft-edge bump function (2.17) when a = .02 and L = 1.

16.2.2.2 Asymptotic Behavior of the On-Axis Field

Let us examine the behaviors of the approximating signum function and soft-edge bump
function in more detail. Evidently the approximating signum function is an odd function of
z,

sgn(−z, a) = sgn(z, a), (16.2.31)

and, correspondingly, satisfies the relation

sgn(0, a) = 0. (16.2.32)

It is also easy to verify that

sgn(±a, a) = ±1/
√

2 = ±.707 · · · . (16.2.33)

Finally, It can be verified from (2.26) that, when (a/z)2 < 1, there are the asymptotic
behaviors

sgn(z, a) = 1− (1/2)(a/z)2 + (3/8)(a/z)4 − (15/48)(a/z)6 + · · · as z → +∞, (16.2.34)
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sgn(z, a) = −1 + (1/2)(a/z)2 − (3/8)(a/z)4 + (15/48)(a/z)6 − · · · as z → −∞. (16.2.35)

The behavior of the soft-edge bump function is a bit more complicated but, according to
(2.25), follows from that of the approximating signum function. We begin with two simple
observations. From (2.25) and (2.32) we see that there are the “end” (z = 0 and z = L)
values

bump(0, a, L) = bump(L, a, L) = (1/2)L/(L2 + a2)1/2 → (1/2) as (a/L)→ 0, (16.2.36)

and the “center” (z = L/2) value

bump(L/2, a, L) = L/(L2 + 4a2)1/2 → 1 as (a/L)→ 0. (16.2.37)

We will next study the soft-edge bump function’s near leading/entering end behavior,
its behavior when z ∈ (−L, 0). [Its near trailing/exiting end behavior, its behavior when
z ∈ (L, 2L), then follows by symmetry.] For this purpose, according to (2.25), we need to
know the behavior of both sgn(z, a) and sgn(z−L, a) when z < 0. The behavior of sgn(z, a)
for z < 0 is given by (2.35). For sgn(z − L, a) we find (when z ≈ 0) the expansion

sgn(z − L, a) = (z − L)/[(z − L)2 + a2]1/2 = −[1 + a2/(z − L)2]1/2

= −1 + (1/2)[a/(z − L)]2 − (3/8)[a/(z − L)]4 + · · ·
= −1 + (1/2)(a/L)2 + (a2z/L3) + · · · . (16.2.38)

(Here we assume that both z/L and a/L are small.) Consequently, for the range z ≈ 0 but
z < −a so that (2.35) holds, we conclude from (2.25) there is the expansion

bump(z, a, L) = [sgn(z, a)− sgn(z − L, a)]/2

= −1/2 + (1/4)(a/z)2 − (3/16)(a/z)4 + · · ·
+1/2− (1/4)(a/L)2 − (1/2)(a2z/L3)− · · ·

= +(1/4)(a/z)2 − (1/4)(a/L)2 − (1/2)(a/L)2(z/L)− · · · .
(16.2.39)

We see that the (a/z)2 term dominates for small z and therefore bump(z, a, L) decreases as
1/z2 as z becomes more negative. Upon reflection, this result should be expected. Close
by the end of a solenoid the external field looks like a monopole field; and the field of a
monopole falls off with distance as the inverse square.

Complete asymptotic behavior does not set in until z < −L. In that case, using (2.35),
we see that sgn(z − L, a) has the expansion

sgn(z − L, a) = −1 + (1/2)[a/(z − L)]2 − (3/8)[a/(z − L)]4 + · · ·
= −1 + (1/2)(a/z)2 + (La2/z3)

+(3/8)(4a2L2 − a4)/z4 + · · · when z < −L. (16.2.40)

We now find from (2.25) the result

bump(z, a, L) = [sgn(z, a)− sgn(z − L, a)]/2

= −1/2 + (1/4)(a/z)2 − (3/16)(a/z)4 + · · ·
+1/2− (1/4)(a/z)2 − (1/2)(La2/z3) + · · ·

= −(1/2)La2/z3 +O(1/z4) when z → −∞. (16.2.41)
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Correspondingly, the on-axis gradient C
[1]
0 (z) and on-axis field Bz(0, 0, z) fall off for very

large (z < −L) distances as

C
[1]
0 (z) = Bz(0, 0, z) = −(1/2)BLa2/z3 + · · · when z → −∞. (16.2.42)

Analogous fall off occurs when z > 2L. This result is also to be expected. From far enough
away, the end fields of a solenoid of length L look like those of two monopoles of opposite
signs a distance L apart, and therefore combine to appear as the field of a dipole once one
is more than a distance L away. Finally, at large distances, the field of a dipole falls off as
1/|z|3.

We close this subsection with the injunction that, although the asymptotic expansions
we have examined are illuminating, there is no substitute for computing Bz(0, 0, z) exactly
using (2.17) and (2.18).

16.2.2.3 Properties of the Vector Potential

The computation of orbits in and transfer maps for solenoids, using a Hamiltonian formu-
lation, requires the use of a vector potential. We will employ the vector potential given by
(2.11) through (2.13). Evidently, depending on the order to which we wish to work, we need

the functions C
[1]
0 (z), C

[3]
0 (z), C

[5]
0 (z),· · · . To get a feel for what is involved, let us examine,

for example, the function C
[3]
0 (z). From (2.15) and (2.19) we see that

C
[3]
0 (z) = (∂/∂z)2Bz(0, 0, z) = B (∂/∂z)2bump(z, a, L) = B bump′′(z, a, L). (16.2.43)

Figures (2.6) and (2.7) illustrate the function bump′′ for a fixed value of L and two different
values of a. Evidently the function bump′′ becomes quite singular at the ends of the
solenoid in the limit a→ 0. Indeed it approaches the function δ′(z) at the leading end, and
the function −δ′(z − L) at the trailing end. Moreover, it falls off quite rapidly beyond the
fringe-field regions. From (2.39) and (2.41) we conclude that there is the near-by asymptotic
behavior

bump′′(z, a, L) = (3/2)a2/z4 + · · · as z → −∞, (16.2.44)

and the far asymptotic behavior

bump′′(z, a, L) = −6La2/z5 + · · · as z → −∞, (16.2.45)

The still higher derivatives of the bump function, needed to compute the C
[n]
0 (z) for still

larger values of n, are even more singular in the limit a→ 0, and fall off ever more rapidly
as z → −∞. Analogous results hold for z > L and z > 2L.

16.2.3 Opposing Simple Solenoid Doublet

We have seen that the on-axis field of a single simple solenoid has the far asymptotic
behavior (2.42). A sequence of solenoids, all having the same “sign”, will have the same far
fall-off behavior. In this subsection we will study the far fall-off behavior for what we call
an opposing solenoid doublet. By this term we mean a pair of solenoids, each of length L,
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Figure 16.2.6: The function bump′′ when a = .2 and L = 1.

Figure 16.2.7: The function bump′′ when a = .02 and L = 1.
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separated by a space D, and having opposite strengths. By superposition, the on-axis field
for such a pair of solenoids is given by the relation

Bosd
z (0, 0, z) = B bump(z, a, L)−B bump(z − L−D, a, L)

= B{z/[z2 + a2]1/2 − (z − L)/[(z − L)2 + a2]1/2}/2
−B{(z − L−D)/[(z − L−D)2 + a2]1/2 − (z − 2L−D)/[(z − 2L−D)2 + a2]1/2}/2.
= B[sgn(z, a)− sgn(z − L, a)− sgn(z − L−D, a) + sgn(z − 2L−D, a)].

(16.2.46)

Computation using expansions such as (2.42) shows that for this opposing solenoid doublet
there is the far fall-off behavior

C
[1]
0 (z) = Bosd

z (0, 0, z) = 3Ba2L(L+D)/z4 +O(1/z5) when z → −∞. (16.2.47)

Comparison with (2.42) shows that this 1/z4 far fall-off behavior is one order higher in 1/z
than that for a single solenoid. This result is to be expected because the end of each solenoid
looks like a monopole, at a far distance the four ends of the two solenoids in the opposing
solenoid doublet look like an in-line quadrupole, and the field of a quadrupole falls off as
1/z4.

16.2.4 More Complicated Air-Core Solenoids

The fields for more complicated air-core solenoids can be found from those of simple single-
layer air-core solenoids by superposition. Consider, for example, the on-axis field of an
air-core solenoid that has a multi-layer winding with inner radius a1 and outer radius a2.
We will call such a solenoid a thick solenoid. We observe that there is the integral relation∫ a2

a1

da {1/[z2 + a2]1/2} = log
(
{[z2 + a2

2]1/2 + a2}/{[z2 + a2
1]1/2 + a1}

)
. (16.2.48)

Correspondingly, the on-axis field of such a thick solenoid is given by the relation

Bz(0, 0, z) = (B/2)[1/(a2 − a1)]
[
z log

(
{[z2 + a2

2]1/2 + a2}/{[z2 + a2
1]1/2 + a1}

)
− (z − L) log

(
{[(z − L)2 + a2

2]1/2 + a2}/{[(z − L)2 + a2
1]1/2 + a1}

)]
.

(16.2.49)

Here again the winding extends from z = 0 to z = L and the interior field (in the infinite
length limit) is B.

Evidently, from this result and by superposition, analytic on-axis results can be obtained
for any combination of concentric coils of various lengths, thicknesses, locations, and pow-
erings. Note, because we have assumed cylindrical symmetry in all cases, only the m = 0
terms are present in the expansion (15.3.33) so that (2.1) continues to hold.
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16.2.5 Computation of Transfer Map

In this subsection we will compute the transfer map for a solenoid (or a collection of
solenoids) including fringe-field effects. To do so we begin with the Hamiltonian (1.1) and
employ the vector potential given by (2.7) through (2.10). We then introduce dimensionless
scaled deviation variables and the associated scaled deviation-variable Hamiltonian. Fi-
nally, we expand the scaled deviation-variable Hamiltonian in a Taylor series, and employ
this Taylor series to compute the transfer map.

16.2.5.1 Dimensionless Scaled Deviation Variables and Scaled
Deviation-Variable Hamiltonian

A solenoid is an example of a straight beam-line element for which the design orbit may be
taken to be the z axis (a straight line) traversed with constant velocity. According to the
results of Section 13.1.5, the scaled deviation variable Hamiltonian H(X, Y, τ, Px, Py, Pτ ; z)
for any such element is given by

H(X, Y, τ, Px, Py, Pτ ; z) =

− (1/`){[1− (2Pτ/β0) + P 2
τ − (Px − Asx)2 − (Py − Asy)2]1/2 + (Pτ/β0)− (1/β2

0)}.
(16.2.50)

Here the dimensionless scaled deviation variables (X, Y, τ, Px, Py, Pτ ) are defined in terms
of the original variables (x, y, t, px, py, pt) by the relations (13.1.21) through (13.1.26), and

the scaled vector potential As is defined in terms of the original vector potential Â0 by the
relation

As(X, Y, z) = (q/p0)Â0(`X, `Y, z). (16.2.51)

We have also used (2.9).
The relations (2.7) through (2.10) and (2.51) can be used to find As for solenoids. To

do so it is convenient to rewrite (2.10) in the form

U(ρ, z) = (1/2)
∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
B[2n](z)ρ2n. (16.2.52)

Here we have introduced, in accord with (2.15), the notation

B[0](z) = C
[1]
0 (z) = Bz(0, 0, z), (16.2.53)

B[2n](z) = (∂/∂z)2nB[0](z) = (∂/∂z)2nC
[1]
0 (z) = C

[2n+1]
0 (z). (16.2.54)

Combining these relations yields the results

Asx = −Y U s(X, Y, z) (16.2.55)

Asy = XU s(X, Y, z), (16.2.56)

Asz = 0, (16.2.57)
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where

U s(X, Y, z) = `(q/p0)U(`X, `Y, z) = (1/2)
∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
b[2n](z)(X2 + Y 2)n.

(16.2.58)
Here we have introduced the notation

b[2n](z) = (q/p0)`2n+1B[2n](z), (16.2.59)

and observe, in view of (1.5.81) and (2.54), that the quantities b[2n](z) are dimensionless.
Also, from (2.50), we conclude that the scaled deviation variable Hamiltonina H has dimen-
sions of 1/length.

16.2.5.2 Symmetry of Scaled Deviation-Variable Hamiltonian

The Hamiltonian H given by (2.50) has a symmetry that is worth noting. Define two
two-dimensional vectors Q and P by the rules

Q = Xex + Y ey, (16.2.60)

P = Pxex + Pyey. (16.2.61)

Also make the definitions
Q2 = Q ·Q = X2 + Y 2, (16.2.62)

P 2 = P · P = P 2
x + P 2

y , (16.2.63)

Jz = (Q× P ) · ez = XPy − Y Px. (16.2.64)

With the aid of these definitions we may write

(Px − Asx)2 + (Py − Asy)2 = (Px)
2 + (Py)

2 + (Asx)
2 + (Asy)

2 − 2PxA
s
x − 2PyA

s
y

= P · P +As ·As − 2P ·As.

(16.2.65)

We also observe with the aid of (2.55) and (2.56) that there are the relations

P ·As = (XPy − Y Px)U s = JzU
s, (16.2.66)

Q ·As = 0, (16.2.67)

and
As ·As = Q2(U s)2. (16.2.68)

The relation (2.67) is a consequence of our decision to employ the Poincaré-Coulomb gauge.
Also note that, according to (2.58), U s depends only on Q2 and z. With the aid of these
relations we may also write

(Px − Asx)2 + (Py − Asy)2 = P 2 +Q2(U s)2 − 2JzU
s. (16.2.69)
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It is easily verified that Jz has the properties

: Jz : X = [Jz, X] = [(XPy − Y Px), X] = Y, (16.2.70)

: Jz : Y = −X, (16.2.71)

: Jz : Px = Py, (16.2.72)

: Jz : Py = −Px, (16.2.73)

: Jz : τ =: Jz : Pτ = 0. (16.2.74)

Consequently, as the notation is meant to suggest, the Lie operator : Jz : is the generator of
rotations about the z axis. It follows that there are the relations

: Jz : Q2 =: Jz : U s =: Jz : P 2 =: Jz : (P ·Q) = 0. (16.2.75)

We remark that the last relation in (2.75) is consistent with the identity

(P ·Q)2 = Q2P 2 − J2
z . (16.2.76)

We also see from (2.55) and (2.56) that there are the relations

: Jz : Asx == [Jz,−Y U s] = −[Jz, Y ]U s = XU s = Asy (16.2.77)

and
: Jz : Asy == [Jz, XU

s] = [Jz, X]U s = Y U s = −Asx. (16.2.78)

It follows that
: Jz : (As ·As) =: Jz : (Q ·As) =: Jz : (P ·As) = 0. (16.2.79)

We note that these last results can be viewed as a consequence of (2.68), (2.67), and (2.66).
But they can also be viewed as consequence of the relations (2.70) through (2.73) and (2.77)
and (2.78).

Based on the work so far H as given by (2.50) can be rewritten in either of the forms

H(X, Y, τ, Px, Py, Pτ ; z) =

− (1/`){[1− (2Pτ/β0) + P 2
τ − P · P −As ·As + 2P ·As]1/2 + (Pτ/β0)− (1/β2

0)}.
(16.2.80)

and

H(X, Y, τ, Px, Py, Pτ ; z) =

− (1/`){[1− (2Pτ/β0) + P 2
τ − P 2 −Q2(U s)2 + 2JzU

s]1/2 + (Pτ/β0)− (1/β2
0)}.

(16.2.81)

From either of these forms it is evident, using (2.75) and (2.79), that

: Jz : H = [Jz, H] = 0. (16.2.82)

That is, H is invariant under rotations about the z axis and, conversely, Jz is an integral of
motion. (We also say that H and Jz are in involution.) Note that this invariance stems from
the fact that we are dealing with the the magnetic field case described by an m = 0 scalar
potential ψ. This scalar potential has rotational symmetry about the z axis, and the gauge
for the associated vector potential has been judiciously chosen to maintain this symmetry.
See Exercise 2.10.
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16.2.5.3 Properties of Transfer Map and Factorization of Linear Part

Because of the JzU
s term in (2.81) [or the P · As term in (2.80)] the map M generated

by H produces rotations about the z axis as well as other effects. Consequently M does
not preserve the X,Px and Y, Py planes. When performing fitting operations it is easier
to understand what is happening when motion in the X,Px and Y, Py planes is uncoupled.
Uncoupling can be accomplished by a trick. Define a Hamiltonian with no rotational parts,
call it Hnonrot, by removing the JzU

s term in (2.81):

Hnonrot(X, Y, τ, Px, Py, Pτ ; z) =

− (1/`){[1− (2Pτ/β0) + P 2
τ − P 2 −Q2(U s)2]1/2 + (Pτ/β0)− (1/β2

0)}.
(16.2.83)

The map generated by Hnonrot, call itMnonrot, will preserve the X,Px and Y, Py planes. See
Exercise 2.17. To proceed, first carry out the desired fitting operation usingMnonrot in place
of M. After a fit has been achieved using Mnonrot in place of M, continue on using the
associated full M in subsequent calculations.

In general the maps M and Mnonrot do not commute. However, as shown in Exercise
2.15, the matrices M and Mnonrot associated with their linear parts do commute,

MnonrotM = MMnonrot. (16.2.84)

In this case it is possible to define a matrix M rot by the rule

M rot = (Mnonrot)−1M = M(Mnonrot)−1 (16.2.85)

so that
M = M rotMnonrot = MnonrotM rot. (16.2.86)

As the notation suggests, M rot describes rotations about the z axis.
For example, for the matrix Mbody displayed in Exhibit 2.11 in Subsection 2.6.2, Exhibits

2.1 and 2.2 below display the factors Mnonrot and M rot.

Exhibit 16.2.1: The matrix Mnonrot factor of the Mbody displayed in Exhibit 2.11

9.94943E-01 9.98265E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

-1.01064E-02 9.94943E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 9.94943E-01 9.98265E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 -1.01064E-02 9.94943E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 4.11143E-01

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Exhibit 16.2.2: The matrix M rot factor of the Mbody displayed in Exhibit 2.11

9.94963E-01 0.00000E+00 1.00240E-01 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 9.94963E-01 0.00000E+00 1.00240E-01 0.00000E+00 0.00000E+00

-1.00240E-01 0.00000E+00 9.94963E-01 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 -1.00240E-01 0.00000E+00 9.94963E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00
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As can be seen, the effect of Mnonrot is to produce (equal) focussing in both planes. (Note
also that Mnonrot does not introduce any coupling between planes.) And M rot produces a
rotation about the z axis by an angle θrot. In the case that the entrance and exit planes are
well outside the fringe-field regions [which, as can be seen from Figure 2.5 and (2.42), is not
quite true for this example], θrot is given (in radians) by the relation

θrot = [1/(2 brho)]

∫ +∞

−∞
Bz(0, 0, z) dz = BL/(2 brho). (16.2.87)

Here brho is the magnetic rigidity. See Exercise 1.5.9. Note that the result (2.87) does not
depend on a in the case of a simple solenoid or on a1 and a2 in the case of a thick solenoid.

16.2.5.4 Expansion of Scaled Deviation-Variable Hamiltonian

To find the transfer map M about the design orbit it is necessary to express the scaled
deviation-variable Hamiltonian H as a sum of homogeneous polynomials,

H =
∞∑
m=0

Hm. (16.2.88)

Doing so for the Hamiltonian (2.50) gives, for the first few terms, the results

H0 = 1/(β2
0γ

2
0`), (16.2.89)

H1 = 0, (16.2.90)

H2 = [1/(2`)](P 2
x + P 2

y )− [b[0]/(2`)](XPy − Y Px)
+ [(b[0])2/(8`)](X2 + Y 2) + [1/(2β2

0γ
2
0`)]P

2
τ , (16.2.91)

H3 = [1/(2β0`)]Pτ (P
2
x + P 2

y )− [b[0]/(2β0`)]Pτ (XPy − Y Px)
+ [(b[0])2/(8β0`)]Pτ (X

2 + Y 2) + [1/(β3
0γ

2
0`)]P

3
τ , (16.2.92)

H4 = (1/8`)(P 4
x + 2P 2

xP
2
y + P 4

y )− [b[0]/(4`)](P 2
x + P 2

y )(XPy − Y Px)
+ [(b[0])2/(16`)](X2P 2

x + Y 2P 2
y ) + [3(b[0])2/(16`)](X2P 2

y + Y 2P 2
x )

− [(b[0])2/(4`)](XPxY Py) + {[b[2] − (b[0])3]/(16`)}(X2 + Y 2)(XPy − Y Px)
+ {[(b[0])4 − 4b[0]b[2]]/(128`)}(X4 + 2X2Y 2 + Y 4)− [(3− β3

0)/(4β2
0`)]P

2
τ (P 2

x + P 2
y )

− [b[0](3− β3
0)/(4β2

0`)]P
2
τ (XPy − Y Px) + [(b[0])2(3− β3

0)/(16β2
0`)]P

2
τ (X2 + Y 2)

+ [(5− β0)2)/(8β4
0γ

2
0`)]P

4
τ . (16.2.93)

These are the terms required to computeM through third order. Note that H1 vanishes as
it should. If it did not, the phase-space path obtained by setting all deviation variables to
zero (the design orbit) would not be a solution of the equations of motion. We also remark
that the constant piece H0 is irrelevant to the actual motion, and does not enter into the
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calculation of M. It is presented only as an aid for those who wish to check the expansion
(2.88) through (2.93).

In view of the symmetry (2.82), it is also instructive to have an expansion of H in terms
of the variables Pτ , P

2, Jz, and Q2. In terms of these variables there are the results

H2 = [1/(2`)]P 2 − [b[0]/(2`)]Jz + [(b[0])2/(8`)]Q2 + [1/(2β2
0γ

2
0`)]P

2
τ , (16.2.94)

H3 = (1/β0)PτH2, (16.2.95)

H4 = [1/(8`)](P 2)2 − [b[0]/4`)]P 2Jz + [b[0]/(8`)]J2
z + [−b[0]/(8`) + 3(b[0])2/(16`)]P 2Q2

+ {[b[2] − (b[0])3]/(16`)}Q2Jz + {[(b[0])4 − 4b[0]b[2]]/(128`)}(Q2)2

+ [(3− β2
0)/(4β2

0`)]P
2
τ P

2 − [(3− β2
0)b[0]/(4β2

0`)]P
2
τ Jz

+ [(3− β2
0)(b[0])2/(16β2

0`)]P
2
τQ

2 + [(5− β0)2)/(8β4
0γ

2
0`)]P

4
τ . (16.2.96)

Note that, because H3 as given by (2.95) is proportional to Pτ , all second-order aberrations
for any solenoid transfer map are purely chromatic.

We close this subsection with the remark that the result given by (2.94) through (2.96)
holds for any solenoid. For simplicity, in subsequent sections we will apply them to the case
of a simple air-core solenoid, in which case (2.19) holds. But they are also applicable to more
complicated air-core solenoids as described in Subsection 2.4 as well as solenoids containing
iron.

16.2.6 Solenoidal Fringe-Field Effects: Attempts to Hard-Edge
Model Them

16.2.6.1 Convergence and Divergence

Suppose we wish to make a simple model of fringe-field effects. The hope would be to find a
model whose fields are not too different from those that can be attained by feasible magnet
construction and for which analytic calculations can be made using simple approximations
and without too much difficulty, thereby bypassing the need for detailed numerical calcu-
lation involving a detailed knowledge of the functions b[n](z). One idea for doing so is to
consider a model in which the bump function in (2.18) and (2.19) is replaced by a bump
function having the properties (2.30). This so-called hard-edge model, for which the on-axis
field begins and ends abruptly, has only limited utility. Here are several objections to this
approach:

• Real solenoids, and in particular multi-layer solenoids as described in Subsection 2.4,
have extended fringe fields. From (2.49) one sees that the on-axis field involves both
the inner radius a1 and the outer radius a2. For a realistic/thick multi-layer solenoid
a2 is relatively large. Correspondingly, the fringe fields falls off only slowly. Therefore
beginning and terminating the on-axis field abruptly is a poor approximation for real
solenoids.

• Suppose we restrict our attention to single-layer solenoids as described in Subsection
2.2. In this case (which we have called the simple solenoid case), as examination
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of Figures 2.4 and 2.5 illustrates, it might be useful to attempt a hard-edge model.
That is, we might attempt to compute the transfer map M when a = 0 because
then, according to (2.29), the soft-edge bump function becomes the hard-edge bump
function. In this case however, as described in Subsection 2.2.3, the on-axis gradient
C

[3]
0 involves bump′′(z, a, L) which takes on the appearance of δ′(z) and −δ′(z − L)

in the hard-edge limit. See Figure (2.7). We note that the appearance of the δ′

functions is a consequence of the representation (2.1) which itself is a consequence of
the Maxwell equations for B. We also note that H4 as given by (2.96) involves b[2](z)
which in turn, according to (2.43) and (2.59), can involve the pesky δ′ functions.
Therefore the differential equation (10.5.61) for f4 is ill defined in the hard-edge case.
One might hope to deal with this complication by making calculations for a 6= 0,
including all fringe-field effects, and then taking the limit a → 0. When this is done
it can be shown that some of the the third- and higher-order aberrations (described
by the fn with n ≥ 4) of the transfer map M for a solenoid become infinite in the
hard-edge (a→ 0) limit! Thus, the hard-edge limit is unphysical for a solenoid if these
aberrations are important.1 Correspondingly, third-order solenoid aberrations can be
reduced by making the fringe-field regions large. It also helps to make the solenoid
weak since aberrations are proportional to B. If this is done, the solenoid must also be
made long (to compensate for the small B) in order to maintain the desired paraxial
properties.

• Finally we must acknowlege the obvious but irritating fact that the aperture of the
simple solenoid, which must contain the beam, shrinks to zero as a→ 0.

To illustrate some of these points, let us examine the transfer map for the specific simple
air-core solenoid we have been discussing. To do so we will employ the Lie-algebraic charged
particle beam transport code MaryLie. Among the beam-line elements it treats is the simple
air-core solenoid. Exhibits 2.3 through 2.5 below show (through third order) the transfer
map M for the three cases a = 0.2, a = .02, and a = .002. (Here we use the indexing
scheme of Table 39.2.1.) In all cases the solenoid has length L = 1, and the entry and exit
planes are taken to be at z = zen = −1 and z = zex = 2, respectively. All lengths are in
meters, and we have used the terminology of Subsection 1.2. See Figures 2.4 and 2.5. The
quantity B has the value B = 1 Tesla and the magnetic rigidity (brho) is that for 800 MeV
protons. Finally, the scale length is taken to be ` = 1 meter. Numerical integration of the
differential equations (described in Section 10.5.2) to computeM was carried out employing
the Adams10 routine described in Appendix B.8. Both these differential equations and the
Adams10 routine are incorporated into MaryLie. The number of integrations steps was 5000
for the cases a = 0.2 and a = .02, and 10,000 for the case a = .002. Results are accurate to

1There is confusion/error on this point in the literature. Some authors give aberration results through
third order and in the hard-edge limit for many common beam-line elements, but give results for simple
solenoids only through second order. And their accompanying discussion can be read to imply that no
difficulty is expected in extending the simple solenoid results through third order. Other authors propose
formulas for the third-order aberrations of a simple solenoid in the hard-edge limit, and these formulas
are independent of a and thus yield finite results when a = 0. Yet other authors correctly recognize that
attempting to make the fringe-field region very small, say by adding extra coils at solenoid ends, leads to
some very large third-order aberrations.



1400
16. REALISTIC TRANSFER MAPS FOR STRAIGHT IRON-FREE BEAM-LINE

ELEMENTS

at least 10 significant figures.
Evidently the matrices for the three cases are not very different. Moreover, the f3

Lie generators (which describe second-order aberrations), those with indices 28 through
83, are comparable for the three cases. Both these behaviors are consistent with some
sort of convergence occurring for the matrix and f3 entries as a → 0. See Exercise 2.16.
Examination of the equations of motion for these quantities when H2 and H3 are given by
(2.91) and (2.92), see (10.5.32) and (10.5.60), shows that convergence is to be expected.
However, the matter is delicate because the function b[0](z) that appears in H2 and hence
also in H3 [see (2.94) and (2.95)] is discontinuous at z = 0 and z = L in the limit a → 0.
(See also Exercise 2.2.) Therefore the assumptions of Theorems 1.3.1 and 1.3.2 are violated
in the limit a→ 0. (Note that in this context a is a parameter.)

Exhibit 16.2.3: Transfer map for the case a = 0.2

matrix for map is :

9.83483E-01 2.96811E+00 1.00099E-01 3.02094E-01 0.00000E+00 0.00000E+00

-7.58348E-03 9.83483E-01 -7.71845E-04 1.00099E-01 0.00000E+00 0.00000E+00

-1.00099E-01 -3.02094E-01 9.83483E-01 2.96811E+00 0.00000E+00 0.00000E+00

7.71845E-04 -1.00099E-01 -7.58348E-03 9.83483E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 1.23343E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

nonzero elements in generating polynomial are :

f( 33)=f( 20 00 01 )=-4.56819202124767E-03

f( 38)=f( 11 00 01 )= 1.16503508346131E-04

f( 45)=f( 10 01 01 )= 0.12049092663579

f( 53)=f( 02 00 01 )= -1.7728464321596

f( 57)=f( 01 10 01 )=-0.12049092663579

f( 67)=f( 00 20 01 )=-4.56819202124767E-03

f( 70)=f( 00 11 01 )= 1.16503508346112E-04

f( 76)=f( 00 02 01 )= -1.7728464321596

f( 83)=f( 00 00 03 )=-0.73260547246490

f( 84)=f( 40 00 00 )=-3.74253654402362E-03

f( 85)=f( 31 00 00 )= 2.24430345842169E-02

f( 87)=f( 30 01 00 )= 8.95982012441282E-04

f( 90)=f( 22 00 00 )=-5.26850707023760E-02

f( 91)=f( 21 10 00 )=-8.95982012441342E-04

f( 92)=f( 21 01 00 )=-2.48332996215296E-03

f( 95)=f( 20 20 00 )=-7.48507308804724E-03

f( 96)=f( 20 11 00 )= 2.24430345842169E-02

f( 99)=f( 20 02 00 )=-2.26497144701727E-02

f(104)=f( 20 00 02 )=-6.25873997450046E-03

f(105)=f( 13 00 00 )= 5.13684894940268E-02

f(106)=f( 12 10 00 )= 2.48332996215340E-03

f(107)=f( 12 01 00 )= 2.86233975277233E-02

f(110)=f( 11 20 00 )= 2.24430345842170E-02

f(111)=f( 11 11 00 )=-6.00707124644067E-02

f(114)=f( 11 02 00 )= 5.13684894940265E-02
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f(119)=f( 11 00 02 )= 3.65870158733148E-04

f(121)=f( 10 21 00 )= 8.95982012441354E-04

f(124)=f( 10 12 00 )=-2.48332996215361E-03

f(130)=f( 10 03 00 )= 2.86233975277249E-02

f(135)=f( 10 01 02 )= 0.16398429796274

f(140)=f( 04 00 00 )=-0.39062543855982

f(141)=f( 03 10 00 )=-2.86233975277245E-02

f(145)=f( 02 20 00 )=-2.26497144701727E-02

f(146)=f( 02 11 00 )= 5.13684894940265E-02

f(149)=f( 02 02 00 )=-0.78125087711963

f(154)=f( 02 00 02 )= -2.4021742345697

f(155)=f( 01 30 00 )=-8.95982012441327E-04

f(156)=f( 01 21 00 )= 2.48332996215335E-03

f(159)=f( 01 12 00 )=-2.86233975277243E-02

f(164)=f( 01 10 02 )=-0.16398429796274

f(175)=f( 00 40 00 )=-3.74253654402362E-03

f(176)=f( 00 31 00 )= 2.24430345842170E-02

f(179)=f( 00 22 00 )=-5.26850707023762E-02

f(184)=f( 00 20 02 )=-6.25873997450046E-03

f(185)=f( 00 13 00 )= 5.13684894940276E-02

f(190)=f( 00 11 02 )= 3.65870158733149E-04

f(195)=f( 00 04 00 )=-0.39062543855982

f(200)=f( 00 02 02 )= -2.4021742345697

f(209)=f( 00 00 04 )=-0.93366303371890

Exhibit 16.2.4: Transfer map for the case a=0.02

matrix for map is :

9.79608E-01 2.96235E+00 1.00691E-01 3.04490E-01 0.00000E+00 0.00000E+00

-1.00980E-02 9.79608E-01 -1.03794E-03 1.00691E-01 0.00000E+00 0.00000E+00

-1.00691E-01 -3.04490E-01 9.79608E-01 2.96235E+00 0.00000E+00 0.00000E+00

1.03794E-03 -1.00691E-01 -1.00980E-02 9.79608E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 1.23343E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

nonzero elements in generating polynomial are :

f( 33)=f( 20 00 01 )=-6.10129602475707E-03

f( 38)=f( 11 00 01 )= 2.06122460889397E-04

f( 45)=f( 10 01 01 )= 0.12167479425840

f( 53)=f( 02 00 01 )= -1.7698863189223

f( 57)=f( 01 10 01 )=-0.12167479425840

f( 67)=f( 00 20 01 )=-6.10129602475707E-03

f( 70)=f( 00 11 01 )= 2.06122460889378E-04

f( 76)=f( 00 02 01 )= -1.7698863189223

f( 83)=f( 00 00 03 )=-0.73260547246490

f( 84)=f( 40 00 00 )=-3.82799704943991E-02

f( 85)=f( 31 00 00 )= 0.22920563229564

f( 87)=f( 30 01 00 )= 7.71671926080641E-04

f( 90)=f( 22 00 00 )=-0.56748370148935

f( 91)=f( 21 10 00 )=-7.71671926080904E-04
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f( 92)=f( 21 01 00 )=-2.05451760035706E-03

f( 95)=f( 20 20 00 )=-7.65599409887983E-02

f( 96)=f( 20 11 00 )= 0.22920563229564

f( 99)=f( 20 02 00 )=-0.19593987204417

f(104)=f( 20 00 02 )=-8.37702532799553E-03

f(105)=f( 13 00 00 )= 0.66447262222389

f(106)=f( 12 10 00 )= 2.05451760035958E-03

f(107)=f( 12 01 00 )= 2.70686638900989E-02

f(110)=f( 11 20 00 )= 0.22920563229564

f(111)=f( 11 11 00 )=-0.74308765889035

f(114)=f( 11 02 00 )= 0.66447262222389

f(119)=f( 11 00 02 )= 6.47127530769082E-04

f(121)=f( 10 21 00 )= 7.71671926081047E-04

f(124)=f( 10 12 00 )=-2.05451760035932E-03

f(130)=f( 10 03 00 )= 2.70686638901053E-02

f(135)=f( 10 01 02 )= 0.16559550393811

f(140)=f( 04 00 00 )=-0.67707437134121

f(141)=f( 03 10 00 )=-2.70686638901064E-02

f(145)=f( 02 20 00 )=-0.19593987204417

f(146)=f( 02 11 00 )= 0.66447262222389

f(149)=f( 02 02 00 )= -1.3541487426824

f(154)=f( 02 00 02 )= -2.3947144417881

f(155)=f( 01 30 00 )=-7.71671926080822E-04

f(156)=f( 01 21 00 )= 2.05451760035805E-03

f(159)=f( 01 12 00 )=-2.70686638901048E-02

f(164)=f( 01 10 02 )=-0.16559550393811

f(175)=f( 00 40 00 )=-3.82799704943991E-02

f(176)=f( 00 31 00 )= 0.22920563229564

f(179)=f( 00 22 00 )=-0.56748370148935

f(184)=f( 00 20 02 )=-8.37702532799553E-03

f(185)=f( 00 13 00 )= 0.66447262222389

f(190)=f( 00 11 02 )= 6.47127530769100E-04

f(195)=f( 00 04 00 )=-0.67707437134121

f(200)=f( 00 02 02 )= -2.3947144417881

f(209)=f( 00 00 04 )=-0.93366303371890

Exhibit 16.2.5: Transfer map for the case a=0.002

matrix for map is :

9.79172E-01 2.96175E+00 1.00656E-01 3.04459E-01 0.00000E+00 0.00000E+00

-1.03876E-02 9.79172E-01 -1.06781E-03 1.00656E-01 0.00000E+00 0.00000E+00

-1.00656E-01 -3.04459E-01 9.79172E-01 2.96175E+00 0.00000E+00 0.00000E+00

1.06781E-03 -1.00656E-01 -1.03876E-02 9.79172E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 1.23343E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

nonzero elements in generating polynomial are :

f( 33)=f( 20 00 01 )=-6.27795556809269E-03

f( 38)=f( 11 00 01 )= 2.16268873229983E-04

f( 45)=f( 10 01 01 )= 0.12168683913260

f( 53)=f( 02 00 01 )= -1.7696108701855
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f( 57)=f( 01 10 01 )=-0.12168683913260

f( 67)=f( 00 20 01 )=-6.27795556809270E-03

f( 70)=f( 00 11 01 )= 2.16268873229994E-04

f( 76)=f( 00 02 01 )= -1.7696108701855

f( 83)=f( 00 00 03 )=-0.73260547246506

f( 84)=f( 40 00 00 )=-0.38235532452970

f( 85)=f( 31 00 00 )= 2.2888185879143

f( 87)=f( 30 01 00 )= 8.00590462204597E-04

f( 90)=f( 22 00 00 )= -5.7102701093391

f( 91)=f( 21 10 00 )=-8.00590462205045E-04

f( 92)=f( 21 01 00 )=-2.13388593660145E-03

f( 95)=f( 20 20 00 )=-0.76471064905939

f( 96)=f( 20 11 00 )= 2.2888185879143

f( 99)=f( 20 02 00 )= -1.9103970318647

f(104)=f( 20 00 02 )=-8.62088196355748E-03

f(105)=f( 13 00 00 )= 6.8352404267418

f(106)=f( 12 10 00 )= 2.13388593640862E-03

f(107)=f( 12 01 00 )= 2.71197052999494E-02

f(110)=f( 11 20 00 )= 2.2888185879143

f(111)=f( 11 11 00 )= -7.5997461549496

f(114)=f( 11 02 00 )= 6.8352404267445

f(119)=f( 11 00 02 )= 6.78947912878182E-04

f(121)=f( 10 21 00 )= 8.00590462204979E-04

f(124)=f( 10 12 00 )=-2.13388593639684E-03

f(130)=f( 10 03 00 )= 2.71197052987057E-02

f(135)=f( 10 01 02 )= 0.16561189662672

f(140)=f( 04 00 00 )= -3.5930682684087

f(141)=f( 03 10 00 )=-2.71197052987419E-02

f(145)=f( 02 20 00 )= -1.9103970318647

f(146)=f( 02 11 00 )= 6.8352404267445

f(149)=f( 02 02 00 )= -7.1861365368258

f(154)=f( 02 00 02 )= -2.3940220818360

f(155)=f( 01 30 00 )=-8.00590462202088E-04

f(156)=f( 01 21 00 )= 2.13388593658432E-03

f(159)=f( 01 12 00 )=-2.71197052999558E-02

f(164)=f( 01 10 02 )=-0.16561189662672

f(175)=f( 00 40 00 )=-0.38235532452970

f(176)=f( 00 31 00 )= 2.2888185879143

f(179)=f( 00 22 00 )= -5.7102701093391

f(184)=f( 00 20 02 )=-8.62088196355748E-03

f(185)=f( 00 13 00 )= 6.8352404267418

f(190)=f( 00 11 02 )= 6.78947912878175E-04

f(195)=f( 00 04 00 )= -3.5930682684087

f(200)=f( 00 02 02 )= -2.3940220818360

f(209)=f( 00 00 04 )=-0.93366303371922

What can be said about the f4 Lie generators (which describe third-order aberrations),
those with indices 84 through 209? Some of them are quite different for the three val-
ues of a. For example, the values of f(84), which are the coefficients of X4 in the f4

Lie generators for the three cases, are quite different. Examination shows that these
values are f(84) = −3.74253654402362E − 03, f(84) = −3.82799704943991E − 02, and
f(84) = −0.38235532452970 for the cases a = 0.2, a = .02, and a = .002, respectively. This
behavior suggests the coefficient of X4 is diverging (in magnitude) to ∞ as a → 0. The
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same is true of some of the other f4 entries. Indeed, it can be illustrated numerically and
demonstrated analytically that the divergent f4 entries behave as 1/a as a→ 0 so that, for
example, the product af(84) approaches a constant as a → 0. Table 2.1 below illustrates
this divergence/behavior for the case of f(84).

Table 16.2.1: Numerical behavior of f(84) for small values of a.

a f(84) af(84)

.2 -3.7425E-3 -7.4850E-4
.02 -3.8279E-2 -7.6558E-4
.002 -3.8235E-1 -7.6470E-4

We have made a preliminary study of the a → 0 behavior of the transfer map M for a
simple solenoid. In the rest of this subsection we will examine the matter in greater detail.

16.2.6.2 Behavior of Linear Part

16.2.6.2.1 Factorization into Three a Dependent Maps/Matrices

Something more can be said about M , the matrix for the linear part ofM, if one attempts
to form hard-edge limits/approximations. Let M−1→2 be the transfer map between the
planes z = −1 and z = 2, respectively. It is the map displayed in Exhibits 2.3 through
2.5 for three different values of a. Also, employing analogous notation, consider the maps
M−1→0, M0→1, and M1→2. Then we have the relation

M−1→2 =M−1→0M0→1M1→2. (16.2.97)

Next, let D be the map for a drift of length 1 meter. Employ this map to define implicitly
two other maps Mlff and Mtff by writing

M−1→0 = DMlff (16.2.98)

and
M1→2 =MtffD. (16.2.99)

Then, particularly when a is small, we may view Mlff and Mtff as leading and trailing
fringe-field maps. Of course, (2.98) and (2.99) can be solved to give the explicit definitions

Mlff = D−1M−1→0 (16.2.100)

Mtff =M1→2D−1. (16.2.101)

Also, make the definition
Mbody =M0→1. (16.2.102)

Then we have the factorization

M−1→2 = DMlffMbodyMtffD. (16.2.103)
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Note that all these maps are symplectic. Note also that, as illustrated in Figure 2.5, when
a is sufficiently small, the map M−1→2 essentially describes transport through a 1 meter
drift followed by transport through a 1 meter solenoid followed by transport through a
final 1 meter drift. We therefore expect, when a is sufficiently small, that Mlff and Mtff

will describe leading and trailing fringe-field effects outside the solenoid, and Mbody will
describe all effects occurring within the solenoid itself.

Finally, in view of (2.103), we make the definition

Msolenoid =MlffMbodyMtff. (16.2.104)

Note thatMsolenoid has been factored into three a dependent maps. Correspondingly for the
associated linear parts there will be the relation

Msolenoid = M tffMbodyM lff. (16.2.105)

The matrix Msolenoid has also been factorized into three a dependent matrices.
From the previous discussion we expect that some of the third- and higher-order aber-

ration parts of the maps Mlff, Mtff, and Mbody may diverge as a → 0. But for now let us
examine the linear/matrix parts of the maps Mlff, Mbody, and Mtff in the hard-edge limit
a→ 0. We begin with the mapsMlff andMtff. Exhibits 2.6 through 2.9 show the matrices
associated with these maps for the values a = 0.2 and a = 0.02.

Exhibit 16.2.6: The matrix M lff for the case a = 0.2

9.99944E-01 3.31737E-06 8.72573E-03 2.89481E-08 0.00000E+00 0.00000E+00

-2.11420E-04 9.99980E-01 -1.84490E-06 8.72604E-03 0.00000E+00 0.00000E+00

-8.72573E-03 -2.89481E-08 9.99944E-01 3.31737E-06 0.00000E+00 0.00000E+00

1.84490E-06 -8.72604E-03 -2.11420E-04 9.99980E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Exhibit 16.2.7: The matrix M lff for the case a = 0.02

9.99999E-01 4.78327E-09 1.00901E-03 0.00000E+00 0.00000E+00 0.00000E+00

-2.24996E-05 1.00000E+00 -2.27024E-08 1.00901E-03 0.00000E+00 0.00000E+00

-1.00901E-03 0.00000E+00 9.99999E-01 4.78327E-09 0.00000E+00 0.00000E+00

2.27024E-08 -1.00901E-03 -2.24996E-05 1.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Exhibit 16.2.8: The matrix M tff for the case a = 0.2

9.99980E-01 3.31737E-06 8.72604E-03 2.89481E-08 0.00000E+00 0.00000E+00

-2.11420E-04 9.99944E-01 -1.84490E-06 8.72573E-03 0.00000E+00 0.00000E+00

-8.72604E-03 -2.89481E-08 9.99980E-01 3.31737E-06 0.00000E+00 0.00000E+00

1.84490E-06 -8.72573E-03 -2.11420E-04 9.99944E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00
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Exhibit 16.2.9: The matrix M tff for the case a = 0.02

1.00000E+00 4.78328E-09 1.00901E-03 0.00000E+00 0.00000E+00 0.00000E+00

-2.24996E-05 9.99999E-01 -2.27024E-08 1.00901E-03 0.00000E+00 0.00000E+00

-1.00901E-03 0.00000E+00 1.00000E+00 4.78328E-09 0.00000E+00 0.00000E+00

2.27024E-08 -1.00901E-03 -2.24996E-05 9.99999E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Upon comparing Exhibits 2.6 and 2.7 we see that there appears to be the limiting be-
havior

lim
a→0

M lff = I. (16.2.106)

And, upon comparing Exhibits 2.8 and 2.9, we see that there appears to be the limiting
behavior

lim
a→0

M tff = I. (16.2.107)

Thus it appears that, for a solenoid in the hard-edge limit, there are no effects on the linear
part of the transfer map due to fringe fields outside the solenoid. These results can be
proved analytically using the H2 given by (2.91) to compute M−1→0 and M1→2 since in the
hard-edge limit b[0](z) vanishes for z < 0 and z > L = 1, and therefore the resulting M for
such computations will simply be that for a 1 meter drift.

What can be said about the linear part of Mbody? Exhibits 2.10 and 2.11 show the
matrices associated with these maps for the values a = 0.2 and a = 0.02.

Exhibit 16.2.10: The matrix Mbody for the case a = 0.2

9.92886E-01 9.95137E-01 8.35777E-02 8.37672E-02 0.00000E+00 0.00000E+00

-7.17625E-03 9.92886E-01 -6.04072E-04 8.35777E-02 0.00000E+00 0.00000E+00

-8.35777E-02 -8.37672E-02 9.92886E-01 9.95137E-01 0.00000E+00 0.00000E+00

6.04072E-04 -8.35777E-02 -7.17625E-03 9.92886E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 4.11143E-01

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Exhibit 16.2.11: The matrix Mbody for the case a = 0.02

9.89931E-01 9.93237E-01 9.97335E-02 1.00067E-01 0.00000E+00 0.00000E+00

-1.00555E-02 9.89931E-01 -1.01307E-03 9.97335E-02 0.00000E+00 0.00000E+00

-9.97335E-02 -1.00067E-01 9.89931E-01 9.93237E-01 0.00000E+00 0.00000E+00

1.01307E-03 -9.97335E-02 -1.00555E-02 9.89931E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 4.11143E-01

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Comparison of the matrices in Exhibits 2.10 and 2.11 shows that some sort of limit also
appears to be approached by Mbody as a → 0. But what is this limit? Exhibit 2.12 shows
Muniform, the matrix computed (numerically) using the Hamiltonian H2 given by (2.91)
with b[0](z) having a constant value. (This matrix can be computed analytically as well
as numerically. The analytic result is that quoted in Section 13.4. See Exercise 2.16.)
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Examination of the matrices in the Exhibits 2.10 through 2.12 shows that there appears to
be the limiting behavior

lim
a→0

Mbody = Muniform. (16.2.108)

This result can be proved analytically using the H2 given by (2.91) to compute M0→1 since
in the hard-edge limit b[0](z) is constant for z in the open interval z ∈ (0, 1).

Exhibit 16.2.12: The matrix Muniform for the case of a uniform field

9.89543E-01 9.93019E-01 1.01722E-01 1.02079E-01 0.00000E+00 0.00000E+00

-1.04201E-02 9.89543E-01 -1.07116E-03 1.01722E-01 0.00000E+00 0.00000E+00

-1.01722E-01 -1.02079E-01 9.89543E-01 9.93019E-01 0.00000E+00 0.00000E+00

1.07116E-03 -1.01722E-01 -1.04201E-02 9.89543E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 4.11143E-01

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

From (2.106) through (2.108) we conclude that in the hard-edge limit there are no fringe-
field contributions to the linear part of the transfer map for a solenoid.That is, there is the
limiting result

lim
a→0

Msolenoid = Muniform. (16.2.109)

(Curiously, this is the same result as that found by neglecting fringe fields entirely!) Some
other authors have also reached the same conclusion by other methods. However we hasten
to emphasize, as we have already seen, that in the hard-edge limit there are disastrous fringe-
field effects for some third- and higher-order aberrations. It is therefore highly desirable, in
the case of a solenoid, to treat fringe-field effects with care (which must be done numerically)
using realistic profiles b[n](z).

Yet other authors provide formulas for matrices Mfringe and Mlongitudinal which are meant
to play roles analogous to M lff, M tff, and Mbody. These matrices differ from those given
by the linear parts of (2.100) through (2.102); and their limiting values differ from those
given by (2.106) through (2.108). They are also not symplectic. However, when a = 0, their
product does give the symplectic result

MfringeMlongitudinalM
−1
fringe = Muniform. (16.2.110)

Based on the results of these authors one might be tempted to conclude that, at least in
some way, fringe fields even in the hard-edge limit do play some role in determining the
linear part of the transfer map for a solenoid. [Note however that their net effect cancels out
because of the result (2.110).] The explanation for this confusing circumstance is that these
authors employ in essence mechanical rather than canonical momenta in their calculations.
So doing is expected to yield nonsymplectic results in the presence of magnetic fields. Recall
Exercise 1.7.5. But these nonsymplectic results can ultimately cancel, as in (2.110), when
a full/complete calculation is made providing the magnetic field vanishes before entry into
and after exit from the solenoid. See Exercise 6.4.11.
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16.2.6.2.2 Factorization Involving Only Two a Dependent Maps/Matrices

There is another variation on the theme we have been exploring. Suppose instead of (2.103)
we attempt an Ansatz of the form

M−1→2 = DMLFFMuniformMTFFD. (16.2.111)

Here Muniform is the map computed for a length of 1 meter using the Hamiltonian H given
by (2.88) through (2.93) with b[0] having a constant value and correspondingly b[n] = 0 for
n > 0. (For future reference, we will call this Hamiltonian Huniform.) If the Ansatz (2.111)
is successful, the maps MLFF and MTFF will describe both the effects arising from the
depletion of the field within the body of the solenoid and the effects of the fields that extend
beyond the ends of the solenoid. In view of (2.111) we make the definition

Msolenoid =MLFFMuniformMTFF. (16.2.112)

Assuming success of the Ansatz (2.111), we see that Msolenoid has been factorized in a way
that involves only two a dependent maps, namelyMLFF andMTFF, and one a independent
map, namely Muniform. Correspondingly for the associated linear parts there will be the
relation

Msolenoid = MTFFMuniformMLFF. (16.2.113)

The matrix Msolenoid has been factorized in a way that involves only two a dependent matrices
and one a independent matrix

Let us pause momentarily at this point to compare the factorizations (2.104) and (2.112).
The map Msolenoid is the same in both. [Correspondingly, the matrices Msolenoid given by
(2.105) and (2.113) are the same.] But (2.104) may be viewed as a kind of local factorization
in that it treats separately effects that occur before, within, and after the body of the
solenoid. By contrast (2.112) may be viewed as a nonlocal/lumped factorization in that
MLFF describes effects that occur both before and after entry into the body of the solenoid
and MTFF describes effects that occur both within the body of the solenoid and after exit
from the body of the solenoid. No attempt is made to describe separately what occurs only
within the body of the solenoid itself.2

To continue, how can we determine the maps MLFF and MTFF? Let H be the map of
a uniform “half” solenoid, the map computed for a uniform solenoid with a length of 1/2
meter using the Hamiltonian H given by (2.88) through (2.93) with b[0] having a constant
value and correspondingly b[n] = 0 for n > 0. Then evidently there will be the relation

Muniform = HH (16.2.114)

and the Ansatz (2.111) becomes

M−1→2 = DMLFFHHMTFFD. (16.2.115)

2Strictly speaking, the factorization (2.104) is not completely local since, according to the definition
(2.98), Mlff lumps together at the end of the leading drift all the fringe-field effects that have accumulated
prior to the body of the solenoid; and, according to (2.99), Mtff lumps together at the beginning of the
trailing drift all the fringe-field effects that will accumulate after the body of the solenoid.
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Observe that there is also the factorization

M−1→2 =M−1→0.5M0.5→2. (16.2.116)

We are therefore led to make the implicit definitions

DMLFFH =M−1→0.5 (16.2.117)

and
HMTFFD =M0.5→2. (16.2.118)

It is easily verified using (2.114) and (2.116) through (2.118) that (2.111) is then satisfied.
Thus the Ansatz (2.111) has been justified. Moreover, (2.117) and (2.118) can be solved for
MLFF and MLFF to give the explicit results

MLFF = D−1M−1→0.5H−1 (16.2.119)

and
MTFF = H−1M0.5→2D−1. (16.2.120)

Note that, according to (2.119) and (2.120), both MLFF and MTFF are symplectic maps.
Consequently the matrices MLFF and MTFF associated with their linear parts will be sym-
plectic matrices.

What can be said about the nature of MLFF and MTFF as functions of a? Exhibits 2.13
through 2.18 display these matrices for the values a = 0.2, a = .02, and a = .002. For clarity
of presentation, in making these calculations the rotational parts of the solenoid maps have
been removed. Recall Subsection 2.5.3. In principle, because of (2.87), there should be no
rotational parts in MLFF and MTFF in the limit that the external leading fringe field is
allowed to begin at zen = −∞ and the external trailing fringe field is allowed to extend to
zex = +∞. In the calculations described here (and without the rotational components of
the solenoid maps being removed) there are negligible but numerically noticeable rotational
components in the matrices MLFF and MTFF associated with the maps MLFF and MTFF

as defined by (2.119) and (2.120). For example, in computing (2.119) the rotational part of
M−1→0.5 does not completely cancel the rotational part of H−1 because the leading external
fringe field region is taken to begin at z = zen = −1. We have verified that if the leading
external fringe field region is taken to begin at a larger negative value of z, for example
zen = −10, then the cancellation of rotational parts is more nearly complete. (Of course, in
this case we must also employ for D the map of a 10 meter drift.) The cancellation also is
more nearly complete the smaller the value of a, as is to be expected from comparison of
Figures 2.4 and 2.5. The subtlety of these considerations arises from the relatively slow fall
off of air-core solenoid fringe fields.

Exhibit 16.2.13: The matrix MLFF for the case a = 0.2

9.99702E-01 -7.50022E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.42997E-03 1.00030E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 9.99702E-01 -7.50022E-05 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.42997E-03 1.00030E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00
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Exhibit 16.2.14: The matrix MLFF for the case a = 0.02

9.99992E-01 -1.22107E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.62696E-04 1.00001E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 9.99992E-01 -1.22107E-06 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.62696E-04 1.00001E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Exhibit 16.2.15: The matrix MLFF for the case a = 0.002

1.00000E+00 -1.10603E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.64409E-05 1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.00000E+00 -1.10603E-08 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.64409E-05 1.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Exhibit 16.2.16: The matrix MTFF for the case a = 0.2

1.00030E+00 -7.50022E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.42997E-03 9.99702E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.00030E+00 -7.50022E-05 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.42997E-03 9.99702E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Exhibit 16.2.17: The matrix MTFF for the case a = 0.02

1.00001E+00 -1.22107E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.62696E-04 9.99992E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.00001E+00 -1.22107E-06 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.62696E-04 9.99992E-01 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

Exhibit 16.2.18: The matrix MTFF for the case a = 0.002

1.00000E+00 -1.10596E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.64409E-05 1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.00000E+00 -1.10596E-08 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.64409E-05 1.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00
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From Exhibits 2.13 through 2.15 we infer that there is the limiting behavior

lim
a→0

MLFF = I. (16.2.121)

And from Exhibits 2.16 through 2.18 we infer that there is the limiting behavior

lim
a→0

MTFF = I. (16.2.122)

These limiting behaviors can also be verified analytically, and are to be expected. Again
we conclude that in the hard-edge limit there are no fringe-field contributions to the linear
part of the transfer map for a solenoid. That is, (2.109) again holds.

There is some irony here. We have seen that the matrices for the linear parts of MLFF

andMTFF have the benign limiting behavior (2.121) and (2.122). We also know from (2.112)
that the only a dependence in Msolenoid arises from that in MLFF and MTFF, and we have
seen that Msolenoid has some divergent third-order aberrations as a→ 0. We conclude that
while the limiting behavior of the linear parts of MLFF and MTFF is benign, that of some
of the nonlinear parts of MLFF and MTFF is pathological.

What can be said about the linear parts ofMLFF andMTFF when a is small but nonzero?
From Exhibits 2.13 through 2.15 we see that, for small a, the effect of the leading fringe
field is to produce identical defocussing in both planes. And from Exhibits 2.16 through
2.18 we see that the same is true for the effect of the trailing fringe field.3 The modest and
small a effect of fringe fields is to decrease the focussing effect of a solenoid compared to
that predicted by Muniform. Recall (2.113).

Moreover, as illustrated in Table 2.2 below, for small a the defocussing strength behaves
linearly in a. That is, for example, the quantity MLFF

21 = MLFF
43 is proportional to a when

a is sufficiently small so that the product (1/a)MLFF
21 approaches a constant as a → 0.4

Identical results hold for MTFF
21 = MTFF

43 .
Finally, we remark that these results are consistent with those obtained by some other

authors using other methods.

3In passing we also note that, for a given value of a and within the announced numerical accuracy,
the matrices MLFF and MTFF differ only by permutations of various diagonal entries. This result is a
consequence of reversal symmetry. That is, for a given value of a, the matrices MLFF and MTFF are
reverses of each other. See Chapter 36.

4For modest values of a such as a = 0.2, and still larger values of a, there are some effects on MLFF
21

that arise from the approximation we have made that there are no leading external fringe-field effects before
zen = −1. Similarly there are some effects on MTFF

21 that arise from the approximation we have made that
there are no trailing external fringe-field effects after zex = 2. These effects disappear as a → 0 because
then external fringe fields become more and more confined to the vicinities of the entrance and exit of the
solenoid. As an indication of the size of these effects, suppose the leading external fringe field region is taken
to begin at a larger negative value of z, for example z = zen = −10. (Of course, in this case we must also
employ for D the map of a 10 meter drift.) Then, for a = 0.2, there are the results MLFF

21 = 1.42982E-03 and
(1/a)MLFF

21 = 7.14910E-03, which are to be compared with those in the first line of Table 2.2. Evidently in
this case the effects of the approximations we have made are small.
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Table 16.2.2: Numerical behavior of MLFF
21 for small values of a.

a MLFF
21 (1/a)MLFF

21

.2 1.42997E-03 7.14985E-03
.02 1.62696E-04 8.13480E-03
.002 1.64409E-05 8.22045E-03

16.2.6.3 Behavior of Nonlinear Part

We have concluded that, while the limiting behavior of the linear parts ofMLFF andMTFF

is benign, that of some of the nonlinear parts of MLFF and MTFF is pathological. In this
subsection we will examine in more detail the behavior of the nonlinear part ofMLFF in the
limit a→ 0. For brevity, we will not present the behavior of MTFF. But, as expected, it is
found to be analogous to that of MLFF.

Exhibits 2.19 through 2.21 display (through third order) the mapsMLFF given by (2.119)
for the cases a = 0.2, a = 0.02, and a = 0.002, respectively. For these exhibits the rotational
parts of the solenoidal maps have not been removed.

Exhibit 16.2.19: The map MLFF for the case a = 0.2

matrix for map is :

9.99702E-01 -7.47109E-05 -9.30614E-06 6.95479E-10 0.00000E+00 0.00000E+00

1.42984E-03 1.00030E+00 -1.33102E-08 -9.31170E-06 0.00000E+00 0.00000E+00

9.30614E-06 -6.95479E-10 9.99702E-01 -7.47109E-05 0.00000E+00 0.00000E+00

1.33102E-08 9.31170E-06 1.42984E-03 1.00030E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

nonzero elements in generating polynomial are :

f( 33)=f( 20 00 01 )= 8.48173754616857E-04

f( 38)=f( 11 00 01 )= 7.08661171957406E-04

f( 45)=f( 10 01 01 )=-1.10582080947857E-05

f( 53)=f( 02 00 01 )= 1.33079847471684E-04

f( 57)=f( 01 10 01 )= 1.10582080948066E-05

f( 67)=f( 00 20 01 )= 8.48173754616855E-04

f( 70)=f( 00 11 01 )= 7.08661171957389E-04

f( 76)=f( 00 02 01 )= 1.33079847476181E-04

f( 84)=f( 40 00 00 )=-1.86910737357663E-03

f( 85)=f( 31 00 00 )=-2.23275870608366E-03

f( 87)=f( 30 01 00 )=-1.51855928877267E-04

f( 90)=f( 22 00 00 )=-3.06010303211954E-04

f( 91)=f( 21 10 00 )= 1.51855928877281E-04

f( 92)=f( 21 01 00 )= 2.37154993794211E-02

f( 95)=f( 20 20 00 )=-3.73821474715327E-03

f( 96)=f( 20 11 00 )=-2.23275870608358E-03
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f( 99)=f( 20 02 00 )= 8.51691896034609E-04

f(104)=f( 20 00 02 )= 1.15254677042892E-03

f(105)=f( 13 00 00 )= 1.26460888238766E-04

f(106)=f( 12 10 00 )=-2.37154993794227E-02

f(107)=f( 12 01 00 )=-9.17588458782363E-04

f(110)=f( 11 20 00 )=-2.23275870608357E-03

f(111)=f( 11 11 00 )=-2.31540439851645E-03

f(114)=f( 11 02 00 )= 1.26460888456775E-04

f(119)=f( 11 00 02 )= 1.38437434049872E-03

f(121)=f( 10 21 00 )=-1.51855928877260E-04

f(124)=f( 10 12 00 )= 2.37154993794226E-02

f(130)=f( 10 03 00 )=-9.17588458807038E-04

f(135)=f( 10 01 02 )=-1.50498675709195E-05

f(140)=f( 04 00 00 )= 4.36074169958001E-05

f(141)=f( 03 10 00 )= 9.17588458803895E-04

f(145)=f( 02 20 00 )= 8.51691896035069E-04

f(146)=f( 02 11 00 )= 1.26460888454029E-04

f(149)=f( 02 02 00 )= 8.72148317848653E-05

f(154)=f( 02 00 02 )= 3.39093545585142E-04

f(155)=f( 01 30 00 )= 1.51855928877314E-04

f(156)=f( 01 21 00 )=-2.37154993794229E-02

f(159)=f( 01 12 00 )= 9.17588458801365E-04

f(164)=f( 01 10 02 )= 1.50498675709225E-05

f(175)=f( 00 40 00 )=-1.86910737357663E-03

f(176)=f( 00 31 00 )=-2.23275870608367E-03

f(179)=f( 00 22 00 )=-3.06010303212333E-04

f(184)=f( 00 20 02 )= 1.15254677042892E-03

f(185)=f( 00 13 00 )= 1.26460888246612E-04

f(190)=f( 00 11 02 )= 1.38437434049872E-03

f(195)=f( 00 04 00 )= 4.36074169358758E-05

f(200)=f( 00 02 02 )= 3.39093545579732E-04

Exhibit 16.2.20: The map MLFF for the case a = 0.02

matrix for map is :

9.99992E-01 -1.22277E-06 -9.20989E-08 0.00000E+00 0.00000E+00 0.00000E+00

1.62716E-04 1.00001E+00 0.00000E+00 -9.21003E-08 0.00000E+00 0.00000E+00

9.20989E-08 0.00000E+00 9.99992E-01 -1.22277E-06 0.00000E+00 0.00000E+00

0.00000E+00 9.21003E-08 1.62716E-04 1.00001E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

nonzero elements in generating polynomial are :

f( 33)=f( 20 00 01 )= 9.66314417891064E-05

f( 38)=f( 11 00 01 )= 1.85289937516709E-05

f( 45)=f( 10 01 01 )=-1.09406551700164E-07

f( 53)=f( 02 00 01 )= 2.17830287646548E-06

f( 57)=f( 01 10 01 )= 1.09406551727920E-07

f( 67)=f( 00 20 01 )= 9.66314417891068E-05

f( 70)=f( 00 11 01 )= 1.85289937516412E-05
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f( 76)=f( 00 02 01 )= 2.17830287385645E-06

f( 84)=f( 40 00 00 )=-1.93149067689109E-02

f( 85)=f( 31 00 00 )=-2.61905549343168E-03

f( 87)=f( 30 01 00 )=-1.86391130390008E-05

f( 90)=f( 22 00 00 )=-9.05018682344674E-05

f( 91)=f( 21 10 00 )= 1.86391130388983E-05

f( 92)=f( 21 01 00 )= 2.55870298344304E-02

f( 95)=f( 20 20 00 )=-3.86298135378219E-02

f( 96)=f( 20 11 00 )=-2.61905549343095E-03

f( 99)=f( 20 02 00 )= 7.83183807162944E-05

f(104)=f( 20 00 02 )= 1.31485684215657E-04

f(105)=f( 13 00 00 )=-7.58534145784010E-07

f(106)=f( 12 10 00 )=-2.55870298344239E-02

f(107)=f( 12 01 00 )=-1.03168131481354E-05

f(110)=f( 11 20 00 )=-2.61905549343097E-03

f(111)=f( 11 11 00 )=-3.37640497875350E-04

f(114)=f( 11 02 00 )=-7.58534755148649E-07

f(119)=f( 11 00 02 )= 3.62090101634249E-05

f(121)=f( 10 21 00 )=-1.86391130388087E-05

f(124)=f( 10 12 00 )= 2.55870298344245E-02

f(130)=f( 10 03 00 )=-1.03168130791351E-05

f(135)=f( 10 01 02 )=-1.48898803105739E-07

f(140)=f( 04 00 00 )= 5.20628154886127E-07

f(141)=f( 03 10 00 )= 1.03168130669920E-05

f(145)=f( 02 20 00 )= 7.83183807188067E-05

f(146)=f( 02 11 00 )=-7.58534727284429E-07

f(149)=f( 02 02 00 )= 1.04126206200428E-06

f(154)=f( 02 00 02 )= 5.55068286516206E-06

f(155)=f( 01 30 00 )= 1.86391130389137E-05

f(156)=f( 01 21 00 )=-2.55870298344221E-02

f(159)=f( 01 12 00 )= 1.03168129842943E-05

f(164)=f( 01 10 02 )= 1.48898803052262E-07

f(175)=f( 00 40 00 )=-1.93149067689109E-02

f(176)=f( 00 31 00 )=-2.61905549343156E-03

f(179)=f( 00 22 00 )=-9.05018682329818E-05

f(184)=f( 00 20 02 )= 1.31485684215654E-04

f(185)=f( 00 13 00 )=-7.58534226352400E-07

f(190)=f( 00 11 02 )= 3.62090101634544E-05

f(195)=f( 00 04 00 )= 5.20628151791380E-07

f(200)=f( 00 02 02 )= 5.55068286537210E-06

Exhibit 16.2.21: The map MLFF for the case a = 0.002

matrix for map is :

1.00000E+00 -1.27806E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.64617E-05 1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.00000E+00 -1.27806E-08 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 1.64617E-05 1.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00
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nonzero elements in generating polynomial are :

f( 33)=f( 20 00 01 )= 9.77739063782491E-06

f( 38)=f( 11 00 01 )= 2.99993492913329E-07

f( 45)=f( 10 01 01 )= 1.11383166578882E-10

f( 53)=f( 02 00 01 )= 2.27936177710220E-08

f( 57)=f( 01 10 01 )=-1.11383180456670E-10

f( 67)=f( 00 20 01 )= 9.77739063782491E-06

f( 70)=f( 00 11 01 )= 2.99993492886962E-07

f( 76)=f( 00 02 01 )= 2.27936205465795E-08

f( 84)=f( 40 00 00 )=-0.19316037246934

f( 85)=f( 31 00 00 )=-2.62331874601927E-03

f( 87)=f( 30 01 00 )=-1.89599356992097E-06

f( 90)=f( 22 00 00 )=-9.71312429641274E-06

f( 91)=f( 21 10 00 )= 1.89599356725453E-06

f( 92)=f( 21 01 00 )= 2.56091096783283E-02

f( 95)=f( 20 20 00 )=-0.38632074493868

f( 96)=f( 20 11 00 )=-2.62331874601768E-03

f( 99)=f( 20 02 00 )= 7.73683945196578E-06

f(104)=f( 20 00 02 )= 1.33064336534576E-05

f(105)=f( 13 00 00 )=-3.17816277210040E-08

f(106)=f( 12 10 00 )=-2.56091096782642E-02

f(107)=f( 12 01 00 )=-1.02864023718979E-07

f(110)=f( 11 20 00 )=-2.62331874601767E-03

f(111)=f( 11 11 00 )=-3.48999279807779E-05

f(114)=f( 11 02 00 )=-3.17767246773918E-08

f(119)=f( 11 00 02 )= 5.86324364974507E-07

f(121)=f( 10 21 00 )=-1.89599356821861E-06

f(124)=f( 10 12 00 )= 2.56091096783162E-02

f(130)=f( 10 03 00 )=-1.02863765470695E-07

f(135)=f( 10 01 02 )= 1.51604383154817E-10

f(140)=f( 04 00 00 )= 5.33338799513228E-09

f(141)=f( 03 10 00 )= 1.02862986930269E-07

f(145)=f( 02 20 00 )= 7.73683948127914E-06

f(146)=f( 02 11 00 )=-3.17772725634192E-08

f(149)=f( 02 02 00 )= 1.06253442294646E-08

f(154)=f( 02 00 02 )= 5.80574061863604E-08

f(155)=f( 01 30 00 )= 1.89599356946647E-06

f(156)=f( 01 21 00 )=-2.56091096783008E-02

f(159)=f( 01 12 00 )= 1.02862771318019E-07

f(164)=f( 01 10 02 )=-1.51604352741914E-10

f(175)=f( 00 40 00 )=-0.19316037246934

f(176)=f( 00 31 00 )=-2.62331874601742E-03

f(179)=f( 00 22 00 )=-9.71312426696364E-06

f(184)=f( 00 20 02 )= 1.33064336534594E-05

f(185)=f( 00 13 00 )=-3.17829202628548E-08

f(190)=f( 00 11 02 )= 5.86324364877742E-07

f(195)=f( 00 04 00 )= 5.34906990923290E-09

f(200)=f( 00 02 02 )= 5.80574133293362E-08

Examination of these exhibits shows that, as expected, (2.121) continues to hold even
when the rotational parts of MLFF have not been removed. We reiterate that, in the
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hard-edge limit and when canonical coordinates are employed, there are no fringe-field con-
tributions to the linear part of the transfer map for a solenoid.

What can be said about the exp(: f3 :) content ofMLFF? Examination of the f3 contents
of these same exhibits, the generators with indices 28 through 83, shows that numerically
there is the limiting behavior

lim
a→0

fLFF
3 = 0. (16.2.123)

The same result can be obtained analytically. Consequently, in the hard-edge limit and
when canonical coordinates are employed, there are also no fringe-field contributions to the
quadratic part of the transfer map for a solenoid. All second-order aberrations associated
with MLFF vanish in the hard-edge limit.

What can be said about the exp(: f4 :) content of MLFF? Examination of the gen-
erators with indices 84 through 209 shows that numerically some of the fLFF

4 generators
grow/diverge in magnitude as a→ 0. Indeed, it can be illustrated numerically and demon-
strated analytically that the divergent fLFF

4 entries behave as 1/a as a → 0. For example,
Table 2.3 below illustrates this divergence for the case of fLFF(84).

Table 16.2.3: Numerical behavior of fLFF(84) for small values of a.

a fLFF(84) afLFF(84)

.2 -1.8691E-3 -3.7382E-4
.02 -1.9315E-2 -3.8630E-4
.002 -1.9316E-1 -3.8632E-4

At this point here are two other remarks to be made. First, there are also divergent
fLFF
n generators for n > 4. Second, as already observed, the only a dependence in (2.112)

is in the maps MLFF and MTFF. We conclude that all divergent aberrations for a simple
solenoid in the hard-edge limit arise from divergencies in the fringe-field maps.

Upon thinking in more detail, there is more that can be inferred about the a dependence
of the fLFF

4 generators. We have already seen that H and Jz are in involution. Recall (2.82).
Indeed, upon examination we see that all the terms in the expansion of H given in (2.94)
through (2.96) are separately in involution with Jz. Therefore, since f4 is constructed from
the ingredients of H using only Lie algebraic operations, we expect that fLFF

4 and Jz will be
in involution. Below we list the various possible static (τ independent) f4 polynomials, call
then Ij, that are in involution with Jz (and hence invariant under the action of rotations
generated by : Jz :) and display their monomial content.

I1 = (P 2)2 = (P 2
x + P 2

y )2 = P 4
x + 2P 2

xP
2
y + P 4

y , (16.2.124)

I2 = P 2Jz = (P 2
x + P 2

y )(XPy − Y Px)
= XP 2

xPy − P 3
xY +XP 3

y − PxY P 2
y , (16.2.125)

I3 = J2
z = (XPy − Y Px)2 = X2P 2

y − 2XPxY Py + P 2
xY

2, (16.2.126)
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I4 = P 2Q2 = (P 2
x + P 2

y )(X2 + Y 2) = X2P 2
x +X2P 2

y + P 2
xY

2 + Y 2P 2
y , (16.2.127)

I5 = Q2Jz = (X2 + Y 2)(XPy − Y Px)
= X3Py −X2PxY +XY 2Py − PxY 3, (16.2.128)

I6 = (Q2)2 = (X2 + Y 2)2 = X4 + 2X2Y 2 + Y 4, (16.2.129)

I7 = P 2
τ P

2 = P 2
xP

2
τ + P 2

yP
2
τ , (16.2.130)

I8 = P 2
τ Jz = XPyP

2
τ − PxY P 2

τ , (16.2.131)

I9 = P 2
τQ

2 = X2P 2
τ + Y 2P 2

τ , (16.2.132)

I10 = P 4
τ . (16.2.133)

Note that the monomials X2P 2
y and P 2

xY
2 appear in both the invariants I3 and I4. All other

monomials appear at most once in the invariants Ij.
According to the reasoning of the previous paragraph, we expect that fLFF

4 can be ex-
pressed/expanded (in a unique way) in terms of the Ij for any value of a. This is indeed
the case. The relations (2.134) through (2.136) below display this expansion for the values
a = 0.2, a = 0.02, and a = 0.002, respectively.

fLFF
4 |a=0.2 = (4.36074169958001E − 05)I1 − (9.17588458782363E − 04)I2

+ (1.15770219925823E − 03)I3 − (3.06010303211954E − 04)I4

− (1.51855928877267E − 04)I5 − (1.86910737357663E − 03)I6

+ (3.39093545585142E − 04)I7 − (1.50498675709195E − 05)I8

+ (1.15254677042892E − 03)I9 + (0)I10;

(16.2.134)

fLFF
4 |a=0.02 = (5.20628154886127E − 07)I1 − (1.03168131481354E − 05)I2

+ (1.68820248937675E − 04)I3 − (9.05018682344674E − 05)I4

− (1.86391130390008E − 05)I5 − (1.93149067689109E − 02)I6

+ (5.55068286516206E − 06)I7 − (1.48898803105739E − 07)I8

+ (1.31485684215657E − 04)I9 + (0)I10;

(16.2.135)

fLFF
4 |a=0.002 = (5.33338799513228E − 09)I1 − (1.02864023718979E − 07)I2

+ (1.74499639903890E − 05)I3 − (9.71312429641274E − 06)I4

− (1.89599356992097E − 06)I5 − (0.19316037246934)I6

+ (5.80574061863604E − 08)I7 + (1.51604383154817E − 10)I8

+ (1.33064336534576E − 05)I9 + (0)I10.

(16.2.136)
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Inspection of (2.134) through (2.136) shows that, save for I6, the coefficients of all the Ij
vanish as a → 0. See Exercise 2.21. By contrast, the aberrations associated with the
ingredients of I6 grow as 1/a as a → 0. Recall Table 2.3 and see Exercise 2.22. Thus the
behavior of fLFF

4 is simple in the hard-edge limit in that most (all but three) of its entries
vanish in this limit. But it is also pathological in that the entries for the generators X4,
X2Y 2, and Y 4, those that occur in I6, diverge in this limit.5 Finally we remark that, while
we have illustrated these results numerically, they can also be proven analytically. The
pathological behavior arises from the appearance of the the δ′ functions that occur in the
a→ 0 limit, and must occur in any hard-edge model.

16.2.7 Consequences of Terminating Solenoidal End Fields

Suppose we wish to find the transfer map for a solenoid with the approximation that the
leading fringe-field region begins at the “entry” point z = zen and the trailing fringe-field
region ends at the “exit” point z = zex. That is, we make the approximation that the vector
potential is to be set to zero for z < zen and z > zex. Since Â0, the vector potential we will
employ, is in the Poincaré-Coulomb gauge with respect to any origin on the z axis, we may
use (following the methods of Section 1) this vector potential to terminate end fields both
before entry of the leading fringe field and after exit of the trailing fringe field. That is,
there is no need to make gauge transformations at these points because the vector potential
is already in the minimum gauge. In this subsection we will study the consequences of
terminating end fields using the Poincaré-Coulomb gauge.

Let us begin by finding the associated discontinuities in the mechanical momenta as given
by (1.30), (1.31), (1.41), and (1.42). For the vector potential we use (2.7) through (2.10).
So doing using (1.30) and (1.31) gives, upon entry, the results

∆pmech
x = qAx(x, y, z

en) = −qyU(ρ, zen)

= −qy(1/2)[C
[1]
0 (zen)− (1/8)C

[3]
0 (zen)(x2 + y2) + · · · ]

= −qy(1/2)[Bz(0, 0, z
en)− (1/8)B′′z (0, 0, zen)(x2 + y2) + · · · ]

= −qy(B/2)[bump(zen, a, L)− (1/8)bump′′(zen, a, L)(x2 + y2) + · · · ],
(16.2.137)

∆pmech
y = qAy(x, y, z

en) = qxU(ρ, zen)

= qx(1/2)[C
[1]
0 (zen)− (1/8)C

[3]
0 (zen)(x2 + y2) + · · · ]

= qx(1/2)[Bz(0, 0, z
en)− (1/8)B′′z (0, 0, zen)(x2 + y2) + · · · ]

= qx(B/2)[bump(zen, a, L)− (1/8)bump′′(zen, a, L)(x2 + y2) + · · · ].
(16.2.138)

5We hasten to add that the aberrations associated with MLFF and MTFF are not the only aberrations
for Msolenoid. According to (2.112) there will also be aberrations associated with Muniform. But they are
always finite and, by definition, a independent. They are also relatively easy to compute because Muniform

arises from the z independent Hamiltonian Huniform.
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Here, in writing the last lines of (2.137) and (2.138), we have assumed the field profile of
Subsection 2.2. Similarly, upon exit, we find from (1.41), and (1.42) the discontinuity results

∆pmech
x = qAx(x, y, z

ex) = −qyU(ρ, zex)

= −qy(1/2)[C
[1]
0 (zex)− (1/8)C

[3]
0 (zex)(x2 + y2) + · · · ]

= −qy(1/2)[Bz(0, 0, z
ex)− (1/8)B′′z (0, 0, zex)(x2 + y2) + · · · ]

= −qy(B/2)[bump(zex, a, L)− (1/8)bump′′(zex, a, L)(x2 + y2) + · · · ],
(16.2.139)

∆pmech
y = qAy(x, y, z

ex) = qxU(ρ, zex)

= qx(1/2)[C
[1]
0 (zex)− (1/8)C

[3]
0 (zex)(x2 + y2) + · · · ]

= qx(1/2)[Bz(0, 0, z
ex)− (1/8)B′′z (0, 0, zex)(x2 + y2) + · · · ]

= qx(B/2)[bump(zex, a, L)− (1/8)bump′′(zex, a, L)(x2 + y2) + · · · ].
(16.2.140)

We see that in all cases the discontinuities are proportional to Bz(0, 0, z) and its derivatives
at z = zen or z = zex. See Figures 2.4 through 2.7 for examples of how these functions
behave in the case of a simple air-code solenoid. Moreover, the discontinuities also vanish
as the spatial deviations from the z axis (the design orbit) become small.

We close this subsection by finding, at entry and exit, the surface currents implied by
our termination procedure/approximation. Since Â0

z = 0 in the Poincaré-Coulomb gauge
for any solenoid or collection of solenoids, the relations (1.65) through (1.67) take the form

µ0j
mod
x = −2[δ(z − zen)− δ(zex − z)]∂zÂ

0
x

−[δ′(z − zen) + δ′(zex − z)]Â0
x, (16.2.141)

µ0j
mod
y = −2[δ(z − zen)− δ(zex − z)]∂zÂ

0
y

−[δ′(z − zen) + δ′(zex − z)]Â0
y, (16.2.142)

µ0j
mod
z = 0. (16.2.143)

Let us evaluate (2.141) and (2.142) using the explicit form for Â0 given by (2.7) through
(2.9. Doing so gives the intermediate results

µ0j
mod
x = 2[δ(z − zen)− δ(zex − z)]y∂zU

+[δ′(z − zen) + δ′(zex − z)]yU,

(16.2.144)

µ0j
mod
y = −2[δ(z − zen)− δ(zex − z)]x∂zU

−[δ′(z − zen) + δ′(zex − z)]xU. (16.2.145)
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At this point it is convenient to employ cylindrical components for jmod using the relations

jmod
ρ = cosφ jmod

x + sinφ jmod
y , (16.2.146)

jmod
φ = − sinφ jmod

x + cosφ jmod
y . (16.2.147)

Recall (15.2.22) and (15.2.23). Implementing these substitutions gives the results

µ0j
mod
ρ = 0, (16.2.148)

µ0j
mod
φ = −2[δ(z − zen)− δ(zex − z)]ρ∂zU

−[δ′(z − zen) + δ′(zex − z)]ρU. (16.2.149)

Here we have used the relations

y cosφ− x sinφ = 0, (16.2.150)

y sinφ+ x cosφ = ρ. (16.2.151)

We see that jmod, the current that is required to cancel the residual solenoidal fringe field,
has only a φ component. This is to be expected since the current that produces the solenoidal
field itself has only a φ component. The last step is to use the expansion (2.10) for U . With
the aid of this expansion we find the final result

µ0j
mod
φ = −2[δ(z − zen)− δ(zex − z)]ρ∂zU

−[δ′(z − zen) + δ′(zex − z)]ρU

= [δ(z − zen)− δ(zex − z)]ρ[C
[2]
0 (z)− (1/8)C

[4]
0 (z)(x2 + y2) + · · · ]

+(1/2)[δ′(z − zen) + δ′(zex − z)]ρ[C
[1]
0 (z)− (1/8)C

[3]
0 (z)(x2 + y2) + · · · ]

= [δ(z − zen)− δ(zex − z)]ρ[B′z(0, 0, z)− (1/8)B′′′z (0, 0, z)(x2 + y2) + · · · ]
+(1/2)[δ′(z − zen) + δ′(zex − z)]ρ[Bz(0, 0, z)− (1/8)B′′z (0, 0, z)(x2 + y2) + · · · ].

(16.2.152)

Like the discontinuities in the mechanical momenta, jmod is also proportional to Bz(0, 0, z)
and its derivatives at z = zen or z = zex, and also vanishes as the spatial deviations from
the z axis (the design orbit) become small.

Exercises

16.2.1. Verify that Bz(0, 0, z) as given by (2.16) describes the on-axis field of a simple
air-core solenoid. Verify that there is the result

B = µ0IN/L (16.2.153)

where I is the current in the coil, N is the number of turns in the single-layer winding, and
L is the length of the coil. Hint: Use (2.24) and Ampère’s law. It is of historical interest to
note that the name solenoid was coined by Ampère.
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16.2.2. Show that for the on-axis field of a simple solenoid as given by (2.16) there are, for
the fields at the midpoint/center and either end, the limiting behaviors

lim
L→∞

Bz(0, 0, L/2) = B, (16.2.154)

lim
L→∞

Bz(0, 0, 0) = lim
L→∞

Bz(0, 0, L) = B/2. (16.2.155)

Verify that the same is true for any bump function model that is constructed from approx-
imating signum functions.

16.2.3. The purpose of this exercise is to verify the relations (2.20) through (2.23). Show
that the approximating signum function (2.26) has the properties

sgn(−z, a) = −sgn(z, a), (16.2.156)

lim
z→±∞

sgn(z, a) = ±1. (16.2.157)

Verify the limiting behavior (2.27). Sketch sgn(z, a), −sgn(z − L, a), and bump(z, a, L) as
given by (2.25) to verify the relations (2.20) through (2.22).

What remains is to prove the relation (2.23). Begin by writing∫ ∞
−∞

bump(z, a, L)dz = lim
w→∞

∫ w

−w
bump(z, a, L)dz. (16.2.158)

Next verify from the representation (2.25) that∫ w

−w
bump(z, a, L)dz = (1/2)

∫ w

−w
sgn(z, a)dz − (1/2)

∫ w

−w
sgn(z − L, a)dz. (16.2.159)

Show that the first integral on the right side of (2.159) vanishes because of (2.156). Show
that by making the change of variables x = z − L the second integral on the right side of
(2.159) becomes

−(1/2)

∫ w

−w
sgn(z − L, a)dz = −(1/2)

∫ w−L

−w−L
sgn(x, a)dx

= −(1/2)

∫ w+L

−w−L
sgn(x, a)dx+ (1/2)

∫ w+L

w−L
sgn(x, a)dx.

(16.2.160)

Verify that the first integral in the second line of (2.160) vanishes, again because of (2.156).
It follows that there is the result∫ w

−w
bump(z, a, L)dz = (1/2)

∫ w+L

w−L
sgn(x, a)dx. (16.2.161)

Show from (2.157) that there is the result

lim
w→∞

(1/2)

∫ w+L

w−L
sgn(x, a)dx = (1/2)2L = L. (16.2.162)
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Put all your intermediate results together to obtain the final result∫ ∞
−∞

bump(z, a, L)dz = L, (16.2.163)

as desired. Note that the proof of this result has depended only on the representation (2.25)
and properties (2.156) and (2.157), which are required properties of any approximating
signum function.

16.2.4. Verify the fall-off relations (2.34) and (2.35) and the limiting behaviors (2.36) and
(2.37).

16.2.5. Verify the expansion (2.38) and the near leading end fall-off behavior (2.39).

16.2.6. Verify the expansion (2.40) and the far fall-off behavior given by (2.41) and (2.42).

16.2.7. Verify the near-by and far asymptotic behaviors (2.44) and (2.45).

16.2.8. Verify the far fall-off behavior (2.47).

16.2.9. Verify the relation (2.49) for the on-axis field of a thick solenoid. Show that (2.24),
(2.154), and (2.155) continue to hold. Show that (2.153) also holds providing that N is
now the total of number of turns in the whole multilayer winding. Finally, use the notation
Bz(0, 0, z; a) and Bz(0, 0, z; a1, a2) to denote the right sides of (2.16) and (2.49), respectively.
Show that there is the limiting relation

lim
a2→a

Bz(0, 0, z; a, a2) = Bz(0, 0, z; a). (16.2.164)

Hint: Use the representation (2.48).

16.2.10. Observe that (2.7) through (2.9) are the same as (15.5.7) through (15.5.9). Verify
that using (15.2.22), (15.2.23), and (15.5.7) through (15.5.9) gives the results (15.5.37)
through (15.5.39). That is, Â0 and hence As has only a φ component. Verify that this
component manifests rotational symmetry about the z axis by having no φ dependence.

16.2.11. Verify that the b[2n](z) as given by (2.59) are dimensionless.

16.2.12. In (2.64) the quantity Jz is defined in terms of canonical variables. What happens
if mechanical momenta are employed instead? Define scaled mechanical momenta Pmech

x and
Pmech
y by writing

Pmech
x = Px − Asx, (16.2.165)

Pmech
y = Py − Asy; (16.2.166)

from which it follows that there are the relations

Px = Pmech
x + Asx, (16.2.167)

Py = Pmech
y + Asy. (16.2.168)
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[Recall the unscaled results (1.5.30).] Show that the expression for Jz in terms of mechanical
momenta is given by the relation

Jz = XPmech
y − Y Pmech

x +XAsy − Y Asx. (16.2.169)

Verify, using (2.55), (2.56), and (2.58), that there is the result

XAsy − Y Asx = (X2 + Y 2)U s(X, Y, z)

= (1/2)
∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
b[2n](z)(X2 + Y 2)n+1.

(16.2.170)

Show from (15.5.38) and (2.52) that there is the result

ρÂ0
φ = ρ2U(ρ, z) = (1/2)

∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
C

[2n+1]
0 (z)ρ2n+2

= (1/2)
∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
B[2n](z)ρ2n+2.

(16.2.171)

Verify from (13.1.21) and (13.1.22) that

ρ2n+2 = `2n+2(X2 + Y 2)n+1. (16.2.172)

Therefore (2.171) can also be written in the form

ρÂ0
φ = (1/2)

∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
B[2n](z)`2n+2(X2 + Y 2)n+1. (16.2.173)

Verify from (2.59) that
B[2n](z)`2n+2 = (`p0/q)b[2n](z) (16.2.174)

so that

ρÂ0
φ = (`p0/q)(1/2)

∞∑
n=0

(−1)n
1

22nn!(n+ 1)!
b[2n](z)(X2 + Y 2)n+1

= (`p0/q)(X2 + Y 2)U s(X, Y, z) = (`p0/q)(XAsy − Y Asx). (16.2.175)

Make the definition
Jmech
z = XPmech

y − Y Pmech
x . (16.2.176)

Consequently, verify that (2.169) can be rewritten in the form

Jz = Jmech
z + [q/(`p0)]ρÂ0

φ. (16.2.177)

According to (2.82) Jz is conserved. Also, far outside a solenoid, Â0
φ and hence ρÂ0

φ

vanish. Therefore, (2.177) shows that Jmech
z must have different values inside and outside a

solenoid and what their difference must be. Show that if a particle enters a solenoid from
a zero field region with some initial value of Jz and ultimately exits into a second zero field
region, then its final value of Jz must be the same as its initial value.
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16.2.13. Verify the identity (2.76). Show that (2.75) and (2.79) are a consequence of (2.70)
through (2.73) and (2.77) and (2.78).

16.2.14. Compare the f4 contents of the maps in Exhibits 2.3, 2.4, and 2.5. Which f4

entries appear to be diverging (in magnitude) to ∞ as a→ 0? Why, for a given value of a,
are there the relations f(84) = f(175) and f(95) = 2f(84)? Can you find other relations of
this kind? Hint: Show that the Lie generators fn for a solenoid map must satisfy

: Jz : fn = 0. (16.2.178)

Show that the same is true for a drift map and therefore for a composite of drift and solenoid
maps.

16.2.15. The purpose of this exercise is to verify the factorization of the linear part as
described in Subsection 2.5.3. Begin by writing the transfer map for a solenoid in the
general form

M = R exp(: f3 :) exp(: f4 :) · · · . (16.2.179)

Then R will be determined by H2 as given by (2.94). Verify that H2 can be written in the
form

H2 = Hnonrot
2 +Hrot

2 (16.2.180)

where
Hnonrot

2 = [1/(2`)]P 2 + {[b[0](z)]2/(8`)}Q2 + [1/(2β2
0γ

2
0`)]P

2
τ (16.2.181)

and
Hrot

2 = −[b[0](z)/(2`)]Jz. (16.2.182)

LetR, Rnonrot, andRrot be the maps generated by H2, Hnonrot
2 , and Hrot

2 , respectively. Verify
that : Hnonrot

2 : and : Hrot
2 : commute and consequently prove, using the results of Exercise

10.2.2, that there are the relations

R = RnonrotRrot = RrotRnonrot. (16.2.183)

Correspondingly, there are the associated matrix relations

R = RrotRnonrot = RnonrotRrot. (16.2.184)

16.2.16. Through terms of second order, the transfer map for a solenoid can be written in
the general form

M = R exp(: f3 :). (16.2.185)

The goal of this exercise is to compute for a simple solenoid, in the hard-edge limit a→ 0,
both the matrix R associated with R and the Lie generator f3. For a further discussion of
motion in a uniform magnetic field, see Exercise 32.2.7.

Examination of H2 and H3 as given by (2.94) and (2.95) shows that their z dependence
is given entirely in terms of b[0](z). This function is bounded for all a, and in the hard-edge
limit takes on a constant value in the open interval z ∈ (0, L). See Figures 2.4 and 2.5. We
recall that here z plays the role of the independent variable, and therefore in the hard-edge
limit H2 and H3 do not depend on the independent variable. Consequently show that, in
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the hard-edge limit and through terms of second order, the transfer map for a solenoid can
be written in the form

M = exp(−L : H2 +H3 :). (16.2.186)

Recall (7.4.1). Next verify that : H2 : and : H3 : commute under the assumption that b[0](z)
is constant in the open interval z ∈ (0, L). It follows that (2.186) can be rewritten in the
form

M = exp(−L : H2 :) exp(−L : H3 :). (16.2.187)

Comparison of (2.185) and (2.187) yields the results

R = exp(−L : H2 :) (16.2.188)

and
f3 = −LH3. (16.2.189)

What remains is to find the matrix R associated with R. Review Exercise 2.15. The
discussion there holds for all (well behaved) functions b[0](z) and therefore also holds when
b[0](z) is constant in the open interval z ∈ (0, L). In the case that b[0](z) is constant in the
open interval z ∈ (0, L) there are the results

Rnonrot = exp(−L : Hnonrot
2 :) (16.2.190)

and
Rrot = exp(−L : Hrot

2 :). (16.2.191)

At this point we pause to observe that f3 as given by (2.95) and (2.189) can also be
decomposed into two parts whose associated Lie operators commute. We may write

f3 = fnonrot
3 + f rot

3 (16.2.192)

where
fnonrot

3 = −L(1/β0)PτH
nonrot
2 (16.2.193)

and
f rot

3 = −L(1/β0)PτH
rot
2 . (16.2.194)

To continue, your next task is to compute Rnonrot, the matrix associated with Rnonrot.
Begin by verifying that Hnonrot

2 as given by (2.181) consists of three pieces associated with
the x, Px; y, Py; and τ, Pτ planes, and that the Lie operators associated with different pieces
all commute. Correspondingly Rnonrot has nonzero entries consisting only of 2× 2 matrices
centered on the diagonal. What are these matrices? Consider the Lie transformation

exp{: [−L/(2`)]P 2
x − [L(b[0])2/(8`)]X2 :} (16.2.195)

that is associated with the x, Px part of Rnonrot when b[0](z) is constant in the open interval
z ∈ (0, L). Let RXPx be the 2×2 matrix that describes the action of this Lie transformation
on the X,Px plane. Use the formalism and results of Section 8.7.2 to make the identifications

b = L/`, (16.2.196)
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a = 0, (16.2.197)

c = [L/(4`)](b[0])2, (16.2.198)

from which it follows that
∆ = −[L/(2`)]2(b[0])2 (16.2.199)

and
∆1/2 = i[L/(2`)](b[0]). (16.2.200)

Show using (8.7.35) that there is the result

RXPx =

(
cosh(∆1/2) b[sinh(∆1/2)]/∆1/2

−c[sinh(∆1/2)]/∆1/2 cosh(∆1/2)

)
. (16.2.201)

Also verify that there are the relations

b/∆1/2 = (L/`)(−i)(2`/L)(1/b[0]) = −i(2/b[0]) (16.2.202)

and
c/∆1/2 = [L/(4`)](b[0])2(−i)(2`/L)(1/b[0]) = −i(b[0]/2). (16.2.203)

Introduce the notation
k = (b[0]/2) (16.2.204)

and
ψ = [L/(2`)](b[0]) = k(L/`) (16.2.205)

so that (2.200), (2.202), and (2.203) take the forms

∆1/2 = iψ, (16.2.206)

b/∆1/2 = −i/k, (16.2.207)

and
c/∆1/2 = −ik. (16.2.208)

Verify, using this notation, that (2.201) can be written in the final form

RXPx =

(
cos(ψ) (1/k) sin(ψ)
−k sin(ψ) cos(ψ)

)
. (16.2.209)

With regard of the action of Rnonrot on the Y, Py plane, verify from symmetry considerations
that

RY Py = RXPx . (16.2.210)

Finally show that the the effect of the Lie transformation exp{: [−L/(2β2
0γ

2
0`)]P

2
τ :} on the

τ, Pτ plane is given by the relations

exp{: [−L/(2β2
0γ

2
0`)]P

2
τ :}τ = τ + [L/(β2

0γ
2
0`)]Pτ , (16.2.211)

exp{: [−L/(2β2
0γ

2
0`)]P

2
τ :}Pτ = Pτ . (16.2.212)
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Consequently there is the corresponding matrix

RτPτ =

(
1 η
0 1

)
(16.2.213)

where
η = L/(β2

0γ
2
0`). (16.2.214)

You have shown that

Rnonrot =


C (1/k)S 0 0 0 0
−kS C 0 0 0 0

0 0 C (1/k)S 0 0
0 0 −kS C 0 0
0 0 0 0 1 η
0 0 0 0 0 1

 (16.2.215)

where we have used the short-hand notation

C = cos(ψ) (16.2.216)

and
S = sin(ψ). (16.2.217)

Note that the entries in Rnonrot are even functions of k and hence Rnonrot is invariant under
the replacement b[0] → −b[0]. This symmetry is also evident from the form of Hnonrot

2 as
given in (2.167).

Now turn to the calculation of Rrot, the matrix associated with Rrot. Verify that Rrot

can be written on the form

Rrot = exp(−L : Hrot
2 :) = exp(ψ : Jz :). (16.2.218)

Use the results (2.70) and (2.71) to verify the relation

RrotX = exp(ψ : Jz :)X =

X + ψ : Jz : X + ψ2(1/2!) : Jz :2 X + ψ3(1/3!) : Jz :3 X + · · · =
X + ψY − ψ2(1/2!)X − ψ3(1/3!)Y + · · · =
X[1− ψ2(1/2!) + · · · ] + Y [ψ − ψ3(1/3!) + · · · ] =

X cos(ψ) + Y sin(ψ). (16.2.219)

In a similar way verify that there is the relation

RrotY = −X sin(ψ) + Y cos(ψ). (16.2.220)

Use the results (2.72) and (2.73) to find the analogous relations

RrotPx = Px cos(ψ) + Py sin(ψ) (16.2.221)

and
RrotPy = −Px sin(ψ) + Py cos(ψ). (16.2.222)
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Finally observe from (2.74) that Rrot leaves τ and Pτ in peace. You have shown that

Rrot =


C 0 S 0 0 0
0 C 0 S 0 0
−S 0 C 0 0 0
0 −S 0 C 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (16.2.223)

Note that, according to (2.218), making the replacement b[0] → −b[0] entails the replacement
Rrot → (Rrot)−1.

We are almost done. According to (2.184) there will be the matrix relation

R = RrotRnonrot = RnonrotRrot = Muniform. (16.2.224)

Verify that

R = Muniform =


C2 (1/k)SC SC (1/k)S2 0 0
−kSC C2 −kS2 SC 0 0
−SC −(1/k)S2 C2 (1/k)SC 0 0
kS2 −SC −kSC C2 0 0

0 0 0 0 1 η
0 0 0 0 0 1

 . (16.2.225)

Show that (2.225) agrees with (13.4.1) when use is made of (2.59) and (1.5.81).
Verify that, if we wish, we may write

R = (Rrot)1/2Rnonrot(Rrot)1/2 (16.2.226)

where
(Rrot)1/2 = exp[−(L/2) : Hrot

2 :] = exp[(ψ/2) : Jz :]. (16.2.227)

However, there does not seem to be much point in doing so except, perhaps, to exhibit the
reversibility properties of R. See Section 36.2.

16.2.17. Review Section 2.5.3. This exercise explores properties of Hnonrot and Mnonrot.
We will employ the notation

ζ = (X,Px, Y, Py, τ, Pτ ). (16.2.228)

Begin by considering initial conditions with the property

ζ in
1 = X in = 0, (16.2.229)

ζ in
2 = P in

x = 0, (16.2.230)

ζ in
3 = Y in = anything, (16.2.231)

ζ in
4 = P in

y = anything, (16.2.232)

ζ in
5 = τ in = anything, (16.2.233)
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ζ in
6 = P in

τ = anything. (16.2.234)

These are the initial conditions for motion that is, at least initially, in the vertical plane.
Show that the resulting subsequent motion, when governed byHnonrot, remains in the vertical
plane. In particular, show that then the associated final conditions under the action of
Mnonrot have the property

Xfin = 0, (16.2.235)

P fin
x = 0. (16.2.236)

Next show that
: Jz :Mnonrot =Mnonrot : Jz :, (16.2.237)

and consequently
RrotMnonrot =MnonrotRrot. (16.2.238)

Suppose we summarize the results (2.229) through (2.236) by writing

ζfin =Mnonrotζ fn. (16.2.239)

Use (2.238) and (2.239) to show that

MnonrotRrotζ in = Rrotζfin. (16.2.240)

You have shown thatMnonrot preserves all planes obtained by rotating, by any angle ψ, the
vertical plane about the z axis. This includes, of course, the horizontal plane.

16.2.18. Review the discussion of Section 15.11.1. Using (2.3) through (2.6), show that for
a solenoid the transverse components of its magnetic field have the integral property∫ ∞

−∞
dz Bx(x, y, z) =

∫ ∞
−∞

dz By(x, y, z) = 0. (16.2.241)

16.2.19. Review Exercise 2.1. Consider a “one-turn” solenoid consisting of a single circular
loop of radius a lying in the z = 0 plane, centered on the origin, and carrying a current I.
Show that in this case

Bone turn
z (0, 0, z)) = µ0Iδ(z, a) (16.2.242)

where δ(z, a) is an approximating delta function defined by

δ(z, a) = (a2/2)/(z2 + a2)3/2. (16.2.243)

See the discussion following (3.13). See also Section 3.3. Show that∫ ∞
−∞

dz δ(z, a) = 1. (16.2.244)

Show also that there is the relation

bump(z, a, L) =

∫ L

0

dz′ δ(z − z′, a). (16.2.245)

Show that (2.23) follows from (2.244) and (2.245).
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16.2.20. Verify that (2.134) through (2.136) reproduce the f4 content of Exhibits 2.19
through 2.21.

16.2.21. The purpose of this exercise is to study how the coefficients of the Ii, save for I6,
in the relations (2.134) through (2.136) tend to zero as a→ 0. Let us write relations of this
kind in the general form

fLFF
4 (a) =

10∑
i=1

cLFF
i (a)Ii (16.2.246)

where we have indicated that fLFF
4 is a dependent. Verify that for the case of cLFF

1 (a) one
may make the Table 2.4 below, and conclude that cLFF

1 (a) vanishes as a2 when a goes to
zero. Verify that the same is true for cLFF

2 (a), cLFF
7 (a), and cLFF

8 (a). By contrast, verify that
cLFF

3 (a), cLFF
4 (a), cLFF

5 (a), and cLFF
9 (a) vanish as a1 when a goes to zero. Evidently cLFF

10 (a)
vanishes for all values of a.

Table 16.2.4: Numerical behavior of cLFF
1 (a) for small values of a.

a cLFF
1 (1/a2)cLFF

1

.2 4.3607E-5 1.09019E-3
.02 5.2063E-7 1.30158E-3
.002 5.3334E-9 1.33335E-3

16.2.22. By making a suitable table, illustrate that cLFF
6 (a) diverges as 1/a when a goes to

zero.

16.2.23. Show that H4 as given by (2.96) can be written in the form

H4 =
10∑
i=1

di(z)Ii, (16.2.247)

and verify that it is d5 and d6 that contain the pesky δ′ functions. In particular, verify that d5

contains b[2] (which involves δ′ functions) and d6 contains the product b[0]b[2]. Reason that
the latter is more singular than the former because b[0] is discontinuous in the hard-edge
limit. Show that there are the results

sgn′(z, a) = ∂zsgn(z, a) = 2δ(z, a) (16.2.248)

and ∫ ∞
−∞

dz sgn(z, a)δ′(z, a) = [sgn(z, a)δ(z, a)]|z=+∞
z=−∞ −

∫ ∞
−∞

dz sgn′(z, a)δ(z, a)

= 0− 2

∫ ∞
−∞

dz δ(z, a)δ(z, a) = −2

∫ ∞
−∞

dz δ2(z, a) = −(3π/16)(1/a).

(16.2.249)
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Review and, if you have not already done so, perform Exercise 2.22. In agreement with
the results of this exercise, make the small a Ansatz

cLFF
6 (a) ' eLFF/a (16.2.250)

where eLFF is a coefficient to be determined. Find a formula for eLFF in terms of beam
parameters and the parameters for a simple solenoid.

16.2.24. Exercise on the vector spherical harmonic decomposition of the vector potential
for the magnetic field of a simple solenoid.

16.3 Iron-Free Dipoles

16.3.1 Preliminaries

A straight dipole is a straight beam-line element whose field is described by a cylindrical
harmonic expansion that contains primarily an m = 1 term.6 We recall from Section 15.3.3
that for the m = 1 case the magnetic scalar potential ψ has the expansion

ψ(x, y, z) = ψ1,s(x, y, z) = y[C
[0]
1,s(z)− (1/8)(x2 + y2)C

[2]
1,s(z) + · · · ]. (16.3.1)

See (15.3.57). [Here we have retained only the normal m = 1 term, but a skew (ψ1,c) term is
also possible. See (15.3.40) and Exercise 15.4.1.] Correspondingly, the associated magnetic
field has the expansion

Bx = ∂xψ1,s = −(1/4)xyC
[2]
1,s(z) + · · · , (16.3.2)

By = ∂yψ1,s = C
[0]
1,s(z)− (1/8)(x2 + 3y2)C

[2]
1,s(z) + · · · , (16.3.3)

Bz = ∂zψ1,s = y[C
[1]
1,s(z)− (1/8)(x2 + y2)C

[3]
1,s(z) + · · · ]. (16.3.4)

From (3.2) through (3.4) we see that B is completely specified in terms of a single “master”

function C
[0]
1,s(z) and its derivatives. Moreover, according to (3.3), the on-axis field has only

a By component, and it is given by the relation

By(0, 0, z) = C
[0]
1,s(z). (16.3.5)

See Exercise 1.5.7.
There is also a suitable associated vector potential Â

1,s
given (in symmetric Coulomb

gauge) by the relations

Â1,s
x = (1/4)(x2 − y2)C

[1]
1,s(z)− (1/48)(x4 − y4)C

[3]
1,s(z) + · · · , (16.3.6)

Â1,s
y = (1/2)xyC

[1]
1,s(z)− (1/24)(x3y + xy3)C

[3]
1,s(z) + · · · , (16.3.7)

6In practice dipoles are often bent because the design orbit in a dipole is bent. In this case a cylindrical
harmonic expansion is of limited use. See Subsection 3.7.
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Â1,s
z = −xC [0]

1,s(z)+(1/8)(x3 +xy2)C
[2]
1,s(z)−(1/192)(x5 +2x3y2 +xy4)C

[4]
1,s(z)+ · · · . (16.3.8)

Recall (15.5.97) through (15.5.99). We observe that Â
1,s

, like B, is also completely specified

in terms of C
[0]
1,s(z) and its derivatives. Vector potentials in other gauges are also possible,

in particular the azimuthal-free gauge, and they too are completely specified in terms of
C

[0]
1,s(z) and its derivatives. Recall Sections 15.4 through 15.7.

We will next examine what can be said about the master function C
[0]
1,s(z) in various

cases.

16.3.2 Single Monopole Doublet

The simplest way to mathematically model a dipole field, as the name suggests, is to properly
locate and assign strengths to two monopoles. Suppose two monopoles having strengths
∓4πg are placed at the (x, y, z) locations (0, a, 0) and (0,−a, 0). Note that these locations
lie on a cylinder of radius a. A pair of monopoles of opposite sign is what we have called
a monopole doublet. Recall Section 15.9. Note, however, that in this section we have
interchanged the strengths of the two monopoles so as to produce an on-axis B field that
points in the +ey direction.

We will verify, as expected, that this monopole doublet produces an interior field whose
cylindrical multipole expansion begins with an m = 1 term. From the symmetry of this
array we expect that, in addition to the leading m = 1 term, there may also be m = 3, 5, · · ·
terms. Recall Subsection 15.3.5 for explicit results.

Define a unit monopole to be a monopole for which g = 1. Let χ(r; r′) be the scalar
potential for a unit monopole located at the point r′,

χ(r; r′) = χ(x, y, z;x′, y′, z′) = −1/||r − r′||
= −1/[(x− x′)2 + (y − y′)2 + (z − z′)2]1/2. (16.3.9)

Then the potential ψdoub for the monopole doublet we are considering here is given by the
relation

ψdoub(x, y, z) = gχ(x, y, z; 0, a, 0)− gχ(x, y, z; 0,−a, 0)

= g[x2 + (y − a)2 + z2]−1/2 − g[x2 + (y + a)2 + z2]−1/2, (16.3.10)

in agreement with (15.9.1) through (15.9.3) save for a sign.
Next expand ψdoub(x, y, z) as a power series in x and y. So doing yields the result

ψdoub(x, y, z) = 2gay/(z2 + a2)3/2 + higher order terms. (16.3.11)

Comparison of (3.11) with (3.1) reveals that, for the monopole doublet we are considering
here, the m = 1 on-axis gradient is given by the relation

C
[0]
1,s(z) = 2ga/(z2 + a2)3/2 = (4g/a)δ(z, a) (16.3.12)

where δ(z, a) is the approximating delta function already introduced in Exercise 2.19,

δ(z, a) = (a2/2)/(z2 + a2)3/2. (16.3.13)
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The result (3.12) agrees, save for the expected sign difference, with (15.9.21) and (15.9.33)
evaluated at m = 1.

Calculation shows that the approximating delta function (3.13) has the properties

δ(−z, a) = δ(z, a), (16.3.14)

δ(0, a) = 1/(2a), (16.3.15)

δ(z, a) = (a2/2)/|z|3 +O(1/|z|5) as |z| → ∞, (16.3.16)∫ ∞
−∞

dz δ(z, a) = 1. (16.3.17)

Figures 3.1 and 3.2 illustrate the behavior of this approximating delta function for two
different values of a. Evidently the approximating delta function (3.13) becomes the true
delta function in the limit a→ 0,

lim
a→0

δ(z, a) = δ(z), (16.3.18)

and a controls the fall-off rate. From (3.12) we see that the m = 1 on-axis gradient for a
monopole doublet has the fall-off behavior

C
[0]
1,s(z) = 2ga/|z|3 +O(1/|z|5) as |z| → ∞. (16.3.19)

-0.4 -0.2 0.2 0.4
z
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10

15

20

25

30

delta

Figure 16.3.1: The approximating delta function (3.13) when a = .2.

16.3.3 Line of Monopole Doublets

Next consider, as a second mathematical model, the case of a line of monopole doublets
extending from z = 0 to z = L. Associated with a line of monopole doublets will be a
soft-edge bump function described by the relation

bump(z, a, L) =

∫ L

0

dz′ δ(z − z′, a). (16.3.20)
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Figure 16.3.2: The approximating delta function (3.13) when a = .02.

In terms of this soft-edge bump function the m = 1 on-axis field gradient C
[0]
1,s(z) for a line

of monopole doublets can be written in the form

C
[0]
1,s(z) = B bump(z, a, L) (16.3.21)

where B is the dipole strength in the infinite length limit. Recall Exercise 1.5.7 and (3.2)
through (3.5). It is given in terms of the doublet parameters by the relation

B = 4G/a (16.3.22)

where 4πG is the monopole strength per unit length.

To evaluate (3.20), make the change of variables ζ = z − z′ so that (3.20) becomes

bump(z, a, L) = −
∫ z−L

z

dζ δ(ζ, a) =

∫ z

z−L
dζ δ(ζ, a). (16.3.23)

The approximating delta function (3.13) has as an indefinite integral the result∫
dζ δ(ζ, a) = (1/2)ζ/(ζ2 + a2)1/2 = (1/2)sgn(ζ, a) (16.3.24)

where sgn(ζ, a) is the approximating signum function (2.26). It follows from (3.23) and
(3.24) that

bump(z, a, L) = [sgn(z, a)− sgn(z − L, a)]/2, (16.3.25)

a result identical to (2.25). We conclude that the soft-edge bump function for the m = 1
on-axis gradient arising from a line of monopole doublets is the same as the soft-edge bump
function for a simple air-core solenoid. In particular, the fall off for the m = 1 on-axis
gradient arising from a line of monopole doublets goes as 1/|z|3, just as it does for a single
monopole doublet.
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16.3.4 Current Windings for two Air-Core Dipoles

The work of the previous Subsections 3.2 and 3.3 is deficient in at least two ways. First,
according to Section 15.9.2, a monopole doublet has nonzero on-axis gradients for all odd
values of m. See also Section 15.3.5. Moreover, even the integrated on-axis gradients for a
monopole doublet are nonzero for all odd values of m,∫ ∞

−∞
dz C [0]

m,s(z) 6= 0 for m odd. (16.3.26)

[See (15.9.21) and (15.9.33), and, for graphic examples, Figures 15.9.8, 15.9.11, 15.19.13,
and 15.9.15.] The same is true for a line of monopole doublets.

Second, unlike the case of a solenoid, no prescription has been given of current wind-
ings/distributions that could be fabricated to produce the field of a line of multipole dou-
blets or, better yet, the field of a reasonably “pure dipole”. The aim of this subsection is
to describe two commonly used (or contemplated) thin-shell windings on a straight circular
cylinder of radius a and length L such that the magnetic field produced within the bore has
primarily an m = 1 component.

Then, in the next two subsections, we will consider windings such that only the m = 1
on-axis gradient is nonzero for the field produced by such windings. We will call such a
winding an ideal air-core dipole. However it is not the case, even for an ideal air-core dipole,
that the field is that of a perfect dipole, a field, say, only in the ey direction. According to
(15.2.61) through (15.2.64) there are additional components in the fringe-field regions at the

ends of the dipole where C
[0]
1,s(z) is changing.

As already stated, we will consider air-core dipoles that consist of a thin-shell winding
placed on a circular cylinder of radius ρ = a and length L. We will also arrange the
coordinate system so that the winding begins at z = 0 and ends at z = L.

There are two commonly used or considered approaches as to what the nature of this
winding should be. One approach is to arrange to have most of the winding running on
straight lines parallel to the cylinder axis to form what are called saddle coils. See Figure
3.3. Moreover, the spacing between successive straight lines is arranged so that the cross-
sectional current density for the straight-line portion of the winding has (effectively on
average) a cos(θ) distribution. [Here suppose the coordinate system shown in Figure 2.1 is
also employed in part c of Figure 3.3 above. Then, following customary nomenclature, θ is
the angle φ defined by (15.2.12) through (15.2.14). From now on we will refer to a cos(φ)
distribution.] This can be accomplished by placing the winding in grooves machined into
the underlying cylinder or by placing appropriate sized variable width spacers (not depicted)
between successive straight wires.

It can be shown that for a cos(φ) current distribution for the straight-line portion of
the winding, and assuming the coils are long so that L is large, the field in the vicinity of
z = L/2 is that of a reasonably pure dipole. See Exercise 3.5. That is, we already know

from symmetry considerations, see Section 15.3.5, that only the C
[0]
m,s(z) for odd m can be

nonzero. And for a cos(φ) current distribution for the straight-line portion of the winding it

can be shown that C
[0]
1,s(z) is substantial, and the remaining C

[0]
m,s(z) are small, in the vicinity

of z = L/2.
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Figure 16.3.3: Coils and cylinders: Part c of this figure shows coils draped like saddles,
above and below, over a circular cylinder. Apart from the coil ends, most of the winding
runs along straight lines parallel to the cylinder axis.

What can be said about the field away from the central region z ' L/2? There the

C
[0]
3,s(z), C

[0]
5,s(z), · · · can be substantial due to the currents flowing around the cylinder at

the coil ends. Thus, an air-core dipole made with saddle cos(φ) coils is not ideal as defined
above. Moreover, in general there will be the integral results∫ ∞

−∞
dz C [0]

m,s(z) 6= 0 for m odd. (16.3.27)

In particular the undesired m = 3, m = 5, · · · integrated multipole strengths will in general
be nonzero.

But it is in principle possible to drive various undesired integrated multipole strengths
to zero by placing and appropriately powering suitable multipole corrector windings at or
near the ends of the main coil. Of course, when this is done, the net C

[0]
3,s(z), C

[0]
5,s(z), · · ·

remain nonzero. Only their integrals vanish.
A second approach, variously called “canted cos(θ)”, “double helix”, or “tilted solenoid”,

is based on a simple configuration where a conductor is wound around a cylinder as two
oppositely tilted solenoids. Figure 3.4 illustrates such a winding.7 See the Ph.D. thesis of
Brouwer cited at the end of this chapter for an extensive treatment of canted cos(θ) dipoles.

It can be shown that two tilted solenoids when powered as shown produce what is
primarily a dipole field. Each layer produces a combination of vertical and solenoidal fields.
If the currents are directed as shown, the vertical components add to produce a primarily
dipole field and the solenoidal components cancel (save for end effects which are modest and
also integrate to zero).8 (And if the current in one of the layers is directed as shown and the
other is reversed, the vertical components essentially cancel and the solenoidal components

7The use of the term “cos(θ)” in this context may seem slightly confusing since each tilted solenoid is
wound uniformly with no variable width spacers between turns. However, as study of Figure 3.4 suggests,
it can be shown that the net effect of the two tilted layers is to produce, in the overlap region and in the z
direction, a cos(φ) current distribution.

8Here we assume the layers have infinitesimal thickness so that they both have the same radii. If not,
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Figure 16.3.4: A winding composed of two oppositely tilted solenoids to form a canted cos(θ)
dipole.

add to produce a primarily solenoidal field.) Figure 3.5 shows, in Tesla, the solenoidal field

component Bz(0, 0, z) = C
[1]
0 (z) for the individual layers as well as the net C

[1]
0 (z) for a two-

layer canted cos(θ) dipole. Note that, due to the advertised cancellation, the net solenoidal
field is small save for end effects. The solenoidal field at the center location z = L/2 is 0.003
Tesla and arises from the layers having slightly different radii.

With regard to the dipole and higher multipole fields, and again from symmetry consid-
erations, only the C

[0]
m,s(z) for odd m can be nonzero. And, if L is large, it can be shown

that C
[0]
1,s(z) is substantial, and the remaining C

[0]
m,s(z) are small, in the vicinity of z = L/2.

Figure 3.6 shows, for example, C
[0]
1,s(z); and Figure 3.7 shows C

[0]
3,s(z) and C

[0]
5,s(z). But note

that the C
[0]
3,s(z), C

[0]
5,s(z), · · · are not zero for all z, and therefore this air-core dipole is also

not ideal.
Nevertheless, this air-core dipole does have a remarkable property: It can be shown that∫∞

−∞ dz C
[0]
1,s(z) is substantial, and for all the remaining C

[0]
m,s(z) there is the relation∫ ∞

−∞
dz C [0]

m,s(z) = 0. (16.3.28)

That is, the integrated strengths of all undesired multipoles vanish for this air-core winding!
Again see Figure 3.7.9

cancellation is not perfect so that there is a small residual solenoidal field even apart from end effects. In
any event the effect of solenoidal fields can presumably be compensated if desired by the addition of other
windings or the use of skew quadrupoles. For example, the x, y coupling effect of the strong solenoidal
fields associated with some detectors in storage rings/colliders is routinely compensated by the use of skew
quadrupoles.

9Windings (for air-core magnets) which have the property that all integrated multipoles vanish save for
some desired multipole are sometimes called Lambertson windings. See the references at the end of this
chapter.
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Figure 16.3.5: The individual and net C
[1]
0 (z) for a canted cos(θ) dipole.

Figure 16.3.6: The on-axis gradient C
[0]
1,s(z) in Tesla for a canted cos(θ) dipole. Also shown

is a hard-edge bump function approximation.
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Figure 16.3.7: The on-axis gradient C
[0]
3,s(z) (above) and on-axis gradient C

[0]
5,s(z) (below) in

dimensionless units for a canted cos(θ) dipole. They are small for z ' L/2, but do not
vanish everywhere. Nevertheless their integrated strengths do vanish.
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16.3.5 Current Winding for an Ideal Air-Core Dipole

We have seen two examples of windings that fail to produce ideal air-core dipoles. Is there
a winding that succeeds? Yes, there are several. This subsection will describe one that is
easy to visualize and for which it is possible to compute C

[0]
1,s(z) analytically.

Figure 3.8 shows a net of coils placed on a circular cylinder. Figure 3.9 shows a top
view of the right end of the cylinder and illustrates the sign convention for describing the
current flow in the right (+z) end of each coil and the currents as they flow along the long
sides of each coil. A dot denotes the tip of an arrow as it comes up from below the plane of
the figure, and a cross denotes the feather of an arrow as it goes down below the plane of
the figure. In this figure n = 12 coils are displayed with the circular arc of each Ik current
subtending an angle of ∆ = 2π/n = 30◦. We also define angles φk by the rule

φk = k∆. (16.3.29)

Thus, at each angular location φk there is an upward and downward current pair so that,
for example, there is a net current (I1 − In) along the side of the cylinder in the z direction
at the location φ0 = 0.

Figure 16.3.8: A net of coils draped over a cylinder. The kth coil carries a current Ik.
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Figure 16.3.9: Top view of the right ends of the coils shown in Figure 3.8. The z axis comes
out of the plane of the paper.

In order to achieve an effective cosφ current distribution along the length of the cylinder,
the currents in adjacent coils are required to be related by the rules

I2 − I1 = Î cosφ1,

I3 − I2 = Î cosφ2,

Ik+1 − Ik = Î cosφk,

· · · · · · · · · · · · · · · · · · , (16.3.30)

In − In−1 = Î cosφn−1,

I1 − In = Î cosφ0 = Î , (16.3.31)

where Î is some amount of current yet to be determined. As a sanity check, we observe
that the sum of the left sides of (3.30) through (3.31) vanishes. And for the right sides
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computation shows that the sum also vanishes, as desired,

Î[1 + cosφ1 + cosφ2 + · · ·+ cosφn−1] = Î<{
n−1∑
k=0

exp(ik∆)}

= Î<{[1− exp(in∆)]/[1− exp(i∆)]}
= Î<{[1− exp(2πi)]/[1− exp(i2π/n)]} = 0. (16.3.32)

Observe that the left sides of (3.30) through (3.31) only involve current differences, and
therefore the currents themselves still need to be determined. This can be done by specifying
that

I1 = Î/2. (16.3.33)

Note that this specification, when employed with the last equation in (3.31), produces the
pleasant result

In = −Î/2. (16.3.34)

It can be shown that (3.30) through (3.31) and (3.33), when taken together, yield the
relations

Ik = (Î/2)[sin(∆/2)]−1 sinψk (16.3.35)

where

ψk = (k − 1/2)∆. (16.3.36)

See Exercise *. Note that ψk is the angular location of the midpoint of the arc that carries
the current Ik. For example, ψ1 = ∆/2.

Consider cases for which n has a value of the form n = 4` where ` is an integer. Then,
in the continuum large ` limit (and with Î adjusted accordingly), it can be shown that the
collection of coils of the kind shown schematically in Figure 3.8 and more precisely in Figure
3.9 (for the case ` = 3) with the Ik described by (3.35) and (3.36) produces an ideal dipole

field. That is, C
[0]
1,s(z) is substantial, and the remaining C

[0]
m,s(z) all vainsh. See Exercise *.

Moreover, in this case C
[0]
1,s(z) can be computed analytically. (See the work of Bassetti

and Biscari cited in the references at the end of this chapter.) If the winding is on a cylinder
of radius a that begins at z = 0 and extends to z = L, then the on-axis gradient for such
an air-core dipole, as is the case for the on-axis field for a simple air-core solenoid and the
on-axis gradient for a line of monopole doublets, can be described in terms of a soft-edge
bump function which we will again call bump(z, a, L). That is, the on-axis gradient C

[0]
1,s(z)

can be written in the form

C
[0]
1,s(z) = B bump(z, a, L) (16.3.37)

where B is again the dipole strength in the infinite length limit.

Like the soft-edge bump function for a simple air-core solenoid and a line of monopole
doublets, the soft-edge bump function for this ideal air-core dipole can be written in terms
of an associated approximating signum function in the form

bump(z, a, L) = [sgn(z, a)− sgn(z − L, a)]/2. (16.3.38)
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It can be shown that for this ideal air-core dipole the approximating signum function sgn(z, a)
is given by the relation

sgn(z, a) = z(z2 + 2a2)/(z2 + a2)3/2. (16.3.39)

Figures 3.10 and 3.11 illustrate the behavior of this approximating signum function for two
different values of a. Evidently the approximating signum function (3.39) becomes the true
signum function in the limit a→ 0.
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Figure 16.3.10: The approximating signum function (3.39) when a = .2.
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Figure 16.3.11: The approximating signum function (3.39) when a = .02.

It follows from (3.38) and (3.39) that, like the soft-edge bump function for a simple
air-core solenoid and a line of monopole doublets, the soft-edge bump function for this ideal
air-core dipole satisfies the relations (2.20 through (2.22). Recall Exercise 2.3. We see from
(2.23) and (3.37) that for this ideal air-core dipole there is the relation∫ ∞

−∞
C

[0]
1,s(z)dz = BL. (16.3.40)

Figures 3.12 and 3.13 illustrate the properties (2.20) through (2.22) for a fixed value of L
and two different values of the radius a. Evidently the ideal air-core dipole soft-edge bump
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function given by (3.38) and (3.39) becomes a hard-edge bump function in the limit a→ 0.
The radius a plays the role of a characteristic length that controls the rate of fall off. The
fringe-field region is large if a is large, and vanishes as a goes to zero.
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Figure 16.3.12: The soft-edge bump function bump(z, a, L) given by (3.38) and (3.39) when
a = 0.2 and L = 1.
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Figure 16.3.13: The soft-edge bump function bump(z, a, L) given by (3.38) and (3.39) when
a = 0.02 and L = 1.

From (3.39) and (3.38) we find the asymptotic behaviors

sgn(z, a) = 1 + (1/2)a2/z2 +O(1/z4) as z → +∞, (16.3.41)

bump(z, a, L) = −(1/2)La2/|z|3 +O(1/|z|4) as |z| → ∞. (16.3.42)

Consequently C
[0]
1,s(z) falls off for large distances as

C
[0]
1,s(z) = −(1/2)BLa2/|z|3 +O(1/|z|4) as |z| → ∞. (16.3.43)

We see that the fall off goes as 1/|z|3, just as it does for the simple air-core solenoid, a single
monopole doublet, and a line of monopole doublets. Compare (2.42) and (3.43). Note,
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however, that the approximating signum functions (2.26) and (3.39) are different. Compare,
for example, Figures 2.2 and 3.10. Also, compare (2.34) with (3.41). Correspondingly,
the bump functions for a line of monopole doublets and this idealized air-core dipole are
different, and the relations (2.42) and (3.43) differ in sign. Finally we observe, for example
from Figures 3.12 and 3.13, that for an ideal air-core dipole the bump function bump(z, a, L),
while positive in the center of the dipole, can be negative outside the dipole. This change
in sign cannot be modeled by an Enge function profile.10

Our discussion of dipole fringe fields so far has treated the iron-free case, and we have
found a 1/|z|3 fall off in all cases susceptible to easy analysis. When iron is present, and the
coils are buried in iron or field clamps are employed, the fall off can in principle be much
faster including the possibility of essentially exponential fall off.

16.3.6 Current Windings for other Ideal Air-Core Dipoles

16.3.7 Limited Utility of Cylindrical Harmonic Expansions for
Dipoles

Strictly speaking, and as already alluded to in a previous footnote, cylindrical harmonic
expansions for the field of a dipole are of limited use. First, there is this observation: If
it is desired that the bore be much smaller than the length of the dipole, as is frequently
the case, then the dipole must be bent to accommodate the design orbit. In this case a
cylindrical harmonic analysis of the field is no longer possible.11 Second, cylindrical harmonic
expansions are expected to be valid (rapidly convergent) only in the vicinity of the z axis.
But the orbit in a dipole is bent and therefore cannot be confined to the vicinity of the
z axis unless the bend angle is suitably small. Thus there is a conflict between the desire
to have a simple model of the design orbit accompanied by a practical dipole design (an
essentially circular arc reasonably closely surrounded by coil windings/iron), and the desire
for a simple model (cylindrical harmonic expansion) of the dipole field. This conflict occurs
both for iron-free dipoles and dipoles with iron. Chapter 22, which does not presuppose
a cylindrical harmonic expansion, treats the problem of finding realistic transfer maps for
curved beam-line elements with significant sagitta.

At this point we pause to note that there is one area where this conflict does not occur, of
at least may be less significant: the modeling of a wiggler/undulator which may be viewed as
a string of short dipoles and for which the design orbit throughout the length of the element
does not differ much from a straight line. In this case a cylindrical harmonic analysis of the
field is appropriate and useful providing the amplitude of the wiggles in the design orbit
is modest compared to the half gap of the dipoles. See Section 4 of this chapter. Finally,
wigglers/undulators may be treated using the methods of Chapter 22 without the use of

10Note that for a canted cos(θ) dipole, see Figure 3.6, the field can also be negative outside the dipole.
11Often, in the case of large storage rings/colliders, long superconducting dipoles with small bores are

initially built as straight rectangular magnets with windings (essentially cosφ) and iron designed in such
a way as to produce as far as practical a pure m = 1 field. These magnets are then mechanically bent to
accommodate a curved design orbit, thereby producing a sector bend with normal entry and exit. The hope,
partially verified by experience, is that the transfer map for such a bent dipole will not have unacceptable
nonlinearities.
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cylindrical harmonic expansions.
Let us return to the main discussion: instances where the conflict must be addressed.

Consider the case of a straight (unbent) rectangular dipole of length L with equal entry and
exit angles. Make the approximation that the design orbit is a circular arc within the dipole
and straight lines outside the dipole in the fringe-field regions. Assume the bend angle is
θ. Then, by simple geometry, in order to just accommodate the design trajectory the dipole
(without bending) must have a bore radius a given by the relation

a/L = (1− cos θ/2)/(4 sin θ/2) = θ/(16) +O(θ3). (16.3.44)

See Exercise *. Figure 3.14 displays the ratio a/L as a function of θ.12 Suppose, for example,
that θ = 9 degrees and L = 1 meter. Then use of (3.44) gives the result a/L = .0098 and
therefore a = .98 cm.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
theta

0.05

0.10

0.15

0.20

0.25

0.30

a�L

Figure 16.3.14: The ratio a/L as a function of θ.

Next, beyond the simple geometric considerations we have just explored, we must ac-
knowledge that a cylindrical harmonic expansion is expected to be valid only in the vicinity
of the z axis. Suppose we assume that the actual bore should be at least twice the geometri-
cally needed bore in order for the cylindrical harmonic expansion to be reasonably accurate
in the region traversed by the design orbit. In this case we should, say for convenience, make
the Ansatz a = 2 cm = .02 meters. When a = .02 and L = 1 the field profile is that of
Figure 3.13, from which we see that the fringe-field region appears to be relatively small.
Specifically, from (3.38) and (3.39), we find the result

bump(z = −.3, a = .02, L = 1) = bump(z = 1.3, a = .02, L = 1) = −1.04× 10−3. (16.3.45)

Consequently, in this case one must be a distance of about 30 cm from the ends of the dipole
for the on-axis field value to fall to 10−3 of its central on-axis value. Thus, in this case and
with a 10−3 fall-off criterion, the fringe-field region on either end of the dipole is about 1/3
the length of the dipole.

Evidently, a more detailed analysis of this case would involve numerical integration to
determine the design orbit accurately. And computation of the transfer map about this

12Note that, for an unbent dipole with fixed design-orbit bend angle, the bore is proportional to the
length.
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design orbit would require integration of the map equations of Section 10.5 using a Hamil-
tonian based on the vector potential given by (3.6) through (3.8). Note that in this case,
according to (3.5) and (3.37) there are the relations

C
[1]
1,s(z) = B bump′(z, a, L), (16.3.46)

C
[2]
1,s(z) = B bump′′(z, a, L), etc. (16.3.47)

These functions are shown in Figures 3.15 and 3.16 below. Like its counterpart shown in
Figure 2.7 for a solenoid of the same geometry, the function bump′′ for the ideal air-core
dipole of Section 3.5 is quite singular in the case a = 0.02 and L = 1. We may therefore
expect that the transfer map for this ideal air-core dipole will have substantial higher-order
aberrations.
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Figure 16.3.15: The function bump′(z, a = 0.02, L = 1) associated with (3.38).
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Figure 16.3.16: The function bump′′(z, a = 0.02, L = 1) associated with (3.38).

16.3.8 Terminating Dipole End Fields

As already described, cylindrical harmonic expansions are of limited use for dipoles because
the design orbit in a dipole is bent. Correspondingly, it is generally not useful to describe
the termination of dipole end fields in terms of cylindrical harmonic expansions. For the
special case of wigglers/undulators, where the use of cylindrical harmonic expansions may be
appropriate for describing the termination of end fields, see Subsection 4.3. For a treatment
of dipole end-field termination in the general case without the use of cylindrical harmonic
expansions, see Section 22.8.

16.3.9 Limited Utility of Hard-Edge Models for Dipole Fringe
Fields

Exercises

16.3.1. Verify (3.11) and (3.12). Verify that (3.12) also follows from (15.8.21) and (15.8.33).

16.3.2. Verify (3.14) through (3.17).

16.3.3. Verify (3.20) through (3.22).

16.3.4. Verify (3.24) by shoing that

∂ζsgn(ζ, a) = 2δ(ζ, a). (16.3.48)

Verify (3.25).
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16.3.5. Material re cos(φ) current distribution.

16.3.6. Verify · · · .

16.3.7. Verify the relation (3.33).

16.4 Air-Core Wiggler/Undulator Models

16.4.1 Simple Air-Core Wiggler/Undulator Model

The fields of individual monopole doublets or lines of monopole doublets or idealized air-core
dipoles may be used to create model fields for wigglers/undulators. We will consider the
simplest case where individual monopole doublet fields are employed.

A possible simple three-pole model of a wiggler/undulator may be taken to be a string
of three equally spaced monopole doublets having relative strengths +1/2,−1,+1/2. That
is we may define a three-pole wiggler/undulator profile function wig(3, z, a, L) by the rule

wig(3, z, a, L) = (1/2)δ(z + L, a)− δ(z, a) + (1/2)δ(z − L, a) (16.4.1)

where 2L is the wiggler/undulator period. Here δ(z, a) is the approximating delta function
given by (3.13). The sum of the pole strengths is zero so that the wiggler/undulator produces
no net bending, and the end poles are given half strengths so that the wiggler/undulator
produces no net translation in x. For this profile there is the asymptotic fall off

wig(3, z, a, L) = (3a2L2)/|z|5 +O(1/|z|6) as |z| → ∞. (16.4.2)

Figure 4.1 displays the profile function wig(3, z, a, L) for the case a = .1 and L = .5.
Evidently in this case, as expected from (4.2), the fringe field falls off quite rapidly. For
example, at a distance of one wiggler/undulator period from the end, there is the result

wig(3, 1.5, .1, .5)/wig(3, 0, .1, .5) = −2.6× 10−4. (16.4.3)

At this point C
[0]
1,s has fallen from its peak value by almost four orders of magnitude.

Another simple model is a string of five equally spaced monopole doublets having relative
strengths +1/2,−1,+1,−1,+1/2. In this model we define a five-pole wiggler/undulator
profile function wig(5, z, a, L) by the rule

wig(5, z, a, L) = (1/2)δ(z + 2L, a)− δ(z + L, a) + δ(z, a)− δ(z − L, a) + (1/2)δ(z − 2L, a).
(16.4.4)

For this profile there is the asymptotic fall off

wig(5, z, a, L) = (6a2L2)/|z|5 +O(1/|z|6) as |z| → ∞. (16.4.5)

Note that the fall off for both the three-pole and five-pole wiggler/undulator goes as 1/|z|5,
which is two orders higher in 1/|z| than that for a single monopole doublet. Compare (3.19),
(4.2), and (4.5). This higher fall-off rate arises from cancellations that occur between the
doublets because the sum of the pole strengths is zero. That is, we have enforced the relation∫ ∞

−∞
dz wig(n, z, a, L) = 0. (16.4.6)
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Figure 16.4.1: The three-pole wiggler/undulator profile function (4.1) when a = 0.1 and
L = 0.5.

Figure 4.2 displays the five-pole profile function for the case a = .1 and L = .5. Ev-
idently the fringe field again falls off quite rapidly. For example, at a distance of one
wiggler/undulator period from the end, there is the result

wig(5, 2, .1, .5)/wig(5, 0, .1, .5) = 2.8× 10−4. (16.4.7)

At this point C
[0]
1,s has again fallen from its peak value by almost four orders of magnitude.
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Figure 16.4.2: The five-pole wiggler/undulator profile function (4.4) when a = 0.1 and
L = 0.5.

16.4.2 Iron-Free Rare Earth Cobalt (REC) Wiggler/Undulator

16.4.3 Terminating Wiggler/Undulator End Fields

Preliminaries

There is an application for which expansions employing m = 1 cylindrical harmonics may
be useful, namely the case of wigglers/undulators when the excursion of the design orbit
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from the axis may be treated as small. That is, it is assumed that the design orbit enters
and exits the wiggler/undulator on axis and nearly along the axis, and the excursions of the
design orbit from the axis while within the wiggler/undulator may be treated as small.

At this point it is necessary to make a change of notation. In the discussion of most
of the preceding sections and subsections, save for that of Sections 15.2, 15.7 and 15.9, we
have used the coordinates x, y, z as global coordinates. For this subsection, as described in
Section 15,2, we will use

R = (X, Y, Z) (16.4.8)

as global coordinates and
r = (x, y, z) (16.4.9)

as local coordinates. In analogy with the notation of Subsection 1.2, we assume the leading
wiggler/undulator fringe field begins at Z = Zen and the trailing wiggler/undulator fringe
field ends at Z = Zex. In the interval [Zen, Zex] the design orbit and map integrations
will be carried out using the vector potential in the Coulomb gauge of Section 15.5. The
entering transition at Zen from the leading no-field region to the leading fringe-field region,
and the exiting transition at Zex from the trailing fringe-field region to the trailing no-field
region, will be made using the minimum vector potential, namely the Poincaré-Coulomb
gauge vector potential.

Entering a Leading Fringe-Field Region

If we wish to make the transition from the leading no-field region to the leading fringe-field
region using the minimum vector potential (the vector potential in the Poincaré-Coulomb
gauge), and also wish to carry out the design orbit and map integrations using the vector
potential in the Coulomb gauge of Section 15.5.2, then we need to find at Z = Zen the gauge
transformation that relates the Poincaré-Coulomb gauge and the Coulomb gauge of Section
15.5.2. The general problem of changing gauges has already been discussed in Subsection 1.3,
the general relation between the Poincaré-Coulomb gauge vector potential and the Coulomb
gauge vector potential of Section 15.5 has been described in Section 15.7, and the specific
m = 1 and α = s relation has been treated in Section 15.9.2.

We seek relations in the vicinity of the point (0, 0, Zen). Let us recapitulate some of what
we have learned. In the vicinity of this point, and for the α = s component of the magnetic
field, the Poincaré-Coulomb gauge vector potential and the Coulomb gauge vector potential
of Section 15.5 are related by the gauge transformation

PA1,s(x, y, z;Zen) = Â1,s(x, y, Zen + z) +∇χ1,s. (16.4.10)

Recall (15.7.5). Also, we found that the gauge term χ1,s is related to the m = 1 and α = s
on-axis gradient by the expansion

χ1,s(x, y, z;Zen) = {[(1/2)xz]C
[0]
1,s(Z

en)}+{[(1/3)xz2−(1/12)xρ2]C
[1]
1,s(Z

en)}+· · · . (16.4.11)

See (15.9.21).
Next, see (1.75), we recall the relation

Aa −Ab = ∇χ, (16.4.12)
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and compare it with the relation (4.10) rewritten in the form

Â1,s(x, y, Zen + z) − PA1,s(x, y, z;Zen) = −∇χ1,s. (16.4.13)

We conclude that if we wish to identify Â1,s with Aa, and identify PA1,s with Ab, then we
should require the relation

χ = −χ1,s. (16.4.14)

Finally, define the function χen by the rule

χen(x, y;Zen) = χ(x, y, 0;Zen). (16.4.15)

With this definition we see from (4.11) and (4.14) that there is the result

χen(x, y;Zen) = {[(1/12)xρ2]C
[1]
1,s(Z

en)} − · · · . (16.4.16)

We are now ready to invoke the results (1.77) through (1.79). So doing, we find that
the canonical coordinates (x, y, t; pcan

x , pcan
y , pcan

t ) after and before Zen are connected by the
symplectic map T en,

xa(Z) = T enxb(Z) with Z = Zen,

ya(Z) = T enyb(Z) with Z = Zen,

ta(Z) = T entb(Z) with Z = Zen; (16.4.17)

pcana
x (Z) = T enpcanb

x (Z) with Z = Zen,

pcana
y (Z) = T enpcanb

y (Z) with Z = Zen,

pcana
t (Z) = T enpcanb

t (Z) with Z = Zen, (16.4.18)

where
T en = exp(q : χen :). (16.4.19)

Exiting a Trailing Fringe-Field Region

The general considerations for the transition associated with exiting a trailing fringe-field
region are similar to those employed earlier for entering a leading fringe-field region. If
we wish to make the transition from the trailing fringe-field region to the trailing no-field
region using the minimum vector potential (the vector potential in the Poincaré-Coulomb
gauge), and also wish to carry out the design orbit and map integrations using the vector
potential in the Coulomb gauge of Section 15.5.2, then we need to find at Z = Zex the gauge
transformation that relates the Poincaré-Coulomb gauge and the Coulomb gauge of Section
15.5.2.

We now seek relations in the vicinity of the point (0, 0, Zex). Let us again recapitulate
some of what we have learned. In the vicinity of this point, and for the α = s component
of the magnetic field, the Poincaré-Coulomb gauge vector potential and the Coulomb gauge
vector potential of Section 15.5 are related by the gauge transformation

PA1,s(x, y, z;Zex) = Â1,s(x, y, Zex + z) +∇χ1,s. (16.4.20)
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Also, the gauge term χ1,s is related to the m = 1 and α = s on-axis gradient by the expansion

χ1,s(x, y, z;Zex) = {[(1/2)xz]C
[0]
1,s(Z

ex)}+{[(1/3)xz2−(1/12)xρ2]C
[1]
1,s(Z

ex)}+· · · . (16.4.21)

Next we again recall the relation

Aa −Ab = ∇χ, (16.4.22)

and compare it with the relation (4.20) rewritten in the form

PA1,s(x, y, z;Zex)− Â1,s(x, y, Zex + z) = ∇χ1,s. (16.4.23)

We conclude that if we wish to identify PA1,s with Aa, and identify Â1,s with Ab, then we
should now require the relation

χ = χ1,s. (16.4.24)

Finally, define the function χex by the rule

χex(x, y;Zex) = χ(x, y, 0;Zex). (16.4.25)

With this definition we see from (4.21) and (4.24) that there is the result

χex(x, y;Zex) = − {[(1/12)xρ2]C
[1]
1,s(Z

ex)}+ · · · . (16.4.26)

We are again ready to invoke the results (1.77) through (1.79). So doing, we find that
the canonical coordinates (x, y, t; pcan

x , pcan
y , pcan

t ) after and before Zex are connected by the
symplectic map T ex,

xa(Z) = T exxb(Z) with Z = Zex,

ya(Z) = T exyb(Z) with Z = Zex,

ta(Z) = T extb(Z) with Z = Zex; (16.4.27)

pcana
x (Z) = T expcanb

x (Z) with Z = Zex,

pcana
y (Z) = T expcanb

y (Z) with Z = Zex,

pcana
t (Z) = T expcanb

t (Z) with Z = Zex, (16.4.28)

where
T ex = exp(q : χex :). (16.4.29)

Behavior of C
[1]
1,s(Z)

According to (4.16) and (4.26) both χen and χex are proportional to C
[1]
1,s(Z). Let us explore

the behavior of C
[1]
1,s(Z) for the simplest wiggler/undulator models described in Subsection

4.1. In accord with (3.13), (4.1), and (4.4) we may write for these models

C
[0]
1,s(Z) = −(4g/a)wig(3, Z, a, L) (16.4.30)
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and

C
[0]
1,s(Z) = −(4g/a)wig(5, Z, a, L) (16.4.31)

for the three-pole and five-pole cases, respectively. It follows that for the three-pole model
there is the relation

C
[1]
1,s(Z) = −(4g/a)(∂/∂Z)wig(3, Z, a, L) = −(4g/a)wig′(3, Z, a, L), (16.4.32)

and there is an analogous relation for the five-pole model. Figure 4.3 displays the profile
function wig′(3, z, a, L) for the case a = 0.1 and L = 0.5. Evidently wig′(3, z, a, L) falls of
quite rapidly for large |Z|. From (4.2) we expect the asymptotic fall off behavior to go as
1/|Z|6 for large |Z|. For example, at a distance of one wiggler/undulator period from the
end, there is the result

wig′(3, 1.5, .1, .5)/wig(3, 0, .1, .5) = ∗. (16.4.33)

And, at a distance of two wiggler/undulator periods from the end, there is the result

wig′(3, 1.5, .1, .5)/wig(3, 0, .1, .5) = ∗. (16.4.34)
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z

-6
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-2

2
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wig3

Figure 16.4.3: (Place Holder) The three-pole wiggler/undulator profile function
wig′(3, z, a, L) when a = 0.1 and L = 0.5.

Net Total Map

LetMen→ex denote the map obtained by integrating for a wiggler/undulator the design orbit
and map equations from Z = Zen to Z = Zex using the Coulomb gauge vector potential
of Section 15.5. Then the full net map M for the wiggler/undulator, including end-field
termination effects, is given by the product

M = T enMen→exT ex. (16.4.35)
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Discontinuities in Mechanical Momenta Associated with Termination
Approximation

As described in Subsection 1.2, there are discontinuities in the mechanical momenta associ-
ated with the use of a symplectic termination procedure. Recall (1.30), (1.31), (1.41), and
(1.42). Here, for our simple wiggler/undulator models, we will study the consequences of
terminating end fields using the minimum (Poincaré-Coulomb gauge) vector potential.

The m = 1 and α = s Poincaré-Coulomb gauge vector potential about the expansion
point (0, 0, Z0) is given in terms of on-axis gradients by (15.9.25) through (15.9.27). And,
for our simple wiggler/undulator models, the on-axis gradients are given by relations of the
form (4.30) through (4.32). Combining these relations with (1.30) and (1.31) gives, upon
entry and for the 3-pole case, the discontinuity results

∆pmech
x = q[PA1,s

x (x, y, 0;Zen)]

= q{[−(1/3)y2]C
[1]
1,s(Z

en) + · · · }
= q{[−(1/3)y2](−4g/a)wig′(3, Zen, a, L) + · · · },

(16.4.36)

∆pmech
y = q[PA1,s

y (x, y, 0;Zen)]

= q{[(1/3)xy]C
[1]
1,s(Z

en) + · · · }
= q{[(1/3)xy](−4g/a)wig′(3, Zen, a, L) + · · · }.

(16.4.37)

Similarly, upon exit, we find from (15.9.25) through (15.9.27), (1.40), and (1.41) the discon-
tinuity results

∆pmech
x = q[PA1,s

x (x, y, 0;Zex)]

= q{[−(1/3)y2]C
[1]
1,s(Z

ex) + · · · }
= q{[−(1/3)y2](−4g/a)wig′(3, Zen, a, L) + · · · },

(16.4.38)

∆pmech
y = q[PA1,s

y (x, y, 0;Zex)]

= q{[(1/3)xy]C
[1]
1,s(Z

ex) + · · · }
= q{[(1/3)xy](−4g/a)wig′(3, Zex, a, L) + · · · }.

(16.4.39)

Recall the relation (15.9.35) which we rewrite in the form

C
[0]
1,s(Z) = By(0, 0, Z). (16.4.40)

We see from (4.36) through (4.39) and (4.40) that in all cases the discontinuities are propor-
tional to B′y(0, 0, Z) and its derivatives at Z = Zen or Z = Zex. Recall (4.32) and see Figure
4.3 for an example of how these functions behave (fall off) in the case of the simplest 3-pole
wiggler/undulator model. Moreover, the discontinuities also vanish as the spatial deviations
from the z axis (the design orbit) become small.
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Exercises

16.4.1. Verify (4.11) and (4.12). Verify that (4.12) also follows from (15.8.21) and (15.8.33).

16.4.2. Verify (4.14) through (4.17).

16.4.3. Verify (4.20) through (4.22).

16.4.4. Verify (4.24) and (4.25).

16.4.5. Verify · · · .

16.4.6. Verify the relation (4.33).

16.5 Iron-Free Quadrupoles

16.5.1 Preliminaries

A quadrupole is a straight beam-line element whose field is described by a cylindrical har-
monic expansion that contains primarily an m = 2 term. We recall from Section 15.2.3 that
in this case the magnetic scalar potential ψ has the expansion

ψ(x, y, z) = ψ2,s(x, y, z) = 2xy[C
[0]
2,s(z)− (1/24)(x2 + y2)C

[2]
2,s(z) + · · · ]. (16.5.1)

(Here we have retained only the normal term, but a skew term is also possible.) See (15.2.65).
Correspondingly, the associated magnetic field has the expansion

Bx = ∂xψ2,s = 2yC
[0]
2,s(z)− (1/12)(3x2y + y3)C

[2]
2,s(z) + · · · , (16.5.2)

By = ∂yψ2,s = 2xC
[0]
2,s(z)− (1/12)(x3 + 3xy2)C

[2]
2,s(z) + · · · , (16.5.3)

Bz = ∂zψ2,s = 2xy[C
[1]
2,s(z)− (1/24)(x2 + y2)C

[3]
2,s(z) + · · · ]. (16.5.4)

From (6.2) through (6.4) we see that B is completely specified in terms of a single “master”

function C
[0]
2,s(z) and its derivatives. Moreover, according to (6.2) and (6.3), the on-axis field

is characterized by a quadrupole strength Q given by the relation

Q(0, 0, z) = 2C
[0]
2,s(z). (16.5.5)

See Exercise 1.5.9. We will next examine what can be said about the master function C
[0]
2,s(z)

in various cases.
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16.5.2 Single Monopole Quartet

The simplest way to produce a quadrupole field, as the name again suggests, is to properly
locate and assign strengths to four monopoles. Suppose two monopoles with strengths g are
placed at the diametrically opposed (x, y, z) locations (a

√
2, a
√

2, 0) and (−a
√

2,−a
√

2, 0).
Suppose two more monopoles of strength −g are placed at the diametrically opposed loca-
tions (a

√
2,−a

√
2, 0) and (−a

√
2, a
√

2, 0). Note that all these locations lie on a cylinder of
radius a and are spaced 90◦ apart. Such an array of monopoles will be called a monopole
quartet. (For a discussion of the case of a monopole half quartet, which is what we will call
two diametrically opposed monopoles of the same strength, see Exercise *.)

We will now see that a monopole quartet produces an interior field whose cylindrical
multipole expansion begins with an m = 2 term. From the symmetry of this array we
expect that, in addition to the leading m = 2 term, there may also be m = 6, 10, · · ·
terms. Recall Subsection 15.2.5. As before, let χ(r; r′) be the potential for a monopole
having strength g and located at the point r′. Recall (4.9). Then the potential ψquart for a
monopole quartet centered on the origin is given by the relation

ψquart(x, y, z) = gχ(x, y, z; a
√

2, a
√

2, 0) + gχ(x, y, z;−a
√

2,−a
√

2, 0)

−gχ(x, y, z; a
√

2,−a
√

2, 0)− gχ(x, y, z;−a
√

2, a
√

2, 0). (16.5.6)

Next expand ψquart(x, y, z) as a power series in x and y. So doing yields the result

ψquart(x, y, z) = −6ga2xy/(z2 + a2)5/2 + higher order terms. (16.5.7)

Comparison of (6.1) with (6.10) reveals that for a monopole quartet centered on the origin
its m = 2 on-axis gradient is given by the relation

C
[0]
2,s(z) = −3ga2/(z2 + a2)5/2 = −4(g/a2)δ(z, a) (16.5.8)

where δ(z, a) is an approximating delta function defined by the relation

δ(z, a) = (3/4)a4/(z2 + a2)5/2. (16.5.9)

Calculation shows that this approximating delta function has the properties

δ(−z, a) = δ(z, a), (16.5.10)

δ(0, a) = 3/(4a) (16.5.11)

δ(z, a) = (3a4/4)/|z|5 +O(1/|z|7) as |z| → ∞, (16.5.12)∫ ∞
−∞

dz δ(z, a) = 1. (16.5.13)

Figures 5.1 and 5.2 illustrate the behavior of this approximating delta function for two
different values of a. Evidently this approximating delta function (5.9) becomes the true
delta function in the limit a→ 0,

lim
a→0

δ(z, a) = δ(z), (16.5.14)

and a controls the fall-off rate. From (5.11) we see that the m = 2 on-axis gradient for a
monopole quartet has the fall-off behavior

C
[0]
2,s(z) = −3ga2/|z|5 +O(1/|z|7) as |z| → ∞. (16.5.15)
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Figure 16.5.1: The approximating delta function (5.9) when a = .2.
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Figure 16.5.2: The approximating delta function (5.9) when a = .02.
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16.5.3 Line of Monopole Quartets

Next consider the case of a line of monopole quartets extending from z = 0 to z = L.
It can be treated analogously to the treatment of a line of monopole doublets provided in
Subsection 4.3. A line of monopole quartets will produce a profile function described by the
relation

bump(z, a, L) =

∫ L

0

dz′ δ(z − z′, a) (16.5.16)

where now δ(z, a) is the approximating delta function given by (5.9). In terms of this soft-

edge bump function the m = 1 on-axis field gradient C
[0]
2,s(z) for a line of monopole quartets

can be written in the form

C
[0]
2,s(z) = (Q/2)bump(z, a, L) (16.5.17)

where Q is the quadrupole strength in the infinite length limit. Recall Exercise 1.5.9 and
(15.2.66) through (15.2.68). It is given in terms of the quartet parameters by the relation

Q = −8G/a2. (16.5.18)

Here again G is the monopole strength per unit length.
To evaluate (5.16) again make make the change of variables ζ = z − z′ so that (5.16)

becomes

bump(z, a, L) = −
∫ z−L

z

dζ δ(ζ, a) =

∫ z

z−L
dζ δ(ζ, a). (16.5.19)

The approximating delta function (5.9) has as an indefinite integral the result∫
dζ δ(ζ, a) = [(1/2)ζ3 + (3/4)a2ζ]/(ζ2 + a2)3/2 (16.5.20)

so that we may now define an associated approximating signum function by the rule

sgn(z, a) = z[z2 + (3/2)a2]/(z2 + a2)3/2. (16.5.21)

We conclude from (5.19) and (5.20) that, in terms of the approximating signum function
(5.21), there is the relation.

bump(z, a, L) = [sgn(z, a)− sgn(z − L, a)]/2. (16.5.22)

It follows from (5.21) and (5.22) that, like the soft-edge bump functions already discussed,
the soft-edge bump function for a line of monopole quartets satisfies the relations (1.15)
through (1.18). Recall Exercise 1.2. We see from (1.18) and (5.17) that for line of monopole
quartets there is the relation ∫ ∞

−∞
C

[0]
2,s(z)dz = (Q/2)L. (16.5.23)

Figures 5.3 and 5.4 illustrate the behavior of the approximating signum function (5.21)
for two different values of a. Evidently it becomes the true signum function in the limit
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a → 0. Figures 5.5 and 5.6 illustrate the behavior of the corresponding soft-edge bump
function (5.22). It becomes the true bump function in the limit a → 0. These sigum and
bump functions have the asymptotic behaviors

sgn(z, a) = 1− (3/8)(a/z)4 +O(1/z6) as z →∞, (16.5.24)

bump(z, a, L) = (3/4)La4/|z|5 +O(1/|z|6) as |z| → ∞. (16.5.25)

It follows that
C

[0]
2,s(z) = (3/8)QLa4/|z|5 +O(1/|z|6) as |z| → ∞. (16.5.26)

The fall off for the m = 2 on-axis gradient arising from a line of monopole quartets goes as
1/|z|5, just as it does for a single monopole quartet.

-2 -1 1 2
z

-1.0

-0.5

0.5

1.0

sgn

Figure 16.5.3: The approximating signum function (5.21) when a = .2.
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Figure 16.5.4: The approximating signum function (5.21) when a = .02.
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Figure 16.5.5: The soft-edge bump function (5.22) when a = .2.
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Figure 16.5.6: The soft-edge bump function function (5.22) when a = .02.
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16.5.4 Idealized Air-Core Quadrupole

According to Subsection 15.2.5 we expect that a single monopole quartet may have nonzero
on-axis gradients for the values m = 6, 10, · · · as well as the value m = 2. The same is true
for a line of monopole quartets. An idealized air-core quadrupole consists of a thin-shell
winding having a circular cross section of radius ρ = a and length L. The current in the
winding ideally has a cos(2φ) dependence, which results in a “pure” quadrupole field within
the bore. That is, only the m = 2 on-axis gradient is nonzero for the field produced by
such a winding. However, it is not the case that the field is that of a perfect quadrupole.
According to (15.2.65) through (15.2.68) there are additional components in the fringe-field

regions at the ends of the quadrupole where C
[0]
2,s(z) is changing.

If the winding begins at z = 0 and extends to z = L, then the on-axis field gradient for
such a quadrupole can again be described in terms of a soft-edge bump function which we
will again call bump(z, a, L). That is, the on-axis field gradient C

[0]
2,s(z) can again be written

in the form

C
[0]
2,s(z) = (Q/2)bump(z, a, L) (16.5.27)

where Q is again the quadrupole strength in the infinite length limit.
Like the previous examples of soft-edge bump functions, the soft-edge bump function

for an idealized air-core quadrupole can be written in terms of an associated approximating
signum function in the form

bump(z, a, L) = [sgn(z, a)− sgn(z − L, a)]/2. (16.5.28)

It can be shown that for an idealized air-core quadrupole the approximating signum function
sgn(z, a) is given by the relation

sgn(z, a) = [z5 + (5/2)z3a2 + (9/4)za4]/(z2 + a2)5/2

= z[z4 + (5/2)z2a2 + (9/4)a4]/(z2 + a2)5/2. (16.5.29)

Figures 5.7 and 5.8 illustrate the behavior of this approximating signum function for two
different values of a. Evidently the approximating signum function (5.29) becomes the true
signum function in the limit a→ 0.

It follows from (5.28) and (5.29) that, like the previous soft-edge bump functions, the
soft-edge bump function for an idealized air-core quadrupole satisfies the relations (1.15)
through (1.18). Recall Exercise 1.2. Also, the relation (5.23) continues to hold.

Figures 5.9 and 5.10 illustrate the properties (1.15) through (1.17) for a fixed value of L
and two different values of the radius a. Evidently the ideal air-core quadrupole soft-edge
bump function becomes a hard-edge bump function in the limit a→ 0. The radius a plays
the role of a characteristic length that controls the rate of fall off. The fringe-field region
is large if a is large, and vanishes as a goes to zero. From (5.29) and (5.28) we find the
asymptotic behaviors

sgn(z, a) = 1 + (3/8)(a/z)4 +O(1/z6) as z →∞, (16.5.30)

bump(z, a, L) = −(3/4)La4/|z|5 +O(1/|z|6) as |z| → ∞. (16.5.31)
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Figure 16.5.7: The approximating signum function (5.29) when a = .2.
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Figure 16.5.8: The approximating signum function (5.29) when a = .02.
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Consequently C
[0]
2,s(z) falls off for large distances as

C
[0]
2,s(z) = −(3/4)(Q/2)La4/|z|5 +O(1/|z|6) as |z| → ∞. (16.5.32)

We see that the fall off goes as 1/|z|5, which is the same rate as that for a monopole quartet
and a line of monopole quartets. Note, however, that the sign on the right side of (5.31)
is negative just as it is for the right side of (3.31). Therefore, the bump function for an
idealized air-core quadrupole also cannot be modeled by an Enge function profile.
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Figure 16.5.9: The soft-edge bump function given by (5.28) and (5.29) when a = .2 and
L = 1.
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Figure 16.5.10: The soft-edge bump function given by (5.28) and (5.29) when a = .02 and
L = 1.

Our discussion of quadrupole fringe fields so far has treated the iron-free case, and we
have found a 1/|z|5 fall off in all cases. When iron is present, and the coils are buried in iron,
the fall off can in principle be much faster including the possibility of essentially exponential
fall off.
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16.5.5 Rare Earth Cobalt (REC) Quadrupoles

A rare earth cobalt (REC) quadrupole typically has a circular annular cross section with
outer radius r2 and inner/bore radius r1. The space between r1 and r2 is filled with REC
material magnetized and arranged so as to produce a pure quadrupole magnetic field within
the bore. That is, ideally only the m = 2 on-axis gradient is nonzero for the field produced
by such an arrangement of REC material.

It can be shown that the on-axis gradient can again be described in terms of a soft-edge
bump function which we will call bump(z, r1, r2, L) where L is the quadrupole length. That

is, the on-axis field gradient C
[0]
2,s(z) can be written in the form

C
[0]
2,s(z) = (Q/2)bump(z, r1, r2, L) (16.5.33)

where Q is the strength of the REC quadrupole in the infinite length limit. Moreover, as
before, the soft-edge bump function for a REC quadrupole can be written in terms of an
associated approximating signum function in the form

bump(z, r1, r2, L) = [sgn(z, r1, r2)− sgn(z − L, r1, r2)]/2. (16.5.34)

Finally, it can be shown that for the REC quadrupole the approximating signum function
sgn(z, r1, r2) is given by the relation

sgn(z, r1, r2) = z[(r1 + r2)/(r1r2)][(v1v2)/(v1 + v2)][1 + (1/8)v1v2(4 + v2
1 + v1v2 + v2

2)]

(16.5.35)

where v1 and v2 are defined by the relations

v1 = 1/
√

1 + (z/r1)2, (16.5.36)

v2 = 1/
√

1 + (z/r2)2. (16.5.37)

It can be easily checked that the approximating signum function sgn(z, r1, r2) becomes
the true signum function in the limit r1 → 0. See Exercise 5.4. For example, Figures 5.11
and 5.12 illustrate the behavior of this approximating signum function for two different
values of r1 and fixed values of r2 and L.

It follows from (5.34) that the soft-edge bump function for a REC quadrupole also
satisfies relations analogous to (1.15) through (1.18) and (5.23) remains true. Figures 5.13
and 5.14 illustrate the properties (1.15) through (1.17) for fixed values of r2 and L and two
different values of the inner radius r1. Evidently the REC soft-edge bump function becomes
a hard-edge bump function in the limit r1 → 0. The inner radius r1 (as well as r2) plays
the role of a characteristic length that controls the rate of fall off. The fringe-field region is
large if r1 is large, and vanishes as r1 goes to zero. From (5.34) through (5.37) we find the
asymptotic behaviors

sgn(z, r1, r2) = 1− (1/16)r1r2[(r5
1 − r5

2)/(r1 − r2)](1/z)6 +O(1/z8)

= 1− (1/16)r1r2(r4
1 + r3

1r2 + r2
1r

2
2 + r1r

3
2 + r4

2)(1/z6) +O(1/z8)

as z →∞, (16.5.38)
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Figure 16.5.11: The approximating signum function (5.35) when r1 = .2 and r2 = .5.
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Figure 16.5.12: The approximating signum function (5.35) when r1 = .02 and r2 = .5.
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bump(z, r1, r2, L) = (3/16)Lr1r2[(r5
1 − r5

2)/(r1 − r2)](1/|z|7) +O(1/|z|8)

= (3/16)Lr1r2(r4
1 + r3

1r2 + r2
1r

2
2 + r1r

3
2 + r4

2)(1/|z|7) +O(1/|z|8)

as |z| → ∞. (16.5.39)

Consequently C
[0]
2,s(z) falls off for large distances as

C
[0]
2,s(z) = (3/16)(Q/2)Lr1r2[(r5

1 − r5
2)/(r1 − r2)](1/|z|7) +O(1/|z|8)

= (3/16)(Q/2)Lr1r2(r4
1 + r3

1r2 + r2
1r

2
2 + r1r

3
2 + r4

2)(1/|z|7) +O(1/|z|8).

(16.5.40)

We see that the fall off goes as 1/|z|7, which is pleasantly rapid. Remarkably, this rate of
fall off for a REC quadrupole is two orders higher in 1/|z| than that for an idealized air-core
quadrupole. Compare (5.32) and (5.40).

-1.0 -0.5 0.5 1.0 1.5 2.0
z

0.2

0.4

0.6

0.8

1.0

bump

Figure 16.5.13: The soft-edge bump function (5.34) when r1 = .2, r2 = .5, and L = 1.
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Figure 16.5.14: The soft-edge bump function (5.34) when r1 = .02, r2 = .5, and L = 1.
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16.5.6 Overlapping Fringe Fields

16.5.7 Terminating Quadrupole End Fields

Preliminaries

For this subsection, as we did in Subsection 4.3, we will use the global coordinates R and
local coordinates r as given by (4.8) and (4.9). Following previous notation, we assume the
leading quadruple fringe field begins at Z = Zen and the trailing quadrupole fringe field
ends at Z = Zex. In the interval [Zen, Zex] the design orbit and map integrations will be
carried out using the vector potential in the Coulomb gauge of Section 15.5. The entering
transition at Zen from the leading no-field region to the leading fringe-field region, and the
exiting transition at Zex from the trailing fringe-field region to the trailing no-field region,
will be made using the minimum vector potential, namely the Poincaré-Coulomb gauge
vector potential.

If we wish to make the transition from the leading no-field region to the leading fringe-field
region using the minimum vector potential (the vector potential in the Poincaré-Coulomb
gauge), and also wish to carry out the design orbit and map integrations using the vector
potential in the Coulomb gauge of Section 15.5.2, then we need to find at Z = Zen the gauge
transformation that relates the Poincaré-Coulomb gauge and the Coulomb gauge of Section
15.5.2. Similarly, If we wish to make the transition from the trailing fringe-field region to
the trailing no-field region using the minimum vector potential (the vector potential in the
Poincaré-Coulomb gauge), and also wish to carry out the design orbit and map integrations
using the vector potential in the Coulomb gauge of Section 15.5.2, then we need to find
at Z = Zex the gauge transformation that relates the Poincaré-Coulomb gauge and the
Coulomb gauge of Section 15.5.2. For simplicity, we will continue to assume that we are
dealing with the case of a normal quadrupole; namely α = s.

For both transitions there is a relation of the form

PA2,s(x, y, z;Zβ) = Â2,s(x, y, Zβ + z) +∇χ2,s (16.5.41)

where β = en or β = ex. See (15.7.5). There is also the relation

χ2,s(x, y, z;Zβ) = cos(2φ)
∞∑
k=0

(−1)k
2!

22kk!(k + 2)!
D

[2k]
2,s (z;Zβ)ρ2k+2

= ρ2 cos(2φ)[D
[0]
2,s(z;Zβ)− (1/6)ρ2D

[2]
2,s(z;Zβ) + (∗)ρ4D

[4]
2,s(z;Zβ) + · · · ]

= (x2 − y2)[D
[0]
2,s(z;Zβ)− (1/6)ρ2D

[2]
2,s(z;Zβ) + (∗)ρ4D

[4]
2,s(z;Zβ) + · · · ].

(16.5.42)

See (15.7.20). Moreover we have found, see (15.7.60), the relation

D
[0]
2,s(z;Zβ) = {[1/(2 + 1)]C

[0]
2,s(Z

β)}z + {[1/(2 + 2)]C
[1]
2.s(Z

β)}z2

+ {[1/(2 + 3)](1/2!)C
[2]
2,s(Z

β)}z3 + {[1/(2 + 4)](1/3!)C
[3]
2,s(Z

β)}z4 + · · ·

= (1/3)C
[0]
2,s(Z

β)z + (1/4)C
[1]
2,s(Z

β)z2 + (1/10)C
[2]
2,s(Z

β)z3 + (1/36)C
[3]
2,s(Z

β)z4 + · · · ,
(16.5.43)
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from which it follows that
D

[0]
2,s(0;Zβ) = 0, (16.5.44)

D
[2]
2,s(0;Zβ) = (1/2)C

[1]
2,s(Z

β), (16.5.45)

D
[4]
2,s(0;Zβ) = (2/3)C

[3]
2,s(Z

β). (16.5.46)

Inserting these results in (5.42) gives the expansion

χ2,s(x, y, 0;Zβ) = (x2 − y2)[(∗)ρ2C
[1]
2,s(Z

β) + (∗)ρ4C
[3]
2,s(Z

β) + · · · ]

= (x4 − y4)[(∗)C [1]
2,s(Z

β) + (∗)ρ2C
[3]
2,s(Z

β) + · · · ]. (16.5.47)

Finally there is the relation (4.12), which we repeat below:

Aa −Ab = ∇χ, (16.5.48)

Entering a Leading Fringe-Field Region

Compare (5.48) with the relation (5.41) evaluated for the case β = en and rewritten in the
form

Â2,s(x, y, Zen + z) − PA2,s(x, y, z;Zen) = −∇χ2,s. (16.5.49)

We conclude that if we wish to identify Â2,s with Aa, and identify PA2,s with Ab, then we
should require the relation

χ = −χ2,s. (16.5.50)

Next define the function χen by the rule

χen(x, y;Zen) = χ(x, y, 0; ;Zen). (16.5.51)

With this definition we see from (5.47), (5.50), and (5.51) that there is the result

χen(x, y;Zen) = −(x4 − y4)[(∗)C [1]
2,s(Z

en) + (∗)ρ2C
[3]
2,s(Z

en) + · · · ]. (16.5.52)

We are now ready to invoke the results (1.77) through (1.79). So doing, we find that
the canonical coordinates (x, y, t; pcan

x , pcan
y , pcan

t ) after and before Zen are connected by the
symplectic map T en,

xa(Z) = T enxb(Z) with Z = Zen,

ya(Z) = T enyb(Z) with Z = Zen,

ta(Z) = T entb(Z) with Z = Zen; (16.5.53)

pcana
x (Z) = T enpcanb

x (Z) with Z = Zen,

pcana
y (Z) = T enpcanb

y (Z) with Z = Zen,

pcana
t (Z) = T enpcanb

t (Z) with Z = Zen, (16.5.54)

where
T en = exp(q : χen :). (16.5.55)
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Exiting a Trailing Fringe-Field Region

Compare (5.48) with the relation (5.41) evaluated for the case β = ex and rewritten in the
form

PA2,s(x, y, z)− Â2,s(x, y, Zex + z) = ∇χ2,s. (16.5.56)

We conclude that if we wish to identify PA2,s with Aa, and identify Â2,s with Ab, then we
should now require the relation

χ = χ2,s. (16.5.57)

Next define the function χex by the rule

χex(x, y) = χ(x, y, 0). (16.5.58)

With this definition we see from (5.47), (5.57), and (5.58) that there is the result

χex(x, y) = (x4 − y4)[(∗)C [1]
2,s(Z

ex) + (∗)ρ2C
[3]
2,s(Z

ex) + · · · ]. (16.5.59)

We are again ready to invoke the results (1.77) through (1.79). So doing, we find that
the canonical coordinates (x, y, t; pcan

x , pcan
y , pcan

t ) after and before Zex are connected by the
symplectic map T ex,

xa(Z) = T exxb(Z) with Z = Zex,

ya(Z) = T exyb(Z) with Z = Zex,

ta(Z) = T extb(Z) with Z = Zex; (16.5.60)

pcana
x (Z) = T expcanb

x (Z) with Z = Zex,

pcana
y (Z) = T expcanb

y (Z) with Z = Zex,

pcana
t (Z) = T expcanb

t (Z) with Z = Zex, (16.5.61)

where
T ex = exp(q : χex :). (16.5.62)

Behavior of C
[1]
2,s(Z)

According to (5.52) and (5.59) both χen and χex involve C
[1]
2,s(Z) and its derivatives. Let

us explore the behavior of C
[1]
2,s(Z) for the cases of idealized air-core quadrupoles and REC

quadrupoles, which are described in Subsections 5.4 and 5.6, respectively. In both cases
C

[0]
2,s(Z) is proportional to an associated bump function. See (5.27) and (5.33). Therefore,

in both cases we are interested in the Z dependence of bump′, the derivative of the bump
function. Figures 5.15 and 5.16 display the derivative of the soft-edge bump functions shown
in Figures 5.9 and 5.10 for two idealized air-core quadrupoles; and Figures 5.17 and 5.18
display the derivative of the soft-edge bump functions shown in Figures 5.13 and 5.14 for
two REC quadrupoles.

Evidently bump′, the derivative of the bump function, falls of quite rapidly beyond the
quadrupole body. For example we expect, according to (5.31), that in the case of an idealized
air-core quadrupole the function bump′ will fall off like 1/|z|6 as z → −∞. And, according
to (5.39), we expect a fall off like 1/|z|8 for the case of a REC quadrupole.
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Figure 16.5.15: (Place Holder) Derivative of the soft-edge bump function given by (5.28)
and (5.29) when a = .2 and L = 1, and shown in Figure 5.9.
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Figure 16.5.16: (Place Holder) Derivative of the soft-edge bump function given by (5.28)
and (5.29) when a = .02 and L = 1, and shown in Figure 5.10.
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Figure 16.5.17: (Place Holder) Derivative of the soft-edge bump function (5.34) when r1 = .2,
r2 = .5, and L = 1, and shown in Figure 5.13.
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Figure 16.5.18: (Place Holder) Derivative of the soft-edge bump function (5.34) when r1 =
.02, r2 = .5, and L = 1, and shown in Figure 5.14.

Net Total Map

Let Men→ex denote the map obtained by integrating for a quadrupole the design orbit and
map equations from Z = Zen to Z = Zex using the Coulomb gauge vector potential of
Section 15.5. Then the full net map M for the quadrupole, including end-field termination
effects, is given by the product

M = T enMen→exT ex. (16.5.63)

Discontinuities in Mechanical Momenta Associated with Termination
Approximation

As described in Subsection 1.2, there are discontinuities in the mechanical momenta associ-
ated with the use of a symplectic termination procedure. Recall (1.30), (1.31), (1.41), and
(1.42). Here we will study for quadrupoles the consequences of terminating end fields using
the minimum (Poincaré-Coulomb gauge) vector potential. To do so we will need the m = 2
and α = s Poincaré-Coulomb gauge vector potential about the expansion point (0, 0, Z0).

For fun let us compute PA2,s(x, y, z) from scratch starting with ψ2,s(x, y, Z0 + z). From
(5.1) we have the result

ψ2,s(x, y, Z0 + z) = 2xy[C
[0]
2,s(Z0 + z)− (1/24)(x2 + y2)C

[2]
2,s(Z0 + z) + · · · ]. (16.5.64)

Let B(r;Z0) be the associated magnet field and employ the notation

B(r;Z0) = B(x, y, z;Z0) = B(x, y, Z0 + z). (16.5.65)

We then have the relations

Bx(x, y, z;Z0) = ∂xψ2,s = 2yC
[0]
2,s(Z0 + z)− (1/12)(3x2y + y3)C

[2]
2,s(Z0 + z) + · · · , (16.5.66)

By(x, y, z;Z0) = ∂yψ2,s = 2xC
[0]
2,s(Z0 + z)− (1/12)(x3 + 3xy2)C

[2]
2,s(Z0 + z) + · · · , (16.5.67)
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Bz(x, y, z;Z0) = ∂zψ2,s = 2xy[C
[1]
2,s(Z0 + z)− (1/24)(x2 + y2)C

[3]
2,s(Z0 + z) + · · · ]. (16.5.68)

Next expand B(x, y, Z0 + z) in homogeneous polynomials by writing,

B(r;Z0) = B1(r;Z0) +B2(r;Z0) +B3(r;Z0) + · · · . (16.5.69)

From (5.65) through (5.67) we see that there are the relations

B1(r;Z0) = 2C
[0]
2,s(Z0)(yex + xey), (16.5.70)

B2(r;Z0) = 2C
[1]
2,s(Z0)(yzex + xzey + xyez). (16.5.71)

Now we may use (15.2.111) to find the results

A2(r;Z0) = −(1/3)[r ×B1(r;Z0)]

= (−2/3)C
[0]
2,s(Z0)[−zxex + zyey + (x2 − y2)ez], (16.5.72)

A3(r;Z0) = −(1/4)[r ×B2(r;Z0)]

= (−1/2)C
[1]
2,s(Z0)[(xy2 − xz2)ex + (yz2 − yx2)ey + (zx2 − zy2)ez].

(16.5.73)

[Note that, in view of the relation(5.5), (5.72) agrees with (15.2.165), as it should.] Finally,
we write

PA2,s(r;Z0) = A2(r;Z0) +A3(r;Z0) + · · · . (16.5.74)

Let us find what this knowledge of PA2,s entails for discontinuities in mechanical momenta.
Observe that, according to (5.72) and (5.73), there are the results

A2(x, y, 0;Z0) = 0, (16.5.75)

A3(x, y, 0;Z0) = (−1/2)C
[1]
2,s(Z0)[(xy2)ex + (−yx2)ey], (16.5.76)

so that

PA2,s(x, y, 0;Z0) = (−1/2)C
[1]
2,s(Z0)[(xy2)ex + (−yx2)ey] + · · · . (16.5.77)

We conclude from * that upon entry there are the discontinuity results

∆pmech
x = q[PA2,s

x (x, y, 0;Zen)]

= q{[−(1/2)xy2]C
[1]
2,s(Z

en) + · · · }, (16.5.78)

∆pmech
y = q[PA2,s

y (x, y, 0;Zen)]

= q{[(1/2)x2y]C
[1]
2,s(Z

en) + · · · }. (16.5.79)

Similarly, upon exit, we find from * the discontinuity results

∆pmech
x = q[PA2,s

x (x, y, 0;Zex)]

= q{[−(1/2)xy2]C
[1]
2,s(Z

ex) + · · · }, (16.5.80)



1474
16. REALISTIC TRANSFER MAPS FOR STRAIGHT IRON-FREE BEAM-LINE

ELEMENTS

∆pmech
y = q[PA2,s

y (x, y, 0;Zex)]

= q{[(1/2)x2y]C
[1]
2,s(Z

ex) + · · · }. (16.5.81)

Recall the relations (5.5), (5.27), and (5.33). We see that in all cases the discontinuities
are proportional to Q′(0, 0, Z), or, equivalently bump′, and its derivatives at Z = Zen or
Z = Zex. We have already seen examples, in Figures 15 through 18, of how these functions
behave (fall off) in the cases of idealized air-core and REC quadrupoles. Moreover, the
discontinuities also vanish as the spatial deviations from the z axis (the design orbit) become
small.

Exercises

16.5.1. Verify the relations (7.32) through (7.39).

16.5.2. Evidently the second-order portion of ψe(rd;x0, z0) as given in (7.61) is composed
of the monomials ξη and ηζ. Show that these are the only monomials allowed at this order
based on symmetry considerations. Verify that each monomial is an harmonic polynomial.
Indeed, making the usual correspondence between ξ, η, ζ and x, y, z show, following the
harmonic polynomial labeling scheme (U.2.9), that there are the relations

ξη = [1/(4i)][
√

32π/15][H2
2 (r)−H−2

2 (r)], (16.5.82)

ηζ = [−1/(2i)][
√

8π/15][H1
2 (r) +H−1

2 (r)]. (16.5.83)

Would these relations have been simpler had the polar axis, used to set up spherical polar
coordinates, been taken to be the y axis instead of the z axis?

16.5.3. Verify (6.13) through (6.16.

16.5.4. Verify (6.19) through (6.24).

16.5.5. Verify that sgn(z, r) as given by (6.24) becomes the true signum function in the
limit r → 0. Verify the relations (6.27) through (6.29).

16.5.6. The purpose of this exercise is to verify that the approximating signum function
sgn(z, r1, r2) becomes the true signum function in the limit that r1 goes to zero,

lim
r1→0

sgn(z, r1, r2) = sgn(z). (16.5.84)

Along the way we will also verify some other expected properties of sgn(z, r1, r2).

16.5.7. Verify (6.41) through (6.43).
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16.6 Sextupoles and Beyond

A sextupole is a beam-line element whose field is described by a cylindrical harmonic expan-
sion that contains primarily an m = 3 term. The simplest way to produce a sextupole field,
as the name again suggests, is to properly locate and assign strengths to six monopoles.
In the case of a sextupole the sextet of monopoles can be taken to be three doublets ro-
tated successively by 60 degrees. We already know from the work of Section 15.8.2 that a
monopole doublet produces an m = 3 term. See (15.8.33). And (15.8.34) evaluated with
m = 3 describes how this term falls off for large |z|. We conclude that the on-axis gradient
for a monopole sextet falls off as 1/|z|7 for large |z|. In analogy with the case of dipoles
and quadrupoles, we expect that the on-axis gradients for a line of monopole sextets and an
idealized air-core sextupole will also fall off as 1/|z|7 for large |z|.

Moreover, the general pattern is now clear. We expect that the on-axis gradient for an
idealized air-core 2m-pole magnet will fall off for large |z| as 1/|z|2m+1.

16.7 Lithium Lenses
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Chapter 17

Surface Methods for General Straight
Beam-Line Elements

17.1 Introduction

Section 15.1 described the need for Taylor expansions of the vector potential A in order
to determine the transfer map M. As illustrated in Chapter 16, there are cases in which
these Taylor expansions can be found analytically. However, for most cases, all that we can
hope to have are magnetic field values determined numerically at points on some regular
3-dimensional grid with the aid of some electromagnetic code.1 This places us in what might
appear to be a hopeless position: it is well known that it is generally difficult to extract
reliable information about derivatives from numerical data on a grid. And we want to know
about high derivatives! Hildebrand, author of Introduction to Numerical Analysis, writes

Once an interpolating polynomial y(x) has been determined so that it satisfacto-
rily approximates a given function f(x) over a certain interval I, it may be hoped
that the results of differentiating y(x) · · · will also satisfactorily approximate the
corresponding derivative · · · of f(x). However · · · we may anticipate the fact
that, even though the deviation between y(x) and f(x) will be small throughout
the interval, still the slopes of the two curves representing them may differ quite
appreciably. Further, it is seen that roundoff errors (or errors of observation) of
alternating sign in consecutive ordinates could affect the calculation of the deriva-
tive quite strongly if those ordinates were fairly closely spaced · · · . In particular,
numerical differentiation should be avoided whenever possible, particularly when
the data are empirical and subject to appreciable errors of observation.

Remarkably, we will find that this problem can be overcome to some satisfactory aberration
order with the use of surface data.2 We will fit field data onto some surface, and then use

1Alternatively, see Section 17.2, we may have numerically-determined values of the magnetic scalar
potential.

2The determination of the solution of Laplace’s equation in terms of surface data is called the Dirichlet
(1805-1859) problem. Dirichlet was the thesis advisor of, among others, Kronecker and Lipschitz. It is also
interesting to note that he married Rebecka Mendelssohn, one of the sisters of Felix Mendelssohn.
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this surface data to compute interior fields. Specifically, and in summary, we will find that
surface methods have the following virtues:

• Only functions with known (orthonormal) completeness properties and known (opti-
mal) convergence properties are employed.

• The Maxwell equations are exactly satisfied.

• The results are manifestly analytic in all variables.

• The error is globally controlled. Fields that satisfy the Laplace equation take their
extrema on boundaries. Both the exact and computed fields satisfy the Laplace equa-
tion. Therefore their difference, the error field, also satisfies the Laplace equation, and
must take its extrema on the boundary. But this is precisely where a controlled fit is
made. Thus, the error on the boundary is controlled, and the interior error must be
even smaller.

• Because fields take their extrema on boundaries, interior values inferred from surface
data are relatively insensitive to errors/noise in the surface data. Put another way,
the inverse Laplacian (Laplace Green function), which relates interior data to surface
data, is smoothing. It is this smoothing that we seek to exploit. We will find that
the sensitivity to noise in the data decreases rapidly (as some high inverse power of
distance) with increasing distance from the surface, and this property improves the
accuracy of the high-order interior derivatives needed to compute high-order transfer
maps.

In this chapter, devoted to the case of straight beam-line elements, we will develop
methods for computing high-order transfer maps based on data provided on a 3-dimensional
grid. See Figure 1.1. These methods make it possible to compute realistic transfer maps
for real (straight) beam-line elements including all fringe-field and higher-order multipole
effects. In Chapter 15 we learned how to characterize magnetic fields in terms of cylindrical
harmonics described by on-axis gradients, and also how to determine vector potentials in
terms of on-axis gradients. In this chapter we will see how on-axis gradients can in turn be
computed from numerical data provided on a 3-dimensional grid. Chapters 18 through 21
will elaborate on these methods and apply them to a variety of straight beam-line elements.
In Chapters 22 through 25 we will consider realistic transfer maps for curved beam-line
elements.



17.1. INTRODUCTION 1481

Figure 17.1.1: Calculation of realistic design trajectory zd and its associated realistic transfer
mapM based on data provided on a 3-dimensional grid for a real beam-line element. Only
a few points on the 3-dimensional grid are shown. In this illustration, data from the 3-
dimensional grid is interpolated onto the surface of a cylinder with circular cross section,
and this surface data is then processed to compute the design trajectory and the transfer
map. The use of other surfaces is also possible, and may offer various advantages.
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At this point one might wonder about a seemingly simpler approach: Suppose some fine
grid of possible initial conditions is laid out in phase space. Next suppose the final condi-
tions associated with these initial conditions are computed numerically, say by integrating
Newton’s equations with a Lorentz force, using volume magnetic field data interpolated off
a three-dimensional grid. Based on the collection of initial and final conditions, make a
polynomial expansion of the final conditions in terms of the initial conditions. Announce
that these truncated Taylor series, generally six in number assuming a six-dimensional phase
space, constitute a (Taylor) transfer map. What could be wrong with that?

There are three reasons why such an approach is problematic:

1. After some reflection, we see that this procedure essentially amounts to high-order
numerical differentiation, and therefore Hildebrand’s warning still holds. The problem
of error associated with high-order numerical differentiation remains.

2. If Newton’s equations are integrated, the symplectic symmetry inherent in a Hamilto-
nian formulation cannot be exploited.

3. Again assuming Newton’s equations are integrated, and even in the absence of the error
associated with high-order numerical differentiation, the result will not be symplectic
if there is a residual magnetic field at the beginning or end of the integration region.
See Exercise 6.4.11. Therefore the result may not be suitable for long-term tracking.
Perhaps this possible lack of symplecticity could in principle be handled by factorizing
the resulting Taylor map into symplectic and nonsymplectic parts, and then using only
the symplectic part for any subsequent calculations. See Section 29.1. As a bonus,
examination of the size of the nonsymplectic part might give some indication of the
error involved in the calculation.

There are also some other approaches that have sometimes been attempted to obtain
transfer maps based on 3-d field data on a grid. They are described in Section 17.6. They too
involve high-order numerical differentiation, and therefore are unlikely to succeed beyond
modest order, at best.

Finally, we mention that there are two other possible ways of determining on-axis gra-
dients that warrant exploration. The first is to infer on-axis gradients from experimental
spinning coil data. The second, applicable in the case of air-core magnets, is to compute
on-axis gradients based on data describing coil winding geometry and currents flowing in
the windings. See Appendix K.

Exercises

17.1.1. This exercise explores some aspects of the Laplace/Poisson equation. We will con-
sider solutions ψ(x, y, z) about some point which, without loss of generality, may be taken
to be the origin r = 0.

Suppose that ψ is analytic in the Cartesian components of r, has at the origin the value

ψ(0) = ψ0, (17.1.1)
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and is harmonic is some volume V surrounding the origin,

∇2ψ(r) = 0. (17.1.2)

Introduce spherical coordinates in the usual way and let Q`,m,c(θ, φ) and Q`,m,s(θ, φ) denote
the functions

Q`,m,c(θ, φ) = <[Y`,m(θ, φ)] = O`,m(θ) cos(mφ), (17.1.3)

Q`,m,s(θ, φ) = =[Y`,m(θ, φ)] = O`,m(θ) sin(mφ). (17.1.4)

Here we impose the requirement m ≥ 0 and make the definitions

Q`,0,s(θ, φ) = 0, (17.1.5)

O`,m(θ) = (−1)m
√

[(2`+ 1)(`−m)!]/[(4π)(`+m)!]Pm
` (cos θ). (17.1.6)

Expand ψ(x, y, z) in a Taylor series about the origin and group terms of like degree so as
to yield an expansion in homogeneous polynomials. Show that rewriting this expansion in
spherical coordinates gives the result

ψ = ψ0 +
∞∑
`=1

∑̀
m=0

∑
α=c,s

d`,m,α[r`Q`,m,α(θ, φ)]. (17.1.7)

Here the quantities d`,m,α are arbitrary coefficients and we have enforced the conditions (1.1)
and (1.2).

Next, integrate ψ over the surface of a sphere of radius R centered on the origin. Show,
recalling the orthogonality properties of the Y`,m, that using the expansion (1.7) yields the
result ∫

S

ψdS = 4πR2ψ0. (17.1.8)

Consequently, there is the relation

[1/(4πR2]

∫
S

ψdS = ψ0. (17.1.9)

The average of ψ over the surface of a sphere equals it value at the center of the sphere.
It follows that if ψ > ψ0 at some point on the surface of the sphere, then it must be the
case that ψ < ψ0 at some other point on the surface of the sphere, and vice versa, in order
for (1.9) to hold. Finally, an analogous result must be true for any expansion point within
V . Consequently, ψ has no local minima or maxima, and must take its extrema on the
boundary of V .

Suppose we replace the harmonic requirement (1.2) by the condition

∇2ψ|r=0 = ρ0. (17.1.10)

What happens now? In this case expand ψ(x, y, z) in a Taylor series about the origin
through terms of degree 2 and group terms of like degree so as to again yield an expansion



1484 17. SURFACE METHODS FOR GENERAL STRAIGHT BEAM-LINE ELEMENTS

in homogeneous polynomials. Show that rewriting this expansion in spherical coordinates
gives, through terms of degree 2, the result

ψ = ψ0 +
1∑

m=0

∑
α=c,s

d1,m,α[rQ1,m,α(θ, φ)] + (ρ0/6)r2 +
2∑

m=0

∑
α=c,s

d2,m,α[r2Q2,m,α(θ, φ)] + · · · .

(17.1.11)
Here the quantities d`,m,α are again arbitrary coefficients and we have enforced the conditions
(1.1) and (1.10).

Again integrate ψ over the surface of a sphere of radius R centered on the origin. Show
that using the expansion (1.11) yields the result∫

S

ψdS = 4πR2ψ0 + 4π(ρ0/6)R4 +O(R6). (17.1.12)

Consequently, there is the relation

[1/(4πR2]

∫
S

ψdS = ψ0 + (ρ0/6)R2 +O(R4). (17.1.13)

The average of ψ over the surface of a small sphere equals it value at the center of the sphere,
plus a correction of order R2 that involves ρ0, plus corrections of order R4. In lowest order,
the difference between the spherical average of ψ and its central value ψ0 involves ρ0. For
this reason, the quantity ρ0 is called the concentration of ψ at r = 0.

17.2 Use of Potential Data on Surface of Circular

Cylinder

We will begin our discussion with the use of the surface of a cylinder with circular cross
section, and the use of scalar potential data on this surface. This is conceptually the simplest
case, and will give us opportunity to develop various needed concepts. Moreover, some elec-
tromagnetic codes calculate directly the scalar potential on some regular three-dimensional
grid, and this data can be interpolated onto the surface of a cylinder. Therefore, this method
can also be of practical use.

Consider a circular cylinder of radius R, centered on the z-axis, fitting within the bore of
the beam-line element in question, and extending beyond the fringe-field regions at the ends
of the beam-line element. The beam-line element could be any straight element such as a
solenoid, quadrupole, sextupole, octupole, etc., or it could be wiggler with no net bending.
See Figure 2.1, which illustrates the case of a wiggler. Write

ψ(x, y, z) = ψ(ρ, φ, z), (17.2.1)

and suppose ψ(R, φ, z) is known. Here we have used the coordinates (15.2.12) through
(15.2.16). In general, determination of ψ(R, φ, z) will require interpolation onto a circle of
data on a square (or rectangular) grid in x and y for each z value on the grid. See the second
frame of Figure 1.1 which depicts a square or rectangular grid in the x,y plane for a fixed z
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Figure 17.2.1: A circular cylinder of radius R, centered on the z-axis, fitting within the bore
of a beam-line element, in this case a wiggler, and extending beyond the fringe-field regions
at the ends of the beam-line element.
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value on the 3-dimensional grid. Values at data points near the circle are to be interpolated
onto the circle.

From this given function ψ(R, φ, z), obtained by interpolation, form/define the function
˜̃ψ(R,m′, k′) by the rule

˜̃ψ(R,m′, k′) = [1/(2π)]2
∫ ∞
−∞

dz exp(−ik′z)

∫ 2π

0

dφ exp(−im′φ)ψ(R, φ, z). (17.2.2)

Here we pause a moment to describe our nomenclature and notation: We will refer to the
operation of Fourier transforming over the line [−∞,∞] as performing a linear Fourier
transform, and the result of this transform will be labeled by a continuous variable usually
called k. We will refer to the operation of Fourier transforming over the angular domain
[0, 2π] as performing an angular Fourier transform.3 Moreover, the result of performing an
angular Fourier transform will be called a Fourier coefficient, and these coefficients will be
labeled by integers such as m and n. Finally, we have used the symbol ˜ to denote a linear
or angular Fourier transform, and the symbol ˜̃ to denote that both have been performed.

To continue, we know from (15.3.7) that ψ(R, φ, z) has the representation

ψ(R, φ, z) =
∞∑

m=−∞

∫ ∞
−∞

dkGm(k) exp(ikz) exp(imφ)Im(kR). (17.2.3)

Employing this representation in (2.2) and performing the indicated integrations give the
result

˜̃ψ(R,m′, k′) = Gm′(k
′)Im′(k

′R), (17.2.4)

from which we conclude that

Gm(k) = ˜̃ψ(R,m, k)/Im(kR). (17.2.5)

This relation for Gm(k) can now be employed in (15.3.15) to give the result

C [n]
m (z) = in(1/2)|m|(1/|m|!)

∫ ∞
−∞

dk[kn+|m|/Im(kR)] ˜̃ψ(R,m, k) exp(ikz). (17.2.6)

We have found an expression for the generalized on-axis gradients in terms of potential data
on the surface of the cylinder. Equation (2.6) may be viewed as the convolution of Fourier

surface data ˜̃ψ(R,m, k) with the inverse Laplacian kernel [kn+|m|/Im(kR)]. Moreover, this
kernel has a very desirable property. The Bessel functions Im(kR) have the asymptotic
behavior

|Im(kR)| ∼ exp(|k|R)/
√

2π|k|R as |k| → ∞. (17.2.7)

3Joseph Fourier (1768-1830) was a student of Lagrange. Fourier was the first to make extensive use of
the trigonometric series that bear his name, and to make the claim that they could be used to represent
arbitrary functions. This claim his elders and contemporaries found hard to believe. In reviewing one of
his fundamental papers on the theory of heat that employed these series the referees Lagrange, Laplace,
Legendre, and others complained that · · · the manner in which the author arrives at these equations is not
exempt of difficulties and that his analysis to integrate them still leaves something to be desired on the score
of generality and even rigor. As a result, the paper was not published.



17.3. USE OF FIELD DATA ON SURFACE OF CIRCULAR CYLINDER 1487

Since Im(kR) appears in the denominator of (2.6), we see that the integrand is exponentially
damped for large |k|. Now suppose there is uncorrelated point-to-point noise in the surface

data. Such noise will result in anomalously large |k| contributions to the ˜̃ψ(R,m, k). But,
because of the exponential damping arising from Im(kR) in the denominator, the effect of
this noise is effectively filtered out. Moreover, this filtering action is improved by making R
as large as possible. This filtering, or smoothing, feature will be discussed in more detail in
Chapter 18.

17.3 Use of Field Data on Surface of Circular

Cylinder

All three-dimensional electromagnetic codes calculate all three components of the field on
some three-dimensional grid. Also, such data is in principle available from actual field
measurements. In this section we will describe how to compute the on-axis gradients from
field data.

Again we will employ a cylinder of radius R centered on the z axis. Suppose the magnetic
field B(x, y, z) is interpolated onto the surface of the cylinder using values at the grid points
near the surface. Next, from the values on the surface, compute Bρ(x, y, z) = Bρ(R, φ, z),
the component of B(x, y, z) normal to the surface. We will now see how to compute the
generalized gradients from a knowledge of Bρ(x, y, z) = Bρ(R, φ, z).

From this known function form the functions B̃ρ(R,m
′, z) and ˜̃Bρ(R,m

′, k′) by the rules

B̃ρ(R,m
′, z) = [1/(2π)]

∫ 2π

0

dφ exp(−im′φ)Bρ(R, φ, z), (17.3.1)

˜̃Bρ(R,m
′, k′) = [1/(2π)]

∫ ∞
−∞

dz exp(−ik′z)B̃ρ(R,m
′, z). (17.3.2)

Note that we may also directly write that

˜̃Bρ(R,m
′, k′) = [1/(2π)]2

∫ ∞
−∞

dz exp(−ik′z)

∫ 2π

0

dφ exp(−im′φ)Bρ(R, φ, z), (17.3.3)

and the indicated integrations may be performed in either order. We also know that

Bρ(R, φ, z) = [∂ρψ(ρ, φ, z)]|ρ=R, (17.3.4)

from which it follows, using the representation (15.3.7), that

Bρ(R, φ, z) =
∞∑

m=−∞

∫ ∞
−∞

dkGm(k) exp(ikz) exp(imφ)kI ′m(kR). (17.3.5)

Now substitute (3.5) into the right side of (3.3) and perform the indicated integrations to
get the result

˜̃Bρ(R,m
′, k′) = Gm′(k

′)k′I ′m′(k
′R), (17.3.6)
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from which it follows that

Gm(k) = ˜̃Bρ(R,m, k)/[kI ′m(kR)]. (17.3.7)

This relation for Gm(k) can be employed in (15.3.15) to give the result

C [n]
m (z) = in(1/2)|m|(1/|m|!)

∫ ∞
−∞

dk[kn+|m|−1/I ′m(kR)] ˜̃Bρ(R,m, k) exp(ikz). (17.3.8)

We have found an expression for the generalized on-axis gradients in terms of field data
(normal component) on the surface of the cylinder. Moreover, this expression again has
the smoothing property since the denominator functions I ′m(kR) also have the asymptotic
behavior (2.7) and therefore also provide exponential damping,

|I ′m(kR)| ∼ exp(|k|R)/
√

2π|k|R as |k| → ∞. (17.3.9)

For future use it is also convenient to have explicit formulas for the C
[n]
m,α(z). Motivated

by (15.3.28) and (15.3.31), define quantities ˜̃Bα
ρ (R,m′, k′) and B̃α

ρ (R,m′, z) with m′ ≥ 1 by
the rules

˜̃Bs
ρ(R,m

′, k′) = i[ ˜̃Bρ(R,m
′, k′)− ˜̃Bρ(R,−m′, k′)], (17.3.10)

˜̃Bc
ρ(R,m

′, k′) = [ ˜̃Bρ(R,m
′, k′) + ˜̃Bρ(R,−m′, k′)], (17.3.11)

B̃s
ρ(R,m

′, z) = i[B̃ρ(R,m
′, z)− B̃ρ(R,−m′, z)], (17.3.12)

B̃c
ρ(R,m

′, z) = [B̃ρ(R,m
′, z) + B̃ρ(R,−m′, z)]. (17.3.13)

Then we have the results

˜̃Bα
ρ (R,m′, k′) = [1/(2π)]

∫ ∞
−∞

dz exp(−ik′z)B̃α
ρ (R,m′, z) (17.3.14)

with

B̃s
ρ(R,m

′, z) = (1/π)

∫ 2π

0

dφ sin(m′φ)Bρ(R, φ, z), (17.3.15)

B̃c
ρ(R,m

′, z) = (1/π)

∫ 2π

0

dφ cos(m′φ)Bρ(R, φ, z). (17.3.16)

And, in accord with (15.3.35) and (15.3.36), for m′ = 0 make the definitions

˜̃Bs
ρ(R,m

′ = 0, k′) = 0, (17.3.17)

˜̃Bc
ρ(R,m

′ = 0, k′) = ˜̃Bρ(R,m
′ = 0, k′), (17.3.18)

B̃s
ρ(R,m

′ = 0, z) = 0, (17.3.19)

B̃c
ρ(R,m

′ = 0, z) = B̃ρ(R,m
′ = 0, z). (17.3.20)

Then we have the further results

˜̃Bc
ρ(R,m

′ = 0, k′) = [1/(2π)]

∫ ∞
−∞

dz exp(−ik′z)B̃c
ρ(R,m

′ = 0, z), (17.3.21)
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B̃c
ρ(R,m

′ = 0, z) = B̃ρ(R,m
′ = 0, z) = [1/(2π)]

∫ 2π

0

dφBρ(R, φ, z). (17.3.22)

Note that the quantities B̃α
ρ (R,m′, z) are real. Correspondingly, we see form (3.14) that the

real part of ˜̃Bα
ρ (R,m′, k′) is even in k and the imaginary part is odd in k.

With these definitions in hand, we are ready to state the final results:

C [n]
m,α(z) = in(1/2)m(1/m!)

∫ ∞
−∞

dk[kn+m−1/I ′m(kR)] ˜̃Bα
ρ (R,m, k) exp(ikz) (17.3.23)

for m > 0, and

C
[n]
m=0,s(z) = 0, (17.3.24)

C
[n]
m=0,c(z) = C

[n]
0 (z) = in

∫ ∞
−∞

dk[kn−1/I ′0(kR)] ˜̃Bc
ρ(R,m = 0, k) exp(ikz). (17.3.25)

We close this section with the remark that if one wishes to extract the C
[n]
0 (z) (monopole)

on-axis gradients from field data, it may be preferable to use the longitudinal component
Bz(R, φ, z) on the surface of the cylinder rather than the normal component Bρ(R, φ, z).

4

See Section 19.2.

17.4 Use of Field Data on Surface of Elliptical

Cylinder

17.4.1 Background

In the previous two sections we employed a cylinder with circular cross section, and observed
mathematically that it is desirable for error insensitivity to use a cylinder with a large
radius R. Physically, this is because we want the data points to be as far from the axis as
possible since the effect of inhomogeneities (noise) in the data decays with distance from
the inhomogeneity. Evidently the use of a large circular cylinder is optimal for beam-line
elements with a circular bore. However, for dipoles or wigglers with small gaps and wide pole
faces, use of a cylinder with elliptical cross section should give improved error insensitivity.
See Figure 4.1. In this section we will set up the machinery required for the use of elliptical
cylinders, and apply it to the calculation of on-axis gradients based on field data.

We will see that the use of elliptic cylinders requires a knowledge of Mathieu functions.
Since these functions may well be relatively unfamiliar to the reader, considerable effort will
be devoted to describing their properties.

For brevity, we will omit treatment of the related case where potential data is used on
the surface of the elliptic cylinder. The reader should be able to solve this simpler problem
based on the work of the current section and what was done in Section 14.2.

4Note that in any case we only need the C
[n]
0 (z) with n ≥ 1 because they are what is required to compute

the vector potential. See (15.5.32) through (15.5.34). Thus, (3.6) is well defined for all values of m and n of
physical interest.
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Figure 17.4.1: An elliptical cylinder, centered on the z-axis, fitting within the bore of a
wiggler, and extending beyond the fringe-field regions at the ends of the wiggler.
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17.4.2 Elliptic Coordinates

Elliptic coordinates in the x, y plane are described by the relations

x = f cosh(u) cos(v), (17.4.1)

y = f sinh(u) sin(v). (17.4.2)

Contours of constant u, with u ∈ [0,∞], are nested ellipses with common foci located at
(x; y) = (±f ; 0). Contours of constant v, with v ∈ [0, 2π], are hyperbolae. Together these
contours form an orthogonal coordinate system. See Figure 4.2. Data is to be interpolated
onto the ellipse whose cross section is that of the elliptical cylinder of Figure 4.1. See Figure
4.3.

-f f

Figure 17.4.2: Elliptical coordinates showing contours of constant u and constant v.

For our work we will need the unit vector êu, the unit vector (outwardly) normal to the
surface of the elliptical cylinder. Write

r = xêx + yêy + zêz

= f cosh(u) cos(v)êx + f sinh(u) sin(v)êy + zêz. (17.4.3)

Then, by definition, we have the result

êu = (∂r/∂u)/||(∂r/∂u)||
= [sinh(u) cos(v)êx + cosh(u) sin(v)êy]/[cosh2(u)− cos2(v)]1/2. (17.4.4)
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Figure 17.4.3: A square or rectangular grid in the x,y plane for a fixed z value on the
3-dimensional grid. Values at data points near the ellipse are to be interpolated onto the
ellipse.

It is also convenient to employ the complex variables

ζ = x+ iy, (17.4.5)

and
w = u+ iv. (17.4.6)

In these variables, the relations (4.1) and (4.2) can be written in the more compact form

ζ = f cosh(w). (17.4.7)

[For a discussion of the analytic properties of ζ(w) and its inverse w(ζ), see Exercise 4.2.]
Form differentials of both sides of (4.7). Doing so gives the result

dx+ idy = f sinh(w)(du+ idv) (17.4.8)

and the complex conjugate result

dx− idy = f sinh(w̄)(du− idv). (17.4.9)

Now form the product of (4.8) and (4.9) to get the transverse line-element relation

ds2
⊥ = dx2 + dy2 = f 2 sinh(u+ iv) sinh(u− iv)(du2 + dv2)

= f 2[cosh2(u)− cos2(v)](du2 + dv2). (17.4.10)

From this relation we infer the results

Bu = êu ·B = (∇ψ)u = (1/f)[cosh2(u)− cos2(v)]−1/2(∂ψ/∂u), (17.4.11)

∇2ψ = (1/f 2)[cosh2(u)− cos2(v)]−1[(∂u)
2 + (∂v)

2]ψ + (∂z)
2ψ. (17.4.12)
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17.4.3 Mathieu Equations

Let us seek to construct harmonic functions of the form

ψ ∼ P (u)Q(v) exp(ikz) (17.4.13)

where the functions P and Q are yet to be determined. Employing the Ansatz (4.13) in
Laplace’s equation and use of (4.12) yields the requirement

[(∂u)
2 + (∂v)

2][P (u)Q(v)] = k2f 2[cosh2(u)− cos2(v)]P (u)Q(v). (17.4.14)

We also observe that there is the trigonometric identity

cosh2(u)− cos2(v) = (1/2)[cosh(2u)− cos(2v)] (17.4.15)

so that the requirement (4.14) can be rewritten in the form

[(∂u)
2 + (∂v)

2][P (u)Q(v)] = (k2f 2/4)[2 cosh(2u)− 2 cos(2v)]P (u)Q(v). (17.4.16)

Upon dividing both sides by PQ, (4.16) becomes

(1/P )(∂u)
2P + (1/Q)(∂v)

2Q = (k2f 2/4)[2 cosh(2u)− 2 cos(2v)], (17.4.17)

from which it follows that

(1/P )(∂u)
2P − (k2f 2/4)[2 cosh(2u)] = −(1/Q)(∂v)

2Q− (k2f 2/4)[2 cos(2v)]. (17.4.18)

Therefore, there is a common separation constant a such that

(1/P )(∂u)
2P − (k2f 2/4)[2 cosh(2u)] = a (17.4.19)

and

− (1/Q)(∂v)
2Q− (k2f 2/4)[2 cos(2v)] = a. (17.4.20)

Correspondingly, P and Q must satisfy the ordinary and linear differential equations

d2P/du2 − [a− 2q cosh(2u)]P = 0, (17.4.21)

d2Q/dv2 + [a− 2q cos(2v)]Q = 0, (17.4.22)

where

q = −k2f 2/4. (17.4.23)

Equation (4.22) for Q is called the Mathieu equation, and Equation (4.21) for P is called
the modified Mathieu equation.5

5We remark that many, and probably the majority, of the special functions ordinarily encountered in
Mathematical Physics are particular cases of the hypergeometric function. The Mathieu functions do not
fall in this category. In some sense, they are more transcendental than the hypergeometric function.
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17.4.4 Periodic Mathieu Functions and Separation Constants

For our purposes, we will need solutions Q(v) of (4.22) that are periodic with period 2π. See
Figure 4.2. Such solutions exist only for certain specific values of the separation constant
a. These values are called an(q) for n = 0, 1, 2, 3, · · · and bn(q) for n = 1, 2, 3, · · · .6 The
functions an(q) and bn(q) are all real for real values of q. As the notation indicates, their
values depend on q (and on n). For small q they have expansions of the form

a0(q) = −(1/2)q2 + (7/128)q4 + · · · , (17.4.24)

a1(q) = 1 + q − (1/8)q2 − (1/64)q3 − (1/1536)q4 + · · · , (17.4.25)

a2(q) = 4 + (5/12)q2 − (763/13824)q4 + · · · , etc.; (17.4.26)

b1(q) = 1− q − (1/8)q2 + (1/64)q3 − (1/1536)q4 + · · · , (17.4.27)

b2(q) = 4− (1/12)q2 + (5/13824)q4 + · · · , etc. (17.4.28)

In each case the leading (the q independent) term is n2.
Note that, according to (4.23), for our purposes we are interested in negative, and possibly

quite negative, values of q.7 Figures 4.4 and 4.5 display the first few an(q) and bn(q) for
negative values of q. Observe that, as q → −∞, the quantities a2m(q) and a2m+1(q), for
m = 0, 1, 2, 3, · · · , tend to agree. Similarly, for large negative q, the quantities b2m+1(q) and
b2m+2(q), for m = 0, 1, 2, 3, · · · , tend to agree. Indeed, it can be shown that there is the
asymptotic behavior

a2m(q) ∼ a2m+1(q)

∼ 2q + (8m+ 2)(−q)1/2 − (1/4)(8m2 + 4m+ 1)

−(1/32)(4m2 + 2m+ 1)(4m+ 1)(−q)−1/2 +O(1/q)

as q → −∞ for m = 0, 1, 2, 3, · · · , (17.4.29)

b2m+1(q) ∼ b2m+2(q)

∼ 2q + (8m+ 6)(−q)1/2 − (1/4)(8m2 + 12m+ 5)

−(1/32)(4m2 + 6m+ 3)(4m+ 3)(−q)−1/2 +O(1/q)

as q → −∞ for m = 0, 1, 2, 3, · · · . (17.4.30)

We also remark, in passing, that there are the relations

an(−q) = an(q) for n even, (17.4.31)

bn(−q) = bn(q) for n even, (17.4.32)

an(−q) = bn(q) for n odd, (17.4.33)

bn(−q) = an(q) for n odd. (17.4.34)

6The reader might find confusing the use of the symbols a, an, and bn to denote separation constants.
We agree, but it is standard in the Mathieu-equation literature.

7Unfortunately for our purposes, the Mathieu function literature treats primarily the q > 0 case because
this is the case that arises in the solution of the wave equation. See Exercise 4.1.
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Figure 17.4.4: The functions a0(q) through a2(q) and b1(q) and b2(q) for negative values of
q.

-5 -4 -3 -2 -1
q

-4

-2

2

4

a(q),b(q)n n

Figure 17.4.5: An enlargement of a portion of Figure 4.4. For q fixed and slightly negative,
the curves, in order of increasing value, are a0(q), a1(q), b1(q), b2(q), and a2(q). See (4.24)
through (4.28). Note that the pair a0(q) and a1(q) tends to merge for large negative q, as
does the pair b1(q) and b2(q). Similarly, although not shown in this figure, the pair a2(q)
and a3(q) tends to merge as does the pair b3(q) and b4(q), etc. See (4.29) and (4.30).
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The solutions associated with the separation constants a = an(q) are called ce0(v, q),
ce1(v, q), ce2(v, q), ce3(v, q) · · · . They are even functions of v and, in the small q limit, are
proportional to the functions 1, cos(v), cos(2v), cos(3v), · · · . The solutions associated with
the separation constants a = bn(q) are called se1(v, q), se2(v, q), se3(v, q), · · · . They are odd
functions of v and, in the small q limit, are proportional to the functions sin(v), sin(2v),
sin(3v), · · · .8 Indeed, the cen(v, q) and sen(v, q) are normalized so that in the limit q → 0
there are the relations

ce0(v, 0) = 1/
√

2, (17.4.35)

cen(v, 0) = cos(nv) for n ≥ 1, (17.4.36)

sen(v, 0) = sin(nv) for n ≥ 1. (17.4.37)

Moreover, like their trigonometric counterparts, the functions cen(v, q) and sen(v, q) form a
complete set over the interval [0, 2π]. In fact, they form a complete orthogonal set and are
normalized so that ∫ 2π

0

dv cem(v, q) cen(v, q) = πδmn, (17.4.38)∫ 2π

0

dv sem(v, q) sen(v, q) = πδmn, (17.4.39)∫ 2π

0

dv cem(v, q) sen(v, q) = 0. (17.4.40)

Apart from ce0(v, q), this normalization is like that of their trigonometric counterparts. See
(4.35) through (4.37). Finally, again like their trigonometric counterparts, it can be shown
that the functions cen(v, q) and sen(v, q) have n zeroes in the half-open interval v ∈ [0, π).

As noted earlier, we are primarily interested in the case q ≤ 0. However we note for the
record that, in concert with the relations (4.31) through (4.34), there are the relations

ce2n(v,−q) = (−1)nce2n(π/2− v, q), (17.4.41)

ce2n+1(v,−q) = (−1)nse2n+1(π/2− v, q), (17.4.42)

se2n+1(v,−q) = (−1)nce2n+1(π/2− v, q), (17.4.43)

se2n+2(v,−q) = (−1)nse2n+2(π/2− v, q). (17.4.44)

We will shortly present figures that display the first few cen(v, q) and sen(v, q) as func-
tions of v. Before doing so it is useful to look more closely at the terms appearing in
the Mathieu equations. Inspired by both the analogy to Schrödinger’s equation and the
harmonic oscillator, rewrite (4.22) in the form

d2Q/dv2 − λ(v, q)Q = 0 (17.4.45)

where
λ(v, q) = −[a− 2q cos(2v)]. (17.4.46)

8Note that, unlike their trigonometric counterparts cos(nv) and sin(nv), the functions cen(v, q) and
sen(v, q) do not satisfy the same differential equation. This is because an(q) 6= bn(q).
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From a Schrödinger perspective, we may view Q(v) as the wave function and λ(v, q) as the
‘potential’. In the harmonic oscillator analogy, we may view Q as the oscillator coordinate
and −λ(v, q) as the instantaneous square of the time (v) dependent frequency. With this
background in mind, Figure 4.6 shows λ(v, q = −2) for various n values with a = an(q).
These are the potentials appropriate to the cen(v, q). Similarly, Figure 4.7 shows λ(v, q =
−2) for various n values with a = bn(q). These are the potentials appropriate to the sen(v, q).
According to (4.45), understood in the harmonic oscillator analogy, when λ < 0 we expect
oscillatory behavior; and when λ > 0 we expect exponentially growing or decaying behavior.
From the Schrödinger perspective, the region where λ < 0 is an allowed region, and the
region where λ > 0 is a forbidden or tunneling region. Inspection of Figures 4.6 and 4.7
shows that (when q = −2) part of the v axis is forbidden for small n values, but that all of
it is allowed once n becomes sufficiently large.
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λ(v,-2)

n=0,1

n=2

n=3
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Figure 17.4.6: The effective potentials λ(v, q) for the cen(v, q) in the case q = −2. They are
displayed as a function of v, over the interval [−π, π], for various n values with a = an(q).
The top two curves, which very nearly coincide so as to almost look identical on the scale of
the figure, are for the cases n = 0 and n = 1. According to Figure 4.5, the curve for n = 0
lies just slightly above that for n = 1. The bottom curve is that for n = 5. The curves in
between are for n = 2, 3, 4 in that order.

Figures 4.8 through 4.10 display the first few cen(v, q) as a function of v for q = −2.
Figures 4.11 and 4.12 do the same for se1(v, q) and se2(v, q). It can be shown, as a con-
sequence of Poincaré’s theorem (see Section 1.3), that the cen(v, q) and sen(v, q) are entire
functions (analytic everywhere in the complex plane except at infinity) of v. Also, since the
differential equation (4.22) has real coefficients for q real, the solutions cen(v, q) and sen(v, q)
are taken to be real for real q and real v.9

Observe from Figure 4.10 that ce2(v, q) is freely oscillating. This is to be expected from
Figure 4.6 because we see that for n ≥ 2 all of the v axis allowed. By contrast, Figure

9Since (4.22) is a second-order differential equation, there will also be second solutions that are linearly
independent of the cen(v, q) when a = an(q), and second solutions that are linearly independent of the
sen(v, q) when a = bn(q). Since the differential equation is invariant under parity (it is even in v), these
solutions could, for example, be taken to have the opposite parity of the cen(v, q) and the sen(v, q). They
will not have period 2π.
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Figure 17.4.7: The effective potentials λ(v, q) for the sen(v, q) in the case q = −2. They are
displayed as a function of v, over the interval [−π, π], for various n values with a = bn(q).
The top curve is that for n = 1, and the bottom that for n = 5. The curves in between are
for n = 2, 3, 4 in that order.

4.8 shows that ce0(v, q) does not change sign. This is because (as v increases) this solution
enters a forbidden region for v ≈ .6 and at this point the function begins to decay. Again see
Figure 4.6. Moreover, in the forbidden region, there is also a small exponentially growing
part, with positive coefficient, that eventually dominates the solution by the time v = π/2
so that the solution begins to grow beyond this point. Finally, for v >≈ 2.5 the solution
again enters an allowed region and begins to oscillate so that it has zero slope by the time
v = π.

The case of ce1(v, q) is more delicate. As has already been noted in the caption to
Figure 4.6, when q = −2 the potentials λ for a = a0 and for a = a1 are almost the same.
Yet, inspection of Figures 4.8 and 4.9 shows that ce0(v, q) and ce1(v, q) are very different!
Because λ|a1 < λ|a0 , the forbidden region for ce1(v, q) is somewhat smaller than for ce0(v, q).
Therefore ce1(v, q) ‘oscillates’ a bit more before entering the forbidden region, and does so in
such a way that the exponentially growing part in the forbidden region now has a negative
sign. This exponentially growing part, although initially small in magnitude, eventually
dominates at v = π/2 so that ce1(v, q) crosses through zero and continues on to become
negative. Eventually v again reaches an allowed region and ce1(v, q) begins to oscillate so
that it has zero slope by the time v = π.

What about the behavior of the sen(v, q)? Figure 4.7 shows their effective potentials
for the case q = −2. Evidently these potentials are all completely negative when n ≥ 3
and therefore the sen(v, q) will be freely oscillatory when n ≥ 3. Moreover, for n = 1 the
forbidden region is small, and for n = 2 it is smaller yet. Therefore we expect the effects
of the forbidden regions will be small. For example, the dips in se1(v, q) at v = ±π/2,
see Figure 4.11, arise from the solution momentarily tunneling in forbidden regions. And
examination of Figure 4.12 shows that, for se2(v, q), passage through the forbidden regions
has little noticeable effect.

It is also instructive to examine the behavior of the cen(v, q) and sen(v, q) when q has a
much more negative value. Figures 4.13 and 4.14 show their effective potentials for the case
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Figure 17.4.8: The function ce0(v, q) as a function of v, over the interval [−π, π], for q = −2.
High magnification of this figure would reveal that the graph of ce0(v, q) never touches or
crosses, but always lies above, the v axis so that ce0(v, q) has no zeroes.
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Figure 17.4.9: The function ce1(v, q) as a function of v, over the interval [−π, π], for q = −2.
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Figure 17.4.10: The function ce2(v, q) as a function of v, over the interval [−π, π], for q = −2.
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Figure 17.4.11: The function se1(v, q) as a function of v, over the interval [−π, π], for q = −2.
The small dips at v = ±π/2 arise from passage through forbidden regions.

– 3 – 2 – 1 1 2 3

– 1.0

– 0.5

0.5

1.0

se (v,-2)2

v

Figure 17.4.12: The function se2(v, q) as a function of v, over the interval [−π, π], for q = −2.
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q = −300. Now we see that, for modest values of n, the potentials are positive for most
values of v save for small intervals where they are negative. Therefore large portions of the
v axis are forbidden regions. Consequently, for modest n values, the functions cen(v, q) and
sen(v, q) contain exponentially decaying terms for most values of v, and are oscillatory only
over small intervals. On the other hand, as n is increased, the forbidden regions become
smaller and the allowed regions become larger until for sufficiently large n the entire v axis
becomes an allowed region. Therefore, for sufficiently large n, the functions cen(v, q) and
sen(v, q) are fully oscillatory.

As an illustration of this expected behavior, Figures 4.15 through 4.17 display the
cen(v, q) for q = −300 and n = 0, 1, 2. We see that these functions begin bravely in the
small allowed region about v = 0, rapidly decay to very nearly zero values in the forbidden
regions centered about v = ±π/2, and then rapidly revive in the allowed region centered
about the (equivalent, due to periodicity) points v = ±π. Compare these figures with their
q = −2 counterparts, Figures 4.8 through 4.10. By contrast, Figure 4.18 shows ce22(v, q)
for q = −300. It can be shown that in this case the effective potential λ(v, q = −300) is
negative for all v. Therefore, in accord with Figure 4.18, ce22(v, q) is fully oscillatory.

Similarly, Figures 4.19 and 4.20 display the sen(v, q) for q = −300 and n = 1, 2. Again
we see these functions are very nearly zero in the forbidden regions. For example, the dips in
Figure 4.11 have become, in Figure 4.19, canyons with very steep walls and very flat floors.
By contrast, Figure 4.21 shows se23(v, q) for q = −300. It can be shown that in this case
the effective potential λ(v, q = −300) is negative for all v. Therefore, in accord with Figure
4.21, se23(v, q) is fully oscillatory.
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Figure 17.4.13: The effective potentials λ(v, q) for the cen(v, q) in the case q = −300. They
are displayed as a function of v, over the interval [−π, π], for the n values n = 0, 1, 2, 3, 4, 5
with a = an(q). The top two curves, which very nearly coincide so as to almost look identical
on the scale of the figure, are for the cases n = 0 and n = 1. The next two curves, which
also nearly coincide, are for n = 2 and n = 3. Finally, the bottom two curves also nearly
coincide and are for the cases n = 4 and n = 5. As in Figure 4.6, the higher the n value,
the lower the curve.
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Figure 17.4.14: The effective potentials λ(v, q) for the sen(v, q) in the case q = −300. They
are displayed as a function of v, over the interval [−π, π], for the n values n = 1, 2, 3, 4, 5, 6
with a = bn(q). The top two curves, which very nearly coincide so as to almost look identical
on the scale of the figure, are for the cases n = 1 and n = 2. The next two curves, which
also nearly coincide, are for n = 3 and n = 4. Finally, the bottom two curves also nearly
coincide and are for the cases n = 5 and n = 6. As in Figure 4.7, the higher the n value,
the lower the curve.
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Figure 17.4.15: The function ce0(v, q) as a function of v, over the interval [−π, π], for
q = −300. Most of the v axis is forbidden.
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Figure 17.4.16: The function ce1(v, q) as a function of v, over the interval [−π, π], for
q = −300. Most of the v axis is forbidden.
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Figure 17.4.17: The function ce2(v, q) as a function of v, over the interval [−π, π], for
q = −300. Most of the v axis is forbidden.
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Figure 17.4.18: The function ce22(v, q) as a function of v, over the interval [−π, π], for
q = −300. For these q and n values all of the v axis is allowed, and the function is fully
oscillatory.
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Figure 17.4.19: The function se1(v, q) as a function of v, over the interval [−π, π], for q =
−300. Most of the v axis is forbidden.
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Figure 17.4.20: The function se2(v, q) as a function of v, over the interval [−π, π], for q =
−300. Most of the v axis is forbidden.
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Figure 17.4.21: The function se23(v, q) as a function of v, over the interval [−π, π], for
q = −300. For these q and n values all of the v axis is allowed, and the function is fully
oscillatory.
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Look again at the potentials λ(v, q) shown in Figures 4.6, 4.7, 4.13, and 4.14. We see, as
is also evident from (4.46), that they have maxima at v = ±π/2, and at these points they
have the maximum values

λmax(q) = λ(±π/2, q) = −a− 2q. (17.4.47)

Figure 4.22 shows λmax(q) for various n values in the case a = an(q), and Figure 4.23 does
the same in the case a = bn(q). From (4.29) and (4.30) we have the asymptotic formulas

λmax(q) ∼ −4q − (8m+ 2)(−q)1/2 + · · ·
as q → −∞ for a = a2m(q) ∼ a2m+1(q) and m = 0, 1, 2, 3, · · · , (17.4.48)

λmax(q) ∼ −4q − (8m+ 6)(−q)1/2 + · · ·
as q → −∞ for a = b2m+1(q) ∼ b2m+2(q) and m = 0, 1, 2, 3, · · · . (17.4.49)

We know that all of the interval v ∈ [−π, π] is allowed when λmax(q) < 0, and part of it
becomes forbidden when λmax(q) > 0. Thus, for each n value and each alternative a = an(q)
or a = bn(q), there is a critical value qcr such that λmax(qcr) = 0. From (4.47) we see that
these critical values, in the two alternatives, are given (implicitly) by the relations

qcr(n) = −(1/2)an[qcr(n)], (17.4.50)

qcr(n) = −(1/2)bn[qcr(n)]. (17.4.51)

These critical values, which can be read off from the ‘x’ intercepts of the curves in Figures
4.22 and 4.23, are listed in Table 4.1. For a given value of n, all of the v axis is allowed and
cen(v, q) is fully oscillatory if q > qcr(n), and otherwise part of the v axis is forbidden. Here
qcr(n) is to be calculated using (4.50). An analogous statement holds for sen(v, q) where now
qcr(n) is to be calculated using (4.51).

At this point we are prepared to comment on the symmetry properties of the cen(v, q)
and sen(v, q). We begin with the cen(v, q). We know they are even and periodic with period
2π. They therefore have Fourier series expansions consisting only of cosine terms. Also,
consistent with the behavior of ce0(v, q) and ce2(v, q) displayed in Figures 4.8, 4.10, 4.15,
and 4.17, it can be shown that the cen(v, q) for even n are symmetric about the point
v = π/2. Specifically, the cen(v, q) for even n have Fourier expansions of the form

cen(v, q) = ∗1 + ∗ cos(2v) + ∗ cos(4v) + · · · for even n (17.4.52)

where the *’s denote q and n dependent coefficients. That is, there is the relation

cen(π/2 + ∆, q) = cen(π/2−∆, q) for even n. (17.4.53)

It follows that the cen(v, q) for even n have vanishing first derivative at v = π/2,

ce′n(π/2, q) = 0 for even n. (17.4.54)

By contrast, as illustrated in Figures 4.9 and 4.16, the cen(v, q) for odd n are antisym-
metric about the point v = π/2 and have Fourier expansions of the form

cen(v, q) = ∗ cos(v) + ∗ cos(3v) + ∗ cos(5v) + · · · for odd n. (17.4.55)
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Figure 17.4.22: The function λmax(q) for the n values 0 through 5 in the case a = an(q).
When λmax(q) < 0, all of the v axis is allowed, and the function cen(v, q) is fully oscillatory.
When λmax(q) > 0, part of the v axis is forbidden. The higher the n value, the lower the
curve. Note that the ‘y’ intercepts have the values −n2 in accord with (4.24) through (4.26)
and (4.47). The ‘x’ intercepts are the values qcr(n). Note also that the values of λmax(q) for
n = 0 and n = 1 tend to merge for large negative q, as do the values for n = 2 and n = 3,
etc. See Figure 4.5 and (4.48).
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Figure 17.4.23: The function λmax(q) for the n values 1 through 6 in the case a = bn(q).
When λmax(q) < 0, all of the v axis is allowed, and the function sen(v, q) is fully oscillatory.
When λmax(q) > 0, part of the v axis is forbidden. The higher the n value, the lower the
curve. Note that the ‘y’ intercepts have the values −n2 in accord with (4.27), (4.28), and
(4.47). The ‘x’ intercepts are the values qcr(n). Note also that the values of λmax(q) for
n = 1 and n = 2 tend to merge for large negative q, as do the values for n = 3 and n = 4,
etc. See Figure 4.5 and (4.49).
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Table 17.4.1: The quantity qcr(n) for various values of n.

n qcr(n) when a = an(q) qcr(n) when a = bn(q)
0 0 *
1 -0.329005727826915 -0.889819993831662
2 -3.039073671630782 -1.8582116914842934
3 -4.626950799904568 -6.425863307211811
4 -11.047992936386709 -8.6316091625993501
5 -13.871128836603399 -16.904741557017985
6 -23.995780230075020 -20.345062417526364
7 -28.0531793998642485 -32.320930596434941
8 -41.880084880521011 -36.995345508020719
9 -47.171475670427398 -52.673172894843788
10 -64.7001463432813892 -58.581512590132760

That is, there is the relation

cen(π/2 + ∆, q) = −cen(π/2−∆, q) for odd n. (17.4.56)

It follows that the cen(v, q) for odd n vanish at v = π/2,

cen(π/2, q) = 0 for odd n. (17.4.57)

Next consider the symmetry properties of the sen(v, q). We know they are odd and
periodic with period 2π. They therefore have Fourier series expansions consisting only of
sine terms. Also, consistent with the behavior of se2(v, q) displayed in Figures 4.12 and 4.20,
it can be shown that the sen(v, q) for even n are antisymmetric about the point v = π/2.
Specifically, the sen(v, q) for even n have Fourier expansions of the form

sen(v, q) = ∗ sin(2v) + ∗ sin(4v) + ∗ sin(6v) + · · · for even n. (17.4.58)

That is, there is the relation

sen(π/2 + ∆, q) = −sen(π/2−∆, q) for even n, (17.4.59)

from which it follows that
sen(π/2, q) = 0 for even n. (17.4.60)

By contrast, as ilustrated in Figures 4.11 and 4.19 for se1(v, q), the sen(v, q) for odd n are
symmetric about the point v = π/2 and have Fourier expansions of the form

sen(v, q) = ∗ sin(v) + ∗ sin(3v) + ∗ sin(5v) + · · · for odd n. (17.4.61)

That is, there is the relation

sen(π/2 + ∆, q) = sen(π/2−∆, q) for odd n, (17.4.62)
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from which it follows that
se′n(π/2, q) = 0 for odd n. (17.4.63)

Finally, it follows from (4.52) and (4.58) that

cen(v + π, q) = cen(v, q) for even n (17.4.64)

and
sen(v + π, q) = sen(v, q) for even n. (17.4.65)

Thus the sen(v, q) and sen(v, q) for even n have period π as well as period 2π. By contrast,
we see from (4.55) and (4.61) that there are the relations

cen(v + π, q) = −cen(v, q) for odd n (17.4.66)

and
sen(v + π, q) = −sen(v, q) for odd n. (17.4.67)

The relations (4.64) through (4.67) can be written more succinctly in the form

cen(v + π, q) = (−1)ncen(v, q), (17.4.68)

sen(v + π, q) = (−1)nsen(v, q). (17.4.69)

From a computational perspective, an important consequence of these symmetry prop-
erties of the cen(v, q) and sen(v, q) is that they only need to be computed over the interval
v ∈ [0, π/2]. Their values elsewhere are then determined by their symmetry properties.
Moreover, if q and n are such that a value of v is deep within a strongly forbidden region,
then we may set the associated value of cen(v, q) or sen(v, q) to zero for these values of v.
Recall that the forbidden regions are centered about the values v = ±π/2. Thus, if there
are such strongly forbidden regions, we only need to compute cen(v, q) or sen(v, q) over the
smaller interval v ∈ [0, vdeep] where vdeep is the smallest v value deep within the strongly
forbidden region.

17.4.5 Modified Mathieu Functions

Now that the possible values of the separation constant a have been determined by the peri-
odicity requirement, these values of a can be employed in (4.21) to determine the functions
P (u). The so-called solutions of the first kind for (4.21), when a = an(q), are denoted as
Cen(u, q); and the solutions of the first kind, when a = bn(q), are denoted as Sen(u, q). The
functions Cen(u, q) are even functions of u and the functions Sen(u, q) are odd functions of
u. They can be conveniently arranged to satisfy the relations

Cen(u, q) = cen(iu, q), (17.4.70)

Sen(u, q) = −isen(iu, q). (17.4.71)

Evidently, they are also entire functions, and they are also real for q and u real. Since
the cen(v, q) and sen(v, q) are analogous to cosines and sines, see (4.52), (4.55), (4.58), and
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(4.61), the relations (4.70) and (4.71) indicate that the Cen(u, q) and Sen(u, q) are analogous
to hyperbolic cosines and hyperbolic sines.

Suppose we write (4.21) in the form

d2P/du2 − Λ(u, q)P = 0 (17.4.72)

where

Λ(u, q) = a− 2q cosh(2u). (17.4.73)

Figure 4.24 shows these Λ(u, q) for various n values with a = an(q) and q = −2. These
are the potentials appropriate to the Cen(u, q). The potentials for the Sen(u, q) computed
with a = bn(q) are similar. Inspection of these Cen(u, q) potentials shows that they are all
positive for all u. The same can be shown to be true for the Sen(v, q) potentials.

In fact, more can be said. From (4.73) it is evident that, when q < 0 (which is what we
have assumed), Λ has a minimum at u = 0 and, at this point has the value

Λ(0, q) = a− 2q. (17.4.74)

Therefore, if we can show that

Λ(0, q) = a− 2q > 0 (17.4.75)

for all q < 0 and all n with a = an(q) or a = bn(q), then we will have shown that all Λ
are positive for all u. Figure 4.25 displays Λ(0, q) for various n values when a = an(q), and
Figure 4.26 does the same for the case a = bn(q). Note also that from (4.29) and (4.30)
there is the asymptotic behavior

Λ(0, q) ∼ (8m+ 2)(−q)1/2 + · · ·
as q → −∞ for a = a2m(q) ∼ a2m+1(q) and m = 0, 1, 2, 3, · · · , (17.4.76)

Λ(0, q) ∼ (8m+ 6)(−q)1/2 + · · ·
as q → −∞ for a = b2m+1(q) ∼ b2m+2(q) and m = 0, 1, 2, 3, · · · . (17.4.77)

Evidently (4.75) is always satisfied when q < 0. We conclude that for q ≤ 0 the Cen(u, q)
and Sen(u, q) are non-oscillatory and must all be exponentially growing.10

As examples, Figures 4.27 and 4.28 display the first few Cen(u, q) and Sen(u, q) as a
function of u for q = −2.11 We see that, as predicted, they are non-oscillatory and their
magnitudes do indeed become large for large values of |u|.

10Also, as Figures 4.25 and 4.26 illustrate, oscillatory behavior for the Cen(u, q) and Sen(u, q) is possible
if q > 0. See Exercise 4.1.

11Since the modified Mathieu equation (4.21) is also of second order, it will also have second solutions
that are linearly independent of the Cen(u, q) and Sen(u, q). Because it too is invariant under parity, these
solutions could be constructed to have parities opposite to those of the Cen(u, q) and Sen(u, q).
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Figure 17.4.24: The effective potentials Λ(u, q) for the Cen(v, q) in the case q = −2. They
are displayed as a function of u for the n values n = 0, 1, 2, 3, 4, 5 with a = an(q). As in
Figure 4.6, the curves for n = 0 and n = 1 nearly coincide. Now, because of the difference
in sign between (4.46) and (4.73), the higher the n value the higher the curve.
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Figure 17.4.25: The quantities Λ(0, q) with a = an(q) and n = 0, 1, 2, 3. The higher the n
value, the higher the curve. Note that the ‘y’ intercepts have the values n2 in agreement
with (4.24) through (4.26). Also, values of Λ(0, q) for n = 0 and n = 1 tend to merge for
large negative q, as do the values for n = 2 and n = 3, etc. See Figure 4.5 and (4.76).
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Figure 17.4.26: The quantities Λ(0, q) with a = bn(q) and n = 1, 2, 3, 4. The higher the n
value, the higher the curve. Note that the ‘y’ intercepts have the values n2 in agreement
with (4.27) and (4.28). Also, values of Λ(0, q) for n = 1 and n = 2 tend to merge for large
negative q, as do the values for n = 3 and n = 4, etc. See Figure 4.5 and (4.77).
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Figure 17.4.27: The functions Ce0(u, q) through Ce2(u, q), as a function of u, for q = −2.
At u = 1 they satisfy the inequalities Ce0(1,−2) < Ce1(1,−2) < Ce2(1,−2).
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– 1.0 – 0.5 0.5 1.0
u

– 6
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– 2
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Se (u,-2)n
n=2 n=1

Figure 17.4.28: The functions Se1(u, q) and Se2(u, q), as a function of u, for q = −2. At
u = 1 they satisfy the inequality Se1(1,−2) < Se2(1,−2).

17.4.6 Analyticity in x and y

So far we have described the functions cen(v, q) and sen(v, q), and the functions Cen(u, q)
and Sen(u, q), and have seen that they are entire functions of the variables u and v. But this
does not mean that they are entire functions of the variables x and y because the relation
(4.7) that connects u, v to x, y has singularities. See Exercise 4.2. Remarkably, however,
the products [Cen(u, q) × cen(v, q)] and [Sen(u, q) × sen(v, q)], which according to (4.13) is
what we hope to use to construct solutions of the Laplace equation, are entire functions
of the variables x and y. This situation is analogous to the case of cylindrical coordinates
where the functions exp(imφ) and Im(kρ) are entire functions of φ and ρ, respectively, but
are not entire functions of x and y. However, the products [exp(imφ) × Im(kρ)] are entire
functions of x and y. In the case of the Mathieu functions, for example, there is an integral
representation of the form

Ce2n(u, q) ce2n(v, q) = p2n(q)

∫ π/2

0

dτ ce2n(τ, q) cosh[kx cos(τ)] cosh[ky sin(τ)] (17.4.78)

where p2n(q) is some q-dependent coefficient. There are similar representations for the other
relevant products. The right side of (4.78) is manifestly an entire function of x and y.

17.4.7 Elliptic Cylinder Harmonic Expansion and On-Axis
Gradients

The stage is now set to describe the expansion of any harmonic function ψ in terms of
Mathieu functions. The general harmonic function that is analytic in x and y near the
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origin can be written in the form

ψ(x, y, z) = ψ(u, v, z) =
∞∑
n=0

∫ ∞
−∞

dk cn(k) exp(ikz)Cen(u, q) cen(v, q)

+
∞∑
n=1

∫ ∞
−∞

dk sn(k) exp(ikz)Sen(u, q) sen(v, q)

(17.4.79)

where the functions cn(k) and sn(k) are arbitrary. We will call (4.79) an elliptic cylinder
harmonic expansion.

To exploit this expansion, suppose the magnetic field B(x, y, z) is interpolated onto the
surface u = U of an elliptic cylinder using values at the grid points near the surface. See
Figure 4.3. Let us employ the notation B(x, y, z) = B(u, v, z) so that the magnetic field
on the surface can be written as B(U, v, z). Next, from the values on the surface, compute
Bu(U, v, z), the component of B(x, y, z) normal to the surface. Our aim will be to determine
the generalized on-axis gradients from a knowledge of Bu(U, v, z).

Let us begin by solving (4.11) for (∂ψ/∂u). We find, using (4.4), the result,

(∂ψ/∂u) = f [cosh2(u)− cos2(v)]1/2Bu

= f(sinhu cos v)Bx(u, v, z) + f(coshu sin v)By(u, v, z). (17.4.80)

We see that the right side of (4.80) is a well-behaved function F (u, v, z) whose values are
known for u = U ,

F (U, v, z) = f(sinhU cos v)Bx(U, v, z) + f(coshU sin v)By(U, v, z). (17.4.81)

Moreover, using the representation (4.79) in (4.80) and (4.81), we may also write

F (U, v, z) =
∞∑
n=0

∫ ∞
−∞

dk cn(k) exp(ikz)Ce′n(U, q) cen(v, q)

+
∞∑
n=1

∫ ∞
−∞

dk sn(k) exp(ikz)Se′n(U, q) sen(v, q).

(17.4.82)

Next multiply both sides of (4.82) by exp(−ik′z) and integrate over z. So doing gives the
result

(1/2π)

∫ ∞
−∞

dz exp(−ik′z)F (U, v, z) =

∞∑
n=0

cn(k′)Ce′n(U, q′) cen(v, q′) +
∞∑
n=1

sn(k′)Se′n(U, q′) sen(v, q′).

(17.4.83)

Now, employ the orthogonality properties (4.38) through (4.40) to obtain the relations

cr(k
′)Ce′r(U, q

′) = [1/(2π2)]

∫ 2π

0

dv

∫ ∞
−∞

dz exp(−ik′z)cer(v, q
′)F (U, v, z), (17.4.84)
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sr(k
′)Se′r(U, q

′) = [1/(2π2)]

∫ 2π

0

dv

∫ ∞
−∞

dz exp(−ik′z)ser(v, q
′)F (U, v, z). (17.4.85)

In view of (4.84) and (4.85), define the function F̃ (v, k) by the rule

F̃ (v, k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)F (U, v, z), (17.4.86)

and define functions ˜̃F c
r (k) and ˜̃F s

r (k) by the rules

˜̃F c
r (k) = (1/π)

∫ 2π

0

dv cer(v, q)F̃ (v, k)

= [1/(2π2)]

∫ 2π

0

dv

∫ ∞
−∞

dz exp(−ikz)cer(v, q)F (U, v, z), (17.4.87)

˜̃F s
r (k) = (1/π)

∫ 2π

0

dv ser(v, q)F̃ (v, k)

= [1/(2π2)]

∫ 2π

0

dv

∫ ∞
−∞

dz exp(−ikz)ser(v, q)F (U, v, z). (17.4.88)

[Here we have extended the use of the ˜ notation to include angular Mathieu transforms,
such as those in (4.87) and (4.88), where cos(rφ) and sin(rφ) are replaced by cer(v, q) and

ser(v, q).] We will call the functions ˜̃Fα
r (k) Mathieu coefficient functions in analogy to the

Fourier coefficients that arise in Fourier analysis. Note that, because F and the Mathieu

functions are real, the real parts of the functions ˜̃Fα
r (k) are even in k, and the imaginary

parts are odd in k.

With these definitions, the relations (4.84) and (4.85) can be rewritten in the form

cr(k) = ˜̃F c
r (k)/Ce′r(U, q), (17.4.89)

sr(k) = ˜̃F s
r (k)/Se′r(U, q). (17.4.90)

Finally, employ (4.89) and (4.90) in (4.79). So doing gives the result

ψ(x, y, z) =
∞∑
r=0

∫ ∞
−∞

dk exp(ikz)[ ˜̃F c
r (k)/Ce′r(U, q)]Cer(u, q) cer(v, q)

+
∞∑
r=1

∫ ∞
−∞

dk exp(ikz)[ ˜̃F s
r (k)/Se′r(U, q)]Ser(u, q) ser(v, q).

(17.4.91)

We have obtained an elliptical cylinder harmonic expansion for ψ in terms of surface field
data.
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Of course, what we really want are the on-axis gradients. They can be found by employing
two remarkable connections (identities) between elliptic and circular cylinder functions of
the form

Cer(u, q) cer(v, q) =
∞∑
m=0

αrm(k)Im(kρ) cos(mφ), (17.4.92)

Ser(u, q) ser(v, q) =
∞∑
m=1

βrm(k)Im(kρ) sin(mφ). (17.4.93)

For further reference, we will call the quantities αrm(k) and βrm(k) Mathieu-Bessel connection
coefficients. Let us employ these identities in (4.91) to find the results

∞∑
r=0

∫ ∞
−∞

dk exp(ikz)[ ˜̃F c
r (k)/Ce′r(U, q)]Cer(u, q) cer(v, q)

=
∞∑
m=0

∫ ∞
−∞

dk exp(ikz)Im(kρ) cos(mφ)
∞∑
r=0

αrm(k)[ ˜̃F c
r (k)/Ce′r(U, q)],

(17.4.94)

and

∞∑
r=1

∫ ∞
−∞

dk exp(ikz)[ ˜̃F s
r (k)/Se′r(U, q)]Ser(u, q) ser(v, q)

=
∞∑
m=1

∫ ∞
−∞

dk exp(ikz)Im(kρ) sin(mφ)
∞∑
r=1

βrm(k)[ ˜̃F s
r (k)/Se′r(U, q)].

(17.4.95)

Using these results, (4.91) can be rewritten in the form

ψ(x, y, z) =
∞∑
m=0

∫ ∞
−∞

dk exp(ikz)Im(kρ) cos(mφ)
∞∑
r=0

αrm(k)[ ˜̃F c
r (k)/Ce′r(U, q)]

+
∞∑
m=1

∫ ∞
−∞

dk exp(ikz)Im(kρ) sin(mφ)
∞∑
r=1

βrm(k)[ ˜̃F s
r (k)/Se′r(U, q)].

(17.4.96)

Upon comparing (4.96) with (14.2.54), we conclude that there are the relations

Gm,c(k) =
∞∑
r=0

αrm(k)[ ˜̃F c
r (k)/Ce′r(U, q)], (17.4.97)

and

Gm,s(k) =
∞∑
r=1

βrm(k)[ ˜̃F s
r (k)/Se′r(U, q)]. (17.4.98)
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We remark that it can be shown that the real parts of the Gm,α are even in k, and the
imaginary parts are odd in k. See Exercise 4.2. Finally, in view of (14.2.55) and (14.2.56),
we have the desired results

C [n]
m,c(z) = in(1/2)m(1/m!)

∫ ∞
−∞

dk exp(ikz)kn+m

∞∑
r=0

αrm(k)[ ˜̃F c
r (k)/Ce′r(U, q)]

= in(1/2)m(1/m!)

∫ ∞
−∞

dk exp(ikz)kn+mGm,c(k), (17.4.99)

C [n]
m,s(z) = in(1/2)m(1/m!)

∫ ∞
−∞

dk exp(ikz)kn+m

∞∑
r=1

βrm(k)[ ˜̃F s
r (k)/Se′r(U, q)]

= in(1/2)m(1/m!)

∫ ∞
−∞

dk exp(ikz)kn+mGm,s(k). (17.4.100)

We have found expressions for the generalized gradients in terms of field data (normal
component) on the surface of an elliptic cylinder. These results hold for the cases m ≥ 1.
When m = 0 there are the results

C
[n]
m=0,c(z) = C

[n]
0 (z) = in

∫ ∞
−∞

dk exp(ikz)kn
∞∑
r=0

αr0(k)[ ˜̃F c
r (k)/Ce′r(U, q)]

= in
∫ ∞
−∞

dk exp(ikz)knG0,c(k), (17.4.101)

C
[n]
m=0,s(z) = 0. (17.4.102)

Just as in the m = 0 case for the circular cylinder, so too here it may be better to derive and
employ formulas based on the tangential component Bz rather than the normal component.
See Section 19.2.

Exercises

17.4.1. Verify that (4.1) and (4.2) can be written in the form (4.7).

17.4.2. The purpose of this exercise is to study the analytic properties of elliptic coordinates.
Our discussion is based on the relation (4.7). According to (4.7), the function ζ(w) is an
entire function of w. What can be said about its inverse w(ζ)? Verify that (4.7) has the
inverse

w = cosh−1(ζ/f) = log[(ζ/f) +
√

(ζ/f)2 − 1]. (17.4.103)

Evidently w(ζ) has branch points at ζ = ±f . Verify that w(ζ) is analytic in the cut ζ plane
with a cut consisting of a straight line extending from ζ = −f to ζ = f as illustrated in
Figure 4.2.

17.4.3. Exercise on wave equation.
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17.5 Use of Field Data on Surface of Rectangular

Cylinder

17.5.1 Finding the Magnetic Scalar Potential ψ(x, y, z)

Consider the domain x ∈ [−W/2,W/2], y ∈ [−H/2, H/2], z ∈ [−∞,∞]. This domain is the
interior and surface of a cylinder of infinite extent in the ±z direction, centered on the z
axis, and having rectangular cross section with width W and height H. In this section we
will describe the use of field data on the surface of this cylinder. This cylinder has 4 surfaces
(sides) which we will call t and b for top and bottom, and ` and r for left and right.

Suppose that we are given the normal component of the magnetic field on the top,
bottom, left, and right surfaces. That is, we are given the field data

Bt
y(x, z) = By(x, y, z)|y=H/2 with x ∈ [−W/2,W/2] and z ∈ [−∞,∞], (17.5.1)

Bb
y(x, z) = By(x, y, z)|y=−H/2 with x ∈ [−W/2,W/2] and z ∈ [−∞,∞], (17.5.2)

B`
x(y, z) = Bx(x, y, z)|x=−W/2 with y ∈ [−H/2, H/2] and z ∈ [−∞,∞], (17.5.3)

Br
x(y, z) = Bx(x, y, z)|x=W/2 with y ∈ [−H/2, H/2] and z ∈ [−∞,∞]. (17.5.4)

Our goal is to find the scalar magnetic potential ψ(x, y, z) in terms of this field data.
For purposes of Fourier analysis, we will extend the normal field surface data beyond the

ranges indicated above as follows:

• Extend Bt
y(x, z) and Bb

y(x, z) from the interval x ∈ [−W/2,W/2] to the extended
interval x ∈ [−W/2, 3W/2] by requiring that the extension be even in x about the
value x = W/2. Note that the extended interval x ∈ [−W/2, 3W/2] can be written in
the form

[−W/2, 3W/2] = [W/2−W,W/2 +W ]. (17.5.5)

• Extend B`
x(y, z) and Bb

x(y, z) from the interval y ∈ [−H/2, H/2] to the extended
interval y ∈ [−H/2, 3H/2] by requiring that the extension be even in y about the
value y = H/2. Note that the extended interval [−H/2, 3H/2] can be written in the
form

[−H/2, 3H/2] = [H/2−H,H/2 +H]. (17.5.6)

So doing will produce functions that are continuous over the extended intervals

x ∈ [W/2−W,W/2 +W ] and y ∈ [H/2−H,H/2 +H]. (17.5.7)

Moreover, by construction, the extended functions will take the same value at both ends
of each extended interval. Therefore they can be further extended beyond their extended
intervals, both to the left and the right, in a continuous way by requiring that their further
extensions be periodic with periods 2W and 2H, respectively. (Moreover, these extensions
will also be even about the values x = −W/2 and y = −H/2, respectively.) In summary, we
have produced extensions that are even about ±W/2 or ±H/2, are periodic with periods
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Figure 17.5.1: Hypothetical Bt
y(x, z) data in the interval x ∈ [−W/2,W/2] and its ex-

tension to the full x axis to facilitate Fourier analysis. In this example, W = 8 so that
[−W/2,W/2] = [−4, 4]. The extension has period 2W = 16, is even about the points
x = ±W/2 = ±4 and their periodic counterparts, and is continuous. Generally, the first
derivative is discontinuous at the points x = ±W/2 = ±4 and their periodic counterparts.
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2W or 2H, and are continuous. See, for example, Figure 5.1. They are therefore ideally
suited to Fourier analysis over the extended intervals (5.7).

Now consider the functions

cos[(x+W/2)(nπ/W )] with n = 0, 1, 2, · · · (17.5.8)

and the functions
sin[(x+W/2)(nπ/W )] with n = 1, 2, · · · . (17.5.9)

They have period 2W and form a complete orthogonal set over the interval (5.5). Therefore
Bt
y(x, z) and Bb

y(x, z), when extended as described above, can be expanded in terms of them.
Note also that the cosine functions (5.8) are even about x = W/2 and the sine functions
(5.9) are odd. Since (by construction) the extended Bt

y(x, z) and Bb
y(x, z) are even about

x = W/2, it follows that only the cosine terms will appear in the Fourier expansion. Thus,
we have the Fourier representations

Bt
y(x, z) =

∞∑
n=0

B̃t
y(n, z) cos[(x+W/2)(nπ/W )], (17.5.10)

Bb
y(x, z) =

∞∑
n=0

B̃b
y(n, z) cos[(x+W/2)(nπ/W )], (17.5.11)

where

B̃t
y(0, z) = [1/(2W )]

∫ 3W/2

−W/2
dx Bt

y(x, z) = (1/W )

∫ W/2

−W/2
dx Bt

y(x, z), (17.5.12)

B̃t
y(n, z) = (1/W )

∫ 3W/2

−W/2
dx Bt

y(x, z) cos[(x+W/2)(nπ/W )]

= (2/W )

∫ W/2

−W/2
dx Bt

y(x, z) cos[(x+W/2)(nπ/W )] for n > 0, (17.5.13)

B̃b
y(0, z) = [1/(2W )]

∫ 3W/2

−W/2
dx Bb

y(x, z) = (1/W )

∫ W/2

−W/2
dx Bb

y(x, z), (17.5.14)

B̃b
y(n, z) = (1/W )

∫ 3W/2

−W/2
dx Bb

y(x, z) cos[(x+W/2)(nπ/W )]

= (2/W )

∫ W/2

−W/2
dx Bb

y(x, z) cos[(x+W/2)(nπ/W )] for n > 0. (17.5.15)

Here we have used the fact that Bt
y(x, z) and Bb

y(x, z) and the cosine functions are even
about x = W/2.

We have already seen that the fully extended Bt
y(x, z) and Bb

y(x, z) are continuous and
periodic with period 2W . However, they will generally not have continuous first derivatives
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across the joins at x = ±W/2, x = ±3W/2, etc. It follows from standard Fourier analysis
theory that the coefficients B̃t

y(n, z) and B̃b
y(n, z) must, in general, fall off like 1/n2,

B̃t
y(n, z) ∼ (1/n2) as n→∞, etc. (17.5.16)

Therefore the series (5.10) and (5.11) are point-wise absolutely, but not wonderfully, con-
vergent. The slow falloff (5.16) is the price to be paid for working with a bounding surface
that has sharp corners. By contrast, it can be shown that the analogous coefficients in the
cases of circular and elliptic cylinders fall off much more rapidly, namely as (1/Λ)|n| for some
Λ > 1. See Exercises 16.2.3 and 16.2.4.

In a similar way, we have the Fourier representations

B`
x(y, z) =

∞∑
n=0

B̃`
y(n, z) cos[(y +H/2)(nπ/H)], (17.5.17)

Br
x(y, z) =

∞∑
n=0

B̃r
y(n, z) cos[(y +H/2)(nπ/H)], (17.5.18)

where

B̃`
x(0, z) = [1/(2H)]

∫ 3H/2

−H/2
dy B`

x(y, z) = (1/H)

∫ H/2

−H/2
dx B`

x(y, z), (17.5.19)

B̃`
x(n, z) = (1/H)

∫ 3H/2

−H/2
dy B`

x(y, z) cos[(y +H/2)(nπ/H)]

= (2/H)

∫ H/2

−H/2
dy B`

x(y, z) cos[(y +H/2)(nπ/H)] for n > 0, (17.5.20)

B̃r
x(0, z) = [1/(2H)]

∫ 3H/2

−H/2
dy Br

x(y, z) = (1/H)

∫ H/2

−H/2
dx Br

x(y, z), (17.5.21)

B̃r
x(n, z) = (1/H)

∫ 3H/2

−H/2
dy Br

x(y, z) cos[(y +H/2)(nπ/H)]

= (2/H)

∫ H/2

−H/2
dy Br

x(y, z) cos[(y +H/2)(nπ/H)] for n > 0. (17.5.22)

To proceed further, we perform Fourier transforms in z. Thus, we make the definitions

˜̃B
t

y(n, k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)B̃t
y(n, z), (17.5.23)

˜̃B
b

y(n, k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)B̃b
y(n, z), (17.5.24)
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˜̃B
`

x(n, k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)B̃`
x(n, z), (17.5.25)

˜̃B
r

x(n, k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)B̃r
x(n, z), (17.5.26)

Note that the various B̃ terms on the right sides of (5.23) through (5.26) are real. It follows

that the real parts of the various ˜̃B terms on the left sides of (5.23) through (5.26) are even
in k, and the imaginary parts are odd in k.

With these definitions in hand, we are ready to determine the scalar potential ψ(x, y, z)
in terms of surface field values. First we note, as is easily checked, that functions of the form

exp(ikz) cos[(x+W/2)(nπ/W )] cosh[σn(y ±H/2)] (17.5.27)

and
exp(ikz) cos[(y +H/2)(nπ/H)] cosh[τn(x±W/2)], (17.5.28)

where
σn = [k2 + (nπ/W )2]1/2 (17.5.29)

and
τn = [k2 + (nπ/H)2]1/2, (17.5.30)

satisfy Laplace’s equation. Next define functions ψt(x, y, z), ψb(x, y, z), ψ`(x, y, z), and
ψr(x, y, z) by the relations

ψt(x, y, z) =

∫ ∞
−∞

dk exp(ikz)
∞∑
n=0

˜̃B
t

y(n, k) cos[(x+W/2)(nπ/W )] cosh[σn(y +H/2)]

σn sinh(Hσn)
,

(17.5.31)

ψb(x, y, z) =

∫ ∞
−∞

dk exp(ikz)
∞∑
n=0

˜̃B
b

y(n, k) cos[(x+W/2)(nπ/W )] cosh[σn(y −H/2)]

σn sinh(Hσn)
,

(17.5.32)

ψ`(x, y, z) =

∫ ∞
−∞

dk exp(ikz)
∞∑
n=0

˜̃B
`

y(n, k) cos[(y +H/2)(nπ/H)] cosh[τn(x+W/2)]

τn sinh(Wτn)
,

(17.5.33)

ψr(x, y, z) =

∫ ∞
−∞

dk exp(ikz)
∞∑
n=0

˜̃B
r

y(n, k) cos[(y +H/2)(nπ/H)] cosh[τn(x−W/2)]

τn sinh(Wτn)
.

(17.5.34)
Evidently by construction they all satisfy Laplace’s equation.

Now watch closely: From the definition (5.31) we have the result

∂ψt(x, y, z)/∂x =

−
∫ ∞
−∞

dk exp(ikz)
∞∑
n=0

˜̃B
t

y(n, k)(nπ/W ) sin[(x+W/2)(nπ/W )] cosh[σn(y +H/2)]

σn sinh(Hσn)
.

(17.5.35)
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[Note that we may interchange summation and differentiation: the series (5.31) converges
absolutely and uniformly due to the σn sinh(Hσn) denominator.] It follows that

[∂ψt(x, y, z)/∂x]|x=±W/2 = 0. (17.5.36)

Similarly, we find that
[∂ψb(x, y, z)/∂x]|x=±W/2 = 0. (17.5.37)

Also from (5.31) we find that

∂ψt(x, y, z)/∂y =∫ ∞
−∞

dk exp(ikz)
∞∑
n=0

˜̃B
t

y(n, k) cos[(x+W/2)(nπ/W )] sinh[σn(y +H/2)]

sinh(Hσn)
.

(17.5.38)

It follows that
[∂ψt(x, y, z)/∂y]|y=−H/2 = 0 (17.5.39)

and

[∂ψt(x, y, z)/∂y]|y=H/2 =

∫ ∞
−∞

dk exp(ikz)
∞∑
n=0

˜̃B
t

y(n, k) cos[(x+W/2)(nπ/W )]

=
∞∑
n=0

B̃t
y(n, z) cos[(x+W/2)(nπ/W )]

= Bt
y(x, z). (17.5.40)

Similarly, we find that
[∂ψb(x, y, z)/∂y]|y=H/2 = 0 (17.5.41)

and

[∂ψb(x, y, z)/∂y]|y=−H/2 =

∫ ∞
−∞

dk exp(ikz)
∞∑
n=0

˜̃B
b

y(n, k) cos[(x+W/2)(nπ/W )]

=
∞∑
n=0

B̃b
y(n, z) cos[(x+W/2)(nπ/W )]

= Bb
y(x, z). (17.5.42)

Finally, analogous results hold for ψ`(x, y, z) and ψr(x, y, z). They satisfy the relations

[∂ψ`(x, y, z)/∂y]|y=±H/2 = 0, (17.5.43)

[∂ψr(x, y, z)/∂y]|y=±H/2 = 0, (17.5.44)

[∂ψ`(x, y, z)/∂x]|x=W/2 = 0, (17.5.45)

[∂ψ`(x, y, z)/∂x]|x=−W/2 = B`
x(y, z), (17.5.46)
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[∂ψr(x, y, z)/∂x]|x=−W/2 = 0, (17.5.47)

[∂ψr(x, y, z)/∂x]|x=W/2 = Br
x(y, z). (17.5.48)

At last we are ready to construct ψ(x, y, z). We make the definition

ψ(x, y, z) = ψt(x, y, z) + ψb(x, y, z) + ψ`(x, y, z) + ψr(x, y, z). (17.5.49)

Evidently this ψ satisfies Laplace’s equation. Also we find that

[∂ψ(x, y, z)/∂y]|y=H/2 =

[∂ψt(x, y, z)/∂y]|y=H/2 + [∂ψb(x, y, z)/∂y]|y=H/2

+[∂ψ`(x, y, z)/∂y]|y=H/2 + [∂ψr(x, y, z)/∂y]|y=H/2

= Bt
y(x, z). (17.5.50)

Here we have used (5.35) through (5.48). Similarly we find that

[∂ψ(x, y, z)/∂y]|y=−H/2 = Bb
y(x, z), (17.5.51)

[∂ψ(x, y, z)/∂x]|x=−W/2 = B`
x(y, z), (17.5.52)

[∂ψ(x, y, z)/∂x]|x=W/2 = Br
x(y, z). (17.5.53)

Thus ψ satisfies the required boundary conditions on all four surfaces. Finally, observe that
the quantities appearing on the right sides of (5.31) through (5.34) are entire functions of
x, y, and z. Now suppose that x, y have values corresponding to a point inside the cylinder.
Then, thanks to the denominators appearing on the right sides of (5.31) through (5.34), the
integrals and sums are rapidly convergent. It follows that ψ(x, y, z) is analytic in x, y, z for
all points within the cylinder.

17.5.2 Finding the On-Axis Gradients

The remaining task is to determine the on-axis gradients by finding the cylindrical harmonic
expansion for ψ as given by (5.31) through (5.34) and (5.49). In analogy to the case of the
elliptical cylinder, this will be done with the aid of what may be called Fourier-Bessel
connection coefficients. Namely, there are the formulas

cos[(x+W/2)(jπ/W )] cosh[σj(y +H/2)] =
∞∑
m=0

dtcmj(k)Im(kρ) cos(mφ) +
∞∑
m=1

dtsmj(k)Im(kρ) sin(mφ), (17.5.54)

cos[(x+W/2)(jπ/W )] cosh[σj(y −H/2)] =
∞∑
m=0

dbcmj(k)Im(kρ) cos(mφ) +
∞∑
m=1

dbsmj(k)Im(kρ) sin(mφ), (17.5.55)

cos[(y +H/2)(jπ/H)] cosh[τj(x+W/2)] =
∞∑
m=0

d`cmj(k)Im(kρ) cos(mφ) +
∞∑
m=1

d`smj(k)Im(kρ) sin(mφ), (17.5.56)
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cos[(y +H/2)(jπ/H)] cosh[τj(x−W/2)] =
∞∑
m=0

drcmj(k)Im(kρ) cos(mφ) +
∞∑
m=1

drsmj(k)Im(kρ) sin(mφ). (17.5.57)

We will derive them shortly. Before doing so, we will use them to find the on-axis gradients.
Suppose we employ (5.54) in (5.31). Doing so gives the result

ψt(x, y, z) =
∞∑
m=0

∫ ∞
−∞

dk exp(ikz)Im(kρ) cos(mφ)
∞∑
j=0

dtcmj(k) ˜̃B
t

y(j, k)

σj sinh(Hσj)

+
∞∑
m=1

∫ ∞
−∞

dk exp(ikz)Im(kρ) sin(mφ)
∞∑
j=0

dtsmj(k) ˜̃B
t

y(j, k)

σj sinh(Hσj)
. (17.5.58)

Similarly, we find the relations

ψb(x, y, z) =
∞∑
m=0

∫ ∞
−∞

dk exp(ikz)Im(kρ) cos(mφ)
∞∑
j=0

dbcmj(k) ˜̃B
b

y(j, k)

σj sinh(Hσj)

+
∞∑
m=1

∫ ∞
−∞

dk exp(ikz)Im(kρ) sin(mφ)
∞∑
j=0

dbsmj(k) ˜̃B
b

y(j, k)

σj sinh(Hσj)
, (17.5.59)

ψ`(x, y, z) =
∞∑
m=0

∫ ∞
−∞

dk exp(ikz)Im(kρ) cos(mφ)
∞∑
j=0

d`cmj(k) ˜̃B
`

y(j, k)

τj sinh(Wτj)

+
∞∑
m=1

∫ ∞
−∞

dk exp(ikz)Im(kρ) sin(mφ)
∞∑
j=0

d`smj(k) ˜̃B
`

y(j, k)

τj sinh(Wτj)
, (17.5.60)

ψr(x, y, z) =
∞∑
m=0

∫ ∞
−∞

dk exp(ikz)Im(kρ) cos(mφ)
∞∑
j=0

drcmj(k) ˜̃B
r

y(j, k)

τj sinh(Wτj)

+
∞∑
m=1

∫ ∞
−∞

dk exp(ikz)Im(kρ) sin(mφ)
∞∑
j=0

crsmj(k) ˜̃B
r

y(j, k)

τj sinh(Wτj)
. (17.5.61)

It follows that ψ can be written in the form

ψ(x, y, z) =
∞∑
m=0

∫ ∞
−∞

dk exp(ikz)Im(kρ) cos(mφ)Gm,c(k)

+
∞∑
m=1

∫ ∞
−∞

dk exp(ikz)Im(kρ) sin(mφ)Gm,s(k) (17.5.62)
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where

Gm,c(k) =
∞∑
j=0

[
dtcmj(k) ˜̃B

t

y(j, k) + dbcmj(k) ˜̃B
b

y(j, k)

σj sinh(Hσj)
+
d`cmj(k) ˜̃B

`

y(j, k) + drcmj(k) ˜̃B
r

y(j, k)

τj sinh(Wτj)
],

(17.5.63)

Gm,s(k) =
∞∑
j=0

[
dtsmj(k) ˜̃B

t

y(j, k) + dbsmj(k) ˜̃B
b

y(j, k)

σj sinh(Hσj)
+
d`smj(k) ˜̃B

`

y(j, k) + drsmj(k) ˜̃B
r

y(j, k)

τj sinh(Wτj)
].

(17.5.64)

We remark that it can be shown that the real parts of the Gm,α are even in k, and the
imaginary parts are odd in k. See Exercise 5.2. Finally, in view of (14.2.55) and (14.2.56),
we have the desired results

C [n]
m,c(z) = in(1/2)m(1/m!)

∫ ∞
−∞

dk exp(ikz)kn+mGm,c(k), (17.5.65)

C [n]
m,s(z) = in(1/2)m(1/m!)

∫ ∞
−∞

dk exp(ikz)kn+mGm,s(k). (17.5.66)

We have found expressions for the generalized gradients in terms of field data (normal
component) on the surface of a rectangular cylinder. These results hold for the cases m ≥ 1.
When m = 0 there are the results

C
[n]
m=0,c(z) = C

[n]
0 (z) = in

∫ ∞
−∞

dk exp(ikz)knG0,c(k), (17.5.67)

C
[n]
m=0,s(z) = 0. (17.5.68)

Just as in the m = 0 case for the circular and elliptical cylinder, in the rectangular case it
may also be better to derive and employ formulas based on the tangential component Bz

rather than the normal component. See Section 18.2.

17.5.3 Fourier-Bessel Connection Coefficients

The purpose of this subsection is to derive the Fourier-Bessel connection coefficients postu-
lated in (5.54) through (5.57). We will do so in pieces. First, recall the Bessel generating-
function relation

exp[z cos(θ)] = I0(z) + 2
∞∑
m=1

cos(mθ)Im(z)

=
∞∑

m=−∞

exp(imθ)Im(z). (17.5.69)
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Here we have again employed (14.2.12). Second, we have been taught from the cradle that
circular and hyperbolic functions, which appear on the left sides of (5.54) through (5.57),
are made of exponential functions. We will see that the combinations of these exponential
functions that occur in (5.54) through (5.57) can in turn be written in a form that enables
the use of (5.69).

Begin with (5.54), whose left side can be written in the expanded form

cos[(x+W/2)(jπ/W )] cosh[σj(y +H/2)] = (1/4)×
{exp[i(x+W/2)(jπ/W )] + exp[−i(x+W/2)(jπ/W )]} ×
{exp[σj(y +H/2)] + exp[−σj(y +H/2)]}. (17.5.70)

Multiplying out the factors that occur on the right side of (5.70) produces a sum of four
terms:

cos[(x+W/2)(jπ/W )] cosh[σj(y +H/2)] = (1/4)×
[(i)j exp(σjH/2) exp(ijπx/W ) exp(σjy) +

(i)j exp(−σjH/2) exp(ijπx/W ) exp(−σjy) +

(−i)j exp(σjH/2) exp(−ijπx/W ) exp(σjy) +

(−i)j exp(−σjH/2) exp(−ijπx/W ) exp(−σjy)]. (17.5.71)

Here we have used the the result

exp[(±iW/2)(jπ/W )] = exp(±ijπ/2) = (±i)j. (17.5.72)

We see that we have to deal with products of the form exp(±ijπx/W ) exp(±σjy) where the
signs are to be taken independently. We will treat each of these four possibilities separately.

For the ++ possibility we write

exp(ijπx/W ) exp(σjy) = exp(ijπx/W+σjy) = exp[(ijπρ/W ) cosφ+(ρσj) sinφ]. (17.5.73)

Here we have made the substitutions (14.2.3) and (14.2.4). Next recall the identity

cos(φ+ ψ) = cosψ cosφ− sinψ sinφ. (17.5.74)

Let us write the argument appearing on the right side of (5.73) in the form

(ijπρ/W ) cosφ+ (ρσj) sinφ = λ cos(φ+ ψ) = λ cosψ cosφ− λ sinψ sinφ (17.5.75)

where λ, sinψ, and cosψ are yet to be determined. Equating like terms in φ yields the
relations

λ cosψ = ijπρ/W, (17.5.76)

λ sinψ = −ρσj. (17.5.77)

Now square both sides of (5.76) and (5.77) and add the results to obtain the relation

λ2 = ρ2[−(jπ/W )2 + σ2
j ] = (kρ)2. (17.5.78)
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Here we have used (5.29). It follows that

λ = kρ, (17.5.79)

and we may also write
cosψ = ijπ/(kW ), (17.5.80)

sinψ = −σj/k. (17.5.81)

For future use, we invoke Euler to write

exp(iψ) = cosψ + i sinψ = ijπ/(kW )− iσj/k = (i/k)(jπ/W − σj), (17.5.82)

exp(−iψ) = cosψ − i sinψ = ijπ/(kW ) + iσj/k = (i/k)(jπ/W + σj). (17.5.83)

Finally employing (5.79), first in (5.75) and then in (5.73), yields the results

(ijπρ/W ) cosφ+ (ρσj) sinφ = kρ cos(φ+ ψ) (17.5.84)

and
exp(ijπx/W ) exp(σjy) = exp[kρ cos(φ+ ψ)]. (17.5.85)

We next deal with the other sign possibilities. Consider the substitutions φ → −φ,
φ → φ + π, and φ → π − φ. It is readily verified from (14.2.3) and (14.2.4) that these
substitutions correspond to the following substitutions in x and y:

φ→ −φ⇐⇒ x→ x, y → −y; (17.5.86)

φ→ φ+ π ⇐⇒ x→ −x, y → −y; (17.5.87)

φ→ π − φ⇐⇒ x→ −x, y → y. (17.5.88)

Therefore, from (5.85), we find the results

exp(ijπx/W ) exp(−σjy) = exp[kρ cos(−φ+ ψ)] = exp[kρ cos(φ− ψ)], (17.5.89)

exp(−ijπx/W ) exp(σjy) = exp[kρ cos(π − φ+ ψ)] = exp[kρ cos(φ− ψ − π)], (17.5.90)

exp(−ijπx/W ) exp(−σjy) = exp[kρ cos(φ+ ψ + π)]. (17.5.91)

Let us now see how the results for the products exp(±ijπx/W ) exp(±σjy), as given by
(5.85) and (5.89) through (5.91), can be used in conjunction with (5.69). For the ++ case
use of (5.69) and (5.85) gives the result

exp(ijπx/W ) exp(σjy) = exp[kρ cos(φ+ ψ)] =
∞∑

m=−∞

exp[im(φ+ ψ)]Im(kρ) =

∞∑
m=−∞

exp(imψ) exp(imφ)Im(kρ) =

∞∑
m=−∞

(i/k)m(jπ/W − σj)m exp(imφ)Im(kρ). (17.5.92)
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Here we have also used (5.82). Similarly, for the remaining cases, we find the results

exp(ijπx/W ) exp(−σjy) = exp[kρ cos(φ− ψ)] =

,
∞∑

m=−∞

exp(−imψ) exp(imφ)Im(kρ) =

∞∑
m=−∞

(i/k)m(jπ/W + σj)
m exp(imφ)Im(kρ), (17.5.93)

exp(−ijπx/W ) exp(σjy) = exp[kρ cos(φ− ψ − π)] =
∞∑

m=−∞

exp(−imπ) exp(−imψ) exp(imφ)Im(kρ) =

∞∑
m=−∞

(−1)m(i/k)m(jπ/W + σj)
m exp(imφ)Im(kρ), (17.5.94)

exp(−ijπx/W ) exp(−σjy) = exp[kρ cos(φ+ ψ + π)] =
∞∑

m=−∞

exp(imπ) exp(imψ) exp(imφ)Im(kρ) =

∞∑
m=−∞

(−1)m(i/k)m(jπ/W − σj)m exp(imφ)Im(kρ). (17.5.95)

Bessel expansions have now been obtained for all the various pieces that result from
expanding in exponentials the terms on the left side of (5.54). We now combine them to
find a Bessel expansion for the left side of (5.54). From (5.71) and (5.92) through (5.95), we
find the result

cos[(x+W/2)(jπ/W )] cosh[σj(y +H/2)] =
∞∑

m=−∞

dtmj(k)Im(kρ) exp(imφ) (17.5.96)

where

dtmj(k) = (1/4)(i)j+m{[(jπ/W − σj)/k]m + (−1)j+m[(jπ/W + σj)/k]m} exp(σjH/2)

+ (1/4)(i)j+m{[(jπ/W + σj)/k]m + (−1)j+m[(jπ/W − σj)/k]m} exp(−σjH/2).

(17.5.97)

Upon comparing (5.54) and (5.96) we see that for m ≥ 1 there are the relations

dtcmj = dtmj + dt−mj, (17.5.98)

dtsmj = idtmj − idt−mj. (17.5.99)
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And for m = 0 there is the result
dtc0j = dt0j, (17.5.100)

dts0j = 0. (17.5.101)

Let us first deal with the simplest case, that for m = 0. Use of (5.97) then gives the
result

dt0j(k) = (1/4)(i)j{[1 + (−1)j} exp(σjH/2)

+ (1/4)(i)j{[1 + (−1)j} exp(−σjH/2).

(17.5.102)

Therefore, for m = 0, we conclude that

dtc0j = 0 for j odd, (17.5.103)

dtc0j = (−1)j/2 cosh(σjH/2) for j even. (17.5.104)

Now tackle the more complicated case m ≥ 1. Note that there is the relation

[(jπ/W − σj)/k][(jπ/W + σj)/k] = [(jπ/W )2 − (σ2
j )]/k

2 = −k2/k2 = −1. (17.5.105)

Here we have again used (5.29). Consequently, we find that

dt−mj(k) = (1/4)(i)j−m{[(jπ/W − σj)/k]−m + (−1)j−m[(jπ/W + σj)/k]−m} exp(σjH/2)

+ (1/4)(i)j−m{[(jπ/W + σj)/k]−m + (−1)j−m[(jπ/W − σj)/k]−m} exp(−σjH/2)

= (1/4)(i)j−m(−1)m{[(jπ/W + σj)/k]m + (−1)j−m[(jπ/W − σj)/k]m} exp(σjH/2)

+ (1/4)(i)j−m(−1)m{[(jπ/W − σj)/k]m + (−1)j−m[(jπ/W + σj)/k]m} exp(−σjH/2).

(17.5.106)

We also note that
(i)j−m(−1)m = (i)j−m(i)2m = (i)j+m (17.5.107)

and
(−1)j−m = (−1)2m(−1)j−m = (−1)j+m. (17.5.108)

Therefore, we may also write

dt−mj(k) = (1/4)(i)j+m{[(jπ/W + σj)/k]m + (−1)j+m[(jπ/W − σj)/k]m} exp(σjH/2)

+ (1/4)(i)j+m{[(jπ/W − σj)/k]m + (−1)j+m[(jπ/W + σj)/k]m} exp(−σjH/2).

(17.5.109)

Let us now compute dtcmj(k). It follows from (5.97), (5.98), and (5.109) that for m ≥ 1
there is the result

dtcmj(k) = (1/4)(i)j+m[1 + (−1)j+m]×
{[(jπ/W − σj)/k]m + [(jπ/W + σj)/k]m} exp(σjH/2)

+ (1/4)(i)j+m[1 + (−1)j+m]×
{[(jπ/W + σj)/k]m + [(jπ/W − σj)/k]m} exp(−σjH/2)

= (1/2)(i)j+m[1 + (−1)j+m]×
{[(jπ/W − σj)/k]m + [(jπ/W + σj)/k]m} cosh(σjH/2). (17.5.110)
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Therefore, when (j +m) is odd,
dtcmj = 0. (17.5.111)

And, when (j +m) is even,

dtcmj = (−1)(j+m)/2{[(jπ/W − σj)/k]m + [(jπ/W + σj)/k]m} cosh(σjH/2). (17.5.112)

Finally, let us compute dtsmj. It follows from (5.97), (5.99), and (5.109) that for m ≥ 1
there is the result

dtsmj(k) = (1/4)i(i)j+m[1− (−1)j+m]×
{[(jπ/W − σj)/k]m − [(jπ/W + σj)/k]m} exp(σjH/2)

+ (1/4)i(i)j+m[1− (−1)j+m]×
{[(jπ/W + σj)/k]m − [(jπ/W − σj)/k]m} exp(−σjH/2)

= (1/2)i(i)j+m[1− (−1)j+m]×
{[(jπ/W − σj)/k]m − [(jπ/W + σj)/k]m} sinh(σjH/2). (17.5.113)

Therefore, when (j +m) is even,
dtsmj = 0. (17.5.114)

And, when (j +m) is odd,

dtsmj = (−1)(j+m+1)/2{[(jπ/W − σj)/k]m − [(jπ/W + σj)/k]m} sinh(σjH/2). (17.5.115)

We have found the Fourier-Bessel coefficients dtαmj(k). Next observe that the left sides of
(5.54) and (5.55) are interchanged under the substitution H ↔ −H. Therefore, for m ≥ 1,
there are also the relations

dbcmj = dtcmj, (17.5.116)

dbsmj = −dtsmj. (17.5.117)

And for m = 0 there are the results
dbc0j = dtc0j, (17.5.118)

dbs0j = 0. (17.5.119)

Analogous calculations can be made to find Bessel expansions for the right sides of (5.56)
and (5.57). Instead, for variety, we will take a different approach that utilizes results already
obtained. Consider the relation (5.54). Using (14.2.3) and (14.2.4) we may rewrite it in the
form

cos{[ρ cos(φ) +W/2][jπ/W ]} cosh{σj[ρ sin(φ) +H/2]} =
∞∑
m=0

dtcmj(k)Im(kρ) cos(mφ) +
∞∑
m=1

dtsmj(k)Im(kρ) sin(mφ). (17.5.120)

Now make the substitution φ→ φ+ π/2. So doing gives the result

cos{[ρ cos(φ+ π/2) +W/2][jπ/W ]} cosh{σj[ρ sin(φ+ π/2) +H/2]} =
∞∑
m=0

dtcmj(k)Im(kρ) cos[m(φ+ π/2)] +
∞∑
m=1

dtsmj(k)Im(kρ) sin[m(φ+ π/2)].

(17.5.121)
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Next employ the identities

ρ cos(φ+ π/2) = −ρ sin(φ) = −y, (17.5.122)

ρ sin(φ+ π/2) = ρ cos(φ) = x, (17.5.123)

cos[m(φ+ π/2)] = cos(mφ) cos(mπ/2)− sin(mφ) sin(mπ/2), (17.5.124)

sin[m(φ+ π/2)] = sin(mφ) cos(mπ/2) + cos(mφ) sin(mπ/2). (17.5.125)

We see that (5.120) can be rewritten in the form

cos{[−y +W/2][jπ/W ]} cosh{σj[x+H/2]} =
∞∑
m=0

Dc
mj(k)Im(kρ) cos(mφ) +

∞∑
m=1

Ds
mj(k)Im(kρ) sin(mφ) (17.5.126)

where

Dc
mj(k) = dtcmj(k) cos(mπ/2) + dtsmj(k) sin(mπ/2), (17.5.127)

Ds
mj(k) = −dtcmj(k) sin(mπ/2) + dtsmj(k) cos(mπ/2). (17.5.128)

Now employ the already known results (5.101), (5.103), (5.104), (5.111), (5.112), (5.114),
and (5.115). First, for m = 0, we find the relations

Dc
0j(k) = dtc0j = (−1)j/2 cosh(σjH/2) for j even, (17.5.129)

Dc
0j(k) = dtc0j = 0 for j odd, (17.5.130)

Ds
0j(k) = dts0j = 0. (17.5.131)

For the remaining Dα
mj(k) we must distinguish the cases (j+m) odd and even. When (j+m)

is odd we find the results

Dc
mj(k) = dtsmj(k) sin(mπ/2)

= (−1)(j+m+1)/2 sin(mπ/2){[(jπ/W − σj)/k]m − [(jπ/W + σj)/k]m} sinh(σjH/2),

(17.5.132)

Ds
mj(k) = dtsmj(k) cos(mπ/2)

= (−1)(j+m+1)/2 cos(mπ/2){[(jπ/W − σj)/k]m − [(jπ/W + σj)/k]m} sinh(σjH/2).

(17.5.133)

And, when (j +m) is even, we find the results

Dc
mj(k) = dtcmj(k) cos(mπ/2)

= (−1)(j+m)/2 cos(mπ/2){[(jπ/W − σj)/k]m + [(jπ/W + σj)/k]m} cosh(σjH/2),

(17.5.134)
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Ds
mj(k) = −dtcmj(k) sin(mπ/2)

= (−1)(j+m)/2 sin(mπ/2){[(jπ/W − σj)/k]m + [(jπ/W + σj)/k]m} cosh(σjH/2).

(17.5.135)

For the penultimate step, compare the left side of (5.126) with the left side of (5.56). We
see that the first is transformed into the second under the substitutions W → −H, σj → τj,
and H → W . It follows that there are the relations

d`c0j = (−1)j/2 cosh(τjW/2) for j even, (17.5.136)

d`c0j = 0 for j odd, (17.5.137)

d`s0j = 0. (17.5.138)

For the remaining d`αmj we must again distinguish the cases (j + m) odd and even. When
(j +m) is odd we find the results

d`cmj(k) = (−1)(j+m+1)/2(−1)m sin(mπ/2){[(jπ/H + τj)/k]m − [(jπ/H − τj)/k]m} sinh(τjW/2),

(17.5.139)

d`smj(k) = (−1)(j+m+1)/2(−1)m cos(mπ/2){[(jπ/H + τj)/k]m − [(jπ/H − τj)/k]m} sinh(τjW/2).

(17.5.140)

And, when (j +m) is even, we find the results

d`cmj(k) = (−1)(j+m)/2(−1)m cos(mπ/2){[(jπ/H + τj)/k]m + [(jπ/H − τj)/k]m} cosh(τjW/2),

(17.5.141)

d`smj(k) = −(−1)(j+m)/2(−1)m sin(mπ/2){[(jπ/H + τj)/k]m + [(jπ/H − τj)/k]m} cosh(τjW/2).

(17.5.142)

Finally, observe that the left sides of (5.56) and (5.57) are interchanged under the sub-
stitution W ↔ −W . It follows that for m = 0 there are the relations

drc0j = d`c0j, (17.5.143)

drs0j = 0. (17.5.144)

For the remaining drαmj, when (j +m) is odd, we find the results

drcmj(k) = −d`cmj(k), (17.5.145)

drsmj(k) = −d`smj(k). (17.5.146)

And, when (j +m) is even, we find the results

drcmj(k) = d`cmj(k), (17.5.147)

drsmj(k) = d`smj(k). (17.5.148)
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Exercises

17.5.1. How could one have known that Fourier-Bessel expansions of the form (5.54) through
(5.57) must exist? Consider, for example, (5.54). Multiply both sides by exp(ikz). Show
that both sides then become harmonic functions. Moreover, the left side is analytic in the
vicinity of the z axis. But we know from Section 14.2.1 that such functions must have an
expansion of the form (14.2.11).

17.5.2. Verify the relations (5.116) through (5.119).

17.5.3. Check the consistency of the relations (5.92) through (5.95) by verifying that they
are transformed among themselves by the substitutions W ↔ −W and σj ↔ −σj.

17.5.4. Verify that the functions σj sinh(Hσj) and τj sinh(Wτj) and the Fourier-Bessel co-

efficients dβαmj are even functions of k. Use these facts to show that the real parts of the Gm,α

are even in k, and the imaginary parts are odd in k.

17.5.5. Consider the functions ψj(x, y, z) for j = 1, 2, 3 defined by the relations

ψ1(x, y, z) = a cos(kxx) sinh(kyy) cos(kz + χ) (17.5.149)

with
− k2

x + k2
y = k2; (17.5.150)

ψ2(x, y, z) = a cosh(kxx) sinh(kyy) cos(kz + χ) (17.5.151)

with
k2
x + k2

y = k2; (17.5.152)

ψ3(x, y, z) = a cosh(kxx) sin(kyy) cos(kz + χ) (17.5.153)

with
k2
x − k2

y = k2. (17.5.154)

Verify that each ψj satisfies Laplace’s equation, is analytic everywhere, and in particular is
analytic in x, y near the z axis. Verify that each ψj can be written in the form (14.2.11).
Verify that each ψj produces a vertical (±y direction) field in the midplane y = 0 that
oscillates in z, and therefore is some approximation (at least near the z axis) to the field of
an infinitely long wiggler.

17.5.6. Consider a ψ of the form

ψ(x, y, z) = (a+ by) exp(kx) exp(ikz). (17.5.155)

Verify that this ψ satisfies Laplace’s equation, is analytic everywhere, and in particular is
analytic in x, y near the z axis. Verify that this ψ can be written in the form (14.2.11). In
particular, verify that this ψ can be written in the form

ψ = a[I0(kρ) + 2
∞∑
m=1

cos(mφ)Im(kρ)] exp(ikz)

+ [(2b/k)
∞∑
m=1

m sin(mφ)Im(kρ)] exp(ikz). (17.5.156)
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17.6 Attempted Use of Nearly On-Axis and

Midplane Field Data

As promised at the end of Section 14, here we examine other attempted approaches. All
will be seen to involve what, in essence, is high-order numerical differentiation. Therefore,
they are unlikely to yield reliable results beyond modest order, at best.

17.6.1 Use of Nearly On-Axis Data

Let us begin with the cylindrical multipole expansion

ψ(ρ, φ, z) = ψ(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
0 (z)ρ2`

+
∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m

+
∞∑
m=1

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m.

(17.6.1)

Suppose (6.1) is multiplied by factors of cos(mφ) or sin(mφ) and the integrated over φ.
Doing so gives the results

ψ̃(ρ, 0, z) =

∫ 2π

0

dφ ψ(ρ, φ, z) =
∞∑
`=0

(−1)`
2π

22``!`!
C

[2`]
0 (z)ρ2`, (17.6.2)

ψ̃c(ρ,m, z) =

∫ 2π

0

dφ cos(mφ)ψ(ρ, φ, z) =
∞∑
`=0

(−1)`
π m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m, (17.6.3)

ψ̃s(ρ,m, z) =

∫ 2π

0

dφ sin(mφ)ψ(ρ, φ, z) =
∞∑
`=0

(−1)`
π m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m. (17.6.4)

If ψ(ρ, φ, z) is known, and it is in fact provided at grid points by some three-dimensional
codes, then the integrals in (6.2) through (6.4) can be computed. Moreover, we have the
relations

C
[0]
0 (z) = [1/(2π)] lim

ρ→0
ψ̃(ρ, 0, z), (17.6.5)

C [0]
m.c(z) = (1/π) lim

ρ→0
(1/ρm)ψ̃c(ρ,m, z), (17.6.6)

C [0]
m,s(z) = (1/π) lim

ρ→0
(1/ρm)ψ̃s(ρ,m, z). (17.6.7)

It is also in principle possible to compute the on-axis gradients from field data. Let
Bρ(ρ, φ, z) be the ρ component of B. It is defined by the relation

Bρ(ρ, φ, z) = Bρ(x, y, z) = eρ ·B = (x/ρ)Bx + (y/ρ)By = cos(φ)Bx + sin(φ)By. (17.6.8)
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In terms of Bρ(ρ, φ, z), define the quantities

B̃ρ(ρ, 0, z) =

∫ 2π

0

dφ Bρ(ρ, φ, z), (17.6.9)

B̃ρc(ρ,m, z) =

∫ 2π

0

dφ cos(mφ)Bρ(ρ, φ, z), (17.6.10)

B̃ρs(ρ,m, z) =

∫ 2π

0

dφ sin(mφ)Bρ(ρ, φ, z). (17.6.11)

We also know that

Bρ(ρ, φ, z) = (∂/∂ρ)ψ(ρ, φ, z). (17.6.12)

It follows that there are the relations

B̃ρ(ρ, 0, z) =
∞∑
`=0

(−1)`
4π`

22``!`!
C

[2`]
0 (z)ρ2`−1, (17.6.13)

B̃ρc(ρ,m, z) =
∞∑
`=0

(−1)`
π (2`+m)m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m−1, (17.6.14)

B̃ρs(ρ,m, z) =
∞∑
`=0

(−1)`
π (2`+m)m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m−1. (17.6.15)

Consequently, there are the relations

C
[2]
0 (z) = (1/π) lim

ρ→0
(1/ρm)B̃ρ(ρ, 0, z), (17.6.16)

C [0]
m,c(z) = (1/π) lim

ρ→0
(1/ρ?)B̃ρc(ρ,m, z), (17.6.17)

C [0]
m,s(z) = (1/π) lim

ρ→0
(1/ρm)B̃ρs(ρ,m, z). (17.6.18)

Also, from *, we have the relation.

C
[1]
0 (z) = lim

x,y→0
Bz(x, y, z) = Bz(0, 0, z). (17.6.19)

Let us now examine the feasibility of carrying out the indicated calculations based on
numerical data provided on a 3-d grid. We see that, apart from (6.5) and (6.19), which
can be reliably estimated, particularly if the grid is chosen so that there are grid points
on the z axis, it is necessary to perform a limiting process in which both a numerator
and denominator approach zero. Such a limiting process is akin to numerical differentiation.
Also, to compute the C

[n]
m,α(z) for larger values of n, it is necessary to repeatedly differentiate

the above relations with respect to z. When based on grid data, this again involves multiple
numerical differentiation.
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17.6.2 Use of Midplane Field Data

In place of nearly on-axis data, one might consider the use of Midplane Field Data. Use of
the relations (H.1.17) through (H.1.19) gives for the nearly midplane field the expansions

Bx(x, y, z) = ∂xψ = C
[0]
1,c(z) + x[2C

[0]
2,c(z)− (1/2)C

[2]
0 (z)] + 2yC

[0]
2,s(z)

+3x2[C
[0]
3,c(z)− (1/8)C

[2]
1,c(z)]− y2[3C

[0]
3,c(z) + (1/8)C

[2]
1,c(z)]

+2xy[3C
[0]
3,s(z)− (1/8)C

[2]
1,s(z)] · · · , (17.6.20)

By(x, y, z) = ∂yψ = +C
[0]
1,s(z)− y[2C

[0]
2,c(z) + (1/2)C

[2]
0 (z)] + 2xC

[0]
2,s(z)

−3y2[C
[0]
3,s(z) + (1/8)C

[2]
1,s(z)] + x2[3C

[0]
3,s(z)− (1/8)C

[2]
1,s(z)]

−2xy[3C
[0]
3,c(z) + (1/8)C

[2](z)
1,c ] + · · · , (17.6.21)

Bz(x, y, z) = ∂zψ = C
[1]
0 (z) + xC

[1]
1,c(z) + yC

[1]
1,s(z)

+(x2 − y2)C
[1]
2,c(z) + 2xyC

[1]
2,s(z)− (1/4)(x2 + y2)C

[3]
0 (z) + · · · . (17.6.22)

Evaluating these expansions in the midplane gives the results

Bx(x, y = 0, z) = C
[0]
1,c(z) + x[2C

[0]
2,c(z)− (1/2)C

[2]
0 (z)]

+3x2[C
[0]
3,c(z)− (1/8)C

[2]
1,c(z)] · · · ,

(17.6.23)

By(x, y = 0, z) = C
[0]
1,s(z) + 2xC

[0]
2,s(z)

+x2[3C
[0]
3,s(z)− (1/8)C

[2]
1,s(z)] + · · · ,

(17.6.24)

Bz(x, y = 0, z) = C
[1]
0 (z) + xC

[1]
1,c(z)

+x2[C
[1]
2,c(z)− (1/4)C

[3]
0 (z)] + · · · . (17.6.25)

The relations (6.4) through (6.6) express the midplane fields in terms of on-axis gradients.
These relations can be inverted to determine the on-axis gradients in terms of the midplane
fields. By repeatedly differentiating them with respect to x and z and then setting x = 0,
one finds the results

C
[1]
0 (z) = Bz(x = 0, y = 0, z), (17.6.26)

C
[0]
1,c(z) = Bx(x = 0, y = 0, z), (17.6.27)

C
[0]
1,s(z) = By(x = 0, y = 0, z), (17.6.28)

C
[0]
2,c(z) = (1/2)(∂Bx/∂x)

∣∣∣∣
(0,0,z)

+ (1/4)(∂Bz/∂z)

∣∣∣∣
(0,0,z)

, (17.6.29)
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C
[0]
2,s(z) = (1/2)(∂By/∂x)

∣∣∣∣
(0,0,z)

, (17.6.30)

C
[0]
3,c(z) = (1/6)(∂2Bx/∂x

2)

∣∣∣∣
(0,0,z)

+ (1/8)(∂2Bx/∂z
2)

∣∣∣∣
(0,0,z)

, (17.6.31)

C
[0]
3,s(z) = (1/6)(∂2By/∂x

2)

∣∣∣∣
(0,0,z)

+ (1/24)(∂2By/∂z
2)

∣∣∣∣
(0,0,z)

, etc. (17.6.32)

See Exercise 6.1. Finally, by repeatedly differentiating these relations with respect to z,
one can obtain the C

[n]
m,α(z) for n > 0. In general, the computation of the C

[n]
m,α(z) requires

m+n− 1 differentiations. Again, when based on grid data, this involves multiple numerical
differentiation, and therefore is expected to be unreliable.

Exercises

17.6.1. The aim of this exercise is to verify the relations (6.26) through (6.32). Begin by
setting x = 0 in the relations (6.4) through (6.6). Show that so doing yields the results

Bx(x = 0, y = 0, z) = C
[0]
1,c(z), (17.6.33)

By(x = 0, y = 0, z) = C
[0]
1,s(z), (17.6.34)

Bz(x = 0, y = 0, z) = C
[1]
0 (z). (17.6.35)

Next, differentiate (6.4) through (6.6) with respect to x and then set x = 0. Show that so
doing gives the results

(∂Bx/∂x)|0,0,z = −(1/2)C
[2]
0 (z) + 2C

[0]
2,c(z), (17.6.36)

(∂By/∂x)|0,0,z = 2C
[0]
2,s(z), (17.6.37)

(∂Bz/∂x)|0,0,z = C
[1]
1,c(z). (17.6.38)

Show that solving (6.7) through (6.12) for the on-axis gradients gives, so far, the results

C
[0]
1,c(z) = Bx(x = 0, y = 0, z), (17.6.39)

C
[0]
1,s(z) = By(x = 0, y = 0, z), (17.6.40)

C
[1]
0 (z) = Bz(x = 0, y = 0, z), (17.6.41)

C
[0]
2,c(z) = (1/2)(∂Bx/∂x)|0,0,z + (1/4)(∂Bz/∂z)|0,0,z, (17.6.42)

C
[0]
2,s(z) = (1/2)(∂By/∂x)|0,0,z, (17.6.43)

C
[1]
1,c(z) = (∂Bz/∂x)|0,0,z. (17.6.44)

Verify that (6.18) is redundant because from (6.13) we also have the relation

C
[1]
1,c(z) = (∂Bx/∂z)|0,0,z. (17.6.45)



17.7. TERMINATING END FIELDS 1539

Alternatively, (6.19) serves as a consistency check on (6.18).12 Next differentiate the mid-
plane fields twice with respect to x and then set x = 0. Show that so doing yields the
relations

(∂2Bx/∂x
2)|0,0,z = 6[C

[0]
3,c(z)− (1/8)C

[2]
1,c(z)], (17.6.46)

(∂2By/∂x
2)|0,0,z = 2[3C

[0]
3,s(z)− (1/8)C

[2]
1,s(z)], (17.6.47)

(∂2Bz/∂x
2)|0,0,z = 2[C

[1]
2,c(z)− (1/4)C

[3]
0 (z)]. (17.6.48)

Show that these relations, with the aid of the previous relations, can be solved for the next
set of on-axis gradients to give the results

(∂2Bx/∂x
2)|0,0,z = 6[C

[0]
3,c(z)− (1/8)C

[2]
1,c(z)], (17.6.49)

(∂2By/∂x
2)|0,0,z = 2[3C

[0]
3,s(z)− (1/8)C

[2]
1,s(z)], (17.6.50)

(∂2Bz/∂x
2)|0,0,z = 2[C

[1]
2,c(z)− (1/4)C

[3]
0 (z)], (17.6.51)

[C
[0]
3,c(z)− (1/8)C

[2]
1,c(z)] = (1/6)(∂2Bx/∂x

2)|0,0,z, (17.6.52)

C
[0]
3,c(z) = (1/6)(∂2Bx/∂x

2)|0,0,z + (1/8)C
[2]
1,c(z), (17.6.53)

C
[0]
3,c(z) = (1/6)(∂2Bx/∂x

2)|0,0,z + (1/8)(∂2Bx/∂z
2)

∣∣∣∣
(0,0,z)

, (17.6.54)

(∂2By/∂x
2)|0,0,z = 2[3C

[0]
3,s(z)− (1/8)C

[2]
1,s(z)]. (17.6.55)

17.7 Terminating End Fields

In principle, the fringe field of an individual beam-line element at either end of the element
has infinite extent. But in practice in many instances we may wish to regard a beam
line as a collection of separated/isolated elements. To do this it is necessary to make an
approximation in which leading and trailing end fields are “terminated” in some way. The
crucial problem is how to relate canonical coordinates in the absence of a magnetic field
with canonical coordinates in the presence of a magnetic field.

17.7.1 Preliminary Observations

We begin with some preliminary observations. In Cartesian coordinates the Hamiltonian
describing charged-particle motion with z as the independent variable is given by the relation

K = −[(pcan
t )2/c2 −m2c2 − (pcan

x − qAx)2 − (pcan
y − qAy)2]1/2 − qAz. (17.7.1)

Here we have assumed that the electric scalar potential ψ vanishes and A is static so that
there is no electric field. Also, we have used the notation pcan

x , pcan
y , and pcan

t to indicate
that it is the components of the canonical momenta that are involved in a Hamiltonian
description of motion. See (1.6.16).

12This check arises from the requirement ∇×B = 0.
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According to Hamilton’s equations of motion, the change of a coordinate, say x(z), with
z is given by

dx/dz = ∂K/∂pcan
x

= (pcan
x − qAx)/[(pcan

t )2/c2 −m2c2 − (pcan
x − qAx)2 − (pcan

y − qAy)2]1/2

= (pcan
x − qAx)/[−(K + qAz)]. (17.7.2)

Let us verify that this result agrees with what we already know. Recall that

K = −pcan
z . (17.7.3)

See (1.6.6). It follows that (7.2) can be rewritten in the form

dx/dz = (pcan
x − qAx)/(pcan

z − qAz). (17.7.4)

According to (1.5.27) through (1.5.30) there is the relation

pcan − qA = pmech (17.7.5)

where pmech is the mechanical momentum given by

pmech = γmv. (17.7.6)

Consequently, (7.4) can be rewritten in the form

dx/dz = pmech
x /pmech

z = γmvx/(γmvz) = vx/vz =
dx/dt

dz/dt
. (17.7.7)

Evidently, the far left and far right sides of (7.7) agree. It is also easy to see that results
analogous to those just found also hold for y(z).

To complete the story we need to examine also the equation of motion for t(z). In this
case application of the standard Hamiltonian rules gives the result

dt/dz = ∂K/∂pcan
t

= (−pcan
t /c2)/[(pcan

t )2/c2 −m2c2 − (pcan
x − qAx)2 − (pcan

y − qAy)2]1/2

= (−pcan
t /c2)/[−(K + qAz)]. (17.7.8)

Now use of (7.3), (7.5), and (1.6.17) yields the relation

dt/dz = (−pcan
t /c2)/pmech

z = γm/(γmvz) =
1

dz/dt
(17.7.9)

so that the far left and far right sides of (7.9) also agree.
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17.7.2 Changing Gauge

It may be useful to change gauges at various points during the course of integrating a
trajectory and computing an associated transfer map. Suppose the gauge is to be changed
at the point z = zc. Let xb, yb, and tb denote coordinate functions before the change, and
let xa, ya, and ta denote coordinate functions after the change. Also, let Ab(xb, yb; z) and
Aa(xa, ya; z) be the vector potentials before (z < zc) and after (z > zc) the change point
zc. Finally, let pcanb

x , pcanb
y , pcanb

t be the canonical momentum functions before the change,
and let pcana

x , pcana
y , pcana

t be the canonical momentum functions after the change. In terms
of these quantities, the before and after Hamiltonians Kb and Ka are given by the relations

Kb = −[(pcanb
t )2/c2−m2c2− (pcanb

x − qAbx)2− (pcanb
y − qAby)2]1/2− qAbz for z < zc, (17.7.10)

Ka = −[(pcana
t )2/c2−m2c2− (pcana

x − qAax)2− (pcana
y − qAay)2]1/2− qAaz for z > zc. (17.7.11)

What should be the matching relations between the phase-space quantities before and
after? Since the choice of gauge should have no physical effect, there is the immediate
requirement that the coordinate functions be continuous:

xa(z) = xb(z) when z = zc,

ya(z) = yb(z) when z = zc,

ta(z) = tb(z) when z = zc. (17.7.12)

For the same reason, we require that the velocities, and hence the mechanical momenta, be
continuous. From (7.5) and (7.6) we see that this requirement is equivalent to the relations

pcana − qAa = pcanb − qAb when z = zc. (17.7.13)

In terms of components, (7.13) yields the matching relations

pcana
x = pcanb

x + q(Aax − Abx) when z = zc,

pcana
y = pcanb

y + q(Aay − Aby) when z = zc. (17.7.14)

Finally, the total energy cannot change under a gauge transformation and therefore, since
we have assumed that the scalar potential ψ vanishes, there is the matching relation

pcana
t = pcanb

t when z = zc. (17.7.15)

We note that this relation also follows from (1.6.17), (7.5), (7.6), and (7.13).
We assume there is some common overlap region where both Ab and Aa are defined.

Since they both give rise to the same magnetic field, there is the relation

∇× (Aa −Ab) = 0. (17.7.16)

It follows that there is a function χ such that

Aa −Ab = ∇χ. (17.7.17)
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Consequently, the relations (7.14) can be rewritten in the form

pcana
x = pcanb

x + q(∂/∂x)χ when z = zc,

pcana
y = pcanb

y + q(∂/∂y)χ when z = zc. (17.7.18)

There is one last step. Let T c be the symplectic transformation map defined by the relation

T c = exp(q : χ :). (17.7.19)

With aid of this map it is easily verified that the relations (7.12), (7.14), and (7.15) can be
rewritten in the form

xa(z) = exp(q : χ :)xb(z) with z = zc,

ya(z) = exp(q : χ :)yb(z) with z = zc,

ta(z) = exp(q : χ :)tb(z) with z = zc; (17.7.20)

pcana
x (z) = exp(q : χ :)pcanb

x (z) with z = zc,

pcana
y (z) = exp(q : χ :)pcanb

y (z) with z = zc,

pcana
t (z) = exp(q : χ :)pcanb

t (z) with z = zc. (17.7.21)

We have determined that a change in gauge amounts to making a symplectic transformation.
Review Exercises 6.2.8 and 6.5.3.

17.7.3 Finding the Minimal Vector Potential

The goal of this subsection is, given B(r) in some region, to find an associated vector
potential As that is as small/minimal as possible in the sense that As is small if B(r) is
small. The reason for this goal will become apparent in following subsections.

Our plan is as follows: Make Taylor expansions, with initially unknown coefficients, for
the Cartesian components of As, organize these expansions into homogeneous polynomi-
als, and then further organize them as spherical polynomial vector fields. Then use this
representation to compute and organize ∇ × As in terms of spherical polynomial vector
fields. At the same time parameterize B(r) in terms of a scalar potential ψ expanded in
harmonic polynomials. Finally, compare the two expansions for B(r) given by B = ∇ψ
and B = ∇×As, equate coefficients of like terms, and thereby determine the coefficients in
the Taylor expansion for the components of As in terms of the coefficients in the expansion
for ψ. For the notation and machinery required for the execution of this plan, see Appendix
U.

We begin with an expansion for B(r) based on the use of a scalar potential. Without
loss of generality, we may take the region of interest to be centered at the origin. We also
assume that B(r) has a Taylor expansion in the components of r and is divergence and curl
free. In this case there is a harmonic magnetic scalar potential ψ(r) such that

B = ∇ψ. (17.7.22)
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Recall the beginning of Section 15.2. Employing the notation of Appendix U, we may assume
without loss of generality that ψ has a spherical polynomial expansion of the form

ψ(r) =
nmax∑
n=1

∑
m

dnmS
m
nn(r) (17.7.23)

where the quantities dnm are arbitrary coefficients. Here we assume an expansion through
terms of degree nmax and omit n = 0 terms since constant terms make no contribution to B
as given by (7.22).

For the associated vector potential As we make the spherical polynomial vector field
expansion

As(r) =
nmax∑
n=1

∑
`

∑
J

∑
M

cn`JMS
M
n`J(r). (17.7.24)

Again see Appendix U. Given the coefficients dnm, our task is to use the equality

∇×As(r) = ∇×
nmax∑
n=1

∑
`

∑
J

∑
M

cn`JMS
M
n`J(r) = ∇

nmax∑
n=1

∑
m

dnmS
m
nn(r) = ∇ψ(r) (17.7.25)

to find the coefficients cn`JM .
Let us begin by evaluating the right side of (7.25). We find the results

B(r) = ∇ψ(r) = ∇
nmax∑
n=1

∑
m

dnmS
m
nn(r) =

nmax∑
n=1

∑
m

dnm
√
n(2n+ 1)Smn−1,n−1,n(r).

(17.7.26)

Here we have used (U.5.3).
Next work on evaluating the left side of (7.25). This is a more complicated task. In

accord with the range rules (U.3.7) and (U.3.8) we decompose the expansion into the sum
of four pieces with each containing a particular kind of term:

a) All terms for which ` = 0 and hence J = 1. Also, therefore, n = 2k with k > 0. The
associated spherical polynomial vectors are of the form SM2k,0,1(r).

b) All terms for which ` > 0 and J = ` + 1. The associated spherical polynomial vectors
are of the form SMn,`,`+1(r).

c) All terms for which ` > 0 and J = `. The associated spherical polynomial vectors are of
the form SMn,`,`(r).

d) All terms for which ` > 0 and J = ` − 1. The associated spherical polynomial vectors
are of the form SMn,`,`−1(r).

Thus, we write
As = Asa +Asb +Asc +Asd (17.7.27)

where

Asa(r) =
kmax∑
k=1

∑
M

c2k,0,1,MS
M
2k,0,1(r), (17.7.28)
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Asb(r) =
nmax∑
n=1

∑
`>0

∑
M

cn,`,`+1,MS
M
n,`,`+1(r), (17.7.29)

Asc(r) =
nmax∑
n=1

∑
`>0

∑
M

cn,`,`,MS
M
n,`,`(r), (17.7.30)

Asd(r) =
nmax∑
n=1

∑
`>0

∑
M

cn,`,`−1,MS
M
n,`,`−1(r). (17.7.31)

We are now ready to proceed. For the Asa term we find, using (U.5.20), the result

∇×Asa(r) = ∇×
kmax∑
k=1

∑
M

c2k,0,1,MS
M
2k,0,1(r) =

kmax∑
k=1

∑
M

c2k,0,1,M [i(
√

2/3)(2k)]SM2k−1,1,1(r).

(17.7.32)

For the Asb term we find, using (U.5.17), the result

∇×Asb(r) = ∇×
nmax∑
n=1

∑
`>0

∑
M

cn,`,`+1,MS
M
n,`,`+1(r) =

nmax∑
n=1

∑
`>0

∑
M

cn,`,`+1,M [i
√

(`+ 2)/(2`+ 3)(n− `)]SMn−1,`+1,`+1(r). (17.7.33)

For the Asc term we find, using (U.5.18), the result

∇×Asc(r) = ∇×
nmax∑
n=1

∑
`>0

∑
M

cn,`,`,MS
M
n,`,`(r) =

nmax∑
n=1

∑
`>0

∑
M

cn,`,`,M [i
√

(`+ 1)/(2`+ 1)(n+ `+ 1)]SMn−1,`−1,`(r)

+
nmax∑
n=1

∑
`>0

∑
M

cn,`,`,M [i
√
`/(2`+ 1)(n− `)]SMn−1,`+1,`(r).

(17.7.34)

Finally, for the Asd term we find, using (U.5.19), the result

∇×Asd(r) = ∇×
nmax∑
n=1

∑
`>0

∑
M

cn,`,`−1,MS
M
n,`,`−1(r) =

nmax∑
n=1

∑
`>0

∑
M

cn,`,`−1,M [i
√

(`− 1/(2`− 1)(n+ `+ 1)]SMn−1,`−1,`−1(r). (17.7.35)

We are now prepared to equate coefficients of like terms. Let us begin with the first
few corresponding to small values of n. The first of these, corresponding to n = 0, is SM0,0,1.
From (7.26) we see that

coefficient of SM0,0,1 in ∇ψ =
√

3 d1M . (17.7.36)
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We next examine the terms in ∇ ×As: From (7.32) we see that there are no terms of
the desired kind, namely terms involving SM0,0,1, in ∇×Asa. From (7.33) we see that there
are no terms of the desired kind in ∇×Asb. From (7.34) we see that there are terms of the
desired kind in ∇×Asc, and find the relation

coefficient of SM0,0,1 in ∇×Asc = i
√

6 c1,1,1,M . (17.7.37)

Finally, from (7.35) we see that there are no terms of the desired kind in ∇×Asd.
Upon comparing (7.36) and (7.37) we conclude that there must be the relation

i
√

6 c1,1,1,M =
√

3 d1M , (17.7.38)

and therefore
c1,1,1,M = −i

√
1/2 d1M . (17.7.39)

Note that this relation is consistent with (U.6.39). Moreover, we conclude that the six
remaining n = 1 coefficients in As, namely c1,1,0,0 and the c1,1,2,M , can be anything since
there are the relations (U.6.38) and (U.6.40). For simplicity, we set these coefficients to zero.
Then, so far, we have the result

As(r) =
∑
M

(−i)
√

1/2 d1M SM111(r) + terms of degree > 1. (17.7.40)

In terms of Cartesian components, (7.40) yields the relation

As(r) = −(1/2)r ×B(0) + terms of degree > 1. (17.7.41)

Here we have used (7.22), (7.23), and (U.6.25) evaluated for n = 1. We observe that this
choice for the leading term inAs is in the symmetric/Poincaré/Coulomb gauge. See Exercise
28.2.7.

Let us push on to the case n = 1; in which case there are the spherical polynomial vector
fields S0

110, SM111 with −1 ≤ M ≤ 1, and SM112 with −2 ≤ M ≤ 2. First see where/how they
occur in ∇ψ. Examination of (7.26) shows that the only such term in ∇ψ is SM112, and we
have the relation

coefficient of SM1,1,2 in ∇ψ =
√

10 d2M . (17.7.42)

We next examine the terms in ∇ ×As: From (7.32) we see that there are no terms of
the desired kind, namely terms involving SM1,1,2, in ∇×Asa. From (7.33) we see that there
are no terms of the desired kind in ∇×Asb. From (7.34) we see that there are terms of the
desired kind in ∇×Asc, and find the relation

coefficient of SM1,1,2 in ∇×Asc = i
√

15 c2,2,2,M . (17.7.43)

Finally, from (7.35) we see that there are no terms of the desired kind in ∇×Asd.
Upon comparing (7.42) and (7.43) we conclude that there must be the relation

i
√

15 c2,2,2,M =
√

10 d2M , (17.7.44)

and therefore
c2,2,2,M = −i

√
2/3 d2M . (17.7.45)
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What can be said about the thirteen remaining n = 2 coefficients in As, namely the
c201M , c2,2,3,M , and c2,2,1,M? It can be shown that ∇× SM223(r) = 0, and therefore the terms
with coefficients c2,2,3,M make no contribution toB(r). See Exercise (U.6.21). For simplicity,
we set these coefficients to zero. It can be shown that terms with the coefficients c201M and
c2,2,1,M produce terms in B(r) having nonzero curl. Again see Exercise (U.6.21). We also
set these coefficients to zero to ensure that B(r) is curl free. Then, so far, we have the result

As(r) =
∑
M

(−i)
√

1/2 d1M SM111(r) +
∑
M

(−i)
√

2/3 d2M SM222(r) + terms of degree > 2.

(17.7.46)
The pattern should now be clear. There are the general relations

∇SMnn(r) =
√
n(2n+ 1)SMn−1,n−1,n(r) (17.7.47)

and
∇× SMn,n,n(r) = i

√
(n+ 1)(2n+ 1)SMn−1,n−1,n(r). (17.7.48)

Therefore there is the general relation

As(r) =
nmax∑
n=1

n∑
M=−n

(−i)
√
n/(n+ 1) dnMS

M
nnn(r). (17.7.49)

It can be verified that this particular choice of As(r) has the two properties

∇ ·As(r) = 0 (17.7.50)

and
r ·As(r) = 0. (17.7.51)

See (U.5.11) and (U.6.9). Thus this vector potential is in both a Coulomb and Poincaré
gauge.

The relation (7.49) can be further manipulated using (U.6.25). Doing so gives the result

As(r) = −
nmax∑
n=1

n∑
M=−n

[1/(n+ 1)]dnM [r ×∇SMnn(r)]. (17.7.52)

We observe that this result agrees with that found by Ansatz in Exercises (15.5.8) and
(15.5.9). See (15.5.81) and (15.5.82).

Have we achieved our goal of finding a “minimal vector potential”? We have, in the
following sense: Inspection of (7.26) shows that it provides an expansion of B(r) in terms
of spherical polynomial vector fields Smn−1,n−1,n(r) with expansion coefficients proportional
to the dnm. Inspection of (7.49) shows that it provides an expansion of As(r) in terms of
spherical polynomial vector fields SMnnn(r) with expansion coefficients again proportional to
the dnM . The vector potential As(r) has no constant part, and its non-constant parts are
directly proportional to the coefficients dnm that describe the constant and non-constant
parts of B(r). Moreover, there is an order-by-order relation. Terms of order n in As(r)
are proportional to terms of order n− 1 in B(r). Thus, As(r) is small if B(r) is small. In
particular, if high-order terms in B(r) are negligible, they will also be negligible in As(r).
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There is yet another sense in which the vector potential we have found is minimal.
Suppose, for example, that we confine our attention to the case of a vector potential that is
homogeneous of degree 1, which is the case we need to produce a constant magnetic field.
When n = 1 we see from Table U.3.1 that ` = 1 and J = 0, 1, 2. Therefore, such a vector
potential, call it A[1], can be written in the form

A[1](r) =
∑
J

∑
M

c11JMS
M
11J(r). (17.7.53)

Recall (7.24). Let us compute the norm of A[1] as defined by the relation

||A[1](r)||2 =

∫
dΩ [A[1](r)]∗ ·A[1](r). (17.7.54)

Since the SM11J(r) are mutually orthogonal under angular integration, we find from (7.53),
(U.3.18), and (U.4.3) the result

||A[1](r)||2 = r2
∑
J

∑
M

|c11JM |2. (17.7.55)

We know the value of c111M is fixed by(7.39), and we have chosen to set the remaining c11JM

to zero. We now see, since (7.55) is a sum of squares, that doing so minimizes ||A[1](r)||.
Similar computations may be made for other values of n. The result is that the choice we
have made for As minimizes ||As[n](r)|| for each value of n.

17.7.4 The m = 0 Case: Solenoid Example

In this subsection we will explore the fringe fields for a solenoid. Our aim will be to compare
the vector potential in the symmetric Coulomb gauge as given in Section 15.4 and the vector
potential in the minimum gauge.13 Reference to Section 20.1.2 shows that, for a simple air-
core solenoid, C

[1]
0 (z) falls off as 1/|z|3 for large |z|. See (20.1.28) and Figures 20.1.3 and

20.1.4. Correspondingly, in this case, the C
[n+1]
0 (z) will fall off as 1/|z|n+3 for large |z|. We

expect the simple air-core to be representative of the worst scenario in the sense that the
fringe fields for other kinds of solenoids will fall of at this same rate or faster.

According to Subsection 15.2.3, the scalar potential for the m = 0 case is given by the
relation

ψ0(x, y, z) = C
[0]
0 (z)− (1/4)(x2 + y2)C

[2]
0 (z) + · · · . (17.7.56)

Let us expand ψ about the point (0, 0, z0). To do so, introduce local deviation variables ξ, η,
and ζ by making the definitions

x = 0 + ξ, (17.7.57)

y = 0 + η, (17.7.58)

z = z0 + ζ. (17.7.59)

13Note that according to Section 15.5 there are a variety of Coulomb gauges including vertical-free and
horizontal-free Coulomb gauges. Here we treat the case where there is the greatest symmetry between the
vertical and horizontal components of A.
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Also define a deviation vector rd by writing

rd = ξex + ηey + ζez. (17.7.60)

We can then define a scalar potential ψe suitable for expansion by writing the relation

ψe(rd; z0) = ψ(ξ, η, z0 + ζ). (17.7.61)

Indeed, making use of (7.56) yields for ψe the expansion

ψe(rd; z0) = C
[0]
0 (z0 + ζ)− (1/4)(ξ2 + η2)C

[2]
0 (z0 + ζ) + terms of order 3 and higher

= C
[0]
0 (z0) + C

[1]
0 (z0)ζ

+C
[2]
0 (z0)(ζ2/2)− (1/4)(ξ2 + η2)C

[2]
0 (z0)

+ terms of order 3 and higher

= ψe[0] + ψe[1] + ψe[2] + terms of order 3 and higher. (17.7.62)

Here the upper index in square brackets on a quantity denotes its degree.14 And, from
(7.22), the magnetic field associated with this expansion is given by the expansion

B = B[0] +B[1] + terms of order 2 and higher (17.7.63)

where
B[0] = C

[1]
0 (z0)ez (17.7.64)

and

B[1] = −(1/2)C
[2]
0 (z0)(ξex + ηey) + C

[2]
0 (z0)ζez

= −(1/2)C
[2]
0 (z0)(ξex + ηey − 2ζez)

= −(1/2)C
[2]
0 (z0)(ξex + ηey + ζez − 3ζez)

= −(1/2)C
[2]
0 (z0)(rd − 3ζez). (17.7.65)

Let us find the associated minimum vector potential. According to (7.52), we expect
that As will be of the form

As(rd) = As[1](rd) +As[2](rd) (17.7.66)

with
As[1](rd) = −(1/2)rd ×B[0](rd) (17.7.67)

and
As[2](r) = −(1/3)rd ×B[1](rd). (17.7.68)

Working out the indicated cross products in (7.67) and (7.68) gives the results

As[1](rd) = −(1/2)C
[1]
0 (z0)(ηex − ξey), (17.7.69)

14Note that according to Section U.7 the ψe[n] will be homogenous harmonic polynomials of degree n.
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As[2](rd) = −(1/2)C
[2]
0 (z0)(ζηex − ζξey). (17.7.70)

Simple calculation verifies that there are indeed the relations

∇×As[1](rd) = B[0](rd), (17.7.71)

∇×As[2](rd) = B[1](rd), (17.7.72)

as desired.
How do the results given by (7.69) and (7.70) compare with those provided by the

symmetric Coulomb gauge? According to Section 15.4, the vector potential in the symmetric
Coulomb gauge for the m = 0 case is given by the expressions

Â0
x(r) = −(y/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)(x2 + y2)`

= −(y/2)[C
[1]
0 (z)− (1/8)C

[3]
0 (z)(x2 + y2) + · · · ], (17.7.73)

Â0
y(r) = (x/2)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)(x2 + y2)`

= (x/2)[C
[1]
0 (z)− (1/8)C

[3]
0 (z)(x2 + y2) + · · · ], (17.7.74)

Â0
z(r) = 0. (17.7.75)

In terms of the expansion variables (7.57) through (7.59) these expressions become

Â0
x(ξ, η, z0 + ζ) = −(η/2)[C

[1]
0 (z0 + ζ)− (1/8)C

[3]
0 (z0 + ζ)(ξ2 + η2) + · · · ]

= −(η/2)[C
[1]
0 (z0) + C

[2]
0 (z0)ζ] + · · ·

= −(1/2)C
[1]
0 (z0)η − (1/2)C

[2]
0 (z0)ζη + terms of order 3 and higher,

(17.7.76)

Â0
y(ξ, η, z0 + ζ) = (ξ/2)[C

[1]
0 (z0 + ζ)− (1/8)C

[3]
0 (z0 + ζ)(ξ2 + η2) + · · · ]

= (ξ/2)[C
[1]
0 (z0) + C

[2]
0 (z0)ζ] + · · ·

= (1/2)C
[1]
0 (z0)ξ + (1/2)C

[2]
0 (z0)ζξ + terms of order 3 and higher,

(17.7.77)

Â0
z(ξ, η, z0 + ζ) = 0. (17.7.78)

Comparison of (7.69) and (7.70) with (7.76) through (7.78) shows that for the m = 0
case, at least for the orders computed, the minimum vector potential constructed from field
expansions about on-axis points agrees with the symmetric Coulomb gauge vector potential
constructed from on-axis field data. In retrospect, this result should not be surprising. We
should expect agreement through all orders because, according to Subsection 15.6.2, the
m = 0 symmetric Coulomb gauge vector potential constructed from on-axis field data is, in
fact, in the Poincaré-Coulomb gauge.
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17.7.5 The m = 1 Case: Magnetic Monopole Doublet and
Wiggler Examples

In this subsection we will first study the behavior of the leading and trailing fringe fields for
a magnetic monopole doublet. Subsequently we will examine the case of a wiggler.

Magnetic Monopole Doublet Example

The doublet will be located at the origin (0, 0, 0) as in Subsection 15.8.1 and we will ex-
pand the scalar potential ψ(x, y, z) given by (15.8.3) about the mid-plane point (x0, 0, z0).
Consequently, if z0 � 0, we will obtain an expansion in the leading region, and if z0 � 0,
we will obtain an expansion in the trailing region. Moreover, if x0 = 0, the expansion will
be on axis; and setting x0 6= 0 allows for expansion about a point on the design orbit. See
Subsection 21.5.1 and Figures 21.5.1 and 21.5.6.

As before, introduce local deviation variables ξ, η, and ζ and a deviation vector rd by
making the definitions

x = x0 + ξ, (17.7.79)

y = η, (17.7.80)

z = z0 + ζ, (17.7.81)

and (7.60). We can then define a scalar potential ψe by writing the relation

ψe(rd;x0, z0) = ψ(x0 + ξ, η, z0 + ζ). (17.7.82)

Indeed, making use of (15.8.3) and (7.82) yields the expansion

ψe(rd;x0, z0) = [−2ga/(x2
0 + z2

0 + a2)3/2]η

+[6ga/(x2
0 + z2

0 + a2)5/2][η(x0ξ + z0ζ)]

+ terms of order 3 and higher. (17.7.83)

Note that ψ(x0, 0, z0) vanishes so that there is no constant term in the expansion (7.83). We
observe that the first term in (7.83) falls off as (1/x0)3 or (1/z0)3 for large x0 or z0, and the
second falls off as (1/x0)4 or (1/z0)4. In general, successive terms fall off with ever increasing
powers of (1/x0) or (1/z0).

Let us compute the magnetic field B associated with the first two terms in (7.83). We
find the result

B(rd;x0, z0) = −[2ga/(x2
0 + z2

0 + a2)3/2]ey

+[6ga/(x2
0 + z2

0 + a2)5/2](x0ξ + z0ζ)ey

+[6ga/(x2
0 + z2

0 + a2)5/2][η(x0ex + z0ez)]. (17.7.84)

Next let us find the minimum vector potential As associated with the first two terms in
(7.83). Begin by decomposing B into homogeneous polynomials by rewriting (7.84) in the
form (7.63) with

B[0](rd) = −[2ga/(x2
0 + z2

0 + a2)3/2]ey (17.7.85)
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and

B[1](rd) = [6ga/(x2
0 + z2

0 + a2)5/2][(x0ξ + z0ζ)ey + η(x0ex + z0ez)]. (17.7.86)

The minimum vector potential associated with this magnetic field will again be given by the
relations (7.66) through (7.68). Working out the indicated cross products yields the results

As[1](rd) = [ga/(x2
0 + z2

0 + a2)3/2](−ζex + ξez), (17.7.87)

As[2](rd) = [−2ga/(x2
0 + z2

0 + a2)5/2]×
[(z0η

2 − z0ζ
2 − x0ξζ)ex + (x0ηζ − z0ξη)ey + (x0ξ

2 + z0ξζ − x0η
2)ez].

(17.7.88)

Simple calculation verifies that there are indeed the relations (7.71) and (7.72) as desired.
At this point it is instructive to compare the minimum vector potential with other possi-

ble vector potentials. We note that the design orbit for a dipole field is curved, and therefore
for the most part does not lie on axis. Consequently we must generally compare the minimum
vector potential with other possible vector potentials at off-axis points. By construction,
the minimum vector potential vanishes at every expansion point. In contrast, other vector
potentials (for example those based on employing on-axis expansions of a scalar potential
or the use of Dirac strings) generally not have this property. We conclude that problems
involving curved design orbits are more complicated than those for straight beam-line el-
ements, and their treatment requires special care. This treatment is deferred to Chapter
21.

On-axis Entry and Exit Wiggler Example

There is an application for which expansions of m = 1 cylindrical harmonics may be useful,
namely the case of wigglers when the excursion of the design orbit from the axis may be
treated as small. That is, it is assumed that the design orbit enters and exits the wiggler on
axis and nearly along the axis, and the excursions of the design orbit from the axis while
within the wiggler may be treated as small.

According to (15.2.61) the the scalar potential for a (normal) dipole is given by the
relation

ψ1,s(x, y, z) = y[C
[0]
1,s(z)− (1/8)(x2 + y2)C

[2]
1,s(z) + · · · ]. (17.7.89)

Upon invoking the definitions (7.57) through (7.60), the expansion (7.89) yields the expan-
sion

ψe(rd; z0) = η[C
[0]
1,s(z0 + ζ)− (1/8)(ξ2 + η2)C

[2]
1,s(z0 + ζ) + · · · ]

= ηC
[0]
1,s(z0) + ηζC

[1]
1,s(z0) + terms of order 3 and higher. (17.7.90)

The magnetic field associated with the scalar potential (7.90) has an expansion of the form
(7.63) with

B[0] = C
[0]
1,s(z0)ey (17.7.91)
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and
B[1] = ζC

[1]
1,s(z0)ey + ηC

[1]
1,s(z0)ez. (17.7.92)

The first two terms in minimum vector potential expansion associated with this magnetic
field will again be given by the relations (7.66) through (7.68). Working out the indicated
cross products now yields the results

As[1](rd) = (1/2)C
[0]
1,s(z0)(ζex − ξez), (17.7.93)

As[2](rd) = (1/3)C
[1]
1,s(z0)[(ζ2 − η2)ex + ξηey − ξζez]. (17.7.94)

And again simple calculation verifies that there are indeed the relations (7.71) and (7.72) as
desired.

How does the the vector potential for a normal dipole in the Coulomb gauge compare
with the minimum vector potential just found? From (15.4.95) through (15.4.97) we find,

in the Coulomb gauge, that Â
1,s

has the expansion

Â1,s
x (ξ, η, z0 + ζ) = (1/4)(ξ2 − η2)C

[1]
1,s(z0 + ζ) + · · ·

= (1/4)(ξ2 − η2)C
[1]
1,s(z0) + terms of order 3 and higher,

(17.7.95)

Â1,s
y (ξ, η, z0 + ζ) = (1/2)ξηC

[1]
1,s(z0 + ζ) + · · ·

= (1/2)ξηC
[1]
1,s(z0) + terms of order 3 and higher,

(17.7.96)

Â1,s
z (ξ, η, z0 + ζ) = −ξC [0]

1,s(z0 + ζ) + · · ·

= −ξC [0]
1,s(z0)− ξζC [1]

1,s(z0) + terms of order 3 and higher.

(17.7.97)

Comparison of (7.93) and (7.94) with (7.95) through (7.97) shows that for the m = 1 case
the minimum vector potential constructed from field expansions about on-axis points differs
from the Coulomb gauge vector potential constructed from on-axis field data.

What can be said about the m = 1 azimuthal-free gauge vector potential? From (15.3.31)
through (15.3.33), we see that A1,s has the expansion

A1,s
x (ξ, η, z0 + ζ) = ξ2C

[1]
1,s(z0) + · · · , (17.7.98)

A1,s
y (ξ, η, z0 + ζ) = ξηC

[1]
1,s(z0) + · · · , (17.7.99)

A1,s
z (ξ, η, z0 + ζ) = −ξC [0]

1,s(z0 + ζ) + · · ·

= −ξC [0]
1,s(z0)− ξζC [1]

1,s(z0) + terms of order 3 and higher.

(17.7.100)
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Comparison of (7.93) and (7.94) with (7.98) through (7.100) shows that for the m = 1 case
the minimum vector potential constructed from field expansions about on-axis points also
differs the azimuthal-free gauge vector potential constructed from on-axis field data. In
retrospect, this difference should be less surprising because the minimum vector potential
satisfies the Coulomb gauge condition, and the azimuthal-free gauge vector potential does
not.

17.7.6 The m = 2 Case

Text to be worked on:

As a second example of a vector potential in the azimuthal-free gauge, suppose all terms in
(2.37) vanish save for the ‘pure’ quadrupole terms C

[n]
2,s(z). Then, again using (3.28) through

(3.30), we find through terms of degree four that A2,s has the expansion

A2,s
x = (1/2)(x3 − xy2)C

[1]
2,s(z) + · · · , (17.7.101)

A2,s
y = −(1/2)(y3 − yx2)C

[1]
2,s(z) + · · · , (17.7.102)

A2,s
z = −(x2 − y2)C

[0]
2,s(z) + (1/6)(x4 − y4)C

[2]
2,s(z) + · · · . (17.7.103)

Note that the results (3.34) through (3.36) agree with (1.5.59) if we make the identification

Q/2 = C
[0]
2,s. However, we know that C

[0]
2,s(z) must depend on z because the on-axis gradients

must vanish far outside any magnet. Therefore the functions C
[1]
2,s(z), C

[2]
2,s(z), etc. must

be nonzero, at least near the end and fringe-field regions of any quadrupole magnet. We
conclude again that, as a consequence of Maxwell’s equations, the vector potential must
contain terms beyond degree two in the variables x, y. Correspondingly, the transfer map
for any real quadrupole must contain nonlinear terms.

As a second example of the use of these relations, let us compute Â
2,s

for the quadrupole
case m = 2. As before, suppose all terms in (2.37) vanish save for the quadrupole terms

C
[n]
2,s(z). Then, again using (4.92) through (4.94), we find, through terms of degree four, that

Â
2,s

has the expansion

Â2,s
x = (1/6)(x3 − 3xy2)C

[1]
2,s(z) + · · · , (17.7.104)

Â2,s
y = −(1/6)(y3 − 3x2y)C

[1]
2,s(z) + · · · , (17.7.105)

Â2,s
z = −(x2 − y2)C

[0]
2,s(z) + (1/12)(x4 − y4)C

[2]
2,s(z) + · · · . (17.7.106)

This expansion should be compared with the azimuthal-free gauge expansion given by (3.34)

through (3.36). Direct calculation again verifies that (4.1) and (4.4) are satisfied by Â
2,s

through the order of the terms that have been retained in the expansion
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17.7.7 The m = 3 Case

Exercises

17.7.1. Verify the relations (7.32) through (7.39).

17.7.2. Evidently the second-order portion of ψe(rd;x0, z0) as given in (7.61) is composed
of the monomials ξη and ηζ. Show that these are the only monomials alowed at this order
based on symmetry considerations. Verify that each monomial is an harmonic polynomial.
Indeed, making the usual correspondence between ξ, η, ζ and x, y, z show, following the
harmonic polynomial labeling scheme (U.2.9), that there are the relations

ξη = [1/(4i)][
√

32π/15][H2
2 (r)−H−2

2 (r)], (17.7.107)

ηζ = [−1/(2i)][
√

8π/15][H1
2 (r) +H−1

2 (r)]. (17.7.108)

Would these relations have been simpler had the polar axis, used to set up spherical polar
coordinates, been taken to be the y axis instead of the z axis?

17.7.8 More Text

To proceed further it is useful to introduce some notation. Let zen denote the z value where
a transition is to be made from a region where the magnetic field is taken to vanish to the
beginning of the leading fringe-field region. That is, the charged particle in question enters
the leading fringe-field region when z = zen. We will also use the notation zben and zaen to
denote z values just before and just after entry. Similarly, let zex denote the z value where
a transition is to be made from the end of a trailing fringe-field region to a region where the
magnetic field is again taken to vanish. That is, the charged particle in question exits the
trailing fringe-field region when z = zex.

Entering a Leading Fringe-Field Region

Suppose we begin with a consideration of the transition between a field-free region and a
leading-fringe field region. Let Kben be the Hamiltonian before entry into the fringe-field
region, and let Kaen be the Hamiltonian after entry into the fringe-field region. Then, since
the magnetic field and its associated vector potential are assumed to vanish before entry, we
have the relation

Kben = −[(pcanben
t )2/c2 −m2c2 − (pcanben

x )2 − (pcanben
y )2]1/2. (17.7.109)

And, since the magnetic field (and therefore also the vector potential) is nonzero after entry,
we have the relation

Kaen = −[(pcanaen
t )2/c2 −m2c2 − (pcanaen

x − qAx)2 − (pcanean
y − qAy)2]1/2 − qAz. (17.7.110)

Here we have added the suffixes ben and aen to the phase-space coordinates to denote their
values before and after entry. Our task is to relate these phase-space coordinates.
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As a first step, we naturally require that the coordinates be continous at zen,

xben = xaen, (17.7.111)

yben = yaen, (17.7.112)

tben = taen, (17.7.113)

when z = zen. The next step is specify what is to be done with the momenta.
One possibility is to require that the slopes/“velocities” dx/dz, dy/dz, and dt/dz be

continuous at zen. Let us work out the consequences of such a requirement. Before entry we
have the result

dx/dz = ∂Kben/∂pcanben
x =

(pcanben
x /[(pcanben

t )2/c2 −m2c2 − (pcanben
x )2 − (pcanben

y )2]1/2, (17.7.114)

and after entry there is the result

dx/dz = ∂Kaen/∂pcanaen
x =

(pcanaen
x − qAx)/[(pcanaen

t )2/c2 −m2c2 − (pcanaen
x − qAx)2 − (pcanaen

y − qAy)2]1/2.

(17.7.115)

An analogous result holds for dy/dz. Finally, for dt/dz there is the before entry result

dt/dz = ∂Kben/∂pcanben
t =

(−pcanben
t /c2)/[(pcanben

t )2/c2 −m2c2 − (pcanben
x )2 − (pcanben

y )2]1/2, (17.7.116)

and the after entry result

dt/dz = ∂Kaen/∂pcanaen
t =

(−pcanaen
t /c2)/[(pcanaen

t )2/c2 −m2c2 − (pcanaen
x − qAx)2 − (pcanaen

y − qAy)2]1/2.

(17.7.117)

Now equate the far right sides of (7.16) and (7.17), the far right sides of there dy/dz coun-
terparts, and the far right sides of (7.18) and (7.19). So doing yields the transition matching
relations

pcanben
x = pcanaen

x − qAx, (17.7.118)

pcanben
y = pcanaen

y − qAy, (17.7.119)

pcanben
t = pcanaen

t . (17.7.120)

In view of (7.3) and (7.5) these relations can also be written in the form

pmechben
x = pmechaen

x , (17.7.121)

pmechben
y = pmechaen

y , (17.7.122)

pmechben
z = pmechaen

z , (17.7.123)
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The relation (7.22) is satisfactory because magnetic forces do not change the energy.
Recall (1.6.17). However, we also desire that the phase-space transformation given by (7.12)
through (7.14) and (7.20) through (7.22) be symplectic. Calculation shows that it is not.
Compute the Poisson bracket of the right sides of (7.20) and (7.21) to find the result

[pcanaen
x − qAx, pcanaen

y − qAy] = [pcanaen
x ,−qAy] + [−qAx, pcanaen

y ]

= q{∂Ay/∂xaen − ∂Ax/∂yaen} = qBz. (17.7.124)

While hopefully small, generally Bz(x, y, z
en) differs from zero at the beginning of the leading

fringe-field region. On the other hand, the Poisson bracket of the left sides of (7.20) and
(7.21) must vanish since pcanben

x and pcanben
y are supposed to be canonical momenta. Therefore

the the phase-space transformation given by (7.12) through (7.14) and (7.20) through (7.22)
is generally not symplectic.

We expect that neglect of the magnetic field in the region z < zen will lead to some error
in trajectories. However, we do not want this error to violate the symplectic condition. The
simplest way to maintain the symplectic condition is to retain the relations (7.12) through
(7.14) and replace the relations (7.20) through (7.22) by the relations

pcanben
x = pcanaen

x , (17.7.125)

pcanben
y = pcanaen

y , (17.7.126)

pcanben
t = pcanaen

t . (17.7.127)

In this case the transition matching relations (7.12) through (7.14) and (7.20) through
(7.22) amount to the identity map I, and the symplectic condition is trivially satisfied.
Now, however, the error in trajectories manifests itself in that the slopes/“velocities” dx/dz,
dy/dz, and dt/dz may be expected to be discontinuous at at zen. Inspection of (7.16) and
(7.17), their dy/dz counterparts, and (7.18) and (7.19) shows that, in lowest approximation,
these discontinuities are proportional to Ax(x, y, z

en) and Ay(x, y, z
en). Indeed, again in view

of (7.3) and (7.5), the transition relations (7.26) through (7.28) can be written in the form

∆pmech = pmechaen − pmechben = qA(x, y, zen). (17.7.128)

It is therefore desirable, where feasible, to work in a gauge where A(x, y, zen) is as small as
possible.

One way to view the symplectic matching relations (7.12) and (7.14) and (7.24) through
(7.26) is to replace the Hamiltonian (7.1) by a modified Hamiltonian Kmod given by

Kmod = −[(pcan
t )2/c2 −m2c2 − (pcan

x − qAmod
x )2 − (pcan

y − qAmod
y )2]1/2 − qAmod

z (17.7.129)

where
Amod(x, y, z) = θ(z − zen)A(x, y, z). (17.7.130)

That is, the vector potential is taken to vanish for z < zen and turns on at z = zen. A
little thought shows that integrating the equations of motion associated with this modified
Hamiltonian automatically produces the matching relations (7.12) and (7.14) and (7.24)
through (7.26).
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What is the modified magnetic fieldBmod associated with this modified vector potential?
Evaluation of ∇×Amod gives the relations

Bmod
x (x, y, z) = θ(z − zen)Bx(x, y, z)− δ(z − zen)Ay(x, y, z), (17.7.131)

Bmod
y (x, y, z) = θ(z − zen)By(x, y, z) + δ(z − zen)Ax(x, y, z), (17.7.132)

Bmod
z (x, y, z) = θ(z − zen)Bz(x, y, z). (17.7.133)

Calculation shows that Bmod has divergence

∇ ·Bmod = 0, (17.7.134)

as desired. What current produces this modified magnetic field? The modified magnetic
field satisfies the curl relation

∇×Bmod = jmod (17.7.135)

where

jmod
x = (∂/∂y)Bmod

z − (∂/∂z)Bmod
y

= −δ(z − zen)[By(x, y, z) + (∂/∂z)Ax(x, y, z)]− δ′(z − zen)Ax(x, y, z)

= −δ(z − zen)[2(∂/∂z)Ax(x, y, z)− (∂/∂x)Az(x, y, z)]− δ′(z − zen)Ax(x, y, z),

(17.7.136)

jmod
y = (∂/∂z)Bmod

x − (∂/∂x)Bmod
z

= −δ(z − zen)[−Bx(x, y, z) + (∂/∂z)Ay(x, y, z)]− δ′(z − zen)Ay(x, y, z)

= −δ(z − zen)[2(∂/∂z)Ay(x, y, z)− (∂/∂y)Az(x, y, z)]− δ′(z − zen)Ay(x, y, z),

(17.7.137)

jmod
z = (∂/∂x)Bmod

y − (∂/∂y)Bmod
x

= δ(z − zen)[(∂/∂x)Ax(x, y, z) + (∂/∂y)Ay(x, y, z)]. (17.7.138)

Evidently terminating the vector potential at z = zen is equivalent to introducing sheet (cor-
responding to the δ function) and double-sheet (corresponding to the δ′ function) currents
at z = zen. And the strengths of these currents are proportional to the values of A and its
first derivatives at z = zen.

Exiting a Trailing Fringe-Field Region
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Chapter 18

Tools for Numerical Implementation

This chapter develops the tools that are necessary for the numerical implementation of the
methods of Chapter 14. These tools include splines, bicubic interpolation, spline-based
Fourier transforms, and routines for the calculation of Bessel and Mathieu functions.

18.1 Third-Order Splines

For our purposes splines are piecewise polynomial fits where various continuity conditions
are imposed at the points the pieces join. There are two common possibilities: Either a fit
is desired over some interval that may be viewed a portion of the real line; or a fit is desired
over a full angular interval, in which case periodicity is to be imposed.

18.1.1 Fitting Over an Interval

Let y = f(x) be a function of a single variable. Suppose its values yj are specified at N + 1
equally spaced points x0, x1, · · · , xN over the interval [x0, xN ]. (See Figure 2.1.1 for a similar
setup employing the variable t.) Also suppose that on each subinterval [xj, xj+1] we want
to approximate f by a cubic polynomial with cubic polynomials on adjacent subintervals
matched is such a way that f has continuous first and second derivatives at each interior
point xj. Such an approximation will be called a cubic or third-order spline. We will use
these splines both for interpolation and for the calculation of direct and inverse Fourier
transforms. See Sections 15.2 and 15.3.5.

Let us see what information is required to construct such a sequence of third-order
polynomials (one for each interval). On the first subinterval, [x0, x1], write

y = f0(x) = a0 + b0(x− x0) + c0(x− x0)2 + d0(x− x0)3 (18.1.1)

where the coefficients a0 through d0 are to be determined. Then the condition

f0(x0) = y0 (18.1.2)

yields the relation

a0 = y0. (18.1.3)

1561
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Next, for the moment, suppose we further require that

f ′0(x0) = β0 (18.1.4)

and
f ′′0 (x0) = γ0. (18.1.5)

These requirements yield the further relations

b0 = β0, (18.1.6)

c0 = γ0/2. (18.1.7)

Finally, the condition
f0(x1) = y1 (18.1.8)

yields the relation

y1 = y0 + β0(x1 − x0) + (γ0/2)(x1 − x0)2 + d0(x1 − x0)3, (18.1.9)

which can be solved to yield the value of d0. The conditions (1.2) and (1.8), plus the
requirements (1.4) and (1.5), have completely specified the first cubic polynomial (1.1).

Let us now move on to the second subinterval [x1, x2]. On this subinterval we assume
that there is the cubic polynomial representation

y = f1(x) = a1 + b1(x− x1) + c1(x− x1)2 + d1(x− x1)3, (18.1.10)

and we find from the condition
f1(x1) = y1 (18.1.11)

the relation
a1 = y1. (18.1.12)

Also, since f0(x) has already been determined, the values f ′0(x1) and f ′′0 (x1) are already
known. The relations (1.8) and (1.11) already guarantee continuity of f0 and f1 across the
join at x1. Next, as set forth in our initial statement of intent, let us require that

f ′1(x1) = β1 = f ′0(x1) (18.1.13)

and
f ′′1 (x1) = γ1 = f ′′0 (x1). (18.1.14)

That is, we also require continuity in the first and second derivatives. From (1.13) and (1.14)
we conclude that

b1 = β1 = f ′0(x1) (18.1.15)

and
c1 = γ1/2 = f ′′0 (x1)/2. (18.1.16)

Finally, the condition
f1(x2) = y2 (18.1.17)
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yields the relation

y2 = y1 + β1(x2 − x1) + (γ1/2)(x2 − x1)2 + d1(x2 − x1)3, (18.1.18)

which can be solved to yield the value of d1. We see that the condition (1.17) plus the
continuity requirements have completely specified the second cubic polynomial (1.10).

It is clear that this process can be continued for the subsequent subintervals [x2, x3]
· · · [xN−1, xN ] so that all the cubic polynomials are completely specified in terms of the y0

· · · yN and the two numbers β0 and γ0. Now we come to a subtle point. Since the cubic
polynomials are all completely specified, the value f ′N−1(xN) is also specified in terms of the
y1 · · · yN and the two numbers β0 and γ0. In fact, there will be a relation of the form

f ′N−1(xN) = δ + εγ0 (18.1.19)

where δ(β0, y0, · · · , yN) is some (linear) function of β0, y0, · · · , yN , and ε is some nonzero
coefficient. Therefore, we may adjust γ0 in such a way as to give f ′N−1(xN) any desired
value. Put another way, we may replace a knowledge of γ0 with a specification of f ′N−1(xN).
Let us write

f ′(x0) = f ′0(x0) = β0 (18.1.20)

and
f ′(xN) = f ′N−1(xN). (18.1.21)

With this notation in mind, we may view a cubic spline as being completely specified by the
values y0 · · · yN and the two end-point derivatives f ′(x0) and f ′(xN).1

Of course, in general the end-point derivatives are unknown. Many users of cubic splines
simply set end-point derivatives (either first or second) to zero on the grounds of convenience
and the fact (to be demonstrated shortly) that their values actually have little effect on the
spline approximation once one is a few grid points away from the ends.2 For our purposes,
we prefer to use the first few data points near the end points to estimate the end-point first
derivatives. For example, upon deciding to use the first three points to estimate f ′(x0) and
the last three to estimate f ′(xN), we use the approximations

f ′(x0) = (1/h)[−(3/2)y0 + 2y1 − (1/2)y2] +O(h2),

f ′(xN) = (1/h)[(3/2)yN − 2yN−1 + (1/2)yN−2] +O(h2) (18.1.22)

where h is the spacing between successive grid points,

h = x1 − x0. (18.1.23)

If we choose to employ the first and last four points, we use the approximations

f ′(x0) = (1/h)[−(11/6)y0 + 3y1 − (3/2)y2 + (1/3)y3] +O(h3),

f ′(xN) = (1/h)[(11/6)yN − 3yN−1 + (3/2)yN−2 − (1/3)yN−3] +O(h3). (18.1.24)

1Evidently, an alternate procedure is to specify the values y0 · · · yN and the two second-order end-point
derivatives f ′′(x0) and f ′′(xN ).

2If the second derivatives at each end point are set to zero, such a cubic spline is said to be natural.
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See Exercise 1.1.
At this juncture we must remark that the algorithm we have been describing for comput-

ing cubic splines, while pedagogically instructive, is not numerically stable against roundoff
errors. A stable spline routine is given in Appendix L.

As already alluded to, one of the advantages of spline fits is localization in that the
fits over any subinterval in x depend primarily on the yj values whose corresponding xj lie
within that subinterval. For example, consider the function y = f(x) defined on the interval
x ∈ [0, 3] such that f(1.5) = 1 and f = 0 elsewhere. Figure 1.1 shows the function that is
produced by a cubic spline fit when h = .1. In this case 31 points are used to make the fit
with x0 = 0, x30 = 3, and all yj set to zero save for setting y15=1. Also, f ′(0) and f ′(3) are
set to zero. Evidently the spline fit falls rapidly to zero on either side of x = 1.5. In fact, it
can be shown that the successive maxima decay exponentially as

y(x) ∼ exp[−α(1/h)|x− 1.5|] (18.1.25)

where
α = log(2 +

√
3) ' 1.317. (18.1.26)

Similarly, Figure 1.2 shows the fit that is produced for the same setup when all yj are set
to zero, f ′(0) is set to 1, and f ′(3) is set to zero. Again the fit decays to zero exponentially
with exponent −α.

-0.2
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Figure 18.1.1: The 31-point spline fit associated with y15 = 1 and all other yj = 0. Also,
f ′(0) and f ′(3) are set to zero. Note that the fit falls rapidly to zero on either side of x = 1.5.

18.1.2 Periodic Splines

The splines defined so far are useful for fitting a general function over an interval. Suppose
we instead want to fit a function which is known to be periodic. Such functions will typically
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Figure 18.1.2: The spline fit associated with f ′(x0) = 1, all yj = 0, and f ′(x30) = 0. Note
that the fit falls rapidly to zero for x beyond x0 = 0. Only the results over the interval
x ∈ [0, 2] are displayed.

depend on angular variables.
As before, we imagine that there are known function values yj at the points x0 to xN , but

that now y0 = yN . Begin the construction as before to find a unique set of cubic polynomials
in terms of the yj and β0 and γ0. With this construction, the quantities f ′N−1(xN) and
f ′′N−1(xN) are specified. Indeed, there will be relations of the form

f ′N−1(xN) = r(y0, · · · , yN) + sβ0 + tγ0, (18.1.27)

f ′′N−1(xN) = ρ(y0, · · · , yN) + σβ0 + τγ0 (18.1.28)

where r and ρ are linear functions of the yj; and s, t, σ, and τ are proportionality constants.
Now adjust both β0 and γ0 such that there are the relations

f ′N−1(xN) = f ′0(x0) (18.1.29)

and
f ′′N−1(xN) = f ′′0 (x0). (18.1.30)

So doing will make the spline fit periodic in that not only will y0 = yN , also the first and
second derivatives will match at the endpoints. In view of (1.4), (1.5), (1.27), and (1.28),
these matching relations are equivalent to the conditions

β0 = r(y0, · · · , yN) + sβ0 + tγ0, (18.1.31)

γ0 = ρ(y0, · · · , yN) + σβ0 + τγ0. (18.1.32)
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These equations have a (unique) solution provided the matrix M defined by

M =

(
s− 1 t
σ τ − 1

)
. (18.1.33)

has a nonzero determinant, which can be shown to be always the case. We conclude that a
periodic cubic spline is uniquely specified by the values y0, · · · , yN with y0 = yN .

Here again we must remark that the pedagogically instructive algorithm we have been
describing for computing periodic cubic splines is not numerically stable against roundoff
errors. A stable periodic spline routine is also given in Appendix L.

18.1.3 Error Estimate for Spline Approximation

There remains the question of accuracy for a cubic spline approximation. Suppose the
function f that is being approximated is known to have a continuous fourth-order derivative.
Then it can be shown that the error involved in using its spline approximation fsa has the
estimate

error(x) = f(x)− fsa(x) = (h4/24)θ2(1− θ)2f iv(x) +O(h5) (18.1.34)

for x in the subinterval [xj, xj+1] and

θ = (x− xj)/h. (18.1.35)

Note that, according to (1.35), θ lies in the interval θ ∈ [0, 1]. It is easy to check that in this
interval the quantity θ2(1− θ)2 does not exceed 1/16.

As an example, suppose

f(x) = 1− x4 (18.1.36)

and we wish to approximate f over the interval [−1, 1]. That is, we set x0 = −1 and xN = 1.
Figure 1.3 shows f and its spline fit fsa for h = .1 (which corresponds to N = 20). They are
indistinguishable on the scale shown. Figure 1.4 shows the error that occurs when h = .1.
By construction the error vanishes at the grid points xj, and the global error is consistent
with the estimate (1.34).

In making the spline fits for Figures 1.3 and 1.4, we have used as input for the end-point
derivatives the exact results f ′(−1) = 4 and f ′(+1) = −4 based on (1.36). Suppose we
instead use (1.24) to estimate the end-point derivatives. Figure 1.5 shows the error that
then occurs. We see that there is some error at the endpoints and that, as expected from
localization, this error soon damps away so that only the error already seen in Figure 1.4
remains. We remark that the use of (1.24) gives the results f ′(−1) = 3.994 and f ′(+1) =
−3.994. It is pleasantly surprising that, at its worst, the error in the spline fit is considerably
less than might have naively been expected based on the error in the estimated end-point
derivatives. Finally we remark that, for our applications, the end points occur in fringe-
field regions where both the function being approximated and its derivatives are very small.
Thus, we expect that the error made in using (1.22) or (1.24) in this case will be negligible.
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Figure 18.1.3: The function f and its spline fit fsa for h = .1. They appear identical.
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Figure 18.1.4: The difference between the function f and its spline fit fsa for h = .1. Here
error = f(x)− fsa(x). The spline fsa is constructed using the exact values for the end-point
derivatives.
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Figure 18.1.5: The difference between the function f and its spline fit fsa for h = .1. Here
error = f(x)− fsa(x). The spline fsa is constructed using (1.24) to estimate the end-point
derivatives.

Exercises

18.1.1. Verify (1.22) through (1.24) using the finite difference calculus of Section 2.4.

18.2 Interpolation

The calculations of Chapter 14 begin with data provided on some regular Cartesian grid.
With regard to locations in the z coordinate, we will use those provided, and call them ZL.
However, for the coordinates x and y, interpolation may be required.

In the case where a circular cylinder is employed, we need to interpolate to equi-angular
locations given by the relations

x̄i = R cos(φi), (18.2.1)

ȳi = R sin(φi) (18.2.2)

where
φ0 = 0 (18.2.3)

and
φN = 2π. (18.2.4)

See the second frame of Figure 14.1.1. Typically, in the circular cylinder case we take N to
have the value N ≈ 50.

In the case of an elliptical cylinder we write

x̄i = f cosh(U) cos(vi), (18.2.5)
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ȳi = f sinh(U) sin(vi) (18.2.6)

where the vi are equally spaced with
v0 = 0 (18.2.7)

and
vN = 2π. (18.2.8)

See Figure 14.4.3. Typically, in the elliptic cylinder case, we take N to have the value
N ≈ 120.

18.2.1 Bicubic Interpolation

For each x̄i, ȳi pair, find the closest 16 points in the regular grid in the x, y plane. See Figure
2.1. Note that the regular grid may be rectangular rather than square. Let XJ and YK be
the coordinates of the grid point in the lower left corner. That is, we have the following
inequalities:

XJ+1 ≤ x̄i ≤ XJ+2, (18.2.9)

YK+1 ≤ ȳi ≤ YK+2. (18.2.10)

Introduce local expansion variables ξ and η by the relations

x = XJ + ξ, (18.2.11)

y = YK + η; (18.2.12)

and also write
x̄i = XJ + ξ̄i, (18.2.13)

ȳi = YK + η̄i. (18.2.14)

We then interpolate the quantity of interest, be it a potential value or some transverse field
component, from the regular grid to the point ξ̄i, η̄i with the aid of a bicubic polynomial P
in the variables ξ and η.3 This is a polynomial of the form

P (ξ, η) =
4∑

m,n=1

cmnξ
m−1ηn−1 =

4∑
m=1

(
4∑

n=1

cmnη
n−1)ξm−1 =

4∑
n=1

(
4∑

m=1

cmnξ
m−1)ηn−1 (18.2.15)

where the coefficients cmn are to be determined. Note that P is cubic in each of the variables
ξ and η separately. Hence the name bicubic. Also, note that P is not a homogeneous
polynomial. For example, it contains the term ξ3η3, but it does not contain the terms ξ6 or
η6. Finally note that, because c is 4× 4, it requires 16 numbers to specify the cmn. This is
encouraging, because we have assumed that we have data on the 16 nearest-neighbor grid
points.4

3If the point ξ̄i, η̄i happens to fall on a grid line, then only one-dimensional cubic interpolation is required.
If it falls on a grid point, no interpolation is required at all.

4This count would not work out so neatly had we attempted what might appear to be more desirable,
namely an expansion in homogenous polynomials.
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x

y

Figure 18.2.1: The point x̄i, ȳi and its 16 nearest-neighbor grid points. The coordinates of
the grid point at the lower left corner are XJ and YK .
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Let us first verify that P is uniquely defined in terms of values at the the 16 nearest-
neighbor grid points. For example, suppose we wish to interpolate a potential function ψ.
Let hx and hy be the grid spacings in the x and y directions, respectively. Then we know
the values Ψjk given by the relations

Ψjk = ψ[XJ + (j − 1)hx, YK + (k − 1)hy, ZL] for j, k ∈ [1, 4]. (18.2.16)

In the spirit of (2.11) and (2.12), write

ξj = (j − 1)hx (18.2.17)

and
ηk = (k − 1)hy. (18.2.18)

Then we wish to have the relations

Ψjk = P (ξj, ηk) =
4∑

m,n=1

cmnξ
m−1
j ηn−1

k for j, k ∈ [1, 4], (18.2.19)

and hope that these 16 desiderata will determine the 16 cmn.
To explore these relations, define vectors ξ̂j and η̂k by the rules

ξ̂j = (ξ0
j , ξ

1
j , ξ

2
j , ξ

3
j )
T = (1, ξj, ξ

2
j , ξ

3
j )
T , (18.2.20)

and
η̂k = (η0

k, η
1
k, η

2
k, η

3
k)
T = (1, ηk, η

2
k, η

3
k)
T . (18.2.21)

We will call ξ̂j and η̂k the cubic vectors associated with ξj and ηk since they are formed
out of the cubic and lower powers of ξj and ηk, respectively. With this notation, (2.19) is
equivalent to the inner product relations

Ψjk = (ξ̂j, c η̂k) for j, k ∈ [1, 4], (18.2.22)

where c is the matrix with entries cmn.
Let X be the matrix whose columns are the vectors ξ̂j,

X =


1 1 1 1
ξ1 ξ2 ξ3 ξ4

ξ2
1 ξ2

2 ξ2
3 ξ2

4

ξ3
1 ξ3

2 ξ3
3 ξ3

4

 . (18.2.23)

Then, by construction, we have the relations

X ej = ξ̂j (18.2.24)

where the ej are the standard orthonormal vectors (3.6.4). Similarly, if Y is the matrix
whose columns are the vectors η̂k, we have the relations

Yek = η̂k. (18.2.25)
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Insert these relations into (2.22). So doing gives the result

Ψjk = (X ej, c Yek) = (ej,X T c Yek), (18.2.26)

which is equivalent to the matrix relation

Ψ = X T c Y . (18.2.27)

We will see shortly that the matrices X and Y are invertible. Assuming this to be the case,
we may solve (2.27) for c to find the result

c = (X T )−1Ψ Y−1. (18.2.28)

We have found the cmn in terms of the Ψjk, and therefore P is uniquely specified by the
values Ψjk.

To see that X is invertible, we examine detX , which (happily) is a Vandermonde deter-
minant. It has the known value

detX =
∏
j>k

(ξj − ξk). (18.2.29)

Since the ξj are assumed to be distinct by construction, detX can never vanish. Thus X ,
and similarly Y , are invertible.

Now that P has been constructed, we find the desired interpolated result ψ(x̄i, ȳi, ZL)
by writing

ψ(x̄i, ȳi, ZL) ≈ P (ξ̄i, η̄i). (18.2.30)

Note that the right side of (2.30) can be written an inner product form involving the two

cubic vectors ˆ̄ξi and ˆ̄ηi,

P (ξ̄i, η̄i) = (ˆ̄ξi, c ˆ̄ηi). (18.2.31)

Hence the term bicubic interpolation again seems particularly appropriate.
In actual practice, since typically for our purposes any given P would be used only once,

it is convenient to proceed somewhat differently. We will interpolate the quantity of interest,
be it a potential value or some transverse field component, from the regular grid to the point
x̄i, ȳi with the aid of four plus one cubic polynomials. This approach gives the same result
as that obtained by first constructing P and then using (2.30), but employs somewhat more
standard tools.

Suppose again that we wish to interpolate a potential function ψ. Using the four val-
ues ψ(XJ , YK , ZL), ψ(XJ , YK+1, ZL), ψ(XJ , YK+2, ZL), ψ(XJ , YK+3, ZL), construct the cubic
polynomial g1(σ) given by

g1(σ) = a1 + b1σ + c1σ
2 + d1σ

3 (18.2.32)

such that
g1[(m− 1)hy] = ψ(XJ , YK+m−1, ZL) for m = 1, 2, 3, 4. (18.2.33)

(This is a standard construction in uniform-spacing Lagrangian interpolation.) Also form
three more cubic polynomials g2 through g4 such that

gk[(m− 1)hy) = ψ(XJ+k−1, YK+m−1, ZL) for m = 1, 2, 3, 4. (18.2.34)
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Together the four polynomials g1 through g4 allow us to interpolate in y for each of the four
different x values XK , XK+1, XK+2, XK+3. (Pictorially, we are interpolating along the four
different columns in Figure 2.1.) In particular,using (2.14), we have the four interpolated
values

ψy(XJ , ȳi, ZL) = g1(η̄i), (18.2.35)

ψy(XJ+1, ȳi, ZL) = g2(η̄i), (18.2.36)

ψy(XJ+2, ȳi, ZL) = g3(η̄i), (18.2.37)

ψy(XJ+3, ȳi, ZL) = g4(η̄i). (18.2.38)

Next, using the four interpolated potential values ψy(XJ+k−1, ȳi, ZL) with k ∈ [1, 4], we
will interpolate in x. Construct a fifth cubic polynomial f(τ) of the form

f(τ) = α + βτ + γτ 2 + δτ 3 (18.2.39)

such that

f [(k − 1)hx) = ψy(XJ+k−1, ȳi, ZL) for k = 1, 2, 3, 4. (18.2.40)

Then, interpolating in x using f and (2.13) gives the final desired result

ψ(x̄i, ȳi, ZL) ≈ ψxy(x̄i, ȳi, ZL) = f(ξ̄i). (18.2.41)

At this point the observant reader has no doubt noticed that it also possible to interpolate
in x first, and then in y, to get a result that we will call ψyx(x̄i, ȳi, ZL). How are ψxy(x̄i, ȳi, ZL)
and ψyx(x̄i, ȳi, ZL) related? They are equal. In fact, there are the relations.

ψxy(x̄i, ȳi, ZL) = ψyx(x̄i, ȳi, ZL) = P (ξ̄i, η̄i). (18.2.42)

That is, all three interpolation results agree. See Exercise 2.1

18.2.2 Bicubic Spline Interpolation

In the discussion so far, we have used cubic polynomials to interpolate in both x and y. An
alternate approach is to use the cubic splines of Subsection 15.1.1 to perform interpolations.
As before, one could interpolate first in y and then in x, or vice versa. It can be shown that
these two results will again be the same. Look again at Figure 2.1, and consider the central
square/rectangle that contains the point x̄i, ȳi. The coordinates of the grid point at the
lower left corner of the central square/rectangle are XJ+1 and YK+1. Now introduce central
expansion variables, again call them ξ and η, by writing

x = XJ+1 + ξ,

y = YK+1 + η. (18.2.43)

Then it can be shown that this interpolation procedure is equivalent to using a bicubic
polynomial again of the form (2.15), but now in the central expansion variables with the
coefficients cmn now determined from the Ψjk with the aid of cubic splines.
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Exercises

18.2.1. Verify that ....

18.3 Fourier Transforms

The work of Sections 14.2 through 14.5 required the computation of Fourier transforms. In
this section we will describe numerical methods for this task. We will first define the Fourier
transform and find its large |k| behavior. We will then define discrete Fourier transforms,
and explore their large |k| behavior. Finally, we will define spline-based Fourier transforms
that have, for our purposes, superior properties.

18.3.1 Exact Fourier Transform and Its Large |k| Behavior

Suppose f(z) is a function that is nonzero (has support) only within the interval [a, b], and
that we wish to find its linear Fourier transform

f̃(k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)f(z) = [1/(2π)]

∫ b

a

dz exp(−ikz)f(z). (18.3.1)

Let us examine the behavior of f̃ under the further supposition that f is differentiable and
perhaps also has specific properties at the endpoints a and b. Then (3.1) may be integrated
by parts to give the relation

f̃(k) = −[1/(2π)][1/(ik)] exp(−ikz)f(z)|ba+[1/(2π)][1/(ik)]

∫ b

a

dz exp(−ikz)f ′(z). (18.3.2)

The second term on the right in (3.2) may again be integrated by parts to give the result

[1/(2π)][1/(ik)]

∫ b

a

dz exp(−ikz)f ′(z)

= −[1/(2π)][1/(ik)2] exp(−ikz)f ′(z)|ba + [1/(2π)][1/(ik)2]

∫ b

a

dz exp(−ikz)f ′′(z).

(18.3.3)

Evidently, this process of integration by parts may be repeated at will as long as the required
higher derivatives of f exist, and each such repetition produces one more power of 1/k. For
future use, we will repeat the process two more times to arrive at the result

f̃(k) = −[1/(2π)][1/(ik)] exp(−ikz)f(z)|ba − [1/(2π)][1/(ik)2] exp(−ikz)f ′(z)|ba
− [1/(2π)][1/(ik)3] exp(−ikz)f ′′(z)|ba − [1/(2π)][1/(ik)4] exp(−ikz)f ′′′(z)|ba

+ [1/(2π)][1/(ik)4]

∫ b

a

dz exp(−ikz)f iv(z).

(18.3.4)
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We see that in general
|f̃(k)| ∼ 1/|k| as k →∞, (18.3.5)

and that if f vanishes at the endpoints, f(a) = f(b) = 0, as will often be the case, then the
first term on the right side of (3.4) will vanish so that

|f̃(k)| ∼ 1/|k|2 as k →∞, etc. (18.3.6)

Thus, f̃(k) must vanish at least as fast as 1/|k| for large |k|, and often vanishes as 1/|k|2.

18.3.2 Inverse Fourier Transform

One of the key features of the linear Fourier transform is the inverse Fourier transform
relation

f(z) =

∫ ∞
−∞

dk exp(ikz)f̃(k). (18.3.7)

That is, a function can be reconstructed from its linear Fourier transform by using an inverse
Fourier transform. Let us further assume that the integral (3.7) can be cut off for |k| > Kc

where Kc is some suitably large value, say a value where and beyond which the asymptotic
behavior (3.5) or (3.6) has effectively driven f̃ to zero. Thus, we write

f(z) ≈
∫ Kc

−Kc
dk exp(ikz)f̃(k). (18.3.8)

Eventually we will need to evaluate integrals of the form (3.8) numerically. Therefore,
we would like to know something about the properties of f̃(k) in the interval [−Kc, Kc]. In
particular, we would like to know how much f̃(k) oscillates. Suppose that f(z) has support
only in the interval [a, b]. Then f̃(k) must encode two pieces of information: it must encode
that f(z) is zero outside [a, b] and it must encode the behavior of f(z) within the interval
[a, b]. We see from (3.1) that f̃(k) is a generalized sum (integral) of terms of the form
exp(−iωk) where ω ∈ [a, b]. That is, f̃(k) contains all frequencies ω ∈ [a, b] with weights
f(ω). This is a potential disaster, because |a| and/or |b| could be quite large.

For example consider the functions f−1,1(z) and f0,2(z) defined by the relations

f−1,1(z) = 1− z4 for z ∈ [−1, 1],

= 0 for z outside [−1, 1]; (18.3.9)

f0,2(z) = 1− (z − 1)4 for z ∈ [0, 2],

= 0 for z outside [0, 2]. (18.3.10)

Figures 3.1 and 3.2 show their graphs which, evidently and by construction, are simply
translations of each other. [See also (1.36) and Figure 1.3.] Calculation shows that their
Fourier transforms are given by

<f̃−1,1(k) = −[4/(πk5)][k(k2 − 6) cos k − 3(k2 − 2) sin k], (18.3.11)

=f̃−1,1(k) = 0; (18.3.12)
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<f̃0,2(k) = [1/(πk5)][−4k(k2 − 6) cos2 k + 6(k2 − 2) sin 2k], (18.3.13)

=f̃0,2(k) = [1/(πk5)][12(k2 − 2) sin2 k − 2k(k2 − 6) sin 2k]. (18.3.14)

As expected, f̃−1,1(k) contains frequency |ω| = 1 from the sin k and cos k terms. By contrast,
f̃0,2(k) contains frequency |ω| = 2 from the sin 2k, cos2 k, and sin2 k terms. These different
behaviors are also evident in the graphs of these Fourier transforms as shown in Figures
3.3 through 3.5. Clearly the integral (3.8) is more difficult to evaluate for f̃0,2(k) than for
f̃−1,1(k) because f̃0,2(k) oscillates twice as often as f̃−1,1(k). There is an oscillation penalty
to be paid for encoding the fact that some f has support in the interval [0, 2] rather than
the interval [−1, 1].

-1 -0.5 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

f  (z)-1,1

z

Figure 18.3.1: The function f−1,1(z).

What to do? By simple translation it is always possible to send the interval [a, b] to the
interval [−Zc, Zc]. Therefore. without loss of generality, we may restrict our attention to
integrals of the form

f̃(k) = [1/(2π)]

∫ Zc

−Zc
dz exp(−ikz)f(z). (18.3.15)

Then, after all operations have been carried out, we may undo, if we wish, the translation
to obtain results in terms of the original coordinates. In this way, we only have to deal with
f̃(k) that contain frequencies satisfying |ω| ≤ Zc.
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Figure 18.3.2: The function f0,2(z).
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Figure 18.3.3: The function <f̃−1,1(k).
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Figure 18.3.4: The function <f̃0,2(k).
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Figure 18.3.5: The function =f̃0,2(k).
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18.3.3 Discrete Fourier Transform

Let us now turn to the task of evaluating f̃ numerically. Suppose the interval [−Zc, Zc] is
subdivided into N subintervals, each of length h, by writing

zn = −Zc + nh with n = 0, 1, · · · , N (18.3.16)

where
h = 2Zc/N (18.3.17)

so that
z0 = −Zc and zN = Zc. (18.3.18)

See Figure 2.1.1 for an earlier analogous construction. Use this subdivision to approximate
the integral (3.15) by the Riemann sum

f̃(k) ≈ [1/(2π)]h
N−1∑
n=0

exp(−ikzn)f(zn). (18.3.19)

The quantity on the right side of (3.19) is called the discrete Fourier transform of f .
How accurate is the discrete Fourier transform? Let g(z) be any twice differentiable

function. Then, according to the trapezoidal rule, there is the result∫ Zc

−Zc
dz g(z) = h[(1/2)g(z0) + g(z1) + g(z2) + · · ·+ g(zN−2) + g(zN−1) + (1/2)g(zN)]

− (1/6)h2g′′(ζ), (18.3.20)

which can be rewritten in the form∫ Zc

−Zc
dz g(z) = h[g(z0) + g(z1) + g(z2) + · · ·+ g(zN−2) + g(zN−1)]

− (1/2)hg(z0) + (1/2)hg(zN)− (1/6)h2g′′(ζ). (18.3.21)

Here ζ is some point in the interval [−Zc, Zc]. In our case we have

g(z) = [1/(2π)] exp(−ikz)f(z) (18.3.22)

so that
g′′(ζ) = [1/(2π)][−k2f(ζ)− 2ikf ′(ζ) + f ′′(ζ)] exp(−ikζ). (18.3.23)

Thus, we have the result

f̃(k) = [1/(2π)]h
N−1∑
n=0

exp(−ikzn)f(zn)

− (1/2)[1/(2π)]hf(−Zc) exp(ikZc) + (1/2)[1/(2π)]hf(Zc) exp(−ikZc)
− (1/6)h2[1/(2π)][−k2f(ζ)− 2ikf ′(ζ) + f ′′(ζ)] exp(−ikζ).

(18.3.24)
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Upon comparing (3.19) and (3.24), we see that the discrete Fourier transform generally
makes errors of order h. However, if f(−Zc) = 0 and f(Zc) = 0, which is often the case,
then the discrete transform makes errors of order h2. But, the errors of order h2 can be very
large if |k| is large.

Let us explore the large |k| behavior of the discrete Fourier transform. If we make use
of (3.16), we see that (3.19) can also be written in the form

f̃(k) ≈ [1/(2π)]h exp(ikZc)
N−1∑
n=0

exp(−iknh)f(zn). (18.3.25)

Observe that the function exp(−ikh) is periodic in k with a period K given by

K = 2π/h = Nπ/Zc. (18.3.26)

Consequently, if we define a function F (k) by writing

F (k) = [1/(2π)]h
N−1∑
n=0

exp(−iknh)f(zn), (18.3.27)

we have the relation

F (k +K) = F (k). (18.3.28)

But (3.19) can be rewritten in terms of F . We find, using (3.25) and (3.27), the result

f̃(k) ≈ exp(ikZc)F (k). (18.3.29)

We see that the discrete Fourier transform f̃ is quasi-periodic in k. It is a product of the
function exp(ikZc), which has the period 2π/Zc (so that |ω| = Zc), and the envelope function
F which has period K. Thus, the discrete Fourier transform can never satisfy (3.5) or (3.6).5

In general, the discrete Fourier transform is reliable only in the interval k ∈ [−K/2, K/2].
The quantity KNy = K/2 is called the Nyquist critical frequency.

As an example of the behavior of the discrete Fourier transform, consider again the
function f−1,1(z) given by (3.9) and shown in Figure 3.1. We have already seen that it has
the exact Fourier transform given by (3.11) and (3.12) and shown in Figure 3.3. Figure 3.6
shows both the exact Fourier transform, and the discrete and spline-based Fourier transforms
for the case h = .10.6 (The spline-based Fourier transform is discussed in a subsequent
subsection.) In this case KNy = π/h ' 31.4. We observe that, as warned, the discrete
Fourier transform results are not reliable for |k| > KNy. Figure 3.7 shows the difference
between the exact and discrete Fourier transforms within and somewhat beyond the Nyquist
band |k| < KNy. Note that, as expected from the quasi-periodicity of the discrete Fourier
transform, see Figure 3.6, the error grows as k leaves the Nyquist band.

5Observe that the discrete Fourier transform (3.19) can be viewed as the exact Fourier transform of

the function h
∑N−1
n=0 f(zn)δ(z − zn), and that this finite sum of delta functions must have all frequency

components present.
6All these Fourier transforms are real because f−1,1(z) as given by (3.9) is an even function.
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Figure 18.3.6: The exact, discrete, and spline-based Fourier transforms of f−1,1(z) for
h = .10. On the scale of this figure the exact and spline-based Fourier transforms are
indistinguishable. They are both shown as a solid line. The discrete Fourier transform is
shown as a dashed line. Note that it is quasi-periodic while the exact and spline-based
Fourier transforms fall to zero for large |k|.
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Figure 18.3.7: Difference between the exact and discrete Fourier transforms of f−1,1(z) for
h = .10.
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18.3.4 Discrete Inverse Fourier Transform

Consider again the inverse Fourier transform (3.8). Let us explore to what extent this inverse
transform can also be made discrete and to what extent the discrete forward and inverse
Fourier transforms are related. Discretize what so far has been the continuous variable k by
writing

km = −Kc +mH for m = 0, 1, · · · ,M (18.3.30)

with
H = 2Kc/M (18.3.31)

so that
k0 = −Kc and kM = +Kc. (18.3.32)

When this is done, the relation (3.8) can be approximated by the Riemann sum

f(z) ≈ H
M−1∑
m=0

exp(ikmz)f̃(km). (18.3.33)

Evidently both (3.19) and (3.33) are approximate, and presumably they become ever
more accurate as M →∞ and N →∞. However, if M = N and Kc = KNy, there are the
exact relations

f̃(km) = [1/(2π)]h
N−1∑
n=0

exp(−ikmzn)f(zn), (18.3.34)

and

f(zn) = H
M−1∑
m=0

exp(ikmzn)f̃(km). (18.3.35)

Here (3.34) is taken to be the definition of the quantities f̃(km). [They are not the exact
values that would be found by doing the integral (3.15) exactly for the values k = km.] And
when these approximate values f̃(km) are employed in the (approximate) formula (3.35),
the values f(zn) are recovered exactly. This a case where two wrongs do make a right!7 See
Exercise 3.1.

18.3.5 Spline-Based Fourier Transforms

Let fsa be a cubic spline approximation to the function f appearing in (3.15). Then we may
make the definition

f̃sa(k) = [1/(2π)]

∫ Zc

−Zc
dz exp(−ikz)fsa(z). (18.3.36)

As described in Section 15.1.1, fsa(z) can be constructed from the values f(zn) with n ∈
[0, N ]. Moreover, observe that the definition (3.36) can be evaluated exactly (numerically
to machine precision) for any value of k since the Fourier transforms of cubic polynomials

7The relation (3.35) does not give the exact values of f(z) when z 6= zn. Also note that (3.35) produces
a function of z that is quasi-periodic with quasi-period Z = 2π/H = 2. By contrast, f(z) is supposed to be
zero for z outside the interval [−1, 1].
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can be found analytically and then evaluated numerically to machine precision. Thus, we
have a relation of the form

f̃sa(k) =
N∑
n=0

g−n (k)f(zn) (18.3.37)

where the g−n (k) are known functions of k that can be evaluated to machine precision.8

Suppose we assume that f(z) vanishes at the endpoints ±Zc. Then fsa will be a differentiable
function of z that vanishes at the endpoints. Therefore we expect that f̃sa(k), unlike the
f̃ given by (3.19), will have more nearly appropriate large |k| behavior.9 See (3.6). The
accuracy of f̃sa(k), namely the difference between f̃sa(k) and the exact f̃(k) given by (3.15),
depends only on the quality of the spline fit fsa(z), and not on any approximation to the
Fourier integral.

As an example of the behavior of f̃sa(k), consider again the f−1,1(z) given by (3.9). As
already described earlier, Figure 3.6 shows the exact Fourier transform, the discrete Fourier
transform, and f̃sa for the case h = .10. [Here we have used (1.24) to estimate the end-
point derivatives required to construct fsa(z).] We have already noted that the exact and
spline-based Fourier transforms appear identical on the scale shown. Figure 3.8 shows their
difference. Note that their difference is small as expected from the error estimate (1.34) and
the fact that the Fourier transform (3.36) of the spline approximation is evaluated exactly.
In summary, as comparison of Figures 3.7 and 3.8 illustrates, for smooth functions the
spline-based Fourier transform is much more accurate than the discrete Fourier transform.

What can be said about the inverse Fourier transform? Begin with (3.8). It is approxi-
mate because of the cutoff, but this cutoff Kc can in principle be made quite large to assure
good accuracy. Next replace f̃(k) by f̃sa(k) using (3.36) to get the approximation

f(z) ≈
∫ Kc

−Kc
dk exp(ikz)f̃sa(k). (18.3.38)

The quality of this approximation depends on the quality of the spline fit fsa(z). Also
suppose we carry out the operation (3.36) for M + 1 discrete values of k using the km values
given by (3.30). That is, we compute the quantities f̃sa(km) by the rule

f̃sa(km) =
N∑
n=0

g−n (km)f(zn). (18.3.39)

We may then use these quantities to try to reconstruct f(z).
In particular, use the M + 1 values f̃sa(km) to construct a cubic spline approximation

to f̃sa(k) which we will call f̃sasa(k). [Again we use (1.24), this time applied to the values
f̃sa(km), to estimate the required end-point derivatives.] Using this approximation in (3.38)
gives the representation

f(z) ≈
∫ Kc

−Kc
dk exp(ikz)f̃sasa(k). (18.3.40)

8 The superscript “−” indicates that exp(−ikz) appears in (3.36).
9The function f̃sa(k) given by (3.36) cannot fall off any faster than 1/|k|4 at infinity because a cubic-spline

has discontinuous third derivatives. See Exercise 3.2.
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Figure 18.3.8: Difference between the exact and spline-based Fourier transforms of f−1,1(z)
for h = .10.
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Because f̃sasa(k) is a cubic spline approximation, the integral (3.40) can again be done
exactly. That is, there are known functions g+

m(z) such that10

f(z) ≈
∫ Kc

−Kc
dk exp(ikz)f̃sasa(k) =

M∑
m=0

g+
m(z)f̃sa(km). (18.3.41)

The accuracy of this representation of f depends on how well f̃sasa(k) approximates f̃sa(k).
In general it will not yield an f that vanishes outside [−1, 1]. However, unlike the f produced
by (3.33), the f produced by (3.41) will be very small for z outside the interval [−1, 1].

In summary, the accuracy of direct and inverse spline-based Fourier transforms is gov-
erned primarily by the quality of spline approximations, and not by how well various Fourier
integrals are approximated. Put another way, the use of the discrete Fourier transform does
not make any optimistic assumptions about the smoothness properties of f(z). (Indeed, it
assumes the worst, a sum of delta functions approximation.) By contrast, the use of spline-
based Fourier transforms capitalizes on the assumption that f(z) is not too badly behaved
between sampling points zn.

How well do the discrete and spline-based Fourier transforms work in reconstructing a
function? Let us first consider the discrete case. As an example, will again consider the
f−1,1 given by (3.9). Figure 3.9 shows the reconstructed f−1,1(z) produced by (3.33) with the
f̃(km) given by (3.19) or, equivalently, (3.34). Figure 3.10 shows the difference between the
exact f−1,1 and the reconstructed f−1,1. Here again we have used h = .10 so that N = 20;
and we have set Kc = KNy and M = N . We see from Figure 3.9 that the reconstructed
f−1,1 is quasi-periodic as expected. We see from Figure 3.10 that the error is zero at the
sampling points as expected, but rises to as high as 2% elsewhere.

What happens if we instead use spline-based Fourier transforms? We have already seen
that, for this example, the forward spline-based Fourier transform f̃sa(k) is more accurate
than the discrete Fourier transform. This is because of the high accuracy of the spline
approximation fsa(z) to f(z), and the fact that the Fourier transform of the spline approx-
imation is performed exactly. We expect to be able to carry out the inverse spline-based
Fourier transform with good accuracy provided the spline approximation f̃sasa(k) to f̃sa(k)
has good accuracy. But now there is a possible problem. Figure 3.11 shows the 21-point
spline approximation f̃sasa(k) over the interval [−KNy, KNy] as well as f̃sa(k) itself. We see
that the 21-point spline approximation f̃sasa(k) is not particularly good because of the oscil-
latory nature of f̃sa(k). Figure 3.12 shows the exact f−1,1(z) and the reconstructed f−1,1(z)
based on using f̃sasa(k) in (3.41) with Kc = KNy. Evidently the agreement is not particularly
good, reflecting the poor quality of the 21-point spline approximation f̃sasa(k).

Suppose we instead make Kc somewhat larger than KNy by setting Kc = 50 and also
use a 51-point spline approximation to f̃sasa(k) over this interval [−Kc, Kc]. When this is
done, it is found that the difference between f̃sa(k) and its spline fit f̃sasa(k) is less then
6 × 10−5. Correspondingly we expect the reconstruction of f−1,1(z) to be much improved.
This is indeed the case. Figure 3.13 shows the function f−1,1(z) and its reconstruction using,
in (3.41), the 51-point spline approximation f̃sasa(k) over the interval k ∈ [−50, 50]. The
agreement is much improved, and is even good outside the interval [−1, 1] where the discrete

10Here the superscript “+” indicates that exp(+ikz) appears in (3.40) and (3.41).
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Figure 18.3.9: Reconstruction of f−1,1 = 1 − z4 using forward and inverse discrete Fourier
transforms.
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Figure 18.3.10: Error in reconstruction of f−1,1 = 1− z4 using forward and inverse discrete
Fourier transforms.
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Fourier reconstruction fails. To provide further insight into the error, Figure 3.14 displays
the difference between the exact f−1,1(z) and the reconstructed f−1,1(z). Now the error is
comparable to that for the discrete case, and, unlike the discrete case, is even small outside
the interval [−1, 1]. Compare Figures 3.9, 3.10, 3.13, and 3.14. Of course, with more points
the discrete-case error also decreases. But it decreases as a smaller power of h than in the
spline-based case so that eventually the spline-based method wins.

Moreover, the apparent good performance of the discrete method is misleading. We
already know from our previous discussion that its error when performing reconstructions
must be zero at the sampling points due to the magic cancellation of errors in the forward and
inverse discrete Fourier transformations at these points. But we are ultimately not interested
in reconstruction. Rather, we are interested in forward Fourier transformation followed by
inverse Fourier transformation with some k-dependent kernel. See (14.2.2), (14.2.6) and
(14.3.1), (14.3.6) and (14.4.73), (14.4.74), (14.4.85), (14.4.86). In this context there is no
reason to expect cancellation of errors when discrete Fourier transformations are employed.
And, when spline-based Fourier transformations are employed, we may expect to see errors
that are no worse then those encountered in the case of reconstruction. We conclude that
as long as the spline approximations are done with care, the spline-based Fourier transforms
should be superior to discrete Fourier transforms.
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Figure 18.3.11: The function f̃sa(k) (solid line) and its 21-point spline approximation f̃sasa(k)
(dashed line) over the Nyquist band k ∈ [−KNy, KNy].
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Figure 18.3.12: The function f−1,1(z) = 1 − z4 and its reconstruction using the 21-point
spline approximation f̃sasa(k) in (3.41).
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Figure 18.3.13: The function f−1,1(z) = 1 − z4 and its reconstruction using, in (3.41), the
51-point spline approximation f̃sasa(k) over the interval k ∈ [−50, 50].
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Figure 18.3.14: The difference between the exact function f−1,1(z) = 1 − z4 and its re-
construction using, in (3.41), the 51-point spline approximation f̃sasa(k) over the interval
k ∈ [−50, 50].
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18.3.6 Fast Spline-Based Fourier Transforms

How much work is involved in computing Fourier transforms? Let Mmn be the matrix with
entries

Mmn = [1/(2π)]h exp(−ikmzn). (18.3.42)

With this notation, the discrete Fourier transformation relation (3.34) can be written in the
vector/matrix form

f̃(km) =
N−1∑
n=0

Mmnf(zn). (18.3.43)

Suppose we view the matrix M as being precomputed, so that we do not count its evaluation
toward the work involved, but we do imagine carrying out (3.43) for a collection of k values.
Then the major work involved will consist of N2 multiplications because there are N multi-
plications in (3.43) for each value of m and there are N such values. Of course, additions are
also involved, but they are much less expensive in machine time than multiplications, and
so they will be ignored. Thus, it would seem that the work involved in computing discrete
Fourier transforms scales as N2.

One of the celebrated realizations of 20th century computational science is that there
are certain favored values of N for which there is a fast Fourier transform (FFT) algorithm
such that the work scales only as N log2N rather than N2.11 Although there are other
possibilities, these favored values are most commonly taken to be integer powers of 2, N = 2`

for some integer `. The use of such N values does not cause any great complication because
additional equally-spaced points zn can added at both ends of the general interval [a, b], and
f can be assigned the value 0 at these additional points. (This is called padding with zeros.)
So doing does not affect the values of the discrete Fourier transform, nor does it affect KNy.
It does affect, however, the location of the sampling points km in k space. [See (3.30) with
M = N and Kc = KNy.] In fact, it makes the sampling points more finely spaced, which
can be viewed as a virtue.

What can be said about the work involved in computing spline-based Fourier transforms?
Examination of the logic involved in the construction of discrete FFT algorithms shows that
exactly the same considerations apply to spline-based Fourier transforms. Therefore, for
every favored value of N , there is also a fast spline-based Fourier transform algorithm for
which the work also scales as N log2N . Consequently, there is no computational penalty
involved in the use of spline-based Fourier transforms.

Exercises

18.3.1. Verify ....

18.3.2. Verify ....

11We say realization rather than discovery because, after the extensive FFT work of Danielson, Lanczos,
Cooley, Tukey, and others in the mid 20th century, it became clear in retrospect that their remarkable
accomplishments had been anticipated earlier by others including Gauss in 1805.
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18.4 Bessel Functions

Look again at Section 14.2. The computation of generalized gradients in terms of potential
data on the surface of a circular cylinder required the calculation of Bessel functions Im,
and the equivalent computation in Section 14.3 based on field data required a knowledge
of I′m. For small values of the argument, say w ≤ 1, these calculations can done using the
series (13.2.15). For larger argument values, and in view of the fact that the Bessel functions
are needed for many equally-spaced argument values, it is convenient to to compute Bessel
functions by integrating the differential equation for Im numerically (using the methods of
Chapter 2) in the form

I′′m(w) + (1/w)I′m(w)− (m2/w2)Im(w)− Im(w) = 0. (18.4.1)

Here, as initial conditions, we use the series (13.2.15) to evaluate Im and I′m for w = 1.
We remark that many of the standard familiar transcendental functions satisfy or are

defined by differential equations with good analytic properties. If their values are required
at many equally spaced points, these values can often be conveniently and reliably obtained
by numerical integration of these differential equations. We will use this method in the next
section for Mathieu functions.

18.5 Mathieu Functions

This subsection describes briefly tools needed for the computation of Mathieu functions. In
1914 Whittaker remarked about Mathieu functions that

their actual analytical determination presents great difficulties.

He could have said the same thing about their numerical computation. Nearly 100 years
later there still do not seem to be any open-source algorithms that are fully robust over the
required range of the parameter q.

18.5.1 Calculation of Separation Constants an(q) and bn(q)

There is a fast algorithm, based on the use of continued fractions, for the computation
of the separation constants an(q) and bn(q). There are also algorithms based on matrix
diagonalization. Unfortunately, no routines have yet been found that are completely robust.
Samples of the existing routines are listed in Appendix M along with a description of their
performance. Although much work has been done on this subject by many authors, there
is yet more to be done.

18.5.2 Calculation of Mathieu Functions

The calculation of the Mathieu functions themselves is also a delicate matter. As an indi-
cation of the difficulty of computing Mathieu functions reliably, we have found that Mathe-
matica, useful as it is, also does not compute them accurately for some values of q. However,
for our purposes, since we need them only for a relatively few equally-spaced values of the
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arguments u and v, they can be obtained (with some care and recognition of their symme-
try properties) by direct numerical integration (using the methods of Chapter 2) of their
defining differential equations. Thus, for us, the major problem is accurate computation of
the separation constants.

Specifically, for the cen(v, q), we integrate the equation (14.4.22) over the interval [0, 2π]
with the initial conditions

Qc
n(0, q) = 1, (18.5.1)

Qc ′
n (0, q) = 0. (18.5.2)

Here, and in what follows, a ′ denotes differentiation with respect to v. Moreover, the
notation Qc

n(v, q) indicates that q is to be computed using (14.4.23), that this resulting q
value is next used to compute a = an(q), and that these values of q and a are then used in
(14.4.22). Simultaneously, we integrate the first-order differential equation

N ′c(v) = [Qc
n(v, q)]2, (18.5.3)

again over the interval [0, 2π], with the initial condition

Nc(0) = 0. (18.5.4)

Finally, we find cen(v, q) from the relation

cen(v, q) = [
√
π/Nc(2π)]Qc

n(v, q). (18.5.5)

In this way we generate a solution of (14.4.22) that is even in v, and also satisfies the
normalization requirement (14.4.38) for m = n. Finally, we check numerically the periodicity
requirements

Qc
n(2π, q) = 1,

Qc ′
n (2π, q) = 0. (18.5.6)

We require that the relations (5.6) are always satisfied to high precision. So doing provides
a check on both the accuracy of the an(q) and the numerical integration procedure. We
remark that because of the symmetry conditions described at the end of Section 14.4.4, it
is really only necessary to integrate over the interval [0, π/2] and then verify that (4.54) or
(4.57) are satisfied. Moreover, if the an(q) are known to be accurate and there are strongly
forbidden regions in v, it is only necessary to integrate over the still smaller interval [0, vdeep].

The calculation of the sen(v, q) is done in a similar way. Now we set a = bn(q) and
integrate (14.4.22) with the initial conditions

Qs
n(0, q) = 0, (18.5.7)

Qs ′
n (0, q) = 1. (18.5.8)

At the same time we again integrate the differential equation

N ′s(v) = [Qs
n(v, q)]2 (18.5.9)

with the initial condition
Ns(0) = 0. (18.5.10)
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Then we define sen(v, q) by the relation

sen(v, q) = [
√
π/Ns(2π)]Qs

n(v, q). (18.5.11)

Finally, we check numerically the periodicity requirements that now

Qs
n(2π, q) = 0,

Qs ′
n (2π, q) = 1. (18.5.12)

We require that (5.12) be satisfied to high precision thereby providing a check on the accuracy
of both the bn(q) and, as before, the numerical integrator. Again, using symmetry it is
really only necessary to integrate over the interval [0, π/2]. And if the bn(q) are known to
be accurate and there are strongly forbidden regions in v, it is only necessary to integrate
over the still smaller interval [0, vdeep].

We still have to describe the computation of Cen(u, q) and Sen(u, q). Now we will in-
tegrate (14.4.21) numerically. For the case of Cen(u, q) we find from (14.4.56) the initial
condition

Cen(0, q) = cen(0, q) =
√
π/Nc(2π). (18.5.13)

Here we have also used (5.1) and (5.5). And, since Cen(u, q) is even in u, we have the second
initial condition

Ce′n(0, q) = 0. (18.5.14)

Thus, given k, we find q and a = an(q). Then, having selected U , we integrate (14.4.21)
over the interval u ∈ [0, U ] with the initial conditions

P c
n(0, q) =

√
π/Nc(2π) (18.5.15)

and

P c ′
n (0, q) = 0. (18.5.16)

The result of this process is the value Cen(U, q) = P c
n(U, q).

The computation of Sen(u, q) proceeds similarly. From (14.4.57) we see that there are
the initial conditions

Sen(0, q) = −isen(0, q) = 0, (18.5.17)

Se′n(u, q)|u=0 = −ise′n(iu, q)|u=0(i) = se′n(0, q) =
√
π/Ns(2π). (18.5.18)

Here we have used (5.8) and (5.11). Thus, given k, we find q and a = bn(q). Then, having
selected U , we integrate (14.4.21) over the interval u ∈ [0, U ] with the initial conditions

P s
n(0, q) = 0 (18.5.19)

and

P s ′
n (0, q) =

√
π/Ns(2π). (18.5.20)

The result of this process is the value Sen(U, q) = P s
n(U, q).
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18.5.3 Calculation of Fourier and Mathieu-Bessel Connection
Coefficients

The functions cer(v, q) and ser(v, q) are periodic with period 2π and therefore have Fourier
expansions in terms of the functions cos(mv) and sin(mv). See (14.4.52) through (14.4.55).
As shown in Appendix N, the Fourier coefficients that appear in these expansions, which
depend on q, are key to computing the Mathieu-Bessel connection coefficients αrm(k) and
βrm(k). See (14.4.78) and (14.4.79). In this subsection we describe how these Fourier coeffi-
cients can be computed numerically.

Let us begin with the functions cer(v, q). Since they are periodic and even, they have
Fourier expansions of the form

cer(v, q) =
∞∑
m=0

Arm(q) cos(mv). (18.5.21)

There are known algorithms for the computation of the Fourier coefficients Arm(q) but, as
was the case with those for the computation of the cer(v, q), we have found that they are not
robust. However, by the orthogonality property of the trigonometric functions, it follows
that

Ar0(q) = [1/(2π)]

∫ 2π

0

dv cer(v, q),

Arm(q) = (1/π)

∫ 2π

0

dv cer(v, q) cos(mv) for m ≥ 1. (18.5.22)

By (5.5) we may also write

Ar0(q) = [1/(2π)][
√
π/Nc(2π)]

∫ 2π

0

dv Qc
r(v, q),

Arm(q) = (1/π)[
√
π/Nc(2π)]

∫ 2π

0

dv Qc
r(v, q) cos(mv) for m ≥ 1. (18.5.23)

Let Ârm(v, q) be the functions defined for various values of m and r by the differential
equations

Âr ′0 (v, q) = (1/2)Qc
r(v, q),

Âr ′m (v, q) = Qc
r(v, q) cos(mv) for m ≥ 1 (18.5.24)

with the common initial conditions

Ârm(0, q) = 0. (18.5.25)

The differential equations (5.24) can be integrated numerically over the interval [0, 2π] si-
multaneously with those for the Qc

r(v, q) and (5.3). Then we find that the Arm(q) are given
by the relations

Arm(q) = (1/π)[
√
π/Nc(2π)]Ârm(2π, q). (18.5.26)
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Similarly, for the functions ser(v, q), there are Fourier expansions of the form

ser(v, q) =
∞∑
m=1

Br
m(q) sin(mv). (18.5.27)

And, again by the orthogonality property of the trigonometric functions, it follows that

Br
m(q) = (1/π)

∫ 2π

0

dv ser(v, q) sin(mv). (18.5.28)

With the aid of (5.11) this relation can also be written in the form

Br
m(q) = (1/π)[

√
π/Ns(2π)]

∫ 2π

0

dv Qs
r(v, q) sin(mv). (18.5.29)

Now let B̂r
m(v, q) be the functions defined for various values of m and r by the differential

equations
B̂r ′
m (v, q) = Qs

r(v, q) sin(mv) (18.5.30)

with the common initial conditions

B̂r
m(0, q) = 0. (18.5.31)

Now we find that the Br
m(q) are given by the relations

Br
m(q) = (1/π)[

√
π/Ns(2π)]B̂r

m(2π, q). (18.5.32)

At this point we remark that the functions cos(mv) and sin(mv) required to integrate
the differential equations (5.24) and (5.30), as well as the equations of the form (14.4.22) for
the Qc

r(v, q) and the Qs
r(v, q), can also be computed on the fly by simultaneously integrating

numerically the differential equations for the trigonometric functions. The needed hyperbolic
functions in (14.4.21) can be calculated analogously. So doing is faster than using the built-in
Fortran or C functions for the trigonometric functions.
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Chapter 19

Numerical Benchmarks

How well do the surface methods of Chapter 14 work? To test them we need a problem
that is sufficiently complex and challenging to fully exercise the numerical algorithms while
at the same time being exactly soluble. In that way we will be able to gauge the accuracy
of the numerical methods by comparing numerical results with exact analytic results. Such
a test problem is that of the magnetic monopole doublet described in Section 13.7. For this
problem we will assume that a = 2.5 cm and g = 1 Tesla-(cm)2. See Section 13.7.1.

19.1 Circular Cylinder Numerical Results for

Monopole Doublet

In this section we will apply the circular cylinder numerical method of Section 14.3 to the
monopole doublet problem to investigate how accurately this method is able to reproduce the
exact analytic results for the on-axis gradients found in Section 13.7.2.1 For our benchmark
calculation we will employ a cylinder with radius R = 2 cm. See Figure 13.7.1. We will
work up to the desired numerical comparison by stages. In this way we will be able to judge
the accuracy of various intermediate steps.

Observe that the integrands of (14.3.8) and (14.3.23), apart from multiplicative con-
stants, consist of the product of a kernel [kn+|m|−1/I ′m(kR)] and the Fourier coefficients

[ ˜̃Bρ(R,m
′, k′)] or [ ˜̃Bα

ρ (R,m′, k′)]. The kernels are universal (the same for all problems) and
the Fourier coefficients are specific to each problem. In what follows we will be examining

both. For convenience, we will use the Fourier coefficients [ ˜̃Bα
ρ (R,m′, k′)].

19.1.1 Testing the Spline-Based Inverse (k → z) Fourier
Transform

Suppose we know exactly the Fourier coefficients ˜̃Bα
ρ (R,m′, k′) as given by (14.3.14). We will

see in the next two paragraphs that, for the case of the monopole doublet, the ˜̃Bα
ρ (R,m′, k′)

can indeed be found exactly. We can insert these exact quantities into (14.3.23), and then

1A similar study could be made of the accuracy of the related method of Section 14.2, with analogous
results.

1601
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perform the required integration numerically using the methods described in Section 15.3.5.
In this way we will be able to test the accuracy of the numerical routines for I ′m(w) and for
spline-based inverse Fourier transforms. This test will be performed in later paragraphs.

Exact Fourier coefficients

To find the ˜̃Bα
ρ (R,m′, k′) exactly, suppose the C

[0]
m,α(z) have the Fourier representation

C [0]
m,α(z) =

∫ ∞
−∞

dk C̃ [0]
m,α(k) exp(ikz). (19.1.1)

From (14.3.23) evaluated with n = 0 we have the result

C [0]
m,α(z) = (1/2)m(1/m!)

∫ ∞
−∞

dk[km−1/I ′m(kR)] ˜̃Bα
ρ (R,m, k) exp(ikz). (19.1.2)

It follows from the uniqueness of the Fourier representation that there are the relations

C̃ [0]
m,α(k) = (1/2)m(1/m!)[km−1/I ′m(kR)] ˜̃Bα

ρ (R,m, k), (19.1.3)

which can be solved for the ˜̃Bα
ρ (R,m, k) to give the relations

˜̃Bα
ρ (R,m, k) = 2m(m!)[I ′m(kR)/(k)m−1]C̃ [0]

m,α(k). (19.1.4)

Of course, in view of (1.1), the C̃
[0]
m,α(k) are also given by the inverse Fourier transform

C̃ [0]
m,α(k) = [1/(2π)]

∫ ∞
−∞

dz C [0]
m,α(z) exp(−ikz). (19.1.5)

Therefore, from (13.7.9) and (13.7.33), we conclude that for the monopole doublet there are
the results

C̃
[0]
m=0(k) = 0, (19.1.6)

C̃ [0]
m,c(k) = 0, (19.1.7)

C̃ [0]
m,s(k) = 0 for m even, (19.1.8)

and the only nonzero integrals on the right side of (1.5) are of the form∫ ∞
−∞

dz C [0]
m,s(z) exp(−ikz) with m odd. (19.1.9)

From (13.7.33) we see that we need the integrals∫ ∞
−∞

dz exp(−ikz)β2m+1(z) for m odd. (19.1.10)

These integrals can be done analytically, and have the values∫ ∞
−∞

dz exp(−ikz)β2m+1(z) = {2/[1 · 3 · 5 · 7 · · · (2m− 1)]}am+1|k|mKm(a|k|). (19.1.11)
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Putting everything together gives the final result that the only nonzero ˜̃B
α

ρ (R,m, k) are
those given by the relations

˜̃Bs
ρ(R,m, k) = (−4g/π)(−1)(m−1)/2|k|I ′m(kR)Km(a|k|) for m odd. (19.1.12)

We observe that the ˜̃Bs
ρ(R,m, k) for the monopole doublet are pure real and are even func-

tions of k. The imaginary part vanishes because, for the monopole doublet, Bρ(R, φ, z) is
an even function of z. See (13.7.8) and (14.3.14) through (14.3.16).

As examples of the behavior of the ˜̃Bs
ρ(R,m, k), Figures 1.1 and 1.2 show the functions

< ˜̃Bs
ρ(R, 1, k) and < ˜̃Bs

ρ(R, 7, k). As already described, I ′m(kR) grows exponentially at infinity.
See (14.3.7). By contrast, Km(a|k|) decays exponentially to zero at infinity,

|Km(a|k|)| ∼ exp(−|k|a)(π)1/2/
√

2|k|a as |k| → ∞. (19.1.13)

Since a > R, it follows that the ˜̃Bs
ρ(R,m, k) are exponentially damped at infinity,

| ˜̃Bs
ρ(R,m, k)| ∼ exp[−|k|(a−R)] as |k| → ∞. (19.1.14)

The function I ′m(kR) is an entire function of k. The function Km(a|k|) is singular at the
origin. Analysis reveals that the product |k|I ′m(kR)Km(a|k|) is finite at the origin and
has additionally a logarithmic singularity at the origin of the form |k|2m log |k|.2 Thus the
˜̃Bs
ρ(R,m, k), with m ≥ 1, are finite for all k and vanish exponentially at infinity.

Kernels

Since, as emphasized earlier, the integrand in (14.3.23) is the product of a kernel and a
Fourier coefficient, we should also examine the kernels. Figures 1.3 through 1.5 display the
kernels [kn+m−1/I ′m(kR)] for the representative cases (m,n)=(1,0), (1,6), and (7,0) when
R = 2 cm. We see, as expected, that they fall off rapidly for large |k|. The intermediate
cases give analogous results.

Exact Integrands

We are now ready to evaluate the integrals (14.3.23) to find the C
[n]
m,s(z). Upon inserting

(1.12) into (14.3.23), we find the results

C [n]
m,s(z) =

{
−4g(−1)(m−1)/2

π2m(m!)

}∫ ∞
−∞

dk exp(ikz)(ik)n|k|mKm(|k|a). (19.1.15)

Or, more directly and as an algebraic check, we may use (1.5) to yield the result

C̃ [0]
m,s(k) = [1/2π]

∫ ∞
−∞

dz C [0]
m,s(z) exp(−ikz)

= {−4g/[π2m(m!)]}(−1)(m−1)/2|k|mKm(|k|a). (19.1.16)

2It can be shown that this singularity in ˜̃Bsρ(R,m, k) is related to the ∼ 1/|z|3 behavior of Bρ(R,φ, z)

and the ∼ 1/|z|2m+1 behavior of the C
[0]
m,s(z) for large |z|. See (13.7.8) and (13.7.34). In general, the faster

the falloff at |z| =∞, the milder the singularity at k = 0.
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Figure 19.1.1: The real part of ˜̃Bs
ρ(R, 1, k) as a function of k for the monopole doublet in

the case that R = 2 cm and a = 2.5 cm. The imaginary part vanishes.
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Figure 19.1.2: The real part of < ˜̃Bs
ρ(R, 7, k) as a function of k for the monopole doublet in

the case that R = 2 cm and a = 2.5 cm. The imaginary part vanishes.
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Figure 19.1.3: The kernel [kn+m−1/I ′m(kR)] as a function of k in the case that m = 1, n = 0,
and R = 2 cm.
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Figure 19.1.4: The kernel [kn+m−1/I ′m(kR)] as a function of k in the case that m = 1, n = 6,
and R = 2 cm.
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Figure 19.1.5: The kernel [kn+m−1/I ′m(kR)] as a function of k in the case that m = 7, n = 0,
and R = 2 cm.

Note that the nonzero C̃
[0]
m,s(k) for the monopole doublet are pure real because C

[0]
m,α(z) is real

and, for the monopole doublet case, is an even function of z. Correspondingly, the C̃
[0]
m,s(k)

are even functions of k. Now, more compactly, we may write

C [n]
m,s(z) =

∫ ∞
−∞

dk (ik)nC̃ [0]
m,s(k) exp(ikz). (19.1.17)

It is these integrals that we want to evaluate using spline-based inverse Fourier transforms
in order to illustrate and verify the accuracy of this numerical method.

The integrands that are expected to be the hardest to integrate accurately are those for
the extreme case {m = 1, n = 0} because of its |k|2 log |k| singularity at the origin and the
extreme case {m = 1, n = 6} because of its oscillatory behavior. These integrands, which

are required to compute C
[0]
1,s(z) and C

[6]
1,s(z), respectively, are shown in Figures 1.6 and 1.7.

As expected, the integrands fall of rapidly for large |k| because, as seen earlier, both
the Fourier coefficients and the kernels fall of rapidly for large |k|. Indeed, inspection of
Figures 1.6 and 1.7 shows that the integrands have effectively fallen to zero when |k| > 10.
Therefore, and in order to be conservative, we will evaluate the integrals (14.3.23) using the
somewhat larger cutoff Kc = 20. Moreover, we will use 401-point spline fits to the integrands
over the interval k ∈ [−Kc, Kc] so that H = .1. See (15.3.30).

Spline-Based Inverse Fourier Transform Results

Figures 1.8 and 1.9 show the functions C
[0]
1,s(z) and C

[6]
1,s(z) obtained in this way as well as

the exact results given by (13.7.33) and its derivatives. Figures 1.10 and 1.11 show for these
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Figure 19.1.6: The integrand (ik)nC̃
[0]
m,s(k) for m = 1 and n = 0 as a function of k in the

case that R = 2 cm. It is required to compute C
[0]
1,s(z).

– 10 – 5 5 10
k

0.1

0.2

0.3

0.4

(ik) C̃       (k)1,s
[0]6

Figure 19.1.7: The integrand (ik)nC̃
[0]
m,s(k) for m = 1 and n = 6 as a function of k in the

case that R = 2 cm. It is required to compute C
[6]
1,s(z).
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cases the differences between the exact and numerical results. Evidently the worst case is
that of C

[0]
1,s(z), and the error in this case is approximately 1.6 parts in 104. Further numerical

study shows that the error is smaller for the other C
[n]
m,s(z) listed in (13.7.35). Finally, further

numerical study shows that the error can be made even smaller by increasing the number
of points in the spline fit.3 In this context we remark that the error in C

[0]
1,s(z) decreases

only as H3 while the error in the other C
[n]
m,s(z) decreases as H4. This behavior is due to

the |k|2 log |k| singularity in C̃
[0]
1,s(k) so that C̃

[0]
1,s(k) does not have a finite fourth derivative

at the origin. [See (15.1.34).] The integrands (ik)nC̃
[0]
m,s(k) for other values of m,n are less

singular at the origin.
We conclude that if the integrand is computed to high precision (exactly, in this case),

the spline-based inverse Fourier transform gives accurate results.
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– 0.05

C   (z)1,s
[0]

Figure 19.1.8: Exact and numerical results for C
[0]
1,s(z). Exact results are shown as a solid

line (see Figure 13.7.8), and numerical results are shown as dots.

19.1.2 Testing the Forward (z → k) and (φ→ m) Fourier
Transforms

Having verified the accuracy of the spline-based inverse Fourier transform for carrying out

the integration (14.3.23), let us also use splines to find ˜̃Bρ(R,m
′, k′). The radial component

Bρ(ρ, φ, z) of the magnetic fieldB is given by (13.7.8) and its behavior is displayed in Figures

13.7.6 and 13.7.7. According to (14.3.1), calculating ˜̃Bρ(R,m
′, k′) requires both a Fourier

3The value of Kc can also be increased. However, this does not seem to be necessary unless much higher
accuracy is required.
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Figure 19.1.9: Exact and numerical results for C
[6]
1,s(z). Exact results are shown as a solid

line (see Figure 13.7.9), and numerical results are shown as dots.
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Figure 19.1.10: Difference between exact and spline-based numerical results for C
[0]
1,s(z) using

an exact integrand in (14.3.23).
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Figure 19.1.11: Difference between exact and spline-based numerical results for C
[6]
1,s(z) using

an exact integrand in (14.3.23).

transform involving integration over z, and the computation of Fourier coefficients involving
integration over φ. The integrations may be performed in either order. Thus, we may define
B̃ρ(R, φ, k

′) by writing

B̃ρ(R, φ, k
′) = [1/(2π)]

∫ ∞
−∞

dz exp(−ik′z)Bρ(R, φ, z), (19.1.18)

and then obtain ˜̃Bρ(R,m
′, k′) from the relation

˜̃Bρ(R,m
′, k′) = [1/(2π)]

∫ 2π

0

dφ exp(−im′φ)B̃ρ(R, φ, k
′). (19.1.19)

Performing the Forward (z → k) Fourier Transform

Let us first attack the problem of evaluating (1.18). Based on inspection of Figure 13.7.7, we
might imagine that we could safely cut off the Fourier transform integral (1.18) by setting
the integrand to zero for |z| > Zc with Zc = 10. However, in this case looks are deceiving.
Examine (13.7.8) for the case φ = π/2. The two terms within the first set of curly brackets
tend to cancel for large |z|. The two terms within the second set of curly brackets do not.
The term within the second set of curly brackets that falls of most slowly for large |z| is
given by the relation

term with slowest falloff = −ga[z2 + (R + a)2]−3/2 = −ga[z2 + b2]−3/2 (19.1.20)

where
b = R + a. (19.1.21)
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If we are interested in evaluating B̃ρ(R, φ, k) accurately for φ = π/2 and k = 0, then we
must make the comparison∫ ∞

−∞
dz [z2 + b2]−3/2 versus

∫ Zc

−Zc
dz [z2 + b2]−3/2. (19.1.22)

These two integrals have the values∫ ∞
−∞

dz [z2 + b2]−3/2 = 2/b2, (19.1.23)

∫ Zc

−Zc
dz [z2 + b2]−3/2 = (2/b2){Zc/[Z2

c + b2]−1/2}. (19.1.24)

Therefore the fractional error involved in imposing a cutoff is given by the relation

fractional error = 1− Zc/[Z2
c + b2]−1/2 ≈ (1/2)(b/Zc)

2. (19.1.25)

Suppose we are willing to accept a fractional error on the order of 10−4. Then we must have

Zc ≈ 100b/
√

2. (19.1.26)

For a = 2.5 and R = 2, which yields b = 4.5, this means that in reality we must have

Zc ≈ 300. (19.1.27)

We remark that this is a worst case, where fringe fields fall off only as 1/|z|3. For cases where
the fringe fields fall off more rapidly (e.g. quadrupoles, higher-order multipoles, dipoles with
field clamps, etc.) the cutoff in z can be smaller.

Performing the Forward (φ→ m) Fourier Transform

We are ready to carry out the spline-based calculation of ˜̃Bρ(R,m
′, k′). Let us select 4801

equally-spaced points zj in the interval z ∈ [−Zc, Zc] with Zc = 300, and let us select 49
equally-spaced values φ` in the interval φ ∈ [0, 2π]. Then, for each φ`, we carry out a 4801-
point (in z) spline-based Fourier transform to find (for R = 2) the quantities B̃ρ(R, φ`, k

′).
Next we evaluate (1.19) using a 49-point (in φ) Riemann sum discrete angular Fourier

transform to obtain ˜̃Bρ(R,m
′, k′). See Exercise 1.2 for an explanation of why 49 points

should be adequate and, indeed, give good accuracy.

Spline-Based Forward and Inverse Fourier Transform Results

As a last step in this part of our exercise, let us use the integrands based on this ˜̃Bρ(R,m
′, k′)

to carry out the same spline-based inverse Fourier transform described earlier. That is, we no
longer work with exact integrands in (14.3.6), but rather use approximate integrands based
on spline-based and discrete integrations over z and φ. However, we still do use exact values
of Bρ(R, φ, z) on the cylinder. The result of this process is an almost completely numerically

calculated set of functions C
[n]
m,α(z). Examination of these numerically calculated functions



1612 19. NUMERICAL BENCHMARKS

shows that they also well approximate the exact functions C
[n]
m,α(z). For example, Figures

1.12 and 1.13 show the differences between the exact and numerically calculated C
[0]
1,s(z) and

C
[6]
1,s(z). We see that Figure 1.12 resembles Figure 1.10. Surprisingly, the error in C

[0]
1,s(z)

is now slightly less than before, but remains approximately 1.6 parts in 104. Apparently in

this case the errors involved in the approximate computation of ˜̃Bρ(R,m
′, k′) cancel to some

extent the errors involved in the spline-based inverse Fourier transform. We also see that
Figure 1.13 somewhat resembles Figure 1.11, but now the error in C

[6]
1,s(z) is approximately

7 parts on 105 whereas it was 5 parts in 107 in Figure 1.11. In this case the errors involved

in the approximate computation of ˜̃Bρ(R,m
′, k′) add to the overall error. (However the

overall error is still acceptably small.) Indeed, we find that if we compute ˜̃Bρ(R,m
′, k′)

more exactly by by increasing the number of points in φ beyond 49, increasing Zc beyond
300, and increasing the number of points in z beyond 4801, then Figure 1.12 morphs into
Figure 1.10, and Figure 1.13 morphs into Figure 1.11. With regard to the errors for the
other nonzero C

[n]
m,s(z), we find that they are also acceptably small. Finally, we find that the

C
[0]
m,α(z) that should vanish are, in fact, numerically very small.
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Figure 19.1.12: Difference between exact and numerical results for C
[0]
1,s(z) using a spline-

based integrand in (14.3.23) and exact values of Bρ(R, φ, z) on the cylinder.

19.1.3 Test of Interpolation off a Grid

To complete our test, let us no longer use exact values of Bρ(R, φ, z) on the cylinder. Rather,
suppose we set up a regular grid in x, y, z space centered on the origin (0, 0, 0). Let x and
y range over the values x ∈ [−2.4, 2.4] and y ∈ [−2.4, 2.4], and (as before) let z range over
the values z ∈ [−300, 300]. Use 49 grid points each in x and y so that hx = hy = .1,
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Figure 19.1.13: Difference between exact and numerical results for C
[6]
1,s(z) using a spline-

based integrand in (14.3.23) and exact values of Bρ(R, φ, z) on the cylinder.

and (again as before) use 4801 grid points in z so that hz = .125. Thus, use a total of
49× 49× 4801 = 11, 527, 201 grid points. For each grid point specify the three components
Bx, By, and Bz using (13.7.4) through (13.7.6) evaluated at these grid points. Employ
bicubic interpolation (see Section 15.2.1) to interpolate B at these grid points onto the
selected angular points on the cylinder R = 2, and then compute Bρ(R, φ, z) at these
angular points.4 Finally, proceed as before using these approximate values of Bρ(R, φ, z) on
the cylinder. In particular, evaluate the angular Fourier transforms with a Riemann sum
using 49 angular points and evaluate the forward linear transforms for 401 k values in the
range k ∈ [−Kc, Kc] with Kc = 20. Use these same points in k space to evaluate the inverse
Fourier transforms. The result of this process is a completely numerically calculated set of
functions C

[n]
m (z).

Examination of these completely numerically calculated functions shows that they also
well approximate the exact functions C

[n]
m,α(z). For example, Figures 1.14 and 1.15 show the

differences between the exact and the completely numerically calculated C
[0]
1,s(z) and C

[6]
1,s(z).

We see that Figure 1.14 is very similar to Figure 1.12, and Figure 1.15 is very similar to
Figure 1.13. Consequently the error is little changed, and we conclude that interpolation
from the grid onto the cylinder introduces little additional error. The errors for the other
nonzero C

[n]
m,s(z) listed in (13.7.35) are comparable. For example, Figure 1.16 shows the

4Alternatively, one could use bicubic spline interpolation. See Section 15.2.2. Note that the Bz component
does not, in fact, contribute to Bρ(R,φ, z). Note also that only a relatively small number of the 11,527,201
points are actually used because only values at those points relatively near the circular cylinder are needed
to interpolate onto the cylinder. And, after interpolation onto the cylinder, only 49×4801 = 235, 249 surface
values of Bρ are used in the remainder of the calculation.
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exact and completely numerical results for C
[0]
7,s(z), and Figure 1.17 shows the difference

between the exact and completely numerical results for C
[0]
7,s(z). We see that the error is

approximately 4 parts in 104. Finally, the C
[0]
m,α(z) that should vanish are, in fact, again

numerically very small.

We have demonstrated, for the monopole-doublet problem, that the steps in the first
three boxes shown in Figure 14.1.1 can be carried out to yield results having good numerical
accuracy. As remarked earlier, again see Figures 13.7.6 and 13.7.7, the surface field we have
been working with is quite singular, more singular than fields likely to be encountered in
practice. Thus the fact that the circular cylinder surface method has succeeded in this rather
extreme case indicates that it is likely to work even better in actual physical applications.
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Figure 19.1.14: Difference between exact and completely numerical results for C
[0]
1,s(z) using

a spline-based integrand in (14.3.23) and interpolated values of Bρ(R, φ, z) on the cylinder
based on field data provided on a grid.

19.1.4 Reproduction of Interior Field Values

Another, but less stringent, test of accuracy is to use the completely numerically obtained
on-axis gradients to compute B at the interior grid points with the aid of (13.2.69) through
(13.2.71). These computed values can be compared with the known values of B at the
interior grid points.5 Before making such a comparison, some discussion is required.

5This test is less stringent because it does not compare derivatives.
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Figure 19.1.15: Difference between exact and completely numerical results for C
[6]
1,s(z) using

a spline-based integrand in (14.3.23) and interpolated values of Bρ(R, φ, z) on the cylinder
based on field data provided on a grid.
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Figure 19.1.16: Exact and completely numerical results for C
[0]
7,s(z). Exact results are shown

as a solid line (see Figure 13.7.15), and numerical results are shown as dots.
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Figure 19.1.17: Difference between exact and completely numerical results for C
[0]
7,s(z) using

a spline-based integrand in (14.3.23) and interpolated values of Bρ(R, φ, z) on the cylinder
based on field data provided on a grid.

What to Hope for

First, since the surface fields we have been working with are quite singular, let us investigate
the region over which the C

[n]
m,s(z) that we have decided to employ, see (13.7.35), can be

expected to give a good representation ofB(x, y, z). As an initial exploration, let us consider
the behavior of the Fourier series representation

Bρ(R = 2, φ, z = 0) =
∞∑

m=−∞

am exp(imφ) (19.1.28)

for the function Bρ(R = 2, φ, z = 0) shown in Figure 13.7.6. Suppose this series is truncated
so that only terms for which |m| ≤ 7 are retained. See Exercise 1.3. Call the resulting
function BTr

ρ (R = 2, φ, z = 0). Figure 1.18 displays BTr
ρ (R = 2, φ, z = 0) as a function of φ,

and Figure 1.19 shows the difference between Bρ(R = 2, φ, z = 0) and BTr
ρ (R = 2, φ, z = 0).

Evidently terms well beyond |m| = 7 must be retained in (1.28) to adequately represent the
surface field. See also the table of Fourier coefficients in Exercise 1.3. It follows that many
C

[n]
m,s(z) beyond those listed in (13.7.35) are required to represent the field near the surface

R = 2.
As an illustration of this conclusion, let BTrA denote the field computed using the series

(13.2.69) through (13.2.71) truncated so that only the C
[n]
m,s(z) listed in (13.7.35) are retained,

and using the analytic expressions (13.7.33) and their z derivatives for these C
[n]
m,s(z).6 Also,

6Note that the use of only the C
[n]
m,s(z) listed in (13.7.35) to compute BTrA amounts to using 6th-order
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Figure 19.1.18: The quantity BTr
ρ (R = 2, φ, z = 0) for the monopole doublet in the case that

a = 2.5 cm and g = 1 Tesla-(cm)2.
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Figure 19.1.19: Difference between Bρ(R = 2, φ, z = 0) and BTr
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monopole doublet in the case that a = 2.5 cm and g = 1 Tesla-(cm)2.
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let BExact denote the known exact values of B computed using (13.7.4) through (13.7.6).
Figures 1.20 through 1.22 show, as a function of φ, the quantity ||BTrA −BExact||/||B||Max

for various values of ρ and z. Here ||B||Max is the maximum value of ||B|| within the cylinder
with radius ρ. We conclude that within the cylinder ρ ≤ 1/2 the relative error in the field
due to truncating the cylindrical multipole expansion is less than a few parts in 105. Note
also that the domain of good approximation opens up as z leaves the plane z = 0. This
behavior is to be expected based on the analytic properties of ψ(x, y, z) when x, y, z are
treated as three complex variables. See Examples 2.1 and 2.2 in Section 31.2; and Examples
3.1 and 3.2 in Section 31.3.
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Figure 19.1.20: The logarithm base 10 of the quantity ||BTrA−BExact||/||B||Max as a function
of φ for three ρ values and z = 0, for the monopole doublet, in the case that a = 2.5 cm and
g = 1 Tesla-(cm)2. The solid line corresponds to ρ = 2, the dashed line to ρ = 1, and the
dotted line to ρ = 1/2.

Test of Field Reproduction within the Cylinder ρ ≤ 1/2

The previous discussion has determined (for the case of a monopole doublet) the region
where the truncated cylindrical multipole expansion, which retains only the terms listed in
(13.7.35), is expected to be accurate assuming the listed C

[n]
m,s(z) are known exactly. For real

polynomials in the x, y variables (with z-dependent coefficients) for the components Bx and By, and a
5th-order polynomial in x, y for Bz.
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Figure 19.1.21: The logarithm base 10 of the quantity ||BTrA−BExact||/||B||Max as a function
of φ for three ρ values and z = 2.5, for the monopole doublet, in the case that a = 2.5 cm
and g = 1 Tesla-(cm)2. The solid line corresponds to ρ = 2, the dashed line to ρ = 1, and
the dotted line to ρ = 1/2.
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Figure 19.1.22: The logarithm base 10 of the quantity ||BTrA−BExact||/||B||Max as a function
of φ for three ρ values and z = 5, for the monopole doublet, in the case that a = 2.5 cm and
g = 1 Tesla-(cm)2. The solid line corresponds to ρ = 2, the dashed line to ρ = 1, and the
dotted line to ρ = 1/2.
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problems we only know the C
[n]
m,α(z) as calculated numerically based on grid data interpo-

lated onto a surface, and only have the values of B at the grid points. Let BNum denote
the completely numerically calculated values of B based on the completely numerically cal-
culated C

[n]
m,α(z) with (m + n) ≤ 7, and let BGrid now denote the values of B at the grid

points obtained using (13.7.4) through (13.7.6). Examination of the completely numerically
calculated values and the corresponding grid values shows that

||BNum −BGrid|| < 6× 10−5 (19.1.29)

for all grid points within the cylinder ρ ≤ (1/2) . Observe that, according to Figure 13.7.3,
the magnitude of the maximum on-axis field is .32. Thus, the maximum error within the
cylinder ρ = 1/2 compared to the maximum on-axis field is approximately 2 parts in 104.
The smallness of this error again illustrates the accuracy of the method.7 It also is a data-
based indication that the cylindrical harmonic expansion is converging well for the interior
ρ ≤ 1/2 and that the Maxwell equations are well satisfied by the interior values of BGrid.8

Exercises

19.1.1. Verify (1.11), (1.12), (1.15), and (1.16). You may need the identity

(2m)! = 2mm![1 · 3 · 5 · 7 · · · (2m− 1)]. (19.1.30)

Prove this identity, say, by induction.

19.1.2. This exercise studies the discrete Fourier transform of a periodic function. Suppose
f(φ) is a 2π periodic function and therefore has a Fourier expansion of the form

f(φ) =
∞∑

m=−∞

am exp(imφ). (19.1.31)

We know that the coefficients aj are given by the relation

aj = [1/(2π)]

∫ 2π

0

dφ f(φ) exp(−ijφ). (19.1.32)

Select N discrete phi values φn according to the rule

φn = n(2π/N) for n = 0, 1, · · · , N − 1. (19.1.33)

7This small error means, among other things, that Figures 13.7.3 through 13.7.5 are well reproduced by
BNum. Note that only the values of BGrid

x and BGrid
y on grid points near the surface of the cylinder R = 2

were used to determine all three components of BNum at all grid points within the cylinder.
8By construction, the BNum satisfy the Maxwell equations to good precision. And, in this case, the

BGrid also satisfy the Maxwell equations since they were obtained by evaluating the Maxwell solution
(13.7.4) through (13.7.6) at the grid points. However, in the general case, the BGrid are supplied by some
3-D electromagnetic code, and the ‘Maxwellian goodness’ of these quantities depends on the quality of the
3-D electromagnetic code.
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Next define quantities Aj by the rule

Aj = (1/N)
N−1∑
n=0

f(φn) exp(−ijφn). (19.1.34)

Verify that (1.34) is the discrete version of (1.32).
Show that combining (1.31), (1.33), and (1.34) gives the result

Aj =
∞∑

m=−∞

am{(1/N)
N−1∑
n=0

exp[inm(2π/N)] exp[−ijn(2π/N)]}

=
∞∑

m=−∞

am{(1/N)
N−1∑
n=0

exp[in(m− j)(2π/N)]}. (19.1.35)

However, there is the identity

N−1∑
n=0

xn = (1− xN)/(1− x). (19.1.36)

Using this identity, show that

(1/N)
N−1∑
n=0

exp[in(m− j)(2π/N)] = (1/N){1− exp[i(m− j)2π]}/{1− exp[i(m− j)(2π/N)]}.

(19.1.37)
From (1.37), show that

(1/N)
N−1∑
n=0

exp[in(m− j)(2π/N)] = 0 if (m− j)/N is not an integer, (19.1.38)

and

(1/N)
N−1∑
n=0

exp[in(m− j)(2π/N)] = 1 if (m− j)/N is an integer. (19.1.39)

[Note that (m − j) is always an integer.] Verify that these results can be written more
compactly in the form

(1/N)
N−1∑
n=0

exp[in(m− j)(2π/N)] =
∞∑

`=−∞

δm,j+`N . (19.1.40)

Employ (1.35) and (1.40) to get the final result

Aj =
∞∑

`=−∞

aj+`N . (19.1.41)

Verify that (1.41) implies the periodicity relation

Aj+N = Aj. (19.1.42)
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The relation (1.41) can be rewritten in the form

Aj = aj +
∞∑
`6=0

aj+`N . (19.1.43)

Thus, Aj is a good approximation to aj provided N is large enough that the aj+`N are small
for ` = ±1,±2, · · · in such a way that the sum in (1.43) is also small.

Note that under the assumptions made, namely periodicity and rapid falloff of the Fourier
coefficients, the discrete angular Fourier transform is much more accurate than the estimate
(15.3.24) would promise.

19.1.3. This exercise is a continuation of Exercise 1.2. It shows that good performance of the
discrete Fourier transform for periodic functions can be assured under the the assumption
of suitable analyticity. As an application, it justifies the use of the N = 49 discrete Fourier
transform to obtain B̃ρ(R,m

′, k′) in the case of the monopole doublet.
As in (1.28), let f(φ) be the function Bρ(R = 2, φ, z = 0) shown in Figure 13.7.6. Its

first few nonzero Fourier coefficients, obtained by accurate numerical integration of (1.32)
using Mathematica, are listed below in Table 1.1. As shown in Figure 1.23, they fall of
exponentially with increasing j in the fashion

|aj| ∼ (.8)j. (19.1.44)

Consequently, the contribution of the sum in (1.43) will be small provided N is reasonably
large and j is considerably smaller than N . Table 1.1 also lists the first few nonzero values
of Aj obtained from (1.34) with N = 49. We see from the table that (when N = 49) the Aj
are good approximations to the aj for j ≤ 7, as advertised.

Table 19.1.1: The exact and discrete (with N = 49) Fourier coefficients of f(φ).

j 2=aj 2=Aj
1 0.986833050662540 0.9868330457500823
3 -0.859714503908633 -0.8597145139462157
5 0.656703778334560 0.6567037866425125
7 -0.477523703835796 -0.47752370010754797
9 0.337961137907473 0.33796112868607286
11 -0.235072232641152 -0.235072209887016
13 0.161532491767950 0.16153245497610078
15 -0.110003634817578 -0.11000357184645376
17 0.074393215827366 0.0743931186747128
19 -0.050032679038838 -0.05003252910493426
21 0.033497429399684 0.0334971980691082
23 -0.022342757613886 -0.022342400791792692
25 0.0148553386831777 0.01485478841656739
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Figure 19.1.23: The quantities log10(2|aj|) as a function of j. For large j the points fall on
a straight line having slope log10(.8).

Similar considerations apply to the function B̃ρ(R, φ, k). Figures 1.24 and 1.25 illustrate
the cases B̃ρ(R = 2, φ, k = 0) and B̃ρ(R = 2, φ, k = 20), and Figures 1.26 and 1.27 display
their Fourier coefficients. Again the Fourier coefficients fall of as (.8)j. This behavior can
be understood as follows: It can be shown that the Fourier coefficients of Bρ(R, φ, z) for
z 6= 0 fall off even more rapidly than (1.44). We conclude that since the Fourier coefficients
of Bρ(R, φ, z) fall off at least as rapidly as (1.44) for all z, then the Fourier coefficients of
B̃ρ(R, φ, k) must also fall off in this fashion, because B̃ρ(R, φ, k) may be viewed as a linear
combination of the Bρ(R, φ, z). See (1.22).

How might one anticipate the relation (1.44)? Introduce the complex variable λ by
writing

λ = exp iφ. (19.1.45)

With this change of variable the integral (1.32) becomes

aj = [−i/(2π)]

∮
C

dλ f(−i log λ)λ−(j+1) (19.1.46)

where the contour C is the unit circle. Now deform the contour to make C as large a circle
as possible without encountering singularities of f(−i log λ). Suppose this circle has radius
Λ. Then the integral (1.46) has the asymptotic behavior

|aj| ∼ (1/Λ)j. (19.1.47)

Evidently (13.7.8), when evaluated at z = 0, is singular when

sinφ = ±[(R2 + a2)/(2aR)]. (19.1.48)
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Figure 19.1.24: The real part of B̃ρ(R = 2, φ, k = 0) for the monopole doublet in the case
that a = 2.5 cm and g = 1 Tesla-(cm)2. The imaginary part vanishes.
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Figure 19.1.25: The real part of B̃ρ(R = 2, φ, k = 20) for the monopole doublet in the case
that a = 2.5 cm and g = 1 Tesla-(cm)2. The imaginary part vanishes.
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Figure 19.1.26: The quantities log10[| ˜̃Bρ(R = 2, n, k = 0)|] as a function of n. For large n
the points fall on a straight line having slope log10(.8).

5 10 15 20 25
n

– 13.2

– 13.0

– 12.8

– 12.6

– 12.4

– 12.2

– 12.0

log  [|B͌   (2,n,20)|]ρ10

Figure 19.1.27: The quantities log10[| ˜̃Bρ(R = 2, n, k = 20)|] as a function of n. For large n
the points fall on a straight line having slope log10(.8).
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Show that (1.48) yields the relation

1/Λ = R/a = 2/2.5 = .8. (19.1.49)

Suppose z 6= 0 in (13.7.8). Show that then Λ is larger than the value given in (1.49).
Thus, we have analyzed the worst case, the case with the slowest falloff with increasing j.

19.1.4. Review Exercise 1.3. Look at the relation (14.3.2), the expansion (13.2.37), and the
monopole doublet results (13.7.19), (13.7.29), and (13.7.33). Use these quantities to find
explicit expressions for the Fourier Coefficients B̃ρ(R,m, z), and find their large m behavior.

19.2 Elliptical Cylinder Numerical Results for

Monopole Doublet

In this subsection we will benchmark the numerical method of Section 14.4 to demonstrate
the use of an elliptical cylinder. Here we have two goals: First, as a practical matter, the
infinite sums over r that occur in (14.4.83) through (14.4.86) must be truncated, and we
must establish that this can be done while still achieving a desired accuracy. Second, we
must demonstrate that all our numerical machinery actually works.

As just done for the case of a circular cylinder, we will again try to reproduce the exact
results for the on-axis gradients of the same monopole doublet. But now, as an example, we
will use as our surface that of an elliptical cylinder for which the ellipse has a semi-major
axis (xmax) of 4 cm in the x direction and a semi-minor axis (ymax) of 2 cm in the y direction.
See Figure 14.4.2. This is achieved by setting

u = U = tanh−1(ymax/xmax) = tanh−1(2/4) = .549306144 (19.2.1)

and

f = 4/ cosh(U) =
√

12 = 3.464101615 cm (19.2.2)

in equations (14.4.1) and (14.4.2) so that we have the relations

xmax = f coshU = 4 cm, (19.2.3)

ymax = f sinhU = 2 cm. (19.2.4)

19.2.1 Finding the Mathieu Coefficients

In the elliptical cylinder case there are fewer calculations we can carry out exactly compared
to the circular cylinder case. However, some of the routines we will be using in the elliptic
case will be the same as in the circular case, and we have already benchmarked them in the
circular case.
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Exact Results for the Forward (z → k) Fourier Transform

There is a quantity we can still compute exactly for the elliptic cylinder when applied to the
monopole doublet case, and that is the function F̃ (v, k). See (14.4.72).9 Upon combining
(14.4.67) and (14.4.72) we see that

F̃ (v, k) = (f sinhU cos v)B̃x(U, v, k) + (f coshU sin v)B̃y(U, v, k) (19.2.5)

where

B̃x(U, v, k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)Bx(U, v, z), (19.2.6)

B̃y(U, v, k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)By(U, v, z). (19.2.7)

Examine Bx(U, v, z) and By(U, v, z) as given by (14.4.1), (14.4.2), (13.7.4), and (13.7.5).
Define quantities b±(v) by the rule

b±(v) = [x2 + (y ± a)2]1/2 = {[f cosh(U) cos(v)]2 + [f sinh(U) sin(v)± a]2}1/2. (19.2.8)

Using this definition we may write

[x2 + (y ± a)2 + z2] = [z2 + b2
±(v)], (19.2.9)

and Bx(U, v, z) and By(U, v, z) take the form

Bx(U, v, z) = gf cosh(U) cos(v)[z2 + b2
−(v)]−3/2

−gf cosh(U) cos(v)[z2 + b2
+(v)]−3/2, (19.2.10)

By(U, v, z) = g[f sinh(U) sin(v)− a][z2 + b2
−(v)]−3/2

−g[f sinh(U) sin(v) + a][z2 + b2
+(v)]−3/2. (19.2.11)

Next recall the Fourier transform relation

[1/(2π)]

∫ ∞
−∞

dz exp(−ikz)[z2 + b2
±(v)]−3/2 = (1/π)[|k|/b±(v)]K1[|k|b±(v)]. (19.2.12)

For convenience, define the functions F±(v, k) by the rule

F±(v, k) = (1/π)[|k|/b±(v)]K1[|k|b±(v)]. (19.2.13)

Then, in terms of these functions, we have the relations

B̃x(U, v, k) = gf cosh(U) cos(v)F−(v, k)

−gf cosh(U) cos(v)F+(v, k), (19.2.14)

9Of course, we will eventually want to demonstrate that we can compute this function numerically with
high accuracy using field data on grid points.
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B̃y(U, v, k) = g[f sinh(U) sin(v)− a]F−(v, k)

−g[f sinh(U) sin(v) + a]F+(v, k). (19.2.15)

Combining (2.5), (2.8), and (2.13) through (2.15) gives a final expression for F̃ (v, k),

F̃ (v, k) = . (19.2.16)

Note that for the magnetic monopole doublet the functions F±(v, k) and F̃ (v, k) are pure
real and are even functions of k.

Let us pause to study the functions F±(v, k). The function K1(w) has, at the origin, the
behavior

K1(w) ≈ (1/w) + (w/2) log(w/2); (19.2.17)

and therefore
wK1(w) ≈ 1 + (w2/2) log(w/2) (19.2.18)

at the origin. At w = +∞, K1(w) has the behavior

K1(w) ≈ [π/(2w)]1/2 exp(−w). (19.2.19)

Consequently F±(v, k), and therefore also F̃ (v, k), are well behaved for all k, but are not
analytic at the origin because of the log term.10

Exact Results for the Mathieu Coefficients

According to (14.4.73) and (14.4.74), the next step is to compute the Mathieu coefficients
by performing the angular integrals11

˜̃F c
r (k) = (1/π)

∫ 2π

0

dv cer(v, q)F̃ (v, k), (19.2.20)

˜̃F s
r (k) = (1/π)

∫ 2π

0

dv ser(v, q)F̃ (v, k). (19.2.21)

For the monopole doublet, because the transverse field components are even in z, the func-

tions ˜̃Fα
r (k) will be real and even in k. Unfortunately, unlike the circular cylinder case for

which we were able to find the ˜̃Bρ(R,m, k) analytically, see (1.14) through (1.16), we do not

have analytic results for the ˜̃Fα
r (k). However, since we do know F̃ (v, k) analytically, we can

compute the ˜̃Fα
r (k) numerically.12 With these functions in hand, we will be able to explore

how many of them need to be retained in the sums (14.4.85) and (14.4.86).

10As emphasized earlier, this lack of analyticity at the origin is related to the fact that B for the monopole
doublet falls off only as |z|−3 at ±∞.

11Note that, unlike the circular cylinder case where the (z → k) and (φ→ m) Fourier transforms can be
performed in either order, see Section 16.1.2, in the elliptic cylinder case we must first perform the (z → k)
transform and then the (v → r) transform. This is because cer(v, q) and ser(v, q) depend on k through
(14.4.23).

12Of course, we will eventually want to demonstrate that we can also compute these functions to high
accuracy using only data on grid points.
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To see what we might expect for the Mathieu coefficients, ˜̃Fα
r (k), it is useful to examine

the angular dependence of F̃ (v, k). As examples, Figures 2.1 and 2.2 display the functions
<F̃ (v, k = 0) and <F̃ (v, k = 20). Also shown, in Figure 2.3, is the quantity <F̃ (v = π/2, k).
Note that the maximum amplitude of F̃ (v, k) decreases dramatically as k increases, in accord
with (2.19), and the peaks become sharper. As is evident from Figures 2.1 and 2.2, and can
also be seen from (2.16), F̃ (v, k) is an odd function of v. Therefore we immediately know,
in this monopole doublet case, that

˜̃F c
r (k) = 0 (19.2.22)

since the cer(v, q) are even functions of v. Moreover, these figures and (2.16) show that
F̃ (v, k) is symmetric about the values v = ±π/2. Since the ser(v, q) for even r are antisym-
metric about v = ±π/2, we conclude, again in this monopole doublet case, that the only
nonvanishing angular integrals will be

˜̃F s
r (k) = (1/π)

∫ 2π

0

dv ser(v, q)F̃ (v, k) (19.2.23)

with r = 1, 3, 5, 7 · · · .
Finally, what range of q values is of interest? According to (14.4.23) and (2.2), q and k

are connected in this instance by the relation

q = −k2f 2/4 = −3k2. (19.2.24)

If we use k values in the range k ∈ [−Kc, Kc], q will lie in the range q ∈ [qmin, 0] with

qmin = −3K2
c . (19.2.25)

Since the fields on the surface of the elliptical cylinder are no more singular than those on
the surface of the circular cylinder, we could set Kc = 20 as done before for the circular
cylinder case. Doing so yields qmin = −1200. Or, being less conservative, we might use
Kc = 10, in which case qmin = −300. This is the extreme q value used in making Figures
14.4.13 through 14.4.21.

With this background in mind, examine Figures 2.4 and 2.5. They show the Mathieu

coefficients ˜̃F s
r (k) as a function of k for the cases r = 1 through r = 11 and r = 17 through

r = 25. The curves for the intervening values r = 13 and r = 15 behave analogously. We

see that all the ˜̃F s
r (k) tend to zero with increasing |k|.

This large |k| behavior can be understood as follows: Suppose f(v) and g(v) are any two
2π periodic functions. Into the vector space of such functions introduce a scalar product by
the usual rule

(f, g) = [1/(2π)]

∫ 2π

0

dv f̄(v)g(v) (19.2.26)

where a bar denotes complex conjugation. Also define a norm by the usual rule

(||f ||)2 = (f, f). (19.2.27)

Then, by the Schwarz inequaltiy, there is the result

|(f, g)| ≤ ||f || ||g||. (19.2.28)
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Figure 19.2.1: The real part of F̃ (v, k = 0) for the monopole doublet in the case that
xmax = 4 cm, ymax = 2 cm, a = 2.5 cm, and g = 1 Tesla-(cm)2. The imaginary part
vanishes.
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Figure 19.2.2: The real part of F̃ (v, k = 20) for the monopole doublet in the case that
xmax = 4 cm, ymax = 2 cm, a = 2.5 cm, and g = 1 Tesla-(cm)2. The imaginary part
vanishes.
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– 0.5

F̃  (π/2,k)

Figure 19.2.3: The real part of F̃ (v = π/2, k) for the monopole doublet in the case that
xmax = 4 cm, ymax = 2 cm, a = 2.5 cm, and g = 1 Tesla-(cm)2. The imaginary part vanishes.

With this notation in mind, we see that (2.23) can be rewritten in the form

˜̃F s
r (k) = 2(ser, F̃ ). (19.2.29)

Therefore, using (2.28), we have the inequality

| ˜̃F s
r (k)| ≤ 2||ser|| ||F̃ ||. (19.2.30)

Also, from the normalization (14.4.39), we see that

||ser|| = 1/
√

2. (19.2.31)

We conclude that there is the r independent bound

| ˜̃F s
r (k)| ≤

√
2 ||F̃ || (19.2.32)

where

(||F̃ ||)2 = [1/(2π)]

∫ 2π

0

dv [F̃ (v, k)]2. (19.2.33)

(See also Exercise 2.1.) Figure 2.6 displays the quantity
√

2 ||F̃ || as a function of k. Evidently
it also decreases with increasing |k|. In fact, we can get a loose bound on ||F̃ || from its
definition (2.33) by estimating the integral,

(||F̃ ||)2 = [1/(2π)]

∫ 2π

0

dv [F̃ (v, k)]2 ≤ [F̃ (π/2, k)]2 (19.2.34)
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from which it follows that

||F̃ || ≤ |F̃ (π/2, k)|. (19.2.35)

Here we have used the fact that [F̃ (v, k)]2 takes its maxima at v = ±π/2. See Figures 2.1 and
2.2. We already know that |F̃ (π/2, k)| decreases exponentially with increasing |k|. Again

see Figure 2.3 and (2.16) through (2.19). We conclude that the | ˜̃F s
r (k)| must all decrease at

least this rapidly as well.

In fact there are two reasons why, for fixed r, the | ˜̃F s
r (k)| must eventually decrease even

more rapidly as |k| → ∞. First, as comparison of Figures 2.1 and 2.2 indicates, the peaks
in F̃ (v, k) at v = ±π/2 become more narrow with increasing |k|. Second, look at (2.21).
We expect that the greatest contribution to this integral will come from v = ±π/2 because
F̃ (v, k) is peaked there. But it is precisely at these v values that the ser(v, q) vanish rapidly
as q → −∞ since these v values are in the middle of the forbidden region. See, for example,

Figures 14.4.19 and 14.4.20. To observe these considerations in action for the case of | ˜̃F s
r (k)|

with r = 29, see Figure 2.30 in Exercise 2.4.
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Figure 19.2.4: The real parts of the Mathieu coefficients ˜̃F s
r (k) as a function of k, with

r = 1, 3, 5, 7, 9, 11, for the monopole doublet in the case that xmax = 4 cm, ymax = 2 cm,
a = 2.5 cm, and g = 1 Tesla-(cm)2. The imaginary parts vanish. The solid curve, the one
with the largest negative excursion at k = 0, is that for r = 1. The curves alternate in sign,
and the magnitudes of their values at k = 0 decrease, for each successive value of r. For
example, the curve with the largest positive excursion at k = 0 is that for r = 3.
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Figure 19.2.5: The real parts of the Mathieu coefficients ˜̃F s
r (k) as a function of k, with

r = 17, 19, 21, 23, 25, for the monopole doublet in the case that xmax = 4 cm, ymax = 2 cm,
a = 2.5 cm, and g = 1 Tesla-(cm)2. The imaginary parts vanish. The solid curve, the one
with the largest negative excursion at k = 0, is that for r = 17. The curves alternate in
sign, and the magnitudes of their values at k = 0 decrease for each successive value of r.
For example, the curve with the largest positive excursion at k = 0 is that for r = 19.
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Figure 19.2.6: The quantity
√

2 ||F̃ || as a function of k for the monopole doublet in the case
that xmax = 4 cm, ymax = 2 cm, a = 2.5 cm, and g = 1 Tesla-(cm)2.
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19.2.2 Behavior of Kernels

We have determined the behavior of the Mathieu coefficients ˜̃F s
r (k) for the case of the

monopole doublet. In analogy with our previous discussion of the circular cylinder case in
Section 16.1.1, let us next examine the kernels kmβrm(k)/Se′r(U, q) that appear in (14.4.86).
Figure 2.7 shows the kernels kmβrm(k)/Se′r(U, q) for the case m = 1 and r = 1, 3, 5, 7, 9, 11.
We see that each kernel has constant sign and the absolute value of each goes monotonically
to 0 as |k| → ∞. Also, as Figure 2.8 shows, their absolute values at k = 0 go monotonically
to zero as r increases.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-4 -2  0  2  4

k

r=1

r=3

r=5

r=7

r=9
r=11

k
e
rn
e
l

Figure 19.2.7: The kernels kmβrm(k)/Se′r(U, q) for the case m = 1 and r = 1, 3, 5, 7, 9, 11, as
a function of k, with q and k related by (2.24) and U given by (2.1). The kernel for r = 1 is
the one with the largest positive value at k = 0. Kernels for successive values of r alternate
in sign. Their absolute values at k = 0 decrease monotonically with increasing r.

Figure 2.9 shows the kernels kmβrm(k)/Se′r(U, q) for the case m = 7 and r = 1, 3, 5. Figure
2.10 shows the kernels kmβrm(k)/Se′r(U, q) for the case m = 7 and r = 7, 9, 11. Figure 2.11
shows the kernels kmβrm(k)/Se′r(U, q) for the case m = 7 and r = 13, 15, 17, 21, 23. We see
that the kernels for r < m vanish at k = 0. Those with r ≥ m are finite at k = 0, but
ultimately go to 0 as r → ∞. See Figure 2.12. Finally, all kernels go rapidly to zero as
|k| → ∞. We have documented the extreme cases m = 1 and m = 7. The intermediate
cases m = 3 and m = 5 are similar to the m = 7 case: the kernels for r < m vanish at
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Figure 19.2.8: Absolute values of the kernels kmβrm(k)/Se′r(U, q) evaluated at k = 0 for the
case m = 1 and r ∈ [1, 15] with U given by (2.1).

k = 0; those with r ≥ m are finite at k = 0, but ultimately go to 0 as r →∞; all kernels go
rapidly to zero as |k| → ∞.

19.2.3 Truncation of Series

We have studied the Mathieu coefficients ˜̃F s
r (k) and the kernels kmβrm(k)/Se′r(U, q). Next,

we need to study their combinations as they occur in (14.4.84) and (14.4.86). In particular,
let us look at the quantities (1/2)m(1/m!)kmGm,s(k). Of course, in the monopole doublet
case, we also know exactly what the result should be. Comparison of (14.4.86) and (1.1)
gives the relation

(1/2)m(1/m!)kmGm,s(k) = C̃ [0]
m,s(k), (19.2.36)

and we know the right side of (2.36) from (1.20).
Figure 2.13 shows their values for the cases m = 1, 3, 5, 7. Figures 2.14 through 2.16

show their values for the cases m = 3, 5, 7 separately. These are the cases that we need for
our magnet monopole doublet example.

As described in the beginning of this subsection, we must truncate the infinite sums over
r that occur in (14.4.83) through (14.4.86) in order to obtain practical results. We will do
this by assuming that the truncation error is comparable to the size of the last retained
term.13 By this criterion, we retained all terms with values of r through r = rmax(m)
with rmax(m) = 11, 19, 25, 29 for the cases m = 1, 3, 5, 7, respectively. Figures 2.17 through

13This assumption is justified because both the Mathieu coefficients ˜̃F sr (k) and the kernels
kmβrm(k)/Se′r(U, q) fall off exponentially in r for large r.
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Figure 19.2.9: The kernels kmβrm(k)/Se′r(U, q) for the case m = 7 and r = 1, 3, 5, as a
function of k, with q and k related by (2.24) and U given by (2.1). The kernel that has the
largest positive value is that for r = 5. The kernel with the next largest positive value is
that for r = 3. The remaining kernel is that for r = 1.
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Figure 19.2.10: The kernels kmβrm(k)/Se′r(U, q) for the case m = 7 and r = 7, 9, 11, as a
function of k, with q and k related by (2.24) and U given by (2.1). The kernel for r = 7 is
the one with the smallest positive value at k = 0. Kernels for successive values of r alternate
in sign. Their magnitudes at k = 0 increase monotonically with increasing r in the range
r ∈ [7, 11].



1640 19. NUMERICAL BENCHMARKS

-150

-100

-50

 0

 50

 100

 150

-10 -5  0  5  10

k

r=15

r=13

r=23

k
e
rn
e
l

r=17

r=21

r=19

Figure 19.2.11: The kernels kmβrm(k)/Se′r(U, q) for the case m = 7 and r =
13, 15, 17, 19, 21, 23, as a function of k, with q and k related by (2.24) and U given by
(2.1). The kernel for r = 13 is the one with the largest negative value at k = 0. Kernels for
successive values of r alternate in sign. Their magnitudes at k = 0 decrease monotonically
with increasing r in the range r ∈ [13, 23].
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Figure 19.2.12: Absolute values of the kernels kmβrm(k)/Se′r(U, q) evaluated at k = 0 for the
case m = 7 and r ∈ [7, 37] with U given by (2.1).
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Figure 19.2.13: The real parts of (1/2)m(1/m!)kmGm,s(k) for the monopole doublet when
m = 1, 3, 5, 7. The imaginary parts vanish. The quantities decrease in magnitude with
increasing m. For example, the curve with the largest negative value at k = 0 is that for
m = 1.



1642 19. NUMERICAL BENCHMARKS

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

-10 -5  0  5  10

k

(1
/2

) 
 (

1
/3

!)
k
  
G

  
 (

k
)

3
,s

3
3

Figure 19.2.14: The real part of (1/2)m(1/m!)kmGm,s(k) for m = 3.
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Figure 19.2.15: The real part of (1/2)m(1/m!)kmGm,s(k) for m = 5.



19.2. ELLIPTICAL CYLINDER NUMERICAL RESULTS FOR MONOPOLE DOUBLET1643

-2e-05

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

-10 -5  0  5  10

k

(1
/2

) 
 (

1
/7

!)
k
  
G

  
 (

k
)

7
,s

7
7

Figure 19.2.16: The real part of (1/2)m(1/m!)kmGm,s(k) for m = 7.

2.20 show the last retained term in each case. Judging from Figures 2.13 through 2.16, we
estimate the errors to be 10,4,3,6 parts in 104 for the cases m = 1, 3, 5, 7 respectively.

Figures 2.21 through 2.24 show the actual truncation error, the difference between the
truncated result and the exact result (2.36). Comparison of Figures 2.13 through 2.16 and
Figures 2.21 through 2.24 shows that the actual truncation errors are 3,2,2,4 parts in 104

for m = 1, 3, 5, 7, respectively.

19.2.4 Approximation of Angular Integrals by Riemann Sums

At this point we have verified that the truncation criterion is adequate and that the rou-
tines used to compute the Mathieu functions and the Mathieu-Bessel function connection
coefficients are working properly. The next step is to explore the replacement of angular
integrals by Riemann sums.

Select N discrete v values vn according to the rule

vn = n(2π/N) for n = 0, 1, · · · , N − 1. (19.2.37)

What we want to do is to approximate the integrals (2.20) and (2.21) by the Riemann sums

˜̃F c
r (k) ≈ (2/N)

N−1∑
n=0

cer(vn, q)F̃ (vn, k), (19.2.38)



1644 19. NUMERICAL BENCHMARKS

-0.00025

-0.0002

-0.00015

-0.0001

-5e-05

 0

 5e-05

-10 -5  0  5  10

k

L
a

s
t 
re

ta
in

e
d

 t
e

rm
 i
n

 s
u

m
 f
o

r 
(1

/2
) 

 (
1

/1
!)

k
  
G

  
 (

k
)

1
,s

1
1

Figure 19.2.17: The real part of the last retained term in the sum for (1/2)m(1/m!)kmGm,s(k)
with m = 1 based on truncating the series (14.4.84) beyond r = rmax(1) = 11. The imaginary
part vanishes.
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Figure 19.2.18: The real part of the last retained term in the sum for (1/2)m(1/m!)kmGm,s(k)
with m = 3 based on truncating the series (14.4.84) beyond r = rmax(3) = 19. The imaginary
part vanishes.
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Figure 19.2.19: The real part of the last retained term in the sum for (1/2)m(1/m!)kmGm,s(k)
with m = 5 based on truncating the series (14.4.84) beyond r = rmax(5) = 25. The imaginary
part vanishes.
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Figure 19.2.20: The real part of the last retained term in the sum for (1/2)m(1/m!)kmGm,s(k)
with m = 7 based on truncating the series (14.4.84) beyond r = rmax(7) = 29. The imaginary
part vanishes.
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Figure 19.2.21: Real part of actual truncation error in (1/2)m(1/m!)kmGm,s(k) for m = 1
produced by truncating the series (14.4.84) beyond r = rmax(1) = 11. The imaginary part
vanishes.
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Figure 19.2.22: Real part of actual truncation error in (1/2)m(1/m!)kmGm,s(k) for m = 3
produced by truncating the series (14.4.84) beyond r = rmax(3) = 19. The imaginary part
vanishes.
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Figure 19.2.23: Real part of actual truncation error in (1/2)m(1/m!)kmGm,s(k) for m = 5
produced by truncating the series (14.4.84) beyond r = rmax(5) = 25. The imaginary part
vanishes.
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Figure 19.2.24: Real part of actual truncation error in (1/2)m(1/m!)kmGm,s(k) for m = 7
produced by truncating the series (14.4.84) beyond r = rmax(7) = 29. The imaginary part
vanishes.
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˜̃F s
r (k) ≈ (2/N)

N−1∑
n=0

ser(vn, q)F̃ (vn, k). (19.2.39)

The accuracy of these approximations depends on the large m behavior of the Fourier coeffi-
cients for F̃ (v, k) and the Fourier coefficients for the Mathieu functions cer(v, q) and ser(v, q).
See Exercise 2.2. There it is shown that (2.38) and (2.39) are good approximations providing
the Fourier coefficients are sufficiently small for m ≥ N . For the monopole doublet case this
proves to be true for N ≥ 120. See Exercises 2.3 and 2.4. In that case the use of (2.38) and
(2.39) with N = 120 is accurate to 5 parts in 104 for all k and r values of interest. Indeed,

the ˜̃F s
r (k) used in making Figures 2.4 and 2.5 were obtained using (2.39) with N = 120.

19.2.5 Further Tests

Following the pattern established in the circular cylinder case, the next items we should
verify are these:

• So far, we have been using exact results for F̃ (vn, k). We should verify that sufficiently
accurate results for F̃ (vn, k) can be obtained by evaluating (14.4.72) numerically using
splines.

• With the use of this spline-computed F̃ (vn, k) and the related Riemann sum ˜̃F s
r (k)

derived from it employing (2.39), we should verify that (2.36) is still well satisfied.

• Assuming that (2.36) is well satisfied, we should verify that inserting these results
into (14.4.86) and then carrying out the indicated inverse Fourier transform, again
numerically using splines, yields sufficiently accurate approximations to the functions
C

[n]
m,s(z).

• Finally, all these procedures should also yield satisfactory results when data is taken
from a grid and interpolated onto the elliptic cylinder. See Figures 13.7.2 and 14.4.3.

The first three items above depend on the accuracy of the numerical spline-based Fourier
transform routines. Since this accuracy has already been established in the circular cylinder
case, and the demands made of the spline-based routines are no more stringent in the elliptic
cylinder case, it seems sensible to proceed directly to verifying the last item. Moreover, its
verification also provides added evidence of the veracity of the first three.

19.2.6 Completion of Test

Therefore, to complete our test, we again set up a regular grid in x, y, z space. We again let y
and z range over the intervals y ∈ [−2.4, 2.4] with hy = .1 and z ∈ [−300, 300] with hz = .125.
However, for x we will use the interval x ∈ [−4.4, 4.4] with hx = .1 in order to ensure that
all the ellipse given by (2.1) and (2.2) lies within the grid. Thus, we use 89 grid points in x,
49 grid points in y, and 4801 grid points in z for a total of 89× 49× 4801 = 20, 937, 161 grid
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points.14 As before, we evaluate the angular integrals using a Riemann sum with N = 120.
Doing so requires interpolation off the grid onto the elliptical cylinder at 120 angular points
for each of the 4801 selected values of z. And we evaluate the forward linear transforms
for 401 k values in the range k ∈ [−Kc, Kc] with Kc = 20. We also use these same points
in k space to evaluate the inverse Fourier transforms. That is, H = .1. Finally we use the
same values for rmax(m) as before. The result of this process is a completely numerically

calculated set of functions C
[n]
m (z).

We find that the results so obtained for the C
[n]
m (z) are to the eye indistinguishable, for

example, from Figures 1.7, 1.8, and 1.15. As more precise indicators of accuracy, Figures 2.25
through 2.27 show differences between exact and grid-value based completely numerically
computed results for C

[0]
1,s(z), C

[6]
1,s(z), and C

[0]
7,s(z). We see that the error is between 4 and 5

parts in 104, which is just slightly larger than the circular cylinder error result.
We have demonstrated, for the monopole-doublet problem, that the steps in the first

three boxes shown in Figure 14.1.1 can also be carried out to yield results having good
numerical accuracy for the case of a cylinder with elliptical cross section. As remarked
earlier, again see Figure 13.7.7 and now also Figure 2.28, the surface field we have been
working with is quite singular, more singular than fields likely to be encountered in practice.
Thus the fact that the elliptical cylinder surface method has succeeded in this rather extreme
case indicates that it is likely to work even better in actual physical applications.

Exercises

19.2.1. From (2.20) through (2.22) we know that F̃ (v, k) must have an expansion of the
form

F̃ (v, k) =
∑
r

˜̃F s
r (k)ser(v, q). (19.2.40)

Use this expansion to show that there is the relation

||F̃ ||2 = (1/2)
∑
n

| ˜̃F s
n(k)|2, (19.2.41)

which is a form of Parseval’s theorem applied to Mathieu expansions. From (2.41) conclude
that

| ˜̃F s
r (k)| =

√
2[||F̃ ||2 −

∑
n6=r

| ˜̃F s
n(k)|2]1/2 ≤

√
2||F̃ ||]. (19.2.42)

19.2.2. This exercise is a generalization of Exercise 1.2. Suppose f(φ) and g(φ) are 2π
periodic functions and therefore have Fourier expansions of the form

f(φ) =
∞∑

m=−∞

fm exp(imφ), (19.2.43)

14Of course, as in the circular cylinder case, most of these grid points are actually unused since only
relatively few are sufficiently near the surface of the elliptic cylinder to be employed in the interpolation
procedure. After interpolation onto the surface of the elliptic cylinder, 120× 4801 = 576, 120 surface values
of F (U, v, z) are used in the remainder of the calculation.
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Figure 19.2.25: Difference between exact and completely numerically computed results for
C

[0]
1,s(z) based on field data provided on a grid and interpolated onto an elliptic cylinder with

xmax = 4 cm and ymax = 2 cm.
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Figure 19.2.26: Difference between exact and completely numerically computed results for
C

[6]
1,s(z) based on field data provided on a grid and interpolated onto an elliptic cylinder with

xmax = 4 cm and ymax = 2 cm.
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Figure 19.2.27: Difference between exact and completely numerically computed results for
C

[0]
7,s(z) based on field data provided on a grid and interpolated onto an elliptic cylinder with

xmax = 4 cm and ymax = 2 cm..
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g(φ) =
∞∑

m=−∞

gm exp(imφ). (19.2.44)

Into the vector space of such functions introduce a scalar product by the usual rule

(f, g) = [1/(2π)]

∫ 2π

0

dφ f̄(φ)g(φ) (19.2.45)

where a bar denotes complex conjugation. Show that

(f, g) =
∞∑

m=−∞

f̄mgm, (19.2.46)

which is Parseval’s theorem for Fourier expansions. Again select N discrete phi values φn
according to the rule (6.1.37), and use these discrete values to define a discrete scalar product
by the rule

(f, g)d = (1/N)
N−1∑
n=0

f̄(φn)g(φn). (19.2.47)

Verify that (2.47) is the discrete version of (2.45). Show that

(f, g)d =
∞∑

m=−∞

∞∑
`=−∞

f̄mgm+`N , (19.2.48)

which can be rewritten in the form

(f, g)d =
∞∑

m=−∞

f̄mgm +
∞∑

m=−∞

∑
`6=0

f̄mgm+`N

= (f, g) +
∞∑

m=−∞

∑
`6=0

f̄mgm+`N . (19.2.49)

Thus, (f, g)d is a good approximation to (f, g) provided the fm and gm fall off sufficiently
rapidly for large |m|, and N is sufficiently large, so that the sum in (2.49) can be neglected.

Let us apply these results to the computation of the ˜̃F s
r (k) as given by (2.21). Employing

scalar product notation, we may write (2.21) in the form

˜̃F s
r (k) = 2(ser, F̃ ). (19.2.50)

We know that the ser have the Fourier expansion(15.5.27), which we rewrite in the complex
form

ser(v, q) =
∞∑

m=−∞

B̂r
m(q) exp(imv). (19.2.51)

Also, let ˜̃F F (m, k) denote the Fourier coefficients of F̃ (v, k) so that we may write

F̃ (v, k) =
∞∑

m=−∞

˜̃F F (m, k) exp(imv). (19.2.52)
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Then we have the result

(ser, F̃ )d = (ser, F̃ ) +
∞∑

m=−∞

∑
`6=0

¯̂
Br
m(q) ˜̃F F (m+ `N, k). (19.2.53)

In the next two exercises we will study the large |m| behavior of the Fourier coeficients
˜̃F F (m, k) and B̂r

m(q).

19.2.3. This exercise is a continuation of Exercise 2.2. Here we will examine the falloff of
the Fourier coefficients of F (U, v, z) and F̃ (v, k) for the monopole doublet example. If you
have not already done so, read Exercise 1.3. Here in analogy, we want to view F (U, v, z) as
a function of λ, with

λ = exp iv, (19.2.54)

and locate its singularities in λ.
From (14.4.67) we see that F is analytic in v save for those points where Bx(U, v, z)

and By(U, v, z) have singularities in v. And from (13.7.4) and (13.7.5) we see that these
singularities occur where ψ(x, y, z) as given by (13.7.3) is singular, namely the points where

x2 + (y ± a)2 + z2 = 0. (19.2.55)

Use (14.4.1), (14.4.2), and (2.1) through (2.4) to show that (2.25) is equivalent to the
condition

sin2(v)± (2a/f) sinh(U) sin(v)− {[f cosh(U)]2 + a2 + z2}/f 2 = 0, (19.2.56)

which can also be written in the form

sin2(v)± (2aymax/f 2) sin(v)− [(xmax)2 + a2 + z2]/f 2 = 0. (19.2.57)

For the given values of f , xmax, ymax, and a = 2.5, and setting z = 0 as before, verify that
(2.57) has the solutions

sin(v) = ±1.0073, ± 1.84067 (19.2.58)

Correspondingly, verify that λ has the values

λ = ±1.12863i, ± .88603i, ± .29533i, ± 3.38601i, (19.2.59)

and therefore Λ has the value
Λ = 1.12863 (19.2.60)

and 1/Λ has the value
1/Λ = 1/1.12863 = .88603. (19.2.61)

Upon comparing (2.61) with (1.53), we see that the Fourier coefficients of F (U, v, z = 0)
are expected to fall off less rapidly that those of Bρ(R = 2, φ, z = 0). Figure 2.28 displays
the function F (U, v, z = 0), with U given by (2.1). Observe that the peaks at v = ±π/2
are sharper than those in Figure 13.7.6 for the corresponding case of a circular cylinder.
Sharper peaks imply the existence of greater high ‘frequency’ content, which is consistent
with the slower falloff of the Fourier coefficients.
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Finally, it can be shown that, like the circular case, Λ is larger when z 6= 0. It follows,

because the F̃ (v, k) may be viewed as linear combinations of the F (U, v, z), that the ˜̃F F (m, k)
must also have the asymptotic behavior

| ˜̃F F (m, k)| ∼ (.88603)|m|. (19.2.62)

This slower falloff is also consistent with the properties of F̃ (v, k). Figures 2.1 and 2.2
display the functions F̃ (v, k = 0) and F̃ (v, k = 20). For comparison, Figures 1.23 and 1.24
show B̃ρ(R, φ, k = 0) and B̃ρ(R, φ, k = 20) for the case of the circular cylinder. We see
that the angular behavior is similar, but more peaked in the case of the elliptic cylinder.
Since F̃ (v, k) and B̃ρ(R, φ, k) have similar angular behavior, we conclude that the large m

behavior of ˜̃F F (m, k) and ˜̃Bρ(R,m, k) should be similar. However, since the elliptic case is
more peaked, we expect the falloff with m will be slower, as observed.
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10

15

F(U,v,0)

Figure 19.2.28: The quantity F (U, v, z = 0) for the monopole doublet in the case that
xmax = 4 cm, ymax = 2 cm, a = 2.5 cm, and g = 1 Tesla-(cm)2.

19.2.4. This exercise is a continuation of Exercise 2.2. Here we will examine the Fourier
coefficients for the Mathieu functions cer(v, q) and ser(v, q). That is, we want to study the
functions Arm(q) and Br

m(q) given in (15.5.21) and (15.5.27).
When q = 0 the Mathieu functions become the trigonometric functions. See (14.4.35)

through (14.4.37). Consequently, we have the results

Arm(0) = δmr when m 6= 0, (19.2.63)

Arm(0) =
√

2δmr when m = 0, (19.2.64)
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Br
m(0) = δmr with m, r ≥ 1. (19.2.65)

For q 6= 0 the Arm(q) and Br
m(q) need to be computed numerically, and the methods of

Section 15.5.3 are convenient for doing so.
From (15.5.22) and (15.5.28), and applying the logic of Exercise 1.3, we see that as

m → ∞ the Arm(q) and Br
m(q), for fixed q and r, must fall off faster than (1/Λ)m for any

Λ > 1 because the Mathieu functions cer(v, q) and ser(v, q) are entire functions of v. This is
good news, but we still would like to know how large m must be for this asymptotic behavior
to set in. We will see that the answer to this question depends on q.

For simplicity, let us study the behavior of Br
m(q) as a function of m and q for the case

r = 7, which is relevant to the case of the magnetic monopole doublet. Table 2.1 lists the
values of B7

m(q) for various values of m and q. We see that, as q becomes more negative, the
m value for which |B7

m(q)| peaks becomes ever larger. This is because, as q becomes ever
more negative, more and more of the v axis is forbidden. See Section 14.4.4. However, we
also know that se7(v, q) must have 7 zeroes in the half-open interval v ∈ [0, π). Thus, these
oscillations are crowded into an ever smaller regions about 0 and ±π, therefore leading to
ever higher effective frequencies of oscillation.

Table 19.2.1: The coefficients B7
m(q).

m\q 0 -50 -100 -150 -200 -250 -300
1 0 -.564487 -.375636 -.311321 -.274811 -.250197 -.232052
3 0 .293386 -.123551 -.237834 -.284830 -.307162 -.318251
5 0 .165556 .448665 .354776 .253034 .170433 .105346
7 1 -.465523 -.069863 .210855 .324419 .362328 .365811
9 0 .095015 -.435315 -.337074 -.163346 -.018371 .089069
11 0 .473149 .013745 -.311063 -.395713 -.372390 -.308973
13 0 .321478 .442586 .161649 -.088508 -.245162 -.327431
15 0 .118454 .432784 .453953 .318139 .151822 .003982
17 0 .029177 .236414 .409101 .456423 .415762 .331884
19 0 .005265 .089434 .234953 .355749 .421796 .437909
21 0 .000734 .025531 .099327 .196896 .287659 .356275
23 0 .000082 .005770 .032960 .084599 .149978 .216970
25 0 .000007 .001065 .008913 .029531 .063243 .106189
27 0 5.81E-7 .000164 .002014 .008615 .022275 .043350
29 0 3.81E-8 .000021 .000387 .002142 .006694 .015110

We saw on Exercise 2.2 that the discrete scalar product (discrete angular Riemann sum)
is a good approximation to the true scalar product if N is sufficiently large such that

˜̃F F (m, k) ≈ 0 for m ≥ N (19.2.66)

and

Br
m(q) ≈ 0 for m ≥ N (19.2.67)
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with k ∈ [−Kc, Kc] and r being within its required range. See (2.53). In our benchmarking
we have set N = 120. Verify that (.88603)120 = 4.9× 10−7 so that, in view of (2.62), (2.66)
is well satisfied. We next have to worry about the condition (2.67). From Table 2.1 we
infer that B7

m(q = −50) begins to fall off rapidly with increasing m for m somewhat greater
than 17, and B7

m(q = −300) begins to fall off rapidly with increasing m for m somewhat
greater than 29. Assuming this trend continues as q becomes ever more negative, estimate
by linear extrapolation that B7

m(q = −1200) begins to fall off rapidly with increasing m for
m somewhat greater than 72. Also, we know that the largest r value we are interested in is
rmax(7) = 29. Therefore we might infer that B29

m (q = −1200) begins to fall of rapidly for m
somewhat larger than 72 + (29− 7) = 94. Since 120 is significantly larger than 94, we infer
that (2.67) should also be well satisfied for the choice N = 120.

These expectations are verified by the following calculations: Let N ˜̃F s
r (k) denote the

result of the Riemann sum (2.93), and let

∞ ˜̃F s
r (k) = ˜̃F s

r (k) (19.2.68)

denote its N → ∞ limit given by the integral (2.21). Figure 2.29 shows the quantity
∞ ˜̃F s

29(k) obtained by careful numerical evaluation of the integral in (2.21) when r = 29.
En passant, we also take this opportunity to show in Figure 2.30 the base 10 logarithm of

the three quantities [−∞ ˜̃F s
29(k)], [

√
2||F̃ ||], and [

√
2|F̃ (π/2, k)|] to illustrate the inequalities

(2.32) and (2.35). More to the point of this exercise, Figures 2.31 through 2.33 show the
error quantities

N ˜̃F s
29(k) − ∞ ˜̃F s

29(k)

for N = 40, 80, and 120. We see that the error decreases rapidly with increasing N , and is
less than 6 parts in 104 when N = 120. Indeed, further calculation shows that the error is
approximately 4 parts in 106 when N = 160.

19.2.5. Show that the quantities Bn
m comprise the entries of an infinite orthogonal matrix.
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29(k) for N = 80. The
imaginary part vanishes.
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Figure 19.2.33: Real part of the error quantity N ˜̃F s
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imaginary part vanishes.
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Chapter 20

Smoothing and Insensitivity to Errors

20.1 Introduction

In the previous Chapters 13 and 14 mention was made of the smoothing feature of surface
methods. In this chapter we will explore the smoothing behavior of surface methods in more
detail.

By way of introduction, imagine for simplicity that we initially use the surface of a
circular cylinder. Suppose there are measurement or computational errors in the radial
surface field values Bρ(ρ = R, φ, z). What effect do these errors have on the determination
of the generalized on-axis gradients and their derivatives? We will see that due to smoothing
the effect of these errors is rather mild.

20.1.1 Preliminary Considerations

The relative insensitivity of surface methods to errors arises from a basic property of solutions
to Laplace’s equation: the value of ψ at some interior point is an appropriately weighted
average of its values over any surrounding boundary. Consequently, ψ is smoother in the
interior of a region than it may be on a boundary of this region. Correspondingly, errors in
boundary values are averaged.

Something can also be said about surface methods and fitting errors. Suppose ψ is a
harmonic function (satisfies ∇2ψ = 0) in some domain D. Then, it can be shown that ψ
assumes its maxima and minima on the boundary of D. Imagine that ψexact is the true
scalar potential and ψapprox is some approximation to it. We know that ψexact is harmonic,
and suppose that ψapprox has been constructed to be harmonic. Then we know that ψerror =
ψapprox − ψexact is harmonic. Therefore the magnitude of the error must be largest on the
boundary of D. However, if we do a good job of fitting ψexact by ψapprox on the boundary of
D, then the error on the boundary will be small. And, thanks to ψerror being harmonic, the
error in the interior of D will be even smaller.

20.1.2 Analyticity

For a preliminary exploration of smoothing, suppose, for example, that the magnetic field is
produced by an iron-dominated magnet, and is therefore localized in space. In this case the

1667
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integrals (14.3.2) can be considered to have, in practice, finite limits of integration. With
some care, an effective cut-off can also be found even if the fields extend to infinity since
they fall off sufficiently rapidly at infinity. Also, since the generalized Bessel function I ′m
increases exponentially as described by (14.3.9), there is also, in effect, a cut-off in k for the
integrals (14.3.8) defining the generalized gradients.

Next suppose that the B̃ρ(R,m
′, z) are absolutely integrable,∫ ∞
−∞

dz|B̃ρ(R,m
′, z)| <∞. (20.1.1)

This will certainly be the case if Bρ(R, φ, z) and hence the B̃ρ(R,m
′, z) are localized in z

space. It follows from (14.3.2) that the Fourier transforms ˜̃Bρ(R,m
′, k′) are then bounded,

| ˜̃Bρ(R,m
′, k′)| < [1/(2π)]

∫ ∞
−∞

dz|B̃ρ(R,m
′, z)| <∞. (20.1.2)

Now look at the integral representations (14.3.8) for the generalized gradients. We see that,
due to the bounds (1.2) and the fall off in k at infinity produced by the I ′m(kR) denominators,
the integrals (14.3.8) are absolutely convergent in the domain

<(z) ∈ (−∞,∞) , =(z) ∈ (−R,R). (20.1.3)

Thus, under very mild assumptions about the surface data Bρ(ρ = R, φ, z), including the
possibility of errors, we conclude that the generalized gradients are analytic in the strip (1.3).
Note that commonly used fringe-field models, those that assume constant (z independent)
fields for z within the body of a magnet, zero fields outside beyond the fringe-field regions,
and interpolating linear ramps in the fringe-field regions, violate this analyticity property
because of singularities in the first derivative at the beginnings and ends of the ramps. These
models are therefore unphysical, and their use could lead to erroneous conclusions.

20.1.3 Equivalent Spatial Kernel

In Section 14.3 the on-axis gradients were related to fields on the surface of a circular cylinder
by various Fourier transform operations. We will now see that, for the circular cylinder
case, they can also be viewed as being related by integration against a spatial kernel. Later,
analogous results will be found for the cases of elliptic and rectangular cylinders.

Begin by relabeling variables so that (14.3.14) through (14.3.16) take (for m > 0) the
form

˜̃Bα
ρ (R,m, k) = [1/(2π)]

∫ ∞
−∞

dz′ exp(−ikz′)B̃α
ρ (R,m, z′) (20.1.4)

with

B̃s
ρ(R,m, z

′) = (1/π)

∫ 2π

0

dφ sin(mφ)Bρ(R, φ, z
′), (20.1.5)

B̃c
ρ(R,m, z

′) = (1/π)

∫ 2π

0

dφ cos(mφ)Bρ(R, φ, z
′), (20.1.6)
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and (again for m > 0) (14.3.23) takes the form

C [n]
m,α(z) = in(1/2)m(1/m!)

∫ ∞
−∞

dk[kn+m−1/I ′m(kR)] ˜̃Bα
ρ (R,m, k) exp(ikz). (20.1.7)

Our goal is to re-express the relations (1.4) and (1.7) in terms of a spatial kernel.
To do this, insert (1.4) into (1.7) to find the relation

C [n]
m,α(z) = [1/(2π)]in(1/2)m(1/m!)×∫ ∞
−∞

dk[kn+m−1/I ′m(kR)] exp(ikz)

∫ ∞
−∞

dz′ exp(−ikz′)B̃α
ρ (R,m, z′)

= [1/(2π)]in(1/2)m(1/m!)×∫ ∞
−∞

dz′B̃α
ρ (R,m, z′)

∫ ∞
−∞

dk[kn+m−1/I ′m(kR)] exp(ikz) exp(−ikz′)

= [1/(2π)]in(1/2)m(1/m!)×∫ ∞
−∞

dz′B̃α
ρ (R,m, z′)

∫ ∞
−∞

dk[kn+m−1/I ′m(kR)] exp[ik(z − z′)]. (20.1.8)

Define the kernel K
[n]
m by the rule

K [n]
m (z, z′) = [1/(2π)]in(1/2)m(1/m!)

∫ ∞
−∞

dk[kn+m−1/I ′m(kR)] exp[ik(z − z′)]. (20.1.9)

With this definition, we may rewrite (1.8) in the form

C [n]
m,α(z) =

∫ ∞
−∞

dz′K [n]
m (z, z′)B̃α

ρ (R,m, z′). (20.1.10)

That is, C
[n]
m,α(z) has been expressed as the result of integrating B̃α

ρ (R,m, z′) against the

spatial kernel K
[n]
m (z, z′).

Let us now explore the properties of K
[n]
m . In the definition (1.9) make the substitution

λ = kR or k = λ/R. (20.1.11)

So doing gives the result

K [n]
m (z, z′) = [1/(2π)]in(1/2)m(1/m!)(1/R)n+m

∫ ∞
−∞

dλ[λn+m−1/I ′m(λ)] exp[iλ(z − z′)/R].

(20.1.12)
Staring at (1.12) suggests writing

K [n]
m (z, z′) = (1/R)n+mL[n]

m (∆) (20.1.13)

where

∆ = (z − z′)/R (20.1.14)
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and

L[n]
m (∆) = [1/(2π)]in(1/2)m(1/m!)

∫ ∞
−∞

dλ[λn+m−1/I ′m(λ)] exp(iλ∆). (20.1.15)

We observe, consistent with the notation being employed, that there is the relation

L[n]
m (∆) = (∂∆)nL[0]

m (∆). (20.1.16)

We also observe that the integrand factor [λm−1/I ′m(λ)] appearing in

L[0]
m (∆) = [1/(2π)](1/2)m(1/m!)

∫ ∞
−∞

dλ[λm−1/I ′m(λ)] exp(iλ∆) (20.1.17)

is even in λ. It follows that the L
[n]
m (∆), and hence also the K

[n]
m (z, z′), are purely real.

Moreover, the L
[0]
m (∆) are even in ∆.

Graphs of some of the functions L
[n]
m (∆) are shown in Figures 1.1 through 1.3 below.

Before commenting on them, it is also useful to examine the integrands L̃
[0]
m (λ), which are

the Fourier transforms of the L
[0]
m (∆), defined by the relations

L̃[0]
m (λ) = [1/(2π)](1/2)m(1/m!)[λm−1/I ′m(λ)]. (20.1.18)

Some of them are displayed in Figures 1.4 and 1.5. Again we recall the asymptotic behavior

|I ′m(λ)| ∼ exp(|λ|)/
√

2π|λ| as |λ| → ∞, (20.1.19)

from which we conclude that the L̃
[0]
m (λ) essentially vanish exponentially at infinity.

What insights can be gained from examining Figures 1.1 through 1.5? First, we observe
from Figure 1.3 that the L

[0]
m become ever narrower with increasing m. Correspondingly, in

accord with the uncertainty principle relating Fourier transform pairs, Figure 1.5 shows that
the L̃

[0]
m become ever broader with increasing m.

Next, from (1.10), we see that it is desirable that the K
[0]
m (z, z′) be slowly varying in z′,

because then noise in B̃α
ρ (R,m, z′) will be averaged over a large interval in z′. From (1.14)

and Figure 1.3 we see that the K
[0]
m (z, z′) will be more nearly constant in z′ the larger the

value of R, and therefore there is ever more smoothing in z′ as R is increased. We have
already observed that the L

[0]
m become somewhat narrower as m increases. Therefore there is

somewhat less smoothing in z′ for larger m. However, there is still ever more smoothing in
z′ as R is increased. Also, inspection of (1.13) shows that there is a (1/R)n+m factor relating

K
[n]
m and L

[n]
m . When the associated C

[n]
m,α are used in (13.2.37) or analogous expansions

for A, it is evident that the effective dimensionless expansion factor is (ρ/R)n+m. Thus,
although there is somewhat less smoothing in z′ for larger m, there is increased suppression
of high angular harmonic noise, and moreover this suppression is enhanced as R is increased.
We also observe that there is increased suppression of high angular harmonic noise as n is
increased.

Finally, let us examine smoothing from the perspective of k space. In the integral (1.7)
make the change of variables

λ = kR (20.1.20)
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Figure 20.1.1: The spatial kernels L
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1 (∆) through L
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1 (∆) through L
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3 (∆), all normalized to 1 at

∆ = 0. The scaled L
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m become ever narrower with increasing m.
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Figure 20.1.5: The scaled integrands L̃
[0]
m (λ) for m = 1, 2, 3, all normalized to 1 at λ = 0.

The scaled integrands become ever broader with increasing m.

to find the result

C [n]
m,α(z) = (1/R)n+min(1/2)m(1/m!)

∫ ∞
−∞

dλ[λn+m−1/I ′m(λ)] ˜̃Bα
ρ (R,m, λ/R) exp(iλz/R).

(20.1.21)
With the aid of the definition (1.18) this result can be rewritten in the form

C [n]
m,α(z) = 2πin(1/R)n+m

∫ ∞
−∞

dλL̃[n]
m (λ) ˜̃Bα

ρ (R,m, λ/R) exp(iλz/R). (20.1.22)

Consider, for example, the case n = 0. Since the L̃
[0]
m (λ) are peaked about λ = 0, we have

the approximate result

L̃[0]
m (λ) ˜̃Bα

ρ (R,m, λ/R) ≈ L̃[0]
m (λ) ˜̃Bα

ρ (R,m, 0), (20.1.23)

and this result becomes ever more exact the larger the value of R. From (1.4) we see that

evaluating ˜̃Bα
ρ (R,m, k) for k ≈ 0 essentially amounts to averaging B̃α

ρ (R,m, z′) over z′,
thereby suppressing the effect of noise. From Figure 1.5 we see that this smoothing in z′

becomes somewhat less effective with increasing m because then the L̃
[0]
m (λ) are less peaked

about λ = 0. But again there is a (1/R)n+m factor that comes into play so that the effective
dimensionless expansion factor is again (ρ/R)n+m. Thus, although there is somewhat less
smoothing in z′ for larger m, there is increased suppression of high angular harmonic noise
as n and m are increased, and again this suppression is further enhanced as R is increased.
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20.1.4 What Work Lies Ahead

We will now study smoothing and insensitivity to errors in more detail depending on what
surface is used. We will do so for the monopole-doublet examples treated in Sections 16.1
through 16.3, but our conclusions will be general. Section 17.2 treats the use of circular
cylinders, and Sections 17.3 and 17.4 treat the use of elliptic and rectangular cylinders.

Exercises

20.1.1. Show that the on-axis gradients associated with the magnetic monopole doublet and
given by (13.7.33) are analytic in the domain (1.3), and have singularities on the boundary.
Show that the same is true for the on-axis gradient associated with the air-core solenoid of
Section 11.11.

20.1.2. Verify that that the integrand factor [λm−1/I ′m(λ)] is even in λ, and therefore the

L
[n]
m (∆), and also the K

[n]
m (z, z′), are purely real. Verify that the L

[0]
m (∆) are even in ∆.

20.2 Circular Cylinders

Review Section 16.1.3 that described, for the monopole-doublet test case and the use of
the surface of a circular cylinder, the calculation of on-axis gradients based on field data
provided on a grid. Suppose we add to the field data at each grid point small random field
components in the x and y directions.1 What will be the effect of this noise on the on-axis
gradients? We could use the noisy data to compute the on-axis gradients, and compare
the results with those obtained in the absence of noise (and which we know agree very well
with exact results). However, observe that the on-axis gradients are linear functions of the
input field values on the grid points. Therefore, we can just as well compute the on-axis
gradients that arise from pure noise without any background field. Doing so will give us
better insight. If these purely noise-generated on-axis gradients are small compared to those
for the noise-free data, then we will know that the effect of noise is small.

How shall we assign random field values to each grid point? Suppose the grid points
are numbered from 1 to N . For example, in the calculation described in Section 16.1.3,
N = 11, 527, 201. Let (xj, yj, zj) be the coordinates of the jth grid point. Let By(0, 0, z) be
the vertical on-axis field arising from the monopole doublet and displayed in Figure 13.7.3.
To model noise we make the Ansätze

Bnoise
x (xj, yj, zj) = εBy(0, 0, zj)δx(j), (20.2.1)

Bnoise
y (xj, yj, zj) = εBy(0, 0, zj)δy(j). (20.2.2)

Here the δx(j) and δy(j) are random numbers uniformly distributed in the interval [−1, 1],
and we set ε = .01. By this prescription we produce a random field that is proportional, at

1Note, as observed earlier, that the z component of the field makes no contributions to the on-axis
gradients.
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the 1% level, to the strength of the monopole-doublet on-axis vertical field.2

The first step in the purely numerical calculation is to interpolate the field onto the
surface of the cylinder and find its normal component at each of the cylinder sampling
points. Figures 2.1 and 2.2 show the resulting Bρ(R, φ, z = 0) for two different random
number seeds. Compare with Figure 13.7.6. Correspondingly, Figures 2.3 and 2.4 show
Bρ(R, φ = π/2, z). Compare with Figure 13.7.7. We see that the surface field is noisy as
expected, and the noise field falls to zero as z → ±∞ because By(0, 0, z) does so.
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Figure 20.2.1: The function Bρ(R, φ, z = 0) produced by a pure noise field.

Suppose, for example, that we now wish to compute the C
[0]
1,s(z) produced by the pure

noise field. Then, according to (14.3.23), we first need to compute ˜̃Bs
ρ(R,m = 1, k). And,

because no particular symmetry is assumed for the noise, ˜̃Bs
ρ(R,m = 1, k) will have both

real and imaginary parts. Figures 2.5 and 2.6 display the real parts for the two different
choices of random number seed. [The imaginary parts behave analogously. They no longer
vanish because B̃s

ρ(R,m = 1, z) for the noise is not assumed to be even in z.] In both cases

2This would be the general procedure. Actually, for this study, we generate a random field at all the
N = 20, 937, 161 points described in Section 16.2.6; but, of course, only those required for interpolation onto
the surface of the circular cylinder are actually used. We do this because in Section 17.3 we want to compare
the use of circular and elliptic cylinders, and for this purpose we want to have a common data base. Note
that the grid points described in Section 16.1.3 are a subset of those described in Section 16.2.6.
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Figure 20.2.2: The function Bρ(R, φ, z = 0) produced by a pure noise field arising from a
second different random number seed.
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Figure 20.2.3: The function Bρ(R, φ = π/2, z) produced by a pure noise field.
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Figure 20.2.4: The function Bρ(R, φ = π/2, z) produced by a pure noise field arising from a
second different random number seed.
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they have support for large values of |k| as expected due to noise. Compare with Figure
16.1.1. In fact, because hz = .125, we expect the noise to have Fourier contributions out to
KNy = π/hz = 8π, which is consistent with what is displayed.
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Figure 20.2.5: Real part of ˜̃Bs
ρ(R,m = 1, k) produced by a pure noise field. The imaginary

part is comparable.

Next, again according to (14.3.23), we need to multiply ˜̃Bs
ρ(R,m = 1, k) by the kernel

shown in Figure 16.1.3. Figures 2.7 and 2.8 show (for the real part) the results of this
multiplication for the two different seed cases. We see, in both cases, that high spatial
frequency noise is filtered out by the kernel.

Finally, we need to carry out the integration in (14.3.23). Figures 2.9 and 2.10 show the

C
[0]
1,s(z) so obtained for each noise realization. Comparison of these figures with Figure 16.1.7

shows that in this study a 1% noise in field data produces at most a .03% error in C
[0]
1,s(z).

Note that, unlike the case of Figure 16.1.7, C
[0]
1,s(z) in Figures 2.9 and 2.10 is not symmetric

about z = 0. There is no assumed symmetry for the noise.
What can be said about the other C

[n]
m,s(z)? They too are small. For example, Figures

2.11 through 2.14 show the functions C
[6]
1,s(z) and C

[0]
7,s(z). Comparison with Figures 16.1.8

and 16.1.15 shows that in this case a 1% noise in field data produces at most a .02% error in
C

[6]
1,s(z) and a .08% error in C

[0]
7,s(z). It is remarkable that the error in the on-axis gradients

is considerably smaller than that in the field data. It seems particularly remarkable that



1680 20. SMOOTHING AND INSENSITIVITY TO ERRORS

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

 0.0002

-20 -15 -10 -5  0  5  10  15  20

T
ra

n
s
fo

rm
 B

_
rh

o
(R

,m
=

1
,k

)

k (cm^-1)

Figure 20.2.6: Real part of ˜̃Bρ(R,m = 1, k) produced by a pure noise field arising from a
second different random number seed. The imaginary part is comparable.
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Figure 20.2.10: The function C
[0]
1,s(z) produced by a pure noise field arising from a second

different random number seed.

the error in C
[6]
1,s(z) is so small because it involves 6 derivatives and the interpolated surface

data, as evidenced by Figures 2.3 through 2.6, essentially has no derivatives.
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We end this section by exploring how smoothing depends on the radius of the circular
cylinder. Figures 2.9 through 2.14 presented results for the case of a circular cylinder having
radius R = 2. What if we had instead used a circular cylinder with R = 1? Presumably the
effect of noise will be larger because there will then be less filtering. See (14.2.7).

Let us make a simple model of what to expect. Look at (14.3.23). Consistent with

arising from a noise source, suppose the associated ˜̃Bρ(R,m, k) is essentially independent of
k. Then we have the bound

|C [n]
m,α(z)| ≤ | ˜̃Bα

ρ (R,m, k ≈ 0)|[(1/2)m(1/m!)]

∫ ∞
−∞

dk[|k|n+m−1/|I ′m(kR)|]. (20.2.3)

By the change of variables (1.20), the integral appearing in (2.3) can be brought to the form∫ ∞
−∞

dk[|k|n+m−1/|I ′m(kR)|] = (1/R)n+m

∫ ∞
−∞

dλ[|λ|n+m−1/|I ′m(λ)|]. (20.2.4)

Correspondingly, the bound (2.3) now takes the form

|C [n]
m,α(z)| ≤ | ˜̃Bα

ρ (R,m, k ≈ 0)|[(1/2)m(1/m!)](1/R)n+m

∫ ∞
−∞

dλ[|λ|n+m−1/|I ′m(λ)|]. (20.2.5)

On the assumption that the noise itself is independent of R, we see that because of smoothing
the C

[n]
m,α(z) due to noise may be expected to decrease with increasing R as (1/R)n+m.

What actually happens? Figures 2.15 through 2.20 compare the results for R = 1 and
R = 2. We see that, as a general trend, noise indeed has a larger effect when the smaller
cylinder is employed. This is particularly true, as expected, for large values of n+m. But,
in the case of Figure 2.15, the C

[0]
1,s(z) computed from noise on the R = 1 cylinder is smaller

than that computed from noise on the R = 2 cylinder. How can this be? As explained in
the beginning of this section, see (2.1) and (2.2), in our model the noise values at the various
grid points are independent. It can happen, through statistical fluctuations, that the net
noise on the R = 1 cylinder is considerably less than on the R = 2 cylinder, so much so that
this fluctuation effect more than compensates the poorer smoothing supplied by the smaller
cylinder.

As a check on this explanation, suppose we attempt to make the noise on the R = 1
cylinder nearly the same as that on the R = 2 cylinder. One way to do this is the following:
Suppose a noise value is required at some point on the R = 1 cylinder having angle φ.
Instead of interpolating off nearby grid points, we may find the point on the R = 2 cylinder
having the same φ value, and then interpolate off grid points near this R = 2 point. Figure
2.21 shows what happens when this done. Evidently the effect of noise on the R = 1 cylinder
is now larger than the effect of essentially the same noise on the R = 2 cylinder.

We conclude that, as hoped, expected, and advertised, the use of surface methods (in this
case the surface of a circular cylinder) does indeed yield results that are relatively insensitive
to noise, and that this insensitivity is improved by placing the surface farther from the axis.
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20.3 Elliptic Cylinders

The discussion of this section parallels that of the previous section, but now deals with the
monopole-doublet test case and the use of the surface of an elliptic cylinder as described in
Section 16.2.6. We use the same noise model as that of the previous section.

Now the first step in the purely numerical calculation is to interpolate the field onto
the surface of the elliptic cylinder and to find the function F (U, v, z) given by (14.4.67).
Figures 3.1 and 3.2 show the resulting F (U, v, z = 0) for two different random number seeds.
Compare with Figure 16.2.28. Correspondingly, Figures 3.3 and 3.4 show F (U, v = π/2, z).
In view of (14.4.66), this quantity is proportional to the normal component of B when
φ = π/2 so that these figures should be compared with Figure 13.7.7. Observe that the
surface field is noisy as expected.

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  1  2  3  4  5  6  7

F
(U

,v
,z

=
0
)

v (rad)

Figure 20.3.1: The function F (U, v, z = 0) produced by a pure noise field.

According to (14.4.72) the second step is to perform a Fourier transform to produce
F̃ (v, k). Figures 3.5 and 3.6 display the real parts of F̃ (v = π/2, k) for the two different
seeds. The imaginary parts are comparable. Compare with Figure 16.2.3. In both cases
F̃ (v = π/2, k) has support for large |k| as is expected for noisy data.

The third step is to compute the Mathieu coefficients defined by (16.2.20) and (16.2.21).
As described in Section 16.2.1, for the monopole doublet we are particularly interested in

the coefficients ˜̃F s
r (k) for odd r. Figures 3.7 and 3.8 display the real parts of the first few
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20.3. ELLIPTIC CYLINDERS 1693

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

-20 -15 -10 -5  0  5  10  15  20

F
(U

,v
=

p
i/
2
,z

)

z (cm)

Figure 20.3.3: The function F (U, v = π/2, z) produced by a pure noise field.
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Figure 20.3.5: Real part of F̃ (v = π/2, k) produced by a pure noise field. The imaginary
part is comparable.
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Figure 20.3.6: Real part of F̃ (v = π/2, k) produced by a pure noise field arising from a
second different random number seed. The imaginary part is comparable.
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of these, namely those for r = 1, 3, and 5, for the two different seeds. Compare with Figure
16.2.4. Note that they also have support for large |k|.
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Figure 20.3.7: Real parts of the first few functions ˜̃F s
r (k), those for r = 1, 3, and 5, produced

by a pure noise field. The imaginary parts are comparable.

Suppose, for example, that we now again wish to compute the C
[0]
1,s(z) produced by

the pure noise field. Then, according to (14.8.86) and (14.8.84), we must compute the

quantity kG1,s(k) by multiplying the ˜̃F s
r (k) by the kernels kβr1(k)/Se′r(U, q) shown in Figure

16.2.7, and then summing over r. As described in Section 16.2.3, this sum is terminated at
rmax(1) = 11. Figures 3.9 and 3.10 display the real parts of the kG1,s(k) for the two different
choices of random number seed. The imaginary parts are comparable. Note that, like the
circular cylinder case, the kernels effectively filter out all the high frequency components.

This is a good place to compare the filtering provided by the use of an elliptic cylinder
with that provided by the use of a circular cylinder. Figure 3.11 shows the circular cylinder
m = 1 kernel [1/I ′1(kR)] and the first few elliptical cylinder m = 1 kernels [kβr1(k)/Se′r(U, q)],
and Figure 3.12 shows the same kernels all normalized to 1 at k = 0. From Figure 3.12 we
see that the elliptic kernels for r = 1 and r = 3 fall off more rapidly with |k| than the
circular kernel, but that they fall off less rapidly for r ≥ 5. The r value for which this
transition occurs depends on the eccentricity of the ellipse: the larger the eccentricity the
larger the transition r. Moreover, we see from Figure 3.11 that the elliptic kernels for small
r dominate.

Finally, we need to carry out the integration in (14.4.86). Figures 3.13 and 3.14 show, as

dashed lines, the C
[0]
1,s(z) so obtained for each noise realization. Also shown, as solid lines,

are the C
[0]
1,s(z) obtained using a circular cylinder. (See Figures 2.9 and 2.10). Evidently use

of the elliptic cylinder, in this case, has reduced the effect of noise by another factor of ∼ 2.5
compared to the use of a circular cylinder. Comparison of these figures with Figure 16.1.8
shows that in this study a 1% noise in field data produces about .01% error in C

[0]
1,s(z) when
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Figure 20.3.10: Real part of kG1,s(k) computed from ˜̃F s
r (k) associated with the second seed.

The imaginary part is comparable.

the elliptic cylinder is used.
What can be said about the other C

[n]
m,s(z)? Generally the use of an elliptic cylinder gives

better results. But in some cases the circular and elliptic cylinder results are comparable, and
sometimes the circular cylinder error is somewhat smaller. Results vary from seed to seed.
For example, Figures 3.15 through 3.18 show the functions C

[6]
1,s(z) and C

[0]
7,s(z) computed

using both elliptic and circular cylinders.
There are at least two remarks to be made. First, just as in the cases in Section 17.2

where the results of using circular cylinders with different radii were compared, statistical
fluctuations can mask the effects of improved smoothing. Second, it is primarily the vertical
magnetic field that contributes to the C

[n]
1,s(z), C

[n]
3,s(z), C

[n]
5,s(z) · · · . However, what enters

our calculation is the component of the magnetic field that is perpendicular to the surface.
Although the elliptical cylinder surface has points that are farther from the axis than the
circular cylinder, at these points the normal to the surface is primarily in the horizontal
direction. Consequently, the points on the elliptical surface for which the field values actually
contribute to the C

[n]
m,α(z) thus far examined are not very much farther from the axis than

points on the circular surface.
We should also examine, for example, the quantities C

[n]
1,c(z), C

[n]
3,c(z), C

[n]
5,c(z) · · · for which

the horizontal magnetic field makes substantial contributions. For these quantities we expect
that noise results for circular and elliptic cylinders should be noticeably different. As a
first exploratory step, let us again examine the relevant kernels. Figure 3.19 shows the
circular cylinder m = 1 kernel [1/I ′1(kR)] and the first few elliptical cylinder m = 1 kernels
[kαr1(k)/Ce′r(U, q)], and Figure 3.20 shows the same kernels all normalized to 1 at k = 0.
From Figure 3.20 we see that the elliptic kernels for r = 1 and r = 3 fall off more rapidly
with |k| than the circular kernel, but that they fall off less rapidly for r ≥ 5. The r value
for which this transition occurs depends on the eccentricity of the ellipse: the larger the
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Figure 20.3.11: A comparison of the circular cylinder m = 1 kernel [1/I ′1(kR)], shown as
a solid line, and the first few relevant elliptical cylinder m = 1 kernels [kβr1(k)/Se′r(U, q)],
namely those for r = 1, 3, 5, 7, 9, and 11, shown as a dashed lines. The elliptic kernels
alternate in sign, and their magnitude at k = 0 decreases with increasing r. See Figure
16.2.7.
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Figure 20.3.12: A comparison of the circular cylinder m = 1 kernel [1/I ′1(kR)] and the first
few elliptic cylinder m = 1 kernels [kβr1(k)/Se′r(U, q)], all normalized to 1 at k = 0.
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eccentricity the larger the transition r. Moreover, we see from Figure 3.19 that the elliptic
kernels for small r dominate.
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Figure 20.3.19: A comparison of the circular cylinder m = 1 kernel [1/I ′1(kR)], shown as
a solid line, and the first few relevant elliptical cylinder m = 1 kernels [kαr1(k)/Ce′r(U, q)],
namely those for r = 1, 3, 5, 7, 9, and 11, shown as a dashed lines. The elliptic kernels
alternate in sign, and their magnitude at k = 0 decreases with increasing r.

Now we are prepared to examine the C
[n]
m,c(z). Figures 3.21 and 3.22 show C

[0]
1,c(z) for

each noise realization. And Figures 3.23 through 3.26 show the associated quantities C
[6]
1,c(z)

and C
[0]
7,c(z). Again there are statistical fluctuations, but the general trend is that the use

of an elliptic cylinder yields on-axis gradients that have less sensitivity to errors in the grid
data.

To study the problem more thoroughly, we should examine the results for a large number
of seeds. We expect that when such results are examined, the effect of noise will average to
zero (because the effect of noise can have either sign), but there will be a nonzero variance.
What should be verified is that the variance is smaller for elliptic cylinders than for circular
cylinders.

Figures 3.27 and 3.28 display circular and elliptical cylinder results for the C
[0]
1,c(z) ob-

tained for 12 seeds. They also show < C
[0]
1,c(z) >, the average of these results. Figures 3.29

through 3.32 do the same for C
[6]
1,c(z) and C

[0]
7,c(z). Evidently the averaged results are smaller

than the individual results, thereby indicating that the average does indeed approach zero
as the number of seeds is increased.

Figures 3.33 through 3.35 show the quantities {< [C
[0]
1,c(z)]2 >}1/2, {< [C

[6]
1,c(z)]2 >}1/2,

and {< [C
[0]
7,c(z)]2 >}1/2, the root-mean-square values based on these 12 seeds. Results

are shown for both the circular and elliptic cylinder. We see that, for the two cases of
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Figure 20.3.20: A comparison of the circular cylinder m = 1 kernel [1/I ′1(kR)] and the first
few elliptic cylinder m = 1 kernels [kαr1(k)/Ce′r(U, q)], all normalized to 1 at k = 0.
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Figure 20.3.21: Dashed line: The function C
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1,c(z) produced by a pure noise field and using

an elliptic cylinder. Solid line: The function C
[0]
1,c(z) produced by a pure noise field and using

a circular cylinder.
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cylinder result. Solid line: Circular cylinder result.
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Figure 20.3.25: The function C
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7,c(z) produced by a pure noise field. Dashed line: Elliptic
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Figure 20.3.26: The function C
[0]
7,c(z) produced by a pure noise field arising from a second

different random number seed. Dashed line: Elliptic cylinder result. Solid line: Circular
cylinder result.

{< [C
[6]
1,c(z)]2 >}1/2 and {< [C

[0]
7,c(z)]2 >}1/2, the root-mean-square values are indeed smaller

for the elliptic cylinder compared to the circular cylinder.
The case for {< [C

[0]
1,c(z)]2 >}1/2 is inconclusive. It appears that the number of samples

is still too small so that statistical fluctuations still overwhelm the expected effect. This
hypothesis is validated by Figure 3.36. It shows the functions C

[0]
1,c(z) produced by assigning

a nonzero field value to only a single grid point. Consider the field value

(Bx, By, Bz) = (.01 T, 0, 0). (20.3.1)

For the elliptic cylinder case we assign this field value to the grid point

(x, y, z) = (4 cm, 0, 0). (20.3.2)

And for the circular cylinder case we assign this field value to the grid point

(x, y, z) = (2 cm, 0, 0). (20.3.3)

All other grid points are assigned vanishing field values. As the figure shows, the elliptic
cylinder result for C

[0]
1,c(z) is indeed smaller than the circular cylinder result.
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Figure 20.3.27: The functions C
[0]
1,c(z) produced by pure noise fields generated by 12 seeds

using data on a circular cylinder. Broken lines: Results from individual seeds. Solid line:
Averaged results.
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Figure 20.3.28: The functions C
[0]
1,c(z) produced by pure noise fields generated by 12 seeds

using data on an elliptical cylinder. Broken lines: Results from individual seeds. Solid line:
Averaged results.
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1,c(z) produced by pure noise fields generated by 12 seeds

using data on a circular cylinder. Broken lines: Results from individual seeds. Solid line:
Averaged results.
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in this graphic only results for 6 seeds are shown. Solid line: Averaged results. As in other
related figures, results for 12 seeds were used in computing the average.
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Figure 20.3.33: The function {< [C
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1,c(z)]2 >}1/2 produced by 12 pure noise fields. Dashed
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Figure 20.3.35: The function {< [C
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7,c(z)]2 >}1/2 produced by 12 pure noise fields. Dashed
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Chapter 21

Realistic Transfer Maps for General
Straight Beam-Line Elements

Chapter 15 described cylindrical harmonic expansions for straight elements. This chapter
utilizes these expansions and applies surface methods to several common magnetic beam-line
elements.1 It also summarizes various cases in which fields can be computed analytically.
Particular attention is devoted to the way in which fringe fields fall off with increasing
distance.

21.1 Solenoids

21.1.1 Preliminaries

A solenoid is a beam-line element whose field is described by a cylindrical harmonic expansion
that contains (ideally) only an m = 0 term. We recall from Section 15.2.3 that in this case
the magnetic scalar potential ψ has the expansion

ψ(x, y, z) = ψ0(x, y, z) = C
[0]
0 (z)− (1/4)(x2 + y2)C

[2]
0 (z) + · · · . (21.1.1)

See (15.2.57). Correspondingly, the associated magnetic field has the expansion

Bx = ∂xψ0 = −(1/2)xC
[2]
0 (z) + · · · , (21.1.2)

By = ∂yψ0 = −(1/2)yC
[2]
0 (z) + · · · , (21.1.3)

Bz = ∂zψ0 = C
[1]
0 (z)− (1/4)(x2 + y2)C

[3]
0 (z) + · · · . (21.1.4)

Finally, according to Section (15.4.1), there is a suitable associated vector potential Â
0

given
by the relation

Â0
x = −yU, (21.1.5)

Â0
y = xU, (21.1.6)

Â0
z = 0, (21.1.7)

1Electrostatic beam-line elements can be treated in an analogous way.
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where U is defined to be

U(ρ, z) = (1/2)
∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`+1]
0 (z)ρ2` (21.1.8)

with
ρ2 = x2 + y2. (21.1.9)

From (1.2) through (1.9) we see that both B and Â
0

are completely specified in terms

of a single “master” function C
[1]
0 (z) and its derivatives. Moreover, according to (1.4), the

on-axis field is given by the relation

Bz(0, 0, z) = C
[1]
0 (z). (21.1.10)

We will next see what can be said about the master function C
[1]
0 (z) in various cases.

21.1.2 Qualitatively Correct Iron-Dominated Solenoid Model

We next consider the case of an iron-dominated solenoid. Suppose an approximating signum
function is defined by the rule

sgn(z, a) = tanh(z/a) (21.1.11)

instead of the rule (1.21), and this approximating signum function is employed to define a
soft-edge bump function with the use of (1.20). Then the relation (1.14) continues to hold,
but with the soft-edge bump function defined in terms of (1.29) and (1.20).

In this case it can be verified that (1.15) through (1.18) remain true. See Exercise 1.2.
However (1.26) and (1.27) are replaced by the asymptotic relations

sgn(z, a) = 1− 2 exp(−2z/a) +O[exp(−4z/a)] as z →∞, (21.1.12)

bump(z, a, L) = [exp(2L/a)− 1] exp(−2|z|/a) +O[exp(−4|z|/a)] as |z| → ∞. (21.1.13)

Consequently in this model (1.28) is replaced by the exponential fall off relation

C
[1]
0 (z) = B(0, 0, z) = B[exp(2L/a)− 1] exp(−2|z|/a) +O[exp(−4|z|/a)] as |z| → ∞.

(21.1.14)
The characteristic fall-off length is again governed by a.

This model does not correspond to any easily-described iron and current distribution.
But it does have the property of exponential fall off, which is characteristic of iron-dominated
solenoids when the coils are buried deep within the iron. See the next section. It therefore
may be of some use in preliminary modeling studies of transfer maps for iron-dominated
solenoids.

Exercises

21.1.1. Verify that Bz(0, 0, z) as given by (1.11) describes the on-axis field of a simple
air-core solenoid.
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21.1.2. The purpose of this exercise is to verify the relations (1.15) through (1.18). Show
that the approximating signum function (1.21) has the properties

sgn(−z, a) = −sgn(z, a), (21.1.15)

lim
z→±∞

sgn(z, a) = ±1. (21.1.16)

Sketch sgn(z, a), −sgn(z−L, a), and bump(z, a, L) as given by (1.20) to verify the relations
(1.15) through (1.17).

What remains is to prove the relation (1.18). Begin by writing∫ ∞
−∞

bump(z, a, L)dz = lim
w→∞

∫ w

−w
bump(z, a, L)dz. (21.1.17)

Next verify from the representation (1.20) that∫ w

−w
bump(z, a, L)dz = (1/2)

∫ w

−w
sgn(z, a)dz − (1/2)

∫ w

−w
sgn(z − L, a)dz. (21.1.18)

Show that the first integral on the right side of (1.36) vanishes because of (1.33). Show that
by making the change of variables x = z − L the second integral on the right side of (1.36)
becomes

−(1/2)

∫ w

−w
sgn(z − L, a)dz = −(1/2)

∫ w−L

−w−L
sgn(x, a)dx

= −(1/2)

∫ w+L

−w−L
sgn(x, a)dx+ (1/2)

∫ w+L

w−L
sgn(x, a)dx.

(21.1.19)

Verify that the first integral in the second line of (1.37) vanishes, again because of (1.33). It
follows that there is the result∫ w

−w
bump(z, a, L)dz = (1/2)

∫ w+L

w−L
sgn(x, a)dx. (21.1.20)

Show from (1.34) that there is the result

lim
w→∞

(1/2)

∫ w+L

w−L
sgn(x, a)dx = (1/2)2L = L. (21.1.21)

Put all your intermediate results together to obtain the final result∫ ∞
−∞

bump(z, a, L)dz = L, (21.1.22)

as desired. Note that the proof of this result has depended only on the representation (1.20)
and properties (1.33) and (1.34), which are required properties of any approximating signum
function.
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21.1.3. Verify the limiting behavior (1.22). Verify the fall-off relations (1.26) through (1.28).

21.1.4. Verify for a long simple air-core solenoid that the on-axis field at either end (z = 0
or z = L) is B/2. Verify that the same is true for a long solenoid described by the tanh
model (1.29), and for any bump function model that is constructed from approximating
signum functions.

21.1.5. Verify the fall-off relations (1.30) through (1.32).

21.1.3 Improved Model for Iron-Dominated Solenoid

Chapter 16 described the computation of transfer maps for straight magnetic beam-line
elements based on the normal component of the field on the surface of a cylinder. In this
subsection we will use instead the tangential Bz component of the field on the surface of
a cylinder. For simplicity, we will use the surface of a circular cylinder. This approach of
employing the Bz component is particularly useful in the case of a solenoid.

From (15.2.13) we find the result

Bz(x, y, z) = Bz(ρ, φ, z) = ∂ψ(x, y, z)/∂z

=
∞∑

m=−∞

∫ ∞
−∞

dkGm(k)(ik) exp(ikz) exp(imφ)Im(kρ). (21.1.23)

Now integrate both sides of (2.1) over φ ∈ [0, 2π] to find the relation

B̃z(ρ, 0, z) =

∫ ∞
−∞

dkG0(k)(ik) exp(ikz)I0(kρ) (21.1.24)

where

B̃z(ρ, 0, z) = [1/(2π)]

∫ 2π

0

dφBz(ρ, φ, z). (21.1.25)

Next, from the uniqueness of the Fourier transform, it follows that

G0(k)(ik)I0(kR) = ˜̃Bz(R, 0, k) (21.1.26)

where
˜̃Bz(R, 0, k) = [1/(2π)]

∫ ∞
−∞

dz exp(−ikz)B̃z(R, 0, z). (21.1.27)

Inserting (2.4) into (2.2) gives the result

B̃z(ρ, 0, z) =

∫ ∞
−∞

dk exp(ikz) ˜̃Bz(R, 0, k)I0(kρ)/I0(kR). (21.1.28)

Finally, use of (15.2.71) or (15.4.36) gives the relation

C
[1]
0 (z) =

∫ ∞
−∞

dk exp(ikz) ˜̃Bz(R, 0, k)/I0(kR) (21.1.29)
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from which it follows that

C
[n]
0 (z) =

∫ ∞
−∞

dk exp(ikz) ˜̃Bz(R, 0, k)[(ik)n−1/I0(kR)]. (21.1.30)

We have found expressions for the m = 0 on-axis gradients in terms of the Bz component
of the magnetic field on the surface of a circular cylinder. If desired, we could also find
expressions for the m 6= 0 on-axis gradients in terms of Bz on the surface.2

As a simple application, the representation (2.7) can be used to find an approximation
to the on-axis gradients (and hence the magnetic field) in the case that the field is produced
by an iron-dominated magnetic solenoid of bore radius R with a small pole gap of length
L centered at z = 0. Solenoids for use in electron microscopes are often of this type. See
Figure 1.1. In this case we may make the approximation

Bz(R, φ, z) = Bgap for z ∈ (−L/2, L/2),

Bz(R, φ, z) = 0 elsewhere. (21.1.31)

That is, the tangential surface field exists only in the gap, and is constant there both in φ
and in z.3 With the assumption (2.9), the relations (2.3) and (2.5) become

˜̃Bz(R, 0, k) = [Bgap/(2π)]

∫ L/2

−L/2
dz exp(−ikz) = [Bgap/(πk)] sin(kL/2). (21.1.32)

Correspondingly, we find for the on-axis gradient the result

C
[1]
0 (z) = [Bgap/(π)]

∫ ∞
−∞

dk exp(ikz) sin(kL/2)/[kI0(kR)]. (21.1.33)

Examination of the integral representation (2.11) for C
[1]
0 (z) reveals that it depends on

the dimensionless quantities z/R and L/R. Indeed, upon making the change of integration
variable given by

λ = kR, (21.1.34)

(2.11) takes the form

C
[1]
0 (z) = Bgap(L/R)F (z/R, L/R) (21.1.35)

where F is a profile function given by

F (z/R, L/R) = (1/π)(R/L)

∫ ∞
−∞

dλ exp(iλz/R) sin[(λ/2)(L/R)]/[λI0(λ)]

= [1/(2π)]

∫ ∞
−∞

dλ exp(iλz/R)
sin[(λ/2)(L/R)]

[(λ/2)(L/R)]
[1/I0(λ)]

= [1/(2π)]

∫ ∞
−∞

dλ exp(iλz/R){sinc[(λ/2)(L/R)]}[1/I0(λ)].

(21.1.36)

2There might also be occasions in which one might want to use the azimuthal component Bφ on the
surface.

3That the tangential magnetic field should be zero outside the gap follows from the idealized boundary
condition for the interface between vacuum and a medium with infinite magnetic permeability. That the
field should be constant in the gap is a further idealization.
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L
R

Bgap

Figure 21.1.1: Schematic of an iron-dominated solenoid with an inter-pole gap L substan-
tially smaller than the bore radius R.
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Suppose that L is small compared to R so that L/R is small. Then, when the argument
of the sine or sinc function in (2.14) differs significantly from zero, [I0(λ)]−1 will be essentially
zero. Therefore, we can expand the sine or sinc function in a Taylor series and integrate term
by term. We also note that the surface field model (2.9) is only reasonable in the limit of
small L/R. Upon making the Taylor expansion just described, one finds that F (z/R, L/R)
differs from F (z/R, 0) only by terms of order (L/R)2 and

F (z/R, 0) = [1/(2π)]

∫ ∞
−∞

dλ exp(iλz/R)/I0(λ). (21.1.37)

Therefore, for small L/R, it is useful to make the approximation

C
[1]
0 (z) ' Bgap(L/R)F (z/R, 0). (21.1.38)

For example, Figure 1.2 displays F (z/R, L/R) as a function of z/R for the two values
L/R = 0 and L/R = 1/2. Evidently the two profiles nearly agree when z = 0, and are
essentially identical away from z = 0.

Let us make the further and more drastic approximation of replacing I0(λ), the denom-
inator in (2.15), by cosh(λ). In this approximation the integral (2.11) can be evaluated
analytically to give the result

F (z/R, 0) ≈ G(z/R) = [1/(2π)]

∫ ∞
−∞

dλ exp(iλz/R)/ cosh(λ) = 1/{2 cosh[πz/(2R)]}.

(21.1.39)
Figure 1.2 also displays the approximate profile function G(z/R).

There are three things that we can learn/observe from this approximation. First, al-
though it is not a particularly good approximation, G becomes singular when z = ±iR,
which agrees with the discussion of analytic properties given in Subsection 19.1.2. [Note also
that (1.12) is singular when z = ±ia.] Second, G falls off exponentially as exp[−π|z|/(2R)]

for large |z|. Third, as Figure 1.2 illustrates, F (z/R, L/R) and correspondingly C
[1]
0 (z) es-

sentially fall off for large |z| in the same way as G. Thus, for example, at a distance of one
bore diameter away from the center of the solenoid, when |z| = 2R, the on-axis field will
have fallen from its maximum value by approximately a factor of exp(−π) ' .04.
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Figure 21.1.2: The profile function F (z/R, L/R) as given by (2.14) in the cases L/R = 0
and L/R = 1/2, and the approximate profile function G(z/R). The two curves that nearly
agree are those for F , with the highest curve being that for F when L/R = 0. The third
curve is that for G.

21.1.4 Quantitatively Correct Iron-dominated Solenoid

21.2 Realistic Wigglers/Undulators

21.2.1 An Iron-Dominated Superconducting Wiggler/Undulator

21.3 Quadrupoles

21.3.1 Validation of Circular Cylinder Surface Method

This subsection describes numerical tests performed for the case of a Lambertson type
quadrupole. In this case the on-axis gradients and their derivatives can be determined
analytically. The surface data Bρ(ρ = R, φ, z) can also be found directly using the Biot-
Savart law. We will first show that the gradients computed from the surface data following
the method of Section 4 agree with the gradients determined analytically. Next we will add
noise to the surface data, and again apply the method of Section 4 to this noisy data. We
will find that this noise has no undue effect on the computed gradients. Finally, we will
show that the noise also has no undue effect on the transfer map M.
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The method described in Section 4 has been implemented in the code MARYLIE 5.0 [?]
as a user-defined routine. The routine reads from an external file the functions am(R, z)
and bm(R, z), see (4.1), evaluated on a discrete set of points zi. It then generates the
corresponding transfer map by using the built-in routine GENMAP to integrate the map
equations (1.2). Since MARYLIE 5.0 is a 5th order code, only the multipoles through m = 6
need be considered.

The Fourier transforms (4.4) and (4.5) are calculated from the read-in values of am(R, z)
and bm(R, z) using Filon’s method [3] for various values of k in the interval [−kmax, kmax]
where kmax is a suitable k cut-off for the integrals (4.2) and (4.3). For the cases described
below, we have used the value Rkmax = 20. Filon’s method requires interpolation of the
functions am(R, z) and bm(R, z); and for this purpose we use local parabolic fits.

The integration algorithm of GENMAP is based on a 11th order multistep (Adams)
method. Because the algorithm uses a fixed step size, one needs to provide values of the
generalized gradients and their derivatives only at the predetermined locations in z required
by GENMAP. The integrals (4.2) and (4.3) that provide the generalized on-axis gradients
and their derivations are evaluated at the values of z needed by GENMAP, again using
Filon’s method. We emphasize that no interpolation of the generalized gradients is required
by GENMAP.

We have tested the routine by treating the case of a Lambertson quadrupole [8, 9]. For

this case only b2(R, z) and b6(R, z) are nonzero. Correspondingly only the functions C
[0]
2,s,

C
[1]
2,s, C

[2]
2,s, C

[3]
2,s, C

[4]
2,s, and C

[0]
6,s are required. The use of this case as an example has the virtue

that the various C functions can be found exactly [10].
Also, the surface data Bρ(ρ = R, φ, z) can be found directly using the Biot-Savart law,

and this data can be integrated over φ to yield b2(R, z) and b6(R, z). In our test we evaluted
Bρ(ρ = R, φ, z) for 279 equally spaced z values within the interval

z ∈ [zmin, zmax] = [−7r, 7r] (21.3.1)

according to the rule
zi = zmin + ∆(i− 1) for i = 1, 2, · · · 279. (21.3.2)

The cylinder on which we evaluated Bρ had the radius

R = .75r. (21.3.3)

Here r = .128 m is the radius of the quadrupole itself, and the length of the quadrupole is
2r. Corresponding, ∆ = 14r/278 = 6.44 mm. The relatively large values of zmin and zmax
were necessary because the large radius-to-length ratio of the quadrupole makes the fringe
fields very extended.

For each z value the quantity Bρ(ρ = R, φ, z) was evaluated for 256 equally spaced angles
over the interval [0, 2π], and these Bρ values were used to compute the integrals

am(R, z) =
1

π

∫ 2π

0

dφ cos(mφ)Bρ(ρ = R, φ, z), (21.3.4)

bm(R, z) =
1

π

∫ 2π

0

dφ sin(mφ)Bρ(ρ = R, φ, z). (21.3.5)
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Because of the symmetries of a (normal) quadrupole only the functions b2 and b6 are non
vanishing for m ≤ 6. The net results of the steps just described are the values of these
functions at the points (8.2). These functions are shown in Figures 8.1 and 8.2.
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Figure 21.3.1: The angle integrated surface data b2(R, z). The magnet occupies the interval
z ∈ [−0.128 m, 0.128 m].
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Figure 21.3.2: The angle integrated surface data b6(R, z).

Figure 8.3 shows C
[0]
2,s determined both analytically and computed numerically from

b2(R, z) using the method of Section 4 as described above. Evidently the agreement is

excellent. Figure 8.4 shows analytic values of C
[0]
6,s and values computed numerically from

b6(R, z). Again the agreement is excellent. The most stringent test is a comparison of an-

alytic values of C
[4]
2,s with values computed numerically from b2(R, z). This comparison is

given in Figure 8.5. Again the agreement is excellent.
As a final test of our routines, we compared the transfer maps for our Lambertson

quadrupole obtained using either the analytically known on-axis gradients or on-axis gradi-
ents computed numerically from surface data. Table 8.1 shows that the (relative) difference
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Figure 21.3.3: The function C
[0]
2,s(z) as calculated numerically from surface data (dots) and

analytically (solid line).
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Figure 21.3.4: The function C
[0]
6,s(z) as calculated numerically from surface data (dots) and

analytically (solid line).
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Figure 21.3.5: The function C
[4]
2,s(z) as calculated numerically from surface data (dots) and

analytically (solid line).

in the surface-data-based map, as compared to the exact map, is very small. Of course,
apart from roundoff problems, we expect this difference will vanish as the number of sam-
pling points in z and φ is made arbitrarily large.

Table 21.3.1: Relative difference between the surface-data-based map and the exact map.
map generators relative difference

R2 < 10−6

f3, f4 < 10−5

f5, f6 < 10−4

Now that the method of Section 4 has been verified to work, we will study the sensitivity
of transfer map calculations to the presence of random errors (noise) in the surface data. As
a simple model, consider the perturbed functions

brnd2 (R, zi) = b2(R, zi)[1 + ε2(zi)], (21.3.6)

brnd6 (R, zi) = b6(R, zi)[1 + ε6(zi)], (21.3.7)

where the ε2(zi), ε6(zi) are random variables uniformly distributed in the interval [−ε/2, ε/2],
and b2(R, zi), b6(R, zi) are the same as before. What effect do these errors have on the on-axis
gradients computed from the (noisy) surface data?

Figure 8.6 shows C
[4]
2,s for a particular realization of the error distribution (seed #2) and

ε = 10−2. The solid line shows analytic results (the same as those of Figure 8.5) and the
dots show results computed numerically from the noisy surface data. Close inspection of
the figure shows that the points no longer fall exactly on the curve, as is to be expected
in the case of noise. However, the size of the deviations from the curve is comparable to
the size of the noise, and not unduly larger. To facilitate closer comparison, Figure 8.7
shows the difference between the analytic results and results computed numerically from
the noisy surface data. Evidently the deviation is generally on the order of 1% or less, which
is comparable with ε = 10−2.
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Figure 21.3.6: The function C
[4]
2,s(z) as calculated numerically from noisy (seed #2) surface

data (dots), and analytically (solid line).
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Figure 21.3.7: Difference between the solid line and dots of Figure 8.6.
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Since, as we have seen, the computation of the on-axis gradients and their derivatives is
not unduly affected by noise in the surface data, we expect the same will be true for the
transfer map. This is indeed the case. Table 8.2 shows that the (relative) error in the noisy
surface data based map (as compared to the exact map) is, at worst, on the order of the
noise.

Table 21.3.2: Relative error of the noisy surface data based map compared to the exact map.
map generators seed #1 seed#2 seed#3

R2 < 3× 10−4 < 8× 10−4 < 5× 10−4

f3, f4 < 10−3 < 1.6× 10−3 < 1.6× 10−3

f5, f6 < 10−2 < 1.5× 10−2 < 1.3× 10−2

One might imagine that the introduction of noise would damage the differentiability (with
respect to z) of the surface data am(R, z) and bm(R, z). This is indeed true. Consider, for
example, the function b2(R, z) of the previous section. Figure 9.1 shows its Fourier transform
b̃2(R, k). Evidently the spectrum of b2 cuts off beyond a wave number kmax ' 150 m−1.
For comparison, Figure 9.2 shows the Fourier transform of ε2(z) for the case of seed #2.
Note that the noise spectrum extends to k′max ' 600 m−1. This is to be expected since
π/∆ ' 490 m−1. Finally, Figure 9.3 shows the Fourier transform of b2ε2. Its spectrum
extends to k′′max ' 750 m−1. We see that k′′max ' (kmax + k′max), as is also to be expected.

Although noise does damage the differentiability of surface data, it has considerably less
effect on the on-axis gradients derived from the (noisy) surface data. Mathematically, this
pleasant result arises from the spectral “cutoff” provided by the kernel [km+n−1/I ′m(kR)]
that occurs in (4.2) and (4.3). For example, Figure 9.4 shows the factor [k5/I ′2(kR)] that

is relevant to the computation of C
[4]
2,s for the quadrupole example of the last section. We

see that it peaks at k ' 50 m−1, and falls off rapidly beyond kmax ' 200 m−1. Finally,
Figure 9.5 shows the product of the two functions presented in Figures 9.3 and 9.4. From
Figures 9.4 and 9.5 we see that the high wave-number part of the spectrum in Figure 9.3
is effectively filtered out. Correspondingly, as already seen in the previous section, noise in
the surface data has no undue effect on the function C

[4]
2,s. We remark, as is obvious from

our considerations, that noise has even less effect on the functions C
[n]
2,s with n < 4. It also

has no undue effect on C
[0]
6,s. We also note that the condition Rkmax = 20 used in Section 8

corresponds to kmax ' 208.
In summary, we have found that noise introduces high wave-number contributions to the

spectrum of brndm where they are absent in the spectrum of bm. These potentially damaging
contributions are filtered by the kernel [km+n−1/I ′m(kR)]. Evidently this filtering becomes
less effective with increasing n, and is improved by making R as large as possible. For the
example studied, we found that smoothing was satisfactory for the selected value of R and
the n values required for 5th-order calculations.

Finally we remark that, by making more detailed numerical studies, it should be possible
to find the partial derivatives

∂M/∂bm(R, zi) = ∂[any selected coefficient of any generator for M]/∂bm(R, zi). (21.3.8)

That is, we can evaluate numerically how the map changes when the value of the surface
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data at any point is varied. In this way, we can get precise and complete information about
the effect of possible noise.
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Figure 21.3.8: Real part of the function b̃2(R, k). The imaginary part vanishes.
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Figure 21.3.9: Real part of the function ε̃2(k). The imaginary part has similar features.

21.3.2 Final Focus Quadrupoles

21.4 Closely Adjacent Quadrupoles and Sextupoles

21.5 Application to Radio-Frequency Cavities
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Figure 21.3.10: Real (solid line) and imaginary part (dashed line) of the Fourier transform
of the function b2(R, z)ε2(z).
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Figure 21.3.11: The factor [k5/I ′2(kR)] that appears in the calculation of C
[4]
2,s.
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Figure 21.3.12: A plot of the real part of the product of the two functions of Figures 9.3
and 9.4. The imaginary part has similar features.
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Chapter 22

Realistic Transfer Maps for General
Curved Beam-Line Elements: Theory

22.1 Introduction

Surface methods based on the use of cylinders are appropriate for straight beam-line elements
or for bent elements with small sagitta. However, cylinders cannot be employed for elements
with large sagitta, such as dipoles, where no straight cylinder would fit within the aperture.
For such cases more complicated surfaces are required. For example, Figure 1.1 shows a bent
box with straight end legs. Its surface could be used to treat a dipole with large sagitta. In
this case, the bent part of the box would lie within the body of the dipole, and the straight
legs would enclose the fringe-field regions.

Figure 22.1.1: A bent box with straight end legs.

But now there is a complication: The straight cylinder methods succeeded because
Laplace’s equation is separable in circular, elliptical, and rectangular cylinder coordinates.
Consequently, we were able to find a kernel that related the interior vector potential to the

1739
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normal component of the surface magnetic field. However, there is no bent coordinate sys-
tem with straight ends for which Laplace’s equation is separable. The method of cylindrical
multiples and on-axis gradients is only applicable to straight elements.

This problem can in principle be overcome if both the normal component of the magnetic
field and the scalar potential for the magnetic field are known on the surface. (Note that a
knowledge of the scalar potential on the surface is equivalent to a knowledge of the tangential
component of the field on the surface.) Such data are in fact provided on a mesh by some
3-dimensional field solvers, and these data can be interpolated onto the surface.

Let V be some volume in three-dimensional space bounded by a surface S. Suppose that
the magnetic field B(r) is source free when r is within V . That is, for r within V , B(r)
satisfies the requirements

∇ ·B(r) = 0, (22.1.1)

∇×B(r) = 0. (22.1.2)

This will be the case for the magnetic field in an evacuated beam pipe. For a Hamiltonian
treatment of trajectories, we need a vector potential A(r) such that

B(r) = ∇×A(r). (22.1.3)

Let n′(r′) be the outward normal to S at the point r′ ∈ S. Then the normal component of
B on S is given by the definition

Bn(r′) = n′(r′) ·B(r′). (22.1.4)

Also, let ψ(r′) be the value of the magnetic scalar potential at the point r′ ∈ S. It satisfies
the relation

B(r′) = ∇′ψ(r′). (22.1.5)

Then, with the aid of the vector potential for Dirac magnetic monopoles and Helmholtz’s
theorem, it can be shown that there are kernels Gn and Gt such that a suitable interior
vector potential A(r) for r within V is given by the relation

A(r) = An(r) +At(r) (22.1.6)

with

An(r) =

∫
S

dS ′ Bn(r′)Gn(r, r′) (22.1.7)

and

At(r) =

∫
S

dS ′ ψ(r′)Gt(r, r′). (22.1.8)

(Here the superscripts n and t denote normal and tangential, respectively, and indicate the
contributions to the vector potential made by the normal and tangential components of B
on S.) Moreover, the constituents ofA(r), and henceA(r) itself, satisfy the Coulomb gauge
condition,

∇ ·An(r) = ∇ ·At(r) = ∇ ·A(r) = 0. (22.1.9)

A detailed exposition of this method, including expected accuracy and insensitivity to
noise in the surface data, is the subject of this and the next few chapters. Thus, taken
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together, Chapters 15 through 21 and this chapter and Chapters 23 through 25 are intended
to provide an extensive description of, and associated robust numerical algorithms for, the
computation of transfer maps, including all fringe-field and higher-order multipole effects,
for realistic beam-line elements having arbitrary geometry.1

Section 2 of this chapter describes the the mathematical tools required to treat general
geometries. These tools are Dirac’s magnetic monopole vector potential and Helmloltz’s
theorem. Sections 3 and 4 derive the relations (1.3) through (1.9), find the kernels Gn and
Gt, and describe their properties.

Before continuing on, we pause to advertise some of the virtues of what can be achieved
with the use of general surface methods.

• The constituents An(r) and At(r) of A(r), and hence A(r) itself, are analytic func-
tions of r for r within V , even when there are errors in the surface fields Bn and ψ,
and no matter how poorly the integrals (1.7) and (1.8) are evaluated.

• The Maxwell equations for B(r), and the Coulomb gauge condition for A(r) and its
constituents, are satisfied exactly even when there are errors in the surface fields Bn

and ψ, and no matter how poorly the integrals (1.7) and (1.8) are evaluated.

• The kernels Gn and Gt are smoothing. Consequently, the A(r) given by (1.6) through
(1.8) is relatively insensitive to noise in the surface fields Bn and ψ.

We hasten to add that the first two items above should not be taken to mean that there is
no need to take care to evaluate integrals well. They just indicate that the worst disasters
have been avoided. Subsequently we will learn that the kernels Gn and Gt, and their r
derivatives, can be strongly peaked in r′ when r is near S. To obtain accurate results, this
behavior of the kernels must be taken into account when integrating, with respect to r′, over
the surface S.

22.2 Mathematical Tools

22.2.1 Electric Dirac Strings

In this subsection we will motivate the subject of magnetic Dirac strings by treating the
simpler electric case. Suppose E(r) is a vector field that obeys the equations

∇×E = 0, (22.2.1)

∇ ·E = ρ. (22.2.2)

From (2.1) we know there is a scalar potential φ such that

E = −∇φ, (22.2.3)

1In this sentence we have used the term multipole loosely to refer, simply, to nonlinear terms arising from
nonlinear magnetic field variations. As already emphasized earlier, the concept of cylindrical multipoles only
applies to straight elements.
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and from (2.2) it follows that
∇2φ = −ρ. (22.2.4)

Introduce the notation

|r − r′| = ||r − r′|| = [(x− x′)2 + (y − y′)2 + (z − z′)2]1/2. (22.2.5)

Consider the function 1/|r − r′|. It satisfies the relation

∇2[1/|r − r′|] = −4πδ3(r − r′) (22.2.6)

where the indicated derivatives are to be taken with respect to the components of r. As-
suming that ρ(r) falls off sufficiently rapidly at infinity, it follows that a solution to (2.4) is
given by the relation

φ(r) = [1/(4π)]

∫
d3r′ρ(r′)/|r − r′|. (22.2.7)

Moreover, (2.7) is the unique solution that vanishes at infinity.
For our discussion we will need some knowledge of low-order (spherical) multipole expan-

sions, which we review briefly here. Suppose that the charge distribution ρ is nonzero only
in some volume V surrounding the point rd. (Here the subscript d stands for distribution,
and will later stand for dipole.) Then (2.7) becomes

φ(r) = [1/(4π)]

∫
V

d3r′ρ(r′)/|r − r′|. (22.2.8)

Suppose also that r lies outside V so that the denominator in (2.8) never vanishes. Make
the change of variables

r′ = rd + ξ (22.2.9)

so that (2.8) becomes

φ(r) = [1/(4π)]

∫
V0

d3ξ ρ(rd + ξ)/|(r − rd)− ξ| (22.2.10)

where V0 is a volume surrounding the origin. Under the assumption that r /∈ V , the
denominator factor in (2.10) can be expanded as a power series in the components of ξ,

1/|(r − rd)− ξ| = [1/|r − rd|][1 + ξ · (r − rd)/|r − rd|2 +O(ξ2)]. (22.2.11)

Put this expansion into the integral (2.10) to yield the result

φ(r) = [1/(4π)][1/|r − rd|]
∫
V0

d3ξ ρ(rd + ξ)

+[1/(4π)][1/|r − rd|3](r − rd) ·
∫
V0

d3ξ ξ ρ(rd + ξ) +O(ξ2). (22.2.12)

The integrals in (2.12) can be manipulated to bring them to the forms∫
V0

d3ξ ρ(rd + ξ) =

∫
V

d3r′ ρ(r′) = Q, (22.2.13)



22.2. MATHEMATICAL TOOLS 1743

∫
V0

d3ξ ξ ρ(rd + ξ) =

∫
V

d3r′ (r′ − rd) ρ(r′) = pd. (22.2.14)

Here Q, the total charge in V , is the monopole moment. And pd is the dipole moment (with
respect to the point rd) of the charge distribution in V . Thus, we find that

φ(r) = [Q/(4π)][1/|r − rd|] + [1/(4π)][pd · (r − rd)]/|r − rd|3 +O(ξ2). (22.2.15)

That is, the potential arising from a charge distribution, at a point r outside the distribution,
is a sum of monopole, dipole, and higher-order multipole contributions.

We recall that the prototypical example of a dipole consists of two opposite charges ±q
separated by a distance 2ε in the limit that ε → 0 and q → ∞ in such a way that the
product 2qε remains constant. For example, suppose a charge +q is placed at the location
rd + ε and a charge −q is placed at the location rd− ε. Then we find that the potential due
to this two-charge combination is given by the relation

φ(r, rd) = [1/(4π)][q/|r − (rd + ε)| − q/|r − (rd − ε)|]. (22.2.16)

Expansion of (2.16) in powers of ε gives the result

φ(r, rd) = [1/(4π)](2qε) · (r − rd)/|r − rd|3 +O(qε2). (22.2.17)

Now let ε→ 0 and q →∞ in such a way that

2qε→ pd. (22.2.18)

In this limit (2.17) becomes

φd(r, rd) = [1/(4π)][pd · (r − rd)]/|r − rd|3, (22.2.19)

in agreement with the second term in (2.15). We note, with the convention q > 0, that the
dipole moment vector pd points from the location of −q to the location of +q.

We also note, for future use, that the field Ed(r, rd) at the point r arising from a dipole
at the point rd (with r 6= rd) is given by the relation

Ed(r, rd) = −∇φd(r, rd)
= −[1/(4π)][pd/|r − rd|3] + [3/(4π)](r − rd)[pd · (r − rd)]/|r − rd|5.

(22.2.20)

We will now use the expression for the potential of a dipole, namely (2.19), to carry out
an instructive construction and calculation. Suppose rA and rB are the locations of two
points A and B. Imagine these two points to be joined by a line (path, string) L starting at
rA and ending at rB. See Figure 2.1. Divide the path into N segments, each of length ∆s,
and place a dipole of magnitude g∆s at the center of each segment with the dipole moment
vector pointing along the path at each point. Here g is some constant. Thus, the dipole
moment ∆pd of each segment is given by the expression

∆pd = g∆s(∆r/|∆r|) = g∆r (22.2.21)
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since |∆r| = ∆s. Let us compute the potential φs(r) produced by this string of dipoles. It
will be the sum of the potentials of the individual dipoles. In the limit ∆s→ 0 and N →∞
it is given by the integral

φs(r) = [1/(4π)]

∫
L

dpd · (r − rd)/|r − rd|3

= [g/(4π)]

∫ rB
rA

drd · (r − rd)/|r − rd|3. (22.2.22)

Figure 22.2.1: (Place Holder) A path L from the point A to the point B. Dipoles are laid
out and aligned along the path to form a string.

Can the integral (2.22) be evaluated? Recall the identity

∇d(1/|r − rd|) = (r − rd)/|r − rd|3 (22.2.23)

where ∇d denotes differentiation with respect to the components of rd. This identity may
be employed in (2.22) to yield the result

φs(r) = [g/(4π)]

∫ rB
rA

drd · (r − rd)/|r − rd|3

= [g/(4π)]

∫ rB
rA

drd · [∇d(1/|r − rd|)]

= [g/(4π)]{[(1/|r − rB|)]− [(1/|r − rA|)]}. (22.2.24)

We see that the potential φs(r) resulting from a string of dipoles is the same as the potential
produced by a charge −g located at rA and a charge +g located at rB. This mathematically
derived result is also intuitive because we expect, for a string of dipoles arrayed head-to-tail,
that adjacent head-tail pairs would cancel so all that would be left would be the initial
negative tail and the final positive head.
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Note that, as it stands, (2.22) is undefined for points r ∈ L. However, since the integrand
in (2.22) is a perfect differential, see (2.23), the path can be deformed at will to avoid any
possible vanishings of the denominator in (2.22) without changing the value of the integral.
Indeed, (2.24) shows that φs(r) depends only on the endpoints of the path, and is otherwise
path independent.

22.2.2 Magnetic Dirac Strings

The General Case

In analogy to the work of the previous subsection, this subsection will describe calculations
for the complementary case of a vector field B(r) that obeys the equations

∇×B = J , (22.2.25)

∇ ·B = 0. (22.2.26)

Note, in order for (2.25) to make sense, we must require that

∇ · J = ∇ · (∇×B) = 0. (22.2.27)

(Recall that the divergence of a curl vanishes.)
In the case of (2.25) and (2.26) it is often assumed that there is a vector potential A(r)

such that
B = ∇×A (22.2.28)

because (2.26) will then be satisfied automatically. Let us verify that this Ansatz is possible
by construction. Substitution of (2.28) into (2.25) yields the hypothesis

∇× (∇×A) = J . (22.2.29)

Recall the vector identity

∇× (∇×A) = ∇(∇ ·A)−∇2A (22.2.30)

where here it is essential that Cartesian components be employed. Let us make the further
Coulomb gauge assumption

∇ ·A = 0. (22.2.31)

In this circumstance (2.29) and (2.30) become

∇2A = −J . (22.2.32)

Thanks to (2.6), equation (2.32) has the immediate solution

A(r) = [1/(4π)]

∫
d3r′ J(r′)/|r − r′|. (22.2.33)

Moreover, (2.33) is the unique solution that vanishes at infinity. But wait, we must also
verify that (2.33) also satisfies (2.31). It does, as you will have the pleasure of showing in
Exercise 2.4.
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Next suppose that the current distribution J is nonzero only in some volume V sur-
rounding the point rd. Then (2.33) becomes

A(r) = [1/(4π)]

∫
V

d3r′ J(r′)/|r − r′|. (22.2.34)

Suppose also that r lies outside V so that the denominator in (2.34) never vanishes. Make
the change of variables (2.9) so that (2.34) can be rewritten in the form

A(r) = [1/(4π)]

∫
V0

d3ξ J(rd + ξ)/|(r − rd)− ξ| (22.2.35)

where V0 is a volume surrounding the origin. As before, make the expansion (2.11) so that
(2.35) can be written in the form

A(r) = [1/(4π)][1/|r − rd|]
∫
V0

d3ξ J(rd + ξ)

+[1/(4π)][1/|r − rd|3]

∫
V0

d3ξ [(r − rd) · ξ] J(rd + ξ) +O(ξ2).

(22.2.36)

The integrals in (2.36) can again be manipulated to bring them to more convenient forms.
For the first integral we find that∫

V0

d3ξ J(rd + ξ) =

∫
V

d3r′ J(r′) = 0. (22.2.37)

Here use has been made of (2.27). See Exercise 2.5. The second integral can be brought to
the form ∫

V0

d3ξ [(r − rd) · ξ] J(rd + ξ) =

∫
V

d3r′ [(r − rd) · (r′ − rd)] J(r′)

= md × (r − rd). (22.2.38)

Here use has again been made of (2.27), and md is the magnetic dipole moment defined by
the integral

md = (1/2)

∫
V

d3r′ [(r′ − rd)× J(r′)]. (22.2.39)

See Exercise 2.6. Thus, we find that

A(r) = Ad(r, rd) +O(ξ2) (22.2.40)

where
Ad(r, rd) = [1/(4π)][md × (r − rd)]/|r − rd|3. (22.2.41)

We see that the vector potential arising from a current distribution, at a point r outside
the distribution, is a sum of dipole and higher order multipole contributions. Unlike the
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electric case, there is no monopole contribution. We also remark that A(r, rd) satisfies the
Coulomb gauge condition (2.31),

∇ ·A(r, rd) = 0. (22.2.42)

See Exercise 2.7.
We recall that the prototypical example of a magnetic dipole consists of a small circular

and planar ring of radius R, surrounding an area A and carrying a current I, in the limit
that A→ 0 and I →∞ in such a way that the product AI remains constant. For example,
suppose the ring is placed in the x, y plane and centered around the origin. Suppose also that
the current I circulates in the counterclockwise direction when viewed from above (looking
down from positive z toward the origin). Then we find that (2.39) takes the form

md = (1/2)

∫
V

d3r′ [r′ × J(r′)] = AIez. (22.2.43)

For the field Bd(r, rd) at the point r arising from a magnetic dipole at the point rd
(with r 6= rd) we find the result

Bd(r, rd) = ∇×Ad(r, rd)

= −[1/(4π)][md/|r − rd|3] + [3/(4π)](r − rd)[md · (r − rd)]/|r − rd|5.
(22.2.44)

Note that the right sides of (2.20) and (2.44) agree if pd = md. Thus, we have the key
mathematical relation

−∇φd(r, rd) = ∇×Ad(r, rd) when pd = md and r 6= rd. (22.2.45)

In analogy to what was done in the previous subsection for a string of electric dipoles,
let us compute the vector potential As(r) arising from a string of magnetic dipoles. Again
we will initially divide the path into N equal segments, and the magnetic dipole moment of
each segment will be given by the relation

∆md = g∆s(∆r/|∆r|) = g∆r. (22.2.46)

In the limit ∆s → 0 and N → ∞ the vector potential due to the string is given by the
integral

As(r) = [1/(4π)]

∫
L

dmd × (r − rd)/|r − rd|3

= [g/(4π)]

∫ rB
rA

drd × (r − rd)/|r − rd|3. (22.2.47)

Recall (2.41). Note that, as it stands, (2.47) is undefined for points r ∈ L. As before, the
path can be deformed to avoid any possible vanishings of the denominator. However, unlike
the electric case and as will soon be seen, so doing changes the value of As(r). We also note
that the current distribution associated with a string of magnetic dipoles (all aligned along
the string) is that of an infinitesimally thin solenoid bent into the shape of the string.
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What is the nature of the magnetic field Bs(r) given by

Bs(r) = ∇×As(r)? (22.2.48)

We claim, for r /∈ L, that
∇×As(r) = −∇φs(r). (22.2.49)

We will prove this assertion shortly. Assuming it is true, the right side of (2.48) can be
evaluated easily using (2.49). In view of (2.24), there is the relation

−∇φs(r) = [g/(4π)][(r − rB)/|r − rB|3]− [g/(4π)][(r − rA)/|r − rA|3]. (22.2.50)

It follows that

Bs(r) = [g/(4π)][(r − rB)/|r − rB|3]− [g/(4π)][(r − rA)/|r − rA|3]. (22.2.51)

We see that the field Bs(r) is that produced by two magnetic monopoles, one located at rB
with strength g, and a second located at rA with strength −g.

At this juncture two comments are in order. First, the Bs(r) given by (2.51) evidently
is not divergence free at the points rA and rB. But the Bs(r) given by (2.48) is a curl, and
we again recall the theorem that a curl is divergence free. The resolution to this apparent
paradox is that As(r) is singular for r ∈ L, and every neighborhood of the points rA and
rB contains such singular points, and therefore the conditions for the theorem are not met.
Correspondingly, (2.51) holds only for points r /∈ L.

The second comment is equally subtle. Suppose two different strings s and s′ (but with
the same endpoints) are used to compute Bs(r) and Bs′(r). Then, according to (2.51),
these fields should agree except possibly at the points for which r ∈ L and/or r ∈ L′. Thus,
we have the relation

∇× [As(r)−As′(r)] = 0 for r /∈ L and r /∈ L′. (22.2.52)

Let Σ be some surface spanning the two strings s and s′. See Figure 2.2. Three-dimensional
Euclidean space with the surface Σ excluded is still simply connected. It follows that there
is a function ψss′(r) such that

As(r)−As′(r) = ∇ψss′(r) for r /∈ Σ. (22.2.53)

That is, the vector potentials associated with two different strings (but with the same
endpoints) are related by a gauge transformation. From (2.53) we see that ψss′(r) will
be singular for both r ∈ L and r ∈ L′. It can be shown that ψss′(r) is also harmonic,

∇2ψss′(r) = 0 for r /∈ L and r /∈ L′. (22.2.54)

See Exercise 2.13.
Finally, suppose we let rB →∞. In this limit, the first term on the right side of (2.51)

vanishes, and we have the result

Bs(r) = −[g/(4π)][(r − rA)/|r − rA|3], (22.2.55)

which is the field of a monopole located at rA and having strength −g. Correspondingly, the
upper limit in the integral (2.47) is infinite, and the string s, which we will call a half-infinite
Dirac string, extends from rA to infinity. And the field (2.55) may be viewed as that of a
Dirac magnetic monopole.
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Figure 22.2.2: (Place holder.) A surface Σ spanning the two strings s and s′.

Straight Half-Infinite Strings

For future use, there is a special class of half-infinite strings that is particularly conve-
nient. Let m be some unit vector. Consider the straight string (path) from rA to infinity
parameterized as

rd(λ) = rA + λm with λ ∈ [0,∞]. (22.2.56)

See Figure 2.3. Then, on this path, md is in the direction of m, and we also have the
relation

drd(λ) = mdλ. (22.2.57)

For this class of strings the integral (2.47) can be evaluated analytically. We begin by
rewriting (2.47) in the form

As(r; rA,m) = [g/(4π)]

∫ ∞
0

dλm× [r − rd(λ)]/|r − rd(λ)|3. (22.2.58)

From (2.56) we see that
r − rd(λ) = r − rA − λm (22.2.59)

and therefore
m× [r − rd(λ)] = m× (r − rA). (22.2.60)

Consequently, the integral (2.58) simplifies to the form

As(r; rA,m) = [g/(4π)][m× (r − rA)]

∫ ∞
0

dλ/|r − rd(λ)|3. (22.2.61)

As shown in Exercise 2.14, the integral appearing in (2.61) can be evaluated to yield the
result ∫ ∞

0

dλ/|r − rd(λ)|3 =

∫ ∞
0

dλ/|r − rA − λm|3

= 1/{|r − rA|[|r − rA| −m · (r − rA)]}. (22.2.62)
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Therefore, As(r; rA,m) takes the final explicit form

As(r; rA,m) = [g/(4π)][m× (r − rA)]/{|r − rA|[|r − rA| −m · (r − rA)]}.
(22.2.63)

Figure 22.2.3: (Place holder.) A straight half-infinite string extending from rA to infinity in
the direction m.

Remaining Verifications

It remains to be verified that (2.49) holds. Suppose that (2.19) is written in the form

φd(r, rd; |pd|,nd) = [1/(4π)][|pd|nd · (r − rd)]/|r − rd|3 (22.2.64)

where nd is the unit vector in the direction of pd. Then (2.22) takes the form

φs(r) = [1/(4π)]

∫
L

dpd · (r − rd)/|r − rd|3

= [g/(4π)]

∫ rB
rA

drd · (r − rd)/|r − rd|3

=

∫
L

φd(r, rd; gds, drd/|drd|), (22.2.65)

and therefore

−∇φs(r) =

∫
L

−∇φd(r, rd; gds, drd/|drd|). (22.2.66)

Suppose also that (2.41) is written in the form

Ad(r, rd; |md|,nd) = [1/(4π)][|md|nd × (r − rd)]/|r − rd|3. (22.2.67)
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Then (2.47) takes the form

As(r) = [1/(4π)]

∫
L

dmd × (r − rd)/|r − rd|3

= [g/(4π)]

∫ rB
rA

drd × (r − rd)/|r − rd|3

=

∫
L

Ad(r, rd; gds, drd/|drd|), (22.2.68)

and therefore

∇×As(r) =

∫
L

∇×Ad(r, rd; gds, drd/|drd|). (22.2.69)

Now compare the integrands on the right sides of (2.66) and (2.69). We see that they
have identical arguments. Consequently, by (2.45), they are equal. It follows that the left
sides of (2.66) and (2.69) are equal, and therefore (2.49) is correct.

There are still two final matters. First, (2.68) shows that As(r) is a superposition
(integration over rd) of the Ad(r, rd) and, for each Ad(r, rd), we know that the relation
(2.42) holds. It follows that As(r) also satisfies the Coulomb gauge condition,

∇ ·As(r) = 0. (22.2.70)

In particular, there is the relation

∇ ·As(r; rA,m) = 0. (22.2.71)

Second, since As(r; rA,m), is a magnetic monopole vector potential, there is the relation

∇×As(r; rA,m) = −[g/(4π)][(r − rA)/|r − rA|3] = [g/(4π)]∇(1/|r − rA|). (22.2.72)

It follows that
∇× [∇×As(r; rA,m)] = 0. (22.2.73)

The relations (2.71) and (2.73) will be of subsequent use.

Fully Infinite (Two) String Monopole Vector Potential

The previous discussion treated the half-infinite string vector potential for a magnetic
monopole. In particular, (2.63) gives the vector potential As(r; rA,m) for a magnetic
monopole of strength −g, see (2.55), located at rA with a straight string extending from rA
to ∞ in the direction m. This vector potential is singular on the line

r = rA + λm with λ ∈ [0,∞]. (22.2.74)

For completeness we will now describe what we will call the fully infinite string monopole
vector potential.2 Suppose we form the average of As(r; rA,m) and As(r; rA,−m) by
writing

A2s(r; rA,m) = (1/2)[As(r; rA,m) +As(r; rA,−m)]. (22.2.75)

2The fully infinite string monopole vector potential is sometimes called the Schwinger potential.
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This vector potential, which we will also call a two-string monopole vector potential, will
(by superposition) also produce the monopole field (2.55), and will be singular along the full
line

r = rA + λm with λ ∈ [−∞,∞]. (22.2.76)

See Figure 2.4.

Figure 22.2.4: (Place holder.) A straight full infinite string extending from rA to infinity in
the directions ±m.

By superposition, and the use of (2.71) and (2.73), the fully infinite string monopole
vector potential satisfies the analogous relations

∇ ·A2s(r; rA,m) = 0 (22.2.77)

and
∇× [∇×A2s(r; rA,m)] = 0, (22.2.78)

provided r is not on the line (2.76). Finally, from (2.63) and the definition (2.75), we find
that A2s(r; rA,m) has the explicit form

A2s(r; rA,m) = [g/(8π)][m× (r − rA)]/{|r − rA|[|r − rA| −m · (r − rA)]}
−[g/(8π)][m× (r − rA)]/{|r − rA|[|r − rA|+m · (r − rA)]}

=
[g/(4π)][m× (r − rA)][m · (r − rA)]

|r − rA|{|r − rA|2 − [m · (r − rA)]2}

=
[g/(4π)][m× (r − rA)][m · (r − rA)]

|r − rA||m× (r − rA)|2
.

(22.2.79)

22.2.3 Helmholtz Decomposition

Suppose V is some simply connected volume in 3-dimensional space bounded by a surface
S, and suppose F (r) is some 3-dimensional vector field defined in V . Then, according to a
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theorem of Helmholtz, there are scalar and vector potentials φ(r) and A(r) such that

F (r) = −∇φ(r) +∇×A(r) for r ∈ V. (22.2.80)

Moreover, A(r) will have the property

∇ ·A(r) = 0 for r ∈ V. (22.2.81)

Finally, let Let G(r, r′) be the function

G(r, r′) = 1/|r − r′|. (22.2.82)

Then, the scalar and vector potentials are given in terms of F (r), with r ∈ V , by the
relations

φ(r) = −[1/(4π)]

∫
S

dS ′ n′ · F (r′)G(r, r′) + [1/(4π)]

∫
V

d3r′ G(r, r′)∇′ · F (r′),

(22.2.83)

A(r) = −[1/(4π)]

∫
S

dS ′ [n′ ×G(r, r′)F (r′)] + [1/(4π)]

∫
V

d3r′ G(r, r′)∇′ × F (r′).

(22.2.84)

Here n′ is the outward normal to S at the point r′. We emphasize, as is evident from (2.80),
(2.83), and (2.84), that for r ∈ V the vector field F (r) is completely specified in terms of
the divergence and curl of F within V and the values of F on the bounding surface S. No
information is required outside of V .

We will derive this result in stages. Before doing so, some remarks are in order. There two
cases of special interest. If F (r) is globally defined and falls off at infinity at least as fast as
1/|r|2, then we may take the surface S to infinity and find that the surface integrals vanish.
This result shows that, with suitable boundary conditions (fall off) imposed at infinity, F (r)
is completely specified in terms of its divergence and curl. That the operations of divergence
and curl are necessary and sufficient to determine F (r) is a consequence of two things: the
fact that we are working in three dimensions and certain properties of the Euclidean group
in three dimensions. See Exercise 2.21.

The second case, of special interest for our purposes, is that for which F (r) is divergence
and curl free (source free) in V ,

∇ · F (r) = 0 for r ∈ V (22.2.85)

and
∇× F (r) = 0 for r ∈ V. (22.2.86)

In this case, only the surface terms appear in (2.83) and (2.84), and we obtain the results

φ(r) = −[1/(4π)]

∫
S

dS ′ n′ · F (r′)G(r, r′), (22.2.87)
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A(r) = −[1/(4π)]

∫
S

dS ′ [n′ × F (r′)]G(r, r′). (22.2.88)

We will eventually apply these results to the case of a magnetic fieldB(r) that is assumed to
be source free within V , as in (1.1) and (1.2). We take the opportunity at this point to note
that G(r, r′) as given by (2.82), and for fixed r′, is an analytic function of the components
of r for r 6= r′. It follows from the representations (2.87) and (2.88), under very mild
assumptions on the surface behavior of F (r), boundedness and continuity will do, that φ(r)
and A(r) are analytic functions of the components of r for r within V . Correspondingly,
from (2.80), F (r) must then also be analytic for r within V .

We begin the proof of Helmholtz’s theorem by noting that G(r, r′) has the properties

∇G(r, r′) = −∇′G(r, r′) = −(r − r′)/|r − r′|3, (22.2.89)

∇2G(r, r′) = (∇′)2G(r, r′) = −4πδ3(r − r′), (22.2.90)

where ∇′ denotes differentiation with respect to the components of r′. As a result of (2.90)
there is, for r ∈ V , the identity

F (r) =

∫
V

d3r′ δ3(r − r′)F (r′)

= −[1/(4π)]

∫
V

d3r′ F (r′)∇2G(r, r′)

= −[1/(4π)]∇2

∫
V

d3r′ F (r′)G(r, r′)

= −∇2H(r) (22.2.91)

where

H(r) = [1/(4π)]

∫
V

d3r′ F (r′)G(r, r′). (22.2.92)

Invoke again the vector identity

−∇2H(r) = ∇× [∇×H(r)]−∇[∇ ·H(r)]. (22.2.93)

It follows that

F (r) = ∇× [∇×H(r)]−∇[∇ ·H(r)], (22.2.94)

and therefore (2.80) holds with the definitions

φ(r) = ∇ ·H(r), (22.2.95)

A(r) = ∇×H(r). (22.2.96)

It remains to work out computationally useful expressions for φ(r) and A(r). Doing so
requires a flurry of vector manipulations. Begin with φ(r). According to (2.92) and (2.95)
it can be written as

φ(r) = [1/(4π)]

∫
V

d3r′ ∇ · [F (r′)G(r, r′)]. (22.2.97)
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Manipulate the integrand in (2.97) to find the result

∇ · [F (r′)G(r, r′)] = F (r′) · ∇G(r, r′)] = −F (r′) · ∇′G(r, r′)]

= −∇′ · [F (r′)G(r, r′)] +G(r, r′)∇′ · F (r′). (22.2.98)

Employ this result in (2.97) to rewrite it in the form

φ(r) = [1/(4π)]

∫
V

d3r′ {−∇′ · [F (r′)G(r, r′)] +G(r, r′)∇′ · F (r′)}. (22.2.99)

Finally, use the divergence theorem to transform the first term on the right side of (2.99) to
yield the result

φ(r) = −[1/(4π)]

∫
S

dS ′ n′ · F (r′)G(r, r′) + [1/(4π)]

∫
V

d3r′ G(r, r′)∇′ · F (r′), (22.2.100)

in agreement with (2.83).
The case of A(r) requires somewhat more effort. Combining (2.92) and (2.96) gives the

result

A(r) = [1/(4π)]

∫
V

d3r′ ∇× [F (r′)G(r, r′)]. (22.2.101)

Manipulate the integrand in (2.101) to find the result

∇× [F (r′)G(r, r′)] = [∇G(r, r′)]× F (r′) = −F (r′)×∇G(r, r′)

= F (r′)×∇′G(r, r′). (22.2.102)

There is also the vector identity

∇′ × [F (r′)G(r, r′)] = G(r, r′)∇′ × F (r′)− F (r′)×∇′G(r, r′). (22.2.103)

Combining (2.102) and (2.103) gives the result

∇× [F (r′)G(r, r′)] = G(r, r′)∇′ × F (r′)−∇′ × [F (r′)G(r, r′)]. (22.2.104)

Employ this result in (2.101) to rewrite it in the form

A(r) = [1/(4π)]

∫
V

d3r′ G(r, r′)∇′ × F (r′)− [1/(4π)]

∫
V

d3r′ ∇′ × [F (r′)G(r, r′)].

(22.2.105)

Now work on the second integral appearing on the right side of (2.105). Let c be any
constant vector. By the divergence theorem there is the relation∫

V

d3r′ ∇′ · [c×G(r, r′)F (r′)] =

∫
S

dS ′ n′ · [c×G(r, r′)F (r′)]. (22.2.106)

There is also the vector identity

n′ · [c×G(r, r′)F (r′)] = −n′ · [G(r, r′)F (r′)× c]
= −[n′ ×G(r, r′)F (r′)] · c
= −c · [n′ ×G(r, r′)F (r′)]. (22.2.107)



1756
22. REALISTIC TRANSFER MAPS FOR GENERAL CURVED BEAM-LINE

ELEMENTS: THEORY

Consequently, (2.106) can be rewritten in the form∫
V

d3r′ ∇′ · [c×G(r, r′)F (r′)] = −c ·
∫
S

dS ′ [n′ ×G(r, r′)F (r′)]. (22.2.108)

Next manipulate the integrand on the left side of (2.108) to find the result

∇′ · [c×G(r, r′)F (r′)] = −∇′ · [G(r, r′)F (r′)× c]
= −{∇′ × [G(r, r′)F (r′)]} · c
= −c · {∇′ × [G(r, r′)F (r′)]}. (22.2.109)

Therefore (2.108) can be rewritten as

− c ·
∫
V

d3r′ ∇′ × [G(r, r′)F (r′)] = −c ·
∫
S

dS ′ [n′ ×G(r, r′)F (r′)], (22.2.110)

from which it follows, because c is arbitrary, that∫
V

d3r′ ∇′ × [G(r, r′)F (r′)] =

∫
S

dS ′ [n′ ×G(r, r′)F (r′)]. (22.2.111)

The last step is to employ (2.111) in (2.105) to obtain the final result

A(r) = [1/(4π)]

∫
V

d3r′ G(r, r′)∇′ × F (r′)− [1/(4π)]

∫
S

dS ′ [n′ ×G(r, r′)F (r′)],

(22.2.112)

in agreement with (2.84).
It still remains to be shown that, for the definitions made, ∇·A(r) = 0. Look at (2.96).

Since the divergence of a curl vanishes, when suitable smoothness conditions are met by
the functions involved, it follows that under these conditions A(r) as given by (2.96), and
therefore also by (2.112), is indeed divergence free. From (2.92) we see that the analytic
properties of H(r) are determined by those of F (r). In general H(r) will be smoother
than F (r). See Appendix F. Therefore, under mild conditions on F (r), the vector potential
A(r) will be divergence free.

Exercises

22.2.1. Verify the expansions (2.11) and (2.17).

22.2.2. Verify (2.20).

22.2.3. Verify the identity (2.23) and its use to evaluate the integral (2.24).

22.2.4. Verify that A(r) as given by (2.33) satisfies (2.31).

22.2.5. The purpose of this exercise is to verify (2.37) using (2.27).

22.2.6. The purpose of this exercise is to verify (2.38) using the definition (2.39).
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22.2.7. The purpose of this exercise is to verify (2.42) using the definition (2.41).

22.2.8. Verify (2.43).

22.2.9. Verify (2.44).

22.2.10. Show that the integral (2.47) can be written in the form

[g/(4π)]

∫ rB
rA

drd × (r − rd)/|r − rd|3 = −[g/(4π)]

∫ rB
rA

drd ×∇[1/|r − rd|]. (22.2.113)

22.2.11. Verify (2.50).

22.2.12. Nature of thin solenoid and nature of field at the end of a thin solenoid.

22.2.13. The purpose of this exercise is to verify (2.54).

22.2.14. The purpose of this exercise is to verify (2.62).

22.2.15. Evaluate As(r; rA,m) as given by (2.63) for the case

rA = 0 (22.2.114)

and
m = ez. (22.2.115)

Show, using spherical coordinates, that in this case As(r; rA,m) has only a φ component
Asφ given by

Asφ(r; 0, ez) = [g/(4π)](1 + cos θ)/[r sin θ] = [g/(4π)](1/r) cot(θ/2) (22.2.116)

Verify that Asφ is singular on the positive z axis, but not on the negative z axis. Show, by
explicit calculation, that

∇×As(r; 0, ez) = −[g/(4π)][r/|r|3], (22.2.117)

as expected.
Repeat the above calculations for the case m = −ez. Show that again As(r; rA,m) has

only a φ component Asφ now given by

Asφ(r; 0,−ez) = −[g/(4π)](1− cos θ)/[r sin θ] = −[g/(4π)](1/r) sin θ/(1 + cos θ)

= −[g/(4π)](1/r) tan(θ/2). (22.2.118)

Verify that this Asφ is singular on the negative z axis, but not on the posititve z axis. Show,
by explicit calculation, that

∇×As(r; 0,−ez) = −[g/(4π)][r/|r|3], (22.2.119)

again as expected.
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Verify that As(r; 0,−ez) and As(r; 0, ez) are related by a gauge transformation,

As(r; 0,−ez) = As(r; 0, ez) +∇χ (22.2.120)

with
χ = −[g/(2π)]φ. (22.2.121)

Form the fully infinite string vector potential A2s(r; 0, ez) using (2.75). Show that
A2s(r; 0, ez) also has only a φ component given by

A2s
φ (r; 0, ez) = (1/2)Asφ(r; 0, ez) + (1/2)Asφ(r; 0,−ez)

= [g/(4π)](1/r)(cot θ). (22.2.122)

Verify that A2s
φ (r; 0, ez) is singular everywhere on the z axis. Verify by explicit calculation

that
∇×A2s(r; 0, ez) = −[g/(4π)][r/|r|3], (22.2.123)

also as expected.
According to Subsection 2.2, a magnetic Dirac string can be viewed as an infinitesimally

thin solenoid. In the case that the string is straight, one can assign a definite vector to the
string that points in the direction of current flow. Show that for a string directed along the
z axis, as is the case for this exercise, the current is in the + (or perhaps −) eφ direction,
which is the same direction as the associated vector potential A.

22.2.16. Exercise on the singularity structure of the vector potential for a straight half-
infinite Dirac string.

22.2.17. Let As(r; rA,m) and As(r; rA,m
′) be equal strength monopole vector poten-

tials produced by straight-line strings both originating at rA but extending to infinity in
the directions m and m′. See (2.63). Show that both produce the same magnetic field
(2.55) at points off the strings. Show that these vector potentials are related by a gauge
transformation.

22.2.18. Verify (2.72) and (2.73).

22.2.19. Show from (2.79) that

|A2s(r; rA,m)| = |[g/(4π)][m · (r − rA)]|
|r − rA||m× (r − rA)|

.

(22.2.124)

Verify that A2s(r; rA,m) is singular on, and only on, the line (2.76).

22.2.20. Suppose a vector field F (r) is specified in some volume V . Surround this volume
by a thin shell Σ. Extend F (r) to all of space by requiring that it vanish outside Σ and go
to zero smoothly within Σ. That is, on the boundary of V , which is the inner surface of Σ,
F may have finite values; but within Σ it goes smoothly to zero so that it vanishes on the
outer surface of Σ and beyond. It is a standard result in analysis that this can be done in
such a way that F (r) will have as many derivatives as desired in Σ. Find formulas for φ(r)
and A(r) in this case. Now let the shell shrink to zero thickness while keeping V unchanged
so that Σ becomes the surface S. Show that the relations (2.80), (2.83), and (2.84) continue
to give F (r) for r ∈ V , and give F (r) = 0 for r /∈ V .
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22.2.21. Suppose a vector field F (r) is globally defined and falls off at infinity at least as
fast as 1/|r|2. Show that, when the surface S in (2.83) and (2.84) is taken to infinity, the
surface integrals then vanish. Consequently, (2.83) and (2.84) then take the form

φ(r) = [1/(4π)]

∫
d3r′ G(r, r′)∇′ · F (r′), (22.2.125)

A(r) = [1/(4π)]

∫
d3r′ G(r, r′)∇′ × F (r′). (22.2.126)

Thus, in view of (2.80), such a vector field is completely specified by a knowledge of its
divergence and curl.

Why should this be the case? Suppose that F (r) has the Fourier representation

F (r) =

∫
d3k exp(ik · r) F̃ (k). (22.2.127)

Such a representation is possible in any number of dimensions, and its existence is a con-
sequence of the completeness of the unitary representations of the translation part of the
Euclidean group. Show that there are the relations

∇ · F (r) = i

∫
d3k exp(ik · r) k · F̃ (k), (22.2.128)

∇× F (r) = i

∫
d3k exp(ik · r) k × F̃ (k). (22.2.129)

Consequently, if the functions ∇ · F (r) and ∇ × F (r) are assumed known, then, by the
Fourier inversion theorem, the functions k · F̃ (k) and k× F̃ (k) are also known. Recall the
vector identity

a× (b× c) = b (a · c)− c (a · b). (22.2.130)

Use this identity to show that

k × (k × F̃ ) = k (k · F̃ )− F̃ (k · k), (22.2.131)

and therefore

F̃ = [1/(k · k)][k(k · F̃ )]− [1/(k · k)][k × (k × F̃ )]. (22.2.132)

Thus, the function F̃ (k) is known if the functions k · F̃ (k) and k × F̃ (k) are known.
Correspondingly, the function F (r) is determined if the functions ∇ · F (r) and ∇× F (r)
are assumed known. Finally, we note that the identity (2.130) may be viewed as a Lie
algebraic relation for the cross-product Lie algebra. See Section 3.7.4. From Exercise 3.7.31
we know that the cross-product Lie algebra is equivalent to so(3), and therefore (2.130) is also
a property of so(3). Finally, so(3) is a subalgebra of the Lie algebra of the three-dimensional
Euclidean group. Thus, the fact that a vector field in three dimensions is specified, if its
divergence and curl are known, is a consequence of the properties of the three-dimensional
Euclidean group.
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22.3 Construction of Kernels Gn and Gt

22.3.1 Background

Let us apply the results of the previous section to the case of a magnetic field B(r) in a
volume V under the assumption that there are no sources in V . See (1.1) and (1.2). As
stated earlier, this would be the case of interest for charged particles propagating through
an evacuated beam pipe. In this circumstance we may use (2.80), (2.87), and (2.88) to write

B(r) = −∇φn(r) +∇×At(r) for r ∈ V (22.3.1)

with

φn(r) = −[1/(4π)]

∫
S

dS ′ n′ ·B(r′)G(r, r′), (22.3.2)

At(r) = −[1/(4π)]

∫
S

dS ′ [n′ ×B(r′)]G(r, r′). (22.3.3)

Here, as before, the superscripts n and t denote normal and tangential since the quantities
so denoted involve normal and tangential components of B.

The relations (3.1) through (3.3) could be employed if one wished to integrate Newton’s
equations of motion, and also find Taylor maps based on these equations, for all that would
then be required is the magnetic field B(r). See, for example, the equations of motion
(1.6.68) and (1.6.69), or (1.6.135) through (1.6.138) and (1.6.145) through (1.6.147). How-
ever, if one wishes instead to employ a Hamiltonian formulation in order to reap the benefits
of symplectic symmetry, then it is necessary to have the magnetic field specified entirely in
terms of a vector potential rather than in terms of both a scalar and vector potential as in
(3.1). What we need is a vector potential An(r) such that

∇×An(r) = −∇φn(r). (22.3.4)

Then, with the definition
A(r) = An(r) +At(r), (22.3.5)

there would be the result
B(r) = ∇×A(r). (22.3.6)

The construction of an An(r) that satisfies (3.4) can be accomplished with the aid of the
Dirac monopole vector potential. Inspection of φn(r), as given by (3.2), shows that it appears
to arise from a distribution of magnetic monopoles described by a magnetic charge surface
density spread over the surface S. Therefore, it should be possible to find an equivalent
vector potential based on the vector potential for a magnetic monopole.

22.3.2 Construction of Gn Using Half-Infinite String Monopoles

Let us make this idea precise. To do so, for simplicity, will use half-infinite string Dirac
monopoles. (Fully infinite string Dirac monopoles can also be used. See Exercise 3.2.)
Define Bn by the rule

Bn = −∇φn (22.3.7)
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so that the An that we seek satisfies

∇×An = Bn. (22.3.8)

Combining (3.2) and (3.7) gives the result

Bn(r) = [1/(4π)]

∫
S

dS ′ n′ ·B(r′)∇G(r, r′). (22.3.9)

From (2.89) we know that

∇G(r, r′) = −(r − r′)/|r − r′|3. (22.3.10)

But, from (2.72), we also have the relation

(4π/g)∇×As(r; r′,m′) = −[(r − r′)/|r − r′|3]. (22.3.11)

Define a quantity K(r; r′,m′) by the rule

K(r; r′,m′) = (4π/g)As(r; r′,m′)

= [m′ × (r − r′)]/{|r − r′|[|r − r′| −m′ · (r − r′)]}. (22.3.12)

See (2.63). In view of (3.10) through (3.12), we have established the key relation

∇G(r, r′) = ∇×K(r; r′,m′). (22.3.13)

See Exercise 2.15 for a specific instance of this relation.
We are almost done. Insertion of (3.13) into (3.9) gives the result

Bn = [1/(4π)]

∫
S

dS ′ n′ ·B(r′)∇×K(r; r′,m′)

= [1/(4π)]∇×
∫
S

dS ′ n′ ·B(r′)K(r; r′,m′). (22.3.14)

Comparison of (3.8) and (3.14) shows that we may make the definition

An(r) = An1s(r) (22.3.15)

with

An1s(r) = [1/(4π)]

∫
S

dS ′ n′ ·B(r′)K(r; r′,m′). (22.3.16)

Here we have used the superscript n1s to indicate that the vector potential for one half-
infinite Dirac string has been employed. Finally, we make the definitions

Bn(r′) = n′ ·B(r′) (22.3.17)

and

Gn1s(r; r′,m′) = [1/(4π)]K(r; r′,m′)

= {m′(r′)× (r − r′)}/{4π|r − r′|[|r − r′| −m′(r′) · (r − r′)]}.
(22.3.18)
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Here n′(r′) is the outward normal to S at the point r′. With these definitions we have the
result

An1s(r) =

∫
S

dS ′ Bn(r′)Gn1s(r; r′,m′). (22.3.19)

Together (3.15) and (3.17) through (3.19) provide a realization of the relation (1.7).

In evaluating the integral (3.19) it necessary to specify m′(r′), the direction of the
straight half-infinite Dirac string, as r′ varies over S. There is considerable freedom in doing
so, and different choices simply result in different gauges for An1s(r). There is only one
major consideration. No string should intersect the volume V because it is desirable that
An1s(r) be analytic for r ∈ V . For many geometries a convenient choice is to require that
m′(r′) be normal to and point outward from S,

m′(r′) = n′(r′). (22.3.20)

Other choices may also be convenient and useful.

22.3.3 Discussion

Let An(r) denote the An1s(r) given by (3.19) and let Gn(r, r′) denote the Gn1s(r; r′,m′)
given by (3.18). At this point we can take pleasure in observing that An(r) and Gn(r, r′)
have several desirable properties: First, as long as the Dirac strings for r′ ∈ S do not
intersect V , the functions Gn(r, r′), for every r′ ∈ S, are analytic in r for all r ∈ V . It
follows from (3.19), under mild conditions on Bn(r′) for r′ ∈ S, that An(r) is analytic in
V . Second, since the kernel Gn(r, r′) is essentially the vector potential for a Dirac magnetic
monopole, see (3.12) and (3.18), it has, for r ∈ V , the properties

∇ · [Gn(r, r′)] = 0, (22.3.21)

∇× [∇×Gn(r, r′)] = 0. (22.3.22)

See (2.71) and (2.73). It follows from (3.19), again under mild conditions on Bn(r′), that
An(r) has these same properties,

∇ · [An(r)] = 0, (22.3.23)

∇× [∇×An(r)] = 0. (22.3.24)

In practical applications, the surface values Bn(r′) will only be known approximately, and
the integrals (3.19) may be evaluated numerically with limited precision. It is comforting
to know that, nevertheless, the resulting An(r) will be analytic in V and will satisfy the
relations (3.23) and (3.24) exactly no matter what errors are present in the surface values
Bn(r′) and no matter how poorly the integrals (3.19) are evaluated. All that matters is that
the kernel Gn be evaluated to high precision.
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22.3.4 Construction of Gt

What can be said about the properties of At(r) as given by (3.3)? Just as is the case for
An(r), we would like At(r) to be analytic in V and to satisfy properties analogous to (3.23)
and (3.24). That is, we desire the relations

∇ · [At(r)] = 0, (22.3.25)

∇× [∇×At(r)] = 0, (22.3.26)

and we would like to have them hold no matter how poorly the integral (3.3) is evaluated.
As the expression (3.3) for At(r) stands, this is not the case. However, we can transform
(3.3) into a form that meets all our hopes.

Since, by assumption, B(r′) is curl free for r′ ∈ V , there exists a scalar potential ψ(r′)
such that

B(r′) = +∇′ψ(r′). (22.3.27)

[Note, by convention, we have used a minus sign in (2.3) and a plus sign in (3.27). See also
(15.2.1) and (15.2.6).] Consequently, (3.3) can be rewritten in the form

At(r) = −[1/(4π)]

∫
S

dS ′ [n′ ×∇′ψ(r′)]G(r, r′). (22.3.28)

[Also note, as observed earlier, that a knowledge of the tangential component of ∇′ψ(r′),
which is what is involved in (3.28) and is equivalent to a knowledge of ψ(r′) on S, is in turn
equivalent to a knowledge of the tangential component of B(r′) on S under the assumption
that B(r′) is curl free.] Next observe that there is the identity

[∇′ψ(r′)]G(r, r′) = ∇′[ψ(r′)G(r, r′)]− ψ(r′)∇′G(r, r′). (22.3.29)

Therefore (3.28) can also be written in the form

At(r) = −[1/(4π)]

∫
S

dS ′ {n′ ×∇′[ψ(r′)G(r, r′)]}

+[1/(4π)]

∫
S

dS ′ {n′ × [ψ(r′)∇′G(r, r′)]}. (22.3.30)

It can be shown that the first integral on the right side of (3.30) vanishes,

− [1/(4π)]

∫
S

dS ′ {n′ ×∇′[ψ(r′)G(r, r′)]} = 0. (22.3.31)

See Exercise 3.1. Moreover, the second integral can be rewritten in the form

[1/(4π)]

∫
S

dS ′ {n′ × [ψ(r′)∇′G(r, r′)]} = [1/(4π)]

∫
S

dS ′ ψ(r′)[n′ ×∇′G(r, r′)].

(22.3.32)

Consequently At(r) can also be written in the form

At(r) = [1/(4π)]

∫
S

dS ′ ψ(r′)[n′ ×∇′G(r, r′)]. (22.3.33)
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Finally, let Gt(r, r′) be the kernel

Gt(r, r′) = [1/(4π)][n′(r′)×∇′G(r, r′)]. (22.3.34)

With this definition, At(r) takes the final form

At(r) =

∫
S

dS ′ ψ(r′)Gt(r, r′). (22.3.35)

And working out (3.34) explicitly gives the result

Gt(r, r′) = [n′(r′)× (r − r′)]/[4π|r − r′|3]. (22.3.36)

We have derived the relation (1.8) with Gt given by (3.36).
At this point we should verify that we have achieved our desired goals. First, it is evident

from (3.36) thatGt(r, r′) is analytic in the components of r for r ∈ V and r′ ∈ S. Therefore,
from the representation (3.35), we see that, under mild conditions on ψ(r′), At(r) will be
analytic in V .

Next, let us compute ∇ ·Gt(r, r′) and ∇× [∇×Gt(r, r′)]. We will see that they both
vanish for r ∈ V . Recall the vector identity

∇ · (C ×D) = D · (∇×C)−C · (∇×D). (22.3.37)

From this identity, (2.89), (3.34), and the fact that the curl of a gradient vanishes, it follows
that

∇ ·Gt(r, r′) = −[1/(4π)]n′(r′) · {∇ × [∇′G(r, r′)]}
= [1/(4π)]n′(r′) · {∇ × [∇G(r, r′)]} = 0. (22.3.38)

Also, it is evident from (2.90) and (3.34) that

∇2Gt(r, r′) = [1/(4π)][∇2][n′(r′)×∇′G(r, r′)]

= [1/(4π)]{n′(r′)×∇′[∇2G(r, r′)]}
= 0 for r within V and r′ ∈ S. (22.3.39)

Finally, again invoke the vector identity

∇× (∇×C) = ∇(∇ ·C)−∇2C. (22.3.40)

When applied to Gt(r, r′), in view of (3.38) and (3.39), it yields the relation

∇× [∇×Gt(r, r′)] = 0 for r within V and r′ ∈ S. (22.3.41)

We have seen that the kernel Gt(r, r′) satisfies the relations (3.38) and (3.41), and note
that these relations are analogous to the relations (3.21) and (3.22) for Gn(r, r′). It follows,
by the same reasoning used in the case of Gn(r, r′) and An(r), that At(r) satisfies the
relations (3.25) and (3.26), and these relations hold exactly even in the presence of errors in
the surface values ψ(r′) and no matter how poorly the integrals (3.35) are evaluated. Similar
to to the case of Gn, all that matters is that the kernel Gt be evaluated to high precision.
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22.3.5 Final Discussion

Let us put together what we have learned about analyticity and “exactness”. Look at (3.5)
and (3.6). Since An(r) and At(r) are both analytic in V , A(r) will be analytic in V . And
since (3.23) through (3.26) hold, analogous results will hold for A(r),

∇ · [A(r)] = 0, (22.3.42)

∇× [∇×A(r)] = 0. (22.3.43)

Moreover, analyticity and the relations (3.42) and (3.43) will still hold exactly even in the
presence of errors in the surface values Bn and ψ, and no matter how poorly the relevant
integrals are evaluated. Finally, in view of (3.6), the Maxwell equation

∇ ·B = 0 (22.3.44)

will be satisfied exactly. And, in view of (3.6) and (3.43), the second Maxwell equation

∇×B = 0 (22.3.45)

will also be satisfied exactly.

Exercises

22.3.1. The purpose of this exercise is to verify the relation (3.31).

22.3.2. Subsection 3.2 described the construction of the kernel we called Gn1s using the
vector potential for a half-infinite string Dirac monopole. Another possibility is to use
the vector potential for fully infinite string (two string) Dirac monopole to construct an
analogous kernel we will call Gn2s. The purpose of this exercise is of explore that possibility.

The vector potential A2s(r; rA,m) given by (2.75) also produces the monopole field
(2.55) so that there is the relation

(4π/g)∇×A2s(r; r′,m′) = −[(r − r′)/|r − r′|3]. (22.3.46)

Now define a quantity K(r; r′,m′) by the rule

K(r; r′,m′) = (4π/g)A2s(r; r′,m′)

=
[m× (r − rA)][m · (r − rA)]

|r − rA||m× (r − rA)|2
. (22.3.47)

See (2.79). In view of (3.10), (3.21), and (3.22), we have also established the key relation

∇G(r, r′) = ∇×K(r; r′,m′) (22.3.48)

with K now given by (3.22). Also see Exercise 2.15 for a specific instance of this relation.
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Next, insertion of (3.23) into (3.9) gives the result

Bn = [1/(4π)]

∫
S

dS ′ n′ ·B(r′)∇×K(r; r′,m′)

= [1/(4π)]∇×
∫
S

dS ′ n′ ·B(r′)K(r; r′,m′). (22.3.49)

Comparison of (3.8) and (3.24) shows that we may also make the definition

An(r) = An2s(r) (22.3.50)

with

An2s(r) = [1/(4π)]

∫
S

dS ′ n′ ·B(r′)K(r; r′,m′). (22.3.51)

Here we have used the superscript n2s to indicate that the vector potential for a fully infinite
(2 -sided) Dirac string has been employed. Finally we may write (3.26) in the form

An2s(r) =

∫
S

dS ′ Bn(r′)Gn2s(r; r′,m′) (22.3.52)

where (3.17) is again employed and Gn2s(r; r′,m′) is the kernel

Gn2s(r; r′,m′) = [1/(4π)]K(r; r′,m′)

=
[m′ × (r − rA)][m′ · (r − rA)]

4π|r − rA||m′ × (r − rA)|2
.

(22.3.53)

Together (3.25), (3.27), and (3.28) provide another realization of the relation (1.7). Show
that this fully infinite Dirac string kernel obeys relations analogous to (3.21) and (3,22) and
therefore the relations analogous to (3.23) and (3.24) are also satisfied.

In evaluating the integral (3.28) it again necessary to specify m′(r′), now the direction
of the straight fully infinite Dirac string, as r′ varies over S. As before, there is considerable
freedom in doing so, and different choices simply result in different gauges for An1s(r). The
major considerations are again that no string intersect the volume V and that the vector
potential fall off rapidly in fringe-field regions. We also note that one may use An1s(r) for
some parts of S and An2s(r) for other parts.

22.3.3. At the beginning of this section it was mentioned that (3.1) through (3.3) could
be used to integrate Newton’s equations of motion in terms of B(r). However the B(r)
obtained using (3.1) is not guaranteed to satisfy the Maxwell equations if there are errors in
surface values and/or the integrals are not evaluated accurately. Verify that, in this regard,
there is no difficulty in the use of (3.2) by showing that it is guaranteed to satisfy

∇2φn(r) = 0, (22.3.54)

and therefore (3.43) is satisfied. Show that if (3.3) is replaced by (3.32), then (3.44) is also
guaranteed.



22.3. CONSTRUCTION OF KERNELS GN AND GT 1767

22.3.4. Suppose B(r) is source free in a volume V bounded by a surface S, as in (1.1) and
(1.2), and suppose Bn(r′) and ψ(r′) are known on S. The aim of this exercise is to compute
B(r) in terms of Bn(r′) and ψ(r′) using the representation given by (1.3), (1.6) through
(1.8), (1.10), and (1.11). Verify that

∇×Gn(r, r′) = [1/(4π)]∇G(r, r′) (22.3.55)

from which it follows that

Bn(r) = ∇×An(r) =

∫
S

dS ′ Bn(r′)∇×Gn(r, r′)

= [1/(4π)]

∫
S

dS ′ Bn(r′)∇G(r, r′)

= −[1/(4π)]

∫
S

dS ′ Bn(r′)(r− r′)/|r− r′|3, (22.3.56)

in accord with (3.9). Recall the vector identity

∇× (C ×D) = (D · ∇)C +C(∇ ·D)− (C · ∇)D −D(∇ ·C). (22.3.57)

Using (3.31) and (3.48), show that

∇×Gt(r, r′) = −[1/(4π)]n′(r′)/|r − r′|3 + [3/(4π)][n′(r′) · (r − r′)](r − r′)/|r − r′|5,
(22.3.58)

from which it follows that

Bt(r) = ∇×At(r) =

∫
S

dS ′ ψ(r′)∇×Gt(r, r′)

= −[1/(4π)]

∫
S

dS ′ ψ(r′)n′(r′)/|r− r′|3

+ [3/(4π)]

∫
S

dS ′ ψ(r′)[n′(r′) · (r − r′)](r − r′)/|r − r′|5.

(22.3.59)

Observe that, if we wish, we may define kernels Kn(r, r′) and Kt(r, r′) by the rules

Kn(r, r′) = ∇×Gn(r, r′) = [1/(4π)]∇G(r, r′)

= −[1/(4π)](r− r′)/|r− r′|3 (22.3.60)

and

Kt(r, r′) = ∇×Gt(r, r′)

= −[1/(4π)]n′(r′)/|r − r′|3 + [3/(4π)][n′(r′) · (r − r′)](r − r′)/|r − r′|5.
(22.3.61)

With the aid of these definitions, (3.47) and (3.50) take the form

Bn(r) =

∫
S

dS ′ Bn(r′)Kn(r, r′) (22.3.62)
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and

Bt(r) =

∫
S

dS ′ ψ(r′)Kt(r, r′). (22.3.63)

Finally, write
B(r) = Bn(r) +Bt(r). (22.3.64)

Show that, for fixed r′, Kn(r, r′) falls off as 1/r2 for large r = |r| and Kt(r, r′) falls off
as 1/r3.

22.3.5. Show that the Cartesian components of A(r), as given by (3.5), (3.17), and (3.32),
are harmonic functions,

∇2A(r) = 0. (22.3.65)

22.3.6. According to (3.12) and (3.18), Gn1s and As are proportional. Consequently, Ex-
ercise 2.15 provides a description of the direction of the vector Gn and, and hence the
associated An produced using (1.7). The purpose of this exercise is to determine the di-
rection of Gt, and hence the associated At produced using (1.8). Consider, for purposes of
calculation, a small patch of surface ∆S ′ located at the point

r′ = dey with d > 0 (22.3.66)

and whose normal is given by the relation

n′(r′) = ey. (22.3.67)

Then, from (3.44), verify that there is the result

Gt(r, dey) = [ey × (r − dey)]/[4π|r − dey|3]. (22.3.68)

Also, verify the relation
ey × (r − dey) = −xez + zex. (22.3.69)

Show, therefore, that in this case, Gt is given by the relation

Gt = [1/(4π)](−xez + zex)/[x
2 + (y − d)2 + z2]3/2. (22.3.70)

Recall that in cylindrical coordinates there is the relation

r = xex + yey + zez = ρ cosφex + ρ sinφey + zez. (22.3.71)

See (13.2.3) and (13.2.4). Consequently there is the relation

∂r/∂φ = −ρ sinφex + ρ cosφey = −yex + xey. (22.3.72)

We also know that
eφ = (∂r/∂φ)/|∂r/∂φ| = (−yex + xey)/ρ. (22.3.73)

In the case of cylindrical coordinates the vector eφ circles around the z axis. Verify, by
geometric analogy, that the vectorGt given by (3.70) circles about the y axis. And, according
to (3.67), this axis is the n′(r′) axis.
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22.4 Expansion of Kernels

22.4.1 Our Goal

22.4.2 Binomial Theorem

Since Newton’s discovery we have known the binomial expansion

(1 + x)α =
∞∑
k=0

(
α
k

)
xk. (22.4.1)

Moreover, the binomial coefficients obey the recursion relations(
α
0

)
= 1, (22.4.2)

(
α

k + 1

)
= [(α− k)/(k + 1)]

(
α
k

)
, (22.4.3)

and therefore can easily be computed sequentially.

22.4.3 Expansion of Gt(r, r′)

22.4.4 Expansion of Gn(r, r′)
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Chapter 23

Realistic Transfer Maps for General
Curved Beam-Line Elements: Exact
Monopole Doublet Results

How do the surface methods for curved elements, described by relations (22.1.3) through
(22.1.8) of Section 22.1 with the Gn and Gt found in Section 22.3, work in practice? The
purpose of this chapter and the next two is to explore this question.

This chapter finds exact results for the case of a monopole doublet. Chapter 24 finds
bent box monopole doublet results. Comparison of the results of these two chapters provides
a benchmark for the accuracy of surface methods for curved beam-line elements. Chapter
25 applies surface methods to the case of a realistic storage-ring dipole.

23.1 Magnetic Monopole Doublet Vector Potential

Consider the monopole doublet magnetic field described by Equations (15.8.1) through
(15.8.6) and Figures 15.8.1 through 15.8.5 of Section 15.8. In order to set up the Hamilto-
nian that will describe particle motion in this field, we need a vector potential A(r) such
that

∇×A(r) = ∇ψ(r) (23.1.1)

with ψ given by (15.8.3). For this purpose we will employ the string vector potential given
by (22.2.63). The desired vector potential will describe two Dirac magnetic monopoles of
opposite sign. The upper, with strength 4πg, will be situated at r+ = aey, and will be
taken to have a half-infinite string extending from r+ to infinity along the positive y axis.
The lower, with strength −4πg, will be situated at r− = −aey, and will be taken to have
a half-infinite string extending from r− to infinity along the negative y axis. See (22.2.63)
and Figure 1.1. Thus, A(r) will be given by the relation

A(r) = A+(r) +A−(r) (23.1.2)

1773
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with

A+(r) = −As(r; r+ → +∞ey)
= −g[ey × (r − aey)]/{|r − aey|[|r − aey| − ey · (r − aey)]}
= −g(ey × r)/{|r − aey|[|r − aey| − y + a]}, (23.1.3)

and

A−(r) = −(−1)As(r; r− → −∞ey)
= −(−g)[−ey × (r + aey)]/{|r + aey|[|r + aey|+ ey · (r + aey)]}
= −g(ey × r)/{|r + aey|[|r + aey|+ y + a]}. (23.1.4)

Here we have used the notation r+ → +∞ey to denote a string extending from r+ to
infinity along the positive y axis, and have used the notation r− → −∞ey to denote a string
extending from r− to infinity along the negative y axis. Also, as in Section 15.9.1, we have
taken the monopoles to have strengths ±4πg so as to avoid the appearance of 4π factors in
subsequent formulas such as (1.3) and (1.4).

z

y

x
+g

-g

Figure 23.1.1: (Place holder) A monopole doublet consisting of two magnetic monopoles of
equal and opposite sign placed on the y axis and centered on the origin. Also shown are
half-infinite Dirac strings extending from the +g monopole along the positive y axis and
from the −g monopole along the negative y axis.

Note that
ey × r = −xez + zex. (23.1.5)
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Therefore, in terms of components, the relation (1.2) takes the explicit form

Ax(x, y, z) = − gz

[x2 + (y − a)2 + z2]1/2{[x2 + (y − a)2 + z2]1/2 − y + a}
− gz

[x2 + (y + a)2 + z2]1/2{[x2 + (y + a)2 + z2]1/2 + y + a}
,

(23.1.6)

Ay(x, y, z) = 0, (23.1.7)

Az(x, y, z) = +
gx

[x2 + (y − a)2 + z2]1/2{[x2 + (y − a)2 + z2]1/2 − y + a}
+

gx

[x2 + (y + a)2 + z2]1/2{[x2 + (y + a)2 + z2]1/2 + y + a}
.

(23.1.8)

Examination of (1.6) reveals thatAx(x, y, z) is even in x and y, and odd in z; and examination
of (1.8) shows that Az(x, y, z) is odd in x and even in y and z.

From (22.1.3) and (1.6) through (1.8), and with some algebraic effort, it can be checked
that

Bx = ∂yAz − ∂zAy = ∂yAz =

= gx[x2 + (y − a)2 + z2]−3/2 − gx[x2 + (y + a)2 + z2]−3/2, (23.1.9)

By = ∂zAx − ∂xAz
= g(y − a){[x2 + (y − a)2 + z2]−3/2 − g(y + a)[x2 + (y + a)2 + z2]−3/2,

(23.1.10)

Bz = ∂xAy − ∂yAx = −∂yAx =

= gz[x2 + (y − a)2 + z2]−3/2 − gz[x2 + (y + a)2 + z2]−3/2, (23.1.11)

in agreement with (15.9.4) through (15.9.6).
Figure 1.2 displays the quantity Ax(x, y, z) as a function of z along the line x = y = 0.

Here, for convenience in plotting and as done before, we have used the values

a = 2.5 cm = .025 m (23.1.12)

and

g = 1 Tesla (cm)2 = 1× 10−4 Tesla m2. (23.1.13)

Evidently Ax along this line falls off very slowly with increasing |z|. Indeed, for large |z|, we
see from (1.6) that Ax(x, y, z) has the asymptotic behavior

Ax(x, y, z) ' −2g/z. (23.1.14)
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Figure 1.3 displays Az as a function of z along the line given by the conditions x = −1/2
cm and y = 0. It falls off somewhat more rapidly. From (1.8) we see that, for large |z|, it
has the asymptotic behavior

Az(x, y, z) ' 2gx/z2. (23.1.15)

Neither Ax nor Az falls off as rapidly as By(0, 0, z), which falls off as 1/|z|3 for large |z|. See
Section 15.8.1 and Figure 15.8.3. We also note that if a cylindrical harmonic expansion is
employed as in Section 16.3, which involves the use of on-axis gradients, then all components
of the associated vector potential fall off as 1/|z|3 for large |z|. What we are observing is
that the asymptotic behavior of the vector potential depends on the choice of gauge. Why
not, then, employ a cylindrical harmonic expansion for which the asymptotic behavior of
the associated vector potential is optimal? The reason is that we wish to treat cases for
which the design orbit is significantly bent so that on-axis expansions are not applicable.
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Figure 23.1.2: Behavior of Ax on the line (0, 0, z). The quantity z is in cm.
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Figure 23.1.3: Behavior of Az on the line (−1/2, 0, z). The quantity z is in cm.

Exercises

23.1.1. Using (1.6) through (1.8), verify (1.9) through (1.11).

23.2 Selection of Hamiltonian and Scaled Variables

To compute orbits (and maps) it is convenient to use z as the independent variable. In this
case, and for the vector potential given by (1.6) through (1.8), the Hamiltonian becomes

K = −[p2
t/c

2 −m2c2 − (px − qAx)2 − p2
y]

1/2 − qAz. (23.2.1)

See (1.6.16). Let β and γ be the usual relativistic factors defined by

β = v/c, (23.2.2)

γ = (1− β2)−1/2 (23.2.3)

where v is the particle velocity. Then the magnitude of the mechanical momentum is given
by the relation

p = γmv = γβmc (23.2.4)

and the quantity pt has the value

pt = −(m2c4 + p2c2)1/2 = −γmc2. (23.2.5)
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Since K is independent of t, the quantities pt and p will be constants of motion. Finally, let
p0 be the momentum for the design orbit.

At this point it is useful to introduce dimensionless/scaled variables by the rules

x̂ = x/`, (23.2.6)

ŷ = y/`, (23.2.7)

τ = ct/`, (23.2.8)

p̂x = px/p
0, (23.2.9)

p̂y = py/p
0, (23.2.10)

pτ = pt/(p
0c). (23.2.11)

Here ` is a convenient scale length, and is not to be confused with the path length introduced
in Exercise 1.7.8.

The dimensionless variables satisfy the Poisson bracket rules

[x̂, p̂x] = [ŷ, p̂y] = [τ, pτ ] = 1/(`p0). (23.2.12)

From now on we will redefine their Poisson brackets so that conjugate variables again have
unity Poisson brackets. This is permissible providing the Hamiltonian K is replaced by a
properly scaled new Hamiltonian H given by the relation

H = −[1/(`p0)]{[(p0c)2p2
τ/c

2 −m2c2 − (p0p̂x − qAx)2 − (p0)2p̂2
y]

1/2 + qAz}
= −(1/`){p2

τ − (mc/p0)2 − (p̂x −Ax)2 − p̂2
y]

1/2 +Az}
(23.2.13)

where
Ax(x̂, ŷ, z) = (q/p0)Ax(`x̂, `ŷ, z), (23.2.14)

Az(x̂, ŷ, z) = (q/p0)Az(`x̂, `ŷ, z). (23.2.15)

(See Appendix D.)

23.3 Design Orbit and Fields

How should we choose a design orbit? We would like it to lie in the y = 0 plane, to pass
through the origin, and to be symmetric about z = 0. How do we know that it is possible
for there to be an orbit that lies in the y = 0 plane? Let us evaluate (1.9) through (1.11) to
find B when y = 0. So doing gives the results

Bx(x, 0, z) = 0, (23.3.1)

By(x, 0, z) = −2ga{[x2 + a2 + z2]−3/2, (23.3.2)

Bz(x, 0, z) = 0. (23.3.3)
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We see that if a particle is initially in the y = 0 plane and moving with a velocity in this
plane, then the Lorentz force is also in this plane: thus there is no force acting to accelerate
the particle out of this plane and it must remain in this plane. Next observe from (1.6)
through (1.8) that A(r) vanishes at the origin,

A(0, 0, 0) = 0. (23.3.4)

Therefore the canonical and mechanical momenta agree at the origin. See (1.5.30). Conse-
quently, and by symmetry, one way to achieve the desired design orbit is to select, for z = 0,
the initial conditions

x̂ = ŷ = τ = 0, (23.3.5)

p̂x = p̂y = 0, (23.3.6)

and then integrate both backward and forward in z to obtain the complete orbit. Note that
for a orbit lying in the y = 0 plane the relations

ŷ = p̂y = 0 (23.3.7)

hold for all z.
What remains is to select the values of pτ and p0. From (2.4) we see that for the design

orbit there is the relation

p0 = γ0β0mc. (23.3.8)

From (2.5) we see that the energy on this orbit will be given by

p0
t = −γ0mc2. (23.3.9)

Therefore, on this orbit pτ has the value

pτ = p0
τ = p0

t/(p
0c) = −γ0mc2/(γ0β0mcc) = −1/β0. (23.3.10)

And, with regard to the ingredients in (2.13), we see that

(p0
τ )

2 − (mc/p0)2 = (1/β0)2 − [1/(γ0β0)2] = 1. (23.3.11)

Therefore, on the design orbit, H becomes

H = −(1/`){[1− (p̂x −Ax)2 − p̂2
y]

1/2 +Az}. (23.3.12)

Finally, we should select (by trial and error) the quantity p0, which now appears only in
(2.14) and (2.15), in such a way that, for the specified values of a and g, the design orbit
has some desired bend angle φbend. For purposes of illustration, we will require that φbend

for an electron be approximately 30◦.
Let us work out the spatial equations of motion associated with H as given by (3.12).

For convenience we will take the scale length to have the value

` = 1 cm. (23.3.13)
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We find the results

x̂′ = ∂H/∂p̂x = (p̂x −Ax)/[1− (p̂x −Ax)2 − p̂2
y]

1/2, (23.3.14)

ŷ′ = ∂H/∂p̂y = p̂y/[1− (p̂x −Ax)2 − p̂2
y]

1/2, (23.3.15)

p̂′x = −∂H/∂x̂ = (∂Ax/∂x̂)(p̂x −Ax)/[1− (p̂x −Ax)2 − p̂2
y]

1/2 + (∂Az/∂x̂), (23.3.16)

p̂′y = −∂H/∂ŷ = (∂Ax/∂ŷ)(p̂x −Ax)/[1− (p̂x −Ax)2 − p̂2
y]

1/2 + (∂Az/∂ŷ). (23.3.17)

Here a prime denotes d/dz.
We have already remarked that for this vector potential Ax and Az are even in y, and

therefore we may write

Ax(x̂,−ŷ, z) = Az(x̂, ŷ, z), (23.3.18)

Az(x̂,−ŷ, z) = Az(x̂, ŷ, z). (23.3.19)

See (1.6) through (1.8). It follows that

[∂Ax(x̂, ŷ, z)/∂ŷ]|ŷ=0 = [∂Az(x̂, ŷ, z)/∂ŷ]|ŷ=0 = 0. (23.3.20)

Upon combining the information provided by (3.20) with the (ŷ, p̂y) equations of motion
(3.15) and (3.17) we see that there are orbits, one of which which will be the design orbit,
that satisfy the conditions (3.7) for all z. Moreover, on these orbits, the (x̂, p̂x) equations of
motion take the form

x̂′ = (p̂x −Ax)/[1− (p̂x −Ax)2]1/2, (23.3.21)

p̂′x = (∂Ax/∂x̂)(p̂x −Ax)/[1− (p̂x −Ax)2]1/2 + (∂Az/∂x̂), (23.3.22)

and it is only this pair we need integrate. For the record we note that, on the design orbit
so that (3.7) holds, there are the relations

Ax|ŷ=0 = Ax(x̂, 0, z) = − (2gq/p0)z

(x̂2 + a2 + z2)1/2[(x̂2 + a2 + z2)1/2 + a]
, (23.3.23)

Az|ŷ=0 = Az(x̂, 0, z) = +
(2gq/p0)x̂

(x̂2 + a2 + z2)1/2[(x̂2 + a2 + z2)1/2 + a]
, (23.3.24)

(∂Ax/∂x̂)|ŷ=0 = +
(2gq/p0)(x̂z)[2(x̂2 + a2 + z2)1/2 + a]

(x̂2 + a2 + z2)3/2[(x̂2 + a2 + z2)1/2 + a]2
, (23.3.25)

(∂Az/∂x̂)|ŷ=0 = +
(2gq/p0)

(x̂2 + a2 + z2)1/2[(x̂2 + a2 + z2)1/2 + a]

− (2gq/p0)(x̂2)[2(x̂2 + a2 + z2)1/2 + a]

(x̂2 + a2 + z2)3/2[(x̂2 + a2 + z2)1/2 + a]2
. (23.3.26)

See (1.6) through (1.8), (2.14), and (2.15). Finally, imposing the initial conditions (3.5) and
(3.6) and a suitable value for p0 yield the design orbit.
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Figures 3.1 and 3.2 display, in canonical coordinates, the design orbit that results from
integrating the equations of motion (3.21) and (3.22), with the initial conditions (3.5) and
(3.6), when the design momentum p0 is selected to satisfy the relation

qg/p0 = −.3291331 cm. (23.3.27)

(Recall that q < 0 for an electron.) Figure 3.1 shows the spatial part of the design orbit.
Figure 3.2 displays the canonical momentum p̂x on this orbit. Note that the canonical
momentum depends on the choice of gauge.

To provide further insight, Figure 3.3 displays the mechanical scaled momentum p̂mech
x

related to the canonical momentum by the rule

p̂mech
x = p̂x −Ax. (23.3.28)

Note that the mechanical momentum does not depend on the choice of gauge. Finally
observe that, with the aid of (3.28), the relation (3.21) can be rewritten in the form

x̂′ = p̂mech
x /[1− (p̂mech

x )2]1/2. (23.3.29)

Figure 3.4 displays x̂′(z). We also reiterate that ŷ = 0 and p̂y = 0 on a design orbit.
On this design orbit there are, for z = ∓20 cm, the end values

x̂(∓20) = −4.75976218485406, (23.3.30)

p̂x(∓20) = ±.?, (23.3.31)

p̂mech
x (∓20) = ±.2588190579162489, (23.3.32)

x̂′(∓20) = ±.2679492066493081. (23.3.33)

Correspondingly, we find that over the interval z ∈ [−20, 20] the bend angle has the value

φbend = 30.000001520142693◦. (23.3.34)

See Exercise 3.2.
For the design orbit the magnetic rigidity has the value

p0/|q| = g/(.3291331 cm) = 1 Tesla (cm)2/(.3291331 cm)

= 3.0382845116458963 Tesla cm

= 3.0382845116458963× 10−2 Tesla m. (23.3.35)

See (1.6.116). Correspondingly, we find the values

p0 = 9.108547817 MeV/c, (23.3.36)

p0
t = −9.122870347 MeV, (23.3.37)

kinetic energy = −p0
t −mec

2

= (γ0 − 1)mec
2

= 8.611871287313742 MeV, (23.3.38)



1782
23. REALISTIC TRANSFER MAPS FOR GENERAL CURVED BEAM-LINE

ELEMENTS: EXACT MONOPOLE DOUBLET RESULTS

-20

-10

 0

 10

 20

-20 -10  0  10  20

x

z

"fort.30" u 1:2

Figure 23.3.1: Design orbit x(z) = x̂(z). Also shown is a surrounding bent box with straight
end legs. It will be employed in Chapter 24. The center curve is the design orbit. The outer
curves are the boundary of the surrounding bent box with with straight end legs. For ease
of visualization, the seams between the bent box and the straight end legs are also shown.
The quantities x and z are in cm.
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Figure 23.3.2: (Place holder) The canonical momentum p̂x(z) on the design orbit. The
quantity z is in cm.



1784
23. REALISTIC TRANSFER MAPS FOR GENERAL CURVED BEAM-LINE

ELEMENTS: EXACT MONOPOLE DOUBLET RESULTS

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-20 -15 -10 -5  0  5  10  15  20

P
x

z

"fort.28" u 1:3

Figure 23.3.3: The scaled mechanical momentum p̂mech
x (z) on the design orbit. The quantity

z is in cm.
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Figure 23.3.4: The quantity x̂′(z) on the design orbit. The quantity z is in cm.
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β0 = .9984300412295174, (23.3.39)

γ0 = 17.853008080511426. (23.3.40)

Here we have used the values

mec
2 = .51099906 MeV, (23.3.41)

− q = e = 1.60217733× 10−19 coulomb, (23.3.42)

c = 2.99792458× 108 m/s. (23.3.43)

It is also useful to have graphics of the quantities By, Ax, and Az along the design orbit.
They are displayed in Figures 3.5 through 3.7. Note that By falls off quite rapidly with
increasing |z|, i.e. ∼ 1/|z|3, as expected for a monopole doublet. However, Ax and Az fall
off less rapidly on the design orbit. From (1.14) we expect for Ax a fall off ∼ 1/|z|. And,
from Figure 3.1 we see that on the design orbit |x| grows linearly with |z| for large |z|.
Therefore, if (1.15) provides any indication, we expect that Az will also fall off only as 1/|z|
for large |z|.

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

-20 -15 -10 -5  0  5  10  15  20

B
y

z

"fort.28" u 1:6

Figure 23.3.5: The quantity By on the design orbit. The quantity z is in cm.
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Figure 23.3.6: (Place holder) The quantity Ax on the design orbit. The quantity z is in cm.
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Figure 23.3.7: (Place Holder?) The quantity Az on the design orbit. The quantity z is in
cm.
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Precise field values at some key points on the design orbit are given by the relations

By(−4.7597 · · · , 0,∓20) = −5.6290 · · · × 10−4, (23.3.44)

By(0, 0, 0) = −.32, (23.3.45)

By(−4.7597 · · · , 0,∓20)/By(0, 0, 0) ' 1.8× 10−3, (23.3.46)

Ax(−4.7597 · · · , 0,∓20) = ±2.78 · · · × 10−2, (23.3.47)

Az(−4.7597 · · · , 0,∓20) = −6.6 · · · × 10−3. (23.3.48)

From (3.45) we see that By on the design orbit has fallen by a factor of ' 1.8× 10−3 at the
end points. By contrast, comparison of (3.31) and (3.36) shows that the vector potential for
the half-infinite string choice of gauge still makes a significant contribution to the canonical
momentum p̂x at the end points. Compare also (3.30) and (3.31). Therefore it is important
to use some other gauge for end-field termination.

Exercises

23.3.1. In Section 3 the design orbit was found by integrating the canonical pair (3.21)
and (3.22). This exercise describes an alternate approach. It has the feature of illustrating
that in mechanical variables the design orbit is manifestly gauge independent, as we know
it should be.

Recall the relations (3.28) and (3.29). Suppose (3.28) is differentiated with respect to z
and along the design orbit. Verify that doing so gives the result

(p̂mech
x )′ = p̂′x − (∂Ax/∂x̂)x̂′ − (∂Ax/∂z). (23.3.49)

Next employ (3.21) to rewrite the second term on the right of (3.49) in the form

− (∂Ax/∂x̂)x̂′ = −(∂Ax/∂x̂)(p̂x −Ax)/[1− (p̂x −Ax)2]1/2. (23.3.50)

Observe that the right side of (3.50) agrees with the first term on the right side of (3.22)
save for a sign. Show, therefore, that use of (3.22) in (3.49) yields, following a glorious
cancellation, the simple result

(p̂mech
x )′ = (∂Az/∂x̂)− (∂Ax/∂z). (23.3.51)

Also, from (1.10), (2.14), and (2.15), we have the result

[(∂Az/∂x̂)− (∂Ax/∂z)]|ŷ=0 = −(q/p0)By(x, y, z)|y=0 (23.3.52)

and, again from (1.10), we see that

By(x, y, z)|y=0 = −2ga/[x2 + a2 + z2]3/2. (23.3.53)

It follows that (3.51) can be written in the final form

(p̂mech
x )′ = −(q/p0)By(x, y, z)|y=0 = (q/p0)2ga/[x̂2 + a2 + z2]3/2. (23.3.54)
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Together (3.29) and (3.54) form a convenient coupled set for numerical integration. Once
the pair {x̂(z), p̂mech

x (z)} has been found, the canonical momentum p̂x(z) is given by the
relation (3.28) rewritten in the form

p̂x = p̂mech
x +Ax|ŷ=0 (23.3.55)

with Ax|ŷ=0 given by (3.23). Verify that Ax and Az on the design orbit are given by the
relations (3.23) and (3.24). Verify (3.25) and (3.26).

23.3.2. Verify (3.34) based on (3.33).

23.4 Terminating End Fields

23.4.1 Minimum Vector Potential for End Fields

The first few terms in the expansion [about the point (X0, 0, Y0)] of the minimum vector
potential for a magnetic monopole doublet were found in Section 15.10. We recall the results

Amin 1(r;X0, Z0) = [ga/(X2
0 + Z2

0 + a2)3/2](−zex + xez), (23.4.1)

Amin 2(r;X0, Z0) = [−2ga/(X2
0 + Z2

0 + a2)5/2]×
[(Z0y

2 − Z0z
2 −X0xz)ex + (X0yz − Z0xy)ey + (X0x

2 + Z0xz −X0y
2)ez].

(23.4.2)

See (15.10.7) and (15.10.8). The still higher-order terms (the terms for n > 2) can be found
in an analogous way.

23.4.2 Associated Termination Error

Suppose we wish to initiate or terminate the magnetic field of a magnetic monopole doublet
at the point (X0, 0, Y0). Then we need to find the minimum vector potential expansion about
this point in terms of variables appropriate to the relevant reference planes. As an example,
supposed the field is initiated at the point (X0 = −4.7597 · · · , 0, Z0 = −20) corresponding
to the beginning of the left leg of the bent box in Figure 3.1. Then the relevant reference
plane would be the incoming face of the left leg.

To be more precise, let eξ and eη be unit vectors in this reference plane, and let eζ be
a unit vector perpendicular to this plane. These requirements can be met by making the
definitions

eξ = cos θex − sin θez, (23.4.3)

eη = ey, (23.4.4)

eζ = sin θex + cos θez. (23.4.5)

Here θ is the angle between the reference plane and the plane Y0 = 0. See Figure 4.1. For
the problem at hand, θ is given by the relation

θ = (1/2)φbend ' 15◦. (23.4.6)
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As the notation is intended to convey, the vectors eξ, eη, eζ comprise a right-handed or-
thonormal triad. Consequently, there are relations of the form

eζ × eξ = − sin2 θ(ex × ez) + cos2 θ(ez × ex) = ey = eη, etc. (23.4.7)

Next we observe that, associated with the unit vectors eξ, eη, eζ , we may define local
expansion coordinates ξ, η, ζ by writing

ξ = x cos θ − z sin θ, (23.4.8)

η = y, (23.4.9)

ζ = x sin θ + z cos θ. (23.4.10)

Finally, the definitions (4.3) through (4.5) and (4.8) through (4.10) may be inverted to yield
the relations

ex = cos θeξ + sin θeζ , (23.4.11)

ey = eη, (23.4.12)

ez = − sin θeξ + cos θeζ ; (23.4.13)

x = ξ cos θ + ζ sin θ, (23.4.14)

y = η, (23.4.15)

z = −ξ sin θ + ζ cos θ. (23.4.16)

We also record that, as expected, there are the relations

r = xex + yey + zez = ξeξ + ηeη + ζeζ . (23.4.17)

With all these relations at hand, let us express the minimum vector potential for a
magnetic monopole doublet in terms of the variables ξ, η, ζ and their associated unit vectors.
From (4.1) and using (4.11) through (4.17) we find the result

Amin 1(ξ, η, ζ;X0, Z0) = Amin 1(r;X0, Z0) = [ga/(X2
0 + Z2

0 + a2)3/2](−ζeξ + ξeζ). (23.4.18)

And, from (4.2) and again using (4.11) through (4.17), we find the result

Amin 2(ξ, η, ζ;X0, Z0) = Amin 2(r;X0, Z0) = −2ga/(X2
0 + Z2

0 + a2)5/2]×
[(Z0y

2 − Z0z
2 −X0xz)eξ + (X0yz − Z0xy)eη + (X0x

2 + Z0xz −X0y
2)eζ ].

(23.4.19)

Following the discussion of Section 16.1, what interests us with regard to the disconti-
nuities in the transverse mechanical momenta associated with the field termination approx-
imation are the ξ and η components of Amin evaluated at ζ = 0. From (4.18) and (4.19) we
see that the lowest order contributions to these discontinuities are given by the relations

Amin 1
ξ (ξ, η, 0;X0, Z0) = Amin 1

η (ξ, η, 0;X0, Z0) = 0, (23.4.20)
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Figure 23.4.1: (Place Holder) The orthonormal triad eξ, eη, eζ and associated local deviation
variables ξ, η, ζ for the entry of the left leg of the bent box with legs.
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Amin 2
ξ (ξ, η, 0;X0, Z0) = [−2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)η2, (23.4.21)

Amin 2
η (ξ, η, 0;X0, Z0) = [2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)ξη. (23.4.22)

We conclude thatAmin 1 makes no contributions to the discontinuities and thatAmin 2 makes
contributions that are quadratic in the deviation variables ξ and η.

Let us examine the (upon entry) discontinuities associated with Amin. As a measure of
these, define the dimensionless quantities δξ and δη by the relations

δξ,η = (1/p0)∆mech
ξ,η . (23.4.23)

See (16.1.30) and (16.1.31). Upon employing (16.1.30) and (16.1.31) in (4.23), and with the
use of (4.21) and (4.22), we find the results

δ2
ξ (ξ, η, 0;X0, Z0) = (q/p0)[−2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)η2, (23.4.24)

δ2
η(ξ, η, 0;X0, Z0) = (q/p0)[2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)ξη. (23.4.25)

Let us evaluate these discontinuities when the transverse deviations from the design orbit
have the substantial values ξ = η = 1 cm. So doing, and recalling (3.23) and (4.26), we find
the results

δ2
ξ (ξ = 1, η = 1, 0;X0 = −4.7597 · · · , Z0 = −20) = −8.8 · · · × 10−6, (23.4.26)

δ2
η(ξ = 1, η = 1, 0;X0 = −4.7597 · · · , Z0 = −20) = 8.8 · · · × 10−6. (23.4.27)

These numbers are pleasantly small, and we conclude that there is relatively little discon-
tinuity error associated with terminating the field of the monopole doublet to the left of
Z0 = −20 providing the minimal vector potential is employed. The same is true for termi-
nation to the right of Z0 = +20.1

23.4.3 Taylor Expansion of String Vector Potential

Aex(r;R0) = Aex(x, y, z;X0, Z0) = A(R0 + r) =
∞∑
n=0

Aex n(x, y, z;X0, Z0) (23.4.28)

where Aex n(x, y, z;X0, Z0) is a homogeneous polynomial vector field of degree n in the
components if r.

Ax(R0 + r) =

− g(Z0 + z)

[(X0 + x)2 + (y − a)2 + (Z0 + z)2]1/2{[(X0 + x)2 + (y − a)2 + (Z0 + z)2]1/2 − y + a}

− g(Z0 + z)

[(X0 + x)2 + (y + a)2 + (Z0 + z)2]1/2{[(X0 + x)2 + (y + a)2 + (Z0 + z)2]1/2 + y + a}
,

(23.4.29)

1However, one should not be overly sanguine. It turns out that the design orbit continues to bend by
as much as a degree as one continues to the left of Z0 = −20 and the right of Z0 = +20. That is, true
asymptopia has not been reached even when Z0 = ±20 and (3.41) holds. The magnetic monopole doublet
field, and the field of any iron-free dipole, are problematic to treat because of their slow fringe-field fall off.
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Ay(R0 + r) = 0, (23.4.30)

Az(R0 + r) =

+
g(X0 + x)

[(X0 + x)2 + (y − a)2 + (Z0 + z)2]1/2{[(X0 + x)2 + (y − a)2 + (Z0 + z)2]1/2 − y + a}

+
g(X0 + x)

[(X0 + x)2 + (y + a)2 + (Z0 + z)2]1/2{[(X0 + x)2 + (y + a)2 + (Z0 + z)2]1/2 + y + a}
.

(23.4.31)

Aex 0
x (x, y, z;X0, Z0) = − 2gZ0

[X2
0 + a2 + Z2

0 ]1/2{[X2
0 + a2 + Z2

0 ]1/2 + a}
,

(23.4.32)

Aex 0
y (x, y, z;X0, Z0) = 0, (23.4.33)

Aex 0
z (x, y, z;X0, Z0) =

2gX0

[X2
0 + a2 + Z2

0 ]1/2{[X2
0 + a2 + Z2

0 ]1/2 + a}
.

(23.4.34)

23.4.4 Finding the Associated Gauge Function

23.5 Gauge Transformation Map

23.6 Pole Face Rotation

23.7 Computation of Transfer Map

Exercises

23.7.1. Using (1.7) through (1.9), verify (1.10) through (1.12).

23.7.2. Review the last paragraph of Exercise 22.2.15. Use the geometric insight provided
in that paragraph to conclude that the direction of the vector potential found in Subsection
1.2 follows from the orientations of the Dirac strings assigned to the monopoles making up
the monopole doublet.

23.8 Scraps

*************************************

B0(r;X0, Z0) = −[2ga/(X2
0 + Z2

0 + a2)3/2]eη. (23.8.1)
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Amin 1(ξ, η, ζ;X0, Z0) = −(1/2)r ×B0(r;X0, Z0)

= [ga/(X2
0 + Z2

0 + a2)3/2](−ζeξ + ξeζ), (23.8.2)

Amin 1(ξ, η, 0;X0, Z0) = [ga/(X2
0 + Z2

0 + a2)3/2](ξeζ), (23.8.3)

Amin 1
ξ (ξ, η, 0;X0, Z0) = Amin 1

η (ξ, η, 0;X0, Z0) = 0. (23.8.4)

Amin 2
ξ (ξ, η, 0;X0, Z0) = [−2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)η2, (23.8.5)

Amin 2
η (ξ, η, 0;X0, Z0) = [2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)ξη. (23.8.6)

B1(r;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
[(X0x+ Z0z)ey + y(X0ex + Z0ez)]. (23.8.7)

(X0x+ Z0z)ey = [x0(ξ cos θ + ζ sin θ) + Z0(−ξ sin θ + ζ cos θ)]eη, (23.8.8)

y(X0ex + Z0ez) = η[X0(cos θeξ + sin θeζ) + Z0(− sin θeξ + cos θeζ)]

= η[(X0 cos θ − Z0 sin θ)eξ + (X0 sin θ + Z0 cos θ)eζ ]. (23.8.9)

B1(ξ, η, ζ;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{[X0(ξ cos θ + ζ sin θ) + Z0(−ξ sin θ + ζ cos θ)]eη

+ η[(X0 cos θ − Z0 sin θ)eξ + (X0 sin θ + Z0 cos θ)eζ ]}.
(23.8.10)

B1(ξ, η, 0;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{[X0(ξ cos θ) + Z0(−ξ sin θ)]eη

+ η[(X0 cos θ − Z0 sin θ)eξ + (X0 sin θ + Z0 cos θ)eζ ]}.
(23.8.11)

r(ξ, η, ζ) = ξeξ + ηeη + ζeζ . (23.8.12)
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r(ξ, η, 0) = ξeξ + ηeη. (23.8.13)

eη ×B1(ξ, η, 0;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{η[(−X0 cos θ + Z0 sin θ)eζ + (X0 sin θ + Z0 cos θ)eξ]}.

(23.8.14)

[ηeη ×B1(ξ, η, 0;X0, Z0)]ξ = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{η2[(X0 sin θ + Z0 cos θ)]}. (23.8.15)

eξ ×B1(ξ, η, 0;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{[X0(ξ cos θ) + Z0(−ξ sin θ)]eζ

− η[(X0 sin θ + Z0 cos θ)eη]}. (23.8.16)

[ξeξ ×B1(ξ, η, 0;X0, Z0)]η = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{−ξη[(X0 sin θ + Z0 cos θ)]}. (23.8.17)

Amin 2(ξ, η, 0;X0, Z0) = −(1/3)r(ξ, η, 0)×B1(ξ, η, 0;X0, Z0). (23.8.18)

Amin 2
ξ (ξ, η, 0;X0, Z0) = [−2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)η2, (23.8.19)

Amin 2
η (ξ, η, 0;X0, Z0) = [2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)ξη. (23.8.20)



Chapter 24

Realistic Transfer Maps for General
Curved Beam-Line Elements: Bent
Box Monopole Doublet Results

24.1 Choice of Surrounding Bent Box

Also shown in Figure 5.1 is the top view of a suitable bent box that surrounds this orbit.
The top and bottom of the box are superposed in the figure, and lie in the planes y = ±2 cm.
The circular arcs that comprise the bent portion of the box have the common center

(xc, zc) = (−17 cm, 0) (24.1.1)

and have radii

rout = 19 cm, (24.1.2)

rin = 15 cm. (24.1.3)

Both subtend an angle of 30◦, and are extended by straight lines thereby forming the straight
ends of the box.

How was this bent box determined? Again by trial and error. Note that the construction
of the bent box is not critical. All that is required is that the bent box well surround the
design orbit. Consider all circular arcs that pass through the origin and are symmetric about
the x axis. Such arcs will have their centers on the x axis. Also require that each arc subtend
an angle of 30◦. With these restrictions the only remaining quantity to be selected is the
radius of an arc. Finally, require that the optimal arc, when extended by straight lines at
both ends, well fit the design orbit. Figure 6.1 below shows that, for the problem at hand,
a good fit occurs when the arc radius has the value

rfit = 17 cm. (24.1.4)

By construction, the center of this arc is given by (5.55).
Now determine the outer and inner boundaries of the box by requiring that they also be

circular arcs with straight-line extensions. Further require that both arcs have a common

1797
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Figure 24.1.1: Design orbit x(z) and best approximating circular arc with straight-line
extensions. The solid line is the design orbit, and the dotted line is the best approximating
circular arc with straight-line extensions. The quantities x and z are in cm.
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center given by (5.55), and that both arcs subtend an angle of 30◦. The last step is to specify
the radius of each arc. This is conveniently done by the prescription

rout = rfit + w, (24.1.5)

rin = rfit − w, (24.1.6)

where 2w is the width of the box. For our illustration we have chosen the value

w = 2 cm. (24.1.7)

24.2 Comparison of Fields

How well do surface methods work for general geometries? In this subsection we will take
magnetic field and scalar potential values for a monopole doublet, interpolate them onto the
bent box surface found in the previous subsection, and then use surface methods to compute
the interior field at various sample points. This computed interior field will then be compared
with the actual monopole doublet field at these sample points, thereby providing a test of
the accuracy of the method. Note that the bent box we have chosen has a square cross
section with side 4 cm, and therefore is comparable in cross section to the 4 cm diameter
cylinder used in Section 19.1.

24.2.1 Preliminaries

Since it is our intent to compute the interior field from surface values of Bn and ψ, it would
be good to have some feel for how these quantities behave on the surface of the bent box
with legs. Figure 5.7 displays Bn on the upper face, y = 2 cm, of the bent box with legs
directly above the design orbit. Figure 5.8 does the same for ψ. Up to signs, similar results
hold for the bottom face, y = −2 cm. The observation to be made is that Bn falls off fairly
rapidly with increasing |z|, like ∼ 1/|z|3, and ψ falls off somewhat less rapidly, like ∼ 1/|z|2.

Something should also be said about the behavior of Bn and ψ on the sides of the box with
legs. It is easily checked that, for a monopole doublet, Bx, Bz, and ψ are odd functions of y,
and therefore must vanish in the midplane y = 0. From this fact, and from considerations
of field-line geometry for the case of a monopole doublet field, we conclude that the values
of Bn and ψ on the sides of the box with legs will be comparable to, and usually smaller
than, their values on the top and bottom faces.

Taking into account the behavior of Bn and ψ on the entire surface of the box with legs,
we conclude that it is only necessary to integrate over some bounded portion of the surface
in order to compute the interior vector potential A accurately.

With this background in mind, we are prepared to make some numerical tests. We
begin by imbedding the bent box with legs of Figure 5.1 (also see Figure 1.1) within a
three-dimensional rectangular mesh,

x ∈ [xmin, xmax], (24.2.1)

y ∈ [ymin, ymax], (24.2.2)
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Figure 24.2.1: The quantity Bn = By on the upper face, y = 2 cm, and directly above the
design orbit. The quantity z is in cm.
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Figure 24.2.2: The quantity ψ on the upper face, y = 2 cm, and directly above the design
orbit. The quantity z is in cm.
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z ∈ [zmin, zmax], (24.2.3)

with mesh-point spacings hx, hy, and hz, respectively. By looking at Figure 5.1 we see that
convenient end-point values are given by the relations

xmin = −7, xmax = 3, (24.2.4)

ymin = −3, ymax = 3, (24.2.5)

zmin = −25, zmax = 25. (24.2.6)

See also the corner coordinates given in (5.76) through (5.79). For the mesh-point spacings
we take the values

hx = hy = hz = .05. (24.2.7)

At each of these grid points we compute and store the quantities B and ψ for the monopole
doublet field. It is data if this kind that could be expected for the output of some electro-
magnetic solver.

24.2.2 Evaluation of Surface Integrals

Our task now is to use this data to evaluate surface integrals of the kind (1.7) and (1.8).
In this case the surface S, a bent box with legs, consists of a bent sector with straight end
legs. When viewed from above, and as described earlier, the sector has inner and outer radii
given by (5.59) and (5.60), and subtends an angle of 30◦. It has corners at the locations

zs
`` = −3.882285676537811, xs

`` = −2.511112605663975, (24.2.8)

zs
u` = −4.917561856947894, xs

u` = 1.352590699492298, (24.2.9)

zs
ur = 4.917561856947894, xs

ur = 1.352590699492298, (24.2.10)

zs
`r = 3.882285676537811, xs

`r = −2.511112605663975. (24.2.11)

The left straight end leg, again when viewed form above, has leftmost corners at the locations

z``` = −19.482361909794935, x``` = −6.69114043422916, (24.2.12)

z`u` = −20.51763809020501, x`u` = −2.8274371290729103. (24.2.13)

The right straight end leg has rightmost corners at the locations

zr
ur = 20.51763809020501, xr

ur = −2.8274371290729103, (24.2.14)

zr
`r = 19.482361909794935, xr

`r = −6.69114043422916. (24.2.15)

Each straight end leg has a length of 16.150387336872548 cm.
We will decompose S into 12 pieces. The first 8 will be the top, bottom, inner, and

outer faces of the two straight legs. The remaining 4 will be the top, bottom, inner, and
outer faces of the bent sector. See Figures 1.1 and 5.1. The first 8 surfaces, those for the
straight legs, are all rectangular, and can be conveniently integrated over using rectangular
coordinates. Integrals over the remaining 4 surfaces, those for the bent sector, are most
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easily evaluated using polar/cylindrical coordinates. Our task is to parameterize these 12
pieces and find expressions for dS ′ for each. In particular, we will convert the integration
over each of these pieces into a related integration over a unit square.

Consider the straight legs. We will present results for the left leg. Results for the right
leg are analogous.

Note that the right end of the left leg abuts the left end of the bent sector. Again see
Figure 5.1. Consequently, the top face of the left leg has corners at (z```, x

`
``), (z`u`, x

`
u`),

(zs
u`, x

s
u`), and (zs

``, x
s
``). It can be described in terms of parameters u and v by writing

z`t(u, v) = z``` + (zs
`` − z```)u+ (z`u` − z```)v, (24.2.16)

x`t(u, v) = x``` + (xs
`` − x```)u+ (x`u` − x```)v, (24.2.17)

y`t = 2, (24.2.18)

with
u, v ∈ [0, 1]. (24.2.19)

In this case one finds for the surface element the relation

dS ′ = dz dx = [(zs
`` − z```)(x`u` − x```)− (z`u` − z```)(xs

`` − x```)]du dv. (24.2.20)

Similar results hold for the bottom face of the left leg.
The inner face of the left leg can be described in terms of parameters u and v by writing

z`i(u, v) = z``` + (zs
`` − z```)u, (24.2.21)

x`i(u, v) = x``` + (xs
`` − x```)u, (24.2.22)

y`i(u, v) = −2 + 4v, (24.2.23)

again with
u, v ∈ [0, 1]. (24.2.24)

In this case one finds for the surface element the relation

dS ′ = [4/ cos(π/12)](zs
`` − z```)du dv. (24.2.25)

Similar results hold for the outer face of the left leg.
Consider the bent sector. The top face of the bent sector can be described in terms of

cylindrical coordinates ρ, φ, and y by writing

zst = ρ sinφ, (24.2.26)

xst = ρ cosφ− 17, (24.2.27)

yst = 2. (24.2.28)

Introduce parameters u and v by writing

ρ(u, v) = 15 + 4v, (24.2.29)
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φ(u, v) = −π/12 + (π/6)u, (24.2.30)

again with the understanding (5.83). Combining (5.90) through (5.94) gives the results

zst(u, v) = (15 + 4v) sin(−π/12 + πu/6), (24.2.31)

xst(u, v) = (15 + 4v) cos(−π/12 + πu/6)− 17, (24.2.32)

yst(u, v) = 2. (24.2.33)

In this case one finds for the surface element of the top face of the bent sector the relation

dS ′ = ρdρ dφ = (2π/3)(15 + 4v)du dv. (24.2.34)

Similar results hold for the bottom face of the bent sector.
The inner face of the bent sector can be described in terms of relations analogous to

(5.90) and (5.91) with ρ = 15,

zsi(u, v) = 15 sin(−π/12 + πu/6), (24.2.35)

xsi(u, v) = 15 cos(−π/12 + πu/6)− 17. (24.2.36)

Here we have again used (5.94). We also write

ysi(u, v) = −2 + 4v. (24.2.37)

In this case we find for the surface element the relation

dS ′ = ρdφ dy = 10πdu dv. (24.2.38)

Similar results hold for the outer face of the bent sector.
The result of the work so far is that the integrations over the 12 pieces of S have been

converted into integrations over 12 unit squares of the form (5.83). For each piece, changes
in u produce longitudinal displacements, and changes in v produce transverse displacements.
We next select points within each unit square to be used in evaluating the various surface
integrals numerically.

For the straight legs this is achieved as follows: Each unit square corresponding to a leg
surface is decomposed into 100× 160 = 16, 000 small rectangles by the prescription

hu = 1/100, hv = 1/160. (24.2.39)

Thus, there are 100 subdivisions in the longitudinal direction and 160 subdivisions in the
transverse directions.

For the surfaces of the bent sector each corresponding unit square is decomposed into
160× 160 = 25, 600 small squares by the prescription

hu = 1/160, hv = 1/160. (24.2.40)

Thus, for these surfaces there are 160 subdivisions for both the longitudinal and transverse
directions.1

1More subdivisions are used for the bent sector surfaces because the fields are expected to vary more
rapidly over these surfaces. See Figures 5.7 and 5.8.
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The integral over each small rectangle or small square is approximated using a 7-point
cubature formula. (For a discussion of cubature formulas, see Appendix T.) The values of
the integrands at the cubature points are obtained from the values of B and ψ at the grid
points using 3-dimensional cubic spline interpolation.2 Finally, all the small rectangle and
small square results are summed to obtain the required integrals over S.

24.2.3 Resulting Vector Potential

Figures 5.9 and 5.10 show the components Asdx and Asdz of the vector potential computed
along the design trajectory based on bent-box surface data.3 The Asdy component vanishes
in the midplane, and therefore is not shown. For the contribution from the Bn the kernel
Gn2s was used for the top and bottom faces, and the kernel Gn1s was used for the side faces.
In all cases the strings were taken to lie on lines parallel to the x axis. For the contribution
from ψ the kernel Gt was used.

Recall that the vector potential used in the previous subsection and given by (2.102)
through (2.104) has no x component and only a z component on the design orbit. By
contrast, Asdx as shown in Figure 5.9, although small, is not zero on the design orbit. Note
also that Az as displayed in Figure 5.4 and the Asdz displayed in Figure 5.10, while similar,
are not the same. This apparent discrepancy arises from the fact that the vector potential
given by (2.102) through (2.104) and the vector potential computed from surface data differ
by a gauge transformation. We also remark that examination of the numerical results reveals
that the nonzero contribution to Asdx arises from surface ψ values. See (3.43).

24.2.4 Comparison of Fields

If the interior vector potential Asd has been computed successfully using surface methods,
so that it differs from the vector potential given by (2.102) through (2.104) at most only by
a gauge transformation, in the interior of the box it should also give rise to the monopole-
doublet B field (2.105) through (2.107). Let Bsd be the magnetic field given by

Bsd = ∇×Asd (24.2.41)

and let Be be the exact B field. Then, for example, use of (5.105) to compute Bsd
y on the

design orbit should produce a graphic similar to Figure 5.5.4 This is indeed the case. A plot
of Bsd

y on the design orbit is indistinguishable to the eye from Figure 5.5.
To give a better indication of the error involved, define a relative error ∆ by the relation

∆ = (Bsd −Be)/Bmaxmag
y . (24.2.42)

2Note that, like the case of cylindrical surfaces, the data at most of the data points on the grid are
unused. For each cubature point on S there is an associated point in x,y,z space, and only data at the grid
points near these points are actually used in interpolation.

3That is, as just described, grid data were manufactured and interpolated onto the 12 pieces of the
surface S at the points required for the repeated use of a 7-point cubature formula. The results from these
surface values were processed, by repeated application of this cubature formula, to find Asdx and Asdz along
the design trajectory.

4Note that the use of (5.105) requires a knowledge of spatial derivatives of the components of A. These
derivatives are obtained by differentiating the kernels G under the integral sign prior to carrying out the
required surface integrations. See Subsections 4.3 and 4.4.
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Figure 24.2.3: The quantity Asdx on the design orbit. The quantity z is in cm.
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Figure 24.2.4: The quantity Asdz on the design orbit. The quantity z is in cm.
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Here Bmaxmag
y is the maximum value of the magnitude of Be

y on the design orbit,

Bmaxmag
y = |By(x = 0, y = 0, z = 0)| = 2g/a2 = .32 Tesla. (24.2.43)

See (15.8.5) and Figure 15.8.3. Figure 5.11 displays the value of ∆y on the design orbit as a
function of z. We see that ∆y is very small over most of the interval z ∈ [−20, 20], but rises
very rapidly to a value of ' 5× 10−4 at the endpoints.

Figure 24.2.5: The relative error ∆y on the design orbit. The quantity z is in cm.

While the very small error for most of the interval error is very satisfying, the rapid
increase of the error at the endpoints might seem alarming. It is not. The relative error ∆y

remains bounded and eventually goes to zero as |z| goes to infinity. Moreover, both Bsd
y and

Be
y are small for |z| ≥ 20, and go to zero as |z| goes to infinity.

To elaborate on these assertions, we begin by noting that both Bsd
y and Be

y are negative.
See Figure 5.5. But Bsd

y is slightly less negative than Be
y because, by terminating the straight

legs of the box at z = ±20, the surface fields that serve as a “source” for the interior field
are effectively set to zero beyond z ∈ [−20, 20]. Correspondingly, ∆y is positive. Observe
that, because Bsd

y is negative, ∆y always obeys the crude bound

∆y < −Be
y/B

maxmag
y . (24.2.44)

At the end points the coordinates x, y, z have the values

x ' −4.76, y = 0, z = ±20. (24.2.45)
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See (5.45). Using these values in (15.8.5) we find that Be
y has the value

Be
y(x ' −4.76, y = 0, z = ±20) ' −5.63× 10−4 Tesla. (24.2.46)

Correspondingly, at worst and for |z| ≥ 20, ∆y can never exceed

5.63× 10−4/.32 ' 1.8× 10−3. (24.2.47)

And since Be
y for large |z| falls off as |z|−3, ∆y must eventually go to zero for large |z| as

|z|−3.
Figure 5.11 displays the relative error in the y component of Bsd on the design orbit. We

are also interested in examining the relative error in all the components ofBsd in the vicinity
of the design orbit. For this purpose it is convenient to introduce a deviation variable ξ by
writing

x = xd + ξ (24.2.48)

where xd is the design orbit shown in Figure 5.6. Figure 5.12 shows ∆, the magnitude of
∆, over the domain ξ ∈ [−1, 1], z ∈ [0, 20] in the plane y = 0. Figure 5.13 shows ∆ over the
same domain in the plane y = 1. For ease of visualization, values are shown only for y ≥ 0
and z ≥ 0 since ∆ is even in these variables.

Figure 24.2.6: Place holder. The quantity ∆ = |∆| as a function of ξ and z in the vicinity
of the design orbit and in the plane y = 0. The quantities ξ, y, and z are in cm.

Upon examining these figures we see that · · · .
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Figure 24.2.7: Place holder. The quantity ∆ = |∆| as a function of ξ and z in the vicinity
of the design orbit and in the plane y = 1. The quantities ξ, y, and z are in cm
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24.3 Comparison of Design Orbits

How accurate are design orbits computed using surface methods? In this subsection we will
use surface methods to compute a design orbit for the case of a magnetic monopole doublet.
Comparison of this design orbit with the design orbit selected in Subsection 5.1 will provide
a further indication of the accuracy of surface methods.

24.4 Terminating End Fields

Let us compute the magnetic field B associated with the first two terms in (9.3). We find
the result

B(r;X0, Z0) = −[2ga/(X2
0 + Z2

0 + a2)3/2]ey

+[6ga/(X2
0 + Z2

0 + a2)5/2](X0x+ Z0z)ey

+[6ga/(X2
0 + Z2

0 + a2)5/2][y(X0ex + Z0ez)]. (24.4.1)

Next let us find the minimum vector potential Amin associated with the first two terms
in (9.3). Begin by decomposing B into homogeneous polynomials by rewriting (9.4) in the
form (2.109) with

B0(r;X0, Z0) = −[2ga/(X2
0 + Z2

0 + a2)3/2]ey (24.4.2)

and

B1(r;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2][(X0x+ Z0z)ey + y(X0ex + Z0ez)]. (24.4.3)

The minimum vector potential associated with this magnetic field is given by the relations
(2.109) through (2.111). Working out the indicated cross products yields the results

Amin 1(r;X0, Z0) = [ga/(X2
0 + Z2

0 + a2)3/2](−zex + xez), (24.4.4)

Amin 2(r;X0, Z0) = [−2ga/(X2
0 + Z2

0 + a2)5/2]×
[(Z0y

2 − Z0z
2 −X0xz)ex + (X0yz − Z0xy)ey + (X0x

2 + Z0xz −X0y
2)ez].

(24.4.5)

Simple calculation verifies that there are the relations

∇×Amin 1(r;X0, Z0) = B0(r;X0, Z0), (24.4.6)

∇×Amin 2(r;X0, Z0) = B1(r;X0, Z0), (24.4.7)

as desired. We note that Amin 1 falls off as (1/|X0|)3 or (1/|Z0|)3 for large |X0| or |Z0|,
and Amin 2 falls off as (1/|X0|)4 or (1/|Z0|)4. In general, successive Amin n fall off with ever
increasing powers of (1/|X0|) or (1/|Z0|).

eξ = cos θex − sin θez, (24.4.8)
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eη = ey, (24.4.9)

eζ = sin θex + cos θez. (24.4.10)

eζ × eξ = − sin2 θ(ex × ez) + cos2 θ(ez × ex) = ey = eη; (24.4.11)

ex = cos θeξ + sin θeζ , (24.4.12)

ey = eη (24.4.13)

ez = − sin θeξ + cos θeζ . (24.4.14)

r = xex + yey + zez = ξeξ + ηeη + ζeζ . (24.4.15)

x = r · ex = (ξeξ + ηeη + ζeζ) · ex
= ξeξ · ex + ηeη · ex + ζeζ · ex
= ξ cos θ + ζ sin θ. (24.4.16)

y = r · ey = (ξeξ + ηeη + ζeζ) · ey
= ξeξ · ey + ηeη · ey + ζeζ · ey
= η. (24.4.17)

z = r · ez = (ξeξ + ηeη + ζeζ) · ez
= ξeξ · ez + ηeη · ez + ζeζ · ez
= −ξ sin θ + ζ cos θ. (24.4.18)

B0(r;X0, Z0) = −[2ga/(X2
0 + Z2

0 + a2)3/2]eη. (24.4.19)

Amin 1(ξ, η, ζ;X0, Z0) = −(1/2)r ×B0(r;X0, Z0)

= [ga/(X2
0 + Z2

0 + a2)3/2](−ζeξ + ξeζ), (24.4.20)

Amin 1(ξ, η, 0;X0, Z0) = [ga/(X2
0 + Z2

0 + a2)3/2](ξeζ), (24.4.21)

Amin 1
ξ (ξ, η, 0;X0, Z0) = Amin 1

η (ξ, η, 0;X0, Z0) = 0. (24.4.22)

B1(r;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
[(X0x+ Z0z)ey + y(X0ex + Z0ez)]. (24.4.23)

(X0x+ Z0z)ey = [x0(ξ cos θ + ζ sin θ) + Z0(−ξ sin θ + ζ cos θ)]eη, (24.4.24)
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y(X0ex + Z0ez) = η[X0(cos θeξ + sin θeζ) + Z0(− sin θeξ + cos θeζ)]

= η[(X0 cos θ − Z0 sin θ)eξ + (X0 sin θ + Z0 cos θ)eζ ]. (24.4.25)

B1(ξ, η, ζ;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{[X0(ξ cos θ + ζ sin θ) + Z0(−ξ sin θ + ζ cos θ)]eη

+ η[(X0 cos θ − Z0 sin θ)eξ + (X0 sin θ + Z0 cos θ)eζ ]}.
(24.4.26)

B1(ξ, η, 0;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{[X0(ξ cos θ) + Z0(−ξ sin θ)]eη

+ η[(X0 cos θ − Z0 sin θ)eξ + (X0 sin θ + Z0 cos θ)eζ ]}.
(24.4.27)

r(ξ, η, ζ) = ξeξ + ηeη + ζeζ . (24.4.28)

r(ξ, η, 0) = ξeξ + ηeη. (24.4.29)

eη ×B1(ξ, η, 0;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{η[(−X0 cos θ + Z0 sin θ)eζ + (X0 sin θ + Z0 cos θ)eξ]}.

(24.4.30)

[ηeη ×B1(ξ, η, 0;X0, Z0)]ξ = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{η2[(X0 sin θ + Z0 cos θ)]}. (24.4.31)

eξ ×B1(ξ, η, 0;X0, Z0) = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{[X0(ξ cos θ) + Z0(−ξ sin θ)]eζ

− η[(X0 sin θ + Z0 cos θ)eη]}. (24.4.32)

[ξeξ ×B1(ξ, η, 0;X0, Z0)]η = [6ga/(X2
0 + Z2

0 + a2)5/2]×
{−ξη[(X0 sin θ + Z0 cos θ)]}. (24.4.33)
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Amin 2(ξ, η, 0;X0, Z0) = −(1/3)r(ξ, η, 0)×B1(ξ, η, 0;X0, Z0). (24.4.34)

Amin 2
ξ (ξ, η, 0;X0, Z0) = [−2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)η2, (24.4.35)

Amin 2
η (ξ, η, 0;X0, Z0) = [2ga/(X2

0 + Z2
0 + a2)5/2](X0 sin θ + Z0 cos θ)ξη. (24.4.36)

24.5 Gauge Transformation Map

24.6 Pole Face Rotation

24.7 Comparison of Maps

How accurate are maps computed using surface methods? In this subsection we will use
surface methods to compute the transfer map about the design orbit found in Subsection
5.3. We will also compute the exact transfer map for the case of a magnetic monopole
doublet. Comparison of these maps will provide a final indication of the accuracy of surface
methods.

24.8 Smoothing and Insensitivity to Errors

Exercises

24.8.1. Show that any orbit having the initial conditions Y = 0 and Py = 0 when z = 0
must lie in the y = 0 plane.

24.8.2. Show that, in the case of a 30◦ bend produced by a magnetic monopole doublet,
one expects the asymptotic behavior

lim
z→∓∞

X ′(z) = ± tan(15◦) = ±.267949 · · · . (24.8.1)

Actually, in the numerical computations for Section 20.5.1, p0 was chosen so that

X ′(z = ∓20) = ± tan(15◦) = ±.267949 · · · . (24.8.2)

See (5.47) and (5.48). From Figure 5.3 we observe that “asymptopia” has essentially been
achieved when |z| ≥ 20 so that the requirements (5.113) and (5.114) are nearly equivalent.

24.8.3. Consider Az(x, y, z) as given by (2.104). Under the assumption that |x| increases
linearly with |z|, as it does for large |z| on the design orbit shown in Figure 5.1, find the
midplane, y = 0, asymptotic behavior of Az(x, y, z) for large |z|. Do the same for By(x, y, z).
Verify that the results you obtain are consistent with Figures 5.4 and 5.5.
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24.8.4. Verify the parameterizations (5.80) through (5.83), (5.85) through (5.88), (5.95)
through (5.97), and (5.99) through (5.101). Verify the surface elements (5.84), (5.89), (5.98),
and (5.102).
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Chapter 27

Representations of sp(2n) and Related
Matters

Historically there are several mathematical groups that have been studied in detail because
of their relevance to our understanding of the physical world. A detailed knowledge of the
3-dimensional rotation group is of great use in many areas including rigid body dynamics,
condensed matter physics, chemistry, atomic physics, nuclear physics, and elementary parti-
cle physics. Knowledge of the rotation-translation group leads to a classification of crystals
and quasicrystals. Knowledge of the Lorentz group leads to the construction of spinors, 4-
vectors, general tensors, and classical fields. Knowledge of the Poincaré group (the Lorentz
group plus translations in space and time) leads to a classification of elementary particles
and the construction of quantum fields. An understanding of the invariants of the full group
of space-time diffeomorphisms plays a role in general relativity. Knowledge of various other
groups, including E8, facilitates many-body theory calculations. Finally, there are the var-
ious “internal” and/or gauge symmetry groups that play an important role in our current
understanding of elementary particles and the fundamental forces.

We have seen that the symplectic group is the underlying group for Hamiltonian systems.
Yet, in contrast to most of the groups just mentioned, almost nothing is commonly known
or readily available about the symplectic group. For example, many readers will be familiar
with some aspects of the rotation group including spin (irreducible representations and
how they are labeled) and how spins couple and combine (the Clebsch-Gordan series and
coefficients for the rotation group). Yet few have heard or read about representations of
the symplectic group, knowledge of its Clebsch-Gordan series is not widespread, and little
is known in detail about its Clebsch-Gordan coefficients.

The purpose of this chapter is to describe some aspects of the finite-dimensional repre-
sentations of the first few symplectic groups with the hope that this knowledge, like that
for the well-studied groups, will also ultimately prove useful. [What we will actually be
finding are the finite dimensional irreducible unitary representations of usp(2n), which is
equivalent to sp(2n,R) over the complex field. See Sections 5.10 and 7.3.] Indeed, as a first
consequence of this effort, we will find a symplectic classification of all analytic vector fields.
Additional applications will be made in Chapters 29, 32, and 33.
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27.1 Structure of sp(2,R)
The Lie algebra sp(2,R) is generated by the Lie operators associated with the quadratic
polynomials q2, qp, and p2. See Section 5.6. For present purposes it is convenient to
introduce the basis polynomials

J3 = −(i/4)(p2 + q2) (27.1.1)

J± = (1/4)(q ± ip)2. (27.1.2)

They obey the Poisson bracket rules

[J3, J±] = ±J±, (27.1.3)

[J+, J−] = 2J3. (27.1.4)

These rules are the familiar ones for angular momentum, and indicate that the Lie algebras
so(3,R), su(2), sp(2,R), and usp(2) are equivalent when one works over the complex field
as in (1.1) and (1.2).

As a result of (7.3.14) through (7.3.16) we have the relations

: J3 :†=: J3 :, (27.1.5)

: J± :†=: J∓ : . (27.1.6)

Thus, : J3 : is Hermitian. Finally, consider Lie transformations of the form

M(θ) = exp(−iθ : J3 :) = exp[−(θ/4) : p2 + q2 :]. (27.1.7)

These transformations are both real symplectic and unitary. Indeed, they have the period-
icity property

M(θ + 4π) =M(θ), (27.1.8)

and therefore form a maximal torus in Sp(2,R). See Sections 3.9 and 7.2.
We next bring the rules (1.3) and (1.4) to Cartan form. For a review of the Cartan

form for a Lie algebra, see Section 5.8. Let e1 be a unit vector. For the case of sp(2) it is
convenient to introduce root vectors ±α by the relations

±α = ±2e1. (27.1.9)

(Observe that they have length 2.) Then we have the normalization relation∑
µ

(e1 · µ)(µ · e1) = 8. (27.1.10)

Compare with (5.8.21). Next introduce quantities c1 and r(±α) by the relations

c1 = 2J3 = −(i/2)(p2 + q2), (27.1.11)

r(±α) =
√

2J± = (
√

2/4)(q ± ip)2. (27.1.12)
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They evidently obey the Poisson bracket rules

[c1, r(µ)] = (e1 · µ)r(µ), (27.1.13)

[r(µ), r(−µ)] = (e1 · µ)c1. (27.1.14)

These are the Cartan rules for sp(2). Note that there are the conjugacy relations

: c1 :†=: c1 :, (27.1.15)

: r(µ) :†=: r(−µ) :, (27.1.16)

and : c1 : is Hermitian as desired. The root vectors ±α are shown in Figure 1.1. Finally, we
note the pleasing fact that for the scalar product (7.3.12) the basis elements c1 and r(µ) all
have unit norm and, indeed, are orthonormal:

〈c1, c1〉 = 〈r(µ), r(µ)〉 = 1, (27.1.17)

〈c1, r(µ)〉 = 0, (27.1.18)

〈r(µ), r(−µ)〉 = 0. (27.1.19)

α

0 22

α

Figure 27.1.1: Root vectors for sp(2).

Exercises

27.1.1. Verify (1.3) through (1.8).

27.1.2. Define J1 and J2 by the rules

J± = J1 ± iJ2. (27.1.20)

Verify the su(2) Poisson bracket rules

[J1, J2] = iJ3, etc. (27.1.21)

27.1.3. Verify (1.10) and (1.13) through (1.19).
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27.2 Representations of sp(2,R)
It is well known that irreducible representations of su(2) are labeled by a non-negative integer
or half-integer j, and vectors within a representation are labeled by an integer or half-integer
m that ranges between −j and j by integer steps. Let Ĵ3, Ĵ± be a set of irreducible matrices
(with Ĵ3 Hermitian) whose commutation rules are the same as the Poisson bracket rules
(1.3) and (1.4). Then, in a representation labeled by j, there is a “highest” vector |j〉 with
m = j having the property

Ĵ3|j〉 = j|j〉, or

(2Ĵ3)|j〉 = (2j)|j〉. (27.2.1)

In the terminology of Cartan, the vector |j〉 is an eigenvector of highest weight with weight
(2j). [See (1.11).] It follows that the fundamental weight φ1 for sp(2) is given by the relation

φ1 = e1 = α/2. (27.2.2)

Correspondingly, the highest weight for a representation characterized by the non-negative
integer n, with n = 2j, is given by the relation

wh = nφ1 , n = 2j. (27.2.3)

Call this representation Γ(n).
Figure 2.1 shows the fundamental weight φ1 along with the root vectors ±α. Figure 2.2

shows the weight diagrams for the first few representations. For su(2), and hence sp(2,R),
each weight (vector within a representation) has unit multiplicity. It follows that the di-
mension of the representation Γ(n) is given by the relation

dim Γ(n) = n+ 1. (27.2.4)

Sometimes we will label a representation by its dimension.

α

0 22

α φ1

Figure 27.2.1: The fundamental weight φ1 and the root vectors ±α for sp(2).

Let Pn denote the set of polynomials homogeneous of degree n in the variables q, p; and
let f2 be a quadratic polynomial in q, p. Then, in view of (7.6.14), we have the relation

: f2 : Pn ⊆ Pn. (27.2.5)

It follows that the set of homogeneous polynomials of degree n forms a representation of
sp(2,R).

What representations occur? The study of this question is facilitated by using the map
A(θ) defined by the equation

A(θ) = exp(−iθ : p2 − q2 :). (27.2.6)
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0 22

0

wh

03 311

1 0 1

wh

1 = Γ(0) 2 = Γ(1)

3 = Γ(2) 4 = Γ(3)

wh

Figure 27.2.2: Weight diagrams for the sp(2) repesentations Γ(0), Γ(1), Γ(2), and Γ(3).

Evidently A is complex symplectic and, in view of (7.3.14) through (7.3.16), it is also unitary.
Calculation gives the results

A(θ)q = q cos(2θ) + ip sin(2θ), (27.2.7)

A(θ)p = iq sin(2θ) + p cos(2θ). (27.2.8)

In particular, there is the relation

A(π/8)q = (1/
√

2)(q + ip), (27.2.9)

A(π/8)p = i(1/
√

2)(q − ip). (27.2.10)

The map A(π/8) is the operator analog of the matrix W given by (3.9.9). See Exercise 2.2.
Also, since A is a Lie transformation, there is the relation

A(π/8)(qrps) = [A(π/8)q]r[A(π/8)p]s = (1/
√

2)r+s(i)s(q + ip)r(q − ip)s. (27.2.11)

With the aid of A, we define transformed Lie basis polynomials c̃1, r̃(±α), by the rule

c̃1 = A(−π/8)c1 = −qp, (27.2.12)

r̃(α) = A(−π/8)r(α) = (1/
√

2)q2, (27.2.13)

r̃(−α) = A(−π/8)r(−α) = −(1/
√

2)p2. (27.2.14)

Since A is symplectic, the transformed basis polynomials obey the same Poisson bracket
rules (1.13) and (1.14). See (5.4.14) and Section 6.3. Since A is also unitary, as is easily
verified, the transformed basis polynomials also satisfy the orthonormality relations (1.17)
through (1.19) and the conjugacy relations (1.15) and (1.16).

Now consider the action of the Lie operators : c̃1 : and : r̃(±α) : on the general monomial
qrps. Calculation gives the results

: c̃1 : qrps = (r − s)qrps, (27.2.15)
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: r̃(α) : qrps = (
√

2)sqr+1ps−1, (27.2.16)

: r̃(−α) : qrps = (
√

2)rqr−1ps+1. (27.2.17)

Evidently any monomial of a given degree can be transformed into any other monomial of
the same degree with the aid of r̃(±α). Therefore sp(2) acts irreducibly on Pn. Also qn is
the vector of highest weight in Pn, and has the weight nφ1,

: c̃1 : qn = nqn = (e1 · nφ1)qn. (27.2.18)

We conclude that Pn carries the representation Γ(n). From (7.3.36) and (2.4) we find the
result

dimPn = N(n, 2) = n+ 1 = dim Γ(n). (27.2.19)

The equality of dimPn and dim Γ(n) is to be expected from the fact that sp(2) acts irre-
ducibly on Pn. It can be shown that Γ(n) is self conjugate,

Γ(n) = Γ(n). (27.2.20)

See Exercise 3.7.36.
Let A(π/8) act on both sides of (2.15) through (2.17). Then, for the left side of (2.15),

we find the result

A(π/8) : c̃1 : qrps = A(π/8)[c̃1, qrps] = [A(π/8)c̃1,A(π/8)qrps]

= [c1,A(π/8)qrps] =: c1 : (1/
√

2)r+s(i)s(q + ip)r(q − ip)s. (27.2.21)

For the right side we find

A(π/8)(r − s)qrps = (r − s)(1/
√

2)r+s(i)s(q + ip)r(q − ip)s. (27.2.22)

Therefore, after cancellation of common terms, (2.15) is transformed under the action of
A(π/8) to the relation

: (p2 + q2)/2 : (q + ip)r(q − ip)s = i(r − s)(q + ip)r(q − ip)s. (27.2.23)

Similary, (2.16) and (2.17) are transformed to the relations

: (q + ip)2 : (q + ip)r(q − ip)s = −4is(q + ip)r+1(q − ip)s−1, (27.2.24)

: (q − ip)2 : (q + ip)r(q − ip)s = 4ir(q + ip)r−1(q − ip)s+1. (27.2.25)

The monomials qrps (with r + s = n) obviously form a basis for Pn. The relations (2.9)
through (2.11) show that the complex polynomials (q + ip)r(q − ip)s also form a basis for
Pn and, with the factors (1/

√
2)n(is), the two bases are related by the symplectic and

unitary transformations A(±π/8). According to (2.23) the polynomials (q+ ip)r(q− ip)s are
eigenfunctions of the harmonic oscillator Lie operator : (p2 + q2)/2 :. For this reason, they
will be referred to as the resonance basis. The utility of the resonance basis will become
clear in Chapter 23. Since it is made from Cartesian components, the monomial basis qrps

will be referred to as the Cartesian basis.
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Exercises

27.2.1. The Lie algebras for su(2) and sp(2) are equivalent over the complex field. Yet, for
purposes of observing how u(n) is embedded within sp(2n), it is convenient to give su(2)
and sp(2) different root vector structures. Specifically, for su(2) we define two root vectors
±α by the rules

±α = ±
√

2e1. (27.2.26)

(Observe they have length
√

2). Then the su(2) Lie algebra is spanned by the elements c1,
r(α), and r(−α); and the Cartan rules (1.13) and (1.14) give the results

[c1, r(±α)] = {e1 · (±α)}r(±α) = ±
√

2r(±α), (27.2.27)

[r(α), r(−α)] = (e1 ·α)c1 =
√

2c1. (27.2.28)

Consider the su(2) within sp(4) as described in Section 5.7. Upon making the identifications
c↔ c1 and r(±)↔ r(±α), verify that the rules (5.7.10) and (5.7.11) are identical to (2.27)
and (2.28). Show that C1 and R(±α) as given by (5.8.8) and (5.8.11) satisfy analogous
commutation rules, and therefore describe one of the su(2) subgroups within su(3). Show
that there are two other su(2) subgroups within su(3) corresponding to the use of R(±β)
and R(±γ) and suitable linear combinations of the Cj. Note that all the su(3) root vectors
in Figure 5.8.1 have length

√
2. With regard to representations of su(2), call them Γ(n),

show that there is one such for each n value with n = 0, 1, 2, · · · . Show that the highest
weight for Γ(n) is given by

wh = nφ1 (27.2.29)

with
φ1 = (1/

√
2)e1. (27.2.30)

Draw su(2) weight diagrams for the first few representations. Verify that they are similar
to those for sp(2), see Figure 2.2, except that the spacing between dots is

√
2 rather than 2.

Examine the weight diagrams for su(3) as shown in Figures 5.8.3 through 5.8.8. Show that
the spacing between the dots in the directions of the su(3) root vectors is

√
2. These dots

describe su(2) representations within su(3).

27.2.2. For a 2n-dimensional phase space, let A(π/8) be the map defined by the equation

A(π/8) = exp[−i(π/8) : (p2
1 − q2

1) + (p2
2 − q2

2) + · · ·+ (p2
n − q2

n) :]. (27.2.31)

Show that A(π/8) has the property

A(π/8)za =
∑
b

Wabzb (27.2.32)

where W is the matrix given by (3.9.9).

27.2.3. For first-order polynomials, and in analogy with (2.9) and (2.10), introduce the
basis elements a± defined by the relations

a+ = (1/
√

2)(p+ iq) = A(π/8)p, (27.2.33)
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a− = (1/
√

2)(p− iq) = −iA(π/8)q. (27.2.34)

Show that these elements satisfy the Poisson bracket relations

[a+, a−] = A(π/8)[p,−iq] = i. (27.2.35)

Let H be the harmonic oscillator Hamiltonian

H = (ω/2)(p2 + q2). (27.2.36)

Show that H can be written in the form

H = ωa+a−. (27.2.37)

Use (2.35) to verify the equations of motion

ȧ± = [a±, H] = ω[a±, a+a−] = ±iωa±. (27.2.38)

Show that they have the solution

a±(t) = a±(0) exp(±iωt). (27.2.39)

From this result, find q(t) and p(t).

27.3 Symplectic Classification of Analytic Vector

Fields in Two Variables

Let Lf be a general vector field in two variables z1 and z2 where f denotes the collection of

2 functions (f1, f2) as in Section 5.3. (The functions f1 and f2 may also depend on the time
t, but for simplicity we will suppress this possible dependence in our notation because t only
plays the role of a parameter.) Assume that f1 and f2 are analytic at some common point
z0

1 , z0
2 . Without loss of generality we may take this point to be the origin. (If not, make

a linear change of variables that sends z0
1 , z0

2 to the origin.) Then we may decompose the
Taylor expansions of the components of f into sums of homogeneous polynomials and, in
so doing, decompose Lf into a sum of vector fields of the form Lfn where the components

of fn are homogeneous polynomials of degree n:

Lf =
∞∑
n=0

Lfn . (27.3.1)

The homogeneous vector fields Lfn can now be considered individually.

Let Σ denote the vector field

Σ =
∑
a

za(∂/∂za) = z1(∂/∂z1) + z2(∂/∂z2) = q(∂/∂q) + p(∂/∂p). (27.3.2)
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Then, by Euler’s relation, we have the result

#Σ#Lfn = {Σ,Lfn} = (n− 1)Lfn . (27.3.3)

See Exercises 1.5.1 and 7.6.7. (Remark: Sometimes Σ is called the Euler field because of its
connection with the Euler relation.) We will say that Lfn is homogeneous of degree (n−1).

In view of (5.3.3) and (5.3.17), in the special case of a Hamiltonian vector field : fn : there
is the result

#Σ# : fn := {Σ, : fn :} = (n− 2) : fn : . (27.3.4)

Thus, the vector field : fn : is homogeneous of degree (n − 2). Finally it is easily verified
that there is a grading relation of the form

{Lf ` ,Lgm} = Lhn with n = `+m− 1. (27.3.5)

Let f2 be a quadratic polynomial in q, p. Then, using (3.5), we have the relation

#f2#Lgm = {: f2 :,Lgm} = Lhm . (27.3.6)

We draw the important conclusion that the set of homogeneous vector fields Lgm transforms
under and forms a representation of sp(2,R).

What irreducible representations occur? Consider first the case of Hamiltonian vector
fields. In this case

#f2# : gm := {: f2 :, : gm :} =: [f2, gm] :=: (: f2 : gm) : . (27.3.7)

It follows from the previous section that the Hamiltonian vector fields : gm : are transformed
into each other under the action of sp(2,R) and carry the irreducible representation Γ(m).

What about general vector fields? Note that

: q := ∂/∂p and : p := −∂/∂q. (27.3.8)

It follows that any Lg0 is a Hamiltonian vector field, and these fields carry the representation
Γ(1). Next consider the vector fields Lg1 . They evidently form a 4-dimensional space
spanned by the vector fields za(∂/∂zb) with a = 1, 2 and b = 1, 2.1 We know that any : h2 :
is such a vector field, and that these vector fields carry the representation Γ(2), which is 3
dimensional. Also, Σ is of the form Lg1 . From (3.4) we conclude that

#f2#Σ = {: f2 :,Σ} = −{Σ, : f2 :} = −#Σ# : f2 := 0. (27.3.9)

Consequently, Σ carries the representation Γ(0). It follows that any Lg1 can be written
uniquely in the form

Lg1 = λ1 : q2 : +λ2 : qp : +λ3 : p2 : +λ4Σ =: λ1q
2 + λ2qp+ λ3p

2 : +λ4Σ

= : h2 : +λ4Σ. (27.3.10)

1Let z1, z2, · · · zm be m variables. Consider the m2 vector fields za(∂/∂zb). They can be shown to form
a basis for the Lie algebra g`(m). See Exercise 10.8.
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The term : h2 : is a member of the representation Γ(2), and the term λ4Σ belongs to Γ(0).
That is, the vector fields Lg1 carry as a direct sum the representations Γ(2) and Γ(0). Note
that

dimLg1 = 4 = 3 + 1 = dim Γ(2) + dim Γ(0), (27.3.11)

as required.
With this background in mind, let us consider the general case Lgm with m ≥ 1. Any

such vector field can be written in the form

Lgm =
2∑

a=1

gma (∂/∂za) (27.3.12)

where gm1 and gm2 denote two homogeneous polynomials of degree m. We have just learned
that the (∂/∂za) carry the representation Γ(1), and we know from the previous section that
the gma carry the representation Γ(m). It follows from the derivation property of #f2# that
Lgm must carry the direct product representation Γ(m) ⊗ Γ(1). See Exercise 3.2. Also, in
the case of sp(2), we have the Clebsch-Gordan series result

Γ(m)⊗ Γ(1) = Γ(m+ 1)⊕ Γ(m− 1). (27.3.13)

This is just the sp(2) analog of the familiar statement that spin m/2 and spin 1/2 combine
to make spin (m + 1)/2 and spin (m − 1)/2. Recall (5.8.33) and remember that for the
purposes of the present section and previous section we have made the definition n = 2j.

It follows that any Lgm with m ≥ 1 has the unique decomposition

Lgm =: hm+1 : + Gm−1. (27.3.14)

Here hm+1 is a unique homogeneous polynomial of degree m + 1 that is a member of the
representation Γ(m + 1) and Gm−1 is a unique vector field homogeneous of degree (m − 1)
that is a member of the representation Γ(m− 1). Let us introduce the notation

Hm+1 =: hm+1 : (27.3.15)

to denote a Hamiltonian vector field that carries the representation Γ(m + 1). Then (3.13)
can be written in the form

Lgm = Hm+1 + Gm−1. (27.3.16)

We define Gm−1 to be the non-Hamiltonian part of Lgm . What we have learned is that any
homogeneous polynomial vector field in two variables can be uniquely decomposed into a
Hamiltonian and a non-Hamiltonian part. We will learn subsequently that this result holds
in any (even) number of variables.

In the case of two variables there is an additional step that can be made. Consider
any vector field of the form fm−1Σ. In view of (3.9) this vector field is a member of the
representation Γ(m− 1). Thus, in the case of two variables we may write

Lgm = : hm+1 : + fm−1Σ (27.3.17)

where both hm+1 and fm−1 are uniquely determined.
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As a simple, but instructive, example of the decomposition just described, consider the
case of the damped harmonic oscillator described by the equation of motion

q̈ + 2βq̇ + q = 0. (27.3.18)

This equation can be rewritten in the first-order form

q̇ = p, (27.3.19)

ṗ = −(q + 2βp). (27.3.20)

These equations can next be expressed in the Lie form

q̇ = Lq, ṗ = Lp (27.3.21)

where L is the vector field

L = p(∂/∂q)− (q + 2βp)(∂/∂p). (27.3.22)

Evidently L is of the form (3.10). By comparing coefficients we find the decomposition

L = : −(p2 + 2βpq + q2)/2 : −βΣ. (27.3.23)

It is easily verified that the Hamiltonian (p2 +2βpq+q2)/2 produces simple harmonic motion
with a frequency ω1 given by the relation

ω2
1 = 1− β2. (27.3.24)

Also, in this case, the vector fields H2 and G0 commute. Since the vector field −βΣ produces
exponential decay, it follows that the general solution to (3.18) is of the form

q = Ae−βt sin(ω1t+ φ). (27.3.25)

What we have learned is that damping contributes both a non-Hamiltonian and a Hamil-
tonian part to the vector field. The non-Hamiltonian part produces exponential decay, and
the Hamiltonian part shifts the frequency. For further detail, see Exercises 3.7 through 3.10.

Exercises

27.3.1. A Lie algebra is called simple if it has no invariant subalgebras (ideals). See Section
8.9. Show that the Lie algebra su(2), and hence also sp(2) and so(3), is simple. Show that
su(3) is simple. What are the ranks of sp(2), so(3), su(2), and su(3)? See Section 5.8.

27.3.2. Show that #f2# has the derivation property

#f2#
∑
a

ga(∂/∂za) =
∑
a

(: f2 : ga)(∂/∂za) +
∑
a

ga#f2#(∂/∂za). (27.3.26)

27.3.3. Compare the dimensions of both sides of (3.13).
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27.3.4. Use (5.3.26), and the discussion surrounding it, as well as (3.16) and (3.17) to show
that Gm−1 is non-Hamiltonian.

27.3.5. Show that Σ can be written in the form

Σ = −
∑
a,b

zaJab : zb : . (27.3.27)

We know that both the za and the : zb : transform according to Γ(1). But Σ carries the
representation Γ(0). It follows that the numbers Jab are the Clebsch-Gordan coefficients
that couple Γ(1)⊗ Γ(1)′ down to Γ(0).

27.3.6. Consider the vector Lg2 given by

Lg2 = q2(∂/∂q). (27.3.28)

Find h3 and f1 as in (3.15) for this vector field.

27.3.7. Verify (3.18) through (3.23). Verify that the vector field −βΣ produces exponential
decay,

e−tβΣq = e−βtq, (27.3.29)

e−tβΣp = e−βtp. (27.3.30)

For the Hamiltonian
H = (p2 + 2βpq + q2)/2 (27.3.31)

make the transformation of variables

q =
1√
2

(Q− P ), (27.3.32)

p =
1√
2

(Q+ P ). (27.3.33)

Verify that this transformation is symplectic, and hence H is transformed to H ′ with

H ′ = (1/2)[(1− β)P 2 + (1 + β)Q2]. (27.3.34)

Also, show that Σ is unchanged by this transformation,

q(∂/∂q) + p(∂/∂p) = Q(∂/∂Q) + P (∂/∂P ). (27.3.35)

Next make a second transformation of variables,

Q = [(1− β)/(1 + β)]1/4q. (27.3.36)

P = [(1 + β)/(1− β)]1/4p. (27.3.37)

Verify that this transformation is also symplectic, and hence H ′ is transformed to H ′′ with

H ′′ = (1/2)(1− β2)1/2(p2 + q2) = (ω1/2)(p2 + q2). (27.3.38)
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Again show that Σ is unchanged,

Q(∂/∂Q) + P (∂/∂P ) = q(∂/∂q) + p(∂/∂p). (27.3.39)

(This is the second time that Σ is unchanged. Why must this be? See Exercise 9.4.) Evi-
dently, in accord with previous claims, H ′′ produces simple harmonic motion with frequency
ω1. And, since Σ is unchanged, the new variables still exhibit the same exponential decay
as that in (3.29) and (3.30).

27.3.8. The oscillator described by (3.18) is underdamped when β < 1, critically damped
when β = 1, and overdamped when β > 1. Exercise 3.6 deals with the underdamped
case. Carry out a smiliar analysis for the critically and overdamped cases. Hint: For the
overdamped case, H ′ as given by (3.34) produces hyperbolic motion. In this case, make the
transformation of variables

Q = [(β − 1)/(β + 1)]1/4q, (27.3.40)

P = [(β + 1)/(β − 1)]1/4p. (27.3.41)

Verify that this transformation is symplectic and hence H ′ is transformed to H ′′ with

H ′′ = (1/2)(β2 − 1)1/2(−p2 + q2). (27.3.42)

Show that H ′′ produces growth that goes like exp[t(β2 − 1)1/2] as well as decay that goes
as exp[−t(β2 − 1)1/2]. For large β the growth rate of the growing term is almost as large as
the decay rate in (3.29) and (3.30). They therefore nearly cancel. The net and well know
result is that it takes a very long time for a highly overdamped oscillator to come to rest.

27.3.9. Find a pair of differential equations of the form

q̇ = · · · ,

ṗ = · · · ,

by expressing q, p in terms of q, p with the aid of (3.32) through (3.37) and using (3.19)
and (3.20). Find the vector field for these differential equations and decompose it into
Hamiltonian and non-Hamiltonian parts. Solve the differential equations.

27.3.10. Show that H as given by (3.31) and L as given by (3.23) have the property

LH = −βΣH = −2βH. (27.3.43)

Therefore, H must evolve according to the nonoscillatory rule

H = (constant) × e−2βt. (27.3.44)

Verify directly from (3.19) and (3.25) that (3.44) is, in fact, correct.
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27.3.11. Let G be the function

G = az2
1 + bz1z2 + cz2

2 = aq2 + bqp+ cp2. (27.3.45)

Find the associated gradient vector field LG. See Exercise 5.3.7. Decompose LG into Hamil-
tonian and non-Hamiltonian parts. Find G such that

LG = Σ. (27.3.46)

Can a gradient vector field ever also be a Hamiltonian vector field?

27.3.12. The Van der Pol oscillator is described by the differential equation

q̈ − 2λ(1− q2)q̇ + q = 0 (27.3.47)

with λ > 0. Upon making the definition p = q̇, show that (3.47) is produced by the vector
field

L = p(∂/∂q)− (q − 2λp)(∂/∂p)− 2λq2p(∂/∂p). (27.3.48)

Evidently L has the homogeneous decomposition

L = Lg1 + Lg3 (27.3.49)

where
Lg1 = p(∂/∂q)− (q − 2λp)(∂/∂p), (27.3.50)

Lg3 = −2λq2p(∂/∂p). (27.3.51)

Verify that these homogeneous vector fields in turn have the decompositions

Lg1 =: h2 : + G0 (27.3.52)

with
h2 = −(p2 − 2λpq + q2)/2, (27.3.53)

G0 = λ[q(∂/∂q) + p(∂/∂p)] = λΣ; (27.3.54)

Lg3 =: h4 : + G2, (27.3.55)

with
h4 = −(λ/2)q3p, (27.3.56)

G2 = −(λ/2)q2Σ. (27.3.57)

Show from (3.54) that the solution q = 0 is unstable for λ > 0. Argue that for small λ the
solutions to (3.47) should be nearly those for a simple harmonic oscillator, i.e., any circle in
q, p phase space. Show from energy considerations that for small λ the Van der Pol oscillator
should have a limit cycle that is nearly a circle in phase space (about the origin) of radius
2, which is indeed the case. Observe that

G0 + G2 = λ(1− q2/2)Σ. (27.3.58)
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Show that for a solution of the form q = A sin(t+ φ) there is the relation

〈(1− q2/2)〉 = 1− A2/4 (27.3.59)

where 〈 〉 denotes time averaging. Show that there is the general operator relation

{: f2 :, (G0 + G2)} = λ[: f2 : (1− q2/2)]Σ. (27.3.60)

By considering an operator of the form

exp(−t : f2 :)(G0 + G2) exp(t : f2 :), (27.3.61)

use (3.60) to find the relation

〈G0 + G2〉 = λ〈(1− q2/2)〉Σ. (27.3.62)

Thus, on the limit cycle, the growth/damping due to (G0 + G2) averages to zero. Consider
what appears to be a generalization of the Van der Pol oscillator described by the equation

q̈ − 2λq̇ + 2τq2q̇ + q = 0 (27.3.63)

where λ and τ are positive. Verify that (3.63) can be brought to the form (3.47) by a suitable
scaling of q. Verify, for small λ and τ , that (3.63) has a nearly circular limit cycle in phase
space whose radius is given by the relation

A = 2
√

(λ/τ). (27.3.64)

27.3.13. Suppose that f is an analytic function of the complex variable z = x + iy, and
write the relations

w = f(z) (27.3.65)

and
w = u(x, y) + iv(x, y). (27.3.66)

Then, because f is assumed analytic, u and v satisfy the Cauchy-Riemann equations

∂u/∂x = ∂v/∂y, (27.3.67)

∂u/∂y = −∂v/∂x. (27.3.68)

In terms of the phase-space variables {q, p}, consider the differential form

v(q, p)dq + u(q, p)dp. (27.3.69)

According to Exercise 6.4.6, this form will be exact if there is the relation

∂v/∂p = ∂u/∂q. (27.3.70)

From the Cauchy-Riemann equation (3.67) we see that the relation (3.70) is in fact true,
and therefore there is a function H such that

u(q, p) = ∂H/∂p, (27.3.71)
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v(q, p) = ∂H/∂q. (27.3.72)

We know that any Hamiltonian gives rise to the Hamiltonian vector field : −H : given by
the rule

: −H := (∂H/∂p)(∂/∂q)− (∂H/∂q)(∂/∂p). (27.3.73)

In view of (3.71) and (3.72), we also have the relation

: −H := u(q, p)(∂/∂q)− v(q, p)(∂/∂p). (27.3.74)

Thus, any analytic function f gives rise to a Hamiltonian vector field.
Consider the differential form

u(q, p)dq − v(q, p)dp. (27.3.75)

Show, using the second Cauchy-Riemann equation (3.68), that this form is also exact so
that there is a function K such that

u(q, p) = ∂K/∂q, (27.3.76)

v(q, p) = −∂K/∂p. (27.3.77)

Show that the Hamiltonian vector field : −K : is given in terms of u and v by the relation

: −K := −v(q, p)(∂/∂q)− u(q, p)(∂/∂p). (27.3.78)

Thus, any analytic function f also gives rise to a second Hamiltonian vector field. Show
that (3.78) arises from (3.74) upon replacing f by if .

For the analytic function f given by

f(z) = z2, (27.3.79)

find the Hamiltonians H and K.

27.3.14. Review Exercise 3.13. For the analytic function f given by

f(z) = z2, (27.3.80)

consider the vector field L given by

L = u(q, p)(∂/∂q) + v(q, p)(∂/∂p). (27.3.81)

Verify that this vector field is not Hamiltonian, and decompose it into Hamiltonian and
non-Hamiltonian parts. Make analogous calculations for the vector field L′ given by

L′ = −v(q, p)(∂/∂q) + u(q, p)(∂/∂p). (27.3.82)

27.3.15. Show that Duffing’s equation (1.4.31) arises from the vector field L = L0 +L1 +L3

where
L0 = (ε cosωτ)(∂/∂p), (27.3.83)

L1 = p(∂/∂q)− (q + 2βp)(∂/∂p), (27.3.84)

L3 = −(q3)(∂/∂p). (27.3.85)

Verify that L0 and L3 are Hamiltonian,

L0 =: (ε cosωτ)q :, (27.3.86)

L3 = − : q4/4 : . (27.3.87)

Using (3.22) and (3.23), decompose L1 into Hamiltonian and non-Hamiltonian parts.
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27.4 Structure of sp(4,R)
The Lie algebra sp(4,R) is 10 dimensional, and its Cartan subalgebra is 2 dimensional.
Therefore, in the Cartan basis, there should be 8 ladder operators. They are labelled by 8
two-component root vectors consisting of 4 vectors and their negatives. We will call these
4 vectors α, β, γ, and δ. They are given in terms of two orthogonal unit vectors e1 and e2

by the relations
α = 2e1, (27.4.1)

β = e1 + e2, (27.4.2)

γ = 2e2, (27.4.3)

δ = −e1 + e2. (27.4.4)

The eight sp(4) root vectors (the vectors α, β, γ, δ and their negatives) are shown in
Figure 4.1. Note that all root vectors are of the form (±ei ± ej) with i, j and the signs
taken independently and the zero vector omitted. Thus, there are basically two kinds of
root vectors: short root vectors with length

√
2 and long root vectors with length 2. (And

the angle between any two successive root vectors as one goes around the root diagram is
45 degrees.) They satisfy the normalization relations∑

µ
(ei · µ)(µ · ej) = 12δij. (27.4.5)

Again see Section 5.8 for an analogous treatment of su(3).

β

γ

α

δ

2

2

2

2

Figure 27.4.1: Root diagram showing the root vectors for sp(4).

The Lie algebra sp(4,R) is generated by the monomials zazb with a, b ranging from 1 to
4. See Section 5.7. For present purposes it is convenient to use as the basis for the Cartan
subalgebra the polynomials

c1 = −(i/2)(p2
1 + q2

1), (27.4.6)
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c2 = −(i/2)(p2
2 + q2

2). (27.4.7)

The Lie operators associated with c1 and c2 obviously commute. They are also Hermitian,

: cj :†=: cj : . (27.4.8)

Finally, Lie transformations of the form

M(θ1, θ2) = exp(−iθ1 : c1 : −iθ2 : c2 :)

= exp[−(θ1/2) : p2
1 + q2

1 : −(θ2/2) : p2
2 + q2

2 :] (27.4.9)

are real symplectic, unitary, and lie on a 2-torus which is a maximal torus in Sp(4,R). See
Sections 3.9, 5.9, and 7.2.

For the ladder operators in sp(4) we use the polynomials

r(±α) = (
√

2/4)(q1 ± ip1)2, (27.4.10)

r(±β) = (1/2)(q1 ± ip1)(q2 ± ip2), (27.4.11)

r(±γ) = (
√

2/4)(q2 ± ip2)2, (27.4.12)

r(±δ) = (i/2)(q1 ∓ ip1)(q2 ± ip2). (27.4.13)

Their associated Lie operators obey the conjugation relations

: r(µ) :†=: r(−µ) : . (27.4.14)

It is easily verified that the Cartan subalgebra and ladder operators satisfy the Poisson
bracket rules

[cj, ck] = 0, (27.4.15)

[cj, r(µ)] = (ej · µ)r(µ), (27.4.16)

[r(µ), r(−µ)] =
∑
j

(ej · µ)cj, (27.4.17)

as desired. There are also the relations

[r(µ), r(ν)] = N(µ,ν)r(µ+ ν) (27.4.18)

provided the sum (µ+ ν) is again a root vector. All other brackets vanish. For the case of
sp(4), the N(µ,ν) have the values ±

√
2. The positive N ’s are N(α, δ), N(β, δ), N(β,−δ),

N(γ,−δ), N(δ,−β), N(δ,−γ), N(−α,β), N(−β,∗), N(−β, ∗), N(−γ, ∗), N(−δ, ∗),
N(−δ, ∗). We also note, as was true for sp(2), that for the scalar product (7.3.12) the
basis elements cj and r(µ) are orthonormal,

〈cj, cj〉 = 〈r(µ), r(µ)〉 = 1, (27.4.19)

〈cj, ck〉 = 0 for j 6= k, (27.4.20)

〈cj, r(µ)〉 = 0, (27.4.21)

〈r(µ), r(ν)〉 = 0 for µ 6= ν. (27.4.22)



27.4. STRUCTURE OF SP (4,R) 1841

At this point, we remark that it is tempting to assume that the rank of a Lie algebra
equals the maximum number of mutually commuting elements. (Some texts even make this
claim!) This need not be the case. For sp(4), which has rank 2, it is evident that the 3
elements : p2

1 :, : p1p2 :, and :p2
2 : are mutually commuting. However, they are not Hermitian

and, when exponentiated, do not even produce a torus (not to mention a maximal torus).
Nor can other elements be found in the Lie algebra such that relations of the form (4.16)
hold with the : pkp` : playing the role of the c’s. Instead, as will be evident in Section 27.5
[see (5.12), (5.14), and (5.16)], they are related by a symplectic unitary transformation to
ladder operators. Therefore they do not meet the requirements to form a Cartan subalgebra.

We close this section by examining how sp(2), u(2), su(2), and so(2) reside within sp(4).
The presence of sp(2) is evident. Comparison of Figures 1.1 and 4.1, and comparison of
(1.1) and (4.10), shows that if we identify the coordinate pair q, p with the pair q1, p1, then
the r(±α) for sp(2) and sp(4) agree. Also, the c1 for sp(2) given by (1.11) agrees with the
c1 given for sp(4) by (4.6). We also note that there is a second sp(2) within sp(4) generated
by r(±γ) and c2. It is identical to the sp(2) of Section 27.1 if we identify the pair q, p with
q2, p2. Thus, there is an sp(2) within sp(4) for each equal and opposite pair of long root
vectors. (See also Exercise 5.5.) These root vectors have length 2 as is requred for an sp(2)
root vector. See Section 27.1.

The presence of u(2) and su(2) within sp(4) is less evident. Comparison of (5.7.8) and
(4.13) shows that there are the relations

r(±) = r(∓δ). (27.4.23)

Also, comparison of (5.7.4), (5.7.9) and (4.6), (4.7) gives the relations

b0 = i(c1 + c2), (27.4.24)

c = (1/
√

2)(c1 − c2). (27.4.25)

Thus, the su(2) of Section 5.7 is associated with c and the r(∓δ) root vectors of sp(4), and
also including b0 yields u(2). We also note that the spin 1 objects h± and h0 of Section 5.7
given by (5.7.21) through (5.7.23) are proportional to the sp(4) generators r(α), r(β), and
r(γ) given by (4.10) through (4.12). Reference to Figure 4.1 shows that they should indeed
transform among each other under the action of r(∓δ) as given by (5.7.26) and (5.7.27).
Moreover, we note that there is a second su(2) [and a corresponding u(2)] within sp(4)
associated with the root vectors r(±β). Thus, there is an su(2) and a u(2) within sp(4) for
each equal and opposite pair of short root vectors. These root vectors have length

√
2 as

required for su(2) root vectors. See Exercise 2.1.
Finally, there is an so(2) subalgebra within sp(4) whose presence is not at all obvious

from looking at the sp(4) root diagram. Let Jz be the quadratic polynomial defined by the
equation

Jz = q1p2 − q2p1. (27.4.26)

It generates rotations in the q1, q2 and p1, p2 planes:

exp : θJz : q1 = q1 cos θ + q2 sin θ, (27.4.27)

exp : θJz : q2 = −q1 sin θ + q2 cos θ; (27.4.28)
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exp : θJzp1 = p1 cos θ + p2 sin θ, (27.4.29)

exp : θJz : p2 = −p1 sin θ + p2 cos θ. (27.4.30)

From (4.13) we see that it is related to elements in the Cartan basis by the equation

Jz = −[r(δ)− r(−δ)]. (27.4.31)

Exercises

27.4.1. Verify the Lie product rules (4.15) through (4.18).

27.4.2. Verify the relations (4.26) through (4.31). Show that Jz obeys the eigen relations

: Jz(q1 ± iq2)n = ∓in(q1 ± iq2)n, (27.4.32)

: Jz : (p1 ± ip2)n = ∓in(p1 ± ip2)n. (27.4.33)

27.4.3. Explore the properties of J ′z that is defined in analogy to Jz by the equation

J ′z = −[r(β)− r(−β)]. (27.4.34)

See Figure 4.1.

27.5 Representations of sp(4,R)
The description of representations of sp(4) follows the general Cartan procedure as described
for su(3) in Section 5.8. For sp(4), since it has rank 2, there are two fundamental weights
φ1 and φ2. They are given by the relations

φ1 = e1 = α/2, (27.5.1)

φ2 = e1 + e2 = β, (27.5.2)

and are shown in Figure 5.1 along with the sp(4) root vectors. Thus, for sp(4), every highest
weight wh is of the form

wh = mφ1 + nφ2 = (m+ n)e1 + ne2, (27.5.3)

where m and n are arbitrary nonnegative integers. Correspondingly, for each m,n pair,
there is an irreducible representation Γ(m,n) with highest weight wh given by (5.3). It can
be shown that the dimension of Γ(m,n) is given by the relation

dim Γ(m,n) = (1/6)(m+ 2n+ 3)(m+ n+ 2)(m+ 1)(n+ 1). (27.5.4)

See Exercise 5.1. It can also be shown that these representations are self conjugate,

Γ(m,n) = Γ(m,n). (27.5.5)
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Figure 27.5.1: Fundamental weights φ1 and φ2 for sp(4). The root vectors are also shown.

Table 27.5.1: Dimensions of Representations of sp(4).

m n dim Γ(m,n) m n dim Γ(m,n)
0 0 1 0 2 14
1 0 4 3 0 20
0 1 5 2 1 35
2 0 10 1 2 40
1 1 16 0 3 30

See Exercise 3.7.36. For quick reference the dimensions of the first few representations are
listed in Table 5.1 above. Where there is no possibility of confusion, we will sometimes refer
to a representation by its dimension.

From a knowledge of the root vectors and the highest weight it is a simple matter to
construct weight diagrams for the low-dimensional representations. Figures 5.2 through 5.7
show weight diagrams for the first few representations. Inspection of these figures and refer-
ence to Table 5.1 shows that the weights must have unit multiplicities for the representations
Γ(0, 0), Γ(1, 0), and Γ(0, 1). For Γ(2, 0), which is the adjoint or regular representation, the
weight vector at the origin has multiplicity 2. The representation Γ(1, 0) corresponds to the
representation of sp(4) by 4 × 4 matrices of the form JS. See (5.7.27) of Section 5.7. It
happens that the Lie algebras for sp(4) and so(5) are equivalent over the complex field. The
sp(4) representation Γ(0, 1), which is 5 dimensional, is related to the obvious 5 × 5 matrix
representation of so(5). See Exercise 5.4.
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w
2

w
1

Figure 27.5.2: Weight diagram for the representation 1 = Γ(0, 0).

Now, in mimicry of what was done before in Section 21.2, let Pm denote the set of
polynomials homogeneous of degree m in the variables q1, p1, q2, p2; and let f2 be a quadratic
polynomial in these variables. Then we have the relation

: f2 : Pm ⊆ Pm. (27.5.6)

It follows that the set of homogeneous polynomials of degree m forms a representation of
sp(4,R).

What irreducible representations occur? The study of this question is again facilitated
by a map A(π/8) defined this time by the equation

A(π/8) = exp[−i(π/8) : p2
1 − q2

1 + p2
2 − q2

2 :]. (27.5.7)

As before, A is complex symplectic and unitary. Calculation gives the result

A(π/8)(qr11 p
s1
1 q

r2
2 p

s2
2 ) =

(1/
√

2)r1+s1+r2+s2(i)s1+s2(q1 + ip1)r1(q1 − ip1)s1(q2 + ip2)r2(q2 − ip2)s2 .

(27.5.8)

Evidently A(±π/8) again transforms between what we will again call the Cartesian and
resonance bases.

With the aid of A we again define transformed Lie basis polynomials c̃j and r̃(µ) by the
rule

c̃1 = A(−π/8)c1 = −q1p1, (27.5.9)

c̃2 = A(−π/8)c2 = −q2p2, (27.5.10)

r̃(α) = A(−π/8)r(α) = (1/
√

2)q2
1, (27.5.11)

r̃(−α) = A(−π/8)r(−α) = −(1/
√

2)p2
1, (27.5.12)

r̃(β) = A(−π/8)r(β) = q1q2, (27.5.13)
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Figure 27.5.3: Weight diagram for the fundamental representation 4 = Γ(1, 0).

r̃(−β) = A(−π/8)r(−β) = −p1p2, (27.5.14)

r̃(γ) = A(−π/8)r(γ) = (1/
√

2)q2
2, (27.5.15)

r̃(−γ) = A(−π/8)r(−γ) = −(1/
√

2)p2
2, (27.5.16)

r̃(δ) = A(−π/8)r(δ) = p1q2, (27.5.17)

r̃(−δ) = A(−π/8)r(−δ) = p2q1. (27.5.18)

Since A is symplectic, the transformed basis polynomials obey the same Poisson bracket
rules (4.15) athrough (4.18). Since A is also unitary, the transformed basis polynomials also
satisfy the orthonormality relations (4.19) through (4.22) and the conjugacy relations (4.8)
and (4.14).

Now consider the actions of the Lie operators : c̃j : and : r̃(µ) : on the general monomials
qr11 p

s1
1 q

r2
2 p

s2
2 . Calculation gives the results

: c̃1 : qr11 p
s1
1 q

r2
2 p

s2
2 = (r1 − s1)qr11 p

s1
1 q

r2
2 p

s2
2 , (27.5.19)

: c̃2 : qr11 p
s1
1 q

r2
2 p

s2
2 = (r2 − s2)qr11 p

s1
1 q

r2
2 p

s2
2 , (27.5.20)

: r̃(α) : qr11 p
s1
1 q

r2
2 p

s2
2 =

√
2s1q

r1+1
1 ps1−1

1 qr22 p
s2
2 , (27.5.21)

: r̃(−α) : qr11 p
s1
1 q

r2
2 p

s2
2 =

√
2r1q

r1−1
1 ps1+1

1 qr22 p
s2
2 , (27.5.22)

: r̃(β) : qr11 p
s1
1 q

r2
2 p

s2
2 = s1q

r1
1 p

s1−1
1 qr2+1

2 ps22 + s2q
r1+1
1 ps11 q

r2
2 p

s2−1
2 , (27.5.23)

: r̃(−β) : qr11 p
s1
1 q

r2
2 p

s2
2 = r1q

r1−1
1 ps11 q

s2
2 p

s2+1
2 + r2q

r1
1 p

s1+1
1 qr2−1

2 ps22 , (27.5.24)

: r̃(γ) : qr11 p
s1
1 q

r2
2 p

s2
2 =

√
2s2q

r1
1 p

s1
1 q

r2+1
2 ps2−1

2 , (27.5.25)

: r̃(−γ) : qr11 p
s1
1 q

r2
2 p

s2
2 =

√
2r2q

r1
1 p

s1
1 q

r2−1
2 ps2+1

2 , (27.5.26)

: r̃(δ) : qr11 p
s1
1 q

r2
2 p

s2
2 = −r1q

r1−1
1 ps11 q

r2+1
2 ps22 + s2q

r1
1 p

s1+1
1 qr22 p

s2−1
2 , (27.5.27)

: r̃(−δ) : qr11 p
s1
1 q

r2
2 p

s2
2 = s1q

r1
1 p

s1−1
1 qr22 p

s2+1
2 − r2q

r1+1
1 ps11 q

r2−1
2 ps22 . (27.5.28)
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wh(5)

Figure 27.5.4: Weight diagram for the representation 5 = Γ(0, 1).

Evidently any monomial of a given degree can be transformed into any other monomial of
the same degree with the aid of the r̃(µ). Therefore sp(4) acts irreducibly on Pm. Also, qm1
is the vector of highest weight in Pm, and has the weight ωh = mφ1,

: c̃1 : qm1 = mqm1 = (e1 ·mφ1)qm1 , (27.5.29)

: c̃2 : qm1 = 0 = (e2 ·mφ1)qm1 .

Upon examination of (5.3) we conclude that, in the case of 4 variables, Pm carries the
representation Γ(m, 0) of sp(4). From (7.3.36) and (5.4) we find, as expected, the result

dimPm = N(m, 4) = (1/6)(m+ 3)(m+ 2)(m+ 1) = dim Γ(m, 0). (27.5.30)

Note that, unlike the case of 2 variables, the Pm for various m do not carry all the repre-
sentations of sp(4), but only the representations Γ(m, 0).

As before, we can let A(π/8) act on both sides of (5.19) through (5.28). Doing so gives
results analogous to those in (2.23) through (2.25). Consequently, as before, the : cj : and
: r(µ) : act on the resonance basis in the same way that the : c̃j : and : r̃(µ) : act on the
monomial basis.

Exercises

27.5.1. Weyl discovered that for the simple Lie algebras the dimension of a representation
Γ(wh) labeled by the highest weight wh is given the formula

dim Γ(wh) =
∏
µ>0

[µ · (wh + µ+/2)]/[µ · (µ+/2)]. (27.5.31)

Here the product is to be taken over all positive root vectors and µ+ is the sum of all positive
roots as in (12.49). [As was the case for weights (see Section 5.8), we define a root µ to be
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22

Figure 27.5.5: Weight diagram for the adjoint representation 10 = Γ(2, 0). The circled
weight at the origin has multiplicity 2. The other eight weights are located at the tips of
the sp(4) root vectors.

positive (and write µ > 0) if its first nonvanishing component is positive.] Show that the
results (2.4), (5.4), and (5.8.21) for sp(2), sp(4), and su(3) follow from Weyl’s formula. If
you are feeling algebraically rambunctious, verify (8.5) for sp(6).

27.5.2. Verify (5.30).

27.5.3. Look at the sp(4) weight diagrams shown in Figures 5.2 through 5.7. Verify that
the spacing between the dots in the directions of the long sp(4) root vectors is 2. These
dots describe sp(2) representations within sp(4). See Section 21.2. Verify that the spacing
between the dots in the directions of the short sp(4) root vectors is

√
2. These dots describe

su(2) representations within sp(4). See Exercise 2.1.

27.5.4. The goal of this exercise is to relate the Lie algebras sp(4) and so(5), and the Lie
groups Sp(4) and SO(5). You already know from Exercise 3.7.31 that they have the same
dimension. You also know from Section 5.10.1 that sp(2n,R) and usp(2n) are equivalent
over the complex field, but not over the real field. In this exercise you will show that usp(4)
and so(5,R) are isomorphic. Therefore, in so doing, you will show that that sp(4,R) and
so(5,R) are equivalent over the complex field, but not over the real field.

Review Exercise 8.2.12. There it is shown that if K ∈ su(4), then L given by

Lαβ(K) = −(1/2)tr[K(Aα)†Aβ] (27.5.32)

will have the property L ∈ so(6,R). Correspondingly, from the relation

Rαβ(v) = (1/4)tr[vTAαv(Aβ)†], (27.5.33)

there will be an R ∈ SO(6,R) for every v ∈ SU(4). Now suppose that K ∈ sp(4,C) as well
so that K ∈ usp(4). Then we will also have v ∈ Sp(4,C) so that v ∈ USp(4).
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Figure 27.5.6: Weight diagram for the representation 16 = Γ(1, 1). The circled weights on
the inner diamond have multiplicity 2.

w2

w1

wh(14)
2

2

22

Figure 27.5.7: Weight diagram for the representation 14 = Γ(0, 2). The circled weight at
the origin has multiplicity 2.
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Suppose we set α = 6 in (5.33). From (8.2.98) we see that

A6 = J, (27.5.34)

and therefore, if v is symplectic, there is the relation

vTA6v = vTJv = J = A6. (27.5.35)

Consequently, show that there is the result

R6β(v) = (1/4)tr[vTA6v(Aβ)†] = (1/4)tr[vTJv(Aβ)†]

= (1/4)tr[J(Aβ)†] = (1/4)tr[A6(Aβ)†] = δ6β. (27.5.36)

Next set β = 6 in (5.33). Show that

Rα6(v) = (1/4)tr[vTAαv(A6)†] = (1/4)tr[vTAαv(J)†]

= (1/4)tr[Aαv(J)†vT ] = (1/4)tr[AαJ†]

= (1/4)tr[Aα(A6)†] = δα6. (27.5.37)

Consequently show that, when v ∈ USp(4), R has the block form

R(v) =


R11 R12 R13 R14 R15 0
R21 R22 R23 R24 R25 0
R31 R32 R33 R34 R35 0
R41 R42 R43 R44 R45 0
R51 R52 R53 R54 R55 0
0 0 0 0 0 1

 . (27.5.38)

Let R̂ be the 5× 5 matrix

R̂ =


R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55

 . (27.5.39)

We know that R ∈ SO(6,R) when v ∈ USp(4), and we have seen that R must then also
have the form (5.38). Consequently, there is the result that R̂ ∈ SO(5,R) when v ∈ USp(4).
Therefore (5.33) provides a map of USp(4) into SO(5,R) when α, β are restricted to range
from 1 to 5. Verify that this map is a homomorphism,

R̂(v1v2) = R̂(v1)R̂(v2), (27.5.40)

and that
R̂(−v) = R̂(v) (27.5.41)

so that the homomorphism is two to one.
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Finally, we should study the relation between usp(4) and so(5,R). Show from (5.32)
that

L6β(K) = Lα6(K) = 0 when K ∈ usp(4). (27.5.42)

We already know that L is real and antisymmetric when K ∈ su(4) and hence it will be real
and antisymmetric when K ∈ usp(4) since usp(4) is a subalgebra of su(4). It follows that
(5.32) provides a map of usp(4) into so(5,R) when α, β are restricted to range from 1 to 5.
Your last task is to show that this map is an isomorphism.

As a first step, verify that J ∈ usp(4). Consider computing L(J). From (5.32) we know
that

Lαβ(J) = −(1/2)tr[J(Aα)†Aβ]. (27.5.43)

Examine the products (Aα)†Aβ. See (8.2.112) through (8.2.116). Observe that the products
are either symmetric matrices S or antisymmetric matrices A. Recall that matrices of the
form JS are traceless. Therefore we only need be concerned with those products that are
antisymmetric. But in this case we only need consider those products whose results are
proportional to J = A6 because of the orthogonality condition (8.2.121). From (8.2.108) we
see that the only products that contribute are of the form A2A4. Verify that

L24(J) = −(1/2)tr[J(A2)†A4] = (1/2)tr[JA2A4]

= (1/2)tr[JA6] = −(1/2)tr[A6(A6)†] = −2. (27.5.44)

Thus, show that

L(J) =


0 0 0 0 0 0
0 0 0 −2 0 0
0 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (27.5.45)

Next verify that (5.32) provides a homomorphism of usp(4) into so(5,R) when α, β are
restricted to range from 1 to 5. Finally, make an argument analogous to that of Exercise
8.9.19 to show that (5.32) provides an isomorphism of usp(4) into so(5,R) when α, β are
restricted to range from 1 to 5.

27.5.5. In this exercise we will see that there is a particularly interesting sp(2) subalgebra
residing within sp(4). This subalgebra is of use in the Lie algebraic treatment of (light)
optical systems having axial symmetry. See Appendix X.

Consider the monomials
r̃(α) = (1/

√
2)q2

1, (27.5.46)

c̃1 = −q1p1, (27.5.47)

r̃(−α) = −(1/
√

2)p2
1; (27.5.48)

r̃(γ) = (1/
√

2)q2
2, (27.5.49)

c̃2 = −q2p2, (27.5.50)

r̃(−γ) = −(1/
√

2)p2
2. (27.5.51)
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Note that, consistent with the symmetry of the sp(4) root vector diagram shown in Figure
4.1, the the ingredients of (5.46) through (5.48) are analogous to those of (5.49) through
(5.51).

Verify that there are the Poisson bracket relations

[c̃1, r̃(±α)] = ±2r̃(±α)], (27.5.52)

[r̃(α), r̃(−α)] = 2c̃1. (27.5.53)

As expected, reference to (1.13) and (1.14) reveals that these are the Cartan rules for sp(2).
Also, evidently the ingredients of (5.49) through (5.51) obey the same rules. Finally, the in-
gredients of (5.46) through (5.48) are evidently in involution (commute) with the ingredients
of (5.49) through (5.51).

View q1,q2 and p1,p2 as components of vectors q and p by writing

q = (q1, q2) and p = (p1, p2). (27.5.54)

Also, make the definitions

q2 = q · q = (q1)2 + (q2)2, (27.5.55)

q · p = q1p1 + q2p2, (27.5.56)

p2 = p · p = (p1)2 + (p2)2, (27.5.57)

L+ = (1/
√

2)q2, (27.5.58)

L0 = −q · p, (27.5.59)

L− = −(1/
√

2)p2. (27.5.60)

Verify that there are the Poisson bracket relations

[L0, L±] = ±2L±, (27.5.61)

[L+, L] = 2L0. (27.5.62)

Evidently these relations are the Cartan rules for sp(2). Is this surprising? We see from the
work leading up to this point that this result is to be expected.

Finally, observe that the quantities in (5.55) through (5.57) are invariant under rotations
in the 1, 2 plane: Define the Lie operator Jz by the rule

Jz =: Jz : (27.5.63)

where Jz is defined by (4.26). See also Subsection 16.2.5.2 and (16.2.218) through (16.2.222)
of Exercise 16.2.16. Verify that there are the relations

Jzq2 = Jz(q · p) = Jzp2 = 0. (27.5.64)
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27.6 Symplectic Classification of Analytic Vector

Fields in Four Variables

For the case of analytic vector fields, and in the spirit of Section 17.3, we need to consider
in this section vector fields of the form Lgm where the components of gm are homogeneous
polynomials of degree m in the 4 variables z1 through z4. Mutatis mutandis, many of the
same results follow as before. With Σ defined by

Σ =
∑
a

za(∂/∂za), (27.6.1)

the relations (3.2) and (3.3) are still true. Also, (3.4) remains true, and (3.5) and (3.6) hold
when f2 is quadratic in z1 through z4. It follows that in the 4-variable case the Hamiltonian
vector fields : hm : are transformed into each other under the action of sp(4,R) and carry the
irreducible representation Γ(m, 0). Also, any Lg0 is a Hamiltonian vector field, and these
fields carry the representation Γ(1, 0).

Next consider the vector fields Lg1 . They form a 16-dimensional space spanned by the
vector fields za(∂/∂zb) with a, b = 1, 2, 3, 4. We know that any : h2 : is such a vector field,
and that these vector fields carry the representation Γ(2, 0), which is 10 dimensional. Also,
Σ is of the form Lg1 and, by (3.8), carries the 1-dimensional representation Γ(0, 0). We will
see that any Lg1 can be written uniquely in the form

Lg1 = H2,0 + G0,1 + G0,0. (27.6.2)

Here H2,0 denotes a Hamiltonian vector field of the form

H2,0 =: h2 :, (27.6.3)

which therefore carries the representation Γ(2, 0). G0,0 is a non-Hamiltonian vector field that
is a (constant) multiple of Σ, and therefore carries the representation Γ(0, 0). Finally, G0,1

is a non-Hamiltonian vector field that carries the representation Γ(0, 1). Note from Table
5.1 that Γ(0, 1) has dimension 5 so that we have the completeness count 16 = 10 + 5 + 1.

According to (6.3) finding a suitable basis for the vector fields in H2,0 is equivalent to
finding a suitable basis for the quadratic polynomials in 4-dimensional phase space. But
this has already been done: we may use the basis provided by the sp(4) generators given
in the Cartesian Cartan basis by (5.9) through (5.18).

For the non-Hamiltonian parts we will prove the claims just made by exhibiting suitable
bases for G0,0 and G0,1. For our purposes, it is convenient to work in the Cartesian (monomial)
basis and use the transformed generators defined in (5.9) through (5.18). Consider the 4
vector fields za(∂/∂za) with a = 1 through 4. Evidently, they are mutually commuting. We
also observe that the 3 vector fields : c̃1 :, : c̃2 :, and G̃0,0

0,0 = Σ are made from the za(∂/∂za),

: c̃1 := − : q1p1 := −p1(∂/∂p1) + q1(∂/∂q1) = z1(∂/∂z1)− z3(∂/∂z3), (27.6.4)

: c̃2 := − : q2p2 := −p2(∂/∂p2) + q2(∂/∂q2) = z2(∂/∂z2)− z4(∂/∂z4), (27.6.5)

G̃0,0
0,0 = Σ = z1(∂/∂z1) + z2(∂/∂z2) + z3(∂/∂z3) + z4(∂/∂z4). (27.6.6)
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As a fourth such linearly independent vector field we take the element G̃0,1
0,0 defined by the

equation
G̃0,1

0,0 = z1(∂/∂z1) + z3(∂/∂z3)− z2(∂/∂z2)− z4(∂/∂z4). (27.6.7)

See Exercise 6.1. In addition we define other elements G̃0,1
k,` by the equations

G̃0,1
1,1 = (1/2)#r̃(β)#G̃0,1

0,0 = (1/2){: r̃(β) :, G̃0,1
0,0}

= −z1(∂/∂z4) + z2(∂/∂z3), (27.6.8)

G̃0,1
−1,−1 = (1/2)#r̃(−β)#G̃0,1

0,0 = (1/2){: r̃(−β) :, G̃0,1
0,0}

= z4(∂/∂z1)− z3(∂/∂z2), (27.6.9)

G̃0,1
−1,1 = (1/2)#r̃(δ)#G̃0,1

0,0 = (1/2){: r̃(δ) :, G̃0,1
0,0}

= −z3(∂/∂z4)− z2(∂/∂z1), (27.6.10)

G̃0,1
1,−1 = (1/2)#r̃(−δ)#G̃0,1

0,0 = (1/2){: r̃(−δ) :, G̃0,1
0,0}

= z4(∂/∂z3) + z1(∂/∂z2). (27.6.11)

Since Σ commutes with all the sp(4) generators, we immediately have the results

#c̃j#G̃0,0
0,0 = {: c̃j :,Σ} = −{Σ, : c̃j :} = 0, (27.6.12)

#r(µ)#G̃0,0
0,0 = {: r(µ) :,Σ} = −{Σ, : r(µ) :} = 0. (27.6.13)

Thus, in keeping with its labels, G̃0,0
0,0 carries the representation Γ(0, 0).

Direct computation shows that the five elements G̃0,1
k,` obey the rules

#c̃j#G̃0,1
k,` = {: c̃j :, G̃0,1

k,`} = ej · (ke1 + `e2)G̃0,1
k,` . (27.6.14)

That is why the subscripts are taken to have the k, ` values shown. Reference to Figure 5.4
shows that the right sides of (6.14) are the components of the weights for the representation
Γ(0, 1). In particular, we see that G̃0,1

1,1 occupies the highest weight site wh given by (5.3) for
the representation Γ(0, 1). Therefore there should be the ladder relations

#r̃(α)#G̃0,1
1,1 = #r̃(β)#G̃0,1

1,1 = #r̃(−δ)#G̃0,1
1,1 = 0. (27.6.15)

Direct calculation shows that these relations are true. Similarly, there are the ladder relations

#r̃(±α)#G̃0,1
0,0 = 0, (27.6.16)

#r̃(±γ)#G̃0,1
0,0 = 0, (27.6.17)

because there are no weights in Γ(0, 1), see Figure 5.4, at the sites ±α, ±γ. Further
calculation gives the relation

#r̃(−β)#G̃0,1
1,1 = G̃0,1

0,0 , (27.6.18)
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and all the other ladder relations one expects for the representation Γ(0, 1).
For the sake of comparison, consider the Hamiltonian vector fields : r̃(±β) : and : r̃(±δ) :.

They belong to H2,0 and occupy the same sites as G̃0,1
±1,±1 and G̃0,1

∓1,±1, respectively, in Figure
5.5. They have the form

: r̃(β) :=: q1q2 := z1(∂/∂z4) + z2(∂/∂z3), (27.6.19)

: r̃(−β) := − : p1p2 := z4(∂/∂z1) + z3(∂/∂z2), (27.6.20)

: r̃(δ) :=: p1q2 := z3(∂/∂z4)− z2(∂/∂z1), (27.6.21)

: r̃(−δ) :=: p2q1 := z4(∂/∂z3)− z1(∂/∂z2). (27.6.22)

Evidently the vector fields (6.7) through (6.11) and (6.19) through (6.22) are linearly inde-
pendent. However, in contrast to (6.15), we have the nonzero result

#r̃(−δ)# : r̃(β) := −(
√

2) : r̃(α) : . (27.6.23)

Our proof is complete, and in the process of proof we have exhibited explicit expressions
for the 5 vector fields G̃0,1

0,0 , G̃0,1
±1,±1, and G̃0,1

∓1,±1 that span G̃0,1 in the monomial basis. If
desired, these vector fields can be transformed to the resonance basis with the aid of the
operator

Â(π/8) = exp[−i(π/8)#p2
1 − q2

1 + p2
2 − q2

2#]. (27.6.24)

Of course, the results of such a transformation will again be linear combinations of G̃0,1
0,0 ,

G̃0,1
±1,±1, and G̃0,1

∓1,±1 because Â(π/8) is generated by an #f2# and we know that the set of
G0,1 is transformed into itself under such transformations. For example, we have the result

G0,1
0,0 = Â(π/8)G̃0,1

0,0 = (27.6.25)

At this juncture we point out that there is a one-to-one correspondence between the
elements G̃0,0

0,0 and G̃0,1
k,` and the matrices JA of Section 4.3. We first note that, according

to (4.3.3), the matrices JA are transformed into themselves under the (commutator) action
of sp(2n), and therefore must form a representation of sp(2n). Also, taken together, the
matrices JS [which generate sp(2n)] and the matrices JA generate g`(2n). Similarly, the
vector fields H2,0 [which generate sp(2n)] and the vector fields G0,1 and G0,0 span Lg1 , and it
is easily verified that Lg1 in turn generates g`(2n). In analogy to (7.2.4), write the relations

G̃0,0
0,0zc = [JÃ(0, 0; 0, 0)z]c =

∑
d

[JÃ(0, 0; 0, 0)]cdzd, (27.6.26)

G̃0,1
k,`zc = [JÃ(0, 1; k, `)z]c =

∑
d

[JÃ(0, 1; k, `)]cdzd. (27.6.27)

Then, from the definitions (6.6) through (6.11), we find the results

Ã(0, 0; 0, 0) = −J =


0 0−1 0
0 0 0−1
1 0 0 0
0 1 0 0

 , (27.6.28)
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Ã(0, 1; 0, 0) =


0 0−1 0
0 0 0 1
1 0 0 0
0−1 0 0

 , (27.6.29)

Ã(0, 1; 1, 1) =


0−1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (27.6.30)

Ã(0, 1;−1,−1) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0−1 0

 , (27.6.31)

Ã(0, 1;−1, 1) =


0 0 0 0
0 0 1 0
0−1 0 0
0 0 0 0

 , (27.6.32)

Ã(0, 1; 1,−1) =


0 0 0−1
0 0 0 0
0 0 0 0
1 0 0 0

 . (27.6.33)

Note that, as expected, the matrices Ã are antisymmetric and span the space of 4 × 4
antisymmetric matrices. Also, the matrix JA, when exponentiated and with A given by
any multiple of the Ã in (6.28), produces a positive multiple of the identity matrix. The
remaining JA, with A any linear combination of the five Ã given by (6.29) through (6.33),
are traceless and therefore are in s`(4,R).

We now turn to the general case Lgm with m ≥ 1. Any such vector field can be written
in the form

Lgm =
4∑

a=1

gma (∂/∂za). (27.6.34)

We know that the gma carry the representation Γ(m, 0) and the (∂/∂za) carry the represen-
tation Γ(1, 0). It follows as before from the derivation property of #f2# that Lgm must
carry the direct product representation Γ(m, 0) ⊗ Γ(1, 0). In the case of sp(4) there is the
Clebsch-Gordan series result

Γ(m, 0)⊗ Γ(1, 0) = Γ(m+ 1, 0)⊕ Γ(m− 1, 1)⊕ Γ(m− 1, 0). (27.6.35)

Consequently, any Lgm with m ≥ 1 has the unique decomposition

Lgm = Hm+1,0 + Gm−1,1 + Gm−1,0. (27.6.36)

Here Hm+1,0 is a Hamiltonian vector field that carries the representation Γ(m + 1, 0), and
Gm−1,1 and Gm−1,0 are non-Hamiltonian vector fields that carry the representations Γ(m −
1, 1) and Γ(m− 1, 0), respectively.
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The vector field Hm+1,0 is of the form : hm+1 :. Finding a basis for Gm−1,0 is also easy.
Since Σ carries the representation Γ(0, 0), we have the result that Gm−1,0 is of the form

Gm−1,0 = fm−1Σ, (27.6.37)

where fm−1 is any homogeneous polynomial of degree (m−1). Finding the basis elements for
Gm−1,1 in general requires some work. One may, for example, follow a procedure similar to
that used to find the basis for G0,1. A more systematic procedure would be to compute and
tabulate the complete set of Clebsch-Gordan coefficients for the first several representations
of sp(4). These coefficients could then be used for modest m to find a basis for Γ(m− 1, 1)
in terms of the basis elements for Γ(m, 0)× Γ(1, 0).

As a specific example, let us consider vector fields of the form Lg2 . This set of fields
has dimension 4N(2, 4) = 40. The set of Hamiltonian vector fields H3,0 has dimension
N(3, 4) = 20. The set of non-Hamiltonian vector fields G1,0 has dimension dim Γ(1, 0) = 4.
See Figure 5.3. They are spanned by the basis elements zaΣ. The set of non-Hamiltonian
vector fields G1,1 has dimension dim Γ(1, 1) = 16. See Figure 5.6. Finding a basis for them
would require more work. Some further tools for this task are described in Sections 21.10
and 21.11.2.

Exercises

27.6.1. The choice of G̃0,1
0,0 as given in (6.7) must be made with care to assure that it is

“pure” Γ(0, 1) and contains no Γ(0, 0) or Γ(2, 0) “contamination”. For example, one could
add any amount of Σ and : c̃j : to the selected G̃0,1

0,0 and still satisfy (6.14) with k, ` = 0. Show

that the truth of (6.18) ensures that G̃0,0
0,1 as defined by (6.7) has no Γ(0, 0) contamination.

Show that the truth of (6.16) and (6.17) ensures that G̃0,1
0,0 as defined by (6.7) has no Γ(2, 0)

contamination. Verify the relations (6.8) through (6.23). The basis elements given by (6.7)
through (6.11) have the weights displayed in Figure 5.4. Verify that any attempt to raise
or lower an element to produce one with a weight different from those shown in Figure 5.4
leads to a null result as in (6.15) through (6.18).

27.6.2. Verify (6.28) through (6.33).

27.6.3. The relation (6.35) implies the relation

[dim Γ(m, 0)][dim Γ(1, 0)] =

dim Γ(m+ 1, 0) + dim Γ(m− 1, 1) + dim Γ(m− 1, 0). (27.6.38)

Verify this relation using (5.4).

27.7 Structure of sp(6,R)
The Lie algebra sp(6,R) is 21 dimensional, and its Cartan subalgebra is 3 dimensional.
Therefore, in the Cartan basis, there should be 18 ladder operators. They are labelled by 18
three-component root vectors consisting of 9 vectors and their negatives. For convenience,
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we will call these 9 vectors αj, βj, and γj where j ranges from 1 through 3. They are given
in terms of three orthogonal unit vectors e1 through e3 by the relations

α1 = 2e1, (27.7.1)

α2 = e1 + e2, (27.7.2)

α3 = e1 − e2, (27.7.3)

β1 = 2e2, (27.7.4)

β2 = e2 + e3, (27.7.5)

β3 = e2 − e3, (27.7.6)

γ1 = 2e3, (27.7.7)

γ2 = e3 + e1, (27.7.8)

γ3 = e3 − e1. (27.7.9)

The 18 sp(6) root vectors are shown in Figure 7.1. Note they are all of the form (±ei ± ej)
with the signs taken independently and the zero vector omitted. They satisfy the normal-
ization relations ∑

µ
(ei · µ)(µ · ej) = 16δij. (27.7.10)

The Lie algebra sp(6,R) is generated by the monomials zazb with a, b ranging from 1 to
6. In analogy with the case of sp(4,R), it is convenient to use as the basis for the Cartan
subalgebra the polynomials

c1 = −(i/2)(p2
1 + q2

1), (27.7.11)

c2 = −(i/2)(p2
2 + q2

2), (27.7.12)

c3 = −(i/2)(p2
3 + q2

3). (27.7.13)

Their associated Lie operators are Hermitian and, when exponentiated, generate a 3-torus
which is a maximal torus in sp(6,R). For the ladder operators in sp(6) we use the polyno-
mials

r(±α1) = (
√

2/4)(q1 ± ip1)2, (27.7.14)

r(±α2) = (1/2)(q1 ± ip1)(q2 ± ip2), (27.7.15)

r(±α3) = (i/2)(q1 ± ip1)(q2 ∓ ip2), (27.7.16)

r(±β1) = (
√

2/4)(q2 ± ip2)2, (27.7.17)

r(±β2) = (1/2)(q2 ± ip2)(q3 ± ip3), (27.7.18)

r(±β3) = (i/2)(q2 ± ip2)(q3 ∓ ip3), (27.7.19)

r(±γ1) = (
√

2/4)(q3 ± ip3)2, (27.7.20)

r(±γ2) = (1/2)(q3 ± ip3)(q1 ± ip1), (27.7.21)

r(±γ3) = (i/2)(q3 ± ip3)(q1 ∓ ip1). (27.7.22)
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Figure 27.7.1: Root diagram showing the root vectors for sp(6). The 6 tips of the long root
vectors ±α1, ±β1, ±γ1 form the vertices of a regular octahedron. These root vectors have
length 2. The remaining 12 short root vectors have length

√
2, and their tips lie at the

midpoints of the 12 edges of the unit cube (the cube with edge 2).

Their associated Lie operators obey the standard conjugation relations (4.14). Also, the Lie
algebra generated by the cj and the r(µ) satisfy the standard rules (4.15) through (4.18).
For the case of sp(6), the N(µ,ν) have the values ±

√
2. The positive N ’s are *. As before,

for the scalar product (7.3.12), the basis elements cj and r(µ) are orthonormal and therefore
satisfy the relations (4.19) through (4.22).

We close this section by examining how sp(4), su(3), and so(3) reside within sp(6). The
presence of sp(4) within sp(6) is obvious. Comparison of (4.6) and (4.7) with (7.11) and
(7.12) shows that the cj (with j = 1, 2) are identical for sp(4) and sp(6). Also, comparison
of (4.1) through (4.4) with (7.1) through (7.4) indicates that, apart from labeling, the
root vectors of sp(4) are identical to a subset of those for sp(6). Therefore, there is the
correspondence

α↔ α1, β ↔ α2, γ ↔ β1, δ ↔ −α3. (27.7.23)

Figure 7.2 shows the sp(6) root vectors of Figure 7.1 viewed from above (looking against the
e3 axis). From this perspective, it is obvious that the root vectors (7.23) are arranged as
required for sp(4). See Figure 4.1. Finally, comparison of (4.10) through (4.13) with (7.14)
through (7.17) gives the relations

r(±α) = r(±α1), r(±β) = r(±α2), r(±γ) = r(±β1), r(±δ) = r(∓α3). (27.7.24)

The sp(4) just identified within sp(6) is the obvious one. Continued examination of the
sp(6) root diagram of Figure 7.1 indicates that there are two more sp(4) subgroups within
sp(6) gotten from the one just described by cyclically permuting the indices 1, 2, 3 on the
variables q1, q2, q3 and p1, p2, p3.
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 −δ = e −e 1 2

                β = e  + e1 2

α =  2 e1

        γ = 2 e  2

e  out of plane3

Figure 27.7.2: Top view of sp(6) root vectors of Figure 7.1 showing root vectors of an sp(4)
subgroup. Only the sp(6) root vectors in the e1, e2 plane are displayed. For clarity, all
others are omitted. The vector e3 is out of the plane of the paper.

The presence of su(3) and u(3) within sp(6) is more subtle. Consider the sp(6) root
vectors α3, β3, γ3 given by (7.3), (7.6), and (7.9). They all have length

√
2. They are also

linearly dependent and therefore lie in a plane,

α3 + β3 + γ3 = 0. (27.7.25)

Within this plane they radiate from the origin like spokes equally “spaced” by angles of
120◦. To verify this assertion, first note that the normal to this plane is given by the vector

α3 × β3 = β3 × γ3 = γ3 ×α3 = e1 + e2 + e3. (27.7.26)

Let n be the normal unit vector

n = (e1 + e2 + e3)/
√

3. (27.7.27)

Use of (*) shows that there is the relation

β3 = R(n, 2π/3)α3, (27.7.28)

γ3 = R(n, 2π/3)β3, (27.7.29)

α3 = R(n, 2π/3)γ3. (27.7.30)

Figure 7.3 shows the sp(6) root vectors of Figure 7.1 viewed against the unit vector n. From
this perspective it is evident that the vectors α3, β3, γ3 and their negatives are arranged
as required for the root vectors of su(3). Comparison of Figures 5.8.1 and 7.3 gives the
correspondence

±α↔ ±α3, ±β ↔ ∓γ3, ±γ ↔ ±β3. (27.7.31)
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 n out of plane

1e

3e

e2

β3

γ3

α3

Figure 27.7.3: View against the unit vector n of the sp(6) root vectors of Figure 7.1 showing
root vectors of an su(3) subgroup. Only the sp(6) root vectors in the α3, β3, γ3 plane and
the e1, e2, e3 axes are displayed. For clarity, all others are omitted. The vector n is out of
the plane of the paper.

Correspondingly, comparison of (7.16), (7.19), and (7.22) with (5.8.35) gives the relations

r(±α) = r(±α3), r(±β) = r(∓γ3), r(±γ) = r(±β3). (27.7.32)

Finally, comparison of (5.8.5) with (7.11) through (7.13) gives the relations

b0 = i(c1 + c2 + c3), b3 = i(c1 − c2), b8 = (i/
√

3)(c1 + c2 − 2c3). (27.7.33)

The ladder elements r in (7.32) combined with b3 and b8 in (7.33) span su(3); and they all
together along with b0 span u(3).

The su(3) [and corresponding u(3)] just identified within sp(6) is one of several such
subgroups. Continued examination of Figure 7.1 indicates that there are three more. We
know that the root vectors ±α1, ±β1, ±γ1 form the 6 vertices of a regular octahedron. An
octahedron has 8 triangular faces consisting of 4 opposite pairs. There is an su(3) set of root
vectors in each plane through the origin lying between and parallel to each pair of opposite
faces.

Finally, there is an so(3) subalgebra within sp(6) whose presence is not obvious from
looking at the sp(6) root diagram. The Lj defined by (5.8.89) generate simultaneous rota-
tions in the q1, q2, q3 and p1, p2, p3 spaces. By (7.16), (7.19), and (7.22) they are related to
elements in the Cartan basis by the equation

L1 = q2p3 − q3p2 = r(β3)− r(−β3), (27.7.34)

L2 = q3p1 − q1p3 = r(γ3)− r(−γ3), (27.7.35)

L3 = q1p2 − q2p1 = r(α3)− r(−α3). (27.7.36)

Note that these elements are all within su(3).
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Exercises

27.7.1. Verify that, with the scalar product (7.3.12), the basis elements cj and r(µ) form
an orthonormal set.

27.7.2. Verify the relations (7.28) through (7.30).

27.7.3. Verify that there are other so(3) subalgebras in sp(6) associated with the other
su(3) subalgebras in sp(6).

27.8 Representations of sp(6,R)
The description of representations of sp(6) follows the same general Cartan procedure as
described for su(3) in Section 5.8 and sp(4) in Section 21.5. For sp(6), since it has rank 3,
there are three fundamental weights φ1, φ2 and φ3. They are given by the relations

φ1 = e1 = α1/2, (27.8.1)

φ2 = e1 + e2 = α2, (27.8.2)

φ3 = e1 + e2 + e3, (27.8.3)

and are shown in Figure 8.1 along with the sp(6) root vectors. Thus, for sp(6), every highest
weight wh is of the form

wh = `φ1 +mφ2 + nφ3 = (`+m+ n)e1 + (m+ n)e2 + ne3, (27.8.4)

where `, m, and n are arbitrary nonnegative integers. Correspondingly, for each `, m, n
triplet, there is an irreducible representation Γ(`,m, n) with highest weight wh given by
(8.4). It can be shown that the dimension of Γ(`,m, n) is given by the relation

dim Γ(`,m, n) =
1

720
(`+ 2m+ 2n+ 5)(`+m+ 2n+ 4)(`+m+ n+ 3)

× (`+m+ 2)(m+ 2n+ 3)(m+ n+ 2)(`+ 1)(m+ 1)(n+ 1). (27.8.5)

Again see Exercise 5.1. The representations are also self conjugate,

Γ(`,m, n) = Γ(`,m, n). (27.8.6)

See Exercise 3.7.36. For quick reference the dimensions of the first few representations are
listed in Table 8.1 below. Where there is no possibility of confusion, we will sometimes refer
to a representation by its dimension. Note that Γ(0, 1, 0) and Γ(0, 0, 1) both have dimension
14.

From a knowledge of the root vectors and the highest weight it is a simple matter
to construct weight diagrams for the various low-dimensional representations. Figures 8.2
through 8.5 show weight diagrams for the first few representations. Inspection of these
figures and reference to Table 8.1 shows that the weights must have unit multiplicities
for the representations Γ(0, 0, 0) and Γ(1, 0, 0). For Γ(0, 1, 0) the weight at the origin has
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Figure 27.8.1: Fundamental weights φ1, φ2 and φ3 for sp(6). The root vectors are also
shown.

Table 27.8.1: Dimensions of Representations of sp(6).

` m n dim Γ(`,m, n) ` m n dim Γ(`,m, n)
0 0 0 1 3 0 0 56
1 0 0 6 2 1 0 189
0 1 0 14 2 0 1 216
0 0 1 14 1 2 0 350
2 0 0 21 1 1 1 512
1 1 0 64 1 0 2 378
1 0 1 70 0 3 0 385
0 2 0 90 0 2 1 616
0 1 1 126 0 1 2 594
0 0 2 84 0 0 3 330
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w
3

w
2

w
1

Figure 27.8.2: Weight diagram for the representation 1 = Γ(0, 0, 0).

w3

w2

w1

1

1

1

wh(6)

Figure 27.8.3: Weight diagram for the fundamental representation 6 = Γ(1, 0, 0).

wh(14)

Figure 27.8.4: Weight diagram for the representation 14 = Γ(0, 1, 0). The circled weight at
the origin has multiplicity 2. Observe from Figure 7.1 that the 12 other weights are located
at the tips of the root vectors having length

√
2.
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wh(21)

Figure 27.8.5: Weight diagram for the adjoint representation 21 = Γ(2, 0, 0). The doubly
circled weight at the origin has multiplicity 3. The 18 other weights are located at the tips
of the sp(6) root vectors.

multiplicity 2; and for Γ(2, 0, 0), which is the adjoint or regular representation, the weight
vector at the origin has multiplicity 3.

Let P` be the space of homogeneous polynomials of degree ` in the variables za with
a = 1, 6. Then, by arguments that are now familiar, the space P` forms a representation
of sp(6,R). To see what representations occur we again employ a complex symplectic and
unitary A(π/8) now defined by the equation

A(π/8) = exp[−i(π/8) : p2
1 − q2

1 + p2
2 − q2

2 + p2
3 − q2

3 :]. (27.8.7)

It transforms between the Cartesian and resonance bases by the rule

A(π/8)(qr11 p
s1
1 q

r2
2 p

s2
2 q

r3
3 p

s3
3 ) = (1/

√
2)r1+s1+r2+s2+r3+s3(i)s1+s2+s3 ×

(q1 + ip1)r1(q1 − ip1)s1(q2 + ip2)r2(q2 − ip2)s2(q3 + ip3)r3(q3 − ip3)s3 . (27.8.8)

Use of A gives the transformed Lie basis polynomials c̃j and r̃(µ) listed below:

c̃j = A(−π/8)cj = −qjpj, (27.8.9)

r̃(α1) = A(−π/8)r(α1) = (1/
√

2)q2
1, (27.8.10)

r̃(−α1) = A(−π/8)r(−α1) = −(1/
√

2)p2
1, (27.8.11)

r̃(α2) = A(−π/8)r(α2) = q1q2, (27.8.12)

r̃(−α2) = A(−π/8)r(−α2) = −p1p2, (27.8.13)

r̃(α3) = A(−π/8)r(α3) = q1p2, (27.8.14)

r̃(−α3) = A(−π/8)r(−α3) = q2p1, (27.8.15)

r̃(β1) = A(−π/8)r(β1) = (1/
√

2)q2
2, (27.8.16)
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r̃(−β1) = A(−π/8)r(−β1) = −(1/
√

2)p2
2, (27.8.17)

r̃(β2) = A(−π/8)r(β2) = q2q3, (27.8.18)

r̃(−β2) = A(−π/8)r(−β2) = −p2p3, (27.8.19)

r̃(β3) = A(−π/8)r(β3) = q2p3, (27.8.20)

r̃(−β3) = A(−π/8)r(−β3) = q3p2, (27.8.21)

r̃(γ1) = A(−π/8)r(γ1) = (1/
√

2)q2
3, (27.8.22)

r̃(−γ1) = A(−π/8)r(−γ1) = −(1/
√

2)p2
3, (27.8.23)

r̃(γ2) = A(−π/8)r(γ2) = q3q1, (27.8.24)

r̃(−γ2) = A(−π/8)r(−γ2) = −p3p1, (27.8.25)

r̃(γ3) = A(−π/8)r(γ3) = q3p1, (27.8.26)

r̃(−γ3) = A(−π/8)r(−γ3) = q1p3. (27.8.27)

Since A is both symplectic and unitary, the transformed basis polynomials also obey the
Poisson bracket rules (4.15) through (4.18), and also satisfy the orthonormality conditions
(4.19) through (4.22) and the conjugation relations (4.8) and (4.14).

When the c̃j and r̃(µ) act on the monomials qr11 p
s1
1 q

r2
2 p

s2
2 q

r3
3 p

s3
3 , there are relations anal-

ogous to those in (5.19) through (5.28), and it is evident that sp(6) acts irreducibly on P`.
Also, q`1 is the vector of highest weight in P` and has the weight wh = `φ1,

: c̃1 : q`1 = `q`1 = (e1 · `φ1)q`1 = (e1 ·wh)q`1, (27.8.28)

: c̃2 : q`1 = 0 = (e2 · `φ1)q`1 = (e2 ·wh)q`1, (27.8.29)

: c̃3 : q`1 = 0 = (e3 · `φ1)q`1 = (e3 ·wh)q`1. (27.8.30)

It follows that P` carries the representation Γ(`, 0, 0). We also have, as expected, the result

dimP` = N(`, 6) = (1/120)(`+ 5)(`+ 4)(`+ 3)(`+ 2)(`+ 1) = dim Γ(`, 0, 0). (27.8.31)

At this point we observe that the relations (5.8.27) and (5.8.31) can be written in the
form

Γ(`, 0, 0) =
∑

m+n=`

Γ̂(m,n)⊕
∑

m+n=`−2

Γ̂(m,n)⊕
∑

m+n=`−4

Γ̂(m,n)⊕ · · ·

⊕ Γ̂(0, 0), for ` even; (27.8.32)

Γ(`, 0, 0) =
∑

m+n=`

Γ̂(m,n)⊕
∑

m+n=`−2

Γ̂(m,n)⊕
∑

m+n=`−4

Γ̂(m,n)⊕ · · ·

⊕ Γ̂(1, 0)⊕ Γ̂(0, 1), for ` odd. (27.8.33)

[Here we have used the symbols Γ̂(m,n) to denote representations of su(3) so as not to be
confused with the symbols Γ(m,n) used in Section 21.5 to denote representations of sp(4).]
That is, sp(6) representations of the form Γ(`, 0, 0) can be decomposed into various Γ̂(m,n)
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representations of its su(3) subgroup, and the representations listed occur once and only
once.

Finally, as before, we can let A(π/8) act on both sides of 6-variable relations analogous
to (5.19) through (5.28). Doing so gives results analogous to those in (2.23) through (2.25).
Consequently, as before, the : cj : and : r(µ) : act on the resonance basis in the same way
that the : c̃j : and : r̃(µ) : act on the monomial basis.

Exercises

27.8.1. From (7.14) verify the relation

r(α1)− r(−α1) = i
√

2q1p1. (27.8.34)

Next verify that the transformation

U(θ) = exp : iθq1p1 : (27.8.35)

is symplectic and unitary, and satisfies the relations

U(θ)q1 = exp(−iθ)q1, (27.8.36)

U(θ)p1 = exp(iθ)p1. (27.8.37)

See Exercise 5.4.4. As a consequence verify the relations

U(θ)(p2
1 + q2

1) = p2
1 exp(2iθ) + q2

1 exp(−2iθ), (27.8.38)

U(π/2)(p2
1 + q2

1) = −(p2
1 + q2

1), (27.8.39)

U(π/2) : c1 : U−1(π/2) = − : c1 : . (27.8.40)

Suppose that Cj and R(µ) are any set of matrices that satisfies the commutation rules
analogous to (4.15) through (4.18). That is, the Cj commute and the Cj and R(µ) satisfy
the rules (5.8.12) through (5.8.14). By this definition, they provide a matrix representation
of sp(6). Since the relation (8.40) is purely a consequence of Lie-algebraic rules, show that
there must be the matrix relation

U(π/2)C1[U(π/2)]−1 = −C1, (27.8.41)

where
U(π/2) = exp{(π/

√
8)[R(α1)−R(−α1)]}, (27.8.42)

[U(π/2)]−1 = exp{−(π/
√

8)[R(α1)−R(−α1)]}. (27.8.43)

Suppose |w1w2w3〉 is a vector in this representation with the property

Cj|w1w2w3〉 = wj|w1w2w3〉. (27.8.44)

Show that the vector [U(π/2)]−1|w〉 has the property

C1[U−1(π/2)]−1|w〉 = −w1[U(π/2)]−1|w〉. (27.8.45)
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Prove that if (w1, w2, w3) is a weight vector, so is (−w1, w2, w3). Generalize this result to
show that if (w1, w2, w3) is a weight vector, so are the vectors (±w1,±w2,±w3) where all
± signs are taken independently. Verify similar results for sp(2) and sp(4). Verify that the
weight diagrams shown in Sections 21.2, 21.5, and 21.8 have this property.

27.8.2. Verify (8.31).

27.8.3. Verify by a dimension count that Γ(1, 0, 0) is the fundamental representation of sp(6)
and Γ(2, 0, 0) is the adjoint representation. Repeat analogous calculations for the cases of
sp(2) and sp(4).

27.8.4. Work out the weight diagram for the sp(6) representation Γ(0, 0, 1).

27.9 Symplectic Classification of Analytic Vector

Fields in Six Variables

The symplectic classification of analytic vector fields in six variables is similar to the 4-
variable case. As before, it suffices to consider homogeneous vector fields. The Hamiltonian
vector fields : h` : are transformed into each other under the action of sp(6,R), and carry
the representation Γ(`, 0, 0). Any Lg0 is a Hamiltonian vector field, and these fields carry
the representation Γ(1, 0, 0). The vector field Σ defined by (6.1) with a ranging fron 1 to 6
carries the representation Γ(0, 0, 0).

The 6-dimensional analog of (6.34) shows that in this case the Lg` carry the direct
product representation Γ(`, 0, 0) ⊗ Γ(1, 0, 0). For sp(6) there is the Clebsch-Gordan series
result

Γ(`, 0, 0)⊗ Γ(1, 0, 0) = Γ(`+ 1, 0, 0)⊕ Γ(`− 1, 1, 0)⊕ Γ(`− 1, 0, 0). (27.9.1)

Consequently, any Lg` with ` ≥ 1 has the unique decomposition

Lg` = H`+1,0,0 + G`−1,1,0 + G`−1,0,0. (27.9.2)

Here H`+1,0,0 is a Hamiltonian vector field that carries the representation Γ(`+ 1, 0, 0), and
is of the form : h`+1 :. The quantities G`−1,1,0 and G`−1,0,0 are non-Hamiltonian vector fields
that carry the representations Γ(`− 1, 1, 0) and Γ(`− 1, 0, 0), respectively. The vector fields
G`−1,0,0 are of the form

G`−1,0,0 = f`−1Σ (27.9.3)

where f`−1 is any homogeneous polynomial of degree (`− 1), The construction of the vector
fields that span G`−1,1,0 requires special effort.

As before we will work out the simplest case ` = 1 for which we have the result

Lg1 = H2,0,0 + G0,1,0 + G0,0,0. (27.9.4)

Since Lg1 is spanned by the vector fields za(∂/∂zb) with a, b = 1 through 6, it has dimension
36. We know that H2,0,0 has dimension N(2, 6) = 21, and G0,0,0 has dimension 1. It follows
that G0,1,0 has dimension (36− 21− 1) = 14, which we know is the dimension of Γ(0, 1, 0).
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Similar to the case of sp(4) treated in Section 21.6, finding a suitable basis for the
vector fields in H2,0,0 is equivalent to finding a suitable basis for the quadratic polynomials
in 6-dimensional phase space; and these basis polynomials may be taken to be the sp(6)
generators given in the Cartesian Cartan basis by (8.9) through (8.27).

To find a basis for the non-Hamiltonian parts we will begin with the 6 mutually com-
muting vector fields za(∂/∂za) with a = 1 through 6. The 4 vector fields : c̃j : and G̃0,0,0

0,0,0 = Σ
are made from the za(∂/∂za),

: c̃1 := z1(∂/∂z1)− z4(∂/∂z4), (27.9.5)

: c̃2 := z2(∂/∂z2)− z5(∂/∂z5), (27.9.6)

: c̃3 := z3(∂/∂z3)− z6(∂/∂z6), (27.9.7)

G̃0,0,0
0,0,0 = Σ = z1(∂/∂z1)+z2(∂/∂z2)+z3(∂/∂z3)+z4(∂/∂z4)+z5(∂/∂z5)+z6(∂/∂z6). (27.9.8)

Let us define vector fields Σ̃j by the equations

Σ̃1 = q1(∂/∂q1) + p1(∂/∂p1) = z1(∂/∂z1) + z4(∂/∂z4), (27.9.9)

Σ̃2 = q2(∂/∂q2) + p2(∂/∂p2) = z2(∂/∂z2) + z5(∂/∂z5), (27.9.10)

Σ̃3 = q3(∂/∂q3) + p3(∂/∂p3) = z3(∂/∂z3) + z6(∂/∂z6). (27.9.11)

They are obviously independent of the : c̃j : and are also made from the za(∂/∂za).
We already have the : c̃j : and the combination

Σ = Σ̃1 + Σ̃2 + Σ̃3. (27.9.12)

As the 5th and 6th such linearly independent vectors we take the elements 3G̃0,1,0
0,0,0 and 8G̃0,1,0

0,0,0

defined by the equations

3G̃0,1,0
0,0,0 = Σ̃1 − Σ̃2 = z1(∂/∂z1) + z4(∂/∂z4)− z2(∂/∂z2)− z5(∂/∂z5), (27.9.13)

8G̃0,1,0
0,0,0 = Σ̃1 + Σ̃2 − 2Σ̃3

= z1(∂/∂z1) + z4(∂/∂z4) + z2(∂/∂z2)

+ z5(∂/∂z5)− 2z3(∂/∂z3)− 2z6(∂/∂z6). (27.9.14)

Here the superscripts “3” and “8” are used to refer to the analogous diagonal structure of
the Gell-Mann matrices λ3 and λ8 of Section 5.8. It is easily verified that these 2 vector
fields obey the relations

#c̃j#3G̃0,1,0
0,0,0 = 0, (27.9.15)

#c̃j#8G̃0,1,0
0,0,0 = 0, (27.9.16)

and therefore are candidates for the center elements of Figure 8.4.
We define the remaining 12 vector fields that occupy the other sites of Figure 8.4 by the

equations

G̃0,1,0
1,1,0 = (1/2)#r̃(α2)#3G̃0,1,0

0,0,0 = −z1(∂/∂z5) + z2(∂/∂z4), (27.9.17)



27.9. SYMPLECTIC CLASSIFICATION OF ANALYTIC VECTOR FIELDS IN . . . 1869

G̃0,1,0
−1,−1,0 = (1/2)#r̃(−α2)#3G̃0,1,0

0,0,0 = −z4(∂/∂z2) + z5(∂/∂z1), (27.9.18)

G̃0,1,0
1,−1,0 = (1/2)#r̃(α3)#3G̃0,1,0

0,0,0 = z1(∂/∂z2) + z5(∂/∂z4), (27.9.19)

G̃0,1,0
−1,1,0 = (1/2)#r̃(−α3)#3G̃0,1,0

0,0,0 = −z2(∂/∂z1)− z4(∂/∂z5), (27.9.20)

G̃0,1,0
0,1,1 = #r̃(β2)#3G̃0,1,0

0,0,0 = −z3(∂/∂z5) + z2(∂/∂z6), (27.9.21)

G̃0,1,0
0,−1,−1 = #r̃(−β2)#3G̃0,1,0

0,0,0 = z5(∂/∂z3)− z6(∂/∂z2), (27.9.22)

G̃0,1,0
0,1,−1 = #r̃(β3)#3G̃0,1,0

0,0,0 = −z2(∂/∂z3)− z6(∂/∂z5), (27.9.23)

G̃0,1,0
0,−1,1 = #r̃(−β3)#3G̃0,1,0

0,0,0 = z3(∂/∂z2) + z5(∂/∂z6), (27.9.24)

G̃0,1,0
1,0,1 = #r̃(γ2)#3G̃0,1,0

0,0,0 = z3(∂/∂z4)− z1(∂/∂z6), (27.9.25)

G̃0,1,0
−1,0,−1 = #r̃(−γ2)#3G̃0,1,0

0,0,0 = −z4(∂/∂z3) + z6(∂/∂z1), (27.9.26)

G̃0,1,0
−1,0,1 = #r̃(γ3)#3G̃0,1,0

0,0,0 = −z3(∂/∂z1)− z4(∂/∂z6), (27.9.27)

G̃0,1,0
1,0,−1 = #r̃(−γ3)#3G̃0,1,0

0,0,0 = z1(∂/∂z3) + z6(∂/∂z4). (27.9.28)

They obey the relations

#c̃j#G̃0,1,0
k,`,m = ej · (ke1 + `e2 +me3), (27.9.29)

in keeping with the sites they occupy. We note that G̃0,1,0
1,1,0 occupies the highest weight site

wh given by (8.4) for the representation Γ(0, 1, 0). Therefore there should be the ladder
relation

#r̃(α3)#G̃0,1,0
1,1,0 = 0. (27.9.30)

Direct calculation shows that this relation is true. By comparison, the vector field : r̃(α2) :
has the form

: r̃(α2) :=: q1q2 := z1(∂/∂z5) + z2(∂/∂z4). (27.9.31)

It occupies the same 1,1,0 site in Figure 8.5,

#c̃j# : r̃(α2) : = {: c̃j :, : r̃(α2) :} =: [c̃j, r̃(α2)] :

= (ej ·α2) : r̃(α2) := [ej · (e1 + e2)] : r̃(α2) :, (27.9.32)

and is evidently linearly independent of G̃0,1,0
1,1,0 ,. It satisfies the relation

#r̃(α3)# : r̃(α2) := −(
√

2) : r̃(α1) : . (27.9.33)

It can be verified that the 3G̃0,1,0
0,0,0 , 8G̃0,1,0

0,0,0 , and G̃0,1,0
k,`,m satisfy all the ladder relations one

expects for the representation Γ(0, 1, 0). For example, there is the relation

(1/2)#r̃(−α2)##r̃(α2)#3G̃0,1,0
0,0,0 =3G̃0,1,0

0,0,0 (27.9.34)

which shows that 3G̃0,1,0
0,0,0 has no Γ(0, 0, 0) contamination. (See Exercise 6.1.) There is also

the relation
#r̃(−β2)##r̃(β2)#3G̃0,1,0

0,0,0 = (1/2)(3G̃0,1,0
0,0,0 −8G̃0,1,0

0,0,0) (27.9.35)
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which shows that 3G̃0,1,0
0,0,0 and 8G̃0,1,0

0,0,0 can be transformed into each other, and that 8G̃0,1,0
0,0,0 as

well has no Γ(0, 0, 0) contamination. There are also the relations

#r̃(ν)#3G̃0,1,0
0,0,0 = #r̃(ν)#8G̃0,1,0

0,0,0 = 0 (27.9.36)

for ν = ±α1, ±β1, ±γ1. Note that the sites ±2, 0, 0 and 0,±2, 0 and 0, 0,±2 are empty in
Figure 8.4 and occupied in Figure 8.5. Therefore (9.32) shows that 3G̃0,1,0

0,0,0 and 8G̃0,1,0
0,0,0 , and

hence the G̃0,1,0
k,`,m, have no Γ(2, 0, 0) contamination.

Finally, we observe that the results we have obtained in the monomial basis can be
transformed if desired to the resonance basis with the aid of the operator

Â(π/8) = exp[−i(π/8)#p2
1 − q2

1 + p2
2 − q2

2 + p3
2 − q2

3#]. (27.9.37)

Exercises

27.9.1. Work out the analogs of the relations (9.17) through (9.28) with 3G̃0,1,0
0,0,0 replaced by

8G̃0,1,0
0,0,0 .

27.9.2. Work out the 6 × 6 matrices Ã corresponding to the vector fields G̃0,0,0
0,0,0 , 3G̃0,1,0

0,0,0 ,
8G̃0,1,0

0,0,0 , and G̃0,1,0
k,`,m in analogy to what was done for the 4 × 4 case at the end of Section

21.6. Show that the matrix JA, when exponentiated and with A given by any multiple
of the Ã associated with G̃0,0,0

0,0,0 , produces a positive multiple of the identity matrix. Show

that the remaining JA, with A any linear combination of the fourteen Ã associated with the
remaining G̃ given by (9.13) and (9.14) and (9.17) through (9.28), are traceless and therefore
are in s`(6,R).

27.9.3. Write and verify the sp(6) analog of (6.38), as given in Exercise 6.3, using (9.1) and
(8.5).

27.9.4. In Sections 21.3, 21.6, and 21.9 we learned that Σ always was invariant under the
action of sp(2), sp(4), and sp(6). The purpose of this exercise is to show that this invariance
is a consequence of a more general result. Consider m-dimensional Euclidean space with
coordinates

x = (x1, x2, · · · , xm). (27.9.38)

Here m can be even or odd. Define a vector field Σ by the relation

Σ =
m∑
a=1

xa∂/∂xa. (27.9.39)

Suppose that each x is sent to x̄ under the action of some linear, but invertible, transforma-
tion M ,

x̄ = Mx. (27.9.40)

Define a transformed vector field Σ̄ by the rule

Σ̄ =
m∑
a=1

x̄a∂/∂x̄a. (27.9.41)
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You are to show that
Σ̄ = Σ. (27.9.42)

That is, Σ is invariant under the action of M . Because M is any invertible matrix, we
may say that Σ is invariant under the group GL(m,R). Since Sp(2n,R) is a subgroup of
GL(2n,R), it follows that Σ is also invariant under the group Sp(2n,R).

Begin by inverting (9.40),
x = M−1x̄, (27.9.43)

and verify that this relation has the component form

xa =
∑
b

(M−1)abx̄b. (27.9.44)

Show it follows that
∂xa/∂x̄b = (M−1)ab. (27.9.45)

Verify by the chain rule that there is the relation

∂/∂x̄a =
∑
c

(∂xc/∂x̄a)∂/∂xc =
∑
c

(M−1)ca∂/∂xc. (27.9.46)

Also, the relation (9.40) has the component form

x̄a =
∑
d

Madxd. (27.9.47)

Verify, by employing (9.46) and (9.47) in (9.41), it follows that there is the relation

Σ̄ =
∑
acd

Mad(M
−1)ca xd∂/∂xc =

∑
acd

(M−1)caMad xd∂/∂xc

=
∑
cd

(M−1M)cd xd∂/∂xc =
∑
cd

δcd xd∂/∂xc

=
∑
c

xc∂/∂xc = Σ. (27.9.48)

For an infinitesimal (Lie-algebraic) version of (9.42), see Exercise 10.8.

27.9.5. Suppose an object of mass m is acted upon by a force F arising from a potential V
and a velocity dependent drag force,

F = −∇V − 2βv. (27.9.49)

Define the particle’s momentum p in the usual way

p = mv (27.9.50)

and show that Newton’s equations of motion can be written in the form

q̇ = Lq, ṗ = Lp (27.9.51)
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where L is the vector field

L =
∑
i

(pi/m)(∂/∂qi)− (∂V/∂qi)(∂/∂pi)− (2β/m)pi(∂/∂pi). (27.9.52)

Decompose L into Hamiltonian and non-Hamiltonian parts to find the result

L =: −[p2/(2m) + βp · q + V ] : −βΣ. (27.9.53)

Suppose V is quadratic in the components of q. Show that in this case the Hamiltonian H
defined by

H = p2/(2m) + βp · q + V (27.9.54)

evolves according to the rule
H = (constant)× e−2βt. (27.9.55)

27.9.6. Consider the case of a six-dimensional phase space and all Lie operators of the form
: f3 :. What are the sp(6) transformation properties of the : f3 :†?

27.10 Scalar Product and Projection Operators for

Vector Fields

Section 7.3 described a USp(2n) invariant scalar product for phase-space functions. Here
we will see that there is a related scalar product for vector fields, and we will find that the
use of this vector-field scalar product illuminates the discussion of previous sections.

For our present purposes it is convenient to employ a vector-field basis slightly different
from that used in (5.3.17) and (5.3.18). Let sα be the various phase-space monomials
indexed by α in some covenient way as in Section 7.3 or Section 32.2. Take as vector-field
basis elements the quantities Lαa defined by the equation

Lαa = sα : za : . (27.10.1)

In view of the relations
: za :=

∑
b

Jab(∂/∂zb), (27.10.2)

∂/∂za = −
∑
b

Jab : zb :,

the Lαa manifestly form a satisfactory basis. Now define a scalar product for these basis
elements (and hence, by linearity, for all vector fields) by the rule

〈Lαa,Lβb〉 = 〈sα, sβ〉〈za, zb〉. (27.10.3)

Here the scalar product on the left of (10.3) is the vector-field scalar product, and the scalar
products on the right are the phase-space function scalar products of Section 7.3. Evidently
the vector-field scalar product defined by (10.3) is positive definite.
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Suppose two vector fields Lg and Lh are specified as in (5.3.17). Then, in view of (10.2),
use of (10.3) gives the result

〈Lg,Lh〉 =
∑
a

〈ga, ha〉. (27.10.4)

In the case that g and h are homogeneous, there is the immediate result

〈Lgm ,Lhn〉 = 0 when m 6= n. (27.10.5)

As another interesting case, suppose gm and hm are homogeneous phase-space polynomials
of degree m. Then use of (10.3) gives the result

〈: gm :, : hm :〉 = m〈gm, hm〉. (27.10.6)

Let : f2 : be the Hamiltonian vector field associated with any quadratic polynomial f2,
and consider the corresponding adjoint operator # : f2 : #. For the action of # : f2 : # on
a general vector-field basis element we have the result

# : f2 : #Lαa = (: f2 : sα) : za : +sα : (: f2 : za) : . (27.10.7)

See (3.25). Now watch closely! Take the scalar product of (10.7) with the general basis
vector Lα′a′ and manipulate the result to find the relation

〈# : f2 : #Lαa,Lα′a′〉 = 〈[(: f2 : sα) : za : +sα : (: f2 : za) :], sα′ : za′ :〉
= 〈(: f2 : sα) : za :, sα′ : za′ :〉+ 〈sα : (: f2 : za) :, sα′ : za′ :〉
= 〈: f2 : sα, sα′〉〈za, za′〉+ 〈sα, sα′〉〈: f2 : za, za′〉
= 〈sα, : f2 :† sα′〉〈za, za′〉+ 〈sα, sα′〉〈za, : f2 :† za′〉
= 〈sα : za :, (: f2 :† sα′) : za′ :〉+ 〈sα : za :, sα′ : (: f2 :† za′) :〉
= 〈sα : za :, [(: f2 :† sα′) : za′ : +sα′ : (: f2 :† za′) :]〉
= 〈sα : za :,# : f2 :† #sα′ : za′ :〉 = 〈Lαa,# :: f2 :† #Lα′a′ :〉. (27.10.8)

Here we have used (7.3.15). And, in view of (7.3.15) and (10.8), we have found the beautiful
result

# : f2 : #† = # : f2 :† #. (27.10.9)

In mimicry of (7.3.31), define the analogous operator M̂, which acts on vector fields, by
the rule

M̂ = exp(# : f c2 : #) exp(i# : fa2 : #). (27.10.10)

As a consequence of (8.1.11), operators of the form (10.10) give a realization of the group
USp(2n) acting on the space of vector fields. Moreover, in view of (7.3.26), (7.3.30), and
(10.9), we have the result

M̂† = M̂−1. (27.10.11)

It follows that the vector-field scalar product defined by (10.3) is also USp(2n) invariant.
Finally, as a special case, we see that the operators Â defined by (6.24) and (9.37) are
symplectic and unitary.
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From Section 9 we know that the general homogeneous polynomial vector field (in 6
dimensions) has the decomposition (9.2). Since each term in the decomposition has different
sp(6) [and therefore usp(6)] transformation properties, we might expect that the different
terms in the decomposition would be mutually orthogonal. This is indeed the case. That is,
for the scalar product (10.3) and the decomposition (9.2), there are the relations

〈H`+1,0,0,G`−1,1,0〉 = 〈H`+1,0,0,G`−1,0,0〉
= 〈G`−1,1,0,G`−1,0,0〉 = 0. (27.10.12)

Note that all the vector fields in (10.12) have the same degree of homogeneity. If the degrees
are different, the vector fields are automatically orthogonal by (10.5).

The relations (10.12) will be proved in Subsection 11.2 by group-theoretic methods. Here
we will begin to describe a complementary result. Section 9 showed that the decomposition
(9.2) exists. However, given a specific vector field Lg` , the only method proposed for finding

H`+1,0,0, G`−1,1,0, and G`−1,0,0 was to construct in detail the bases for these spaces and then
match coefficients. Fortunately, there is a more direct approach that accomplishes major
aspects of this task. Part of this approach is described below, and the remainder will be
described in Subsection 11.2.

Here we will show that there are linear projection operators PH and PG that can be
described explicitly and that act on vector fields Lg` to yield the results

PHLg` = H`+1,0,0, (27.10.13)

PGLg` = G`−1,1,0 + G`−1,0,0 = G`+1. (27.10.14)

They also have the properties

(PH)2 = PH , (PG)2 = PG, (27.10.15)

PHPG = PGPH = 0, (27.10.16)

PH + PG = I. (27.10.17)

Here I denotes the identity operator. Finally, the H`+1,0,0 and G`+1 defined by (10.13) and
(10.14) satisfy

〈H`+1,0,0,G`+1〉 = 0. (27.10.18)

We will also show directly that

〈H`+1,0,0,G`−1,1,0〉 = 〈H`+1,0,0,G`−1,0,0〉 = 0. (27.10.19)

We remark that the relations (10.13) and (10.14) are sufficient to carry out the decomposition
required for factorizing general maps as will be done in Section 26.1.

We will first define the projection operators, and then show that they possess the adver-
tised properties. Suppose we are given Lg` and hence g`(z). Then, in the spirit of (7.6.24),
we define the homogeneous polynomial h`+1 by the rule

h`+1 = −[1/(`+ 1)]
∑
ab

g`a(z)Jabzb. (27.10.20)
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Note that h`+1 depends linearly on the g`a. We now define PH by the rule

PHLg` = H`+1,0,0 =: h`+1 : . (27.10.21)

Let us compute the action of : h`+1 : on zc. We find the intermediate result

: h`+1 : zc = [h`+1, zc] = −[1/(`+ 1)]
∑
ab

Jab[g
`
azb, zc]

= −[1/(`+ 1)]
∑
ab

Jab(g
`
a[zb, zc] + zb[g

`
a, zc])

= −[1/(`+ 1)]{
∑
ab

g`aJabJbc +
∑
ab

Jabzb[g
`
a, zc]}

= [1/(`+ 1)]{g`c +
∑
ab

Jabzb[zc, g
`
a]}. (27.10.22)

Here we have used (1.7.10) and (3.1.3). Next write the tautology

[zc, g
`
a] = [za, g

`
c]− Aac (27.10.23)

where
Aac = [za, g

`
c]− [zc, g

`
a]. (27.10.24)

Note that Aac is antisymmetric under the interchange of indices. Insertion of (10.23) into
(10.22) gives the further result

: h`+1 : zc = [1/(`+ 1)]{g`c +
∑
ab

Jabzb[za, g
`
c]−

∑
ab

JabzbAac}. (27.10.25)

The center term on the right of (10.25) can be evaluated,∑
ab

Jabzb[za, g
`
c] =

∑
ab

Jabzb : za : g`c = −
∑
ab

Jbazb : za : g`c

= Σg`c = `g`c. (27.10.26)

Here (7.6.50), (3.1), and (3.26) have been used. Therefore (10.25) can be rewritten in the
form

g`c =: h`+1 : zc + [1/(`+ 1)]
∑
ab

JabzbAac. (27.10.27)

The second term on the right can be manipulated further. Use the antisymmetry of J and
the fact that a, b are dummy summation indices to write

[1/(`+ 1)]
∑
ab

JabzbAac = −[1/(`+ 1)]
∑
ab

zbJbaAac = −[1/(`+ 1)]
∑
ab

zaJabAbc. (27.10.28)

As a result of this manipulation (10.27) can be rewritten in the form

gc =: h`+1 : zc − [1/(`+ 1)]
∑
ab

zaJabAbc. (27.10.29)
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Correspondingly, Lg` can be written in the form

Lg` =: h`+1 : +LGg` (27.10.30)

where
Gg`c = −[1/(`+ 1)]

∑
ab

zaJabAbc. (27.10.31)

Note that Gg` is linear in g` since A is linear in g`. We now define the projection operator
PG by the rule

PGLg` = G`−1,1,0 + G`−1,0,0 = G`+1 = LGg` , (27.10.32)

which is simply a rewriting of the relation

G`+1 = Lg` − : h`+1 : . (27.10.33)

With the projection operator definitions (10.21) and (10.32), the relation (10.30) shows that
(10.17) holds by construction.

It remains to be shown that the projection operators have the advertised properties.
Suppose the g` corresponding to : h`+1 : is used in (10.31) to compute Gg`. According
to (7.6.7) the matrix A given by (10.24) vanishes in this case. Consequently, Gg` is zero.
This observation verifies the second assertion in (10.16). Conversely, suppose Gg` is used in
(10.20) to compute h`+1. We first observe that (10.31) can be rewritten in the form

Gg`a = −[1/(`+ 1)]
∑
cd

zcJcdAda. (27.10.34)

Consequently, we have the result

h`+1 = −[1/(`+ 1)]
∑
ab

Gg`aJabzb

= [1/(`+ 1)2]
∑
abcd

zcJcdAdaJabzb

= [1/(`+ 1)2]
∑
bc

zc(JAJ)cbzb. (27.10.35)

However, since both J and A are antisymmetric, it follows that

(JAJ)T = JT (A)TJT = −JAJ. (27.10.36)

Therefore the right side of (10.35) vanishes by antisymmetry and we find

h`+1 = 0. (27.10.37)

This observation verifies the first assertion in (10.16). Finally, with the aid of (10.16) and
(10.17), we find that

(PH)2 = PH(I − PG) = PH − PHPG = PH . (27.10.38)
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This calculation and its counterpart for PG verify (10.15).
To verify (10.18) we first calculate that

: h`+1 : zc = [h`+1, zc] =
∑
de

(∂h`+1/∂zd)Jde(∂zc/∂ze)

=
∑
de

(∂h`+1/∂zd)Jdeδce = −
∑
d

Jcd(∂h`+1/∂zd). (27.10.39)

Consequently, we find using (10.4), (10.34), and (10.39) the intermediate result

〈G`+1,H`+1,0,0〉 = 〈LGg` , : h`+1 :〉

= [1/(`+ 1)]
∑
abcd

JabJcd〈zaAbc, (∂h`+1/∂zd)〉

= [1/(`+ 1)]
∑
abcd

JabJcd〈Abc, (∂2h`+1/∂za∂zd))〉. (27.10.40)

Here, in the last line, (7.3.14) has also been used. Define tensors T 1 and T 2 by the rules

T 1
abcd = JabJcd, (27.10.41)

T 2
abcd = 〈Abc, (∂2h`+1/∂za∂zd)〉. (27.10.42)

From the antisymmetry of J the tensor T 1 has the symmetry property

T 1
dcba = JdcJba = JabJcd = T 1

abcd. (27.10.43)

From the antisymmetry of A and the symmetry of (∂2h`+1/∂za∂zd) the tensor T 2 has the
symmetry property

T 2
dcba = 〈Acb, (∂2h`+1/∂zd∂za)〉

= −〈Abc, (∂2h`+1/∂za∂zd)〉 = −T 2
abcd. (27.10.44)

It follows that∑
abcd

JabJcd〈Abc, (∂2h`+1/∂za∂zd)〉 =
∑
abcd

T 1
abcdT

2
abcd = −

∑
abcd

T 1
dcbaT

2
dcba = 0, (27.10.45)

and consequently
〈G`+1,H`+1,0,0〉 = 0. (27.10.46)

To verify (10.19) suppose that Lg` is the vector field G`−1,0,0 given in (9.3). Then we
have the relation

g`c = f`−1zc. (27.10.47)

Consequently, from (10.4), (10.39), and (10.47), we find the result

〈G`−1,0,0,H`+1,0,0〉 = 〈Lg` , : h`+1 :〉 = −[1/(`+ 1)]
∑
cd

Jcd〈zcf`−1, (∂h`+1/∂zd)〉

= −[1/(`+ 1)]
∑
cd

Jcd〈f`+1, (∂
2h`+1/∂zc∂zd〉 = 0. (27.10.48)
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Here we have again employed (7.3.14), and used the antisymmetry of J and the symmetry
of (∂2h`+1/∂zc∂zd) to infer that the sum in (10.47) vanishes. Finally, in view of (10.46),
(10.48), and the definition of G`+1 as given in the second part of (10.14) or, equivalently, in
(10.33), we conclude that both statements in (10.19) are correct.

Let us evaluate the scalar products between vector fields associated with linear transfor-
mations. Let F be any 2n× 2n matrix, possibly complex, and use it to define a vector field
Lf 1 by the rule

Lf 1 =
∑
ab

(JF )abzb(∂/∂za). (27.10.49)

Then, comparison of (5.3.17) and (10.49) gives the relation

f 1
a =

∑
b

(JF )abzb. (27.10.50)

From (10.49) we also find the result

Lf 1zc =
∑
d

(JF )cdzd, (27.10.51)

which is analogous to (6.26) and (6.27).
Let G be a second 2n×2n matrix, and use it to define the vector field Lg1 . Now compute

the scalar product between Lf 1 and Lg1 . Doing so gives the result

〈Lf 1 ,Lg1〉 =
∑
a

〈f 1
a , g

1
a〉

=
∑
abc

〈(JF )abzb, (JG)aczc〉

=
∑
abc

[(JF )ab]
∗(JG)ac〈zb, zc〉

=
∑
abc

[(JF )†]ba(JG)acδbc = tr [(JF )†JG]

= tr [F †J†JG] = tr (F †G). (27.10.52)

Here a “*” denotes complex conjugation, and use has been made of (3.1.6). Note that this
scalar product is the same as that in (4.4.16).

Suppose S is a real symmetric matrix. Use it to define a quadratic polynomial h2 as in
(7.2.3),

h2 = −(1/2)
∑
de

Sdezdze. (27.10.53)

Then, from (7.2.4), there is an associated vector field Ls1 given by the relation

Ls1 =: h2 :=
∑
ab

(JS)abzb(∂/∂za) =
∑
a

s1
a(∂/∂za), (27.10.54)

with
s1
a =

∑
b

(JS)abzb. (27.10.55)
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Define the Hamiltonian vector field H2 by writing

H2 =: h2 :, (27.10.56)

and let G2 be any non-Hamiltonian vector field of the form (10.49) with F being any real
antisymmetric matrix A. Compare with (6.26) and (6.27). Then, using (10.52), we find the
result

〈G2,H2〉 = tr (ATS) = −tr (AS) = 0. (27.10.57)

Here we have used the easily proved fact that the trace of the product of an antisymmetric
and a symmetric matrix is always zero. See (4.4.86). We observe that (10.57) is a special
case of the general result (10.46).

We close this section with a further study of first-degree vector fields in 2n variables.
Consider again the relation (10.49) and decompose F , which we now assume to be real, into
symmetric and antisymmetric parts by writing

F = SF + AF . (27.10.58)

That is, we write

Lf =
∑
ab

(JF )abzb(∂/∂za) =
∑
ab

[J(SF + AF )]abzb(∂/∂za) = LfS + LfA (27.10.59)

with

LfS =
∑
ab

(JSF )abzb(∂/∂za) (27.10.60)

and

LfA =
∑
ab

(JAF )abzb(∂/∂za). (27.10.61)

We will now verify directly, as expected, that LfS is a Hamiltonian vector field and LfA is

a non-Hamiltonian vector field. In particular, we will show that there are the relations

PHLfS = LfS , (27.10.62)

PGLfA = LfA . (27.10.63)

Exercises

27.10.1. Show that

: f : =
∑
a

(∂f/∂za) : za : . (27.10.64)

27.10.2. Verify (10.4).

27.10.3. Verify (10.6). Hint: You may use brute force or (10.49), (7.3.14), and (7.6.50).
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27.10.4. Let Lf`−1
be the vector field corresponding to (9.3), and let Lf ′`−1

be a second such
field. Show that

〈Lf`−1
,Lf ′`−1

〉 = (`− 1 + 2n)〈f`−1, f
′
`−1〉 (27.10.65)

where (2n) is the phase-space dimension.

27.10.5. Let h`+1 be any homogeneous polynomial of degree (`+ 1). Find the g` in the Lg`
that equals : h`+1 :. Insert this g` in (10.20) and verify that the h`+1 so produced agrees
with the original h`+1. You have again verified the first result in (10.15).

27.10.6. Consider vector fields that are in G`−1,0,0 and therefore can be written in the form
(10.47). Insert these g` into (10.20) and show that the h`+1 they produce vanish.

27.10.7. Verify that the vector fields H2,0,0, G0,1,0, and G0,0,0 found explicitly in Section 9
satisfy (10.12).

27.10.8. Let z1, z2, · · · zm be m variables. Consider the m2 vector fields Lab defined by the
rule

Lab = za(∂/∂zb). (27.10.66)

Show that these vector fields obey the commutation rules

{Lab,Lcd} = δbcLad − δadLcb. (27.10.67)

Let A be an m×m matrix. Associate with each such matrix the vector field LA defined by
the rule

LA =
∑
ab

AabLab. (27.10.68)

Show that there is the relation
{LA,LB} = LC (27.10.69)

where
C = {A,B}. (27.10.70)

That is, verify that the Lab yield a basis for the general linear group Lie algebra g`(m).
Define a vector field Σ by the relation

Σ = LI =
∑
a

Laa (27.10.71)

where I is the identity matrix. Verify that there is the relation

{Lab,Σ} = 0. (27.10.72)

You have shown that Σ is invariant under g`(m).

27.10.9. Review Exercise 10.8 above. Show that the vector fields spanned by the elements

Lab = za(∂/∂zb)− zb(∂/∂za) (27.10.73)

yield a basis for the Lie algebra so(m). For the cases m = 2n = 2, m = 2n = 4, and
m = 2n = 6 decompose these elements into Hamiltonian and non-Hamiltonian parts. Show
that in each case the Hamiltonian parts span a Lie algebra, and identify these Lie algebras.
What can be said about the non-Hamiltonian parts?
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27.10.10. Use the machinery of this section to find the decompositions (3.51) through (3.56).

27.10.11. Consider the matrices Ã given by (6.28) through (6.33). Relate them to the
matrices C0 through C3 and E1 and E2 given by (4.3.137) through (4.3.140) and (4.3.145)
and (4.3.146). Also relate them to the matrices A1 through A6 given by (8.2.87) through
(8.2.92). Verify directly that the trace of the product of any two different Ã matrices
vanishes. Relate this fact to the assertion (10.12) and the relation (10.52). Show that
all matrices of the form JÃ(0, 1; ∗, ∗) are traceless, and therefore all matrices of the form
exp[JÃ(0, 1; ∗, ∗)] have determinant +1.

27.11 Products and Casimir Operators

In this section we will explore the properties of products of entities when each entity taken by
itself has well-defined properties under the action of the symplectic group. For example, if f`,
gm, hn, · · · are homogeneous polynomials, we could ask about the transformation properties
of the product [(f`)(gm)(hn) · · · ]. Or, we could ask about the transformation properties
of the product of Lie operators [: f` :: gm :: hn : · · · ]. As a third example, we could ask
about the properties of the product of adjoint operators [#f`##gm##hn# · · · ]. The first
case, the transformation properties of the product [(f`)(gm)(hn) · · · ], is simple because the
polynomials f`, gm, hn, · · · can be multiplied together to yield some net polynomial, and the
transformation properties of this polynomial are already known. The remaining two cases
require more work.

27.11.1 The Quadratic Casimir Operator

We will find that a question of particular interest, and also the simplest, is to determine
the transformation properties of the two-element products [: f2 :: g2 :] and [#f2##g2#].
In the case of sp(2), we know that : f2 : and : g2 : (and #f2# and #g2#) each carry the
rerpresentation Γ(2), and therefore the product carries the representation Γ(2)⊗Γ(2). Also,
there is the Clebsch-Gordan series result

Γ(2)⊗ Γ(2) = Γ(0)⊕ Γ(2)⊕ Γ(4). (27.11.1)

(This is just the familiar statement for su(2) or sp(2) that spin 1 and spin 1 combine to
make spin 0, 1, and 2.)

In the case of sp(4), the corresponding representation for each factor is Γ(2, 0); and the
corresponding Clebsch-Gordan series result is known from group theory to be

Γ(2, 0)⊗ Γ(2, 0) = Γ(0, 0)⊕ Γ(0, 1)⊕ Γ(0, 2)⊕ Γ(2, 0)⊕ Γ(2, 1)⊕ Γ(4, 0). (27.11.2)

Finally, in the case of sp(6), the representation for each factor is Γ(2, 0, 0); and the corre-
sponding Clebsch-Gordan series result is

Γ(2, 0, 0)⊗ Γ(2, 0, 0) =

Γ(0, 0, 0)⊕ Γ(0, 1, 0)⊕ Γ(0, 2, 0)⊕ Γ(2, 0, 0)⊕ Γ(2, 1, 0)⊕ Γ(4, 0, 0). (27.11.3)
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Observe from (11.1) through (11.3) that in each case the identity representation [the
representations Γ(0), Γ(0, 0), and Γ(0, 0, 0)] occurs once and only once. (Strictly speaking,
we can only conclude that there is the potential for the identity representation to occur. The
sought after quantity may in fact vanish. See Exercise 11.7.) Consequently, there must be
some combination of quantities of the form [: f2 :: g2 :], or of the form [#f2##g2#], that is
invariant (commutes with all generators) under the action of the symplectic group. More-
over, this combination is unique up to an overall multiplicative constant. This combination
is called the Casimir operator for the symplectic group or symplectic Lie algebra. More
particularly, it is called the quadratic Casimir operator since it is composed of two factors.

Now that we know that a quadratic Casimir operator exists (and is unique), the problem
is to find it explicitly. In effect, what we must do is find the Clebsch-Gordan coefficients
that produce the identity representations in the series (11.1) through (11.3). We will work
up to this task by stages.

Suppose L is a Lie algebra with basis elements B1, B2, · · · . Then, as in Section 3.7, the
basis elements satisfy Lie product rules of the form

[Bα, Bβ] =
∑
γ

cγαβBγ. (27.11.4)

Here [, ] denotes the Lie product (however realized) and the quantities cγαβ are the structure
constants that specify L.

Next, suppose R is a realization of L in terms of m × m matrices.2 Then, for each
basis element Bα, there will be an associated matrix B̂α, and these matrices will obey the
commutation rules

{B̂α, B̂β} =
∑
γ

cγαβB̂γ (27.11.5)

with the same structure constants as in (11.4). See Section 3.7.
Since a Lie algebra is a vector space, it is natural to consider the possibility of introducing

some kind of scalar product among the elements of L. Suppose B and B′ are any two
elements in L, and let (B,B′) denote their scalar product. Then, by linearity, there is the
result

(B,B′) =
∑
αα′

bα(b′)α
′
(Bα, Bα′) (27.11.6)

where the bα and (b′)α
′

are the components of B and B′,

B =
∑
α

bαBα, (27.11.7)

B′ =
∑
α′

(b′)α
′
Bα′ . (27.11.8)

[Note that we have taken the scalar product to be linear (no complex conjugation), in both
the components bα and (b′)α

′
rather than antilinear (complex conjugation) in one and linear

2In this context we use the term realization rather than representation because in this chapter we wish,
for the most part, to use the term representation only in the specific/technical sense of referring to some
Γ(· · · ).
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in the other as in (7.3.12).] The relation (11.6) can be rewritten in the form

(B,B′) =
∑
αα′

bα(b′)α
′
gαα′ (27.11.9)

where gαα′ is defined by writing
gαα′ = (Bα, Bα′). (27.11.10)

In view of (11.9), the quantities gαα′ may be regarded as the entries in some kind of metric
tensor, and the scalar product between any two elements in L is specified once the entries
gαα′ are specified.

In principle, the entries gαα′ may be defined at will. However, it is advantageous to
define gαα′ in a way that involves some properties of the Lie algebra L and has certain
desired features. A way to do this is to define gαα′ with the aid of the realization R by
writing

(Bα, Bα′)R = gRαα′ = tr (B̂αB̂α′). (27.11.11)

Here we have written the sub and superscript R to indicate that the realization R has been
used. See Section 4.4, equation (4.4.39), for an analogous construction.

In the case of sp(2), for example, suppose we use as a basis the matrices B0, F , and G
associated with the quadratic phase-space polynomials b0, f , and g as described in Section
5.6. Then we find the result

gF =

\ b0 f g

b0 −2 0 0

f 0 2 0

g 0 0 2

. (27.11.12)

Here we have employed the notation gF to indicate that for the realization R we have used
the 2× 2 fundamental or defining representation. Also, we have labeled the entries in gF by
the associated quadratic phase-space polynomials. Suppose instead of the basis B0, F , and
G we use the Cartan basis of Section 21.1. The 2 × 2 matrices associated with these basis
elements are easily found. See Exercise 11.1. Using these matrices gives the result

gF =

\ c1 r(+α) r(−α)

c1 2 0 0

r(+α) 0 0 2

r(−α) 0 2 0

(27.11.13)

where we have now labeled the entries by the polynomials associated with the Cartan basis
elements.

We observe that gF is symmetric as is desired for a metric tensor. This symmetry
property is true in general for any realization R,

gRαα′ = gRα′α, (27.11.14)
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because the trace operation has the permutation symmetry property (3.6.124). Indeed, by
linearity and symmetry, we have the results

(B,B′)R = tr (B̂B̂′) = tr (B̂′B̂) = (B′, B)R.

Analogous calculations can be carried out for the cases of sp(4) and sp(6) using the
fundamental matrix representations of Sections 5.7 and 5.8. Here it is convenient to introduce
additional notation. According to Section 5.5, associated with any quadratic polynomial f
there is an associated Hamiltonian matrix JSf . For any two quadratic polynomials f and
g. let us make the definitions

〈f, g〉F = (f, g)F = (JSf , JSg)F = tr(JSfJSg). (27.11.15)

Then, if we use the Cartan bases of Sections 21.4 and 21.7 and the fundamental representa-
tions we find, both for sp(4) and sp(6), results analogous to (11.13) that can be written in
the general form

〈cj, ck〉F = 2δjk, (27.11.16)

〈cj, r(µ)〉F = 0, (27.11.17)

〈r(µ), r(ν)〉F = 0, if µ 6= −ν, (27.11.18)

〈r(µ), r(−µ)〉F = 2. (27.11.19)

Note that, as they stand, the relations (11.13) and (11.16) through (11.19) or, equiva-
lently (11.11) with R = F , define a scalar product for the elements in the various sp(2n,R)
Lie algebras. If we identify the Lie elements with their associated quadratic polynomials in
the phase space variables z using relations of the form (5.5.1) and (5.5.3), then we have in ef-
fect also defined a scalar product 〈f, g〉F among quadratic polynomials. However, unlike the
scalar product of Section 7.3, this scalar product is only defined for quadratic polynomials.
Exercises 11.1 and 11.3 examine the relation between these two scalar products.

The definition (11.11) has a further desirable property beyond symmetry that is less
obvious. Let C be some element in L. Use it to transform any basis element Bα into the
element Btr

α by the rule

Btr
α = exp(ε : C :)Bα = Bα + ε : C : Bα + (ε2/2!) : C :2 Bα + · · ·

= Bα + ε[C,Bα] + (ε2/2!)[C, [C,Bα]] + · · · . (27.11.20)

Here : C : is a differential operator in the case that the Lie product is a Poisson bracket.
Otherwise it is simply the adjoint operator defined by the property

: C : Bα = [C,Bα]. (27.11.21)

See (3.7.31) and (5.3.2). The matrix analog of (11.20) in the realization R is the transfor-
mation

B̂tr
α = exp(ε#Ĉ#)B̂α = B̂α + ε#Ĉ#B̂α + (ε2/2!)#C#2Bα + · · ·

= B̂α + ε{Ĉ, B̂α}+ (ε2/2!){Ĉ, {Ĉ, B̂α}}+ · · · . (27.11.22)
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At this point we invoke the relation

exp(ε#Ĉ#)B̂α = exp(εĈ)B̂α exp(−εĈ), (27.11.23)

which is the matrix analog of (8.2.5) and derived in the same way. It follows that (11.22)
can be rewritten in the form

B̂tr
α = exp(εĈ)B̂α exp(−εĈ). (27.11.24)

Consequently, from (11.11) and (11.15), we have the result

(Btr
α , B

tr
α′)R = tr(B̂tr

α B̂
tr
α′)

= tr[exp(εĈ)B̂α exp(−εĈ) exp(εĈ)B̂α′ exp(−εĈ)]

= tr[exp(εĈ)B̂αB̂α′ exp(−εĈ)]

= tr[exp(−εĈ) exp(εĈ)B̂αB̂α′ ] = tr(B̂αB̂α′)

= (Bα, Bα′)R. (27.11.25)

Here we have again used standard properties of the trace operation. See Exercise 3.6.7.3 But
we know that objects of the form [exp(ε : C :)] correspond to Lie group elements generated
by the Lie algebra L. Therefore, (11.25) shows that the scalar product (11.11) has the
remarkable property that it is invariant under the action of the group.

The relation (11.25) displays group invariance in finite (group) form. It is also instruc-
tive to view group invariance in infinitesimal (Lie-algebraic) form. This is easily done by
retaining only the first two terms in (11.20) and equating powers of ε. Doing so in (11.25)
gives the result

([C,Bα], Bα′)R + (Bα, [C,Bα′ ])R = 0. (27.11.26)

Upon setting C = Bα′′ and relabeling indices, (11.26) takes the beautifully symmetric, if
less illuminating, forms

([Bα, Bα′ ], Bα′′)R = (Bα, [Bα′ , Bα′′ ])R, (27.11.27)

(Bα, [Bα′ , Bα′′ ])R = (Bα′ , [Bα′′ , Bα])R = (Bα′′ , [Bα, Bα′ ])R.

Have you ever encountered relations like (11.26) and (11.27) before? You have. See Exercise
11.8.

The invariance relation (11.25) has implications for the metric tensor gR. Since the
relation (11.20) involves only Lie products and sums, we know from (11.4) that there are
transformation coefficients Uαβ such that (11.20) can be rewritten in the form

Btr
α =

∑
β

UαβBβ. (27.11.28)

Inserting this relation into (11.25) gives the results∑
ββ′

UαβUα′β′(Bβ, Bβ′)R = (Bα, Bα′)R, (27.11.29)

3We are also in the uncomfortable position of using the symbols tr to stand both for transformed and
trace. Some flexibility of mind is sometimes required.
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or, with the aid of (11.10), ∑
ββ′

UαβUα′β′g
R
ββ′ = gRαα′ . (27.11.30)

If we view the quantities Uαβ and gRαα′ as entries in matrices, the relation (11.30) can be
written in the compact form

UgRUT = gR. (27.11.31)

Finally, we know that U is invertible. [Simply change the sign of ε in (11.20).] Suppose that
gR is also invertible. We will soon see that it is for the symplectic Lie algebra. [Indeed, gR

can be shown to be invertible for all simple Lie algebras.] Then (11.31) can also be rewritten
in the form

(UT )−1(gR)−1U−1 = (gR)−1, (27.11.32)

or
UT (gR)−1U = (gR)−1. (27.11.33)

We are ready to construct the quadratic Casimir operator. Following the usual procedure,
we define a metric tensor gαα

′
R with raised indices by the rule

gαα
′

R = [(gR)−1]αα′ . (27.11.34)

Suppose B̂α is any set of linear operators that obey (11.5), but do not necessarily belong
to the reaization R used to define gR. They might, for example, be differential operators or
matrices belonging to some other realization. We define the associated quadratic Casimir
operator C2 by the rule

C2 =
∑
αα′

gαα
′

R B̂αB̂α′ . (27.11.35)

We must now show that C2 has the desired properties. Suppose exp(ε#Ĉ#) is applied to
both sides of (11.35). Here Ĉ is some linear combination of the B̂α. Doing so, and making
use of (11.22) and the isomorphism property (8.2.14), gives the result

Ctr
2 = exp(ε#Ĉ#)C2 =

∑
αα′

gαα
′

R B̂tr
α B̂

tr
α′ . (27.11.36)

But we know that
B̂tr
α =

∑
β

UαβB̂β (27.11.37)

since only the structure constants cγαβ are involved in the computation of U . See (11.5) and
(11.22). Therefore, (11.36) can be rewritten in the form

Ctr
2 =

∑
αα′ββ′

gαα
′

R UαβUα′β′B̂βB̂β′ . (27.11.38)

Also, when written in expanded form, (11.33) and (11.34) yield the relation∑
αα′

gαα
′

R UαβUα′β′ = gββ
′

R . (27.11.39)
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Consequently, we have result

Ctr
2 =

∑
ββ′

gββ
′

R B̂βB̂β′ = C2. (27.11.40)

That is, C2 is invariant under group action.
As a special case of (11.40), set Ĉ = B̂α′′ and equate powers of ε in (11.36) and (11.40).

Doing so gives the infinitesimal result

#B̂α′′#C2 = {B̂α′′ , C2} = 0. (27.11.41)

That is, all Lie generators commute with C2. Put yet another way, the raised metric ten-
sor entries gαα

′
R are the Clebsch-Gordan coefficients that couple together two copies of the

representation associated with the Bα (the adjoint representation) to form the identity rep-
resentation.

There is still another way of looking at our result. Since the commutator is antisym-
metric, the relation (11.41) also states that C2 commutes with all Lie generators. And from
this result, by the linearity and derivation properties of the commutator, we conclude that
C2 commutes with all products and sums of products of Lie generators.

27.11.2 Applications of the Quadratic Casimir Operator

Before continuing on to a discussion of higher-order Casimir operators, let us pause to make
use of the quadratic Casimir operator for the symplectic group. For our discussion we will
use the fundamental representation. Examination of (11.13) and (11.16) through (11.19)
shows that in this case

(gF )2 = 4I (27.11.42)

and hence
gαα

′

F = (1/4)gFαα′ . (27.11.43)

Therefore, in view of (11.16) through (11.19) and up to a normalization which we choose for
convenience, the quadratic Casimir for the symplectic group is given by the relation

C2 =
∑
j

(Cj)2 +
∑
µ
R(−µ)R(µ). (27.11.44)

Here the elements Cj and R(µ) are some kind of linear operators or matrices that obey
commutation rules analogous to (4.15) through (4.18).

We will soon apply C2 to the highest weight state |wh〉 in some representation Γ. Before
doing so, it is useful to rewrite C2 in a form that is convenient for this purpose. As was the
case for weights (see Section 5.8), we define a root µ to be positive if its first nonvanishing
component is positive. For example, in the case of sp(4), the roots α, β, γ, and −δ are
positive. See Figure 4.1. Note that if µ is positive, then −µ is not positive. Conversely, if µ
is not positive, then −µ is positive. Thus, half the root vectors are positive, and the other
half (their negatives) are not. With this definition in mind, we may rewrite (11.44) in the
form

C2 =
∑
j

(Cj)2 +
∑
µ>0

[R(µ)R(−µ) +R(−µ)R(µ)]. (27.11.45)
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Here the notation µ > 0 indicates that µ is positive. Next write the simple identity

R(µ)R(−µ) +R(−µ)R(µ) = 2R(−µ)R(µ) + {R(µ), R(−µ)}. (27.11.46)

But, by (4.17), we have the relation

{R(µ), R(−µ)} =
∑
j

(ej · µ)Cj. (27.11.47)

Consequently, (11.45) can be rewritten in the form

C2 =
∑
j

(Cj)2 +
∑
µ>0

∑
j

(ej · µ)Cj + 2
∑
µ>0

R(−µ)R(µ). (27.11.48)

There is one final simplification. Define µ+ to be the sum of all positive roots,

µ+ =
∑
µ>0

µ. (27.11.49)

With this definition, C2 takes the form

C2 =
∑
j

[(Cj)2 + (ej · µ+)Cj] + 2
∑
µ>0

R(−µ)R(µ). (27.11.50)

We are ready to apply C2 to |wh〉. First observe that

R(µ)|wh〉 = 0 if µ > 0. (27.11.51)

Were this not so, |wh〉 would not be an eigenvector of the Cj with highest weight. [See
(5.8.16).] Now the virtue of writing C2 in the form (11.50) is apparent. Also, we have the
relations ∑

j

(Cj)2|wh〉 = (wh ·wh)|wh〉, (27.11.52)

∑
j

(ej · µ+)Cj|wh〉 = (µ+ ·wh)|wh〉. (27.11.53)

It follows that |wh〉 is an eigenvector of C2 having eigenvalue λ(wh,µ+),

C2|wh〉 = λ(wh,µ+)|wh〉, (27.11.54)

with
λ(wh,µ+) = (wh ·wh) + (µ+ ·wh). (27.11.55)

There is one last observation: We know that every state in a representation can be
obtained by suitable linear combinations of products of ladder operators and Cartan sub-
algebra operators and constants applied to the highest-weight state. Also, C2 commutes
with all these operations. It follows that all the vectors in an irreducible representation are
eigenvectors of C2 with the same common eigenvalue λ(wh,µ+).
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For future use, let us work out explicitly the eigenvalues of C2 for general representations
in the cases of sp(2), sp(4), and sp(6). Begin with sp(2). In this case

wh = nφ1 = ne1, (27.11.56)

and
µ+ = α = 2e1. (27.11.57)

Consequently, for the representation Γ(n), C2 has the eigenvalue

λ(wh,µ+) = n2 + 2n = n(n+ 2) = 4j(j + 1). (27.11.58)

We also note that C2 has the explicit form

C2 = (C1)2 +R(−α)R(α) +R(α)R(−α)

= 4Ĵ2
3 + 2Ĵ−Ĵ+ + 2Ĵ+Ĵ−

= 4(Ĵ2
1 + Ĵ2

2 + Ĵ2
3 ). (27.11.59)

Here the quantities Ĵ± and Ĵ3 (or Ĵ1 to Ĵ3) are some kind of linear operators or matrices that
obey commutation rules analogous to (1.3), (1.4), or (1.21). The results (11.58) and (11.59)
are those expected for su(2). In particular, the quadratic Casimir operator is proportional
to the square of the angular momentum, which is known to commute with the Ĵk.

For the case of sp(4),

wh = mφ1 + nφ2 = (m+ n)e1 + ne2, (27.11.60)

and
µ+ = α+ β + γ + (−δ) = 4e1 + 2e2. (27.11.61)

Consequently, for the representation Γ(m,n), C2 has the eigenvalue

λ(wh,µ+) = m2 + 2mn+ 2n2 + 4m+ 6n. (27.11.62)

For the case of sp(6),

wh = `φ1 +mφ2 + nφ3 = (`+m+ n)e1 + (m+ n)e2 + ne3, (27.11.63)

and

µ+ = α1 +α2 +α3 + β1 + β2 + β3 + γ1 + γ2 + (−γ3) = 6e1 + 4e2 + 2e3. (27.11.64)

Consequently, for the representation Γ(`,m, n), C2 has the eigenvalue

λ(wh,µ+) = `2 + 2m2 + 3n2 + 2`m+ 2`n+ 4mn+ 6`+ 10m+ 12n. (27.11.65)

With this background, we are prepared to use the quadratic Casimir operator to prove
the orthogonality relations (10.12). Our main tool will be the adjoint Lie operator version
of C2 defined by writing

C2 =
∑
j

(# : cj : #)2 +
∑
µ

# : r(−µ) : ## : r(µ) : #. (27.11.66)
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From (4.8), (4.14), and (10.9) we find the conjugation relations

[(# : cj : #)2]† = [(# : cj : #)†]2 = (# : cj :† #)2 = (# : cj : #)2, (27.11.67)

[(# : r(−µ) : ## : r(µ) : #]† = [# : r(µ) : #]†[# : r(−µ) : #]†

= [# : r(µ) :† #][# : r(−µ) :† #] = [# : r(−µ) : ## : r(µ) : #]. (27.11.68)

It follows that C2 is Hermitian,
C†2 = C2. (27.11.69)

Apply C2 to any element of the vector fields H`+1,0,0, G`−1,1,0, and G`−1,0,0. Based on
(11.65), we find (writing in short-hand form) the results

C2H`+1,0,0 = [(`+ 1)2 + 6(`+ 1)]H`+1,0,0, (27.11.70)

C2G`−1,1,0 = [(`− 1)2 + 2 + 2(`− 1) + 6(`− 1) + 10]G`−1,1,0

= [(`− 1)2 + 8(`− 1) + 12]G`−1,1,0, (27.11.71)

C2G`−1,0,0 = [(`− 1)2 + 6(`− 1)]G`−1,0,0. (27.11.72)

Next consider matrix elements of the form 〈H`+1,0,0, C2G`−1,1,0〉. From (11.71) we have the
result

〈H`+1,0,0, C2G`−1,1,0〉 = [(`− 1)2 + 8(`− 1) + 12]〈H`+1,0,0,G`−1,1,0〉. (27.11.73)

However, using (11.69) and (11.70), these matrix elements also satisfy the relation

〈H`+1,0,0, C2G`−1,1,0〉 = 〈C†2H`+1,0,0,G`−1,1,0〉 = 〈C2H`+1,0,0,G`−1,1,0〉
= [(`+ 1)2 + 6(`+ 1)]〈H`+1,0,0,G`−1,1,0〉. (27.11.74)

By combining (11.73) and (11.74) we find the result

(2`+ 2)〈H`+1,0,0,G`−1,1,0〉 = 0. (27.11.75)

In similar fashion we find the results

(4`+ 12)〈H`+1,0,0,G`−1,0,0〉 = 0, (27.11.76)

(2`+ 10)〈G`−1,1,0,G`−1,0,0〉 = 0. (27.11.77)

We observe that none of the quantities in parentheses on the left sides of (11.75) through
(11.77) vanish for ` ≥ 0. Therefore all the scalar products of the form (10.12) vanish as
advertised.

There is a related use of the quadratic Casimir operator that is also important. In Section
21.10 it was shown that there is an operator PG that projects out the non-Hamiltonian part
of a general homogeneous vector field Lg` ,

PGLg` = G`+1, (27.11.78)
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and an explicit procedure was given for finding G`+1. See (10.20) and (10.33). Now we will
show how C2 can be used to decompose G`+1 into its separate parts G`−1,1,0 and G`−1,0,0,

G`+1 = G`−1,1,0 + G`−1,0,0. (27.11.79)

Suppose C2 is applied to both sides of (11.79). Then, from (11.71) and (11.72), we find the
result

C2G`+1 = C2G`−1,1,0 + C2G`−1,0,0

= [(`− 1)2 + 8(`− 1) + 12]G`−1,1,0 + [(`− 1)2 + 6(`− 1)]G`−1,0,0. (27.11.80)

The two relations (11.79) and (11.80) can be solved for G`−1,1,0 and G`−1,0,0 to give the
explicit results

G`−1,1,0 = {2`+ 10}−1{C2 − [(`− 1)2 + 6(`− 1)]}G`+1, (27.11.81)

G`−1,0,0 = −{2`+ 10}−1{C2 − [(`− 1)2 + 8(`− 1) + 12]}G`+1. (27.11.82)

Thus, given any homogeneous vector field Lg` , we have an explicit procedure for finding

its Hamiltonian part H`+1,0,0 and its non-Hamiltonian parts G`−1,1,0 and G`−1,0,0. Of course,
this is not the full story. For some purposes we would like to have a complete set of basis
vectors for the spaces H`+1,0,0, G`−1,1,0, and G`−1,0,0. This was done for the case ` = 1 in
Section 21.9, and we would like to have analogous results for all `, or for at least the first few
values of ` (say ` = 2 through 6 or so). The spaces H`+1,0,0 and G`−1,0,0 are relatively easy to
handle because the elements ofH`+1,0,0 are of the form : h`+1 : and the elements of G`−1,0,0 are
of the form (9.3). In both cases one is working with homogeneous polynomials and must find
suitable basis polynomials that correspond to the various weights in the weight diagrams for
the representations Γ(`+ 1, 0, 0) and Γ(`− 1, 0, 0). This is relatively straightforward except
for the problem of finding additional labels and associated properties when the weights have
multiplicities higher than 1. Handling the space G`−1,1,0 is more difficult. In this case it
would be helpful to have explicit knowledge of the Clebsch-Gordan coefficients of sp(6) [and
sp(4)] for at least the relatively low-dimensional representations.

27.11.3 Higher-Order Casimir Operators

Before leaving the subject of Casimir operators, something should be said about cubic
and higher-order Casimirs. For simplicity, only the cubic case will be considered, but the
generalization to higher orders should be evident.

As before, we work with some realization R, and let B̂α denote the basis elements of the
Lie algebra in this realization. Then, in analogy to (11.11), we define a rank three tensor

3g
R
αα′α′′ by writing

3g
R
αα′α′′ = tr (B̂αB̂α′B̂α′′). (27.11.83)

In view of (11.24) and the properties of the trace, we have the relation

tr (B̂tr
α B̂

tr
α′B̂

tr
α′′) = tr (B̂αB̂α′B̂α′′). (27.11.84)
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From this relation and (11.28) we deduce that 3g
R has the property∑

ββ′β′′

UαβUα′β′Uα′′β′′3g
R
ββ′β′′ = 3g

R
αα′α′′ , (27.11.85)

which is the analog of (11.30).
Next use gR to raise the indices on 3g

R by the rule

3g
αα′α′′

R = gαγR gα
′γ′

R gα
′′γ′′

R 3g
R
γγ′γ′′ , (27.11.86)

Here, and in what follows, we have and will use the summation convention. The raised
tensor 3gR has the property

3g
αα′α′′

R UαβUα′β′Uα′′β′′ =3 g
ββ′β′′

R , (27.11.87)

which is the analog of (11.33). [Note that in (11.85) the summation is over the second indices
in the U ’s, while in (11.87) it is over the first indices.] To verify (11.87), simply compute.
From (11.86) we have

3g
αα′α′′

R UαβUα′β′Uα′′β′′ = gαγR Uαβg
α′γ′Uα′β′g

α′′γ′′Uα′′β′′3g
R
γγ′γ′′ . (27.11.88)

However, by changing indices, (11.85) can be written in the form

3g
R
γγ′γ′′ = UγδUγ′δ′Uγ′′δ′′3g

R
δδ′δ′′ . (27.11.89)

Now substitute (11.89) in (11.88) to get the result

3g
αα′α′′

R UαβUα′β′Uα′′β′′ = gαγR UαβUγδg
α′γ′

R Uα′β′Uγ′δ′g
α′′γ′′

R Uα′′β′′Uγ′′δ′′3g
R
δδ′δ′′

= gβδR g
β′δ′

R gβ
′′δ′′

R 3g
R
δδ′δ′′ = 3g

ββ′β′′

R , (27.11.90)

as claimed. Here repeated use has been made of (11.30).
We are now ready to construct the third-order Casimir operator. As before, suppose

B̂α is any set of linear operators that obey (11.5), but do not necessarily belong to the
realization used to define gR, 3g

R, and hence 3gR. We define the associated cubic Casimir
operator C3 by writing

C3 = 3g
αα′α′′

R B̂αB̂α′B̂α′′ . (27.11.91)

As a consequence of (11.87), this operator also has the invariance property

Ctr
3 = exp(ε#C#)C3 = C3, (27.11.92)

and hence
#B̂δ#C3 = {B̂δ, C3} = 0 for all δ. (27.11.93)

Indeed, using (11.37) and (11.87), we find the result

Ctr
3 = 3g

αα′α′′

R B̂tr
α B̂

tr
α′B̂

tr
α′′

= 3g
αα′α′′

R UαβUα′β′Uα′′β′′B̂βB̂β′B̂β′′

= 3g
ββ′β′′

R B̂βB̂β′B̂β′′ = C3. (27.11.94)
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Thus, as anticipated, C3 also commutes with all Lie generators, and therefore also with all
products and sums of products of generators. A special case of this result is that C2 and C3

commute.
Finally, we remark that it can be shown that a rank-k simple Lie algebra has k function-

ally independent Casimir operators. Moreover, the eigenvalues of these Casimir operators,
when acting on any vector in an irreducible representation, can be used to determine the
representation. For example, in the case of sp(6), the three Casimir operators C2, C4, and C6

are functionally independent and can be used to determine the values of `, m, n in Γ(`,m, n).

Exercises

27.11.1. Verify (11.12) using (11.11) and the matrices B0, F , and G given by (5.6.7),
(5.6.13), and (5.6.14). Find the 2× 2 matrices associated with the elements associated with
c1 and r(±α) given by (1.11) and (1.12). Use these matrices to verify (11.13). Find gF for
sp(4) using the fundamental representation given by (5.7.42).

For quadratic polynomials, using (5.5.1) and (5.5.2) and the correspondences (5.5.3) and
(5.5.4), we have made the definition 〈f, g〉F = (JSf , JSg)F = tr (JSfJSg). Compare 〈f, g〉
and 〈f, g〉F . See Exercise 7.3.8. Verify the general result 〈fa, f c〉F = (JSfa, JSfc)F = 0.
Use (3.8.14), (3.8.22), (7.2.3), (7.2.4), and (7.3.53); and employ the notation Sfa and Sfc to
denote the parts of Sf that anticommute and commute with J , respectively. See Exercise
7.3.10 for the analogous result 〈fa2 , f c2〉 = 0. For a pair of quadratic polynomials f and
g, make the decompositions f = fa + f c and g = ga + gc. Verify the relation 〈f, g〉F =
2〈fa, ga〉 − 2〈f c, gc〉. As a special case there is the relation 〈f, f〉F = 2〈fa, fa〉 − 2〈f c, f c〉,
which shows that the form 〈f, f〉F is neither positive nor negative definite. This is to be
expected because Sp(2n,R) is not compact. We also have the relation

〈f c, f c〉F = (JSfc, JSfc)F = −2〈f c, f c〉 < 0,

and we know that the JSfc generate U(n), the maximal compact subgroup of Sp(2n,R).
See the last comment in Exercise 11.3 below.

27.11.2. Verify the relations (11.16) through (11.19).

27.11.3. Review Exercise 11.1 above. This exercise further explores the relation between the
Lie-algebraic metric for the Lie algebra usp(2n) and the USp(2n) invariant scalar product.
See Sections 5.10 and 7.3. Consider the sp(2n) Lie-algebraic metric given by (11.16) through
(11.19). Define elements Σ and ∆ by the rules

Σ(µ) = (1/
√

2)[r(µ) + r(−µ)], (27.11.95)

∆(µ) = (1/
√

2)[r(µ)− r(−µ)]. (27.11.96)

Evidently, for µ > 0, the elements Σ(µ) and ∆(µ) span the same space as the elements
r(µ) and r(−µ). Using (11.16) through (11.19) verify (with µ,ν > 0) the relations

(cj,Σ(µ))F = (cj,∆(µ))F = 0, (27.11.97)
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(Σ(µ),∆(ν))F = 0, (27.11.98)

(Σ(µ),Σ(ν))F = 2δµν , (27.11.99)

(∆(µ),∆(ν))F = −2δµν . (27.11.100)

Show that : Σ : and : ∆ : obey the conjugacy relations

: Σ(µ) :†=: Σ(µ) :, (27.11.101)

: ∆(µ) :†= − : ∆(µ) : . (27.11.102)

Consider as a basis set the elements icj, iΣ(µ), and ∆(µ) with µ > 0. Call these elements
bα. Show that their associated Lie operators are all anti-Hermitian,

: bα :†= − : bα : . (27.11.103)

Consequently, they form a basis for usp(2n) and, when exponentiated, generate USp(2n).
See Section 7.3. Verify that these elements satisfy the relation

(bα, bβ)F = −2δαβ = −2〈bα, bβ〉. (27.11.104)

Here the Lie-algebraic scalar product on the left is that given by (11.16) through (11.19),
and the scalar product on the right is that given by (4.19) through (4.22) and arises from
the construction of Section 7.3. Since we have been working over the complex field, we
know that the Lie-algebraic scalar product is invariant under Sp(2n,C). See (11.25). It is
therefore also invariant under USp(2n) because USp(2n) is a subgroup of Sp(2n,C). The
relation (11.104) is consistent with this invariance because we already know from Section
7.3 that the scalar product on the right is invariant under USp(2n).

One last comment: From the discussion of Section 5.10 we know that USp(2n) is
compact. Inspection of (11.104) shows that the Lie-algebraic metric for usp(2n) is negative
definite. It can be shown that for any simple Lie algebra the Lie-algebraic metric is negative
definite if and only if the corresponding Lie group is compact. See also (11.109) and (11.110)
for the cases of the compact groups SU(2) and SO(3,R).

27.11.4. The relation (11.30) displays the invariance of the metric tensor under finite group
action. Show that (11.27) describes this same invariance in infinitesimal form. In particular,
use (11.27) to produce the relation

cγαα′g
R
γα′′ = cγα′α′′g

R
γα. (27.11.105)

Use the metric tensor gR to lower the upper index on the structure constants by the rule

cαα′α′′ = cγαα′g
R
γα′′ . (27.11.106)

Show that the lowered structure constants are completely antisymmetric (antisymmetric
under the interchange of any pair of adjacent indices).

27.11.5. Find the analog of the formulas (11.81) and (11.82) for the case of 4-dimensional
phase space.
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27.11.6. In the case of a 6-dimensional phase space, consider the vector field Lg2 given by
the relation

Lg2 = (q1)2∂/∂q1. (27.11.107)

Using the methods of Sections 21.10 and 21.11.2, decompose Lg2 into Hamiltonian and
non-Hamiltonian parts H3,0,0, G1,1,0, and G1,0,0.

27.11.7. For the case of a 2-dimensional phase space we know that quadratic functions f2

and g2 carry the representation Γ(2). Therefore, from (11.1), we might naively expect that
the product f2g2 might contain the identity representation Γ(0). In analogy with (11.59), if
the identity representation does occur, it should be a multiple of the polynomial (J2

1 +J2
2 +J2

3 )
where the Jj are given by (1.1), (1.2), and (1.20). Show that in fact there is the relation

J2
1 + J2

2 + J2
3 = 0. (27.11.108)

Thus, in this case, the sought after quantity actually vanishes. In retrospect, this is to be
expected because we know from Section 21.2 that quartic polynomials in two variables, of
which all polynomials of the form f2g2 are examples, carry only the representation Γ(4).
Note that Γ(4) also occurs in the Clebsch-Gordan series (11.1).

27.11.8. The purpose of this exercise is to explore the consequences of the relations (11.27)
in the case of su(2), or equivalently, so(3,R). In the case of su(2), suppose we employ the
realization provided by the Kα matrices of Exercise 3.7.30. Verify the scalar product results

(Kα, Kβ)F = tr (KαKβ) = (−i/2)2 tr (σασβ) = −(1/2)δαβ = −(1/2)eα · eβ. (27.11.109)

Show that in the cases of su(2) and so(3,R) there are the related results

(Kα, Kβ)K = (Lα, Lβ)F = tr (LαLβ) = −2δαβ = −2eα · eβ. (27.11.110)

Here the subscript K stands for Killing in anticipation of the next section. Next show, using
the notation of Exercise 3.2.27, that there are the relations

(a ·K, b ·K)F = −(1/2)a · b, (27.11.111)

(a ·K, b ·K)K = (a ·L, b ·L)F = −2a · b. (27.11.112)

Now examine the first relation in (11.27). In the case of su(2), and using the fundamental
representation, it reads

({Kα, Kβ}, Kγ)F = (Kα, {Kβ, Kγ})F . (27.11.113)

Show that multiplying the left side of (11.113) by the quantity aαbβcγ, and summing over
α, β, and γ, yield the result∑

αβγ

aαbβcγ({Kα, Kβ}, Kγ)F = ({a ·K, b ·K}, c ·K)F = −(1/2)(a× b) · c. (27.11.114)
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Show that multiplying the right side of (11.113) by the quantity aαbβcγ, and summing over
α, β, and γ, yield the result∑

αβγ

aαbβcγ(Kα, {Kβ, Kγ})F = (a ·K, {b ·K, c ·K})F = −(1/2)a · (b× c). (27.11.115)

You have shown, in the case of su(2), that (11.113) is equivalent to the familiar statement
about the interchange of the dot and the cross in three-dimensional vector algebra,

(a× b) · c = a · (b× c). (27.11.116)

Carry out the analogous calculation for both the cases of su(2) and so(3,R) using (11.110)
to again arrive at the conclusion (11.116). Finally show, in the cases of su(2) and so(3, R,
that the second relation in (11.27) is equivalent to the relation

a · (b× c) = b · (c× a) = c · (a× b). (27.11.117)

27.11.9. Show that the first relation in (11.27) can be rewritten in the form

(− : Bα′ : Bα, Bα′′)R = (Bα, : Bα′ : Bα′′)R. (27.11.118)

Here we have used the more compact notation

: Bα′ := ad Bα′ . (27.11.119)

Compare (3.7.71), (5.3.2), and (11.21). Show that (11.118) implies the relation

: Bα′ :†= − : Bα′ : (27.11.120)

with respect to the inner product ( , )R. That is, : Bα′ : is anti-Hermitian with respect to
this inner product.

27.11.10. Exercise on the Casimir operator for SO(4,R).

27.12 The Killing Form

Section 21.11.1 introduced the concept of a scalar product for the elements of a Lie algebra
and defined a metric tensor with the aid of a realizaton R. An important special case of
this construction is the Killing form. The Killing form is simply the metric tensor gR in the
case that the realizaton R is the adjoint representation. See the end of Section 3.7 to review
the definition of the adjoint representation. Let us call this tensor gK in honor of Killing.
Then, using (11.11) and (3.7.56), we find the result

gKαα′ = tr (B̂αB̂α′) =
∑
µν

(B̂α)µν(B̂α′)νµ =
∑
µν

cµανc
ν
α′µ. (27.12.1)

As (12.1) shows, the Killing form (metric tensor) has the advantage that it is constructed
directly in terms of the structure constants. It is therefore directly available without fur-
ther study of the Lie algebra.4 By contrast, the gF that we have been using for sp(2n)

4Suppose a Lie algebra L is specified by presenting its structure constants. Then gK is computable using
(12.1). It can be shown that gK is invertible if and only if L is semisimple.
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is constructed from a knowledge of the fundamental 2n × 2n matrix representation. For
most groups these matrices are usually much smaller than the matrices for the adjoint rep-
resentation, and therefore, if known, far easier to use. For example, in the case of sp(6),
the fundamental representation involves 6 × 6 matrices, and the adjoint representation in-
volves 21 × 21 matrices. [However, it turns out that for E8(248) the lowest dimensional
representation is the adjoint representation, and 248× 248 matrices are required.]

It can be shown in general for a simple Lie algebra that gK and gF are proportional. [For
example, the identity representation occurs once and only once in the sp(2n) Clebsch-Gordan
series (11.1) through (11.3).] From (11.16) we know that for the fundamental representation
of sp(2n) there is the relation

(Ĉ1, Ĉ1)F = 2. (27.12.2)

And for the adjoint representation of sp(2n) there is the relation

(Ĉ1, Ĉ1)K =
∑
µ

(e1 · µ)(µ · e1) = 4n+ 4. (27.12.3)

See Exercise 12.1. It follows that gK and gF are related by the equation

gKαα′ = (2n+ 2)gFαα′ . (27.12.4)

Still a bit more can be said. As before, let gR be the metric tensor obtained using the
realization R as in (11.11). Then there is a relation of the form

gRαα′ = τ(R)gFαα′ . (27.12.5)

where τ(R) is a positive proportionality constant that depends on the realization.5 According
to (12.4), τ has the value (2n+ 2) for the adjoint representation and the Lie algebra sp(2n).

Exercises

27.12.1. Verify (12.2). Using (3.7.56), show that in the adjoint representation the matrix
Ĉ1 is diagonal and has as its diagonal entries ` zeroes (where ` is the rank of the Lie algebra)
and the numbers (e ·µ) where µ ranges over all the root vectors. Next show that (Ĉ1, Ĉ1)K
has the value

(Ĉ1, Ĉ1)K = tr [(Ĉ1)2] =
∑
µ

(e1 · µ)(µ · e1). (27.12.6)

Finally, given that the root vectors for sp(2n) are all combinations of the form ±ej ± ek
with the signs taken independently, verify (12.3).

27.12.2. Review Exercise 3.7.30. The 2×2 matrices Kα and the 3×3 matrices Lα displayed
there provide the fundamental and adjoint representations of su(2), respectively. Use these
matrices to construct metric tensors for su(2). Show that

gFαα′ = −(1/2)δαα′ (27.12.7)

5We remark that a relation of the form (12.5) holds among the irreducible representations of any simple
Lie algebra. It need not hold in general. See Exercise 12.2.
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and
gKαα′ = −2δαα′ . (27.12.8)

Note that gF and gK are proportional with a positive proportionality constant, as expected
because su(2) is simple. Note also that they are negative definite because SU(2) is compact.
(Recall that it has the topology of S3.) Finally, since the Lie algebras so(3, R and su(2) are
the same, these gF and gK also provide metric tensors for so(3,R).

27.12.3. Use the matrices (4.4.31) through (4.4.34) as a basis for g`(2,R) and show that
in this case gF is given by (4.4.40). Find the adjoint representation for g`(2,R), which will
be a set if 4× 4 matrices, compute the Killing form gK , and show that it is singular. Thus,
(12.5) does not hold in this case. Show that g`(2,R) is not simple and also not semisimple.
See also the discussion at the end of Section 3.7.

27.12.4. Using the sp(4) matrices (5.7.42) and matrices of the form JA with the antisym-
metric matrices A given by (6.28) through (6.33), find gF for g`(4,R).

27.13 Enveloping Algebra

So far we have been exploring the properties of products of entities when each entity by
itself has well-defined properties under the action of some group (in our case, the symplectic
group). These entities were either polynomials in some variables on which the group acted,
or Lie operators, or adjoint Lie operators. (They could also be matrices or other linear
operators. As shown in Section 26.*, they could also be moments of a particle distribution.)
They were not necessarily in the Lie algebra of the group, but they had the two properties
that they could be multiplied together (multiplication was defined) and they transformed in
some systematic way under the action of the Lie algebra.

For some (perhaps mathematical) purposes it is useful to explore what can be done by
working directly and abstractly with only the Lie algebra itself rather than various concrete
entities such as polynomials, Lie operators, adjoint Lie operators, etc. But now there is a
problem because, for an abstract Lie algebra, there is no meaning for the “ordinary” product
of any two elements in the Lie algebra. That is, if A and B are elements in a Lie algebra L,
the Lie product [A,B] is defined, but there is no meaning to the product AB. In particular,
there is no meaning to an associative product ABC such that (AB)C = A(BC). This
apparent obstacle can be overcome by a clever construction. We will see that in many ways
the tensor product can be used to play the role of an ordinary product.

Since L is a vector space, it is meaningful to talk about tensor products of the space
with itself. For example, if the elements Bα are a basis for L, we may consider the space
of all linear combinations of tensor products of the form Bα ⊗ Bα′ . We will call this vector
space L2, and write

L2 = L⊗ L. (27.13.1)

Similarly, we may consider the space of all linear combinations of tensor products of the
form Bα ⊗Bα′ ⊗Bα′′ . Note that for a tensor product there is the associative property

Bα ⊗ (Bα′ ⊗Bα′′) = (Bα ⊗Bα′)⊗Bα′′ . (27.13.2)
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We will call this vector space L3, and write

L3 = L⊗ L⊗ L. (27.13.3)

It is now obvious how to define still higher-order tensor product spaces L4, L5, · · · .
We would also like to define L1 and L0. For L1 we take the Lie algebra itself. That

is, L1 is the vector space consisting of all linear combinations of the Bα. What about L0?
Since L is a vector space, there must be some associated field of scalars (say the complex
numbers) with unit element 1. Let L0 be the vector space of all linear combinations (scalar
multiples) of 1. Evidently L0 is a one-dimensional vector space, and consists of the field of
scalars associated with L.

Now watch closely! Having defined the vector spaces Ln, we define the vector space T
to be the direct sum of all these vector spaces,

T = L0 ⊕ L1 ⊕ L2 ⊕ L3 + · · · . (27.13.4)

Suppose A and B are any two elements in T . As a simple example, suppose they are of the
form

A = a+ bBα = a1 + bBα, (27.13.5)

B = c+ dBβ = c1 + dBβ. (27.13.6)

Let us compute their tensor product. Doing so gives the result

A⊗B = (a1 + bBα)⊗ (c1 + dBβ) = a1⊗ c1 + a1⊗ dBβ + bBα⊗ c1 + bBα⊗ dBβ. (27.13.7)

Let us make the obvious rules

1⊗ 1 = 1, 1⊗Bβ = Bβ, Bα ⊗ 1 = Bα, etc., (27.13.8)

which can be summarized abstractly by writing

L0 ⊗ L0 = L0, L0 ⊗ Ln = Ln, Ln ⊗ L0 = Ln. (27.13.9)

Then we find the result

A⊗ B = ac+ adBβ + bcBα + bdBα ⊗Bβ. (27.13.10)

We know that, by construction, T is a vector space. We now see that it can be also be
viewed as an associative algebra with the operation of multiplication taken to be the tensor
product. The standard nomenclature is to call T the tensor algebra of L.

Our next step is to give T a Lie-algebraic structure. Suppose again that A and B are
any two elements in T . We define their commutator by the rule

{A,B} = A⊗ B − B ⊗A. (27.13.11)

It is obvious that this commutator has the desired antisymmetry property (3.7.41). Let us
check the Jacobi condition. We find the results

{A, {B, C}} = A⊗ B ⊗ C − B ⊗ C ⊗A−A⊗ C ⊗ B + C ⊗ B ⊗A. (27.13.12)
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{B, {C,A}} = B ⊗ C ⊗A− C ⊗A⊗ B − B ⊗A⊗ C +A⊗ C ⊗ B. (27.13.13)

{C, {A,B}} = C ⊗ A⊗ B −A⊗ B ⊗ C − C ⊗ B ⊗A+ B ⊗A⊗ C. (27.13.14)

Inspection shows that if (13.12) through (13.14) are summed, all the terms on the right
cancel in pairs to give the desired result

{A, {B, C}}+ {B, {C,A}}+ {C, {A,B}} = 0. (27.13.15)

Thus, T has been made into a Lie algebra with the Lie product taken to be the tensor
product commutator (13.11).

We continue our exploration by defining adjoint operators in the standard way. Suppose
C is some element in T and let A be any element in T . Then we define the adjoint operator
#C#, which maps T into itself, by the rule

#C#A = {C,A}. (27.13.16)

We claim that #C# is a derivation. To see this, compute #C#(A⊗ B) to find the result

#C#(A⊗ B) = {C,A⊗ B} = C ⊗ A⊗ B −A⊗ B ⊗ C
= C ⊗ A⊗ B −A⊗ C ⊗ B +A⊗ C ⊗ B
− A⊗ B ⊗ C +A⊗ C ⊗ B −A⊗ C ⊗ B
= {C,A} ⊗ B +A⊗ {C,B}
= (#C#A)⊗ B +A⊗ (#C#B). (27.13.17)

Note that (13.17) may be viewed as a rule that tells one how to compute the commutator
of C with a product if one already knows how to compute the commutator of C with the
individual elements that form the product. As a further example of such a rule, consider a
commutator of the form {A⊗B, C ⊗D}, which is a commutator of two products. By using
adjoint operator notation and the result (13.17) we find the relation

{A ⊗ B, C ⊗ D} = #A⊗ B#(C ⊗ D)

= (#A⊗ B#C)⊗D + C ⊗ (#A⊗ B#D)

= {A ⊗ B, C} ⊗ D + C ⊗ {A ⊗ B,D}
= −{C,A⊗ B} ⊗ D − C ⊗ {D,A⊗ B}
= −[#C#(A⊗ B)]⊗D − C ⊗ [#D#(A⊗ B)]

= −(#C#A)⊗ B ⊗D −A⊗ (#C#B)⊗D
−C ⊗ (#D#A)⊗ B − C ⊗A⊗ (#D#B). (27.13.18)

We see that (13.18) gives a rule for finding the commutator of two products if we know how
to compute the commutators of the constituents.

So far we have only made use of the vector-space structure of L. Let us now also employ
its Lie product structure. With the results of the last paragraph still fresh in mind, we
observe that the constitutents of any element in T are ultimately the Bα. Therefore, any
commutator in T can ultimately be reduced to commutators among the Bα. At this point
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we would like to use the Lie product structure of L to stipulate these commutators by the
rule

{Bα, Bβ} = Bα ⊗Bβ −Bβ ⊗Bα = [Bα, Bβ] =
∑
γ

cγαβBγ. (27.13.19)

The motivation for this move is that T , because it contains L1 = L as a subspace, would
then also contain a copy of L as a Lie subalgebra. Evidently (13.19) (which may be viewed
as a reduction rule that reduces higher-order tensor products resulting from commutators
to lower-order tensor products) is compatible with the antisymmetry and Jacobi properties
of the commutator because of (3.7.44) and (3.7.45). There is therefore some hope that it
can be enforced consistently. [Here is an example question of consistency: We can enforce
the condition (13.19) and then multiply or commute. Or, we may first multiply or commute
and then enforce the condition. Do these two procedures give the same result?] But hope
is not enough when proof is required.

The standard way to show that (13.19) can be invoked consistently is to construct the
enveloping algebra. Let Oαβ denote the element

Oαβ = {Bα, Bβ} − [Bα, Bβ]. (27.13.20)

Next, let O denote the set of all linear combinations of the Oαβ,

O = set of all elements in T of the form
∑
αα′

bαb
′
α′Oαα′ . (27.13.21)

Finally, let O be the set of all elements formed by tensor multiplying all of O on both the
left and right by all elements in T and forming all linear combinations of such elements,

O = set of all linear combinations of elements in T
of the form A⊗O ⊗ B for all A,B ∈ T . (27.13.22)

EvidentlyO is a linear vector space since, by construction, all linear combinations of elements
in O are again in O. The set of O is also an associative algebra that is invariant under
tensor multiplication on either the left or right side by any element in T ,

A′ ⊗O ∈ O, O ⊗ B′ ∈ O for all A′,B′ ∈ T . (27.13.23)

That is so because all multiplications have also already occurred in the definition (13.22).
For this reason, O is called the two-sided ideal generated by the Oαβ. (Recall that in Section
8.9 an ideal was defined in the Lie-algebraic context to be the set of all elements invariant
under the Lie product. Here the concept is the same except that the product is tensor
multiplication from the left and the right.)

Suppose we use the set O to set up an equivalence relation among all elements in T . We
will say that two elements A and A′ in T are equivalent if their difference (recall that both
A and A′ are vectors, and therefore can be added and subtracted) is in the set O,

A ∼ A′ ⇔ (A−A′) ∈ O. (27.13.24)

It is easily verified, by a discussion analogous to that in Section 8.9, that (13.24) does
indeed define an equivalence relation. Next, this equivalence relation can be used to set up
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equivalence classes. By the standard arguments, when this is done, any element in O will
be in the equivalence class {0} that contains the zero vector in T ,

B ∈ O ⇔ {B} = {0}. (27.13.25)

[For the analogous Lie-algebraic case, see (8.9.3).] Finally, let E be the quotient space of T
with respect to O,

E = T /O. (27.13.26)

Since T is an associative algebra and O is an ideal in T , the quotient space E will also be
an associative algebra. It is called the enveloping algebra of L. (It is also often called the
universal enveloping algebra because it can be shown to be unique up to an isomorphism.)

We note that because of (13.25), all elements in O, (that is, all elements in T that
contain Oαβ) are automatically replaced by 0 in E . This is equivalent to enforcing the
condition (13.19) in E . And, because E is an associative algebra, we have verified that this
condition can be enforced consistently.

Soon we will use the enveloping algebra to construct Casimir operators. To do so, it is
useful to first explore further the property of adjoint operators #C#. Since #C# is a deriva-
tion, recall (13.17), the operator exp(ε#C#) is an isomorphism for tensor multiplication,

[exp(ε#C#)](A⊗ B) = {[exp(ε#C#)]A} ⊗ {[exp(ε#C#)]B}. (27.13.27)

Indeed, if F is any element of T composed of tensor products of the Bα, we have the result

[exp(ε#C#)]F(Bα1 , Bα2 , Bα3 · · · ) =

F([exp(ε#C#)]Bα1 , [exp(ε#C#)]Bα2 , [exp(ε#C#)]Bα3 · · · ). (27.13.28)

See Section 8.2 for the standard arguments justifying this result.
Now suppose C = C where C is some element in L as in (11.20). Then we have the

results

#C#Bα = {C,Bα} = [C,Bα] =: C : Bα. (27.13.29)

Here we have used (13.19). It follows from (11.20), (11.28), and (13.29) that in this case
there is the relation

[exp(ε#C#)]Bα = exp(ε : C :)Bα = UαβBβ, (27.13.30)

where we have again used the summation convention. Correspondingly, in this case (13.28)
can be rewritten in the form

[exp(ε#C#)]F(Bα1 , Bα2 , Bα3 · · · ) = F(Uα1β1Bβ1 , Uα2β2Bβ2 , Uα3β3Bβ3 · · · ). (27.13.31)

We are now ready to discuss Casimir operators. In analogy with (11.35) we now define
the quadratic Casimir operator C2 to be the quantity

C2 =
∑
αα′

gαα
′

R Bα ⊗Bα′ . (27.13.32)
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Note that in this context C2 is not first of all an “operator”, but rather is an element in the
enveloping algebra E . In analogy with (11.38), let us see how it transforms. We find the
result

Ctr
2 = exp(ε#C#)C2 =

∑
αα′

gαα
′

R (UαβBβ)⊗ (Uα′β′Bβ′)

=
∑
αα′

gαα
′

R UαβUα′β′Bβ ⊗Bβ′

=
∑
ββ′

(
∑
αα′

gαα
′

R UαβUα′β′)Bβ ⊗Bβ′

=
∑
ββ′

gββ
′

R Bβ ⊗Bβ′ = C2. (27.13.33)

Here we have used (13.31) and (11.39). We see that C2 is again invariant. Also, the infinites-
imal version of (13.33) with C = C = Bα′′ gives the result

#Bα′′#C2 = {Bα′′ , C2} = 0. (27.13.34)

We see that C2 commutes with all the elements in L. Moreover, since everything in the
enveloping algebra is constructed from elements in L, it follows that C2 commutes with all
the elements of the enveloping algebra,

{C2, E} = 0. (27.13.35)

At this point we pause to note that we might use (13.19) to rearrange [in analogy to
(11.46) and (11.47)] the terms in C2 as given by (13.32) to get an expression for C2 analogous
to (11.50). What would happen if we then compute {Bα′′ , C2} using the rearranged C2?
According to our previous discussion about consistency, O is an ideal thereby guaranteeing
that the quotient space T /O = E is an associative algebra. Therefore the result should be
(and is indeed) the same.

The construction of higher-order Casimir operators proceeds in a similar fashion. For
example, the analog of (11.86) is

C3 =3 g
αα′α′′

R Bα ⊗Bα′ ⊗Bα′′ . (27.13.36)

Again, it is an element in the enveloping algebra. It too commutes with all the elements in
L, and therefore also with all of E . In general, in the context of the present discussion, we
may define a Casimir operator to be any element in the enveloping algebra that commutes
with all the elements in the enveloping algebra. Put another way, the Casimir operators
form the center of the enveloping algebra.

Exercises

27.13.1. From (13.4) it follows that T , the tensor algebra of L, can be expressed in the
form

T = T 0 ⊕ T 1 ⊕ T 2 ⊕ T 3 ⊕ · · · , (27.13.37)
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where
T n = Ln. (27.13.38)

Suppose that L has dimension k. Show that each subspace T n then has dimension

dim T n = kn. (27.13.39)

The algebra E , the enveloping algebra of L, can also be decomposed in the form

E = E0 ⊕ E1 ⊕ E2 ⊕ E3 ⊕ · · · , (27.13.40)

where each subspace En of “degree” n is spanned by the tensor products of n basis elements
(Bα1 ⊗ Bα2 ⊗ Bα3 ⊗ · · ·Bαn). However, in the case of E , the relation (13.19) can be used
to rearrange the basis elements in each En so that the subscripts have a definite standard
ordering. For example, we may arrange them in ascending order,

rearranged (Bα1 ⊗Bα2 ⊗Bα3 ⊗ · · ·Bαn) = (Bβ1 ⊗Bβ2 ⊗Bβ3 ⊗ · · ·Bβn)

with β1 ≤ β2 ≤ β3 ≤ · · · βn. (27.13.41)

In the rearrangement process various terms of lower degree may be generated, but they
simply feed down to En−1, etc. It follows that the various terms in some standard ordering,
say that shown on the right side of (13.41), span En. It can be shown that they are linearly
independent as well, and therefore form a basis for En. This basis is called the Poincaré-
Birkhoff-Witt basis. Show that the dimension of En is given by the relation

dim En = N(n, k) (27.13.42)

with N(n, k) given by (7.3.40). Hint: Once a standard ordering has been established, the
counting of basis elements is the same as counting monomials.

27.13.2. Suppose R is a realization of some Lie algebra L. Thus, if the Bα form a basis
of L, there are associated matrices B̂α in the realization R. Let R be the linear map that
sends the Bα to the B̂α,

R(Bα) = B̂α. (27.13.43)

(Note that since both L and the set of m × m matrices are vector spaces, it makes sense
to talk about a linear map that sends one into the other.) Then, by the definition of a
realization, we have the relation

R([Bα, Bβ]) = R(
∑
γ

cγαβBγ) =
∑
γ

cγαβB̂γ = {B̂α, B̂β}

= {R(Bα),R(Bβ)}. (27.13.44)

Next, let us extend the definition of R to have it act on any basis element in the tensor
algebra T by the rule

R(Bα1 ⊗Bα2 ⊗Bα3 · · · ) = R(Bα1)R(Bα2)R(Bα3) · · ·
= B̂α1B̂α2B̂α3 · · · . (27.13.45)
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Show that R sends any element of the two-sided ideal O to the zero matrix,

R(Oαβ) = 0, R(O) = 0, R(O) = 0. (27.13.46)

Thus, the image of any element in T under the action of R depends only on the equivalence
class to which the element belongs, and we may equally well view R as acting on T /O = E .
Show that R sends the Casimir operator (13.32) defined in the enveloping algebra context
to the Casimir operator (11.35) defined in the representation context. Show that in general
anything that it discovered about Casimir operators in the enveloping algebra context is
immediately transferable to the realization context, and vice versa.

27.14 The Symplectic Lie Algebras sp(8) and Beyond

The previous sections in this chapter have treated the cases of sp(2), sp(4), and sp(6).
The Lie algebraic structure of all the sp(2n), for example root vectors and fundamental
weight vectors, is also known. In particular, for sp(2n), a representation is characterized by
n non-negative integers k1, k2, · · · kn and may be denoted by the symbols Γ(k1, k2, · · · kn).
Homogeneous polynomials of degree ` in the 2n components of z again carry representations
of sp(2n), and for these representations there is the result

k1 = `, (27.14.1)

kj = 0 for j = 2, 3, · · ·n. (27.14.2)

There is also an analogous Clebsch-Gordon series result of the form (9.1) where all entries
in Γ(k1, k2, · · · kn) are zero save for the first two,

Γ(`, 0, 0, · · · )⊗ Γ(1, 0, 0, · · · )
= Γ(`+ 1, 0, 0, · · · )⊕ Γ(`− 1, 1, 0, · · · )
⊕ Γ(`− 1, 0, 0, · · · ). (27.14.3)

Thus, the symplectic classification of all analytic vector fields in any (even) dimension is in
principle known. Moreover, any Lg` with ` ≥ 1 has the unique decomposition

Lg` = H`+1,0,0,··· + G`−1,1,0,··· + G`−1,0,0,···. (27.14.4)

Here H`+1,0,0,··· is a Hamiltonian vector field that carries the representation Γ(`+1, 0, 0, · · · ),
and is of the form : h`+1 :. The quantities G`−1,1,0,··· and G`−1,0,0,··· are non-Hamiltonian vector
fields that carry the representations Γ(`− 1, 1, 0, · · · ) and Γ(`− 1, 0, 0, · · · ), respectively.

Exercises

27.14.1. Show that any 2n × 2n matrix that commutes with all sp(2n) matrices (in the
fundamental representation) must be a multiple of I. Show that any 2n × 2n matrix that
commutes with all Sp(2n) matrices (in the fundamental representation) must be a multiple
of I.
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27.15 Momentum Maps and Casimirs

The previous sections, among other things, have shown how to decompose an analytic vector
field Lg into Hamiltonian and non-Hamiltonian parts. Here we address a somewhat more
restricted question. Suppose we are given a vector field Lg, and also know that it came
from some Hamiltonian h so that there is in principle the relation

Lg =: h : . (27.15.1)

That is, Lg is a Hamiltonian vector field. We then say that there is a momentum map µ
that sends Lg to h,

µ(Lg) = h. (27.15.2)

Here the name momentum is associated with the fact that in some simple examples the
resulting h is some kind of momentum such as linear or angular momentum.

In this section we will develop/review what is required for Lg to be Hamiltonian, and
then see how to determine h in terms of g. We will also see how momentum maps are related
to integrals of motion and, when there are several integrals of motion, how to construct from
them integrals of motion that are in involution.

27.15.1 Momentum Maps and Conservation Laws

Why might one be interested in momentum maps? Given a vector field Lg, we may define
a family of maps M(τ), not to be confused with momentum maps, by the rule

M(τ) = exp(τLg). (27.15.3)

[For a discussion of some of the properties of general Lie operators (general vector fields)
and their associated Lie transformations, see Exercises 5.3.10 and 5.4.14.] The maps M(τ)
send phase space into itself according to the relation

z̄(τ) =M(τ)z, (27.15.4)

and they evidently form a one-parameter group. Now suppose the motion of some system is
governed by some Hamiltonian H(z, t) and suppose that this Hamiltonian is invariant under
the action of M(τ),

M(τ)H(z, t) = H(z, t). (27.15.5)

From this invariance/symmetry relation and (15.3) we conclude that

LgH(z, t) = 0. (27.15.6)

But, if (15.1) holds, (15.6) can be rewritten as

LgH(z, t) =: h : H = [h,H] = 0, (27.15.7)

and we see that h is an integral of motion. Thus, the existence of symmetry and a momentum
map implies the existence of an integral of motion (a conserved quantity or conservation law)
and vice versa.6

6Observe that the assumed symmetry described by (15.5) is a continuous symmetry. The condition (15.5)
is supposed to hold over a continuous range of τ . We also remark that Emmy Noether (1882-1935) was the
first to explore in detail the connection between continuous symmetries and conservation laws.
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How can one test a vector field to see if it is Hamiltonian and therefore there is a
momentum map? We have already seen that the maps M(τ) form a one-parameter group.
Suppose we now require that these maps be symplectic for all τ . That is, we require that

[z̄a(τ), z̄b(τ)] = Jab for all τ. (27.15.8)

Put another way, we require that each transformation M(τ) preserve the symplectic struc-
ture of phase space. For small τ we have the result

M(τ) = I + τLg +O(τ 2). (27.15.9)

It follows that

z̄(τ)a =M(τ)za = za + τLgza +O(τ)2 = za + τga +O(τ)2. (27.15.10)

Here we have used the result
Lgza = ga. (27.15.11)

Upon employing (15.10) we find the result

[z̄a(τ), z̄b(τ)] = [za, zb] + τ{[za, gb] + [ga, zb]}+O(τ 2)

= Jab + τ{[za, gb] + [ga, zb]}+O(τ 2). (27.15.12)

Enforcing (15.8) and equating powers of τ give the result

[za, gb] + [ga, zb] = 0. (27.15.13)

We have seen this condition before in Lemma 6.2 of Section 7.6. There we learned that
(15.13) implies and is implied by the relation

ga =: h : za, (27.15.14)

which, in view of (15.11), is equivalent to the relation (15.1). Thus, (15.13) is a necessary
and sufficient condition for Lg to be a Hamiltonian vector field.

We also learned how to construct h. It is given, up to an additive constant, by the
relation

h(z) = −
∫ z

P

∑
cd

gc(z
′)Jcd dz

′
d (27.15.15)

where P is any path ending at the point z. A convenient path is that which connects the
origin and z by a straight line,

z′(λ) = λz with λ ∈ [0, 1]. (27.15.16)

For this path we find the explicit result

h(z) = −
∑
cd

zdJcd

∫ 1

0

dλgc(λz). (27.15.17)
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This relation specifies h in terms of the gc, and hence in terms of Lg. It therefore provides
the map µ described in (15.2). Note that this specification is equivalent to the definition
(10.20) of the Hamiltonian part of a general homogeneous vector field.

At this point we remark that in some circumstances one initially has a transformation
or a group of transformations whose action is only on the position coordinates q. Such
transformations can always be extended to symplectic actions on phase space, and thus in
this case the existence of Hamiltonian vector fields is guaranteed. Recall Exercise 6.5.2.

As a first example of the momentum map process, consider (for a 6-dimensional phase
space) the case where

g1(z) = 1,

ga(z) = 0, a 6= 1, (27.15.18)

so that
Lg = ∂/∂z1 = ∂/∂q1. (27.15.19)

It is easily verified that
(Lg)nz = 0 for n ≥ 2, (27.15.20)

from which it follows that

z̄a(τ) = exp(τLg)za = za + τδa,1. (27.15.21)

That is, Lg generates translations in phase space along the z1 = q1 axis. Evidently, the ga
specified by (15.18) satisfy (15.13) so that Lg is a Hamiltonian vector field. Finally, the
formula (15.17) for h is easily evaluated to give the result

h(z) = −z4 = −p1, (27.15.22)

the negative of the first component of the linear momentum. Thus, invariance under trans-
lation implies the conservation of linear momentum, and vice versa.

As a second example, suppose that

Lg = z1∂/∂z2 − z2∂/∂z1 + z4∂/∂z5 − z5∂/∂z4

= (q1∂/∂q2 − q2∂/∂q1) + (p1∂/∂p2 − p2∂/∂p1). (27.15.23)

For this example the nonzero ga are given by the relations

g1(z) = −z2,

g2(z) = z1,

g4(z) = −z5,

g5(z) = z4. (27.15.24)

With the ga(z) in view, it is easily checked that (15.13) holds. It therefore makes sense to
continue on to compute h. The integrals appearing on the right side of (15.17) are easy to
evaluate because the ha(z) are homogeneous of degree one. Doing so gives the results∫ 1

0

dλgc(λz) =

∫ 1

0

dλλgc(z) = (1/2)gc(z). (27.15.25)
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Finally, employing (15.25) in (15.17) gives the result

h(z) = −(z1z5 − z2z4) = −(q1p2 − q2p1). (27.15.26)

From the second line of (15.23) we recognize Lg as the generator of simultaneous rotations
in the q1, q2 and p1, p2 planes, and from (15.26) we see that h is the negative of the third com-
ponent of the angular momentum. Thus, invariance under rotation implies the conservation
of angular momentum, and vice versa.

27.15.2 Use of Casimirs

In general, if a Hamiltonian is invariant under the action of some n-dimensional group
that preserves symplectic structure, there will be n associated integrals of motion. These
integrals, however, need not be in mutual involution. Think, for example, of the components
of angular momentum. Their Poisson bracket Lie algebra provides a realization of su(2) [or,
equivalently, so(3,R)], and they are therefore not in involution. Generally integrals will be
in involution if, and only if, the corresponding Lie operators commute. Recall (5.3.14). In
this subsection we will explore briefly how Casimirs can sometimes be used to construct
integrals that are in involution.

Suppose that a Hamiltonian H is indeed invariant under the action of some n-dimensional
group that preserves symplectic structure, and therefore there are n associated integrals of
motion. Call these integrals hα. Let C be any function of these integrals,

C = C(h1, h2, · · · , hn). (27.15.27)

Then we know form Exercise 5.2.4 that C will also be an integral of motion. Our goal will
be to construct a C such that it is functionally independent of any one of the hα, but is also
in involution with any of them.

We know that the hα will form a Lie algebra with the Poisson bracket serving as a Lie
product. That is, there will be relations of the form

[hα, hβ] =
∑
γ

cγαβh
γ. (27.15.28)

(Note that these relations are consistent with Poisson’s theorem that states that the Poisson
bracket of two integrals of motion is again an integral of motion. See Exercise 5.2.3.) The
structure constants cγαβ can be used to construct a Killing metric tensor gKαα′ , and from

gKαα′ , assuming it is invertible, we can construct gαα
′

K . With gαα
′

K in hand, we can define the
function C2 by the rule

C2 =
∑
αα′

gαα
′

K hαhα
′
. (27.15.29)

In analogy to the calculations carried out for the quadratic Casimir operator C2 in Section
21.11.1, it is easily verified that C2 is in involution with the hα. It can happen that C2

vanishes identically. See Exercise 21.11.7. But, if C2 does not vanish, we have found two
functionally independent integrals in involution, namely C2 and any one of the hα.
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At this point we might go on to find additional integrals C3, etc. constructed in analogy
to the higher-order Casimir operators. They will also be in involution and, if these integrals
are nonvanishing and functionally independent, we will have found additional nontrivial
integrals. In general, assuming the Lie algebra in question is simple, we may hope to find
as many integrals in involution as there are labels necessary to specify a representation for
the Lie algebra and to specify vectors within a representation.

Let us apply this construction to the rotation group example of the previous subsection.
Suppose that H has the three integrals

h1 = q2p3 − q3p2, (27.15.30)

h2 = q3p1 − q1p3, (27.15.31)

h3 = q1p2 − q2p1. (27.15.32)

They form an su(2) Lie algebra,
[h1, h2] = h3, etc. (27.15.33)

The metric tensor for su(2) is given in Exercise 21.12.2. It follows, after a convenient
renormalization, that we may take for C2 the quantity

C2 = (h1)2 + (h2)2 + (h3)2, (27.15.34)

which is the square of the angular momentum.

Exercises

27.15.1. Verify that (15.5) implies (15.6), and conversely.

27.15.2. Suppose (15.13) holds so that Lg is a Hamiltonian vector field. Suppose also that
Lg can be decomposed into a sum of homogeneous parts as in (3.1). (This will certainly be
possible if Lg is analytic.) Show that then (10.20) and (15.17) are equivalent.

27.15.3. Verify that use of (15.18) in (15.17) does yield (15.22). Verify that the ga given by
(15.18) and the h given by (15.22) do indeed satisfy (15.1).

27.15.4. Verify, by evaluating the effect of exp(τLg) on phase space, that Lg as given by
(15.23) does indeed generate simultaneous rotations in the q1, q2 and p1, p2 planes. Verify
(15.24) through (15.26). Verify that the ga given by (15.24) and the h given by (15.26) do
indeed satisfy (15.1).

27.15.5. Verify the relations (15.33). Verify that C2 and any one of the hα are in involution.
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Chapter 28

Numerical Study of Stroboscopic
Duffing Map

28.1 Introduction

This chapter continues the study of the Duffing equation begun in Section 1.4.3. Recall that
we are interested in the behavior of the system governed by the differential equation

q̈ + 2βq̇ + q + q3 = −ε sinωτ, (28.1.1)

or its equivalent first-order equation pair

q̇ = p,

ṗ = −2βp− q − q3 − ε sinωτ. (28.1.2)

Because the right sides of (1.1) and (1.2) are periodic with period

T = 2π/ω, (28.1.3)

we were able to define stroboscopic times

τn = nT, (28.1.4)

and were able to reduce the study of the long-term behavior of the driven Duffing oscillator
to the study of its associated stroboscopic map M under repeated iteration.

As indicated in Subsection 1.4.3, the driven Duffing oscillator is expected to display
an enormously rich behavior that varies widely with the parameter values β, ε, and ω.
Consequently, even providing an overview of what can happen requires considerable work,
and even then we shall be able to discuss only some of its complexity.

Our analysis will parallel that for the logistic map as done in Section 1.2.1. We will
find the fixed points of M for a small value of the driving strength ε, and track them in
q, p space as the driving frequency ω is varied thereby producing a Feigenbaum/bifurcation
diagram. Subsequently we will gradually increase the value of ε all the while observing the
Feigenbaum/bifurcation diagram for M as a function of ω. For simplicity, we will hold the
damping parameter β at the constant value β = 0.1.1

1Of course, one can also make Feigenbaum diagrams in which some other parameter, say ε, is varied while
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28.2 Review of Simple Harmonic Oscillator Behavior

But first suppose that the q3 term in (1.1) or (1.2) were missing. Then we know how to solve
the differential equation, which is just that of a driven damped simple harmonic oscillator.
The solution would consist of a particular solution plus any solution of the homogeneous
equation. The particular solution, call it qf (τ), is given by the relation

qf (τ) = −A(β, ω)ε sin(ωτ + φ) (28.2.1)

where
A(β, ω) = 1/

√
(1− ω2)2 + (2βω)2 (28.2.2)

and
φ(β, ω) = −Arctan[(2βω)/(1− ω2)]. (28.2.3)

Differentiating (2.1) gives the related result

pf (τ) = −ωA(β, ω)ε cos(ωτ + φ). (28.2.4)

Evidently qf (τ) and pf (τ) are periodic in τ with period T and therefore, as the subscript f is
intended to convey, the phase-space point {qf (0), pf (0)} is a fixed point of the stroboscopic
map M for the driven damped simple harmonic oscillator. Moreover, if β > 0, then all
solutions of the homogeneous equation are exponentially damped as τ →∞, and therefore
{qf (0), pf (0)} is a stable (and unique) attracting fixed point. We may therefore make the
identification

{q∞, p∞} = {qf (0), pf (0)}. (28.2.5)

Figures 2.1 and 2.2 display A(β, ω) and φ(β, ω) as a function of ω for the case β = .1, and
Figures 2.3 and 2.4 show q∞ and p∞ as functions of ω (for the case β = 0.1 and ε = .15),
and Figure 2.5 shows them both.2 As expected, there is resonant behavior in the vicinity of
ω = 1 since the coefficient of q in (1.1) is unity.3 Also note that both q∞ and p∞ approach
zero when ω either goes to zero or to infinity. See Exercise 2.1.

the others, including ω, are held fixed. We choose to vary ω because so doing brings resonance behavior to
the fore.

2The value β = .1 for the damping coefficient corresponds to a quality factor Q ' 4.95. See Exercise 2.2.
3It was the desire for q∞ to exhibit a resonance-like peak as a function of ω that dictated the choice

(1.4.28) for ψ.
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Figure 28.2.1: The quantity A(β, ω) as a function of ω (for the case β = 0.1).
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Figure 28.2.2: The quantity φ(β, ω) as a function of ω (for the case β = 0.1).
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Figure 28.2.3: Feigenbaum diagram showing limiting values q∞ as a function of ω (when
β = 0.1 and ε = .15) for the stroboscopic driven damped simple harmonic oscillator map.
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Figure 28.2.4: Feigenbaum diagram showing limiting values p∞ as a function of ω (when
β = 0.1 and ε = .15) for the stroboscopic driven damped simple harmonic oscillator map.
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ω (when β = 0.1 and ε = .15) for the stroboscopic driven damped simple harmonic oscillator
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Exercises

28.2.1. Show, using (2.1), (2.4), and (2.5), that

q∞ = −A(β, ω)ε sinφ, (28.2.6)

p∞ = −ωA(β, ω)ε cosφ. (28.2.7)

Show that using (2.2) and (2.3) in (2.6) and (2.7) gives the equivalent results

q∞ = 2βωε/[(ω2 − 1)2 + (2βω)2], (28.2.8)

p∞ = ω(ω2 − 1)ε/[(ω2 − 1)2 + (2βω)2]. (28.2.9)

Determine the behavior of q∞ and p∞ as ω either goes to zero or goes to infinity.

28.2.2. The quality factor Q of a damped harmonic oscillator is defined by the relation

Q = ωR/(2β) (28.2.10)

where ωR is the resonant frequency. For the normalization used in (1.1),

ω2
R = 1− 2β2. (28.2.11)

Show that Q ' 4.95 when β = 0.1.

28.3 Behavior for Small Driving when Nonlinearity is

Included

If the driving strength ε is small enough and the damping coefficient β is large enough, then
we expect q(τ) to be small, and therefore the q3 term in (1.1) can indeed be neglected, at
least in zeroth approximation. Figure 3.1 shows q∞ as a function of ω for the case β = 0.1
and ε = .15 when the q3 term in (1.1) is retained, and Figure 3.2 shows both q∞ and p∞.
Now we are dealing with the stroboscopic Duffing map, and the results shown were obtained
by numerical integration. Evidently these figures resemble their simple harmonic oscillator
counterparts, Figures 2.3 and 2.5. In particular, there is only one fixed point for each value
of ω and its basin is the entire q, p plane. (Consequently there are no fixed points for powers
of M apart from the fixed point of M itself.) Note, however, the appearance of some
structure near the value ω = 1/3, and that the resonance peak in q∞ near ω = 1 is reduced
in amplitude and slightly tipped toward the right.
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Figure 28.3.1: Feigenbaum diagram showing limiting values q∞ as a function of ω (when
β = 0.1 and ε = .15) for the stroboscopic Duffing map.
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of ω (when β = 0.1 and ε = .15) for the stroboscopic Duffing map.
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28.4 What Happens Initially When the Driving Is

Increased?

28.4.1 Saddle-Node (Blue-Sky) Bifurcations

We have found the Feigenbaum diagram of the stroboscopic Duffing map for small driving
strength ε. As promised, let us now increase ε to see what occurs. Figures 4.1 and 4.2
show results for the case ε = 1.5. Evidently the height of the resonance peak has grown in
response to the increased driving and has taken on a more complicated structure. And the
feature originally near ω = 1/3 has become a clearly defined subresonant peak. These peaks
have also moved to larger values of ω. This is to be expected since the natural frequency of
an oscillator having a hard spring increases with amplitude. Moreover, additional features
now appear to the left of those already recognized.

Most striking, for ω ∈ (1.8 · · · , 2.7 · · · ), there are three fixed points in place of the single
fixed point originally present for the case of less driving. Two of these fixed points are stable
and the third, whose coordinates as a function of ω are shown as a red line, is unstable.
(How the unstable fixed point can be found is described in Section 29.4.) What happens
is that, as ω is increased from small values, a pair of fixed points, one unstable and one
stable, is ‘born’ near ω = 1.8 · · · . This is sometimes called a saddle-node bifurcation. (The
term saddle denotes a particular kind of unstable fixed point, and the term node denotes a
particular kind of stable fixed point.) It is also called a blue sky bifurcation since these fixed
points seem to appear out of nowhere, i.e. out of the blue. (They actually come out of the
complex domain).4 Then, as ω is further increased, the unstable fixed point moves to meet
and ‘annihilate’ the original fixed point at ω = 2.7 · · · in an inverse saddle-node (or blue
sky) bifurcation thereby leaving behind only the stable fixed point born near ω = 1.8 · · · .
All this behavior can be understood on topological grounds. See Section 29.5.

4For an example of a blue sky bifurcation in the case of the one-dimensional logistic (quadratic) map,
see the end of Exercise 1.2.7.
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Figure 28.4.1: Feigenbaum/bifurcation diagram showing limiting values q∞ as a function of
ω (when β = 0.1 and ε = 1.5) for the stroboscopic Duffing map. Also shown, in red, is the
trail of the unstable fixed point. Finally, jumps in the steady-state amplitude are illustrated
by vertical dashed lines at ω ' 1.8 and ω ' 2.6.
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Figure 28.4.2: Feigenbaum/bifurcation diagram showing limiting values of p∞ as a function
of ω (when β = 0.1 and ε = 1.5) for the stroboscopic Duffing map. Also shown, in red, is
the trail of the unstable fixed point. Finally, a downward jump in the steady-state value p∞
at ω ' 1.8 is illustrated by a vertical dashed line. There is also an upward jump between
the two black curves at ω ' 2.6, but this feature is too small to be easily indicated by a
second vertical dashed line.
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28.4.2 Basins

Figure 4.3 shows the basins of attraction for the two stable fixed points when ω = 2.25. The
stable fixed points have the locations

w1 = (q∞, p∞) = (0.04247237, 0.84035059) (green) (28.4.1)

and
w2 = (q∞, p∞) = (1.68001491,−4.14472685) (red). (28.4.2)

The unstable fixed point has the location

w3 = (q∞, p∞) = (1.32261, 3.88274). (28.4.3)

Since these two basins together comprise the entire q, p plane, there are no other stable fixed
points of M. Moreover, there are no fixed points for powers of M apart from the fixed
points ofM itself. Finally, it can be shown that, unlike the complex logistic map, the basin
boundaries are smooth. This is because in this case there are no homoclinic points. See
Section 29.6 and Figure 29.6.8. Thus, in this parameter regime, the long-term behavior of
the driven Duffing oscillator is relatively simple.5

What is the actual motion for the periodic orbits associated with these fixed points?
Figure 4.4 shows q(τ) for the two stable fixed points, and Figure 4.5 shows q(τ) for the
unstable fixed point, all for the case ω = 2.25. At this point one can make two interesting
observations.

28.4.3 Symmetry

The first observation is that if q(τ) is a solution (periodic or otherwise) to Duffing’s equation,
then so is q̄(τ) with

q̄(τ) = −q(τ − π/ω). (28.4.4)

Note that, in view of (1.3), there is the relation

π/ω = T/2 (28.4.5)

so that (4.4) can also be written in the form

q̄(τ) = −q(τ − T/2). (28.4.6)

This property is an example of what is sometimes called equivariance, and occurs in this
case because the left side of (1.1) is odd in q and does not explicitly contain the time. See
Exercise 4.1. Thus, given a solution q of Duffing’s equation, use of (4.6) produces a related
solution q̄. In principle this solution may be different, but it could also be the same as the
original one. Inspection of Figures 4.4 and 4.5 reveals that

q̄(τ) = q(τ) (28.4.7)

5We remark that there would be no attractors, and consequently no basins, in the zero damping limit
β → 0, for then the system would be Hamiltonian, and we have learned in Subsections 3.4 and 6.4 that
Hamiltonian systems have neither attractors or repellers. That is one reason why the long-term behavior of
most Hamiltonian systems is so complicated.
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Figure 28.4.3: Basins of attraction for the two stable fixed points (when ω = 2.25, β = 0.1,
and ε = 1.5) for the stroboscopic Duffing map. Green points are in the basin of the attracting
fixed point w1 and red points are in the basin of the attracting fixed point w2. There is also
an unstable fixed point w3. See Figures 29.6.7 and 29.6.8.
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for all three periodic orbits shown. Therefore in this case each solution is sent into itself
under the ‘barring’ operation. It can be verified that the same is true for all the periodic
solutions associated with all the fixed points found so far.
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Figure 28.4.4: Stable periodic orbits q(τ) (when ω = 2.25, β = 0.1, and ε = 1.5) for the
Duffing equation.

28.4.4 Amplitude Jumps

The second observation is that the two stable periodic orbits shown in Figure 4.4 have
different amplitudes. With reference to Figures 4.1 and 4.2, suppose that ω ' 1.5 and that
the Duffing oscillator has settled down to the periodic orbit associated with the attracting
fixed point q∞, p∞. (For this value of ω there is only one fixed point, and it is attracting.)
Next imagine slowly increasing ω (slowly means in a time large compared to the time required
to settle down to the attracting periodic orbit). Then the Duffing oscillator will essentially
remain on the periodic orbit associated with the value of q∞ shown as the upper curve in
Figure 4.1. This will continue to be the case until ω reaches the value ω ' 2.6, at which value
the stable fixed point merges with the unstable fixed point and they mutually annihilate.
What has happened is that the basin of attraction of this stable fixed point has shrunk to
zero. When this occurs, the oscillator orbit finds itself in the basin of the other remaining
stable fixed point and is rapidly attracted to the periodic orbit associated with that stable
fixed point. Moreover, as Figure 4.1 suggests and Figure 4.4 confirms, the amplitude of
oscillation associated with this new periodic orbit is considerably less than that associated
with the old. Thus, the Duffing oscillator exhibits an amplitude jump (to an appreciably
lower value) as ω is increased beyond ω ' 2.6. This amplitude jump is illustrated by the
vertical dashed lines at ω ' 2.6 in Figures 4.1 and 4.2.
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Figure 28.4.5: Unstable periodic orbit q(τ) (when ω = 2.25, β = 0.1, and ε = 1.5) for the
Duffing equation.

28.4.5 Hysteresis

Next suppose that ω > 2.6, say ω ' 3, and that the Duffing oscillator has settled down to
the periodic orbit associated with the attracting fixed point q∞, p∞. (For this value of ω
there is again only one fixed point, and it is attracting.) Now slowly decrease ω. Then the
Duffing oscillator will essentially remain on the periodic orbit associated with the value of
q∞ shown as the lower curve in Figure 4.1. This will continue to be the case until ω reaches
the value ω ' 1.8, at which value the stable fixed point in question merges with the unstable
fixed point and they mutually annihilate. What has happened is that the basin of attraction
of this stable fixed point has now shrunk to zero. When this occurs, the oscillator orbit finds
itself in the basin of the other remaining stable fixed point and is rapidly attracted to the
periodic orbit associated with that stable fixed point. Now the amplitude of oscillation will
jump to a larger value. This amplitude jump is also illustrated by vertical dashed lines at
ω ' 1.8 in Figures 4.1 and 4.2. Note that the ω values for the two amplitude jumps are
different. Thus, the steady-state amplitude of the Duffing oscillator exhibits hysteresis as ω
is slowly varied back and forth over the range in which saddle-node bifurcations occur.

Exercises

28.4.1. Show that the left side of (1.1) changes sign under the replacement of q by −q.
Show that the right side of (1.1) changes sign under the replacement of τ by (τ − π/ω).
Verify that if q(τ) is a solution to Duffing’s equation, then so is q̄(τ) as given by (4.4) or

(4.6). Let
=
q denote the result of applying the barring operation to q̄. Show that if q is a

solution associated with a fixed point ofM, and therefore is a periodic solution with period
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T , then
=
q= q. Verify that the harmonic oscillator solution (2.1) satisfies (4.7).

28.5 Pitchfork Bifurcations and Symmetry

Let us continue to increase ε. Figure 5.1 shows that a qualitatively new feature appears
when ε is near 2.2: a bubble is formed between the major resonant peak (the one that has
saddle-node bifurcated) and the subresonant peak immediately to its left. To explore the
nature of this bubble, let us make ε still larger, which, we anticipate, will result in the
bubble becoming larger. Figures 5.2 and 5.3 show Feigenbaum diagrams in the case ε = 5.5.
Now the major resonant peak and the subresonant peak have moved to larger ω values.
Correspondingly, the bubble between them has also moved to larger ω values. Moreover, it
is larger, yet another smaller bubble has formed, and the subresonant peak between them has
also undergone a saddle-node bifurcation. For future use, we will call the major resonant
peak the first or leading saddle-node bifurcation, and we will call the subresonant peak
between the two bubbles the second saddle-node bifurcation, etc. Also, we will call the
bubble just to the left of the first saddle-node bifurcation the first or leading bubble, and
the next bubble will be called the second bubble, etc.
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Figure 28.5.1: Feigenbaum diagram showing limiting values q∞ as a function of ω (when
β = 0.1 and ε = 2.2) for the stroboscopic Duffing map. It displays that a bubble has now
formed at ω ≈ .8.

Figure 5.4 shows the larger (leading) bubble in Figure 5.2 in more detail and with the
addition of red lines indicating the trails of unstable fixed points. It reveals that the bubble
describes the simultaneous bifurcation of a single fixed point into three fixed points. Two of
these fixed points are stable and the third, whose q coordinate as a function of ω is shown as
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Figure 28.5.2: Feigenbaum diagram showing limiting values q∞ as a function of ω (when
β = 0.1 and ε = 5.5) for the stroboscopic Duffing map. The first bubble has grown, a
second smaller bubble has formed to its left, and the sub-resonant peak between them has
saddle-node bifurcated to become the second saddle-node bifurcation.
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Figure 28.5.3: Feigenbaum diagram showing both limiting values q∞ and p∞ as a function
of ω (when β = 0.1 and ε = 5.5) for the stroboscopic Duffing map.
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a red line, is unstable. What happens is that, as ω is increased, a single stable fixed point
becomes a triplet of fixed points, two of which are stable and one of which is unstable. This
is called a pitchfork bifurcation. Then, as ω is further increased, these three fixed points
again merge, in an inverse pitchfork bifurcation, to form what is again a single stable fixed
point. This behavior can also be understood on topological grounds. Again see Section 29.5.
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Figure 28.5.4: An enlargement of Figure 5.2 with the addition of red lines indicating the
trails of unstable fixed points.

As a side comment, we remark that a pitchfork bifurcation could better be called a
pitchfork trifurcation. Unlike a saddle-node bifurcation, is this case all three fixed points
appear where once there was only one. True pitchfork bifurcations are rare, and only occur in
the presence of symmetry, in this case the equivariance symmetry described earlier. However,
it can happen, particularly in the case of near symmetry, that a saddle-node bifurcation
occurs very close to another stable fixed point so that from a distance what appears to be
happening is a pitchfork bifurcation. As an example of near symmetry, the left side of (1.1)
could be modified (perturbed) to contain an additional term of the form δq2 where δ is small.
Figure 5.5 illustrates how Figure 5.4 is modified when the term 0.02q2 is added to the left
side of (1.1). Evidently the pitchfork bifurcation becomes a saddle-node bifurcation. A pair
of fixed points, one stable and one unstable, is born in the vicinity of ω = 1, and they move
as ω is increased. However, unlike the case of Figure 4.1, they then annihilate each other
near ω = 1.3 rather than the unstable fixed point moving up to the other fixed point so that
this pair is mutually annihilated. Note also that the perturbation destroys the small bubble
that was near ω = .6 (which was also a pitchfork bifurcation before the perturbation was
introduced).

To continue with the case of the pitchfork bifurcation, and as we did in the case of a
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Figure 28.5.5: Transformation of a pitchfork bifurcation into a saddle-node bifurcation due
to the inclusion of the symmetry breaking perturbation 0.02q2. Also shown as red lines are
the trails of unstable fixed points. Note, however, that the stable-unstable pair of fixed points
born at ω ≈ 1 self annihilates at ω ≈ 1.3 rather than the unstable fixed point annihilating
the other stable fixed point as happens in Figure 4.1.



28.5. PITCHFORK BIFURCATIONS AND SYMMETRY 1935

saddle-node bifurcation, let us plot the three periodic orbits associated with the three fixed
points. Figure 5.6 displays q(τ) for the two stable fixed points, and Figure 5.7 displays
q(τ) for the unstable fixed point, all for the case ω = 1.1. The stable fixed points have the
locations

(q∞, p∞) = (0.942055303,−0.792682910) (28.5.1)

and

(q∞, p∞) = (−0.55292184,−1.72277791). (28.5.2)

The unstable fixed point has the location

(q∞, p∞) = (0.140706,−1.05507). (28.5.3)

In this case inspection shows that the unstable periodic orbit is sent into itself under the
barring operation, as before. However, unlike the saddle-node case, the two stable orbits
are interchanged under the barring operation.6 Also, since the amplitudes of the two stable
periodic oscillations are the same as a result of their being interchanged under the barring
operation (see Figure 5.6), there are no amplitude jumps associated with pitchfork bifurca-
tions.
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Figure 28.5.6: Stable periodic orbits q(τ) (when ω = 1.1, β = 0.1, and ε = 5.5) for the
Duffing equation.

6The change in the nature of periodic Duffing orbits at a pitchfork bifurcation is sometimes described
as dynamical spontaneous symmetry breaking. For small ε values and all ω values, all periodic orbits have
the symmetry property of being invariant (sent into themselves) under the barring operation. For larger
ε values, as ω is varied, some periodic orbits appear that no longer have this symmetry, even though the
underlying equations of motion retain the same symmetry for all values of ε and ω.
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Figure 28.5.7: Unstable periodic orbit q(τ) (when ω = 1.1, β = 0.1, and ε = 5.5) for the
Duffing equation.

28.6 Period Tripling Bifurcations and Fractal Basin

Boundaries

Close examination of Figures 5.2 and 5.3 shows that something also happens in the vicinity
of ω = 4.15: Three attracting fixed points of M3 appear and then again vanish as ω is
varied. Although these points are fixed points of M3, they are not fixed points of M, and
hence are period-three fixed points of M. They correspond to solutions that do not have
period T , but rather are periodic with period 3T . Solutions that are not periodic with the
drive period T , but are periodic with a period that is some integer multiple of T , are said
to be subharmonic.7

Figure 6.1 shows an enlargement of that portion of Figure 5.2 where period tripling
occurs. The period-three fixed points are shown in green and the period-one fixed points,
both stable and unstable and unstable, are shown in red. What happens is thatM3 exhibits
saddle-node (blue-sky) bifurcations so that M3 fixed points are born (and subsequently
annihilate) in pairs. Three of each pair, those that are attracting, are shown in Figures 5.2
and 5.3. Figure 6.1 shows the period-one fixed points in red (two stable and one unstable)
and the period-three fixed points in green. Inspection of the green features suggests that
there are six fixed points of M3 that occur as stable-unstable pairs. Figures 6.2 through

7If a periodic solution has period nT , it has fundamental frequency ω/n. Correspondingly, such a solution
is called 1/n subharmonic. For the case being discussed here, n = 3. It is sometimes stated in the literature
that for the driven Duffing equation there is no subharmonic corresponding to the case n = 2, which would
be the case of period doubling. However, we will eventually see that, for sufficiently strong driving, period
doubling does occur.
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6.4 confirm this analysis. They show each pair of saddle and node fixed points of M3 as
functions of ω.
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Figure 28.6.1: An enlargement of Figure 5.2 showing, forM, the period-one fixed points in
red (two stable and one unstable) and the stable-unstable pairs of period-three fixed points
in green.

What can be said about the basin structure of M and M3 in this case? Let us set

ω = 4.21, (28.6.1)

which is a convenient value roughly midway between the birth and annihilation values of ω
for the period-three fixed points in Figures 6.1 through 6.4. Numerical study shows that for
this value of ω there are the following attracting fixed points:

w1 = (0.01666814, 1.38706838) (white), (28.6.2)

w2 = (3.32944854,−15.41028862) (blue); (28.6.3)

z1 = (1.08279489, 1.40756189) (red), (28.6.4)

z2 =Mz1 = (−0.58378622, 0.30474951) (green), (28.6.5)

z3 =Mz2 = (−0.38267261, 2.82716098) (yellow). (28.6.6)

The points w1 and w2 are the attracting fixed points of M. Of course, they will also be
attracting fixed points of M3. The points z1, z2, z3 are the attracting fixed points of M3,
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Figure 28.6.2: A blue-sky bifurcation that produces, and then subsequently destroys, a pair
of stable (black) and unstable (red) period-three fixed points. These points correspond to
the upper green feature shown in Figure 6.1.
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Figure 28.6.3: A blue-sky bifurcation that produces, and then subsequently destroys, a pair
of stable (black) and unstable (red) period-three fixed points. These points correspond to
the center green feature shown in Figure 6.1.



1940 28. NUMERICAL STUDY OF STROBOSCOPIC DUFFING MAP

-0.6

-0.59

-0.58

-0.57

-0.56

-0.55

-0.54

-0.53

-0.52

 4  4.05  4.1  4.15  4.2  4.25  4.3  4.35  4.4

ω

q
∞

Figure 28.6.4: A blue-sky bifurcation that produces, and then subsequently destroys, a pair
of stable (black) and unstable (red) period-three fixed points. These points correspond to
the bottom green feature shown in Figure 6.1.
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Figure 28.6.5: Basins, using the map M3 and with ω = 4.21, for the period-one attracting
fixed points w1 (white) and w2 (blue), and the period-three attracting fixed points z1 (red),
z2 (green), and z3 (yellow).
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and hence attracting period-three fixed points of M. Figure 6.5 displays, using the map
M3, the basins for all these attracting fixed points.

When viewed from a distance, the basins of w1 and w2 in Figure 6.5 look much like
those in Figure 4.3. However, closer inspection of the white basin, that of w1, reveals that
it contains within it the basins of the period-three fixed points z1, z2, and z3. Moreover,
the basins of the period-three fixed points consist of principal components (which contain
the period-three fixed points z1, z2, and z3 themselves) plus what appear to be an infinite
number of disconnected pieces. (Recall that all white points are in the basin of w1.) Finally,
the pieces of the period-three basins crowd ever more closely together (but still separated
by ever smaller white areas) in the vicinity of the boundary of the w2 (blue) basin so that
this basin-boundary structure becomes fractal. These features are seen even more clearly in
Figure 6.6, which is an enlargement (with different q, p scales) of Figure 6.5 in the vicinity of
the points w1, z1, z2, and z3. In this figure the fixed points w1 and z1, z2, and z3 themselves
are shown as small black dots. Because the basin-boundary structure is fractal, the final
fate of an orbit launched in the vicinity of the basin boundary (which of the five attracting
fixed points w1, w2, z1, z2, and z3 it eventually approaches) depends very sensitively on the
initial conditions.

28.7 Asymptotic ω Behavior

Examination of all the Feigenbaum/bifurcation diagrams produced so far for the Duffing
oscillator shows that their behavior is consistent with the hypothesis

lim
ω→0

q∞ = 0, lim
ω→0

p∞ = 0, (28.7.1)

lim
ω→∞

q∞ = 0, lim
ω→∞

p∞ = 0. (28.7.2)

That is, in the limits ω → 0 or ∞, there is a single attracting fixed point and its basin is
the entire q, p plane. Correspondingly, for each value of ε (and β) there is only a finite range
of ω values that is of interest. In the case of Figures 5.2 and 5.3, for example, extension
of the ω range to smaller and larger values shows that the advertised small and large ω
asymptotic behavior has already set in so that no new features appear beyond those already
seen.

To explore the ω → 0 limit, rewrite (1.1) in the form

q + q3 = −ε sinωτ − [q̈ + 2βq̇]. (28.7.3)

If ω is small, we may expect that q(τ) will be slowly varying and therefore q̇ and q̈ will be
small. As an illustration of this expectation, Figure 7.1 displays the quantity [q̈ + 2βq̇] as a
function of τ for the periodic solution when ω = .01 (and β = .1 and ε = 5.5), the ω value
associated with the left end of Figure 5.2. Note that this quantity is small, and numerical
calculations verify that asymptotically it goes to zero linearly in ω as ω goes to zero.8 If this

8We remark that the ‘wiggles’ (ringing) in Figure 7.1 are real. They also appear in q(τ). If Duffing’s
equation is linearized around the Ansatz (7.4), then [q̈ + 2βq̇] appears as a driving term of the linearized
equation. The wiggles are the (damped) response to the sharp peaks in the driving term. Examination of
Figure 7.1 reveals that the wiggles occur just to the right of the peaks at τ = 0 and τ ' 300.
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Figure 28.6.6: An enlargement of a portion of Figure 6.5. The fixed points w1 and z1, z2,
and z3 themselves are shown as small black dots. The small black dot at the center of the
figure is the fixed point w1. Three small black dots near the ends of the red, green, and
yellow filaments surround w1. These are the M3 fixed points z1, z2, and z3, respectively.
The principal components of the period-three basins contain the fixed points z1, z2, and z3.
Note the crowding of the red, green, and yellow pieces of the period-three basins against the
blue basin of w2 (but still separated by ever smaller white areas) thereby making this basin
boundary structure fractal.
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quantity is neglected on the right side of (7.3), this relation becomes

q + q3 = −ε sinωτ (28.7.4)

and consequently there is the result

q(0) + [q(0)]3 = 0 (28.7.5)

with the solution
q(0) = q∞ = 0. (28.7.6)

Moreover, if (7.4) holds, then there is also the relation

q̇ + 3q2q̇ = −ωε cosωτ, (28.7.7)

from which, using (7.6), it follows that

q̇(0) = −ωε. (28.7.8)

From (7.8), in turn, we infer that

lim
ω→0

q̇(0) = lim
ω→0

p∞ = 0. (28.7.9)

Thus, (7.1) is correct.
To explore the ω →∞ limit, rewrite (1.1) in the form

q̈ = −ε sinωτ − [2βq̇ + q + q3]. (28.7.10)

If ω is very large, we may expect that q(τ) will be rapidly varying and therefore q̈ will be
very large compared to the other terms on the left side of (1.1). Correspondingly, the other
terms will be small in the large ω limit. As an illustration of this expectation, Figure 7.2
displays the quantity [2βq̇+ q+ q3] as a function of τ for the periodic solution when ω = 15
(and β = .1 and ε = 5.5), an ω value beyond the right end of Figure 5.2. We see that this
quantity is indeed small, and further numerical work reveals that it vanishes as ω goes to
infinity. If this quantity is neglected on the right side of (7.10), this relation becomes

q̈ = −ε sinωτ (28.7.11)

with the solution
q̇(τ) = (1/ω)ε cosωτ, (28.7.12)

q(τ) = (1/ω2)ε sinωτ. (28.7.13)

From (7.13) we conclude that

lim
ω→∞

q∞ = lim
ω→∞

q(0) = 0. (28.7.14)

And from (7.12) we conclude that

lim
ω→∞

p∞ = lim
ω→∞

q̇(0) = 0. (28.7.15)

We see that (7.2) also holds.
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ω = .01 (and β = .1 and ε = 5.5).
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Figure 28.7.2: The quantity [2βq̇ + q + q3] as a function of τ for the periodic solution when
ω = 15 (and β = .1 and ε = 5.5).
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28.8 Period Doubling Cascade

We end our study of the Duffing equation by increasing ε from its earlier value ε = 5.5 to
larger values. Based on our experience so far, we might anticipate that the Feigenbaum
diagram would become ever more complicated. That is indeed the case. Figure 8.1 displays
q∞ obtained numerically, when β = 0.1 and ε = 22.125, as a function of ω for the range
ω ∈ (0, 12). Evidently the behavior of the attractors for the stroboscopic Duffing map,
which is what is shown in Figure 8.1, is extremely complicated. There are now a great many
fixed points of M itself and various powers of M. For small values of ω, and as in Figures
4.1, 5.1, and 5.2, there are many resonant peaks and numerous saddle-node and pitchfork
bifurcations. For larger values of ω there are more complicated bifurcations. In this figure,
and some subsequent figures, the coloring scheme is chosen to guide the eye in following
bifurcation trees with colors changing when the period changes. Points with period one are
colored red, and points of very high or no discernible period are colored black.

Let us begin by describing the more mundane features of the diagram. As already
mentioned, at the left end of the diagram there is a series of saddle-node bifurcations as
before, and the first one has moved to larger ω values so that it now occurs over the range
ω ∈ (4, 10). Also, now more numerous, there are again bubbles for small values of ω. And
the first bubble has also moved to larger ω values so that it now ends near ω = 2. For the
right end of the diagram, numerical study indicates that there are no new structures beyond
ω = 12 so that the asymptotic behavior (7.14) and (7.15) sets in for ω values larger than
those shown.

There are also many new features. First, there are numerous higher-period fixed points
that appear and disappear through blue-sky bifurcations. Some of them have been color
coded in the figure. Moreover, some of the trails of the higher-period fixed points have little
bubbles, and some of these little bubbles have an infinite number of sub-bubbles within
them. That is, some of the higher-period fixed points (most evidently, those of period three)
seem to have complete period doubling cascades with chaotic behavior at the end of the
cascade. Figure 8.2 shows this behavior in further detail. It is too complicated to be studied
further here.

What we do wish to note in Figure 8.2 is that what we have been calling the the first and
second bubbles have within them the beginnings of period doubling cascades. Recall that
each of these bubbles consists of three period-one fixed points. One of them is unstable, and
hence invisible in a Feigenbaum diagram. The other two are stable, and their trails as ω is
varied form the bubble. We see that these cascades do not complete but rather, after several
period doublings, each cascade ceases and then successively undoes itself by a sequence of
mergers to ultimately result in what is again a single stable period-one fixed point. This
behavior is similar to that exhibited by the simple map described in Appendix J.

Suppose the value of ε is increased still further. Figure 8.3 shows the Feigenbaum diagram
when ε = 25. It looks similar to Figure 8.1 for ε = 22.125. For example, there are again
no new structures beyond ω = 12 so that the asymptotic behavior (7.14) and (7.15) sets
in for ω values larger than those shown. However, Figure 8.4, which is an enlargement of
Figure 8.3, shows that the Feigenbaum cascades in the first and second bubbles now go to



1948 28. NUMERICAL STUDY OF STROBOSCOPIC DUFFING MAP

-4-2 0 2 4 6 8

 1
0

 1
2

 2
 4

 6
 8

 1
0

 1
2

ω

q
∞

Figure 28.8.1: Feigenbaum diagram showing limiting values q∞ as a function of ω (when
β = 0.1 and ε = 22.125) for the stroboscopic Duffing map.
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completion.9 Then, as ω is further increased, each complete period-doubling cascade again
undoes itself. Note also that there appears to be a window of stability (near ω = 1.33)
within the completed cascade in the first bubble.

We close this lengthy discussion with a further brief study of some aspects of the period
doubling cascade in the first bubble. Figure 8.5 shows an enlargement of part of this cascade.
Specifically, it shows the beginnings of the period doubling cascades that occur in the bubble.
The bubble has already formed due to the pitchfork bifurcation at the value ω ' 1.2284, a
value somewhat smaller than the ω values shown, and for which (q∞, p∞) ' (.3982, 2.332).
See Figure 8.4. Within the bubble there are two period-doubling cascades that begin when
ω ' 1.268: a lower one for which (q∞, p∞) ' (−.228, 1.802), and an upper one for which
(q∞, p∞) ' (1.131, 2.215). It can be shown that the period-doubling cascades begin at
the same ω values in both the upper and lower trails because of equivariance symmetry.
See Sections 29.12.2 and 29.12.3. Unfortunately the view of the upper period-doubling
bifurcation is somewhat complicated by the simultaneous appearance of a wisp of the trail
of the stable stable fixed point associated with the second saddle-node bifurcation (the one
mostly to the left of the first bubble) that appears to overlay the period-doubling bifurcation.
This is an accident of our plotting scheme that happens to occur when ε = 25. It would not
overlay the period-doubling bifurcation if we had made a Feigenbaum diagram showing p∞
versus ω instead of q∞ versus ω. It also does not overlay the period-doubling bifurcation for
other values of ε. Examine Figure 8.2 (for which ε = 22.125) in the vicinity ω ≈ 1.22 and
q∞ ≈ 1.2.

Let us now examine in more detail the period-doubling cascade that occurs in the upper
part of the first bubble. See Figure 8.6. Evidently, for the smaller driving frequencies and
in this region of phase space, there is a single period-one fixed point corresponding to an
attractor. As the frequency is increased there is an infinite cascade of period doublings,
and the motion appears chaotic by ω ' 1.29. The resemblance between Figure 8.6 and
Figure 1.2.4 for the logistic map is quite striking. In particular, numerical studies indicate
that the frequencies ωj at which successive bifurcations occur behave in a way analogous to
(1.2.14) with (to within numerical accuracy) Feigenbaum’s value of δ. Of course, as Figure
8.3 illustrates, the Duffing stroboscopic map is vastly more complicated than the logistic
map, and its behavior resembles that of the logistic map only in a limited parameter range
and only in a limited region of phase space. Note also that the logistic map acts on a
one-dimensional space while the Duffing stroboscopic map acts on a two-dimensional space.
Figure 1.2.4 tells the full story for the logistic map. By contrast, Figure 8.6 for the Duffing
stroboscopic map is a projection onto the q axis of points in the two-dimensional q, p space.
For full information one would need a figure made in the style of Figures 3.2 and 5.3.10

9Further numerical study indicates that the cascade in the first bubble is complete by the time ε = 22.25
while that in the second bubble remains incomplete. Shortly thereafter the cascade in the second bubble also
completes. Finally, numerical study reveals that the cascades associated with the higher-period blue-sky
fixed points do complete for some ε values less that 22.125.

10See Figure 29.7.5 for such a figure in the case of the damped Hénon map.
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Figure 28.8.2: Enlargement of a portion of Figure 8.1 displaying limiting values of q∞ as a
function of ω (when β = 0.1 and ε = 22.125) for the stroboscopic Duffing map. It shows part
of the first bubble at the far right, the second bubble, and part of a third bubble at the far
left. Examine the first and second bubbles. Each initially consists of two stable period-one
fixed points. Each also contains the beginnings of period-doubling cascades. These cascades
do not complete, but rather cease and then undo themselves by successive mergings to again
result in a pair of stable period-one fixed points. There are also many higher-period fixed
points and their associated cascades.
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Figure 28.8.3: Feigenbaum diagram showing limiting values q∞ as a function of ω (when
β = 0.1 and ε = 25) for the stroboscopic Duffing map.
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Figure 28.8.4: Enlargement of a portion Figure 8.3 showing the first, second, and third
bubbles. The period-doubling cascades in each of the first and second bubbles now complete.
Then they undo themselves as ω is further increased. There is no period doubling in the
third bubble when ε = 25.
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Figure 28.8.5: Detail of part of the first bubble in Figure 8.4 showing upper and lower
infinite period-doubling cascades. Part of the trail of the stable fixed point associated with
the second saddle-node bifurcation accidentally appears to overlay the upper period doubling
bifurcation. Finally, associated with higher-period fixed points, there are numerous cascades
and followed by successive mergings.
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Figure 28.8.6: Detail of part of the upper cascade in Figure 8.5 showing an infinite period-
doubling cascade, followed by chaos, for what was initially a stable period-one fixed point.



1954 28. NUMERICAL STUDY OF STROBOSCOPIC DUFFING MAP

28.9 Strange Attractor

Finally, Figure 9.1 shows both the q∞ and p∞ values associated with Figure 8.6 when
ω = 1.2902 (and β = .1 and ε = 25). Evidently the set of points q∞, p∞ for ω values just
beyond the end of the cascade is quite complicated. By construction the set is an attractor.
That is, points nearby this set are brought ever closer to the set under repeated action of
M. Moreover, numerical evidence suggests that this set has an infinite number of points
and that the action ofM on points in this set is to move them about within the set in a very
complicated way. Finally, the set appears to be fractal. That is, it displays self similarity
under repeated magnification. Therefore it may be an instance of what is called a strange
attractor. For example, Figure 9.2 shows an enlargement of part of Figure 9.1. Repeated
enlargement is expected to show a continued self-similar structure. For an instance of a
strange attractor in the case of the damped Hénon map, see Sections 29.7 and 29.9. For
more about the Duffing stroboscopic map, see Section 29.12. Finally, we warn the reader
that there is no universal agreement among authors about the meaning of the adjective
strange when applied to attractors. Some simply mean that the attractor has an infinite
number of points. Some take fractal behavior to be the defining feature of what it means to
be strange. Others require a sensitive dependence on initial conditions. Still others require
what is technically called nonuniformly hyperbolic behavior.
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Figure 28.9.1: Limiting values of q∞, p∞ for the stroboscopic Duffing map when ω = 1.2902
(and β = .1 and ε = 25). They appear to lie on a strange attractor.
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Figure 28.9.2: Enlargement of boxed portion of Figure 9.1 illustrating the beginning of
self-similar fractal structure.
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Chapter 29

General Maps

Most of this book is devoted to the use of Lie methods for symplectic maps. However,
Lie methods can also be used for general maps. This chapter treats general maps in an
even number of variables and exploits the decomposition of general analytic vector fields (in
an even number of variables) into Hamiltonian and non-Hamiltonian parts as described in
Chapter 27. Section 1 describes the Lie factorization of general maps. Section 2 classifies
all two-dimensional quadratic maps, and Section 3 studies, as an example, the Lie factoriza-
tion of the general two-dimensional quadratic map. Sections 4 through 6 describe various
concepts that are useful for studying maps including fixed points, the Poincaré index, stable
and unstable manifolds, homoclinic points, and homoclinic tangles. Section 7 introduces the
general Hénon map. Section 8 presents a preliminary study of the general Hénon map by
finding and characterizing its fixed points, producing expansions about them, and factor-
izing the map about them. Section 9 describes period doubling and strange attractors for
the general Hénon map, and Section 10 attempts to find integrals. Section 11 describes and
studies quadratic symplectic maps in more than two dimensions. Section 12 obtains and
studies Taylor approximations to the stroboscopic Duffing map. A final section discusses
the expected analytic behavior of fixed points of a map and the eigenvalues of the linear
part of the map.

29.1 Lie Factorization of General Maps

Section 7.6 showed that (modulo questions of convergence) any analytic symplectic map can
be written in factorized product form. The purpose of this section is to explore what can be
done for general analytic maps (in an even number of variables). That is, we will consider
the group of all (analytic) diffeomorphisms. We will find that a general map can be written
as a product of two factors. One factor is a product of exponentials of non-Hamiltonian Lie
operators, and the second factor is an analytic symplectic map.

We begin by copying the expansion (7.6.1) for M,

za =
∑
b

Labzb +
∑
bc

Tabczbzc +
∑
bcd

Uabcdzbzczd + · · · , (29.1.1)

but now no longer require thatM be symplectic. First of all the linear (matrix) part ofM,
which we now write as L, need not be a symplectic matrix. However, we will require that L

1959
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have the symplectic polar decomposition

L = RQ. (29.1.2)

Here R is symplectic and Q is a J-symmetric matrix that can be written in the form

Q = exp(JA) (29.1.3)

where A is antisymmetric. Sufficient conditions on L for (1.2) and (1.3) to hold were estab-
lished in Section 4.3.

In (24.10.49) employ for F the matrix A of (1.3) and call the result G2,

G2 = Lg (29.1.4)

with
gb =

∑
d

(JA)bdzd. (29.1.5)

From the work of Section 24.10 we know that G2 is a a non-Hamiltonian vector field with
the action

G2zb =
∑
d

(JA)bdzd. (29.1.6)

Recall (1.4) and see (24.10.51). It follows that there are the associated relations

(G2)mzb =
∑
d

[(JA)m]bdzd, (29.1.7)

[exp(G2)]zb =
∑
d

[exp(JA)]bdzd =
∑
d

Qbdzd. (29.1.8)

Also, since R is symplectic, there are polynomials fa2 (z) and f c2(z) associated with R. See
Section 7.6. By using these polynomials and (1.8) we find the results

[exp(G2) exp(: f c2 :) exp(: fa2 :)]zb = [exp(G2)]
∑
d

Rbdzd

=
∑
d

Rbd[exp(G2)]zd =
∑
de

RbdQdeze =
∑
e

Lbeze, (29.1.9)

[exp(− : fa2 :) exp(− : f c2 :) exp(−G2)]zb =
∑
e

(L−1)beze. (29.1.10)

These results can be written more compactly in the form

exp(G2) exp(: f c2 :) exp(: fa2 :)z = Lz, (29.1.11)

exp(− : fa2 :) exp(− : f c2 :) exp(−G2)z = L−1z. (29.1.12)

Finally, since all the factors on the left side of (1.12) are Lie transformations, we have the
result

exp(− : fa2 :) exp(− : f c2 :) exp(−G2)h(z) = h(L−1z), (29.1.13)
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for any function h.
Now, in the spirit of Section 7.6, apply [exp(− : fa2 :) exp(− : f c2 :) exp(−G2)] to both

sides of (1.1). Doing so, and making use of (1.12) and (1.13), give the result

exp(− : fa2 :) exp(− : f c2 :) exp(−G2)zb = zb + rb(> 1). (29.1.14)

Here, as before, the notation rb(> m) denotes any “remainder” series consisting of terms of
degree higher than m. To proceed further, suppose the remainder terms rb(> 1) are decom-
posed into second degree terms gb(2; z) and higher degree terms by writing the relations

rb(> 1) = gb(2; z) + rb(> 2). (29.1.15)

With this notation, we may rewrite (1.14) in the form

exp(− : fa2 :) exp(− : f c2 :) exp(−G2)zb = zb + gb(2; z) + rb(> 2). (29.1.16)

Let Lg2 be the vector field defined by the equation

Lg2 =
∑
b

gb(2; z)(∂/∂zb) = g(2; z) · ∂. (29.1.17)

Apply exp(−Lg2) to both sides of (1.16),

exp(−Lg2) exp(− : fa2 :) exp(− : f c2 :) exp(−G2)zb =

exp(−Lg2)zb + exp(−Lg2)gb(2; z) + exp(−Lg2)rb(> 2). (29.1.18)

In analogy with (7.6.14) there is the general relation

(Lgm)fn ∈ Pm+n−1. (29.1.19)

From this relation we deduce the results

exp(−Lg2)zb = zb − (Lg2)zb + (1/2)(Lg2)2zb + · · · = zb − gb(2; z) + rb(> 2), (29.1.20)

exp(−Lg2)gb(2; z) = gb(2; z)− (Lg2)gb(2; z) + · · · = gb(2; z) + rb(> 2), (29.1.21)

exp(−Lg2)rb(> 2) = rb(> 2)− (Lg2)rb(> 2) + · · · = rb(> 2) + rb(> 3). (29.1.22)

Consequently, (1.18) can be rewritten in the form

exp(−Lg2) exp(− : fa2 :) exp(− : f c2 :) exp(−G2)zb = zb + rb(> 2). (29.1.23)

Now decompose the remainder terms rb(> 2) into third degree terms gb(3, z) and higher
degree terms by writing the relations

rb(> 2) = gb(3; z) + rb(> 3). (29.1.24)

Finally, substitute this decomposition into (1.23) to get the result

exp(−Lg2) exp(− : fa2 :) exp(− : f c2 :) exp(−G2)zb = zb + gb(3; z) + rb(> 3). (29.1.25)
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Clearly the process that led from (1.16) to (1.25) can be repeated at will. Consequently,
there exist uniquely defined vector fields Lg2 , Lg3 , · · · such that for any n there is a relation
of the form

exp(−Lgn) exp(−Lgn−1) · · · exp(−Lg2)×
exp(− : fa2 :) exp(− : f c2 :) exp(−G2)zb = zb + rb(> n). (29.1.26)

Now rewrite (1.26) in the form

zb = exp(G2) exp(: f c2 :) exp(: fa2 :) exp(Lg2) · · · exp(Lgn)zb + rb(> n), (29.1.27)

and let n→∞. Then, if the remainder term tends to zero, we obtain the result

z =Mz (29.1.28)

with M expressed as the product

M = exp(G2) exp(: f c2 :) exp(: fa2 :) exp(Lg2) exp(Lg3) · · · . (29.1.29)

Otherwise the result is true only formally. In this latter case the infinite product (1.29) is
also not convergent.

There is still more that can be done. From (24.14.3) we know that each vector field Lg`
in (1.29) can be written in the form

Lg` =: h`+1 : + G`−1,1,0,··· + G`−1,0,0,··· =: h`+1 : + G ′′`+1. (29.1.30)

Here we have lumped the non-Hamiltonian parts together and simply called the result G ′′`+1.
Note that the methods of Section 24.10 are adequate for this purpose since they allow
us to find h`+1 and G ′′`+1, and we do not need to further decompose G ′′`+1 into G`−1,1,0,···

and G`−1,0,0,···. With the aid of the BCH series (3.7.33) and (3.7.39) [or, equivalently the
Zassenhaus series (8.8.1) and (8.8.2)] as applied to vector fields, and in view of the grading
relation (24.3.5), we may rewrite the product [exp(Lg2) exp(Lg3) · · · ] in the form

exp(Lg2) exp(Lg3) · · · = exp(G ′3) exp(G ′4) · · · exp(: f3 :) exp(: f4) : · · · . (29.1.31)

Here use has been made of the decomposition (1.30). We see that all non-Hamiltonian vector
fields have been brought to the left, and all Hamiltonian vector fields have been brought
to the right. Because of the grading relation (24.3.5), only a finite number of vector field
commutators need be evaluated to compute each G ′m and fm. Here we have dropped one
prime from the G ′′m and changed hm to fm to indicate that both are generally changed as a
result of the various commutators involved.

As a result of the refactorization (1.31) the map M as given by (1.29) can be rewritten
in the form

M = exp(G2) exp(: f c2 :) exp(: fa2 :) exp(G ′3) exp(G ′4) · · · ×
exp(: f3 :) exp(: f4 :) · · · . (29.1.32)
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The terms [(G ′3) exp(G ′4) · · · ] can be moved past the terms [exp(: f c2 :) exp(: fa2 :)] with the
aid of the relations

exp(: f c2 :) exp(: fa2 :) exp(G ′3) exp(G ′4) · · · =
exp(: f c2 :) exp(: fa2 :) exp(G ′3) exp(G ′4) · · · exp(− : fa2 :) exp(− : f c2 :)×
exp(: f c2 :) exp(: fa2 :), (29.1.33)

and

exp(: f c2 :) exp(: fa2 :) exp(G ′3) exp(G ′4) · · · exp(− : fa2 :) exp(− : f c2 :) =

exp(G3) exp(G4) · · · . (29.1.34)

Here we have used the fact that the non-Hamiltonian vector fields are transformed among
themselves under the action of sp(2n,R), and have dropped the prime from each G ′m to
indicate the result of this transformation. Putting everything together gives the final result

M = exp(G2) exp(G3) exp(G4) · · · ×
exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · . (29.1.35)

We see that, as promised, M has been written as a product of two factors. The first factor
is a product of exponentials of non-Hamiltonian vector fields, and the second is the by now
familiar general (origin preserving) symplectic map.

The last item to discuss is the inclusion of translations. That is, suppose the map M
is of the general form (7.7.7). In that case, in view of the work of Section 7.1, there is the
simple modification

M = exp(G2) exp(G3) exp(G4) · · · ×
[exp(: f c2 :) exp(: fa2 :) exp(: f3 :) exp(: f4 :) · · · ] exp(: g1 :). (29.1.36)

Exercises

29.1.1. For the complex logistic map (1.2.29) in the two-dimensional real form given by
(1.2.102) and (1.2.103) make the identifications

x = q, (29.1.37)

y = p, (29.1.38)

so that in terms of q and p the map takes the form

qn+1 = αqn − βpn − α(q2
n − p2

n) + 2βqnpn, (29.1.39)

pn+1 = βqn + αpn − β(q2
n − p2

n)− 2αqnpn. (29.1.40)

Make a polar decomposition of the control parameter

γ = α + iβ (29.1.41)
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by writing
γ = ρ exp(iφ). (29.1.42)

Show that in terms of the parameters ρ, φ the linear part of the map about the origin (which
is a fixed point) takes the form

R = ρ

(
cosφ − sinφ
sinφ cosφ

)
. (29.1.43)

29.1.2. Forest map.

29.2 Classification of General Two-Dimensional

Quadratic Maps

The general quadratic map, even in the case of only two variables, is a complicated object.
We know, for example, that the complex logistic map produces fractal sets in the mapping
plane and the fantastically complicated Mandelbrot set in the control plane. See Section 1.2
and Exercise 1.2.2. We also suspect that the Hénon map, another two-dimensional quadratic
map, exhibits even more complicated behavior. Again see Section 1.2. In this section we
will make a preliminary classification of general two-dimensional quadratic maps. What we
will do is make an affine transformation on both z and z̄ (the same transformation on each),
and consider two maps equivalent if one can be transformed into the other by such a change
of variables. (An affine transformation is a translation followed by a linear transformation.
These transformations evidently form a group called the affine group. Moreover, we observe
that if a map is quadratic, then it will remain quadratic under any change of variables that
is an affine transformation.) Indeed, the two maps will be conjugate as described in Chapter
19.

Let N denote the nonlinear quadratic map

q̄ = q + b1q
2 + 2b2qp+ b3p

2 = q + (z, Bz),

p̄ = p+ c1q
2 + 2c2qp+ c3p

2 = p+ (z, Cz). (29.2.1)

Here we have used the notation z = (q, p) and

B =

(
b1 b2

b2 b3

)
,

C =

(
c1 c2

c2 c3

)
. (29.2.2)

Let R denote the linear map
=
q= rq̄ + sp̄,
=
p= tq̄ + up̄. (29.2.3)

Finally, let T denote the translation map

≡
q=

=
q +d,
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≡
p=

=
p +e. (29.2.4)

Then we speculate that the general quadratic map, which we will denote as Mgq can be
written in the form

Mgq = T RN . (29.2.5)

Here we have employed the usual mathematical ordering convention as described in the
beginning of Section 8.3. Carrying out the operations indicated in (2.5) shows thatMgq has
the explicit representation given by the relations below.

Action of Mgq:
≡
q= d+ rq + sp+ (z, B′z),

≡
p= e+ tq + up+ (z, C ′z), (29.2.6)

where B′ and C ′ are the symmetric matrices

B′ = rB + sC,

C ′ = tB + uC. (29.2.7)

We see that Mgq will in fact be the general quadratic map in two variables provided B′

and C ′ can be any two symmetric matrices. Let R be the matrix defined by the equation

R =

(
r s
t u

)
, (29.2.8)

and let V be the vector with matrix entries B and C,

V =

(
B
C

)
, (29.2.9)

Define V ′ analogously. With this notation (2.7) can be rewritten in the form

V ′ = RV. (29.2.10)

This relation can be inverted if R is invertible (detR 6= 0),

V = R−1V ′. (29.2.11)

Evidently if R is invertible, we can always find symmetric matrices B and C such that B′

and C ′ are any desired symmetric matrices: we simply use the matrices B and C given by
(2.11). Note also that R is the Jacobian matrix of Mgq at the origin,

R = Mgq(0). (29.2.12)

See Exercise 1.4.6 and Section 6.1. Finally we remark that, driven by a shortage of symbols,
in this section and in some subsequent sections we have usedR andR to denote general linear
maps and matrices rather than symplectic linear maps and matrices as was our previous
convention.
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For economy of notation, let us rewrite Mgq, as given by (2.6), in the form

Action of Mgq:

q̄ = d+ rq + sp+ (z, Bz),

p̄ = e+ tq + up+ (z, Cz), (29.2.13)

where, again, B and C are arbitrary symmetric matrices. At this point, if not before, it is
evident thatMgq is specified by 12 parameters: d and e for the translation part, r through
u for the linear part, and the two symmetric matrices B and C for the nonlinear part. We
now seek to simplify Mgq, as given by (2.13), by a suitable change of variables, and we
will allow this change of variables to be parameter dependent. We will then learn that 6 of
the dimensions in the 12-parameter space may be viewed as associated with the choice of
variables, and 6 may be viewed as being intrinsic toMgq itself. And, as a result of suitably
changing variables, we will find a transformed map Mtr

gq that depends on 6 parameters.
Begin with a displacement (translation) transformation of variables by writing

q = q′ + α,

p = p′ + β; (29.2.14)

q̄ = q̄′ + α,

p̄ = p̄′ + β. (29.2.15)

We also express (2.14) and (2.15) in more compact form by writing

z = z′ + γ , z̄ = z̄′ + γ (29.2.16)

where γ is a two-vector with components α and β. Under this change of variables (2.13)
takes the form

q̄′ = −α + d+ rα + sβ + (γ,Bγ) + rq′ + sp′ + 2(z′, Bγ) + (z′, Bz′),

p̄′ = −β + e+ tα + uβ + (γ, Cγ) + tq′ + up′ + 2(z′, Cγ) + (z′, Cz′). (29.2.17)

Suppose we now require that the transformed map given by (2.17) have no constant terms.
That is, the transformed map should have no translation part, and therefore should send
the origin into itself. This requirement leads to the equations

α = d+ rα + sβ + (γ,Bγ), (29.2.18)

β = e+ tα + uβ + (γ, Cγ). (29.2.19)

We see, as might have been expected, that we have made the equivalent requirement that γ
be a fixed point of Mgq. That is, γ is a solution of the equations

q = d+ rq + sp+ (z, Bz), (29.2.20)

p = e+ tq + up+ (z, Cz). (29.2.21)
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Taken separately, (2.20) and (2.21) each describe conic sections in the q, p plane; and
taken jointly they specify the intersection of these two conic sections. The nature of these
conic sections is governed by the discriminants (determinants) of the quadratic forms (z,Bz)
and (z, Cz). For example, if

detB = b1b3 − b2
2 > 0, (2.20) describes an ellipse;

detB = 0, (2.20) describes a parabola;

detB < 0, (2.20) describes a hyperbola.

According to a theorem of Bézout, two polynomials of degrees m and n in two variables
intersect in mn points that may be complex, may be at infinity, and may be repeated. For
two conic sections, m = n = 2; so we expect four intersections. For our purposes we assume
that the coefficients that appear in (2.20) and (2.21), which are all taken to be real, are such
that there is at least one such real intersection so that Mgq has a real fixed point. Upon
taking γ to be such a real fixed point, (2.17) takes the general form

q̄′ = r̃q′ + s̃p′ + (z′, Bz′),

p̄′ = t̃q′ + ũp′ + (z′, Cz′). (29.2.22)

Here we have replaced r, s, t, u by r̃, s̃, t̃, ũ to take into account the linear terms 2(z′, Bγ)
and 2(z′, Cγ) that “feed down” from the quadratic terms (z, Bz) and (z, Cz) as a result of
the displacement (2.14). Since γ is assumed to be real, the quantities r̃, s̃, t̃, ũ will also be
real. Upon dropping the prime and tilde notation, we see that we are interested in studying
maps of the simpler form

q̄ = rq + sp+ (z,Bz),

p̄ = tq + up+ (z, Cz). (29.2.23)

Using the notation (2.8) and (2.9), the map (2.23) can be written more compactly in the
form

z̄ = Rz + V (z). (29.2.24)

Now make the linear change of variables

q = a11q
′ + a12p

′,

p = a21q
′ + a22p

′, (29.2.25)

which can be written more compactly as

z = Az′ (29.2.26)

where A is the matrix

A =

(
a11 a12

a21 a22

)
. (29.2.27)

Corresponding to (2.26), we also define z̄′ by writing

z̄ = Az̄′. (29.2.28)
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With this change of variables the map (2.24) takes the form

Az̄′ = RAz′ + V (Az′), (29.2.29)

or
z̄′ = A−1RAz′ + A−1V (Az′). (29.2.30)

Under the assumption that the map is orientation preserving (see Exercise 1.4.6), R will
have a positive determinant. In this case, define a matrix S by the rule

S = R/(detR)1/2. (29.2.31)

According to Exercise 3.1.3, S will be symplectic. Moreover we know, from the discussion
of Section 3.4 for the instance of 2× 2 symplectic matrices, that there are five possible cases
for S. For each of these cases we can select a suitable matrix A such that the transformed
S given by

Str = A−1SA (29.2.32)

has a particularly simple form, which we will call a normal form. For example, if the
eigenvalues of S lie on the unit circle (Case 3, elliptic), S can be transformed so that Str is
of the form (3.5.58). As a second example, suppose the eigenvalues of S are positive (Case
1, hyperbolic). Then there is a choice of A such that Str takes the diagonal form

Str =

(
λ 0
0 1/λ

)
. (29.2.33)

To continue with the hyperbolic case, let D(µ, ν) denote the diagonal matrix

D(µ, ν) =

(
µ 0
0 ν

)
. (29.2.34)

Upon combining (2.31) through (2.33) we see that in the hyperbolic case there is an A (which
is real) such that

A−1RA = D(µ, ν) (29.2.35)

where µ and ν are the eigenvalues of R. With this choice of A the map (2.30) takes the form

z̄′ = D(µ, ν)z′ + V ′(z′) (29.2.36)

where here
V ′(z′) = A−1V (Az′). (29.2.37)

To improve notation, we again drop the primes to rewrite (2.36) in the general form

z̄ = D(µ, ν)z + V (z). (29.2.38)

There is one further simplifying transformation that can be made. Make the further
linear change of variables

z = D(σ, τ)z′, (29.2.39)

z̄ = D(σ, τ)z̄′. (29.2.40)
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With this change of variables the map (2.38) takes the form

z̄′ = D−1(σ, τ)D(µ, ν)D(σ, τ)z′ +D−1(σ, τ)V [D(σ, τ)z′]

= D(µ, ν)z′ +D−1(σ, τ)V [D(σ, τ)z′]. (29.2.41)

Here we have used the fact that diagonal matrices commute. We will call this map the
transformed general quadratic map and denote it by Mtr

gq.
Let us again drop primes and write out (2.41), the transformed two-variable general

quadratic map Mtr
gq, more explicitly in the form below.

Action of Mtr
gq:

q̄ = µq + (1/σ)[b1σ
2q2 + 2b2στqp+ b3τ

2p2],

p̄ = νp+ (1/τ)[c1σ
2q2 + 2c2στqp+ c3τ

2p2]. (29.2.42)

We now see that σ and τ can be selected in such a way that any two of the six coefficients
b1 through b3 and c1 through c3 can be normalized to one. Thus, in the hyperbolic case,
there is a six-parameter family of maps labeled by µ and ν and four of the six coefficients
b1 through b3 and c1 through c3 with the remaining two coefficients set to 1.

A broad picture now emerges: The general two-dimensional quadratic map Mgq (as-
suming it has a real fixed point) can be classified according to the nature of its linear part
about the fixed point. This linear part can next be brought to a normal form that is gener-
ally labelled by two parameters. There is then an associated two parameter family of linear
transformations that leaves the normal form unchanged, and these transformations can be
used to simplify the nonlinear part V of the map so that it is described by 6− 2 = 4 param-
eters. Thus, after a suitable choice of variables, the general two-dimensional quadratic map
Mgq is brought to the form Mtr

gq, and this transformed map is described by 6 parameters:
2 for the linear part in normal form, and 4 for the nonlinear part.

Exercises

29.2.1. Application to harmonic maps and the complex logistic map.

29.2.2. Application to Tinkerbell map.

29.3 Lie Factorization of General Two-Dimensional

Quadratic Maps

We next turn to the problem of factorizing Mgq as given by (2.5) in Lie form. We know
that T can always be written in Lie form. See Section 7.7. We also know that R can be
written as a product of at most three Lie transformations if detR > 0. See the discussion at
the end of Section 4.3 and the beginning of Section 18.1. What remains is to explore the Lie
factorization of N . See (2.1). In general it appears that N will have an infinite number of
Lie factors. See Exercise 3.1. In this section we will study under what conditions a quadratic
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map in two variables can be factored into a product of a finite number of Lie transformations.
In particular, we will require that N have a single-factor Lie representation.

Let Lg2 be the Lie operator defined by the equation

Lg2 = (z,Bz)(∂/∂q) + (z, Cz)(∂/∂p)

= (b1q
2 + 2b2qp+ b3p

2)(∂/∂q) + (c1q
2 + 2c2qp+ c3p

2)(∂/∂p). (29.3.1)

Then we have the result

exp(Lg2)q = q + Lg2q + (1/2!)(Lg2)2q + · · ·
= q + (z, Bz) + (1/2!)(Lg2)2q + · · ·
= q̄ + (1/2!)(Lg2)2q + · · · ,

exp(Lg2)p = p+ Lg2p+ (1/2!)(Lg2)2p+ · · ·
= p+ (z, Cz) + (1/2!)(Lg2)2p+ · · ·
= p̄+ (1/2!)(Lg2)2p+ · · · . (29.3.2)

Here we have used (2.1). We conclude that N will have the single-factor Lie representation

N = exp(Lg2) (29.3.3)

if Lg2 satisfies the relations

(Lg2)2q = 0, (29.3.4)

(Lg2)2p = 0, (29.3.5)

for then each series in (3.2) will terminate after the first two terms. Otherwise, N will in
general have an infinite number of Lie factors. We also note for future reference that Lg2

has the decomposition
Lg2 =: h3 : + G1 (29.3.6)

where
h3 = (1/3)[c1q

3 + (2c2 − b1)q2p+ (c3 − 2b2)qp2 − b3p
3], (29.3.7)

G1 = (2/3)[(b1 + c2)q + (b2 + c3)p]Σ. (29.3.8)

See (21.3.15) and (21.3.16).
Imposition of (3.4) produces the relations

b2
1 + b2c1 = 0, (29.3.9)

3b1b2 + 2b2c2 + b3c1 = 0, (29.3.10)

2b2
2 + b1b3 + b2c3 + 2b3c2 = 0, (29.3.11)

b2b3 + b3c3 = b3(b2 + c3) = 0; (29.3.12)

and imposition of (3.5) produces the relations

b1c1 + c1c2 = c1(b1 + c2) = 0, (29.3.13)
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b1c2 + 2b2c1 + c1c3 + 2c2
2 = 0, (29.3.14)

2b2c2 + b3c1 + 3c2c3 = 0, (29.3.15)

b3c2 + c2
3 = 0. (29.3.16)

Let us focus on those generic solutions of (3.9) through (3.16) for which b3 6= 0 and c1 6= 0.
In this case, from (3.12) and (3.13), we find the results

b2 + c3 = 0 or b2 = −c3, (29.3.17)

b1 + c2 = 0 or c2 = −b1. (29.3.18)

Inspection of (3.7) and (3.8) shows that in this case G1 vanishes,

G1 = 0, (29.3.19)

and h3 takes the form

h3 = (1/3)(c1q
3 − 3b1q

2p+ 3c3qp
2 − b3p

3). (29.3.20)

Also, the remaining relations in the collection (3.9) through (3.16) take the form

b2
1 − c1c3 = 0, (29.3.21)

− b1c3 + b3c1 = 0, (29.3.22)

c2
3 − b1b3 = 0. (29.3.23)

Without loss of generality we may make the Ansätze

c1 = α3 , b3 = β3. (29.3.24)

We then find that (3.21) through (3.23) have the unique solution

b1 = α2β, (29.3.25)

c3 = αβ2; (29.3.26)

and the remaining quantities have the values

c2 = −α2β, (29.3.27)

b2 = −αβ2. (29.3.28)

As a result of these relations h3 takes the form

h3 = (1/3)(αq − βp)3. (29.3.29)

Note that h3 is the cube of a first-order polynomial. Consequently, we imediately have the
properties

: h3 : q = [h3, q] = β(αq − βp)2, (29.3.30)

: h3 :2 q = (β/3)[(αq − βp)3, (αq − βp)2] = 0; (29.3.31)
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: h3 : p = [h3, p] = α(αq − βp)2, (29.3.32)

: h3 :2 p = (α/3)[(αq − βp)3, (αq − βp)2] = 0. (29.3.33)

Correspondingly, N is a symplectic map with the Lie representation

N = exp : (1/3)(αq − βp)3 :, (29.3.34)

and the Taylor expansion of this map terminates beyond second degree terms as a result of
(3.31) and (3.33). This expansion is given explicitly by the relations

q̄ = q + β(αq − βp)2 = q + α2βq2 − 2αβ2qp+ β3p2, (29.3.35)

p̄ = p+ α(αq − βp)2 = p+ α3q2 − 2α2βqp+ αβ2p2. (29.3.36)

In this case the full map Mgq takes a form which we will call Mffq to indicate that it is a
quadratic map that has a finite product factorization.

Action of Mffq:

≡
q= d+ rq + sp+ (rα2β + sα3)q2 − 2(rαβ2 + sα2β)qp+ (rβ3 + sαβ2)p2, (29.3.37)

≡
p= e+ tq + up+ (tα2β + uα3)q2 − 2(tαβ2 + uα2β)qp+ (tβ3 + uαβ2)p2. (29.3.38)

There are two properties of Mffq that are worth noting. First we observe from (3.34)
that N is invertible with the Lie representation

N−1 = exp : −(1/3)(αq − βp)3 :, (29.3.39)

and in view of (3.31) and (3.33) the Taylor expansion of this inverse map also terminates
beyond terms of degree two. From (2.4) we know that T is invertible, and (2.3) shows that
R is invertible if R given by (2.8) satisfies detR 6= 0. Therefore, from (2.5) we conclude
that Mffq is also invertible in this case,

M−1
ffq = N−1R−1T −1. (29.3.40)

Moreover, it is easily verified that the Taylor expansion for M−1
ffq also terminates beyond

terms of degree two.
The second observation concerns the Jacobian matrix Mffq of Mffq. The Jacobian

matrix of T is the identity I and the Jacobian matrix of R is R. Let N be the Jacobian
matrix of N . Then from (2.5) and the chain rule we have the matrix relation

Mffq = IRN. (29.3.41)

Since in this case N is a symplectic map, N will be a symplectic matrix and therefore have
determinant one. It follows that the determinant of Mffq in this case satisfies the relation

detMffq = detR. (29.3.42)

We see that the imposition of the requirement thatMqg be factorable into a finite product
of Lie transformations leads generically to the result that the determinant of its Jacobian
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matrix must be constant, and cannot depend on where in phase space it is evaluated. Such
maps are sometimes called Cremona maps. However, we shall use this designation to refer
to maps that are both symplectic and polynomial (have Taylor series that terminate beyond
some finite order). See Section 29.6.

There is one other important observation to be made. We have seen that requiring that
N have a finite number of Lie factors generically forces N to be symplectic, which in turn
forces N to have a constant (unit) determinant. What if we reverse the situation, and require
that N have a constant determinant? From (2.1) we find that N has the form

N =

(
(1 + 2b1q + 2b2p) (2b2q + 2b3p)

(2c1q + 2c2p) (1 + 2c2q + 2c3p)

)
; (29.3.43)

and its determinant is of the form

detN = 1 + linear terms + quadratic terms (29.3.44)

with

linear terms = (2b1 + 2c2)q + (2b2 + 2c3)p, (29.3.45)

quadratic terms = 4q2(b1c2 − b2c1) + 4qp(b1c3 − b3c1) + 4p2(b2c3 − b3c2). (29.3.46)

Forcing N to have constant determinant yields the relations

b1 + c2 = 0 or c2 = −b1, (29.3.47)

b2 + c3 = 0 or b2 = −c3; (29.3.48)

b1c2 − b2c1 = 0, (29.3.49)

b1c3 − b3c1 = 0, (29.3.50)

b2c3 − b3c2 = 0. (29.3.51)

We see that (3.47) and (3.48) agree with (3.18) and (3.17); and (3.50) agrees with (3.22).
Moreover, substituting (3.47) and (3.48) into (3.49) produces the relation

− b2
1 + c1c3 = 0, (29.3.52)

which agrees with (3.21); and substituting (3.47) and (3.48) into (3.51) produces the relation

− c2
3 + b1b3 = 0, (29.3.53)

which agrees with (3.23). It follows that the quantities b1 through b3 and c1 through c3 are
again given by the relations (3.24) through (3.28). Thus, requiring N to have a constant
Jacobian determinant is equivalent to requiring that N have a finite number of Lie factors,
and vice versa. And either requirement forces N to be symplectic.

In the spirit of the previous section, let us classify mapsMffq of the form given by (3.37)

and (3.38). Upon replacement of
≡
q by q̄ and

≡
p by p̄, and after some algebraic rearrangement,

these maps can be written as
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Action of Mffq:
q̄ = d+ rq + sp+ (rβ + sα)(αq − βp)2,

p̄ = e+ tq + up+ (tβ + uα)(αq − βp)2. (29.3.54)

We will seek a sequence of affine transformations that simplifies (3.54) as much as possible.
This sequence will be quite long; patience on the part of the reader will be required.

Because of the special form of the nonlinear terms on the right side of (3.54), it is
advantageous to make a linear change of variables even before dealing with the translation
part. Define new variables z′ and z̄′ by the relations

z′ = Az, (29.3.55)

z̄′ = Az̄, (29.3.56)

where A is the matrix

A = γ−1

(
α −β
β α

)
(29.3.57)

with
γ = (α2 + β2)1/2. (29.3.58)

Evidently A is symplectic and orthogonal so that it has the inverse

A−1 = AT = γ−1

(
α β
−β α

)
. (29.3.59)

When this change of variables is made, Mffq is transformed to the map that we will call
M∗

ffq. It takes the form

Action of M∗
ffq:

q̄′ = d′ + r′q′ + s′p′ + s′γ(q′)2, (29.3.60)

p̄′ = e′ + t′q′ + u′p′ + u′γ(q′)2, (29.3.61)

where
d′ = (αd− βe)/γ, (29.3.62)

e′ = (βd+ αe)/γ, (29.3.63)

r′ = [α2r − αβ(s+ t) + β2u]/γ2, (29.3.64)

s′ = [α2s− αβ(−r + u)− β2t]/γ2, (29.3.65)

t′ = [α2t− αβ(−r + u)− β2s]/γ2, (29.3.66)

u′ = [α2u+ αβ(s+ t) + β2r]/γ2. (29.3.67)

Now seek the fixed points of the mapM∗
ffq as given by (3.60) and (3.61). Upon dropping

primes this map, again call it M∗
ffq, takes the form

Action of M∗
ffq:

q̄ = d+ rq + sp+ sγq2, (29.3.68)
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p̄ = e+ tq + up+ uγq2. (29.3.69)

The fixed point equations, after completing squares, give the conditions

0 = [d− (r − 1)2/(4sγ)] + sp+ sγ[q + (r − 1)/(2sγ)]2, (29.3.70)

0 = [e− t2/(4uγ)] + (u− 1)p+ uγ[q + t/(2uγ)]2. (29.3.71)

These two conditions describe two parabolas, both whose principal axes are parallel to the
p axis. There are therefore (see Exercise 3.4) two finite fixed points with each fixed point
having a multiplicity of one, or there is a single finite fixed point with multiplicity two. It
can also happen that there is a single finite fixed point with multiplicity one. In addition
there are two or three fixed points at infinity whose presence becomes apparent with the use
of homogeneous coordinates.

Suppose the fixed-point equations (3.70) and (3.71) have a real solution, call it q̃, p̃.
Again make a displacement change of variables of the form

q = q′ + q̃ , p = p′ + p̃; (29.3.72)

q̄ = q̄′ + q̃ , p̄ = p̄′ + p̃. (29.3.73)

With this change of variables the map M∗
ffq given by (3.68) and (3.69) is transformed to

the origin preserving map M∗∗
ffq of the form

Action of M∗∗
ffq:

q̄′ = r′q′ + s′p′ + s′γ(q′)2, (29.3.74)

p̄′ = t′q′ + u′p′ + u′γ(q′)2, (29.3.75)

where
r′ = r + 2sγq̃, (29.3.76)

s′ = s, (29.3.77)

t′ = t+ 2uγq̃, (29.3.78)

u′ = u. (29.3.79)

Again dropping primes, the map now becomes

Action of M∗∗
ffq:

q̄ = rq + sp+ sγq2, (29.3.80)

p̄ = tq + up+ uγq2. (29.3.81)

To continue assume, as a possible case, that R [see (2.8)] has real eigenvalues, and one
can select an A such that R is diagonalized as in (2.35). When this is done, the map M∗∗

ffq

is transformed to become the map M∗∗∗
ffq which takes the general form

Action of M∗∗∗
ffq:

q̄ = µ(q + b1q
2 + 2b2qp+ b3p

2), (29.3.82)

p̄ = ν(p+ c1q
2 + 2c2qp+ c3p

2). (29.3.83)
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What can be said about the coefficients b1 through b3 and c1 through c3? Evidently the map
M∗∗∗

ffq given by (3.82) and (3.83) has the Jacobian matrix M∗∗∗
ffq given by

M∗∗∗
ffq =

(
µ(1 + 2b1q + 2b2p) µ(2b2q + 2b3p)
ν(2c1q + 2c2p) ν(1 + 2c2q + 2c3p)

)
. (29.3.84)

Also, the changes of variables we have been making consist of making the same affine
transformations on both z and z̄. See, for example, (2.14), (2.15), (2.26), and (2.28). The
determinants of their Jacobian matrices are all constant (z independent). Therefore, by the
chain rule, these variable changes cannot alter the determinant of the Jacobian matrix of
the various forms of Mffq, and there must be the relation

detM∗∗∗
ffq = detMffq = detR. (29.3.85)

From (3.84) we find the result

detM∗∗∗
ffq = µν(1 + linear terms + quadratic terms), (29.3.86)

and comparison with (3.43) and (3.44) shows that the linear terms and quadratic terms are
the same as those given by (3.45) and (3.46). According to (3.85) these terms must vanish.
Therefore, by a now familiar argument, the coefficients b1 through b3 and c1 through c3 must
be given by relations of the form (3.24) through (3.28). Correspondingly, the map given by
(3.82) and (3.83) takes the form

Action of M∗∗∗
ffq:

q̄ = µ(q + α2βq2 − 2αβ2qp+ β3p2), (29.3.87)

p̄ = ν(p+ α3q2 − 2α2βqp+ β2p2). (29.3.88)

Let us make one last change of variables. Make the transformations

q′ = α2βq , p′ = αβ2p; (29.3.89)

q̄′ = α2βq̄ , p̄′ = αβ2p̄. (29.3.90)

Multiply both sides of (3.87) by α2β and both sides of (3.88) by αβ2. So doing gives the
results

α2βq̄ = µ(α2βq + α4β2q2 − 2α3β3qp+ α2β4p2), (29.3.91)

αβ2p̄ = ν(αβ2p+ α4β2q2 − 2α3β3qp+ α2β4p2). (29.3.92)

In view of (3.89) and (3.90) these results can be rewritten in the form

q̄′ = µ[q′ + (q′)2 − 2q′p′ + (p′)2] = µ[q′ + (q′ − p′)2], (29.3.93)

p̄′ = ν[p′ + (q′)2 − 2q′p′ + (p′)2] = ν[p′ + (q′ − p′)2]. (29.3.94)

The mapM∗∗∗
ffq has been transformed to become the final mapMtr

ffq. Dropping the primes
gives the final relations
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Action of Mtr
ffq:

q̄ = µ[q + (q − p)2]. (29.3.95)

p̄ = ν[p+ (q − p)2]. (29.3.96)

Thanks to heroic effort, we have shown that if a map Mffq given by relations of the
form (3.37) and (3.38) has a real fixed point, and if the linear part of the map about this
fixed point has two distinct real eigenvalues µ and ν, then under a suitable affine change
of variables this map is equivalent to the transformed map Mtr

ffq given by the far simpler
relations (3.95) and (3.96). Subsequently, in Sections 18.7 and 18.8, we will find that there
is no loss of generality in the assumption we have made about the eigenvalues of the linear
part. We will find that the map has a second fixed point, and that the other eigenvalue
possibilities are realized by the linear part of the map about the second fixed point when,
about the origin, the map has the form given by (3.95) and (3.96).

In summary, we conclude that the condition that the nonlinear part of Mgq have a
finite number of Lie factors (or, equivalently, a constant Jacobian determinant) reduces the
number of free nonlinear parameters (see the end of Section 18.2) from 4 to 0. Consequently,
such maps are labelled completely by the two real parameters, µ and ν, that describe their
linear (when brought to normal form) parts.

Exercises

29.3.1. Look again at Exercise 1.2.8. It examined the general single-complex-variable an-
alytic quadratic map, which evidently depends on three complex parameters a, b, and c.
Hence it depends on six real parameters. In addition, the exercise showed that, under the
affine change of variables (1.2.115), this map could be brought to the simpler form (1.2.111)
which depends on only one complex parameter µ, and hence on two real parameters. More-
over, Exercise 1.2.7 showed that this simpler form is equivalent to the complex logistic map
which, according to (1.37) and (1.38), yields a two-parameter family of quadratic maps of
the plane into itself.

In Section 24.2 we found thatMgq, the general quadratic map in two variables, depends
on twelve real parameters. See (2.13). Among these maps will be the two-parameter subset
(1.37) and (1.38). We also found that, under a suitable affine change of variables,Mgq could
be brought to the formMtr

gq whose action is described by (2.42), and thatMtr
gq depends on

six real parameters.
In this section we found that requiring Mgq to have a finite product Lie factorization

produced the subset of maps Mffq given by (3.54). This subset of maps is characterized
by eight real parameters, namely d, e, r, s, t, u, α, and β. Also we found that these maps are
globally invertible; and we found that under an affine transformation each could be brought
to the two-parameter form Mtr

ffq described by (3.95) and (3.96). Show that, unlike Mffq,
complex logistic maps are not globally invertible.

29.3.2. Find N for the complex logistic map given by (1.37) and (1.38), and show that it
appears to have an infinite number of Lie factors.

29.3.3. Find the decomposition (3.6) using the machinery of Section 21.10.
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29.3.4. Verify that the relations (3.9) through (3.16) follow from (3.4) and (3.5). Verify
that the choice (3.17) and (3.18) reduces the set of relations (3.9) through (3.16) to the set
of relations (3.21) through (3.23). Verify that they have the unique solutions (3.24) through
(3.26). Explore what happens when one considers the non-generic possibilities for which a3

and/or b1 equal zero.

29.3.5. Exercise on fixed point counting.

29.4 Fixed Points

We have been studying two-variable quadratic maps. There is still more to be done on this
subject, and we will do that in Sections 29.7 through 29.10. But before doing so, it is useful
to interrupt our discussion to take up the study of fixed points for maps in general, and
two-variable maps in particular. We will then be better prepared for our further study of
two-variable quadratic maps, and we will also find important results having wide application.

29.4.1 Attack a Map at its Fixed Points

We have seen in Chapter 1 that maps, even the simplest maps, generally exhibit extremely
complicated behavior under iteration so that it is difficult to know where to begin in char-
acterizing them. One fruitful starting point for the analysis of a map is to find and classify
its fixed points. As Poincaré wrote,

· · · what renders these periodic solutions so precious is that they are, so to speak,
the only breach through which we may try to penetrate a stronghold previously
reputed to be impregnable.

This section and the next summarize some important aspects of fixed-point analysis.

29.4.2 Fixed Points are Generally Isolated

We begin by observing that the fixed points of a map are, in general, isolated. That is, if
zα is a fixed point of a map M, then there is no other fixed point in a neighborhood of zα

providing this neighborhood is sufficiently small. To verify this result, assume the contrary:
Suppose there is a second fixed point zβ in any neighborhood of zα. Then we have the
relations

Mzα = zα, (29.4.1)

Mzβ = zβ, (29.4.2)

zβ = zα + δ, (29.4.3)

where δ is a small vector. Taken together, (4.2) and (4.3) give the result

M(zα + δ) = zα + δ. (29.4.4)

Now let Lα be the linear part of M at zα so that there is the relation

M(zα + δ) = zα + Lαδ +O(δ2) = zα + Lαδ +O(δ2). (29.4.5)
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Here Lα is the matrix that represents Lα. By combining (4.4) and (4.5) we find the result

Lαδ = δ −O(δ2). (29.4.6)

Since δ can be arbitrarily small (we have assumed any neighborhood), we conclude that Lα
must have an eigenvector with eigenvalue +1, and hence

det(Lα − I) = 0. (29.4.7)

In general, (4.7) will not be true. We conclude that if Lα does not have +1 as an eigenvalue,
then zα is an isolated fixed point ofM. Note that this analysis makes no assumption about
the number of variables involved. In particular, it also holds for one-dimensional maps. See,
for example, Exercise 1.2.1 where it was found that two fixed points for the logistic map
coincided when the eigenvalue µ of the linear part took the value +1, but were isolated for
all other values of µ.

If linear analysis is sufficient to demonstrate that a fixed point is isolated, we will call
such a fixed point manifestly isolated. If (4.7) holds at a fixed point, a beyond linear analysis
is required to determine whether or not it is isolated. A fixed point that requires beyond
linear analysis to show that it is isolated might be called expectant since, as we will see
in some examples, what often happens in this case is that as some parameter is varied an
expectant fixed point gives birth to additional fixed points. In the analytic case, where
complex analysis can be employed, these additional fixed points exist for all parameter
values, but may be complex. They merge during the birth process to a common real point
and then again separate while now remaining within the real domain. Finally, there are
cases where a fixed point lies on a line, or in some higher dimensional domain, all of whose
points are fixed points, and therefore such a fixed point is indeed not isolated.

29.4.3 Finding Fixed Points with Contraction Maps

To find a fixed point of M it is useful to construct a contraction map C. Suppose zfx is a
fixed point of some map M,

Mzfx = zfx, (29.4.8)

and suppose ze is an arbitrary point in the vicinity of zfx. The contraction map will be
shown to have the remarkable property

lim
n→∞

Cnze = zfx. (29.4.9)

That is, a good guess as to the location of a fixed point is sufficient starting information to
contract in on it exactly.

The construction of C is a generalization of Newton’s method to the case of several
variables. Suppose zα is an arbitrary point, and suppose it is sent to the point zβ under the
action of M,

Mzα = zβ. (29.4.10)

Let Lα be the linear part of M at zα. That is, Lα has the property

M(zα + δ) = zβ + Lαδ +O(δ2) (29.4.11)
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where δ is small. Evidently the action of Lα can be represented by a matrix Lzα ,

Lαδ = Lzαδ. (29.4.12)

(In the differential equation case this matrix is the solution to the linear variational equations
when zd(ti) = zα. See Section 10.12) The map C is now defined by requiring that its action
on the arbitrary point zα be given by the rule

Czα = zα − (I − Lzα)−1(zα −Mzα). (29.4.13)

It is easily verified that C as defined by (4.13) has the advertised property (4.9). First,
suppose that zfx is a fixed pont of M. Then, from (4.13), zfx is also a fixed point of C,

Czfx = zfx. (29.4.14)

Next, suppose that ze is some point in the vicinity of zfx. Then ze is of the form

ze = zfx + δ (29.4.15)

where δ is small. Upon inserting (4.15) into (4.13), we find after a short calculation the
result

Cze = C(zfx + δ) = zfx + δ − (I − Lzfx+δ)
−1[(zfx + δ)−M(zfx + δ)]

= zfx + δ − (I − Lzfx+δ)
−1[(I − Lzfx)δ +O(δ2)] = zfx +O(δ2). (29.4.16)

Here we have used the relation

M(zfx + δ) = zfx + Lzfxδ +O(δ2) (29.4.17)

and the observation that
Lzfx+δ = Lzfx +O(δ). (29.4.18)

Thus, according to (4.16), although the initial point ze differs from the desired fixed point
zfx by an amount δ, the point Cze differs from the point zfx only by an amount of order δ2.
Similarly, the point C2ze difffers from zfx only by an amount of order (δ2)2, and Cnze differs
from zfx only by an amount of order δ2n . Consequently, as expected for Newton’s method,
the convergence of the limit (4.9) to zfx is extremely fast. Note also that Newton’s method
succeeds even if zfx is not an attractor. Indeed, any isolated fixed point of M, whether
stable or unstable, is a super stable fixed point of C. See Exercise 1.2.1.

In order to complete the discussion it is necessary to check whether the matrix (I−Lzfx)
has an inverse. Evidently the inverse exists provided the related determinant satisfies the
condition

det(Lzfx − I) 6= 0. (29.4.19)

That is, the matrix Lzfx does not have +1 as an eigenvalue. (As we have seen, this require-
ment is sufficient to guarantee that zfx be isolated.) Therefore, the procedure (4.9) will
succeed as long as ze is sufficiently close to zfx and Lze does not have +1 as an eigenvalue
for all ze in the vicinity of zfx.
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29.4.4 Persistence of Fixed Points

Even more can be said. Suppose the map M has a fixed point. Do maps near M (in map
space) also have fixed points? Suppose M has the fixed point zfx, and that M′ is a map
near M. Let us speculate that M′ has a fixed point of the form zfx + ∆ where ∆ is small,

M′(zfx + ∆)
?
= zfx + ∆. (29.4.20)

Define a map N by the equation
N =M−1M′ (29.4.21)

so that we have the relation
M′ =MN . (29.4.22)

Since M′ is assumed to be near M, N is a map near the identity map. Inserting (4.22) in
(4.20) gives the hypothesis

MN (zfx + ∆)
?
= zfx + ∆. (29.4.23)

However, since N is near the identity map, we must have a result of the form

N (zfx + ∆) = zfx + ∆ + ∆̃ (29.4.24)

where ∆̃ is also small. Therefore, we now have the equivalent speculation

M(zfx + ∆ + ∆̃)
?
= zfx + ∆. (29.4.25)

However, using the relation (4.17), we may rewrite (4.25) in the form

zfx + Lzfx(∆ + ∆̃)
?
= zfx + ∆, (29.4.26)

which is equivalent to the speculation

(I − Lzfx)∆
?
= Lzfx∆̃. (29.4.27)

(Here we have omitted higher order terms in ∆ and ∆̃.) We see that (4.27) can be solved
for ∆, and therefore our speculation is correct, provided the matrix (I − Lzfx) is invertible.
We conclude that if M is varied over some path in map space and M initially has a fixed
point, then its fixed point persists and moves over some path in z space, provided that over
that path Lzfx never has +1 as an eigenvalue.1

Suppose the path in map space and the corresponding path in z space are parameterized
by some parameter τ . That is, we write M = M(τ), and suppose that for each value of
τ the map M(τ) has the fixed point zfx(τ). We will now show that there is a differential
equation, whose solution is zfx(τ), that can be used to “track” zfx as τ is varied.

In the spirit of Section 6.4.2, make the action of M(τ) explicit by writing the relations

z̄a(τ) = ua(z, τ). (29.4.28)

1See Exercise 9.2.6 for an ISp(2n,R) example of this result.
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Again define functions wa(z, τ) by the rule

wa(z, τ) = ∂ua(z, τ)/∂τ. (29.4.29)

By definition the fixed point zfx(τ) obeys the relation

zfxa (τ) = ua(z
fx(τ), τ). (29.4.30)

Since (4.30) is presumed to hold for a range of τ values, there is also the relation

zfxa (τ + dτ) = ua(z
fx(τ + dτ), τ + dτ). (29.4.31)

The left side of (4.31) has the expansion

zfxa (τ + dτ) = zfxa (τ) + (dzfxa /dτ)dτ. (29.4.32)

The right side of (4.31) has the expansion

ua(z
fx(τ + dτ), τ + dτ) = ua(z

fx(τ), τ) + dτ [∂ua/∂τ +
∑
b

(∂ua/∂zb)(dz
fx
b /dτ)]. (29.4.33)

Equating powers of dτ in (4.31) through (4.33) and using (4.30) gives the result

dzfxa /dτ = ∂ua/∂τ +
∑
b

(∂ua/∂zb)(dz
fx
b /dτ). (29.4.34)

The second term on the right side of (4.34) contains L, the Jacobian matrix for the mapM,

Lab = ∂ua/∂zb. (29.4.35)

Consequently with the aid of (4.29) and (4.35), and employing vector and matrix notation,
the relation (4.34) can also be written in the form

(I − L)(dzfx/dτ) = w. (29.4.36)

Finally, again under the assumption the (L− I) is invertible, we obtain the desired result,

dzfx/dτ = (I − Lzfx)−1w(zfx, τ). (29.4.37)

Of course, to solve (4.37) requires an initial condition. That is, we must know zfx(τ i) for
some initial τ i. It might be possible to choose τ i in such a way that M(τ i) has an obvious
fixed point, perhaps by construction. Or it might be necessary to do a Newton search or
apply some other procedure to find zfx(τ i).

Suppose the map in question arises from integrating a differential equation with indepen-
dent variable t and parameter dependence τ . Then the map will be of the formM =M(t; τ).
If we simply wish to find a fixed point for a specified value of τ using Newton’s method,
then the required Jacobian matrix L could be found by simultaneously integrating the vari-
ational equations. See Exercise 4.6 of Section 1.4. We could write a computer program with
two nested loops. The inner loop would integrate the equations of motion along with the
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variational equations in order to computeMz and L. These are the required ingredients for
C. The outer loop would apply C to achieve a Newton iteration.

If we wish to find a fixed point for a range of τ values, then in this case the Jacobian
matrix L and the vector w could be found by integrating “augmented” variational equations
where deviations are made in both the original phase-space variables z and the parameter
τ . That is, the set of variables and associated variational equations would be enlarged. See
Section 10.12.6. We could again write a computer program with two nested loops. Now the
inner loop would integrate the equations of motion along with the augmented variational
equations in order to compute L and w, and the outer loop would integrate the equations
(4.36).

29.4.5 Application to Accelerator Physics

The fixed-point considerations we have described so far have implications for accelerator
physics. Suppose M is the one-turn map for a circular machine. Then a fixed point of
M corresponds to a closed orbit. We know that L is the Jacobian matrix for the map
M. (Elsewhere, we have sometimes denoted this Jacobian matrix by the symbols M or
R.) In the case that M is a symplectic map, L will be a symplectic matrix. According to
Section 3.4, all the eigenvalues of a symplectic matrix generally differ from +1. Moreover, an
eigenvalue taking on the value +1 corresponds to an integer tune. See (3.5.39) and (3.5.40)
of Section 3.5. Suppose Mideal is the one-turn map for an ideal machine operating at its
design energy, and suppose the design tunes do not have integer values. By design, the ideal
machine has a closed orbit and thereforeMideal has a fixed point. Moreover, this fixed point
is isolated since the design tunes are assumed to not have integer values. Now, the difference
between an ideal machine operating at its design energy and the imperfect machine realized
in actual construction and operating at some nearby energy may be regarded as the result of
a variation inMideal. Consequently, according to the previous discussion, if the tunes for the
closed design orbit in the ideal machine have noninteger values, then the imperfect machine
will also have a closed orbit at the design energy (and other nearby energies as well) provided
the perturbations in the machine lattice are not so large as to drive some tune to an integer
value. In particular, small imperfections in a machine lattice, such as arise from magnet
misalignment and misplacement, magnet under or over powering, magnetic fringe fields and
general magnetic field inhomogeneities, etc., do not destroy the existence of a closed orbit but
merely cause it to be slightly distorted. (See also Exercise 3.4.3.) Therefore, in accelerator
physics, integer tunes should be avoided in order to assure the continued existence of a closed
orbit under unavoidable perturbations/imperfections.

Exercises

29.4.1. A function f is called invariant under the action of a mapM if it has the property

f(Mz) = f(z). (29.4.38)

[See Section 5.2 and review the discussion surrounding (7.1.12).] For our definition to have
significance, we exclude the trivial case where f is simply a constant function (which will
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always be invariant) and therefore assume that ∇f is generally nonzero. An invariant
function is also called an integral of M.

Suppose the mapM has the manifestly isolated fixed point zα, and also has an integral
f . You are to prove that then ∇f = 0 at this point. Show from (4.38) that for arbitrary δ
there is the relation

f [M(zα + δ)] = f(zα + δ). (29.4.39)

Next show from (4.5) that for small δ there is the relation

f [zα + Lαδ +O(δ2)] = f(zα + δ). (29.4.40)

Now expand both sides of (4.40) in a Taylor series to get the result

f(zα) + (Lαδ) · ∇f = f(zα) + δ · ∇f +O(δ2), (29.4.41)

from which it follows that
[(Lα − I)δ] · ∇f = 0. (29.4.42)

Suppose that (Lα−I) is invertible. Let ε be an arbitrary vector and specify δ by the relation

δ = (Lα − I)−1ε. (29.4.43)

Deduce the relation
ε · ∇f = 0. (29.4.44)

Since ε is assumed to be arbitrary, it must follow that ∇f = 0 at the point zα. Therefore
∇f must vanish at any manifestly isolated fixed point. Conversely, suppose (as we would
generally like to be the case) that ∇f does not vanish at some fixed point zα. Then, (Lα−I)
must not be invertible, det(Lα − I)=0 and hence Lα has +1 as an eigenvalue, and zα is not
manifestly isolated. For example, if M arises from integrating Hamilton’s equations of
motion for a time-independent Hamiltonian H, then H is an integral and the Lα for any
periodic orbit must have +1 as an eigenvalue. Moreover, since Lα is symplectic in the
Hamiltonian case, this eigenvalue must have even multiplicity (generally two, but possibly
higher). See Section 3.4.

29.4.2. Consider the map M given by the relations

q̄ = q, (29.4.45)

p̄ = p+ q. (29.4.46)

Show thatM has the origin as a fixed point and that the linear part ofM about the origin
is given by the matrix (3.8.28). Verify that this matrix has eigenvalue +1. Show that all
points on the p axis are fixed points ofM, and thus the origin is not an isolated fixed point.
Review Exercise 4.1. Show that the function f given by

f(z) = q (29.4.47)

is an invariant function under the action of M, and that ∇f does not vanish anywhere
despite the existence of all these fixed points.

29.4.3. The logistic map (1.2.5) has the fixed points (1.2.8) and (1.2.9). Verify that these
fixed points obey (4.37) when λ is taken to to be the parameter.
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29.5 Poincaré Index

For the two-dimensional case the study of the nature of fixed points is facilitated by use of
the Poincaré index. It is defined as follows: Use the map M to produce a vector v(z) at
each point z in phase space by the rule

v(z) =Mz − z. (29.5.1)

Geometrically, v(z) is the vector that extends from z toMz. By construction, v(z) vanishes
if and only if z is a fixed point ofM. Now consider the two-dimensional case, and let zα be
an isolated fixed point of M. Draw a circle c around zα small enough that no other fixed
points are enclosed and none of the points on the circle itself are fixed points. The vector
v(z) for all points z on c can never vanish because, by hypothesis, none of the points on the
circle are fixed points. Moreover, sinceM is assumed to be continuous, this vector will vary
continuously over c. For each point z on c draw, in a separate plane, a vector that is parallel
to v(z) and has its tail at the origin. See Figure 5.1. Start at some point on c and traverse
c once in the counterclockwise direction to return to this starting point. The “translated”
vector v(z) in the separate plane will then vary continuously as well, and will ultimately
return to its starting value. The Poincaré index of the fixed point zα is defined to be the
number of counterclockwise revolutions that this vector undergoes as c is traversed once in
the counterclockwise direction. Evidently the Poincaré index will be a positive or negative
integer or zero. Moreover, its value would be unchanged had we chosen to traverse c in the
clockwise direction and correspondingly counted the number of revolutions made by v in the
clockwise direction. Finally, if c is continuously deformed to become another closed curve
c′, the index remains unchanged provided all the intermediate closed curves and the final
closed curve c′ contain no fixed points.

c
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Figure 29.5.1: The isolated fixed point zα surrounded by a small circle c and the associated
vectors v(z) drawn from the common origin (0,0).

If the circle c about the isolated fixed point zα is small enough, the behavior of M for
z ∈ c is well approximated by the linear part of M at zα; and (since the index is known
to be an integer) this approximation can be used to compute the index of zα. That is, the
index of zα is completely determined by the nature of the matrix Lα.
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To see this suppose zα is a fixed point and z = zα + δ is a nearby point. We then have
from (4.5) and (5.1) the result

v(z) =Mz − z = (Lα − I)δ +O(δ2). (29.5.2)

Now let δ be sufficiently small so that terms of order δ2 can be neglected. It is easily verified
that as the points δ traverse a circle about the origin, the points (Lα − I)δ will, in general,
traverse an ellipse about the origin provided (Lα− I) is invertible. (Here we assume that zα

is manifestly isolated.) Moreover, the circle and ellipse will be traversed in the same sense
if det(Lα − I) > 0, and in the opposite sense if det(Lα − I) < 0. See Exercise 5.1. Finally,
suppose that N is the normal form of Lα. That is, there is the relation

Lα = ANA−1 (29.5.3)

where A is a matrix that brings Lα to normal form. Then there is also the relation

Lα − I = A(N − I)A−1, (29.5.4)

and consequently
det(Lα − I) = det(N − I). (29.5.5)

Therefore the index of zα depends only on the normal form N of Lα, which in turn depends
only on the spectrum of Lα. Specifically, the index of zα is +1 if det(N − I) > 0, and −1 if
det(N − I) < 0.

As in Section 3.4, let λ1 and λ2 be the eigenvalues of Lα. Then (under the assumption
that M is orientation preserving so that detLα > 0), there are the following possibilities,
and for each possibility it is a simple matter to compute the sign of det(N − I) to determine
the index:

1. Both λ1 and λ2 are real and positive. For this case the normal forms N for Lα are

N =

(
λ1 0
0 λ2

)
if λ1 6= λ2 or λ1 = λ2 but Lα is diagonalizable, (29.5.6)

N =

(
λ 1
0 λ

)
if λ1 = λ2 = λ and Lα is not diagonalizable. (29.5.7)

For this case there are 4 subcases:

(a) Both 0 < λ1 < 1 and 0 < λ2 < 1. In this subcase zα is called attracting. It is also
sometimes called a node. The normal forms N for Lα are either (5.6) or (5.7).
The index in this subcase is +1.

(b) Both λ1 > 1 and λ2 > 1. In this subcase zα is called repelling. The possible
normal forms are again given by (5.6) and (5.7). The index in this subcase is +1.

(c) One eigenvalue, say λ1, satisfies 0 < λ1 < 1 and the other satisfies λ2 > 1. In this
subcase zα is called hyperbolic, and the normal form is given by (5.6). It is also
sometimes called a saddle. The index in this subcase is −1.



29.5. POINCARÉ INDEX 1987

(d) At least one eigenvalue is 0 or is +1. The first possibility is excluded by the
requirement detLα > 0, and the second (which is called parabolic) is excluded by
the requirement that zα be manifestly isolated.

2. Both λ1 and λ2 are real and negative. For this case there are 4 subcases:

(a) Both λ1 < −1 and λ2 < −1. In this subcase zα is called inversion repelling. The
possible normal forms are given by (5.6) or (5.7). The index in this subcase is
+1.

(b) Both −1 < λ1 < 0 and −1 < λ2 < 0. In this subcase zα is called inversion
attracting, and the possible normal forms are given by (5.6) or (5.7). The index
in this subcase is +1.

(c) One eigenvalue, say λ1, satisfies −1 < λ1 < 0 and the other satisfies λ2 < −1.
In this subcase zα is called inversion hyperbolic, and the normal form is given by
(5.6). The index in this case is +1.

(d) One or both eigenvalues is −1. In this subcase zα is called inversion parabolic,
and the normal form is given by (5.6) or (5.7). The index in this subcase is +1.

3. Both λ1 and λ2 are complex. Since Lα is a real matrix, its eigenvalues will in fact be
complex conjugate so that they can be written in the form

λ1 = µeiφ, (29.5.8)

λ2 = µe−iφ, (29.5.9)

with

µ > 0. (29.5.10)

In this case the normal form is given by

N = µ

(
cosφ sinφ
− sinφ cosφ

)
. (29.5.11)

There are now 3 subcases:

(a) The quantity µ satisfies µ > 1. In this subcase zα is called repelling. The index
is +1.

(b) The quantity µ satisfies 0 < µ < 1. In this subcase zα is called attracting. It is
also sometimes called a node. The index is +1.

(c) The quantity µ satisfies µ = 1. (We also must then have φ 6= 2nπ because, if
not, N = I, which in turn implies Lα = I so that Lα has +1 as an eigenvalue
contrary to the requirement that zα be manifestly isolated. See Exercise 5.2.) In
this subcase zα is called elliptic. The index is +1.
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We conclude that the Poincaré index of a manifestly isolated fixed point zα is always +1
unless zα is hyperbolic, in which case the index is −1.

Let C be a closed curve that may surround several manifestly isolated fixed points, but
does not itself contain any fixed points. That is, no points on C are fixed. We have seen
how to define the index of a manifestly isolated fixed point. We will now see that we can
also define the index of C. By assumption the vector v(z) given by (5.1) does not vanish on
C, and therefore we may count the number of counterclockwise revolutions it makes as C
is traversed once in the counterclockwise direction. Call this (integer or zero) number the
index of C. As before, the index of C does not change if C is continuously deformed as long
as no enclosed fixed points are crossed during the deformation process.

Let n+ and n− be the number of fixed points, all surrounded by C, with indices +1 and
−1, respectively. Then there is the remarkable relation

index of C = n+ − n−. (29.5.12)

That is, the index of C is the sum of the indices of the fixed points it surrounds. To verify
this result, shrink C in a manner analogous to contour integration in such a way that none
of the enclosed fixed points are crossed as C is deformed to become C ′. Then the index of
C ′ will be the same as that of C. See Figure 5.2. Evidently the contributions to the index of
C ′ made by the anti-parallel portions of C ′ cancel, and the only nonzero contributions are
those made by the small loops around the enclosed fixed points. By the previous discussion,
the contribution of each of these is ±1, and these contributions all add. Therefore (5.12) is
correct.

C C 

Figure 29.5.2: A closed curve C that surrounds several fixed points, and the curve C ′ formed
by shrinking C.

As an illustration of how the index relation (5.12) can be employed, let us make a detour
to consider again the stroboscopic Duffing map of Section 1.4.3 and Chapter 23. Multiply
both sides of the Duffing equation of motion (23.1.1) by p and rearrange terms to find the
result

p(q̈ + q + q3) = −2βpq̇ − εp sinωτ. (29.5.13)

Define a quantity E, which may be viewed as the oscillator energy, by the rule

E = (1/2)p2 + (1/2)q2 + (1/4)q4. (29.5.14)
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Then, recalling that p = q̇, (5.13) can be rewritten in the form

dE/dt = −2βp2 − εp sinωτ. (29.5.15)

Correspondingly, ∆E, the change in E over one drive period, is given by the integral

∆E =

∫ T

0

(−2βp2 − εp sinωτ)dτ. (29.5.16)

We next claim that if the initial conditions are such that E is initially sufficiently large
(and “largeness” will depend on the values of the parameters β, ε, and ω), then ∆E will be
negative. That is, there will be a net decrease in the energy over the course of a drive period.
There are two reasons to believe this claim. Note that the first term in the integrand of
(5.16) is always negative (we assume β > 0) while the second is generally oscillatory. If E is
large, then we expect that p will be large over most of the driving period, and therefore the
first term in the integrand will dominate the second since p2 will generally greatly exceed the
magnitude of p. Moreover, if the amplitude of oscillation is large, as it will be if E is large,
then the frequency of oscillation will also be large (the frequency of oscillation increases
with amplitude in the case of a hard spring) so that the integral over the second term will
essentially average to zero.

Let us see how this works out by looking at a numerical example. Figure 5.3 shows
two contours C(Ej) in the q, p plane consisting of those points that satisfy (5.14) for the
values E1 = 25 and E2 = 100. Also shown are selected (and labeled) points z = (q, p) on
the outer contour, their images Mz under the action of the stroboscopic Duffing map M,
and the vector joining them. That is, the vectors v(z) given by (5.1) are also shown. (For
simplicity we have used the same values for β, ε, and ω as those employed in making the
basins illustration, Figure 23.4.3.) Evidently all the vectors point inward and terminate on
some lesser energy contour thereby indicating that ∆E < 0 for all initial conditions that lie
on the outer contour, as desired. We further suppose that ∆E < 0 for all initial conditions
that lie on all other contours C(Ek) having Ek > E2. By the above discussion we know this
will be true if E2 is large enough. From this supposition we infer that all fixed points ofM,
if any, must lie within the inner region bounded by the outer contour. For imagine some
fixed point lay outside the contour C(E2). Then there must be some contour C(E`), with
E` > E2, on which this fixed point lies. But, if we use this fixed point as an initial condition,
we must have ∆E = 0 since for this point Mz = z and therefore E cannot change. We
have arrived at a contradiction; therefore no fixed points lie outside C(E2). Similarly we
conclude that, for each choice of the parameters β, ε, and ω (with β > 0), the fixed points
of M must lie within a bounded region of phase space surrounding the origin.

Even more can be said. Figure 5.4 shows the vectors v(z) labeled and drawn from a com-
mon origin as in Figure 5.1. Evidently these vectors make one counterclockwise revolution
as the points on C(E2) make one counterclockwise revolution. We conclude that, for any
choice of β > 0, ε, and ω, the index of C(E2) is +1 providing E2 is large enough. Therefore,
by (5.12), the stroboscopic Duffing map must have at least one fixed point for each choice
of parameters, and the number of fixed points with positive index must exceed by one the
number with negative index. Observe that all the fixed points described in Chapter 23 have
this property.
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p

q

Figure 29.5.3: The contours C(E1) (inner) and C(E2) (outer) for the values E1 = 25 and
E2 = 100. Also shown are the vectors v(z) for selected (and labeled) points z on C(E2).
Observe that all vectors point inward and terminate on some lesser (inner) energy contour.
The Duffing parameters have the values ω = 2.25, β = .1, and ε = 1.5.
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p

q

Figure 29.5.4: The vectors v(z) of Figure 5.3 labeled and drawn from the common origin
(0, 0). As the points z on C(E2) make one counterclockwise revolution, the vectors v(z)
undergo one counterclockwise revolution, thereby indicating that C(E2) has index +1.
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Let us return to our main discussion. From what we have learned it follows that fixed
points cannot be born or die (disappear) singly as some parameter τ in a problem is varied.
To see this, surround the region where the fixed point is to be born or die by some closed
curve C that is free of fixed points (and therefore has a well-defined index) and surrounds no
other fixed points. Before the fixed point is born or after it dies, the index of C will be zero.
(Reader, verify that the index of a closed curve that can be deformed to a point without
encountering any fixed points must be zero.) But since the index is also a continuous function
of τ , it must remain zero as τ is varied, and therefore no single fixed point can appear or
disappear inside C. Instead, fixed points must be born or die in pairs, and the two fixed
points in a pair must be initially infinitesimally nearby and have opposite indices. Moreover,
from the discussion leading to (4.7), an eigenvalue of Lα must have the value +1 at the birth
or death of a pair. This is what occurs at saddle-node bifurcations. As an example, again
see the discussion of the Duffing stroboscopic map in Chapter 23.

It can also happen that the index of a fixed point can change as some parameter is
varied. If this happens, additional fixed points with compensating indices must also be born
or disappear infinitesimally nearby in such a way that the sum of all the indices remains
unchanged. This is what occurs at pitchfork bifurcations. Once again see the discussion of
the Duffing stroboscopic map in Chapter 23.

The tools used to analyze the fixed points of a map M can also be applied to analyze
the fixed points of M2. Suppose zf is a fixed point of M so that we may write

M(zf + δ) = zf + Lfδ +O(δ2) (29.5.17)

where Lf is the linear part of M about the point zf . The map M2 will also have zf as a
fixed point, and we find the relation

M2(zf + δ) =M(zf + Lfδ) +O(δ2) = zf + (Lf )
2δ +O(δ2). (29.5.18)

We see that at a fixed point of M the linear part of M2 is the square of the linear part of
M. Moreover, if λ is an eigenvalue of Lf with associated eigenvector v, then we find that

(Lf )
2v = Lfλv = λ2v. (29.5.19)

Thus, at a fixed point of M the eigenvalues of the linear part of M2 are the squares of the
eigenvalues of the linear parts of M.

Now suppose that zf is initially stable and, as some parameter is varied, suppose also
that some eigenvalue of Lf takes the value −1. Then we expect that zf will become unstable,
but will remain isolated. However, the linear part ofM2 will have +1 as an eigenvalue, and
we may expect bifurcation for M2 as some parameter is varied. After the bifurcation, M2

may be expected to have three fixed points. One of them will be the now unstable fixed
point of M itself. The remaining two, call them za and zb, will not be fixed points of M
(since zf remains isolated), but will have the property

Mza = zb, (29.5.20)

Mzb = za, (29.5.21)
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from which it follows, of course, that

M2za =Mzb = za, (29.5.22)

M2zb =Mza = zb. (29.5.23)

Thus, period doubling has occurred. Note that, strictly speaking, a period doubling bifurca-
tion is not a bifurcation of M, for there is only one fixed point of M both before and after
the bifurcation. Rather, it is a bifurcation of M2, for there is one fixed point of M2 before
the bifurcation (namely zf ), and three fixed points after the bifurcation (zf , za, and zb).
Finally, from index considerations, za and zb will be stable fixed points of M2. This must
be true because, before the bifurcation, zf had index +1 with respect to M2; and after the
bifurcation, zf must have index −1 with respect to M2. Thus, to preserve the total index,
the fixed points za and zb must have index +1 with respect to M2.

Note that this is what can happen if a storage ring is operated near a half-integer tune.
Then, under perturbation, an eigenvalue pair can leave the unit circle through the value
−1 so that the fixed point corresponding to the closed orbit becomes inversion hyperbolic.
See Figure 3.4.1. The closed orbit persists under perturbation, but becomes unstable. At
the same time, a pair of fixed points of M2 appears, and these fixed points are stable.
Correspondingly, there are then two nearby stable orbits that close after two turns (but not
one turn). Under normal circumstances such a situation is undesirable because the beam is
then less well confined. A possible counter-situation might arise if one were thinking about
beam extraction.

What can be said about the eigenvalues of the linear part of M2 at the fixed points za,
and zb? Suppose that (5.20) and (5.21) hold. Then we may write the relations

M(za + δ) = zb + Laδ +O(δ2), (29.5.24)

M(zb + δ) = za + Lbδ +O(δ2), (29.5.25)

from which it follows that

M2(za + δ) =M(zb + Laδ) +O(δ2) = za + LbLaδ +O(δ2), (29.5.26)

M2(zb + δ) =M(za + Lbδ) +O(δ2) = zb + LaLbδ +O(δ2). (29.5.27)

We see that the linear part ofM2 about the fixed point za is described by the matrix LbLa,
and the linear part about the fixed point zb is described by the matrix LaLb. According to
Exercise 3.17.15, these matrices have the same eigenvalues. Therefore, the linear parts of
M2 about the corresponding fixed points za and zb have the same eigenvalues.

Exercises

29.5.1. In the two-dimensional case define the matrix B by writing

B = Lα − I, (29.5.28)
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and consider the locus of points ∆ produced by the relation

∆ = Bδ (29.5.29)

as δ traces out a circle about the origin in the counterclockwise direction. Using (orthogonal)
polar decomposition, write B in the form

B = PO. (29.5.30)

Since P is positive-definite symmetric, there is a proper orthogonal matrix R such that

P = RDR−1 (29.5.31)

where D is a diagonal matrix of the form

D =

(
Λ1 0
0 Λ2

)
(29.5.32)

and the Λi are positive. Correspondingly, verify that B can be rewritten as

B = RDO′ (29.5.33)

where O′ is the orthogonal matrix given by the relation

O′ = R−1O. (29.5.34)

Now there are two possibilities: First, it could happen that O′ is proper orthogonal (has
determinant +1) in which case we write O′ = R′ and (5.22) becomes

B = RDR′. (29.5.35)

Show that for this possibility
detB > 0. (29.5.36)

In the second possibility O′ has determinant −1. Show that in this possibility O′ can be
written in the form

O′ = R′σ3 (29.5.37)

where R′ is again a proper orthogonal matrix and σ3 is the improper orthogonal (reflection)
matrix given by (5.7.3). Now (5.22) becomes

B = RDR′σ3 (29.5.38)

and
detB < 0. (29.5.39)

In the first possibility we have the relation

∆ = RDR′δ. (29.5.40)
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For this possibility verify that as δ traces out a counterclockwise circle, the matrix R′ simply
rotates this circle by a fixed amount, D squashes and/or stretches it, and R again rotates
it by a fixed amount. Verify that the net result is that ∆ traces out an ellipse in the
counterclockwise direction. Correspondingly, the fixed point zα has index +1, and this fact
is to be correlated with the condition (5.25).

In the second possibility we have the relation

∆ = RDR′σ3δ. (29.5.41)

Show that (σ3δ) traces out a circle in the clockwise direction when δ traces out a counter-
clockwise circle. Referring to (5.30), show that R′ now rotates this circle by fixed amount,
D squashes and/or stretches it, and R again rotates it by a fixed amount. Verify that the
net result is that ∆ now traces out an ellipse in the clockwise direction. Correspondingly,
the fixed point zα has index −1, and this fact is to be correlated with the condition (5.28).

Verify the index assignments for all the fixed-point cases listed at the beginning of this
section.

29.5.2. For N as given by (5.11) show that det(N−I) ≥ 0. In the case that det(N−I) = 0,
show that µ = 1 and φ = 2nπ. You may use (5.10).

29.5.3. Let M be the map defined by

M = exp : h : (29.5.42)

where
h = λ(p2 + q2)2 (29.5.43)

and λ is a parameter. Show thatM has the origin as an isolated, but not manifestly isolated,
fixed point. Find the index of this fixed point. Show that M also has an infinite number
of fixed points that are not isolated. Review Exercise 4.1. Show that f = (p2 + q2) is an
integral of M. At what fixed points does ∇f = 0?

29.5.4. Let M be the map defined by

M = exp : h : (29.5.44)

where
h = p3 − 3q2p. (29.5.45)

Show thatM has the origin as an isolated, but not manifestly isolated, fixed point. Find the
index of this fixed point. Hint: Review Exercise 21.3.13. For the function w = f(z) = z2,
verify that if z traces out in a counter-clockwise direction a circular path about the origin
of the complex plane, then w goes about the origin twice in the counter-clockwise direction,
and w̄ goes about the origin twice in the clockwise direction. To do this, write z in the polar
form z = r exp(iθ). Comment: Let p, q, and r be three Cartesian coordinates. The surface
r = p3−3q2p is called a monkey saddle. A cowboy/girl saddle has two up-going parts before
and behind the rider, and two down-going parts for the rider’s legs. A monkey saddle has
three down-going parts, two for the monkey’s legs and one for its tail. The monkey saddle
also has three up-going parts, with one such up-going part lying between every down-going
part. Google on monkey saddle to see pictures of them.
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29.5.5. Review Section 1.2.2. Show that the complex logistic mapM given by (1.2.29) has
the fixed points

zf = 0 (29.5.46)

and
zf = (γ − 1)/γ = 1− 1/γ. (29.5.47)

See (1.2.8) and (1.2.9). Exercise 1.1 provides the linear part of M about the fixed point
(5.35). Find the linear part of M about the second fixed point (5.36). Classify each of
these fixed points according to its stability and index, and give each its associated name
according to the possibilities 1 through 3 found in this section. According to Exercise 1.2.6
the complex logistic map also has ∞ as a fixed point. Classify this fixed point. Consider
a large circular contour C about the origin, large enough to contain both the fixed points
(5.35) and (5.36). Compute the index of C. Explain why Douady’s γ value, see Figures
1.2.6 and 1.2.8 and Exercise 1.2.12, results in M having three complex period-three fixed
points z1, z2, and z3. What value should γ have for M to have four complex period-four
fixed points? Would this question be any easier to answer for an analysis about the fixed
point at the origin using (1.41)? Hint: Given γ, define γ′ by the rule

γ′ = 2− γ. (29.5.48)

Show that γ and γ′ lead to the same value of µ. See Exercise 1.2.7. Call Douady’s γ value
γD,

γD = 2.55268− .959456i (29.5.49)

and define γ′D by the relation

γ′D = 2− γD = −.55268 + .959456i. (29.5.50)

Figure 5.5 shows the basin structure structure for the complex logistic mapM when γ = γ′D.
Evidently, as expected, the result is again a rabbit (or cactus), but the rabbit now sits more
symmetrically on the page. The period-three fixed points are located at

z1 = 0.500003730675024 + (6.968273875812428d− 6)i (red), (29.5.51)

z2 = −0.138169999969259 + (0.239864000061970)i (green), (29.5.52)

z3 = −0.238618870661709− (0.264884797354373)i (yellow). (29.5.53)

Show that the fixed points of M itself are located at

zf = 0, (29.5.54)

zf = 1− 1/γ′D = 1.450795 + .7825835i, (29.5.55)

zf =∞. (29.5.56)

Verify from Figure 5.5 that the three major lobes on the left, which contain the period-three
fixed points z1, z2, and z3, meet at the fixed point zf = 0, and their counterparts on the
right meet at the point

z′ = 1. (29.5.57)
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Verify analytically that
Mz′ = zf = 0, (29.5.58)

which explains the symmetry present in Figure 5.5.
Locate γ′D in Figure 1.2.7. You should find that it lies in the sprout located at the

eleven-o’clock position of the left disc. Show, referring to Exercise 1.1, that it has the polar
decomposition

ρ = 1.1072538, (29.5.59)

φ = 119.943◦ ' 2π/3. (29.5.60)

It follows, see Exercise 1.1, that the effect of M on points near the origin consists of a
counterclockwise rotation about the origin of very nearly 120◦ followed by scaling (dilation)
by a factor of ρ. Consequently, verify that the relations (1.2.33) through (1.2.38) again hold.
What value should γ′ have in order to achieve φ ' 90◦ and ρ slightly greater than 1?
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Figure 29.5.5: The basin structure for the complex logistic map when γ = γ′D = −.55268 +
.959456i. The origin is a repelling fixed point, and the three lobes that meet at the origin
each contain one of the three attracting period-three fixed points z1 (red), z2 (green), and
z3 (yellow). The action of M on points near the origin is essentially a counterclockwise
rotation about the origin by 120◦.

29.5.6. Suppose C is a closed curve that is free of fixed points (of some map M of some
two-dimensional space into itself) and suppose that C can be deformed to a point without
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encountering any fixed points. That is, C does not surround any fixed points. Show that
the index of C must be zero.

29.6 Manifolds, and Homoclinic Points and Tangles

Assume for the time being that phase space is 2 dimensional. Suppose zα is a fixed point
of M and consider the repeated action of M (and M−1) on points near zα. In the linear
approximation these points are translates from the origin to zα of points obtained by the
repeated action of Lα (and Lα

−1) on points near the origin. See Exercise 6.1 and (6.10).
Next consider the two-dimensional case and suppose that zα is a hyperbolic fixed point. As
Exercise 6.1 goes on to show, in the hyperbolic case the repeated action ofM on points near
zα produces (in the linear approximation) points lying on (transformed) hyperbolas and their
asymptotes [or (transformed) generalized hyperbolas and their asymptotes] centered on zα.
Figure 6.1 illustrates these points schematically. The lines v< and v> are the translates of the
points σv1 and σv2 described in Exercise 6.1, and they form the asymptotes of the hyperbolas.
According to (6.10), under the repeated action ofM (and in the linear approximation) points
on v< are moved inward toward zα, and points on v< are moved outward. See (6.20) and
recall that we have assumed λ1 < 1 and λ2 > 1. Thus, points on v< are stable in the
linear approximation, and points on v> are unstable. Points not on the asymptotes move
on hyperbolas. They are all unstable since they eventually move away from zα under the
repeated action of M.

v

v

<

>

z
α

Figure 29.6.1: Schematic illustration of the action of M on points near zα in the linear
approximation. Points on v< are moved inward toward zα, and points on v> are moved
outward. Others are moved on hyperbolas.

When all nonlinearities are taken into account, it can be shown that (in the hyperbolic
case) the repeated action ofM on points near zα is similar. Indeed, according to a celebrated
theorem of Hartman whose proof lies beyond the scope of our current discussion, in the
hyperbolic case there is a conjugating map A such that in the vicinity of zα there is a
relation of the form

M = ALαA−1 (29.6.1)
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where A−1 maps zα to the origin and Lα is the linear part of M at zα. In particular there
are stable and unstable manifolds Ws and Wu that are the analogs of the asymptotes v< and
v>, and nearly coincide with them in the vicinity of zα where the linear approximation is
valid. The stable manifold is defined to be the set of all points that are sent into zα under
the action of Mn in the limit of large n,

Ws = {z| lim
n→∞

Mnz = zα}. (29.6.2)

The definition of Wu is a bit more subtle. Note that in the linear approximation points on
v> are moved inward under the action of M−1. We therefore define the unstable manifold
to be the set of all points that are sent into zα under the action ofM−n in the limit of large
n,

Wu = {z| lim
n→∞

M−nz = zα}. (29.6.3)

We observe that thanks to Hartman’s theorem Ws and Wu are one dimensional in the
neighborhood of zα. Moreover, if S is a point on Ws, then by the definition (6.2) so are the
points MmS for any positive or negative values of m. Similarly, if U is a point on Wu, so
are the points MmU . Consequently, if Wu is known in the neighborhood of zα, it can be
extended away from zα by repeatedly applyingM to the known portion. Similarly, Ws can
extended away from its known portion near zα by repeated application of M−1. Finally,
sinceM is assumed to be continuous (and dimensionality is conserved by a continuous map),
Ws and Wu must be one dimensional globally.

An illuminating example of the behavior of stable and unstable manifolds is provided by
the mapM given by (3.95) and (3.96). For simplicity, specify µ and ν by a single parameter
Λ by writing the relations

µ = Λ, ν = 1/Λ. (29.6.4)

When this is done, the map becomes symplectic. Next, for purposes of illustration, assign
Λ the value Λ = 3. Inspection of (3.95) and (3.96) shows that in this case the origin in
q, p space is a hyperbolic fixed point, and the q and p axes are the unstable and stable
asymptotes v> and v<, respectively. We therefore expect the unstable and stable manifolds
Wu and Ws to lie along the q and p axes, respectively, in the neighborhood of the origin.

Further examination of (3.95) and (3.96) shows that M has a second fixed point given
(when Λ = 3) by

{q, p} = {−3/8, 1/8}, (29.6.5)

and that this fixed point is elliptic with a tune T = .1959 · · · . See Exercise 6.2.
Figure 6.2 shows the actual unstable and stable manifolds in the vicinity of the origin

and somewhat beyond. (See Exercise 6.3 for a description of how they can be calculated.) It
also displays the elliptic fixed point and the behavior, under repeated action ofM, of points
near the elliptic fixed point. Evidently points near the elliptic fixed point do seem to move
on ellipses as predicted by the linear analysis of Exercise 6.1. However, we will subsequently
learn that their behavior is in fact generally much more complicated. With regard to the
unstable and stable manifolds, they do appear to lie along the q, p axes in the neighborhood
of the origin. However, they veer away from the axes when farther away from the origin.
In particular, the piece of Wu that originated along the negative q axis and the piece of Ws
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that originated along the positive p axis intersect at the point K.2 Moreover they do not
join smoothly at K, but rather intersect with a finite angle of intersection. (They are said
to intersect transversally.) This point K is called a (transverse) homoclinic point, and the
angle of intersection is called the homoclinic angle. (The word homoclinic, a nomenclature
due to Poincaré, means “falling into itself”: Since K is on Wu, it must have come from
points arbitrarily near zα under the repeated action of M, and since it is also on Ws, it
must also be sent back to points arbitrarily near zα under the repeated action ofM. It can
happen that a map has two or more hyperbolic fixed points, and that the unstable manifold
of one intersects the stable manifold of another. Such an intersection is called a heteroclinic
point.) The pieces of Wu and Ws that originated along the positive q and negative p axes,
respectively, appear to go off to infinity without intersecting.
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Figure 29.6.2: The (transverse) intersection of the unstable and stable manifolds emanating
from a hyperbolic fixed point resulting in a homoclinic point K. Also displayed is the elliptic
fixed point and the behavior of points near the elliptic fixed point.

We next claim that the existence of one homoclinic point implies the existence of an
infinite number of homoclinic points. To see this, suppose K is a homoclinic point and
consider all the points MnK for n both positive and negative. Since by assumption K lies
on Wu, we know from our earlier discussion that the pointsMnK must also lie on Wu. And
since K lies on Ws as well, the points MnK must also lie on Ws. Therefore Wu and Ws

must intersect at all the points MnK. Moreover, if the homoclinic angle at K is nonzero,

2Suppose an autonomous Hamiltonian system with two degrees of freedom has a periodic orbit. As
described in Section 6.9, in the vicinity of this orbit one can set up a Poincaré two-dimensional surface of
section return map M, and the periodic orbit will then correspond to a fixed point of M. Suppose this
fixed point is hyperbolic. Then, points on its stable manifold correspond to an orbit that asymptotically
approaches the periodic orbit as t → +∞, and points on its unstable manifold correspond to an orbit
that asymptotically approaches the periodic orbit as t → −∞. Supose the stable and unstable manifolds
intersect. Then these two orbits are part of a common orbit which is said (following Poincaré) to be doubly
asymptotic.
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the homoclinic angles at all the points MnK must be finite. See Exercise 6.4.
Figure 6.3 shows the same pieces of the manifolds Wu and Ws that do not go off to

infinity as shown on Figure 6.2, but also shows more of them to exhibit some of the points
MnK. We now observe that between any two successive homoclinic points of the form
MnK there is an additional homoclinic point. Why should this be so?
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Figure 29.6.3: Successive homoclinic intersections of the unstable and stable manifolds show-
ing the first few points MnK. The other halves of Wu and Ws, those pieces that go off to
infinity, are not shown. Also not shown are the elliptic fixed point and the behavior of points
near it.

Consider the closed curve consisting of the part of Wu that extends from zα to K and
the part of Ws that extends from K back to zα, and let R be the region enclosed by this
curve. Next consider the closed curve consisting of the part of Wu that extends from zα

to MK and the part of Ws that extends from MK back to zα, and let R̄ be the region
enclosed by this curve. By construction the boundary of R is mapped onto the boundary
of R̄ under the action of M. It can also be shown that M maps the interior of R to the
interior of R̄. That is, we may also view R̄ as being the set of points produced byM acting
on all the points in R,

R̄ =MR. (29.6.6)

Let A and Ā be the areas of R and R̄, respectively,

A =

∫
R
d2z, (29.6.7)

Ā =

∫
R̄
d2z̄. (29.6.8)

We claim these two areas are equal. Indeed, by changing variables of integration, we have
the result

Ā =

∫
R̄
d2z̄ =

∫
R

[detM(z)]d2z = A. (29.6.9)
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Here we have used the fact that M is symplectic, and therefore detM(z) = 1. What we
have done is recapitulate Liouville’s theorem in two dimensions. Recall Subsection 6.6.1.

Now look at Figure 6.4. The left panel displays R; the right displays R̄ and, as a dashed
line, the part of Ws that is “removed” under the action ofM. We see, because the homoclinic
angle is finite, that as a result of the extending action ofM the manifold Wu initially dives
under the dashed portion of Ws that is removed. If it did not eventually also curve upward
so as to finally lie above the dashed portion of Ws, the result would be Ā < A. Therefore Wu

must cross Ws between K and MK, thereby producing an intermediate homoclinic point.
Moreover, the two small regions (lobes) pointed out in the right panel, those that result from
the oscillation of Wu about the dashed portion of Ws, must have equal areas in order for the
relation Ā = A to hold.

Ws
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K

Ws

Wu

-0.6 -0.4 -0.2

-0.05

0.05

0.1

0.15

0.2

0.25

p

q

-0.6 -0.4 -0.2

-0.05

0.05

0.1

0.15

0.2

0.25

p

q

K
K

Small Equal Area

Regions

Figure 29.6.4: The regions R and R̄. Observe that, in the right panel, the unstable manifold
“oscillates” about the stable manifold in the interval between K and MK. When M is
symplectic, the two small regions produced by this oscillation must have equal areas.

Let us examine more of the homoclinic points MnK by computing more of Ws and
Wu. Figure 6.5 shows the result. We see that Wu, as it heads back toward zα, makes more
and more oscillations about Ws and that these oscillations have ever increasing amplitude.
Similarly, Ws, as it heads back toward zα, makes more and more oscillations about Wu with
ever increasing amplitude. Why should this be? We have learned that the two lobes in
Figure 6.4 must have the same area. A moment’s reflection reveals that all the other lobes
are images of these lobes under the action of Mn for suitable positive or negative values
of n. See Figure 6.3. Moreover, since M is symplectic and therefore area preserving, all
these lobes must have the same area. Finally, in the vicinity of zα, Exercise 6.1 shows that
the spacing of successive homoclinic points must decrease geometrically (exponentially). As
a consequence of Hartman’s theorem, asymptotically their distances from the origin must
be governed by relations of the form (6.15), which in turn imply that their spacings must
decrease exponentially. Therefore, in order to maintain constant area, the amplitude (in
linear approximation) must grow exponentially. (We remark that a similar phenomena
holds in the case of heteroclinic points when the heteroclinic intersection is transverse: The
two intersecting manifolds again oscillate about each other with ever finer spacing and ever
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increasing amplitude as they approach the two associated hyperbolic points.)
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0.2

q

p

Figure 29.6.5: Successive oscillations of Wu about Ws and of Ws about Wu in the vicinity of
the hyperbolic fixed point. The spacing between successive oscillations becomes exponen-
tially finer, and the oscillation amplitude becomes exponentially larger.

The net effect of these oscillations of increasing amplitude is that near the hyperbolic
fixed point the oscillations of Wu about Ws must intersect the oscillations of Ws about Wu

to produce even more homoclinic points. As a result the hyperbolic fixed point is the corner
of an ever “denser” cloud of homoclinic points. This property is illustrated in Figure 6.6.

Poincaré first discovered this structure, which we now call a homoclinic tangle, without
the aid of a computer and computer graphics. About this discovery he wrote:

When we try to represent the figure formed by these two curves and their in-
finitely many intersections, each corresponding to a doubly asymptotic solution,
these intersections form a type of trellis, tissue, or grid with infinitely fine mesh.
Neither of the two curves must ever cut across itself again, but it must bend back
upon itself in a very complex manner in order to cut across all of the meshes in
the grid an infinite number of times.

The complexity of this figure is striking, and I shall not even try to draw it.
Nothing is more suitable for providing us with an idea of the complex nature of
the three-body problem, and of all the problems of dynamics in general, where
there is no uniform integral and where the Bohlin series are divergent.

In Exercise 6.5 you will have the pleasure of verifying Poincaré’s assertion that Ws cannot
intersect itself, nor can Wu intersect itself. And in Exercise 6.6 you will be led to show that
the existence of a homoclinic point, which happens generically for nonlinear maps (including
those arising from nonlinear systems), precludes the existence of analytic integrals. Indeed,
it can be shown that the existence of a homoclinic point implies that there is an infinite
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Figure 29.6.6: A continuation of Figure 6.5 near the origin (the hyperbolic fixed point)
showing the formation of a grid of intersecting lines. The spacing of the grid becomes finer
and finer as it approaches the hyperbolic fixed point. Each grid intersection is a homoclinic
point. The result of all these intersections is an ever denser cloud of homoclinic points that
has the hyperbolic fixed point as a limit point.

collection of points for which the action of M is equivalent to that of a Bernoulli shift.
(Recall Exercise 1.2.8 for the definition of a Bernoulli shift.) Therefore, most nonlinear
problems are not integrable. Finally, it may be remarked that the homoclinic tangle has the
same topological structure as that resulting from Smale’s famous horseshoe map.

Strictly speaking, we have only been discussing the two-dimensional case. The higher
dimensional cases are still more complicated, and much less detail is known about them.
It is known, however, that stable and unstable manifolds and homoclinic (and heteroclinic)
behavior also exist in higher dimensions, and that there are additional complex phenomena
such as Arnold diffusion.

We close this section by noting that, in generically rare cases (but characteristic of maps
arising from soluble systems), the unstable and stable manifolds may join smoothly without
going into homoclinic oscillations about each other. In such a case their union is called
a separatrix since (in two dimensions) points inside the separatrix remain so under the
repeated action of M, and points outside are eventually mapped to infinity. When the
unstable and stable manifolds intersect transversally at a homoclinic point (as is generically
the case), this phenomenon is sometimes referred to as separatrix splitting.

It can also happen, in systems with sufficient damping, that the stable and unstable
manifolds do not intersect at all. As an example, consider the stroboscopic Duffing map with
the same parameter values used to make the basins illustration, Figure 23.4.3. Figure 6.7
shows the unstable (hyperbolic) fixed point (23.4.3) and the eigenvector v1, the eigenvector
of the linear part of M about the unstable fixed point, associated with the eigenvalue λ1

that lies in the interval 0 < λ1 < 1. Note that the unstable fixed point is on, and v1 points
along, the boundary between the two basins. (Reader, show that this is to be expected.)
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Figure 6.8 shows the stable and unstable manifolds associated with the unstable fixed point
(23.4.3). They do not intersect, and therefore the stroboscopic Duffing map does not have
homoclinic points for these parameter values. Points on the two branches of the unstable
manifold spiral into the two stable fixed points (23.4.1) and (23.4.2), the stable manifold
separates the two basins, and points on the stable manifold are moved toward the unstable
fixed point (23.4.3).

Figure 29.6.7: A blow up of part of Figure 23.4.3 illustrating the basins of attraction, the
unstable fixed point (23.4.3), and the eigenvector v1 (the one with eigenvalue less than 1)
for the stroboscopic Duffing map. The unstable fixed point lies on, and the vector v1 points
along, the boundary between the two basins.
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Figure 29.6.8: The stable (blue) and unstable (red) manifolds for the unstable fixed point
(23.4.3) of the stroboscopic Duffing map. Note that the unstable manifold spirals into
the stable fixed points (23.4.1) and (23.4.2), and the stable manifold lies along the basin
boundaries. The stable and unstable manifolds do not intersect, so there are no homoclinic
points.
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Exercises

29.6.1. Show from (4.5) that there is the relation

Mn(zα + δ) = zα + (Lα)nδ +O(δ2). (29.6.10)

Therefore the behavior of points sufficiently near zα under repeated action ofM is governed
by (Lα)n. From (5.3) there is the relation

(Lα)n = ANnA−1, (29.6.11)

and hence (Lα)n is in turn governed by Nn.
Now consider the two-dimensional case. For any two-vector ε(0), let δ(0) = Aε(0) and

introduce the notation
ε(n) = (N)nε(0), (29.6.12)

δ(n) = (Lα)nδ(0). (29.6.13)

Deduce the relation
δ(n) = Aε(n). (29.6.14)

For any initial point ε(0), find the successive points ε(n) for all the kinds of fixed points listed
at the beginning of this section.

Three cases are of particular interest: Show that in case 3b (see Section 18.5) the succes-
sive points ε(n) spiral into the origin; and in the elliptic case, case 3c, the successive points lie
on a circle. For the hyperbolic case, case 1c, Show that successive points obey the relation

(ε(n))i = λi
n(ε(0))i (29.6.15)

so that they lie on the “generalized” hyperbola

[(ε(n))1]a[(ε(n))2]1/a = [(ε(0))1]a[(ε(0))2]1/a (29.6.16)

where a is given by the relation

a = [− log(λ2)/ log(λ1)]1/2. (29.6.17)

Let e1 and e2 be unit vectors such that

Nei = λiei. (29.6.18)

Show that the vectors σei, where σ is any scalar, are the asymptotes of this generalized
hyperbola. Verify that the generalized hyperbola becomes an “ordinary” hyperbola in the
(symplectic) case λ1λ2 = 1.

Finally, verify that the effect of A, which transforms (maps) ε(n) to δ(n) by (6.14), is
simply that of possible reflection followed by possible rotation, possible squashing and/or
stretching, and a final possible rotation. Thus, the behavior of the points δ(n) is similar to
that of the ε(n). Hint: As done for B in Exercise 5.1, use polar decomposition for A. When,
without loss of generality, may one assume detA = 1?
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For the hyperbolic case in particular define vectors vi by the relation

vi = Aei. (29.6.19)

Verify that they obey the rule
Lαvi = λivi, (29.6.20)

and that the vectors σvi are the asymptotes of the transformed generalized hyperbola.

29.6.2. Show that the mapM given by (3.95), (3.96), and (4.23) has two fixed points. The
first is the origin {0, 0}. Verify that the second is given by

qf = −Λ(Λ− 1)/(Λ + 1)2, (29.6.21)

pf = (Λ− 1)/(Λ + 1)2. (29.6.22)

Verify (6.5) for the case Λ = 3. Show that the linear part ofM about the second fixed point
is described by the matrix

Mf =

(
−Λ(Λ− 3)/(Λ + 1) 2Λ(Λ− 1)/(Λ + 1)
−2(Λ− 1)/[Λ(Λ + 1)] (3Λ− 1)/[Λ(Λ + 1)]

)
, (29.6.23)

and therefore the trace of Mf is given by the relation

trMf = −(Λ2 − 4Λ + 1)/Λ. (29.6.24)

Verify, using (3.5.39) through (3.5.41), that when Λ = 3 the tune T of Mf is given by

T = .1959 · · · . (29.6.25)

29.6.3. Verify that the map M given by (3.95), (3.96), and (4.23) has the inverse

q = q̄/Λ− (q̄/Λ− Λp̄)2, (29.6.26)

p = Λp̄− (q̄/Λ− Λp̄)2. (29.6.27)

Set Λ = 3. Consider L equally spaced points along the q axis lying in the small interval
[−ε, 0) where ε is some small number. Also consider L equally spaced points along the p
axis lying in the small interval (0, ε]. Let N be some modest positive integer. Apply the
maps Mn, for n = 0 throughN , to the equally spaced set of points along the q axis. Apply
the maps M−n, again for n = 0 throughN , to the equally spaced set of points along the p
axis. Use double precision (64 bit) or still higher precision arithmetic. Try, for starters, the
case L = 100, ε = .03, and N = 5. Verify that so doing should give (for the case Λ = 3)
some approximation to points lying on the initial portion of some pieces of Wu and Ws,
respectively. What pieces can be gotten this way? How can the other pieces be found?
For an improved approximation, replace ε by ε/Λ and N by N + 1. Verify that making this
replacement repeatedly leads to more and more accurate results for Wu and Ws. Experiment
with various values of L, ε, and N to get satisfactory graphics.

29.6.4. All homoclinic angles are finite.

29.6.5. Wu and Ws cannot self-intersect.

29.6.6. Existence of homoclinic point implies non-integrability.
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29.7 The General Hénon Map

We are now prepared to resume our study of two-variable quadratic maps. Consider the
map Mffq given by (3.37) and (3.38), or by (3.54), for the parameter values

d = 1 , e = 0 , r = 0 , s = 1 , t = b , u = 0 , α3 = −a , β = 0. (29.7.1)

This map is called the general (not necessarily symplectic) Hénon map. We will denote it
by Mh. For it the matrix R takes the form

R =

(
0 1
b 0

)
; (29.7.2)

and, after replacing
≡
q,
≡
p by the symbols q̄, p̄ for the sake of improved notation, the mapMh

itself takes the form

Action of Mh:
q̄ = 1 + p− aq2, (29.7.3)

p̄ = bq. (29.7.4)

The determinant of its Jacobian matrix has the value

detMh = detR = −b. (29.7.5)

Consequently, the Hénon map is orientation preserving only when b < 0, and symplectic
only when b = −1.

We have discovered that the general Hénon map is an instance of the class of two-
dimensional quadratic maps whose nonlinear parts have a finite product Lie factorization
(or, equivalently, have a constant Jacobian determinant.) In Section 8.3 we learned that all
such maps are equivalent (conjugate), under affine changes of variables, to a two-parameter
family of maps. See, for example, (3.95) and (3.96). Note that the Hénon maps also form a
two-parameter family. Therefore, as we will eventually confirm, it must also be possible to
bring any Hénon map to some standard form. Indeed, the general Hénon map and the class
of quadratic two-dimensional maps having a finite Lie product factorization are equivalent.

The general Hénon map has been much studied for the case b = .3 and variable a. This
case is non-symplectic and non-orientation preserving. For given values of a and b, repeated
iteration of Mh will produce a set in the q, p plane. Figure 7.1 shows the projection of
this set onto the q axis as a a function of a. Projection of this set on the p axis gives a
similar picture. [See (7.4).] Evidently the Feigenbaum diagram for the general Hénon map is
similar to that of the logistic map. See Figures 1.2.2 and 1.2.10. There is a cascade at period
doublings followed by what appears to be chaotic behavior. Numerical calculation shows
that the sequence of period doublings is again governed by the Feigenbaum constant δ as
given by (1.2.13). However, closer inspection of Figure 7.1 reveals additional features in the
vicinity of a = 1.08 in the form of additional cascades. Figure 7.2 shows an enlargement of
one of these features revealing that it is an independent cascade. This is but one indication
that the behavior of the Hénon map under iteration is far more complicated than that of
the logistic map.
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Figure 29.7.1: Feigenbaum diagram showing limiting values q∞ as a function of a (and b
held at b = +.3) for a non-orientation preserving case of the general Hénon map.

Figure 29.7.2: Enlargement of the boxed region in Figure 7.1. The upper cascade is that
readily visible in the box in Figure 7.1. The lower cascade, which seems to appear out of
nowhere and then terminate abruptly, corresponds to the small speck near the bottom of
the box in Figure 7.1.
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Figures 7.3 show various portions of the full set in the q, p plane for the parameter values
b = .3 and a = 1.4. In the first figure there seem to be three curves that form part of an
attractor. The next figure shows an enlargement of the “boxed” portion of the first figure.
At this magnification it is evident that the top curve in the first figure is “thicker” then the
other two. The third figure shows an enlargement of the boxed portion of the second figure.
Now it is evident that the thick curve is itself composed of three curves spaced in a way that
is similar to the three curves in the first figure. A fourth figure shows a further enlargement.
Evidentally the attractor appears to be fractal.

There is also the (for us) much more interesting orientation preserving case for which
b < 0, for only then can the general Hénon map model a transfer map arising from a
differential equation. [See (7.5) and Exercise 1.4.6.] Indeed, by following a procedure similar
to that used in Section 1.2 to produce the symplectic Hénon map, one can use the vector
fields appearing in an analogous factorization of the orientation preserving general Hénon
map to produce a differential equation whose time-one transfer map is the general Hénon
map (with b < 0). We will also want the map to be symplectic or area contracting (but not
area expanding). Therefore we are primarily interested in the cases −1 ≤ b < 0. That is,
we are mainly interested in maps that describe Hamiltonian or damped systems.

Suppose we give b the value b = −.3, and then study the properties of Mh for various
values of a. Repeated iteration of Mh will again produce a set in the q, p plane. Figure 7.4
shows the projection of this set onto the q axis as a function of a. The graphic is similar to
that of Figure 1.2.9: There is an infinite sequence of period doublings as a increases, and
this cascade seems to be complete (and then some) by the time a reaches the value a = 2.11.
However, there are also again additional cascades, this time in the vicinity of a = 1.9. In
order to provide a complete picture of the attracting set, Figure 7.5 shows, in 3-dimensional
perspective, both q∞ and p∞ as a function of a.

Figures 7.6 show various portions of the full set in the q, p plane for the parameter values
b = −.3 and a = 2.11. That is, Figures 7.6 show the intersection of Figure 7.5 with the
plane a = 2.11. In the first figure there again seem to be three curves that form part
of an attractor. The remaining three figures show successive enlargements of the “boxed”
portion of the previous figure. Again there appears to be a fractal structure, and this
evidence suggests that there can also be a strange attractor for the case b < 0. However,
the fractal structure is more complicated than that of the corresponding Figures 7.3 for the
non-orientation preserving case. For the case of Figures 7.3, there is a similarity between
every successive picture in the magnification sequence. In Figures 7.6 there is a similarity
between every other picture in the magnification sequence.

Why is there a resemblance between the Feigenbaum diagram for the general Hénon map
and that of the logistic map? Iterate once the Hénon map, as given by (7.3) and (7.4), to
get the result

=
q= 1 + p̄− aq̄2, (29.7.6)

=
p= bq̄. (29.7.7)

Now imagine that b is small. Then, in view of (7.4), the relations (7.6) and (7.7) can be
expanded in the form

=
q= 1− aq̄2 +O(b), (29.7.8)



2012 29. GENERAL MAPS

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

q
∞

p
∞

Original

0.55 0.6 0.65
0.16

0.17

0.18

0.19

0.2

q
∞

p
∞

16 x original

0.62 0.625 0.63 0.635 0.64
0.185

0.186

0.187

0.188

0.189

0.19

0.191

q
∞

p
∞

133 x original

0.63 0.631 0.632 0.633
0.1888

0.189

0.1892

0.1894

0.1896

q
∞

p
∞

1000 x original

Figure 29.7.3: Successive enlargements of the attracting set q∞, p∞ for a non-orientation
preserving case of the general Hénon map (a = 1.4, b = +.3). The attractor appears to be
fractal, and therefore strange.
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Figure 29.7.4: (Partial) Feigenbaum diagram showing limiting values q∞ as a function of a
(and b held at b = −.3) for an orientation preserving case of the general Hénon map.
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Figure 29.7.5: Full Feigenbaum diagram showing limiting values q∞ and p∞ as a function of
a (and b held at b = −.3) for an orientation preserving case of the general Hénon map.
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Figure 29.7.6: Successive enlargements of the attracting set q∞, p∞ for an orientation pre-
serving case of the general Hénon map (a = 2.11, b = −.3). The attractor appears to be
fractal, and therefore strange.
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=
p= 0 +O(b). (29.7.9)

Now make the change of variable
q̄ = −w̄/a. (29.7.10)

When this done (7.8) takes the form

=
w= −a+ w̄2 +O(b) (29.7.11)

which, up to O(b) corrections, is the logistic map in the form (1.2.56) with µ = a. Thus,
for sufficiently small b, the Hénon map may be viewed as a perturbation of the logistic map.
We therefore expect that the general Hénon map will exhibit all the richness of the logistic
map and, as Figures 7.1, 7.2, 7.4, and 7.5 hint, even more.

At this point, it is still unclear what produces the strange (fractal) attractors illustrated
in Figures 7.3 and 7.6, and where they are located relative to other significant sites in the
mapping plane. We will study this question in subsequent sections. For simplicity, we will
consider only the orientation preserving case b < 0. We will begin with the observation that
the general Hénon map has two fixed points, and then factorize the map about each of these
points.

Exercises

29.7.1. Here is another way to see that there is a relation between the logistic map and
the Hénon map. For the general Hénon map in the form given by (7.3) and (7.4) make the
change of variables

q = −Q/a , q̄ = −Q̄/a; (29.7.12)

p = −bP/a , p̄ = −bP̄ /a. (29.7.13)

Show that in terms of these variables the general Hénon map takes the form

Q̄ = −a+ bP +Q2, (29.7.14)

P̄ = Q, (29.7.15)

which is evidently a perturbation of the logistic map. Indeed, in the limit b = 0 the relation
(7.14) degenerates to the map

Q̄ = −a+Q2, (29.7.16)

29.7.2. Use the machinery of Section 18.1 to show that in the orientation preserving case
the general Hénon map given by (7.3) and (7.4) has the Lie factorization

Mh = exp(G2)R exp[(a/3b2) : p3 :] exp(− : p :) (29.7.17)

where
G2 = G0 = (1/2) log(−b)Σ, (29.7.18)

R = exp[−(π/4) : q2 + p2 :] exp(1/2) log(−b) : qp :]. (29.7.19)
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29.8 Preliminary Study of General Hénon Map

In this section we begin a study of the general Hénon map. We start by locating its fixed
points, and find there are two. Next we expand the map about each of these fixed points and
analyze their natures. We learn that one of them, without loss of generality, can always be
taken to be hyperbolic, or to at least have a diagonal linear part with positive eigenvalues.
We then translate this hyperbolic fixed point to the origin, factor the map about it, and
show that this factorized map depends on two parameters. Next we explore how the location
(relative to the origin) of the second fixed point and its nature depend on these parameters.
Finally, we translate the second fixed point to the origin and factor the map about it. In all
our work we take particular care to exhibit whatever symmetries exist in the Hénon map.

29.8.1 Location, Expansion About, and Nature of Fixed Points

It is easily verified that the Hénon mapMh in the form (7.3) and (7.4) has two fixed points
q±f , p

±
f given by the relations

q+
f = {−(1− b) + [(1− b)2 + 4a]1/2}/(2a) = 2/{(1− b) + [(1− b)2 + 4a]1/2},

q−f = {−(1− b)− [(1− b)2 + 4a]1/2}/(2a), (29.8.1)

p±f = bq±f , (29.8.2)

and these fixed points are real when

a ≥ −(1− b)2/4. (29.8.3)

In our future discussion we will refer to {q−f , p
−
f } as the first fixed point and to {q+

f , p
+
f } as

the second fixed point.
Figure 8.1 shows q±f as a function of a for the case b = −.3, the same b value used in

Figure 7.4. [The plot employs values of a for which (8.3) is satisfied.] The behavior of p±f is

similar as can be inferred from (8.2). Observe that {q−f , p
−
f } are singular at a = 0. Inspection

of (7.3) shows that Mh becomes linear at this value of a, and therefore this case is of less
interest.

We will be primarily concerned with maps that are nearly symplectic, the case where
b ' −1. Figure 8.2 shows q±f as a function of a in the case b = −.9, an instance where
the general Hénon map is more nearly symplectic. From (8.1) and (8.2) it is evident that
{q−f , p

−
f } and {q+

f , p
+
f } coincide when a takes on the minimum value allowed by (8.3),

amin = −(1− b)2/4. (29.8.4)

Calculation shows that for this value of a there are the relations

q−f = q+
f = 2/(1− b), (29.8.5)

p−f = p+
f = 2b/(1− b). (29.8.6)

Look at Figures 8.1 and 8.2, and see Exercise 8.1.
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Figure 29.8.1: Values of q±f , when b = −.3, as a function of a. A horizontal tic mark indicates

where q+
f and q−f meet when a = amin.
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Figure 29.8.2: Values of q±f , when b = −.9, as a function of a. A horizontal tic mark indicates

where q+
f and q−f meet when a = amin.
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We observe that both fixed points move as the parameters a and b are varied, and
consequently this form of the Hénon map is awkward for further analysis. To overcome this
problem, introduce deviation (about a fixed point) variables Q,P by writing

q = qf +Q , p = pf + P ; (29.8.7)

q̄ = qf + Q̄ , p̄ = pf + P̄ . (29.8.8)

So doing brings the general Hénon map Mh given by (7.3) and (7.4) to the transformed
map M∗

h given by the relation

Action of M∗
h:

Q̄ = −2aqfQ+ P − aQ2,

P̄ = bQ, (29.8.9)

and we see that the linear part R∗h of the map about the fixed point (now the origin) is given
by the relation

R∗h(qf , pf ) =

(
−2aqf 1
b 0

)
. (29.8.10)

Let us find the eigenvalues of R∗h. They satisfy the equation

P (λ) = det(R∗h − λI) = (−2aqf − λ)(−λ)− b = 0, (29.8.11)

and are given by the relation

λ = −aqf ±
√

(aqf )2 + b. (29.8.12)

The eigenvalues will be real if
(aqf )

2 + b ≥ 0, (29.8.13)

and complex if
(aqf )

2 + b < 0. (29.8.14)

Note that, by (8.1), there is the relation

aq±f = {−(1− b)± [(1− b)2 + 4a]1/2}/2, (29.8.15)

which can be employed in (8.12) through (8.14).
When the eigenvalues are complex, they will be complex conjugate as (8.12) shows.

Therefore by (8.10), when the eigenvalues are complex, there will be the relation

λλ̄ = detR∗h = −b, (29.8.16)

and hence
|λ| =

√
−b. (29.8.17)

That is, when a varies and b is fixed (and the eigenvalues are complex), the eigenvalues must
move on a circle of radius

√
−b in the complex plane.
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Figure 8.3 shows the eigenvalues of R∗h given by (8.12), for the case qf = q−f and b = −.3,
as a function of a. Figure 8.4 shows the same thing when b = −.9, the more nearly symplectic
instance. As expected, both eigenvalues are real for qf = q−f because (8.13) is then satisfied,
and both are positive. Moreover, if a > amin, one of them satisfies λ > 1 and the other
satisfies 0 < λ < 1 so that {q−f , p

−
f } is a hyperbolic fixed point. Finally, when a = amin, the

eigenvalues take the values

λ = 1,−b. (29.8.18)

See Exercise 8.3. That one of the eigenvalues then has the value +1 should not surprise us.
For as a approaches amin, we have already seen thatMh has two fixed points that coincide,
and the results of Section 18.4 then apply.
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λ

Figure 29.8.3: Eigenvalues λ of R∗h, when b = −.3 and qf = q−f , as a function of a.

The eigenvalues can become complex in the case qf = q+
f because (8.14) can then be

satisfied. As explained earlier, when this happens the eigenvalues are complex conjugate
and their magnitude is given by (8.17). Figures 8.5 and 8.6 display the eigenvalues for the
case qf = q+

f as a function of a when b has the values b = −.3 and b = −.9, respectively.
As the figures show, the eigenvalues are either positive, complex, or negative. When they
are complex only their negative magnitude, shown as a dashed line, is plotted when a > 0,
and only their positive magnitude, also shown as a dashed line, is plotted when a < 0. As
a increases (and b is held fixed) the eigenvalues can leave the complex plane and become
negative. This happens when

a = [(1 +
√
−b)4 − (1− b)2]/4. (29.8.19)

See Exercise 8.4. Just as they become real and negative, according to (8.16), they both must
have the value −

√
−b. As a increases further one of the eigenvalues can eventually take on

the value −1. It can be shown that this occurs when

a = (3/4)(1− b)2, (29.8.20)
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Figure 29.8.4: Eigenvalues λ of R∗h, when b = −.9 and qf = q−f , as a function of a.

again see Exercise 8.4, and in Section 18.9 we will learn that this is the condition for the first
period doubling. Specifically, for b = −.3, we expect period doubling when a = 1.2675, which
is consistent with Figure 7.4. For a < 1.2675 both eigenvalues satisfy |λ| < 1, and therefore
the fixed point {q+

f , p
+
f } will be an attractor so that q∞ = q+

f . Comparison of Figures 7.4
and 8.5 verifies numerically that this is the case. We also note that for sufficiently small a
the eigenvalues can leave the complex plane and become positive. This happens when

a = [(1−
√
−b)4 − (1− b)2]/4. (29.8.21)

Yet again see Exercise 8.4. Again according to (8.16), just as they become real and positive,
they both must have the value +

√
−b. Finally, when a = amin, the fixed points coincide and

therefore the eigenvalues for the case qf = q+
f must also satisfy (8.18) at this value of a.

So far we have characterized the the general Hénon map by the parameters a and b.
However, inspection of Figures 8.3 through 8.6 shows that (as a and b are varied over their
allowed ranges and for a suitable choice of fixed point) the associated eigenvalue pair can
take on any positive pair of values. Therefore, according to the work of Section 18.3, there
is a linear (affine) change of variables that will always bring the general Hénon map to the
form given by (3.95) and (3.96), and we may equally well use µ and ν as parameters in place
of a and b. Finally, in order to conserve symbols, it is convenient to replace µ, ν by r, u.
This replacement makes µ, ν available for a different use later on. With this replacement,
the relations (3.95) and (3.96) become

Action of Mtr
ffq:

q̄ = r[q + (q − p)2],

p̄ = u[p+ (q − p)2]. (29.8.22)

For this map, consistent with our discussion, we will select the parameter ranges

r > 0, u > 0. (29.8.23)
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Figure 29.8.5: Eigenvalues λ of R∗h, when b = −.3 and qf = q+
f , as a function of a. Note the

small “line” of positive real eigenvalues for a < 0. Its endpoints coincide with the edges of
the gap in the curve shown in Figure 8.3.
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Figure 29.8.6: Eigenvalues λ of R∗h, when b = −.9 and qf = q+
f , as a function of a. Note

the barely visible line of positive real eigenvalues for a < 0. Its endpoints coincide with the
edges of the tiny gap in the curve shown in Figure 8.4.
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By construction Mtr
ffq sends the origin into itself. Let L be the Jacobian matrix (linear

part) of Mtr
ffq about the origin. Evidently L is a diagonal matrix with diagonal entries r

and u,

L =

(
r 0
0 u

)
. (29.8.24)

It follows that there are the relations

trL = r + u, (29.8.25)

detL = ru. (29.8.26)

The map M∗
h given by (8.9) also sends the origin into itself, and according to (8.10) its

linear part R∗h about the origin satisfies the relations

trR∗h = −2aqf , (29.8.27)

detR∗h = −b. (29.8.28)

Since the maps M∗
h and Mtr

ffq are related by a linear change of variables, the matrices
R∗h and L must be related by a similarity transformation. Consequently there must be the
equalities

trR∗h = trL, (29.8.29)

detR∗h = detL. (29.8.30)

It follows that there are the relations

r + u = −2aqf , (29.8.31)

ru = −b. (29.8.32)

Note that (8.23), when employed in (8.31), implies that

− b > 0. (29.8.33)

Consequently Mtr
ffq will be orientation preserving, and the origin will be an attracting,

repelling, or hyperbolic fixed point depending on the values given to r and u.
Inspection of Figures 8.5 and 8.6, and reference to (8.18), show that, when r, u lie in the

interval (−b, 1), we should set qf = q+
f so that (8.31) takes the form

r + u = −2aq+
f = (1− b)− [(1− b)2 + 4a]1/2. (29.8.34)

Here we have used (8.15). Solving (8.34) for a gives the result

a = [(r + u)2 − 2(r + u)(1 + ru)]/4. (29.8.35)

For other values of r, u we should set qf = q−f . See Figures 8.3 and 8.4. Then (8.31) takes
the form

r + u = −2aq−f = (1− b) + [(1− b)2 + 4a]1/2. (29.8.36)
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Solving (8.36) for a again gives the result (8.35). Therefore the only thing we have to
remember is that Mtr

ffq as given by (8.22) is a form of the general Hénon map M∗
h about

the second fixed point {q+
f , p

+
f } when r, u lie within the interval (−b, 1), and (8.22) is a form

of the general Hénon mapM∗
h about the first fixed point {q−f , p

−
f } when r, u lie outside the

interval (−b, 1). For most of our future discussion we will be interested in cases where b
is very near −1 so that the length of the interval (−b, 1) is very small. Consequently, r, u
will generally lie outside the interval (−b, 1). Correspondingly the origin will generally be
a hyperbolic fixed point of Mtr

ffq. At any rate, we will henceforth refer to the origin as the
first fixed point of Mtr

ffq, and its other fixed point (still to be found) as its second fixed
point.

29.8.2 Lie Factorization About the First (Hyperbolic) Fixed
Point

To study Mtr
ffq it is instructive to factorize it and then make yet more linear changes of

variables. Define linear scaling and damping maps S and D by the relations

S = exp :
(

log
√
u/r
)
qp :, (29.8.37)

D = exp
[(

log
√
ru
)

Σ
]
. (29.8.38)

Note that S and D commute because of (21.3.9). It is easily verified that their actions on
the variables q, p are given by the relations

Sq = (
√
r/u)q, (29.8.39)

Sp = (
√
u/r)p, (29.8.40)

Dq = (
√
ru)q, (29.8.41)

Dp = (
√
ru)p. (29.8.42)

Consequently, there are the results
SDq = rq, (29.8.43)

SDp = up. (29.8.44)

Next let N be the nonlinear map

N = exp : (q − p)3/3 : . (29.8.45)

Simple computation shows that it has the properties

N q = q + (q − p)2, (29.8.46)

Np = p+ (q − p)2. (29.8.47)

It follows that the map Mtr
ffq given by (8.22) can be written in the factorized form

Mtr
ffq = [exp : (q − p)3/3 :]SD. (29.8.48)
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Finally, let O(θ) be the linear transformation (rotation)

O(θ) = exp : (−θ/2)(p2 + q2) : . (29.8.49)

It is easily verified that O(5π/4) has the properties

O(5π/4)q = −(q + p)/
√

2, (29.8.50)

O(5π/4)p = (q − p)/
√

2, (29.8.51)

O(5π/4)(q − p) = −
√

2q, (29.8.52)

O(5π/4)(qp) = (p2 − q2)/2. (29.8.53)

See (1.2.37) and (1.2.38) and Exercise 5.4.5. Note also that O(θ) and D commute.
Now use S, D, and O to make linear changes of variables, thereby bringing Mtr

ffq to a
new form which we will call M−, by writing

M− = O(5π/4)D1/2S1/2Mtr
ffqS−1/2D−1/2O−1(5π/4). (29.8.54)

Here S±1/2 and D±1/2 are defined by

S±1/2 = exp : (±1/2)(log
√
u/r)qp :, (29.8.55)

D±1/2 = exp[(±1/2)(log
√
ru)Σ]. (29.8.56)

From (8.48) and (8.50) through (8.56) we find that M− has the pleasing factorization

M− = D1/2H exp[(−
√

8/3) : q3 :]HD1/2 (29.8.57)

where H is the linear hyperbolic map

H = exp : (1/4)(log
√
u/r)(p2 − q2) : . (29.8.58)

(See Exercise 8.8.) According to our previous discussion, for the most part the origin will be
a hyperbolic fixed point of Mtr

ffq. Correspondingly, since the transformations O, D, and S
involved in (8.54) are linear, the origin will also a hyperbolic fixed point ofM−. According
to item 1b of Section 18.5, hyperbolic fixed points have index −1. That is why we have used
the symbols M− to denote the map given by (8.54) and (8.57)

To proceed further, we need explicit formulas for the action of M−. Since we want to
treat r and u on a similar footing, it is convenient to employ a variable ν defined by writing

r =
√
ru exp(ν), (29.8.59)

u =
√
ru exp(−ν). (29.8.60)

Then there are the relations

u/r = exp(−2ν),
√
u/r = exp(−ν), (29.8.61)

and H takes the form
H = exp : (−ν/4)(p2 − q2) : . (29.8.62)
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The action of H may be found from Exercise 5.4.6,

Hq = cq + sp , Hp = sq + cp, (29.8.63)

with

c = cosh(ν/2) , s = sinh(ν/2); (29.8.64)

and the action of D1/2 follows from (8.41) and (8.42),

D1/2q = (ru)1/4q, (29.8.65)

D1/2p = (ru)1/4p. (29.8.66)

From these relations we deduce that M− takes the form

Action of M−:

q̄ =M−q = (ru)1/2[q(c2 + s2) + p(2cs)− s
√

8(ru)1/4(cq + sp)2], (29.8.67)

p̄ =M−p = (ru)1/2[q(2cs) + p(c2 + s2)− c
√

8(ru)1/4(cq + sp)2]. (29.8.68)

To make contact with the parameters a, b of the previous subsection, (8.35) can be solved
for a in terms of b and ν using (8.32), (8.59), and (8.60) to give the result

a = −(1− b)(
√
−b) cosh ν − b cosh2 ν. (29.8.69)

Figure 8.7 displays a as a function of ν for various values of b. It can be shown that a as
given by (8.69) always satisfies the inequality (8.3) provided ν is real. See Exercise 8.10.
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Figure 29.8.7: The parameter a as a function of ν for various values of b.
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29.8.3 Location and Nature of Second Fixed Point

We know from the previous discussion, and as is evident from (8.67) and (8.68), that the
origin is a fixed point ofM−. What can be said about the second fixed point ofM− as given
in the form (8.67) and (8.68)? Its position will depend on the parameters r, u; consequently
it will be called the mobile fixed point, while the origin will be referred to as the stationary
fixed point. Somewhat involved calculation shows that the fixed-point equations

q̄ = q, p̄ = p (29.8.70)

have the second solution

qf =

(
1√
2

)[ √
u

1− u
−
√
r

1− r

] [
(1− r)(1− u)

(r − u)

]2

, (29.8.71)

pf = −
(

1√
2

)[ √
u

1− u
+

√
r

1− r

] [
(1− r)(1− u)

r − u

]2

. (29.8.72)

See Exercise 8.11. We observe that qf is odd under the interchange of r and u, and pf is
even. According to (8.59) and (8.60), interchanging r and u is equivalent to replacing ν by
−ν. Therefore, qf is an odd function of ν, and pf is even in ν.

Note also that there is the algebraic identity

√
u

1− u
+

√
r

1− r
=

(
√
u+
√
r)(1−

√
ru)

(1− u)(1− r)
. (29.8.73)

In the symplectic case there is the relation ru = 1, from which it follows, using (8.72) and
(8.73), that

pf = 0, symplectic case. (29.8.74)

[That is why we chose to bring the general Hénon map to the form given by (8.54) and
(8.57).] Moreover, the relation (8.74) will be nearly satisfied if M− is nearly symplectic.
The expression for qf also simplifies in the symplectic case. Insertion of (8.74) into (8.67)
gives for qf the result

qf = (1/
√

2)(s/c2), symplectic case. (29.8.75)

Figure 8.8 displays qf as a function of ν in the symplectic case. Note that in the symplectic
case qf is bounded by the extrema ±1/

√
8. We also observe that when ν = 0, the stationary

fixed point (the one at the origin) and the mobile fixed point coincide.
To study the location of the mobile fixed point in general, and for future use, it is

convenient to introduce a quantity τ defined by the relation

τ = (1− r)(1− u)/(r − u). (29.8.76)

Note that τ occurs as a factor in (8.71) and (8.72). From (8.59) through (8.61) we see that
it depends on ν and ru in the fashion

τ = [(ru)1/2 + (ru)−1/2 − 2 cosh ν]/[2 sinh ν]. (29.8.77)
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Figure 29.8.8: The quantity qf for the mobile fixed point as a function of ν in the symplectic
case b = −1.

It is easily checked that the function f defined by the relation

f(x) = x+ 1/x (29.8.78)

satisfies the inequality
f ≥ 2 for x > 0 (29.8.79)

and
f = 2 only when x = 1. (29.8.80)

It follows that τ is singular at ν = 0 except for the symplectic case ru = 1, in which case it
is regular at ν = 0 and in fact vanishes there. See Figure 8.9.
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Figure 29.8.9: The quantity τ as a function of ν in the symplectic case b = −1.

Let us now look at a numerical example of a nonsymplectic (but orientation preserving)
case. Suppose ru = −b = .3. Now τ is singular as a function of ν as illustrated in Figure
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8.10. Correspondingly, as shown in Figures 8.11 and 8.12, qf and pf can also move to infinity.
(See Exercise 8.9.) Figure 8.13 shows qf and pf simultaneously, and illustrates that now
the relation pf = 0 is no longer exactly maintained. Instead the mobile fixed point traces
out loops. We also observe that when ν has values such that τ = 0 (see Figure 8.10), then
qf = pf = 0 and the stationary fixed point and the mobile fixed point again coincide. Look
at Figures 8.11 through 8.13. As is consistent with the results of Sections 18.4 and 18.5, this
happens when r = 1 or u = 1. See (8.71), (8.72), (8.76), and Exercise 8.10.
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Figure 29.8.10: The quantity τ as a function of ν in the nonsymplectic case b = −.3.
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Figure 29.8.11: The quantity qf for the mobile fixed point as a function of ν in the nonsym-
plectic case b = −.3.

We close this subsection by analyzing the nature of the second (mobile) fixed point.
Rather than working with the map M− [as given by (8.54), (8.57), (8.67), and (8.68)], it is
algebraically simpler to work with the related map M̃ given by
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M̃ = O−1(5π/4)M−O(5π/4) = D1/2S1/2Mtr
ffqS−1/2D−1/2

= D1/2S1/2[exp : (q − p)3/3 :]S1/2D1/2. (29.8.81)
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Figure 29.8.12: The quantity pf for the mobile fixed point as a function of ν in the nonsym-
plectic case b = −.3.
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Figure 29.8.13: Location of the mobile fixed point for the nonsymplectic case b = −.3 and
ν varying over the range [−20, 20].

From (8.39) through (8.47) we find that this map takes the form

Action of M̃:

q̄ = M̃q = rq +
√
r(
√
rq −

√
up)2,

p̄ = M̃p = up+
√
u(
√
rq −

√
up)2, (29.8.82)
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and has the second fixed point

q̃f =

( √
r

1− r

)[
(1− r)(1− u)

(r − u)

]2

, (29.8.83)

p̃f =

( √
u

1− u

)[
(1− r)(1− u)

(r − u)

]2

. (29.8.84)

Since O(5π/4) is simply the r and u independent linear transformation described by the
rotation matrix

O(5π/4) =

(
−1/
√

2 −1/
√

2

1/
√

2 −1/
√

2

)
, (29.8.85)

the Jacobian matrices (linear parts) of M− and M̃ will be similar (with the matrix O
providing the requisite similarity transformation) and therefore will have the same spectrum.

At the fixed point q̃f , p̃f we find the Jacobian matrix of M̃ as given by (8.82) takes the
form

M̃f = M̃(q̃f , p̃f ) = L+ 2[(1− r)(1− u)/(r − u)]

(
r −

√
ru√

ru −u

)
, (29.8.86)

where L denotes the diagonal matrix (8.24). [Note that the factor τ , as given by (8.76), also
appears in (8.86).] The nature of this fixed point can be determined by finding the spectrum
of M̃f . We know from (3.42) and (8.28), or find by direct calculation, that

det M̃f = ru. (29.8.87)

Also, direct calculation gives the result

2σ = tr M̃f = 2(1 + ru)− (r + u). (29.8.88)

Suppose λ1, λ2 are the eigenvalues of M̃f . Then from standard matrix relations we again
have the results

λ1λ2 = ru , λ1 + λ2 = 2σ. (29.8.89)

Define quantities µ1, µ2 by the rules

µ1 = λ1/
√
ru , µ2 = λ2/

√
ru. (29.8.90)

They evidently satisfy the relations

µ1µ2 = 1 , µ1 + µ2 = 2σ/
√
ru. (29.8.91)

Equations (8.91) have the immediate solution

µ± = σ/
√
ru±

√
σ2/(ru)− 1. (29.8.92)

We see that the µ behave like the eigenvalues of a 2×2 symplectic matrix as in Figure 3.4.1.
Correspondingly, the λ are given by the relations

λ± = (
√
ru)µ± = σ ±

√
σ2 − ru. (29.8.93)
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They behave in a similar fashion, but are governed by a circle of radius
√
ru =

√
−b.

According to (8.93), they can potentially come off or on this circle when

σ2 = ru, (29.8.94)

from which condition we deduce, using (8.88), the relation

4r2u2 − 4ru(r + u) + r2 + 6ru+ u2 − 4(r + u) + 4 = 0. (29.8.95)

Finally, it is easily verified that −1 becomes an eigenvalue of M̃f when r and u satisfy the
relation

3(1 + ru) = (r + u). (29.8.96)

See Exercise 8.15.
In terms of the variables ν and ru, the quantity σ is given by the relation

σ = (ru)1/2[(ru)1/2 + (ru)−1/2 − cosh ν]. (29.8.97)

It is also useful to examine the matrix M̃ ′
f defined by

M̃ ′
f = (ru)−1/2M̃f . (29.8.98)

It is symplectic, and indeed is the symplectic factor in the symplectic polar decomposition
of M̃f . In the case that its eigenvalues lie on the unit circle, it can be brought to the normal
form (3.5.61) by a symplectic similarity transformation. See (3.5.53). Moreover, since the
trace is preserved by a similarity transformation, we find from (3.5.61), (8.88), (8.97), and
(8.98) the result that its phase advance φ satisfies the relation

cosφ = [(ru)1/2 + (ru)−1/2 − cosh ν]. (29.8.99)

Now let us look at two numerical examples. In the first example M̃f will be symplectic,
and thus we set ru = −b = 1. Figures 8.14 and 8.15 show σ/

√
ru and the spectrum of M̃f

as ν is varied. Finally, Figure 8.16 shows the phase advance φ for M̃f as a function of ν.
Note that (8.99) only gives the cosine of the phase advance, and therefore only determines
the phase advance up to a sign. The sign of φ was determined by bringing M̃f to normal
form numerically and then examining the 1,2 entry of the normal form. See (3.5.41).

As a second numerical example we consider the nonsymplectic (but orientation preserv-
ing) case ru = −b = .3. Figures 8.17 and 8.18 show σ/

√
ru and the spectrum of M̃f as ν is

varied. Figure 8.19 shows the phase advance φ for M̃ ′
f as a function of ν. The eigenvalues

leave the unit circle for −.839 ≤ ν ≤ .839 and |ν| > .886, and therefore the phase advance
is undefined in these ranges. See Exercises 8.18 and 8.19. As is evident from (8.97) and
Figure 8.17, σ takes on its maximum value for ν = 0. Consequently, the maximum value of
λ+ as given by (8.93) depends only on the value of the product ru. Figure (8.20) displays
this maximum value, λmax

+ , as a function of ru over the range 0 ≤ ru ≤ 1. As the graphic
suggests, and computation confirms, λmax

+ decreases monotonically from λmax
+ = 2 for ru = 0

to λmax
+ = 1 for ru = 1.
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Figure 29.8.14: Value of σ/
√
ru as a function ν in the symplectic case b = −1.
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Figure 29.8.15: Spectrum of M̃f (and of the linear part ofM− about its second fixed point)
for ν varying over the range [0, 3] in the symplectic case b = −1. An identical picture is
produced for ν varying in the range [−3, 0] as is evident from (8.97) and Figure 8.14. The
eigenvalues leave the unit circle at ν = ±1.763 as is also evident from (8.97) and Figure
8.14. See Exercise 8.18.
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Figure 29.8.16: Phase advance of M̃f (and of the linear part of M− about its second fixed
point) as a function of ν in the symplectic case b = −1. Only the range ν ∈ [−1.763, 1.763]
is shown because the eigenvalues leave the unit circle outside this range.
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Figure 29.8.17: Value of σ/
√
ru as a function of ν in the nonsymplectic case b = −.3.

� -1.5 �-1 �-0.5 0.5 1 1.5

� -0.6

-0.4

� -0.2

0.2

0.4

0.6

Re

Im λ

λ

Figure 29.8.18: Spectrum of M̃f (and of the linear part ofM− about its second fixed point)
for ν varying over the range [0, 3] in the nonsymplectic case b = −.3.
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Figure 29.8.19: Phase advance of M̃ ′
f as a function of ν in the nonsymplectic case b = −.3.

Only the ranges ν ∈ [−1.886,−.839] and ν ∈ [.839, 1.886] are shown because the eigenvalues
of M̃ ′

f leave the unit circle for ν outside these ranges. See Figure 8.17 and Exercise 8.15.
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Figure 29.8.20: Maximum value of λ+ as a function of ru.
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29.8.4 Expansion and Lie Factorization About Second Fixed
Point

To make contact with earlier work, and for future use, it is also useful to have an expansion
and factorization of the Hénon map M− about its second fixed point (in which case the
second fixed point is placed at the origin and the first fixed point, which was the origin,
becomes mobile). We will first expand and factorize M̃, see (8.81) and (8.82), about its
second fixed point q̃f , p̃f ; and we will then use the transformation O(5π/4) to obtain an
expansion and factorization of M− about its second fixed point qf , pf .

To expand M̃ as given by (8.82) about the fixed point q̃f , p̃f , make the change of variables

q = Q+ q̃f , p = P + p̃f , q = Q+ q̃f , p = P + p̃f , (29.8.100)

which amounts to a translation. We will use the notation M̃f to denote the map M̃
expanded about the fixed point q̃f , p̃f . Inserting (8.100) into (8.82) yields the result

Action of M̃f :

Q = rQ+ 2r[(1− r)(1− u)/(r − u)]Q− 2
√
ru[(1− r)(1− u)/(r − u)]P

+
√
r(
√
rQ−

√
uP )2, (29.8.101)

P = 2
√
ru[(1− r)(1− u)/(r − u)]Q+ uP − 2u[(1− r)(1− u)/(r − u)]P

+
√
u(
√
rQ−

√
uP )2. (29.8.102)

Note that the linear part of M̃f gives a matrix that agrees with (8.86).

We will now seek to Lie factorize M̃f . The first step is to show that M̃f can be written
as the product of 3 maps. Let F (τ) be the symplectic matrix

F (τ) =

(
1 + τ −τ
τ 1− τ

)
. (29.8.103)

With L given by (8.24), define matrices 1M and 2M by the rules

1M = L1/2F =

( √
r(1 + τ) −

√
rτ√

uτ
√
u(1− τ)

)
, (29.8.104)

2M = FL1/2 =

( √
r(1 + τ) −

√
uτ√

rτ
√
u(1− τ)

)
. (29.8.105)

Then it is easily verified that there is the relation

fM̃ = (1M) (2M) (29.8.106)

provided τ has the value

τ = [(1− r)(1− u)/(r − u)] = (
√
rq̃f −

√
up̃f ). (29.8.107)
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Here we have used the symbol fM̃ to replace the symbol M̃f since we will soon be adding
subscripts to denote specific matrix elements. Note also that (8.107) agrees with (8.76) as
the notation is intended to indicate.

Next consider three maps:

Q̄ = 2M11Q+ 2M12P, P̄ = 2M21Q+ 2M22P ; (29.8.108)

=

Q = Q̄+ (Q̄− P̄ )2,
=

P = P̄ + (Q̄− P̄ )2; (29.8.109)
≡
Q = 1M11

=

Q + 1M12

=

P ,
≡
P = 1M21

=

Q + 1M22

=

P . (29.8.110)

Concatenating the first two yields the result

=

Q = 2M11Q+ 2M12P + (2M11Q+ 2M12P − 2M21Q− 2M22P )2, (29.8.111)

=

P = 2M21Q+ 2M22P + (2M11Q+ 2M12P − 2M21Q− 2M22P )2. (29.8.112)

Exploiting the specific form of 2M simplifies the common parenthetical term in (8.111) and
(8.112) to give the result

(2M11Q+ 2M12P − 2M21Q− 2M22P ) = (
√
rQ−

√
uP ). (29.8.113)

Thus the product of the first two maps can also be rewritten in the form

=

Q = 2M11Q+ 2M12P + (
√
rQ−

√
uP )2, (29.8.114)

=

P = 2M21Q+ 2M22P + (
√
rQ−

√
uP )2. (29.8.115)

Now concatenate in the third map by solving (8.110) for
≡
Q,
≡
P to find the result

≡
Q = [(1M11)(2M11) + (1M12)(2M21)]Q+ [(1M11)(2M12) + (1M12)(2M22)]P

+ (1M11 + 1M12)(
√
rQ−

√
uP )2, (29.8.116)

≡
P = [(1M21)(2M11) + (1M22)(2M21)]Q+ [(1M21)(2M12) + (1M22)(2M22)]P

+ (1M21 + 1M22)(
√
rQ−

√
uP )2. (29.8.117)

In view of (8.106) and the explicit form (8.104) of 1M , this result can be rewritten in the
form

≡
Q = fM̃11Q+ fM̃12P +

√
r(
√
rQ−

√
uP )2, (29.8.118)

≡
P = fM̃21Q+ fM̃22P +

√
u(
√
rQ−

√
uP )2, (29.8.119)

which is identical to the map (8.101), (8.102) upon replacing
≡
Q,
≡
P by Q̄,P̄ . Thus M̃f can

be written as the product of the 3 maps (8.108) through (8.110)
Lie factorization of M̃f is now straightforward. It is easily verified that the Lie trans-

formation for F (τ) is given (in q,p variables) by the relation

F(τ) = exp : (τ/2)(q − p)2 : . (29.8.120)
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Also, the nonlinear relation (8.109) is produced by the Lie transformation
exp : (q − p)3/3 :. Finally, the Lie transformation L1/2 corresponding to L1/2 is given by

L1/2 = exp[(1/2)(log
√
ruΣ] exp : (1/2)(log

√
u/r)qp := D1/2S1/2. (29.8.121)

See (8.37) through (8.44). Consequently, the map M̃f (again in q, p variables) has the
factorization

M̃f = L1/2 exp : (τ/2)(q − p)2 : exp : (q − p)3/3 : exp : (τ/2)(q − p)2 : L1/2. (29.8.122)

Note that in deducing (8.122) it is necessary to recall that Lie transformations act in the
opposite order of matrices. See Section 8.3. Note also that the factorization (8.122), like
(8.81), has the pleasing feature that the outer linear maps (which depend on r,u) appear in
a symmetric way, and the central factor again has a fixed simple form.

As indicated at the beginning of this section, our real aim is to expandM− about qf , pf .
Since the fixed point qf , pf is generally elliptic or inversion hyperbolic, it generally has index
+1. (See Section 18.5). We will therefore call this desired mapM+. Then, in view of (8.81),
there is the relation

M+ = O(5π/4)M̃fO−1(5π/4). (29.8.123)

From (8.52) there is the result

O(5π/4) exp : (τ/2)(q − p)2 : O−1(5π/4) = exp : τq2 : . (29.8.124)

Also, there are the relations (8.147) and (8.148). See Exercise 8.8. It follows that M+ has
the factorization

M+ = D1/2HBNBHD1/2 (29.8.125)

where B and N are defined by
B = exp : τq2 :, (29.8.126)

N = exp[(−
√

8/3) : q3 :]. (29.8.127)

Here we have again used the result that D commutes with S and O(θ).
In the work to follow we will study the properties of the general Hénon map either in

the formM− given by (8.57) or the formM+ given by (8.123) or (8.125). However, before
doing so, we will demonstrate that in the symplectic case the map M+ can be brought to
the form (1.2.39) provided the eigenvalues of the linear part of M+ (about the origin) are
complex. Starting from (8.125) we write

D−1/2M+D−1/2 = HBNBH, (29.8.128)

BHD−1/2M+D−1/2H−1B−1 = BHHBN = CN (29.8.129)

where C is the symplectic map
C = BHHB. (29.8.130)

It can be shown that C has a square root (that is also symplectic) if the eigenvalues of M̃ ′
f

are complex. Moreover, the eigenvalues of C and C1/2 will be on the unit circle. See Exercise
8.23. Consequently, in this case, (8.129) may be rewritten in the form

C−1/2BHD−1/2M+D−1/2H−1B−1C1/2 = C1/2NC1/2, (29.8.131)
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or
C−1/2BHM+H−1B−1C1/2 = D1/2C1/2NC1/2D1/2. (29.8.132)

Here we have used the fact that D also commutes with B, C, and H.
Next, for any C of the form (8.130), there is a κ such that

exp : κqp : C1/2 exp : −κqp : = exp[−(φ/4) : p2 + q2 :] = O(φ/2), (29.8.133)

where φ is the phase advance of M ′
f . See Exercise 8.24. Also, we have the relation

N̂ def
= exp : κqp : N exp : −κqp : = exp : −[exp(−κ)](

√
8/3)q3 : . (29.8.134)

Let Dλ denote the map defined by the relation

Dλ = exp(λΣ). (29.8.135)

Then there is a choice of λ such that

DλN̂D−1
λ = exp : −q3 : . (29.8.136)

See Exercise 8.25. Finally, consider the transformation O(π). According to (5.4.19) there
are the relations

O(π)q = −q , O(π)p = −p, (29.8.137)

from which it follows that

O(π)[exp : −q3 :]O−1(π) = exp(: q3 :). (29.8.138)

Now put all this information together. Doing so gives the final result

AM+A−1 = D1/2O(φ/2)[exp(: q3 :)]O(φ/2)D1/2 (29.8.139)

where A is the linear map

A = DλO(π)[exp : κqp :]C−1/2BH. (29.8.140)

See Exercise 8.26. We observe that, apart from the damping map D1/2, the right sides of
(1.2.39) and (8.139) are identical. Thus, under the assumption made about the spectrum of
M̃ ′

f and in the absence of damping, the mapM+ given by (8.125) and the mapM(θ) given
by (1.2.39) are physically equivalent.

Exercises

29.8.1. Verify (8.1) and (8.2). Show that the fixed points {q±f , p
±
f } are real when a > amin.

See (8.4). Show that, as illustrated in Figures 8.1 and 8.4, the quantity q+
f has a finite limit

as a → 0, and q−f → ∞ as a → 0. Verify (8.5) and (8.6). Find the asymptotes of q±f as
a→∞.

29.8.2. Verify (8.9).
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29.8.3. Show that (8.13) is satisfied for qf = q−f if (8.3) holds, and hence the spectrum in

this case is real. Show that at the fixed points q±f , p
±
f given by (8.1) and (8.2) the Jacobian

matrices of M∗
h are given by the relations

R± = R∗h(q
±
f , p

±
f ) =

(
−2aq±f 1

b 0

)
. (29.8.141)

Show that R± has the trace

2σ± = trR± = (1− b)∓ [(1− b)2 + 4a]1/2. (29.8.142)

Show that the spectrum of R− is positive, and verify (8.18). Evaluate (8.18) for the cases
b = −.3,−.9 and compare your results with Figures 8.3 and 8.4.

29.8.4. Review Exercise 8.3. Show that the spectrum of R+ can be complex, and that the
transition from real to complex occurs at the a values given by (8.19 ) and (8.21). Show
that at the value of a given by (8.19) the eigenvalues leave the complex plane and have the
value

λ = −
√
−b. (29.8.143)

Compute, using (8.19), a and λ for the cases b = −.3 and −.9, and compare these values
with those shown in Figures 8.5 and 8.6. Show that at the value of a given by (8.21) the
eigenvalues also leave the complex plane and have the value

λ = +
√
−b. (29.8.144)

Again compute numerical results and compare these results with those shown in Figures 8.5
and 8.6. Show that R+ has −1 as an eigenvalue when

(−1 + b) = 2σ+, (29.8.145)

and derive the condition (8.20). Assuming that period doubling occurs when R+ has −1 as
an eigenvalue, see Section 18.9, show that (8.20) predicts period doubling for b = −.3 when
a = 1.2675, which is consistent with Figure 7.4. Consider also the cases b = 0 and b = +.3.
Compute the corresponding value of a for each and relate your results to Figures 1.2.10 and
7.1.

29.8.5. Solve (8.34) and (8.36) for a to verify (8.35).

29.8.6. Verify the relations (8.39) through (8.44).

29.8.7. Verify the factorization (8.48).

29.8.8. Verify (8.57) and (8.58) using relations of the form

OS1/2O−1 = exp : (1/2)(log
√
u/r)Oqp : (29.8.146)

to show that
O(5π/4)S1/2O−1(5π/4) = H, (29.8.147)

O(5π/4) exp : (q − p)3/3 : O−1(5π/4) = exp[(−
√

8/3) : q3 :]. (29.8.148)
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29.8.9. Verify (8.67) and (8.68).

29.8.10. Show from (8.1) and (8.2) that the fixed points q+
f , p+

f and q−f , p
−
f coincide when

(1− b)2 + 4a = 0. (29.8.149)

Show, using (8.31) and (8.32), that (8.149) implies r = 1 or u = 1. Verify that (8.69) can
be rewritten in the form

a = −(1− b)2/4 + (−b)[cosh ν − (1− b)/(2
√
−b)]2, (29.8.150)

thereby demonstrating that a as given by (8.69) always satisfies the inequality (8.3) provided
ν is real. Note also that equality, (8.149), is achieved for real ν.

29.8.11. Verify that the map (8.81) has the action (8.82), and has the second (besides the
origin) fixed point (8.83) and (8.84). Now use (8.85) to verify thatM− has the second fixed
point (8.71) and (8.72).

29.8.12. Show that the first factor in qf as given by (8.71) vanishes when ν = 0. Never-
theless, show that the second factor, which is τ 2, is sufficiently divergent at ν = 0 (in the
nonsymplectic case) so that qf is also divergent at ν = 0 in the nonsymplectic case. Verify
(8.77).

29.8.13. Verify (8.73) through (8.75).

29.8.14. Verify (8.86).

29.8.15. Verify (8.88).

29.8.16. Verify (8.96) and show that it is equivalent to (8.20).

29.8.17. Verify (8.97)

29.8.18. Verify (8.95). Determine the condition for φ, as defined by (8.99), to be real in both
the symplectic and nonsymplectic cases. Consider the symplectic case by writing r = Λ,
u = 1/Λ. Show, using (8.88), that then

2σ = 4− Λ− 1/Λ, (29.8.151)

and compare your result with (6.24). Show that in the symplectic case the eigenvalues of
M̃f leave the unit circle through the point −1 when Λ = 3±

√
8.

29.8.19. Correlate the data shown in Figures 8.5 and 8.18.

29.8.20. Problem on Poincaré index: show that index on large circle is zero for Hénon map.

29.8.21. Verify (8.106) using (8.86), (8.103) through (8.105), and (8.107).

29.8.22. Verify that F(τ) as given by (8.120) corresponds to F (τ) as given by (8.103).

29.8.23.
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29.8.24.

29.8.25.

29.8.26. Verify (8.139) and (8.140) using (8.131) through (8.134), (8.136), and (8.138).
Hint: Recall that D and Dλ commute with O and [exp : κqp :]. In the course of your
verification use relations of the form

[exp : κqp :]C1/2NC1/2[exp : −κqp :] =

[exp : κqp :]C1/2[exp : −κqp :][exp : κqp :]N [exp : −κqp :]×
[exp : κqp :]C1/2[exp : −κqp :] = O(φ/2)N̂O(φ/2). (29.8.152)

29.9 Period Doubling and Strange Attractors

With a preliminary study of the general Hénon mapMh behind us, let us explore the results
of iterating Mh. We will first study the behavior of M−, the form of the general Hénon
map with its hyperbolic fixed point translated to the origin as given by (8.57), (8.67), and
(8.68). We will examine the stable and unstable manifolds, and the nature of the second
fixed point, for various representative values of r and u. Then, to explore the behavior near
the the second fixed point in more detail, we will employM+, the form of the general Hénon
map with its second fixed point translated to the origin as gven by (8.123) or (8.125)

29.9.1 Behavior about Hyperbolic Fixed Point

In analogy with (6.4), let us begin with the case where

r = Λ, u = 1/Λ,with Λ = 3, (29.9.1)

and for which
b = −ru = −1, a = −5/9 = −.555 · · · , ν = 1.098 · · · . (29.9.2)

In this case M− is symplectic and, according to (8.71) and (8.72), the second fixed point
has the location

{qf , pf} = {
√

3/32, 0} = {.306 · · · , 0}. (29.9.3)

Figure 9.1 shows the stable and unstable manifolds for this case as well as the behavior of
points near the second fixed point. The second fixed point is elliptic, in accord with Figure
8.14, and has a tune T = .1959 · · · . See Exercise 9.1. Evidently Figure 9.1 is similar to
Figure 6.2. The difference consists of a rescaling of the axes and a counterclockwise rotation
by 5π/4 radians to achieve symmetry about the q axis. See (8.54) and (8.57). Note that the
homoclinic point K now lies on the q axis, and that the whole figure is symmetric about the
q axis.

Discussion of period doubling.

29.9.2 Behavior about Second Fixed Point

Discussion of strange attractor.
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Figure 29.9.1: Stable and unstable manifolds forM− and behavior of points near the second
fixed point for the case Λ = 3.
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Figure 29.9.2: Stable and unstable manifolds forM− and behavior of points near the second
fixed point for the case Λ = 4.
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Exercises

29.9.1.

29.10 Attempts at Integrals

29.11 Quadratic Maps in Higher Dimensions

This section will discuss Moser’s generalization of the quadratic symplectic map to more
than 2 dimensions.

29.12 Truncated Taylor Approximations to

Stroboscopic Duffing Map

We learned in Section 1.3 that the solutions of ordinary differential equations, under quite
general analyticity conditions on their right sides, are analytic in the initial conditions and
in whatever parameters that occur. See Theorem 3.3 in Section 1.3. In terms of maps, this
means that the maps produced by integrating analytic differential equations will be analytic
in the initial conditions and parameters. We may therefore consider approximating such
maps by truncated Taylor series in the initial conditions and parameters. Moreover, Section
10.10 described methods for obtaining these truncated Taylor maps.

This section will illustrate, as an example, how the stroboscopic Duffing map can be
approximated by truncated Taylor maps, including parameter dependence. At first glance
it might appear that the approximation of the stroboscopic Duffing map by a polynomial
map, for that is what a truncated Taylor map amounts to, is a foolish enterprise. We know
from Chapter 25 that the stroboscopic Duffing map exhibits very complicated properties
that almost defy description. Could any polynomial map have similar properties? On the
other hand, we have also seen from the logistic and Hénon map examples that polynomial
maps can also exhibit complicated behavior. So perhaps there is hope. In fact, we will find
that the main features of the stroboscopic Duffing map found in Chapter 25 are reproduced
by truncated Taylor maps.

In our actual calculations we will use the quantities Q, σ, and t given by (10.10.103)
through (10.10.105). However, for ease of comparison with previous material, when making
graphics we will present results in terms of the quantities q, p, and ω of Chapter 25. Finally,
for details of how the truncated Taylor maps were computed, see Appendix S.

29.12.1 Saddle-Node Bifurcations

We first explore the possible duplication of saddle-node bifurcations by polynomial maps.
This turns out to be the most demanding task and, as we will see, is barely possible for the
Duffing map. The reason for the difficulty is that the fixed points move over a considerable
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region of phase space in the course of a saddle-node bifurcation followed by an inverse saddle-
node bifurcation, and a Taylor map may not converge over such a wide domain. See, for
example, Figures 25.4.1 and 25.4.2.

To minimize phase-space excursions, let us work with a small value of ε, but a value still
large enough that saddle-node bifurcations still occur. Figure 12.1 shows the bifurcation
diagram for the case ε = 0.30. It is this behavior that we wish to reproduce with a Taylor
map.

There is another feature of the exact map that is also of interest. Suppose, as in Sub-
section 10.10.7, we work in terms of the variables z1 and z2. Also, let L be the linear part
of the stroboscopic map in these variables. Then we may compute the eigenvalues λ of
L(2π) for each of the fixed points as σ (and therefore also ω) varies. Since L(2π) is 2 × 2,
there will be two eigenvalues. These will be the eigenvalues of the linear part of the stro-
boscopic map (in the variables z1 and z2) about any fixed point . Figures 12.2 and 12.3
show (in two perspective views) these eigenvalues plotted as a function of ω over the interval
ω ∈ [ωlow, ωhigh] with ωlow = 1.27 and ωhigh = 1.4. Notice that we have arranged to have
the ordering ωlow < ω1 < ω2 < ωhigh. The eigenvalues are color coded the same as their
corresponding fixed points in Figure 12.1. We would also like to explore to what extent this
feature of the exact map can be reproduced by a Taylor map.

The behavior of the eigenvalues shown in these figures can be understood based on the
following facts:

1. From (10.10.128) we have the relations

det L(2π) = exp(−4πβσ) = exp(−4πβ/ω). (29.12.1)

2. For ω ∈ [ωlow, ωhigh], and given that β = .1, there is the result

det L(2π) ∈ [.37, .41]. (29.12.2)

3. Since L(2π) is a real matrix, its eigenvalues must be real or complex conjugate. If they
are complex conjugate, they must satisfy the relation

|λ|2 ∈ [.37, .41]. (29.12.3)

If they are real, call them λ1 and λ2, they must satisfy the relation

λ1λ2 ∈ [.37, .41]. (29.12.4)

Armed with these facts, first consider the red curves associated with the eigenvalues of
L(2π) about the unstable fixed points. These fixed points exist only for ω in the range
ω ∈ [ω1, ω2], and hence the red curves appear only in this range. Also, since these fixed
points are unstable, for each ω value one of the eigenvalues must satisfy |λ| ≥ 1. In view of
(12.3), this fact rules out the possibility of complex conjugate pairs. Thus the eigenvalues
for each unstable fixed point must be real, and by (12.4) they must have the same sign.
Finally, in the vicinity of the endpoints ω1 and ω1, we know that there are two fixed points
that are very nearby because that is where two fixed points are born or are annihilated.
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Figure 29.12.1: Bifurcation diagram showing limiting values q∞ as a function of ω (when
β = 0.1 and ε = 0.3) for the stroboscopic Duffing map. The trail of the fixed point that is
unique and stable for small values of ω is shown in blue. A pair of fixed points, one stable
and one unstable, is born at ω = ω1 = 1.30305 · · · . The trail of the stable fixed point is
shown in green and the trail of the unstable fixed point is shown in red. The black dot
at the left end of the red trail is the value of ω = ω1 at which the pair is born. The blue
stable fixed point and the red unstable fixed point annihilate at ω = ω2 = 1.38386 · · · . This
point is indicated by the black dot at the right end of the red trail. For larger ω values
only the green fixed point remains. The black dot near the center of the red trail marks the
expansion point to be used in preparing Figures 12.4 through 12.6.
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Figure 29.12.2: Eigenvalues of L(2π), the linear part of the stroboscopic map (in the variables
z1 and z2), about the fixed points shown in Figure 12.1. The color coding is that same as
in Figure 12.1.
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Figure 29.12.3: Eigenvalues of L(2π) shown from a different perspective.



29.12. TRUNCATED TAYLOR APPROXIMATIONS TO STROBOSCOPIC DUFFING
MAP 2049

Consequently, from the work of Section 4, we know that one eigenvalue, call it λ1, must
be near +1. Since the eigenvalues must be real, they cannot change sign without passing
through zero, which is forbidden by (12.4). Therefore we conclude that both eigenvalues
must be positive. Thus, for the red curves, there must be the relations

λ1 = 1 when ω = ω1 or ω2, (29.12.5)

λ1 > 1, when ω ∈ (ω1, ω2), (29.12.6)

0 < λ2 < 1 when ω ∈ [ω1, ω2]. (29.12.7)

Examination of the red curves shows that these relations are indeed satisfied.
Consider next the blue curves. They end at ω = ω2 because that is the ω value at

which the blue and red fixed points mutually annihilate. See Figure 12.1. For ω slightly
less than ω2, we know that the eigenvalues associated with the red fixed points are real
and positive. Since the blue fixed points are near the red fixed points for these ω values,
it follows that the eigenvalues associated with the blue fixed points must also be real and
positive for these ω values. They must also be less than 1 because the blue fixed points
are stable. Then, as ω is decreased, the smaller eigenvalue grows and the larger eigenvalue
decreases until they become equal. For still smaller ω they leave the real axis and become
complex conjugates. We know this must eventually happen because for small enough ω the
Duffing oscillator is out of resonance with the drive, and its behavior is essentially that of
an undriven oscillator. In that case the stable fixed point is nearly the origin, and points
launched near this fixed point spiral into it due to the free (and damped) oscillations of the
oscillator. The eigenvalues must have imaginary parts to produce this free oscillation. All
this behavior is consistent with the facts listed above.

Finally, consider the green curves. The discussion of their behavior is similar to that
of the blue curves. They begin at ω = ω1 because that is the ω value at which the red
and and green fixed points are born. See Figure 12.1. For ω slightly larger than ω1, we
know that the eigenvalues associated with the red fixed points are real and positive. Since
the green fixed points are near the red fixed points for these ω values, it follows that the
eigenvalues associated with the green fixed points must also be real and positive for these ω
values. They must also be less than 1 because the green fixed points are stable. Then, as
ω is increased, the smaller eigenvalue grows and the larger eigenvalue decreases until they
become equal. For still larger ω they leave the real axis and become complex conjugates.
We know this must eventually happen because for large enough ω the Duffing oscillator is
again out of resonance with the drive, and its behavior is essentially that of an undriven
oscillator. In that case the stable fixed point is nearly the origin, and points launched near
this fixed point spiral into it due to the free (and damped) oscillations of the oscillator.
The eigenvalues must have imaginary parts to produce this free oscillation. Again, all this
behavior is consistent with the facts listed above.

We will now try to duplicate with a Taylor map the results shown in Figures 12.1 through
12.3. Let ωmid be a value of ω that is approximately midway between ω1 and ω2. A
convenient value is ωmid = 1.35. Let (qrf(ωmid); prf(ωmid)) be the unstable (red) fixed point
corresponding to this value of ω. It is shown in Figure 12.1. Suppose the stroboscopic
Duffing map is Taylor expanded about this fixed point through eighth order in both phase-
space coordinates and parameter value. (Use the equations described in Section 10.10.6 and
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Section 10.10.7 and the parameter σ, but subsequently plot results in terms of the original
coordinates q, p and the parameter ω.) We will call this map M8. With this polynomial
map in hand, it is easy to extract its linear part (Jacobian matrix) L. Now carry out the
following steps:

1. Slowly increase ω from its initial value ωmid and find and plot in red the trail of the
unstable fixed point for the polynomial map as ω is increased. Since L is available, the
location of this fixed point for each value of ω can be found using Newton’s method.

2. At the same time, since L is known, calculate its determinant and eigenvalues. Exam-
ine the determinant to see how much it differs from the exact value given by (12.1).
Plot the eigenvalues in red. See if one of them is approaching the value +1. Continue
increasing ω until one eigenvalue, call it λ1, takes on the value +1. Record the ω value
at which this occurs, and call it ωapprox

2 .

3. When L has eigenvalue +1, we know that a pair of fixed points should be born or
annihilated. Starting with ω = ωapprox

2 , slowly decrease ω while now looking for two
(initially nearby) fixed points. One of them should be on the trail of red (unstable)
fixed points, and the other should be on the trail of the blue (stable) fixed points. Plot
the blue points.

4. At the same time, find L about each blue fixed point. Then find its determinant and
eigenvalues. Plot these eigenvalues in blue.

5. Continue to decrease ω until the determinant computed as described in item 4 above
deviates by from from its exact value by some significant amount thereby indicating
that the polynomial map is becoming unreliable. In this example we have required
that this deviation be less than .1 which, in view of (12.2), amounts to an error of
approximately 25% or less.

6. Carry out analogous calculations to find points on the trail of the green (stable) fixed
point and to find the eigenvalues associated with these fixed points. That is, again
starting with ωmid and the the associated fixed point (qrf(ωmid); prf(ωmid)), now slowly
decrease the value of ω while again plotting red points and computing red eigenvalues.
Continue until again λ1 = 1. Record the ω value at which this occurs, and call it
ωapprox

1 . Now slowly increase ω, again finding pairs of fixed points, one red and one
green. For each green fixed point, find the linear part of the polynomial map, compute
its determinant, and find and plot its eigenvalues in green.

What is the outcome of carrying out all these steps? First, Figures 12.4 through 12.6
show the analogs of Figures 12.1 through 12.3, but now computed using the Taylor map.
Evidently, there is good qualitative agreement. In particular, the saddle-node bifurcations
are qualitatively reproduced by the Taylor map, at least in the neighborhood of these bifur-
cations. Second, we find that ωapprox

1 = 1.30325 · · · and ωapprox
2 = 1.38225 · · · . These values

agree well with the exact values given in the caption of Figure 12.1. Also, for the red fixed
points in Figure 12.4 corresponding to the end values ωapprox

1 and ωapprox
2 , we find that the

determinant of the linear part of the Taylor map deviates from that of the linear part of
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the the exact stroboscopic Duffing map by approximately .001, and is still smaller for the
interior red points. Correspondingly, the trail of unstable fixed points is well reproduced.
Finally, for the smallest ω value on the blue trail and the largest ω value on the green trail,
the error in the determinant becomes as large as .1, which is why the computation of the
green trail is terminated slightly to the right of ωapprox

1 and the computation of the blue trail
is terminated slightly to the left of ωapprox

2 .
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Figure 29.12.4: The analog of Figure 12.1 computed using M8, an eighth-order approx-
imation to M including parameter dependence. The black point near the center of the
red trail is the point about which the Taylor expansion of the stroboscopic Duffing map is
constructed. The black dots near the ends of the red trail are the exact values of the fixed
points for the exact values of ω1 and ω2.

Having demonstrated that a single map reproduces the saddle-node bifurcations (albeit
only over a rather small domain), it is worth exploring if more can be achieved with the use of
two or more Taylor maps expanded about different points. The goal would be to cover more
of parameter and phase space with overlapping domains associated with multiple maps. We
will find that more can indeed be achieved; but, of course, more work is also required.

For simplicity, we will restrict our discussion to the use or two maps. In this case a
promising possibility is to choose as expansion points the fixed point in Figure 12.1 where
the the red and green trails merge at ω = ω1 and the fixed point where the red and blue trails
merge at ω = ω2. We can then use the Taylor map associated with ω1 to compute the red
and green trails and their associated eigenvalues, and we can use the Taylor map associated
with ω2 to compute the red and blue trails and their associated eigenvalues. As before, we
terminate a trail when the determinant of the linear part of the the polynomial-based map
differs from its exact value by .1. We expect that it should now be possible to extend the
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Figure 29.12.5: The analog of Figure 12.2 computed usingM8, an eighth-order approxima-
tion to M including parameter dependence.
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Figure 29.12.6: Data of Figure 12.5 shown from a different perspective.
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blue trail farther to the left and the green trail farther to the right. Note that “red” values
get computed twice, once for each map, and we can compare them to see how well they
agree.

Figures 12.7 through 12.9 show the result of this procedure. Observe that in Figure
12.7 the blue and green trails are indeed extended, and the red points appear to lie almost
on a single trail because both Taylor maps give results that nearly agree in this region of
parameter and phase space. The red trail computed using the map expanded about ω1 and
its associated fixed point is terminated just to the left of ω = ω2, at which point there is an
error in the determinant of .009. The green trail is continued on to ω slightly larger than
1.45, at which point the error in the determinant is .1 The red trail computed using the
map expanded about ω2 and its associated fixed point is terminated near ω = 1.329 where
the error in the determinant becomes .1. The error in the determinant for the blue branch
reaches .1 slightly to the right of ω = 1.28. Observe also that in Figures 12.8 and 12.9
there is some hint of difference in the red-point eigenvalues found using the two different
maps, thereby indicating that the computation of the linear-part of a map based on a Taylor
expansion can be more demanding than the computation of a fixed point.

We conclude, for the stroboscopic Duffing map, that saddle-node bifurcations can be
reproduced by a single polynomial map over a somewhat limited region of parameter and
phase space, and that this region can be enlarged by the use of multiple maps.
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Figure 29.12.7: The analog of Figure 12.1 computed using two eighth-order polynomial maps
including parameter dependence. The black dots at the ends of the red trail, located at ω1

and ω2, are the points about which the Taylor expansions of the stroboscopic Duffing map
are constructed.
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Figure 29.12.8: The analog of Figure 12.2 computed using two eighth-order polynomial maps
including parameter dependence.
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Figure 29.12.9: Data of Figure 12.8 shown from a different perspective.
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Exercises

29.12.1. Look at the green and blue curves in Figures 12.2 and 12.3. For small ω only the
blue curves exist, and for large ω only the green curves exist. Somewhere within the interval
[ω1, ω2] there appears to be an ω value for which there are blue-green intersections. For
example, in Figure 12.3 the bottom blue and green curves appear to intersect and, at the
same ω value, the top blue and green curves also appear to intersect. Prove mathematically
that these intersections actually do occur and are not an artifact of the thickness of the lines
employed in making the figures.

29.12.2. Exercise on equivariance causing eigenvalues to be the same.

29.12.2 Pitchfork Bifurcations

We have seen that Duffing saddle-node bifurcations can be reproduced by truncated Taylor
maps over a limited region of parameter and phase space. Now we will see that pitchfork
bifurcations can also be reproduced. Here the problem of domain size is somewhat less press-
ing because the phase-space excursions associated with a pitchfork bifurcation are generally
smaller than those for a saddle-node bifurcation. We will find, for example, that the case
ε = 2.5 can be handled with the use of a single truncated Taylor map.3

Figure 12.10 shows the bifurcation diagram for the Duffing stroboscopic map in the case
ε = 2.5 (and β = 0.1) for ω in the vicinity of the first bubble. In this figure the fixed points
are shown over the interval ω ∈ [ωlow, ωhigh] with ωlow = .76 and ωhigh = 1.075. The trail of
the stable fixed point, before the pitchfork bifurcation that occurs at ω = ω1 = .87076 · · ·
and after the pitchfork merger that occurs at ω = ω2 = .96639 · · · , is shown in black. The
trails of the two stable fixed points that exist after the pitchfork bifurcation and before the
pitchfork merger are shown in blue and green. The trail of the associated unstable fixed
point is shown in red.

Also shown in Figures 12.11 and 12.12 are the eigenvalues of the linear parts of the
map about the various fixed points. The color coding is the same as in Figure 12.10. The
relation (12.1) in this case yields, for ω ∈ [ωlow, ωhigh], the alternatives of complex conjugate
eigenvalues with

|λ|2 ∈ [.2361, .2724], (29.12.8)

or both eigenvalues real with
λ1λ2 ∈ [.2361, .2724]. (29.12.9)

For ω ≈ ωlow the eigenvalues are complex and (12.8) holds. Then, as ω increases, one of the
eigenvalues must approach +1 because of the imminent bifurcation. Along the way, as the
figure illustrates, the eigenvalues must become real in order to not violate (12.8), and (12.9)
then holds, in which case both eigenvalues are positive. At bifurcation, when ω = ω1, one
of the eigenvalues becomes equal to +1.

3However, larger ε values, such as the value ε = 5.5 used in Figures 25.5.2 through 25.5.4, do require the
use of multiple maps.
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Figure 29.12.10: Bifurcation diagram for the Duffing stroboscopic map in the case ε = 2.5
(and β = 0.1) for ω in the vicinity of the first bubble. The trail of the stable fixed point
before the pitchfork bifurcation and after the pitchfork merger is shown in black. The
trails of the two stable fixed points that exist after the pitchfork bifurcation and before the
pitchfork merger are shown in blue and green. The trail of the associated unstable fixed
point is shown in red. The black dot at the left end of the red trail is located at ω = ω1.
and the black dot at the right end of the red trail is located at ω = ω2. The black dot near
the middle of the red trail indicates the value ω = ωmid to be used as an expansion point.
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Figure 29.12.11: Eigenvalues of L(2π), the linear part of the stroboscopic map (in the
variables z1 and z2), about the fixed points shown in Figure 12.10. The color coding is that
same as in Figure 12.10. Note two of the curves are colored blue-green because, as explained
in the text, there is overlap because of equivariance symmetry.



29.12. TRUNCATED TAYLOR APPROXIMATIONS TO STROBOSCOPIC DUFFING
MAP 2061

0.8

0.9

1Ω

0.25

0.5

0.75

1
Re Λ

-0.5

-0.25

0

0.25

0.5

Im Λ

0.8

0.9

1Ω

0.25

0.5

0.75

1
Re Λ

Figure 29.12.12: Data of Figure 12.11 shown from a different perspective.
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After bifurcation at ω1, and within the interval (ω1, ω2), we might expect there would
be six curves: two red, two blue, and two green. This was the case for the saddle-node
bifurcation. Recall Figures 12.2 and 12.3. Inspection of Figures 12.11 and 12.12 shows there
is indeed a pair of red curves corresponding to the unstable fixed point trail. However, the
blue and green curves overlap in pairs. For this reason, each curve arising from the stable
blue and green trails is displayed both in blue and green. It can be shown that this overlap is
a consequence of the equivariance relation (25.4.6) that maps the two stable periodic orbits
(corresponding to the blue and green stable fixed points) into each other. As a result, for
each ω value in (ω1, ω2), the linear parts of the map about the blue and green fixed points
have the same eigenvalues. See Exercise 12.2.

At the inverse bifurcation, when ω = ω2, one of the eigenvalues again becomes equal to
+1. Just beyond the inverse bifurcation there are two real eigenvalues corresponding to the
black trail and (12.9) again holds. Eventually these eigenvalues again become complex so
that (12.8) then again holds.

It is the behavior shown in Figures 12.10 through 12.12 that we would like to reproduce
with a single truncated Taylor map. Figures 12.13 through 12.15 verify that this is indeed
possible. Figure 12.13 shows the trails of the fixed points for a single eighth-order map
computed by expanding about the black point near the middle of the red trail shown in
Figure 12.10 with ωmid = .916349. Figures 12.14 and 12.15 show the eigenvalues of the
linear parts of the eight-order map evaluated at the fixed points on the trails in Figure
12.13. It is found that, over the ω interval displayed, the error in the determinant of the
linear part of the map is less than .022. This worst error occurs when ω = ωlow. To the
eye, the truncated Taylor map results appear to be identical to the exact results. A single
truncated Taylor map has indeed replicated the pitchfork bifurcation behavior of the exact
map.
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Figure 29.12.13: The analog of Figure 12.10 computed using M8, an eighth-order approx-
imation to M including parameter dependence. The black point near the center of the
red trail is the point ωmid = .916349 about which the Taylor expansion of the stroboscopic
Duffing map was constructed. The other two black points are located at the exact values of
ω1 and ω2.
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Figure 29.12.14: The analog of Figure 12.11 computed using M8, an eighth-order approxi-
mation to M including parameter dependence.
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Figure 29.12.15: Data of Figure 12.14 shown from a different perspective.
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29.12.3 Infinite Period-Doubling Cascade and Strange Attractor

The main purpose of this subsection is to demonstrate that a single truncated Taylor map
can reproduce a Duffing map period doubling cascade and associated strange attractor.
However, before doing so, it is instructive to examine the period doubling mechanism. We
also verify an earlier conjecture.

Period Doubling Mechanism

Look again at Figure 25.8.6, which shows part of the upper cascade in Figure 25.8.5. Part of
it is reproduced below in Figure 12.16 to display the first period doubling bifurcation in more
detail. Also, to avoid confusion, the part of the trail of the stable fixed point associated
with the second saddle-node bifurcation, and all other high-order fixed points and their
bifurcations, are suppressed. Review the discussion of period doubling at the end of Section
9. For ω less than the bifurcation value the stroboscopic Duffing mapM has a single stable
fixed point zf , and its trail is shown in black. After the bifurcation there is still a single fixed
point zf , but now it is unstable and its trail is shown in red. Next consider the map M2.
For each ω value less than the bifurcation value it too has the corresponding point on the
black trail as a fixed point, and this fixed point is stable. And for each ω value greater than
the bifurcation value it too has the corresponding point on the red trail as a fixed point,
and this fixed point is unstable. But, for each ω value greater than the bifurcation value,
M2 has two additional fixed points, and these fixed points are shown in blue and green.
These fixed points of M2 are not fixed points of M. Let zblue be a blue fixed point of M2

corresponding to some value of ω, and let zgreen be the green fixed point ofM2 for the same
value of ω. Then we know there are the relations

Mzblue = zgreen, (29.12.10)

Mzgreen = zblue. (29.12.11)

Also we know that the linear parts of M2 about the corresponding fixed points zblue and
zgreen must have the same eigenvalues. Finally, we know that the blue and green fixed points
must be (initially) stable. See the discussion at the end of Section 9.

We expect that at the period doubling bifurcation one of the eigenvalues of the linear
part of M will take on the value −1. This is indeed the case. Figures 12.17 and 12.18
show these eigenvalues before, at, and after period doubling. They are colored black while
zf is stable, and red after zf becomes unstable. Note that for the smaller values of ω the
eigenvalues are complex. Then, as ω is increased, they leave the complex plane to become
real and negative, but still have magnitude less than 1. Then, as ω is further increased, one
of them takes on the value −1, at which point zf becomes unstable. It remains unstable as
ω is increased still further.
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Figure 29.12.16: Detail of part of the period doubling bifurcation shown in Figure 25.8.6.
The mapM has one fixed point zf before period doubling, it is stable, and its trail is shown
in black. After period doubling M still has one fixed point zf , it is unstable, and its trail
is shown in red. These fixed points are, of course, also fixed points of M2. After period
doubling, M2 has two additional fixed points whose trails are shown in blue and green.
These period-two fixed points are not fixed points of M. Instead, they are sent into each
other under the action of M.
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Figure 29.12.17: Eigenvalues of the linear part of M in the vicinity of its period-doubling
bifurcation.
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Figure 29.12.18: Different perspective of the eigenvalues of the linear part of M in the
vicinity of its period-doubling bifurcation.
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We should also examine the eigenvalues of the linear parts M2 about its fixed points.
They are shown in Figures 12.19 and 12.20. The curves associated with zf are shown in black
before the period doubling bifurcation, and in red afterward. Observe, that as expected,
that these eigenvalues are the squares of the eigenvalues of the linear parts of M. The
curves associated with zblue and zgreen are displayed in both blue and green because of their
agreement. By continuity, the eigenvalues of the linear parts ofM2 for the period-two fixed
points zblue and zgreen are initially real and positive and, right after birth, have magnitude
less than one. Thus zblue and zgreen are stable. However, as ω is further increased, their
eigenvalues eventually become complex while still having magnitude less than one. Moreover,
as ω is increased still further, these eigenvalues “circle” through the complex plane until they
reach the negative real axis and then again become real. Finally, one of them reaches the
value −1. At the corresponding ω value period doubling again occurs so that now M2 has
two period-two fixed points and, correspondingly,M has four period-four fixed points. This
is the mechanism by which continual period doubling can occur to produce a period doubling
cascade.
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Figure 29.12.19: Eigenvalues of the linear part ofM2 in the vicinity of the period doubling
bifurcation of M.
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Figure 29.12.20: Different perspective of the eigenvalues of the linear part of M2 in the
vicinity of the period doubling bifurcation of M.
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Verification of a Conjecture

Recall the conjecture, made in Exercise 1.2.3, that to find the leading behavior in the case of
period doubling it sufficient to know the map through third order. To test this conjecture, let
M3 be the third-order (including parameter dependence) truncated Taylor map expansion
of the Dufing stroboscopic map M about the period-doubling bifurcation point shown in
Figures 25.8.6 and 12.16. Figure 12.21 shows its bifurcation diagram. Evidently there is a
close resemblance between Figures 12.16 and 12.21. As a further test, we can examine the
eigenvalues of (M3)2. They are shown in Figures 12.22 and 12.23. Comparison of Figures
12.22 and 12.23 with Figures 12.18 and 12.19 shows there is good quantitative agreement
in the vicinity of the bifurcation point, and similar qualitative behavior farther away from
the bifurcation point. Indeed, over the ω range displayed, the determinant of the linear part
of (M3)2 differs from the determinant of the linear part of M2 by at most .06. Moreover,
the second period doubling (period quadrupling) for the mapM3 occurs at ω = 1.28094 · · ·
while that for the exact map M occurs at ω = 1.28307 · · · .
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Figure 29.12.21: Bifurcation diagram for the map M3, the third-order polynomial approx-
imation to M (including parameter dependence) expanded about the period-doubling bi-
furcation point shown in black. The polynomial map has one fixed point zf before period
doubling. It is stable and its trail is shown in black. After period doublingM3 still has one
fixed point zf . It is unstable and its trail is shown in red. These fixed points are, of course,
also fixed points of (M3)2. After period doubling, (M3)2 has two additional fixed points
whose trails are shown in blue and green. These period-two fixed points are not fixed points
of M3. Instead, they are sent into each other under the action of M3.
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Figure 29.12.22: Eigenvalues of the linear part of (M3)2 in the vicinity of the period doubling
bifurcation of M3.
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Figure 29.12.23: Different perspective of the eigenvalues of the linear part of (M3)2 in the
vicinity of the period doubling bifurcation of M3.
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Infinite Period-Doubling Cascade

We now return to the main purpose of this subsection, namely to demonstrate that a single
truncated Taylor map can reproduce a Duffing map infinite period-doubling cascade and
associated strange attractor. In particular we will try to replicate, using a polynomial map
with parameter dependence, the behavior illustrated in Figures 25.8.6, 25.9.1, and 25.9.2.

Figure 12.24 shows a partial Feigenbaum diagram for the map we will callM8. This is the
8th-order polynomial approximation to the mapM. The black dot, situated at ω = 1.285 · · · ,
is the fixed point zf of M for this ω value, and it is used as the expansion point. It lies on
a continuation of what is the red trail in Figure 12.21 and has the coordinates

zf = (1.26082 · · · ; 2.05452 · · · ) and ω = 1.285. (29.12.12)

Figure 12.25 shows the associated full Feigenbaum diagram. Observe that the points on
the full Feigenbaum diagram appear to be very nearly confined to a surface. Therefore,
although we are dealing with a map in two dimensions, its behavior is very similar to a
map in one dimension. Correspondingly, many aspects of Figure 12.24 are very similar to
those of Figure 1.2.4, the Feigenbaum diagram for the logistic map, the simplest map in one
dimension.

Comparison of Figures 25.8.6 and 12.24 reveals a striking resemblance.4 Remarkably,
an 8th-order polynomial map approximation fully reproduces the complete period doubling
cascade exhibited by the stroboscopic Duffing map. There is good quantitative agreement
in the vicinity of the expansion point, and good qualitative agreement over the full cascade.
Note that even some of the cascades associated with higher-period fixed points are captured.

4Similar color schemes are employed in both figures. They have no dynamical significance save to aid
the eye in following successive bifurcations.
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Figure 29.12.24: Partial Feigenbaum diagram for the map M8. The black dot marks the
point about which M is expanded to yield M8

.
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Figure 29.12.25: Full Feigenbaum diagram for the mapM8. The black dot again marks the
expansion point.
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Strange Attractor

What about the strange attractor that is expected to appear after the completion of the
infinite period doubling cascade? Figures 12.26 through 12.29 show the strange attractor for
M8, and magnifications of selected portions, when ω = 1.2902. Comparison of Figures 12.26
and 12.27 with Figures 25.9.1 and 25.9.2 illustrates that the strange attractor is remarkably
well reproduced by the polynomial map. Moreover, Figures 12.28 and 12.29 show further
successive magnifications, thereby illustrating the continued fractal structure. The exact
stroboscopic Duffing map counterparts of these figures would be difficult to produce because
of the extensive numerical integration required. However, these magnifications are readily
obtained for the polynomial map since it is easily iterated.

Figure 29.12.26: Limiting values of q∞, p∞ for the mapM8 when ω = 1.2902. They appear
to lie on a strange attractor.
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Figure 29.12.27: Enlargement of boxed portion of Figure 12.26 illustrating the beginning of
self-similar fractal structure.

29.12.4 Undoing a Cascade by Successive Mergings

According to Figure 25.8.4, the period doubling cascade in Figure 25.8.6 undoes itself by
successive mergings as ω becomes sufficiently large. Can this behavior also be reproduced,
at least qualitatively, by a polynomial map? The answer is yes provided the expansion point
is suitably chosen. Figure 12.30 shows the partial Feigenbaum diagram for M8 when the
black dot, located at

zf = (1.59406 · · · ; 0.565464 · · · ), (29.12.13)

is used as the expansion point. It is an unstable period-one fixed point when ω = 1.4, and
lies on the continuation to smaller ω values of the red fixed-point trail shown on the right
side of the figure. Figure 12.31 shows the associated full Feigenbaum diagram. We remark
that we were unable to reproduce the full cascade followed by successive merging if the
expansion point was chosen to lie on the left side of the cascade. Presumably this is because
the phase-space and ω excursions associated with the full cascade followed by successive
mergings are quite large, and therefore the expansion point has to be sufficiently “centered”
in order for the associated Taylor series to have an adequate domain of convergence.5

Note that within the q, p range displayed in Figures 12.30 and 12.31 there appears to be
forM8 a gap around ω ≈ 1.33 for which there are no stable fixed points nor any attracting
set. To the left and right of this gap there are chaotic regions, but there seems to be nothing

5In all the examples presented, the expansion point has been chosen to be a fixed point of M for some
value of ω. This is not necessary, and was merely done so that the Taylor map would have the simplifying
property of having no constant terms.



29.12. TRUNCATED TAYLOR APPROXIMATIONS TO STROBOSCOPIC DUFFING
MAP 2081

1.519 1.52 1.521 1.522 1.523
q
¥

2.014

2.015

2.016

2.017

2.018

2.019

2.02

2.021

p
¥

Figure 29.12.28: Enlargement of boxed portion of Figure 12.27 illustrating the continuation
of self-similar fractal structure.
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Figure 29.12.29: Enlargement of boxed portion of Figure 12.28 illustrating the further con-
tinuation of self-similar fractal structure.
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in the gap. Let us examine the behavior of the exact stroboscopic Duffing map M in this
ω range. Figure 25.8.4 provides a partial Feigenbaum diagram and Figure 12.32 provides a
full diagram for M.

For ω within the gap and sufficiently large (ω ≥ 1.335), Figure 12.32 displays that there
are three yellow trails. They correspond to a single stable period-three orbit. That is, there
are three stable fixed points of M3, and these three points are cyclically permuted among
themselves under the action of M. The behavior is completely analogous to that of the
period-three orbit for the complex logistic map Douady rabbit described by the relations
(1.2.33) through (1.2.38). See Section 1.2.2.

Now suppose ω is decreased. Then it happens that each of these fixed points of M3

undergoes a pitchfork bifurcation to produce a triplet of fixed points of M3. Thus, there
are now three triplets of fixed points of M3. (Recall that the period does not change at
either a saddle-node or pitchfork bifurcaton.) In accord with the pattern for a pitchfork
bifurcation, within each triplet two of the fixed points ofM3 are stable, and one is unstable.
Consequently, only two points of each triplet will be visible in a Feigenbaum diagram, and
there will appear to be three pairs of fixed points ofM3 for ω in this range. Correspondingly,
there will be two period-three stable orbits of M in this ω range. That is also what Figure
12.32 displays. For ω within the gap and sufficiently large, there are three yellow trails.
And, as ω is decreased, each yellow trail splits into two yellow trails so that there are then
six yellow trails corresponding to two period-three stable orbits of M. We conclude that
the gap is essentially a period-three window.6

Finally, we observe that all the stable fixed points in this window have q∞, p∞ values
that lie outside the q, p range displayed in Figures 12.30 and 12.31, and outside the range
for which the Taylor map M8 well approximates the exact map M. We conclude that M8

correctly describes the state of affairs for the q, p, ω range depicted in Figure 12.31.

6Closer inspection, on a scale finer than that shown in Figure 12.32, reveals that at ω = 1.315 · · · a
period doubling occurs so that there are then twelve trails corresponding to two stable period-six orbits. At
ω = 1.312 · · · there is a second period doubling so that now there are twenty-four trails corresponding to
two stable period-twelve orbits. The net result is that there appears, on a very fine scale, to be an infinite
cascade of period doublings that ultimately merges with the chaotic region to the left of the gap.
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Figure 29.12.30: Partial Feigenbaum diagram for the mapM8 showing a full cascade followed
by successive mergings. The black dot marks the point about whichM is now expanded to
yield M8.
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Figure 29.12.31: Full Feigenbaum diagram for the map M8 showing a full cascade followed
by successive mergings. The black dot again marks the point about which M is expanded
to yield M8.
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Figure 29.12.32: Full Feigenbaum diagram for the exact map M. See Figure 25.8.4 for a
related partial Feigenbaum diagram. The black dot again marks the expansion point used in
Figures 12.30 and 12.31. There appears to be a gap around ω ≈ 1.33 separating two chaotic
regions. Within the right side of the gap (to the right of ω ≈ 1.335) there are three yellow
trails corresponding to a period-three stable orbit. As ω is decreased, there are pitchfork
bifurcations so that each yellow trail splits into two yellow trails. There are then six yellow
trails corresponding to two period-three stable orbits. Thus the gap, on the scale shown, is
essentially a period-three window.
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29.12.5 Convergence of Taylor Maps: Performance of
Lower-Order Polynomial Approximations

We close this section with illustrations of the performances ofM3 andM5, third and fifth-
order polynomial approximations (including parameter dependence) to the exact map M.
All expansions are made about the point (12.12). Comparison of these performances gives
some feeling for the convergence properties of the Taylor approximation to M.

Performance of M3

Figure 12.33 shows theM3 counterpart to Figure 12.24 produced usingM8. Evidently the
qualitative features of the period doubling cascade are the same. Also, we have found that
there is not qualitative agreement ifM2 is used. We conjecture that generically third-order
information is necessary and sufficient to obtain qualitative agreement for a period doubling
cascade arising from what once was a period-one fixed point.

Note also that M3 does not reproduce the three features near ω = 1.265 seen in Figure
25.8.6 for the exactM and in Figure 12.24 forM8. We have found that these features first
appear for Mn when n = 5. They belong to what was initially a period-three fixed point
for M.

Figure 29.12.33: Partial Feigenbaum diagram for the map M3. The black dot marks the
point about which M is expanded to yield M3

.

Figures 12.34 and 12.35 show theM3 counterparts to Figures 12.26 and 12.27 produced
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using M8. Evidently there is qualitative agreement. The attractors in Figures 12.34 and
12.26 look similar. And, when enlarged, both show evidence of fractal structure. Compare
Figures 12.35 and 12.27.

Figure 29.12.34: Limiting values of q∞, p∞ for the mapM3 when ω = 1.2902. They appear
to lie on a strange attractor.
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Figure 29.12.35: Enlargement of boxed portion of Figure 12.34 illustrating the beginning
of self-similar fractal structure.
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Performance of M5

Figure 12.36 shows the M5 counterpart to Figure 12.24 produced using M8. Now there is
improved quantitative agreement as well as qualitative agreement. Also, there are now three
features near ω = 1.265 that resemble those seen in Figures 25.8.6 and 12.24.

Figure 29.12.36: Partial Feigenbaum diagram for the map M5. The black dot marks the
point about which M is expanded to yield M5

.

Figures 12.37 and 12.38 show theM5 counterparts to Figures 12.26 and 12.27 produced
usingM8. Again there is improved quantitative agreement. We surmise that, for the region
of phase space and ω range displayed, convergence appears to be well underway.
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Figure 29.12.37: Limiting values of q∞, p∞ for the mapM5 when ω = 1.2902. They appear
to lie on a strange attractor.
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Figure 29.12.38: Enlargement of boxed portion of Figure 12.37 illustrating the beginning
of self-similar fractal structure.
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29.12.6 Concluding Summary and Discussion

Poincaré analyticity (and its generalization to include parameter dependence) implies that
transfer maps M arising from ordinary differential equations can be expanded as Taylor
series in the initial conditions and also in whatever parameters may be present. Section
10.10 described the complete variational equations, and described how the determination
of these expansions is equivalent to solving the complete variational equations. Chapter 25
provided an overview of the properties of the stroboscopic transfer map M for the Duffing
equation. The present section described examples of how nth degree approximationsMn to
M (including parameter dependence) could reproduce various features of the exact M. In
particular it illustrated, remarkably, that M8 produced an infinite period doubling cascade
and apparent strange attractor that closely resembled those of the exact map. It also
illustrated how the accuracy of Mn improves with increasing n.

We have seen that there are situations in which a truncated Taylor map well reproduces
results obtained by the integration of differential equations. This is comforting since the
behavior of polynomial maps, because such maps can easily be evaluated repeatedly, is often
studied in detail with the hope that the behavior of such maps is illustrative of what can
be expected for maps in general, including the maps that arise from integrating differential
equations.

In view of this success, one might wonder if there are situations in which the use of
truncated Taylor maps could replace or at least complement direct numerical integration.
There is, of course, the question of convergence for Taylor series, and the convergence domain
is related to the (generally unknown) singularity structure of the solution to the differential
equation in the complex domain. See Section 35.3. However, if satisfactory approximation
can be illustrated by the comparison of numerical integration results with truncated Taylor
results for representative solutions in some domain, then the use of truncated Taylor maps
to find additional results may be faster than continued numerical integration.

For example, in the case of the Duffing equation, although the determination of the
relevant hra(t) of Section 10.10 requires the simultaneous numerical integration of a large
number of differential equations, these equations need be integrated over only one drive
period. Once the truncated Taylor series stroboscopic map has been found, its evaluation
for any phase-space point and any parameter value is essentially free. All that is required is
the evaluation of two n-degree polynomials (one for ζf1 and one for ζf2 , the deviation variables
associated with qf and pf , respectively) in three variables (ζ i1, ζ i2, and ζ i3). (Again see Section
10.10 for notation.) By contrast, the direct construction of a Feigenbaum diagram requires
the integration of the Duffing equation for a large number of drive periods and a large
number of parameter values. And, determination of the strange attractor associated with
the Duffing equation requires the integration of the Duffing equation over thousands of drive
periods.

Suppose T2 is the time required to integrate two equations over a drive period. In our
example, it is the time required to integrate the Duffing pair of differential equations (1.4.32)
over one drive period. Suppose TNe is the time required to integrate Ne equations over one
drive period. Let L(m,n) be the number of monomials of degree 0 through n in m variables.
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It is given by the binomial coefficient

L(m,n) =

(
m+ n

n

)
. (29.12.14)

See Section 7.10. When working with m variables through terms of degree n, the number Ne

of differential equations to be integrated to determine the relevant functions hra(t) is given
by the relation

Ne = mL(m,n), (29.12.15)

which amounts to
Ne = 3L(3, 8) = 3× 165 = 495 (29.12.16)

in the case ofM8 for the Duffing equation including parameter dependence. We have found
in our numerical studies that there is the approximate scaling relation

TNe ' (Ne/2)T2 (29.12.17)

for n ≤ 9. That is, the computation time scales with the number of equations to be
integrated. We conclude that in this example the use of M8 becomes advantageous once
the number of drive periods times the number of parameter values exceeds 495/2 ' 250.

With regard to providing complementary information, it is common practice to integrate
the first degree variational equations in order to establish the linear stability of solutions.
Integration of the higher degree variational equations, including possible parameter depen-
dence, provides information about nonlinear behavior/stability. As examples, such informa-
tion is required for the control of orbits in accelerators and the understanding and control
of aberrations in optical systems.

In conclusion, there are applications for which use of the higher degree variational equa-
tions is advantageous, and the whole subject of the usefulness of truncated Taylor maps
merits continued study.
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29.13 Analytic Properties of Fixed Points and

Eigenvalues

As described in the beginning of Section 12, integrating analytic differential equations can
be expected to yield analytic maps. For these maps we can compute fixed points and the
eigenvalues of the linear parts of these maps about their fixed points. What can be said
about the parameter dependence of these fixed points and eigenvalues?

Consider first the behavior of eigenvalues. They are roots of the characteristic polynomial
(3.4.1) when M is the linear part of the map. The coefficients of this polynomial depend
on the matrix elements of M in an analytic way. See Exercise 3.7.14. Moreover, since M is
determined by integrating the variational equations, we may expect these matrix elements
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to depend analytically on any parameter. Thus, we may expect that the coefficients of the
characteristic polynomial will have analytic parameter dependence.

However, it does not follow that the roots will necessarily have analytic parameter de-
pendence. Think, for example, of the roots of a quadratic equation. The solution of such an
equation involves square roots of quantities formed from its coefficients. In such a case we
expect that there could be branch points where the arguments of these square roots vanish.
Generally we may expect continuity, but not analyticity.

Observe, for example, the behavior of the eigenvalues shown in Figures 12.2 and 12.3.
For ω values sufficiently large the green eigenvalues have both real and imaginary parts.
But as ω is decreased, there comes an ω value below which the green eigenvalues have only
real parts. This means that the green eigenvalues are not analytic functions of ω at this
threshold ω value. Similarly, for ω values sufficiently small, the blue eigenvalues have both
real and imaginary parts. But as ω is increased, there comes an ω value above which the
blue eigenvalues have only real parts. This means that the blue eigenvalues are not analytic
functions of ω at this threshold ω value. See Exercise 13.1.

Consider next the case of fixed points. They too may be regarded as the roots of some
equations with coefficients that have analytic parameter dependence. We may expect that
the fixed points will depend analytically on the parameter as long as no eigenvalue of the
linear part of the map about this fixed point has eigenvalue +1. See (4.37). However, as
we have learned, fixed points are generally born or annihilated when an eigenvalue becomes
equal to +1. Actually, for an analytic map, they are not created or destroyed, but only
become invisible by becoming complex. Thus we may again expect the existence of branch
points and an associated lack of analyticity at these parameter values. Moreover, if period
doubling is to occur, we expect that the linear part of M2 will have +1 as an eigenvalue;
so we also expect lack of analyticity for period-two fixed points as they are born. For a
simple one-dimensional example, see Exercise 1.2.2. Finally, at parameter values for which
the location of a fixed point fails to be analytic, we may also anticipate failure of analyticity
for the associated eigenvalues of the linear part of the map about this fixed point.

Exercises

29.13.1. Suppose f(z) is an analytic function of the complex variable z = x+ iy. Let z0 be
a point on the real axis and suppose that f(z) is real when z is real and x < z0. Suppose
also that f is analytic at z0. Show that then f(z) is also real for z real and x > z0. Thus, if
f(z) is to have an imaginary part for z real and x > z0, then f cannot be analytic at z0.

29.13.2. Suppose S is a symmetric 2 × 2 matrix whose entries depend analytically on a
parameter λ, and suppose these entries are real when λ is real. Show that in this case the
eigenvalues of S are also analytic functions of λ.
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Chapter 30

Normal Forms for Symplectic Maps
and Their Applications

30.1 Equivalence Relations

Def. 1.1: Let X be some (possibly abstract) set, and let ∼ be some relation (something
that can be true or false) among pairs of elements in X. The relation ∼ is said to be an
equivalence relation if it satisfies three properties:

i. x ∼ x for all x in X (reflexive property).

ii. x1 ∼ x2 implies x2 ∼ x1 for all x1, x2 in X (symmetric property) .

iii. x1 ∼ x2 and x2 ∼ x3 implies x1 ∼ x3 for all x1, x2, x3 in X (transitive property).

Def. 1.2: The set of all elements in X that are equivalent (under some given equivalence
relation ∼) to a given x in X is called the equivalence class of x, and is denoted by the symbol
{x}.

Thrm. 1.1: We have the logical relation

x1 ∼ x2 ⇔ {x1} = {x2}. (30.1.1)

Thrm. 1.2: Given an equivalence relation ∼ on some set X, show that each x in X
belongs to one and only one equivalence class. Thus, under an equivalence relation, a set
decomposes in a natural way into disjoint subsets: the equivalence classes produced by the
equivalence relation.

Def. 1.3: Let X be some set and x some element in X. Then, given an equivalence
relation ∼, x belongs to the equivalence class {x}. A normal form xn for x is an element of
{x} that has some desired attribute such as “simplicity”. See Figure 1.1.
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Normal Forms

Equivalence classes

.

.
.

.
X

Figure 30.1.1: Decomposition of a set X into disjoint equivalence classes, with a normal
form element representative for each equivalence class.

30.2 Symplectic Conjugacy of Symplectic Maps

Def. 2.1: Suppose M1 and M2 are two symplectic maps. These maps are said to be
(symplectically) conjugate if there exists a third (symplectic) map A such that

M2 = AM1A−1. (30.2.1)

Def. 2.2: The map A is called the conjugating map.

Thrm. 2.1: Conjugacy and symplectic conjugacy are equivalence relations and therefore
determine equivalence classes called conjugacy classes. Two mapsM1 andM2 are equivalent
(belong to the same conjugacy class) if a conjugating map A can be found such that (2.1)
holds.

30.3 Normal Forms for Maps

Def. 3.1: A map normal form is a representative of an equivalence class (in this case a
conjugacy class) selected for its maximal simplicity: Given any mapM1, consider maps N1

of the form
N1 = A1M1A−1

1 . (30.3.1)

Select the map A1, and thereby also the map N1, in such a way that N1 is as simple as
possible. The map N1 is called the normal form of M1, and the conjugating map A1 is
called the normalizing map. Note that, by construction, we have the relations

N1 ∼M1 and {N1} = {M1} (30.3.2)

so that N1 is indeed a representative of the conjugacy class of M1
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Thrm. 3.1: Given suitable specifications concerning the set of allowed conjugating
maps, there is a unique normal form element for each conjugacy class. In other words, the
normal form is unique in the sense that ifM2 andM1 belong to the same conjugacy class,

M2 ∼M1 and {M2} = {M1}, (30.3.3)

then they have the same normal form,

N2 = N1. (30.3.4)

Conversely, if two mapsM2 andM1 have the same normal form, i.e. (3.4) holds, then they
are conjugate and (3.4) holds. Thus, we have the logical relation

N2 = N1 ⇔M2 ∼M1 and {M2} = {M1}. (30.3.5)

Proof: Stating that M1 and M2 have the normal forms N1 and N2 means that there
exist normalizing maps A1 and A2 such that

N1 = A1M1A−1
1 , (30.3.6)

N2 = A2M2A−1
2 , (30.3.7)

and both N1 and N2 have maximal simplicity. Now suppose that the left equality in (3.5)
holds. This supposition, when combined with (3.6) and (3.7), gives the relation

A1M1A−1
1 = A2M2A−1

2 , (30.3.8)

which can be rewritten in the form

M1 = (A−1
1 A2)M2(A−1

1 A2)−1. (30.3.9)

We conclude that M2 and M1 are conjugate,

M2 ∼M1 and {M2} = {M1}. (30.3.10)

Conversely, suppose that M2 and M1 are in the same conjugacy class. Then there exists
a conjugating map A such that (2.1) holds. From the relations (2.1), (3.6), and (3.7) we
deduce the results

N1 = A1M1A−1
1 = A1A−1AM1A−1AA−1

1 = (A1A−1)M2(A1A−1)−1, (30.3.11)

N2 = A2M2A−1
2 = A2AA−1M2AA−1A−1

2 = (A2A)M1(A2A)−1. (30.3.12)

We see that M2 has the normal form N1 when (A1A−1) is used as a normalizing map, and
M1 has the normal form N2 when (A2A) is used as a normalizing map. Next, conjugate
both sides of (3.6) with the map (A2AA−1

1 ). Doing so gives the result

(A2AA−1
1 )N1(A2AA−1

1 )−1 = (A2AA−1
1 )A1M1A−1

1 (A2AA−1
1 )−1

= A2AM1A−1A−1
2

= A2M2A−1
2 = N2. (30.3.13)
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Similarly, conjugating both sides of (3.7) with the map (A1A−1A−1
2 ) gives the result

(A1A−1A−1
2 )N2(A1A−1A−1

2 )−1 = (A1A−1A−1
2 )A2M2A−1

2 (A1A−1A−1
2 )−1

= A1A−1M2AA−1
1

= A1M1A−1
1 = N1. (30.3.14)

We have learned thatM2, under the assumption that it is conjugate toM1, can be normal-
ized to both the normal forms N1 and N2. Similarly, under the same assumption,M1 can be
normalized to both the normal forms N1 and N2. By assumption, the A1 used in (3.6) and
the A2 used in (3.7) are supposed to make N1 and N2 as simple as possible. Moreover, N1

and N2 are equally simple. For if N2 were simpler than N1, then (3.12) and (3.13) show that
the map (A2A) normalizesM1 to the simpler form N2, which is contrary to the assumption
that A1 has been properly choosen in (3.6) to make N1 as simple as possible. Similarly,
(3.11) and (3.14) show that N1 cannot be simpler than N2. We conclude that they must be
the same,

N1 = N2. (30.3.15)

Rmk. 3.1: We have seen that the normal form N1 of a mapM1 is unique. However we
remark that, without further requirements, the normalizing map A1 is not unique. Suppose
B1 is any invertible map that commutes with N1,

N1B1 = B1N1. (30.3.16)

Use B1 to conjugate both sides of (3.6). Doing so and making use of (3.16) gives the result

N1 = B1N1B−1
1 = B1A1M1(B1A1)−1. (30.3.17)

We see that the map (B1A1) also is a normalizing map that normalizes M1 to N1.

Thrm. 3.2: Conversely, suppose A1 and Ã1 are both normalizing maps for M1,

N1 = A1M1A−1
1 = Ã1M1Ã−1

1 . (30.3.18)

Then Ã1 and A1 are related by the equation

Ã1 = B1A1 (30.3.19)

with
B1 = Ã1A−1

1 , (30.3.20)

where B1 commutes with N1.

30.4 Sample Normal Forms

We now describe what normal forms can be achieved in various cases when we are working
in the setting of a 6-dimensional phase space with the variables x, y, τ , px, py, pτ . As
illustrated in Figure 4.1, there are four broad possibilities for general maps M: dynamic
(τ -dependent) maps with or without translation factors (characterized by the presence or
absence of f1 terms); static (τ -independent) maps with or without translation factors. These
cases are listed below, and will be discussed in subsequent sections.
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i. Dynamic map with an f1 translation factor

ii. Dynamic map without an f1 translation factor

iii. Static map with an f1 translation factor

iv. Static map without an f1 translation factor

General

Maps

Dynamic

No f1f1 No f1f1

Static

Figure 30.4.1: Four broad possibilities for general maps.

30.5 Dynamic Maps Without Translation Factor

Strangely enough, the easiest case to discuss is dynamic maps without f1 translation factors.
We will therefore treat it first.

30.6 Dynamic Maps With Translation Factor

30.7 Static Maps Without Translation Factor

30.7.1 Preparatory Steps

For the purposes of this section it is convenient to order the phase-space variables as

z = (x, px; y, py; τ, pτ ). (30.7.1)
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According to Section 3.2, J then takes the form (3.2.10) which, in the 6× 6 case, is

J =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 . (30.7.2)

Suppose M is an origin preserving symplectic map so that it has the Lie factorization

M = R exp(: f3 :) exp(: f4 :) · · · . (30.7.3)

Next assume the M and also has the property

Mpτ = pτ . (30.7.4)

For reasons to become evident shortly, we will call such an M a static map. Upon using
the representation (5.2) in (5.3) and equating terms of like degree, it follows that there are
the relations

Rpτ = pτ . (30.7.5)

0 =: fm : pτ = [fm, pτ ] = ∂fm/∂τ for m ≥ 3, (30.7.6)

The relation (5.6) says that the generators fm are τ independent (hence static) for m ≥ 3,
and we will see that (5.5) and the symplectic condition imply that the matrix R associated
with R has a very special form.

To explore the properties of R, let us begin by writing it out in full using standard matrix
notation,

R =


R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66

 . (30.7.7)

Now require that R be a symplectic map that satisfies (5.5). From (3.1.10) we know that
the symplectic condition requires the relation

RJRT = J. (30.7.8)

When written in terms of components, this relation takes the form∑
bc

RabJbcRdc = Jad. (30.7.9)

As a result of these two requirements (5.5) and (5.8) we will see that many matrix elements
of R are 0 or 1, and others are related.
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Define the quantities ∆1 through ∆4 by the rules

∆1 = R52, (30.7.10)

∆2 = −R51, (30.7.11)

∆3 = R54, (30.7.12)

∆4 = −R53, (30.7.13)

and view them as the components of a vector ∆. Also define a matrix R̂ by the rule

R̂ =


R11 R12 R13 R14 0 0
R21 R22 R23 R24 0 0
R31 R32 R33 R34 0 0
R41 R42 R43 R44 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (30.7.14)

and write (5.14) in the more compact form

R̂ =

(
Ř 0
0 I

)
(30.7.15)

where Ř is the 4× 4 matrix

Ř =


R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

 . (30.7.16)

Finally, let J̌ be the the 4× 4 version of J ,

J̌ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (30.7.17)

Then, it is the case that R must be of the more specific form

R =


R11 R12 R13 R14 0 (Ř∆)1

R21 R22 R23 R24 0 (Ř∆)2

R31 R32 R33 R34 0 (Ř∆)3

R41 R42 R43 R44 0 (Ř∆)4

−∆2 ∆1 −∆4 ∆3 1 R56

0 0 0 0 0 1

 . (30.7.18)

Also, the entries in the upper left 4×4 block of R, the entries in Ř, must obey the “reduced”
symplectic relations

ŘJ̌ŘT = J̌ . (30.7.19)



2108 30. NORMAL FORMS FOR SYMPLECTIC MAPS AND THEIR APPLICATIONS

Observe that the entries R16, R26, R36, and R46 in R describe dispersive effects. That is,
they describe how the transverse coordinates and momenta depend on pτ . By contrast, the
entries R51, R52, R53, and R54 in R describe how the time of flight depends on the transverse
initial conditions. From (5.18) we see that dispersive effects and time of flight effects are
related by the symplectic condition! They are opposite sides of the same coin. This is an
example of what we call symplectic reciprocity : seemingly unrelated quantities are in fact
related by the symplectic condition.

We will prove this result in stages: We recall that the matrix R associated with R is
given by the relation

Rza =
∑
b

Rabzb. (30.7.20)

As a result of (5.20), the condition (5.5) requires that R have the more specific form

R =


R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

0 0 0 0 0 1

 . (30.7.21)

Next, impose the symplectic condition (5.8) for R of the form (5.21). Set a = 6 in the
relation (5.9) to get the result ∑

bc

R6bJbcRdc = J6d. (30.7.22)

But, from (5.21), we know that
R6b = δ6b. (30.7.23)

Therefore the sum (5.22) becomes ∑
c

J6cRdc = J6d. (30.7.24)

Also, we see from (5.2) that
J6c = −δ5c. (30.7.25)

Therefore the sum (5.24) reduces to the result

−Rd5 = J6d (30.7.26)

from which we conclude that
Rd5 = 0 for d = 1 to 4, (30.7.27)

R55 = 1. (30.7.28)

Consequently, R must have the yet more specific form

R =


R11 R12 R13 R14 0 R16

R21 R22 R23 R24 0 R26

R31 R32 R33 R34 0 R36

R41 R42 R43 R44 0 R46

R51 R52 R53 R54 1 R56

0 0 0 0 0 1

 . (30.7.29)
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Define the quantity ξ by the rule

ξ = R56, (30.7.30)

and associate with ξ and ∆ the matrices C(ξ) and D(∆) by the rules

C(ξ) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 ξ
0 0 0 0 0 1

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 R56

0 0 0 0 0 1

 , (30.7.31)

D(∆) =


1 0 0 0 0 ∆1

0 1 0 0 0 ∆2

0 0 1 0 0 ∆3

0 0 0 1 0 ∆4

−∆2 ∆1 −∆4 ∆3 1 0
0 0 0 0 0 1

 . (30.7.32)

It is easily verified that the matrices C(ξ) and D(∆) are symplectic and have the inverses

C−1(ξ) = C(−ξ), (30.7.33)

D−1(∆) = D(−∆). (30.7.34)

Indeed, C(ξ) and D(∆) are the matrices associated with the linear symplectic maps C(ξ)
and D(∆) given by the relations

C = exp(: −ξp2
τ/2 :), (30.7.35)

D = exp(: pτg1 :), (30.7.36)

where

g1(∆) = ∆2x−∆1px + ∆4y −∆3py. (30.7.37)

Note, for future use, that the matrix C commutes with both the matrices D and R̂.

We now assert that R has the factorization

R = R̂CD (30.7.38)

or, equivalently,

R̂ = RD−1C−1. (30.7.39)

The proof of this assertion involves matrix multiplication and invoking the symplectic con-
dition for R. Define a matrix R̂′ by the rule

R̂′ = RD−1C−1. (30.7.40)
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Carrying out the indicated multiplications gives the result

R̂′ =


R11 R12 R13 R14 0 ε1
R21 R22 R23 R24 0 ε2
R31 R32 R33 R34 0 ε3
R41 R42 R43 R44 0 ε4
0 0 0 0 1 0
0 0 0 0 0 1

 (30.7.41)

where

ε1 = R16 − [R11R52 +R12(−R51) +R13R54 +R14(−R53)]

= R16 − (Ř∆)1, (30.7.42)

ε2 = R26 − [R21R32 +R22(−R52) +R23R54 +R24(−R53)]

= R26 − (Ř∆)2, (30.7.43)

ε3 = R36 − [R31R52 +R32(−R51) +R33R54 +R34(−R53)]

= R36 − (Ř∆)3, (30.7.44)

ε4 = R46 − [R41R52 +R42(−R51) +R43R54 +R44(−R53)]

= R46 − (Ř∆)4. (30.7.45)

Next, because R, C−1, and D−1 are symplectic matrices, R̂′ must a symplectic matrix.
In analogy with (5.9), the symplectic condition for R̂′ can be written in the form∑

bc

R̂′abJbcR̂
′
dc = Jad. (30.7.46)

Now put a = 5 in (5.46) and make use of the special forms of J and R̂′ as given by (5.2)
and (5.41). Doing so gives the result∑

bc

R̂′5bJbcR̂
′
dc = J5d, (30.7.47)

which yields the relations
R̂′d6 = J5d. (30.7.48)

From (5.2), (5.41), and (5.48), we conclude that

εd = 0 for d = 1 to 4. (30.7.49)

Therefore there is the relation
R̂′ = R̂, (30.7.50)

and (3.39) is correct.
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Moreover, in view of (5.42) through (5.45) and (5.49), we have found the relations

Ra6 = (Ř∆)a for a = 1 to 4 (30.7.51)

with ∆ given by (5.10) through (5.13). Thus, (5.18) is correct. To reiterate, what we have
learned from the symplectic condition is that in (5.29) the matrix elements Ra6 for a = 1 to
4 are not independent of the matrix elements R5a for a = 1 to 4, but instead are related by
the conditions (5.10) through (5.13) and (5.51). Finally, because of (5.15), the remaining
relations demanded by (5.46) yield the matrix relation (5.19).

We close this section by noting that the matrix relation (5.38) implies a related factor-
ization for the map R. Let R̂ be the symplectic map associated with R̂. Then (5.38) is
equivalent to the map factorization relation

R = DCR̂ = CDR̂. (30.7.52)

Here we have used the fact that C and D commute.

Exercises

30.7.1. Verify that the maps C and D given by (5.35) and (5.36) are equivalent to the
matrices C and D given by (5.31) and (5.32).

30.7.2. Starting with (5.40), verify that carrying out the indicated multiplications yields
the results (5.41) through (5.45).

30.8 Static Maps With Translation Factor

30.9 Tunes, Phase Advances and Slips, Momentum

Compaction, Chromaticities, and

Anharmonicities

• Ring Analysis and Phase Advances

• Equivalent Locations

• Matched Insertions

• Floquet Theory

• Tune Footprints

30.10 Courant-Snyder Invariants and Lattice

Functions

30.11 Analysis of Tracking Data
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Chapter 32

Solved and Unsolved Polynomial
Orbit Problems: Invariant Theory

32.1 Introduction

As in (8.5.2), let R be any linear symplectic map [a map corresponding to an Sp(2n)
transformation] written in the general form

R = exp(: f c2 :) exp(: fa2 :). (32.1.1)

Suppose R acts on any homogeneous polynomial gm in Pm. Then, in view of (21.5.6), the
result is a transformed polynomial gtr

m that is also in Pm,

gtr
m(z) = Rgm(z) = gm(Rz) = gm(Rz). (32.1.2)

Here we have also used (8.4.15). Indeed, we know from the work of Chapter 21 that in the
two-variable case the Pm carry the irreducible representation Γ(m) of Sp(2); in the four-
variable case the Pm carry the irreducible representation Γ(m, 0) of Sp(4); in the six-variable
case the Pm carry the irreducible representation Γ(m, 0, 0) of Sp(6); etc.

The set of polynomials gtr
m that can be obtained from any given gm and arbitrary R of

the form (1.1) is called the orbit of gm under the action of Sp(2n). Now suppose that hm is
any other polynomial in Pm. We will say that hm is equivalent to gm if there is some R of
the form (1.1) that sends gm to hm,

hm ∼ gm ⇔ hm = Rgm for some R. (32.1.3)

It is easy to check that (1.3) is indeed an equivalence relation, and we may say that two
polynomials in Pm are equivalent if they lie on the same orbit.

Finally, suppose we are given some polynomial gm. Then the equivalence class of gm,
which we will denote by {gm}, consists of all the gtr

m given by (1.2) for all choices ofR. (Thus,
the equivalence class {gm} is the orbit of gm.) Among the gtr

m produced in this fashion there
will be one that has some particularly desirable form or property. Various possibilities come
to mind: For example, we may attempt to drive to zero as many coefficients in gtr

m as
possible by a particular choice of R. Or, if gm happens to be on the orbit of some monomial,
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we might like to discover which monomial and determine its coefficient. Or, we might like
to find a gtr

m on the oribit of gm that has the smallest length in the sense of minimizing the
scalar product 〈gtr

m, g
tr
m〉 as defined in Section 7.3. A or the gtr

m that has some such desirable
form or property, or perhaps some other property yet to be discovered, will be called the
normal form of gm and will be denoted by the symbols gNm . (We remark that in some
literature a normal form is called a canonical form, and homogeneous polynomials or ratios
of homogeneous polynomials are called quantics.) Put another way, a normal form of gm
is a particularly simple or pleasing point on the orbit of gm. Exactly what a normal form
for gm should be is partly a matter of investigation, and partly a matter of choice. Given a
gm, one must first examine all the members of the equivalence class {gm}. Then, with their
properties clearly in mind, one selects a particularly pleasing gtr

m and calls it gNm . Ideally one
would like to have an algorithm that takes gm as an input and provides as outputs gNm and
the normalizing R that transforms gm into gNm .

Three facts are now obvious practically as a matter of definition. First, Sp(2n) acts
transitively on each equivalence class. Second, we may label the equivalence class of gm by
specifying gNm . That is. we have the relation

{gm} = {gNm}. (32.1.4)

Third, suppose two polynomials gm and hm are known or can be shown to have the same
normal form,

gNm = hNm. (32.1.5)

Then, they are in the same equivalence class and there is an R that sends one into the other
as in (1.3).

There is another terminology that is sometimes used for the situation we have been
describing. In this terminology each equivalence class (orbit) is called a leaf, and the de-
composition of Pm into equivalence classes is called a foliation.

Evidently a general homogeneous polynomial gm is specified by giving its coefficients.
It can be shown (and we will see examples) that there exist polynomial functions of these
coefficients that remain unchanged under the transformation (1.2). These functions are
called invariants. Thus if hm and gm are equivalent as in (1.3), each invariant function must
have the same value for the coefficients of hm and the coefficients of gm.

Why, apart from curiosity, should one care about orbits of gm in Pm, normal forms gNm ,
and invariants? We will see in Chapter 33 that a knowledge of normal forms for g2 and
invariants for gm is useful for characterising beams. In Chapter 34 we will see that normal
forms for g3, g4, · · · might, if we knew them, be useful in the approximate but exactly
symplectic numerical evaluation of the effect of a general map M on a general phase-space
point z as in (7.6.2).

Exercises

32.1.1. Show that (1.3) defines an equivalence relation. See Exercise (5.12.7).
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32.2 Solved Polynomial Orbit Problems

In this section we will describe briefly some of what is known about the orbits of gm under
the action of Sp(2n) or, to be more precise, Sp(2n,R). Our results will be fairly complete
for the cases m = 1 and m = 2, and therefore these cases can be characterized as being
solved. The cases m > 2 are much more difficult, and will be characterized largely in terms
of what is not known. They are treated in the next section.

First, to dispell a possible false expectation, recall the action of the rotation group on
ordinary 3-dimensional Euclidean space. If x, y, z are the usual Cartesian coordinates in
Euclidean 3-space, we know that the group SO(3) of rotations about the origin preserves the
polynomial (x2 + y2 + z2) and any function of this polynomial. Does something analogous
happen for the action of Sp(2n) on phase space? The answer is no. Suppose that some gm
is preserved,

gtr
m = gm. (32.2.1)

Then, from (1.2), we find the result

gm(Rz) = gm(z) (32.2.2)

for all R in Sp(2n). But, from Sections 3.6.5 and 7.2, we know that Sp(2n) acts transitively
on phase space. Therefore, any gm that satisfies (2.2) for all R must have the same value
everywhere in phase space, and the only such polynomial is g0.

There is another instructive way to reach the same conclusion. From (1.1), (1.2), and
(2.2) one sees that to be preserved gm must satisfy the relation

exp(: εf2 :)gm = gm for all f2. (32.2.3)

The infinitesimal version of (2.3) is the relation

: f2 : gm = 0 for all f2. (32.2.4)

But, say for sp(6), we know that any gm belongs to the irreducible representation Γ(m, 0, 0).
See Section 1.8. Therefore, the only way that (2.4) can be satisfied is to have m = 0.

32.2.1 First-Order Polynomials

We have seen that there is no nontrivial preserved gm. Thus, Sp(2n) must have some genuine
action on each Pm. Let us begin with the case of P1. Any g1 in P1 can be written in the
form

g1(a; z) =
∑
j

ajzj = (a, z). (32.2.5)

In this case use of (1.2) gives the result

gtr
1 (a; z) = (a,Rz) = (RTa, z) = g1(RTa; z) = g1(atr; z). (32.2.6)

Here we have introduced the notation

atr = RTa. (32.2.7)
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We know that RT is symplectic if R is symplectic; and we again recall that Sp(2n) acts
transitively. It follows that if a is any nonzero 2n-vector, there is a symplectic R such
that atr is any desired vector. Therefore, P1 decomposes into two equivalence classes: the
identically zero polynomial and all the rest. If we ignore the trivial case of the identically zero
polynomial, we may say that P1 consists of only one equivalence class and correspondingly,
a single orbit. A convenient normal form is the monomial q1 with unit coefficient,

gN1 = q1. (32.2.8)

32.2.2 Second-Order Polynomials

Next consider P2. Here the situation is more complicated. Any g2 in P2 can be written in
the form

g2(S; z) =
∑
jk

Sjkzjzk = (z, Sz) (32.2.9)

where S is any symmetric matrix. In this case use of (1.2) gives the result

gtr
2 (S; z) = (Rz, SRz) = (z, RTSRz) = g2(Str; z) (32.2.10)

where
Str = RTSR. (32.2.11)

It is easily checked that Str is symmetric if S is.
The analysis of the relation (2.11) is facilitated by a trick. Let B denote the Hamiltonian

matrix gotten from S by the rule
B = JS. (32.2.12)

Since J is invertible, one can always find S given B, and vice versa. See Section 3.7. Next
we define Btr by the rule

Btr = JStr. (32.2.13)

With the aid of these definitions the relation (2.11) takes the form

Btr = JStr = JRTSR = JRTJ−1JSR = R−1BR. (32.2.14)

Here we have used (3.1.9). With the aid of J we have turned a symplectic congruency
relation (2.11) into a symplectic conjugacy (similarity) relation (2.14). What we learn from
(2.14) is that the problem of finding orbits in P2 is equivalent to finding orbits in the
space of 2n × 2n real Hamiltonian matrices under the action of real symplectic similarity
transformations. We know that eigenvalues are unchanged by similarity transformations,
and therefore expect that eigenvalues and functions constructed from eigenvalues will play
an important role.

Suppose we were allowed to make arbitrary (including complex and nonsymplectic) sim-
ilarity transformations. Then we know that B, if it has distinct eigenvalues, can be diago-
nalized. And if the eigenvalues are not distinct, B might still be diagonalizable or, in the
worst case, it could still be brought to Jordan normal form. We might define the diagonal or
Jordan form for B to be Btr, and then try to form Str and gN2 = gtr

2 accordingly. However,
we are only allowed to use real symplectic similarity transformations, and we must see to
what extent something analogous can be done using only such transformations.
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32.2.2.1 Two-Dimensional Phase-Space Case

We will come to the general 2n× 2n case eventually. As a warm-up exercise, consider first
the 2× 2 case for 2-dimensional phase space.. Then g2 has the general form

g2 = βp2 + 2αpq + γq2 (32.2.15)

where α, β, γ are arbitrary constants. Correspondingly, the matrices S and B take the
forms

S =

(
γ α
α β

)
, (32.2.16)

B =

(
α β
−γ −α

)
. (32.2.17)

Evidently the transformation (2.14) cannot change the determinant of B which we will call
δ,

δ = detB = βγ − α2. (32.2.18)

That is, δ is an invariant constructed from the coefficients of g2. [Note that δ is just the
negative of the discriminant. See (8.7.30).] However, as will be seen, we can change α, β,
γ while maintaining the condition (2.18). Note that the matrix B has the characteristic
polynomial

P (λ) = det(B − λI) = λ2 + βγ − α2 = λ2 + δ, (32.2.19)

and therefore has the eigenvalues

λ± = ±(α2 − βγ)1/2 = ±(−δ)1/2. (32.2.20)

It is convenient to consider separately the six cases listed below:

i. β > 0

ii. β < 0

iii. γ > 0

iv. γ < 0

v. β = γ = 0

vi. α = β = γ = 0

In the next few paragraphs we will treat them one by one.
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Case i, β > 0

Let us begin with case i by supposing β > 0. Let M be the symplectic matrix defined by
the equation

M =

( √
β 0

−α/
√
β 1/

√
β

)
. (32.2.21)

Then use of (2.11) with R = M gives a transformed S that we will call S ′,

S ′ = MTSM =

(
δ 0
0 1

)
. (32.2.22)

Next suppose that δ > 0. In this case we conclude from (2.18) that γ > 0 and from (2.20)
that the eigenvalues λ± are pure imaginary. Let N be the symplectic matrix

N =

(
δ−1/4 0

0 δ1/4

)
. (32.2.23)

Use of N to transform S ′ to Str gives the result

Str = NTS ′N =

(
δ−1/4 0

0 δ1/4

)(
δ 0
0 1

)(
δ−1/4 0

0 δ1/4

)
=

(
δ1/2 0
0 δ1/2

)
. (32.2.24)

Correspondingly gtr
2 is given by the relation

gtr
2 = (z, Strz) = δ1/2(p2 + q2). (32.2.25)

Suppose instead that δ = 0. Now we conclude from (2.18) that γ ≥ 0 and from (2.20) that
the eigenvalues λ± both vanish. In this case S ′ as given by (2.22) can be used directly to
give the result

gtr
2 = (z, S ′z) = p2. (32.2.26)

It is easily verified that p2 and q2 are equivalent,

p2 ∼ q2. (32.2.27)

See Exercise 2.1. Therefore, if desired, we can find and employ an R such that

gtr
2 = q2. (32.2.28)

Finally suppose that δ < 0 (in which case βγ < α2 and the eigenvalues λ± are real). Let N
be the symplectic matrix

N =

(
(−δ)−1/4 0

0 (−δ)1/4

)
. (32.2.29)

Use of N to transform S ′ to Str gives the result

Str = NTS ′N =

(
(−δ)−1/4 0

0 (−δ)1/4

)(
δ 0
0 1

)(
(−δ)−1/4 0

0 (−δ)1/4

)
= (−δ)1/2

(
1 0
0 −1

)
. (32.2.30)

Correspondingly gtr
2 is given by the relation

gtr
2 = (z, Strz) = (−δ)1/2(q2 − p2). (32.2.31)
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Case ii, β < 0

To consider case ii, suppose β < 0. Let M be the symplectic matrix defined by the equation

M =

( √
−β 0

α/
√
−β 1/

√
−β

)
. (32.2.32)

Then use of (2.11) with R = M gives a transformed S which we again call S ′,

S ′ = MTSM =

(
−δ 0
0 −1

)
. (32.2.33)

Next suppose δ > 0. In this case we conclude from (2.18) that γ < 0 and from (2.20) that
the eigenvalues λ± are pure imaginary. Again let N be the symplectic matrix (2.23). Then
we find for Str the result

Str = NTS ′N = −δ1/2I. (32.2.34)

Correspondingly gtr
2 is given by the relation

gtr
2 = −δ1/2(p2 + q2). (32.2.35)

Suppose instead that δ = 0. Now we conclude from (2.18) that γ ≤ 0 and from (2.20) that
the eigenvalues λ± both vanish. In this case use of S ′ directly gives the result

gtr
2 = −p2. (32.2.36)

Alternatively, in view of (2.27), we can find an R such that

gtr
2 = −q2. (32.2.37)

Finally suppose δ < 0. Then use of (2.33) and N given by (2.29), and calling the result S ′′,
give the relation

S ′′ = −
(

(−δ)1/2 0
0 −(−δ)1/2

)
= −(−δ)1/2

(
1 0
0 −1

)
. (32.2.38)

Also, it is easily verified that in this case use of the symplectic matrix J gives the relation

Str = JTS ′′J = −S ′′ = (−δ)1/2

(
1 0
0 −1

)
. (32.2.39)

It follows that we may take for gtr
2 the polynomial

gtr
2 = (−δ)1/2(q2 − p2). (32.2.40)

Cases iii and iv, γ > 0 or γ < 0

We have covered cases i and ii. Exercise 2.2 shows that cases iii and iv give results identical
to those for cases i and ii, respectively. In particular, we still find the results (2.25), (2.26),
(2.28), (2.31), (2.35), (2.36), (2.37), and (2.40) [which is identical to (2.31)].
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Case v, β = γ = 0

For case v we immediately have the result

S =

(
0 α
α 0

)
= (−δ)1/2

(
0 1
1 0

)
, (32.2.41)

and g2 takes the form
g2 = 2(−δ)1/2qp. (32.2.42)

Let O be the symplectic matrix

O = (1/
√

2)

(
1 −1
1 1

)
. (32.2.43)

Use of O to transform S gives the result

Str = OTSO = (−δ)1/2

(
1 0
0 −1

)
. (32.2.44)

Correspondingly, we find for gtr
2 the identical result (2.40). Note that comparison of (2.41)

and (2.44) reveals that there are the equivalence relations

+ (−δ)1/2(q2 − p2) ∼ −(−δ)1/2(q2 − p2) ∼ −2(−δ)−1/2qp ∼ +2(−δ)1/2qp. (32.2.45)

Case vi, α = β = γ = 0

Finally, case vi gives the zero polynomial.
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Normal Forms

Evidently, we may take the various gtr
2 discovered for cases i through vi to be normal forms.

We see that, for the most part, the normal form is labeled by the value of the invariant
δ with additional qualifications for the sign of β or γ in the cases δ ≥ 0. Therefore, as
mentioned before, a necessary condition for h2 ∼ g2 is that they have the same invariant.
All these results are summarized in Figure 2.1 below.

δ < 0 δ = 0 δ > 0
(−δ)1/2(q2 − p2) q2 or p2 if β or γ > 0 (δ)1/2(p2 + q2) if β or γ > 0

or − q2 or − p2 if β or γ < 0 − (δ)1/2(p2 + q2) if β or γ < 0
2(−δ)1/2pq

0 11 0.5 0.5
δ

Figure 32.2.1: Normal forms gN2 and eigenvalue spectrum of associated Hamiltonian matrices
in the case of 2-dimensional phase space. The normal forms given in the three columns above
are for the cases δ < 0, δ = 0, and δ > 0, respectively.

Geometrical Description

It is also instructive to examine the surfaces βγ − α2 = δ for various values of δ. We will
see that each such surface is an orbit. To do so, it is convenient to perform a 45◦ rotation
in the β, γ plane, and to scale α, by introducing new variables ξ, η, ζ by the definitions

β = (1/
√

2)(ξ − η), (32.2.46)

γ = (1/
√

2)(ξ + η), (32.2.47)

α = (1/
√

2)ζ. (32.2.48)

In terms of these variables the relation (2.18) becomes

ξ2 − η2 − ζ2 = 2δ. (32.2.49)

Also, use of the scalar product of Section 7.3 and (2.15) gives the result

〈g2, g2〉 = 2β2 + 4α2 + 2γ2 = 2(ξ2 + η2 + ζ2). (32.2.50)
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Thus, polynomials of any given norm are spheres in ξ, η, ζ space.
In the case that δ ≤ 0, the relation (2.49) can be rewritten in the form

η2 + ζ2 − ξ2 = −2δ. (32.2.51)

For δ < 0 this equation yields hyperboloids of one sheet with symmetry axis ξ. See Figure
2.2a below. Evidently for δ < 0 the points on a given hyperboloid that are closest to the
origin lie on the plane ξ = 0, in which case (2.51) becomes the circle

η2 + ζ2 = −2δ. (32.2.52)

According to (2.50) all polynomials on this circle have the same squared norm, namely −4δ.
The normal form (2.31) lies on this circle and has the coordinates

ξ = 0, η = (−2δ)1/2, ζ = 0, (32.2.53)

or, equivalently,
− β = γ = (−δ)1/2, α = 0. (32.2.54)

Here use has been made of (2.46) through (2.48). Evidently all points on the hyperboloid
corresponding to a given value of δ < 0 lie on the same orbit. That is, there is one equivalence
class for each value of δ < 0.

The case δ = 0 produces two cones with a common vertex at the origin. Again see Figure
2.2a. Shortly we will discuss it more.

For δ > 0 the equation (2.49) yields a hyperboloid of two sheets with symmetry axis ξ.
See Figure 2.2b. On the upper sheet ξ > 0, and on the lower sheet ξ < 0. Also from (2.49)
we conclude that

ξ2 − η2 = ζ2 + 2δ > 0 when δ > 0. (32.2.55)

It follows from (2.46) and (2.47) that β, γ > 0 on the upper sheet and β, γ < 0 on the lower
sheet. Also, on the upper sheet and for a given value of δ > 0, there is a single point closest
to the origin; from (2.49) it has the coordinates

η = ζ = 0, ξ = (2δ)1/2, (32.2.56)

or, equivalently,
β = γ = δ1/2, α = 0. (32.2.57)

This point corresponds to the normal form given by (2.25). Similarly, on the corresponding
lower sheet, there is also a single point closest to the origin with the coordinates

η = ζ = 0, ξ = −(2δ)1/2, (32.2.58)

or, equivalently,
β = γ = −δ1/2, α = 0. (32.2.59)

This point corresponds to the normal form given by (2.35). Evidently, for a fixed value of
δ > 0, all points on the upper sheet lie on the same orbit, and those on the lower sheet lie
on a second distinct orbit. Consequently, there are two equivalence classes for each positive
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value of δ. The upper sheet gives the case β, γ > 0, and the lower sheet gives the case
β, γ < 0.

There remains the case δ = 0 for which, as already mentioned, the relation (2.49) yields
two cones. These cones have no point in common save the origin which corresponds to the
single-element equivalence class g2 = 0. Moreover, points on the upper and lower cones
belong to separate equivalence classes. It is easy to check that β or γ > 0 on the upper
cone and β or γ < 0 on the lower cone. (Here the origin is to be excluded.) The monomial
+q2 given by (2.28) provides a normal form for polynomials corresponding to points on the
upper cone. Its coordinates are given by the relations

ξ = η = 1/
√

2, ζ = 0, (32.2.60)

or, equivalently,
α = β = 0, γ = 1. (32.2.61)

The monomial −q2 given by (2.37) provides a normal form for polynomials corresponding
to points on the lower cone. Its coordinates are given by the relations

ξ = η = −1/
√

2, ζ = 0, (32.2.62)

or, equivalently,
α = β = 0, γ = −1. (32.2.63)

It follows that each cone is a separate orbit.
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a b

Figure 32.2.2: Equivalence classes (orbits/leaves) for the space P2 of second-order polyno-
mials in two variables. They are displayed in terms of the variables ξ, η, ζ. In this figure the
ξ axis points upward, the η axis points out of the page, and the ζ axis points to the right.
Case a, for which δ < 0, shows a typical one-sheeted hyperboloid. The point on the equator
given by (2.53) and (2.54) corresponds to the normal form (−δ)1/2(q2− p2) for that value of
δ. Also shown on this diagram are the two cones for δ = 0. The point on the front of the top
cone given by ((2.60) and (2.61) corresponds to the normal form +q2 and the point on the
rear of the bottom cone given (2.62) and (2.63) by corresponds to the normal form −q2. The
origin where the cones meet is the single-element equivalence class g2 = 0. Case b, for which
δ > 0, shows a typical two-sheeted hyperboloid. Also shown is the sphere (2.50) that just
kisses the hyperboloid. The two kissing points (the points on the upper and lower sheets
that are closest to the origin) correspond to the normal forms ±δ1/2(p2 + q2). For simplicity,
cases a and b are shown separately. They should actually be superimposed along with many
other such hyperboloids to show all the one-sheeted and two-sheeted hyperboloids for all
values of δ.

Observations

Note that generically each equivalence class is two dimensional. However, the origin is zero
dimensional. There are four other observations to be drawn from the simple 2-dimensional
phase-space example we have been studying.

First, we know that exponentiating Hamiltonian matrices produces symplectic matrices.
Therefore the normal form problem for quadratic polynommials is related to the normal
form problem for symplectic matrices. For example, exponentiating Hamiltonian matrices
corresponding to the quadratic polynomials associated with points on a one-sheeted hyper-
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boloid such as that shown in Figure 2.2a for δ < 0 produces symplectic matrices whose
spectrum corresponds to that shown in case 1 of Figure 3.4.1. Also, exponentiating Hamil-
tonian matrices corresponding to the quadratic polynomials associated with points on either
sheet of the two-sheeted hyperboloid such as that shown in Figure 2.2b for δ > 0 produces
symplectic matrices whose spectrum corresponds to that shown in case 3 of Figure 3.4.1. In
particular, exponentiating the Hamiltonian matrix corresponding to a normal form gN2 for
δ > 0 produces symplectic matrices of the form (3.5.58). Finally, exponentiating Hamilto-
nian matrices corresponding to the quadratic polynomials associated with points on either
cone as shown in Figure 2.2a for δ = 0 produces symplectic matrices whose spectrum corre-
sponds to that shown in case 4 of Figure 3.4.1. Because of the relation between quadratic
polynomial and symplectic matrix normal forms, the normal form references cited at the
end of Chapter 3 are also relevant to the polynomial case. However, as learned in Section
8.7.2, not every symplectic matrix can be written in single exponential form. Therefore, the
classification of symplectic matrices is more complicated than the classification of quadratic
polynomials (Hamiltonian matrices).

The second observation is that all quadratic polynomials associated with points on the
upper-sheet of the two-sheeted hyperboloid for δ > 0, see Figure 2.2b, are positive definite.
That is, such polynomials obey g2(z) > 0 for any nonzero z. From this perspective, (2.25) is
the normal form for positive-definite quadratic polynomials. Correspondingly, all quadratic
polynomials associated with points on the lower sheet of the two-sheeted hyperboloid are
negative definite. They obey g2(z) < 0 for any nonzero z. Their normal form is given by
(2.35).

The third observation is that the normal form problem for quadratic polynomials is iden-
tical to that of classifying quadratic Hamiltonians: Given two quadratic Hamiltonians, is
there a linear canonical transformation that will send one into the other? Given a quadratic
Hamiltonian, how “simple” can it be made by applying a suitable linear canonical transfor-
mation? Given a quadratic Hamiltonian, what will be the nature of the motion it generates?
For the case of a 2-dimensional phase space we have learned that all quadratic Hamiltonians
with δ < 0 can be brought to the form (2.31), and they generate exponentially unbounded
motion. All nonzero Hamiltonians with δ = 0 can be brought to one of the forms (2.26),
(2.36), and they generate linearly unbounded motion. All Hamiltonians with δ > 0 can be
brought to one of the forms (2.25), (2.35), and they generate bounded motion. See Exercise
2.4.

The fourth observation is that we may view the g2 as elements of the Lie algebra sp(2).
From this perspective, we have been studying what elements in the Lie algebra sp(2) can
be transformed into each other under the action of the group Sp(2). In the case of a 2n-
dimensional phase space we may view the g2 as elements of the Lie algebra sp(2n), and
studying the action of Sp(2n) on the g2 is equivalent to studying the action of Sp(2n) on
sp(2n). See Exercise 2.6 for a preliminary effort in this direction, mostly devoted to sp(4).
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32.2.2.2 Case of Four-Dimensional Phase Space

Having mastered the case of 2-dimensional phase space, we consider the next more compli-
cated case, namely 4-dimensional phase space. Now S takes the general form

S =


a b c d
b e r s
c r t u
d s u v

 . (32.2.64)

Invariants

The Hamiltonian matrix B = JS has the characteristic polynomial

P (λ) = det(B − λI) = λ4 + Cλ2 +D (32.2.65)

where
C = −b2 + ae− 2dr + 2cs− u2 + tv, (32.2.66)

D = d2r2 − 2cdrs+ c2s2 − d2et+ 2bdst− as2t

+ 2cdeu− 2bdru− 2bcsu+ 2arsu+ b2u2

− aeu2 − c2ev + 2bcrv − ar2v − b2tv + aetv. (32.2.67)

Here we have used the form (3.2.10) for J . Note that P (λ) has only even powers of λ as
expected for the characteristic polynomial of a Hamiltonian matrix. See Exercise 3.7.14.

It is well known that the coefficients of the characteristic polynomial are invariant under
similarity transformations; and, according to (2.14), it is similarity transformations that are
being made. Therefore C and D are invariants.

Do they have any interpretation? From (2.65) we have the relation

D = det(B) = det(JS) = [det(J)][det(S)] = det(S). (32.2.68)

Here we have used (3.1.4). It follows that D (modulo sign conventions) is the discriminant
of the quadratic form g2. From this perspective the invariance of D follows directly from
taking the determinant of both sides of (2.11) and using (3.1.8). Also see Exercise 2.5.

The interpretation of C is a bit more complicated. Since B is traceless (see Exercise
3.7.10), use of (3.7.136), and (3.7.137), and (3.7.143) gives the result

C = −(1/2) tr(B2) = −(1/2)(B,B)F . (32.2.69)

Here we have also used (21.11.15) and employed the subscript F to denote the fundamental
representation. Since C is constructed from the invariant metric, and the quadratic Casimir
operator is also constructed from this metric, by mental association C (as a function of the
coefficients in S) is sometimes called the Casimir polynomial. From this perspective, the
invariance of C is a special case of (21.11.25).

We have seen that there are two invariants for the case of 4-dimensional phase space,
namely C and D. Since the set of all symmetric 4 × 4 matrices S is 10 dimensional, it
follows that the orbit space (each equivalence class) is generically 8 dimensional. However,
at certain points it has smaller dimension. See Exercise 2.6. In various regions it may also
be expected to be multi-sheeted.
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Eigenvalues

The eigenvalues of B [the roots of P (λ) = 0] are of the form

λ = ±
√
w (32.2.70)

where w is a root of the equadratic equation

w2 + Cw +D = 0. (32.2.71)

That is, w is given by the relation

w = [−C ± (C2 − 4D)1/2]/2. (32.2.72)

Figure 2.3 below shows possible eigenvalue configurations for 4×4 real Hamiltonian matrices
depending on the values of C and D. Evidently, there are nine cases to be considered:

i. Complex quartet of eigenvalues of the form ±α± iβ.

ii. Two pairs of pure imaginary eigenvalues ±iα and ±iβ.

iii. Two pairs of real eigenvalues ±α and ±β.

iv. One pair of real eigenvalues ±α and one pair of pure imaginary eigenvalues ±iβ.

v. A pair of repeated real eigenvalues ±α.

vi. A pair of repeated pure imaginary eigenvalues ±iβ.

vii. A pair of real eigenvalues ±α and repeated zero eigenvalues 0, 0.

viii. A pair of imaginary eigenvalues ±iα and repeated zero eigenvalues 0, 0.

ix. A quartet of zero eigenvalues 0, 0, 0, 0.

Cases i through iv are generic, and cases v through ix are degenerate. As usual, transitions
between generic configurations can only occur by passage through a degenerate configuration.
Note that the results we have found are in accord with those of Exercise 3.7.14. Finally, It
is instructive to compare the pair of figures 27.2.1, 3.4.3, the pair of figures 27.2.3, 3.4.4,
and the pair of figures 27.2.4, 3.5.1. The first figure in each pair displays the spectrum
(eigenvalues) of elements in the Lie algebra sp(2n,R), and the second displays the spectrum
of elements in the associated Lie group Sp(2n,R). See also Figures 3.4.1 and 3.4.2.

Normal Forms

For each of the cases i through ix there is a corresponding normal form. They are listed
below. Note that cases i, v, vi, and ix are special in that the two degrees of freedom cannot
be uncoupled by a suitable choice of coordinates. In all other cases the normal form (when
viewed as a Hamiltonian) is a sum of two terms involving different degrees of freedom, and
therefore the two terms are in involution. But here is an amazing thing: In each of the
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Figure 32.2.3: Eigenvalues of a 4×4 real Hamiltonian matrix as a function of the coefficients
C and D in its characteristic polynomial.

coupled cases i, v, vi, and ix the normal form gN2 is also the sum of two terms, and it can
be verified in each case that the two terms are also in involution.

Case i:

λ = ±α± iβ, all signs taken independently, with α, β > 0,

C = −2α2 + 2β2,

D = (α2 + β2)2,

gN2 = 2α(q1p1 + q2p2) + 2β(q1p2 − q2p1). (32.2.73)

Case ii:

λ = ±iα and ± iβ, all signs taken independently, with α, β > 0,

C = α2 + β2,

D = α2β2,

gN2 = ±α(p2
1 + q2

1)± β(p2
2 + q2

2), all signs taken independently. (32.2.74)

Case iii:

λ = ±α and ± β, all signs taken independently, with α, β > 0,

C = −α2 − β2,

D = α2β2,

gN2 = 2αq1p1 + 2βq2p2. (32.2.75)
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Case iv:

λ = ±α and ± iβ, all signs taken independently, with α, β > 0,

C = −α2 + β2,

D = −α2β2,

gN2 = 2αp1q1 ± β(p2
2 + q2

2). (32.2.76)

Case v:

λ = repeated pair ± α with α > 0,

C = −2α2,

D = α4,

gN2 = 2α(q1p1 + q2p2) + 2q1p2 or case iii with α = β. (32.2.77)

Case vi:

λ = repeated pair ± iβ with β > 0,

C = 2β2,

D = β4,

gN2 = 2β(q1p2 − q2p1)± (q2
1 + q2

2) or case ii with α = β. (32.2.78)

Case vii:

λ = ±α and 0, 0 with α > 0,

C = −α2,

D = 0,

gN2 = 2αq1p1 ± q2
2 or case iii with β = 0. (32.2.79)

Case viii:

λ = ±iα and 0, 0 with α > 0,

C = α2,

D = 0,

gN2 = ±α(q2
1 + p2

1)± q2
2 or case ii with β = 0. (32.2.80)

Case ix:

λ = 0, 0, 0, 0,

C = 0,

D = 0,

gN2 = 2q1p2 ± q2
2, or (32.2.81)

gN2 = 2q1p2, or (32.2.82)

gN2 = ±q2
1 ± q2

2, all signs taken independently, or (32.2.83)

gN2 = ±q2
1. (32.2.84)
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Observations

We are ready for four more observations. The first is that, up to ± signs and degeneracy
complications that depend on the Jordan block structure of B, the normal form depends
primarily on the eigenvalue spectrum. And, since the spectrum depends only on the invari-
ants C and D, it follows that the normal form depends primarily on the values of C and D.
Thus, as before, a necessary condition for h2 ∼ g2 is that they have the same invariants.

The second observation is that, unlike the 2-dimensional case, we have not exhibited the
transformation R that brings a g2 to its normal form gN2 . In general this must be done
numerically, and enough is known about the problem to write computer programs for this
purpose. Exercise 2.7 treats an interesting example where some of the required mathematical
concepts are illustrated.

The third observation is that we have not exhibited the geometric nature of the various
equivalence classes and their representative normal forms in analogy to Figure 2.2. To do
so is difficult because, as already described earlier, we need to study 8-dimensional surfaces
embedded in a 10-dimensional Euclidean space. See Exercise 2.6. Also, as indicted by the
± signs in cases ii, iv, and vi through ix, there is a multi-sheeted structure in parts of the
space. However, in the generic situation when the eigenvalues are distinct (no degeneracy),
there is one attribute of the normal forms that we can verify without too much effort. As
Figure 2.2 illustrates, in the 2-dimensional generic case there is no point on a given orbit
that is closer to the origin then the normal form. We may guess that the same is true in the
2n-dimensional case. What we can easily check is that a gN2 is at least a local minimum of
〈gtr

2 , g
tr
2 〉.

Consider elements gtr
2 of the form

gtr
2 = RgN2 (32.2.85)

with R given by (1.1). These are just the elements of the equivalence class {gN2 }. From
(7.3.29) we know that transformations of the form exp(: f c2 :) do not change the distance of
an element from the origin. Therefore, we may restrict our attention to transformations of
the form

Rε = exp(ε : fa2 :) (32.2.86)

where, for convenience, we have explicitly included a scaling parameter ε. Let us define
elements gε2 by the relation

gε2 = Rεg
N
2 . (32.2.87)

Then we find the results

〈gε2, gε2〉= 〈Rεg
N
2 ,Rεg

N
2 〉 = 〈gN2 ,R†εRεg

N
2 〉 = 〈gN2 ,R2

εg
N
2 〉 = 〈gN2 , exp(2ε : fa2 :)gN2 〉

= 〈gN2 , gN2 〉+ 2ε〈gN2 , : fa2 : gN2 〉+ (4ε2/2!)〈gN2 , : fa2 :2 gN2 〉+O(ε3). (32.2.88)

Here we have used (7.3.30), which states that : fa2 : is Hermitian. Because : fa2 : is Hermitian,
we may also write

〈gN2 , : fa2 :2 gN2 〉 = 〈: fa2 : gN2 , : f
a
2 : gN2 〉 ≥ 0. (32.2.89)

It follows from (2.88) that gN2 is at least a local minimum if we have the relation

〈gN2 , : fa2 : gN2 〉 = 0. (32.2.90)
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It can be verified by explicit calculation that (2.90) holds for all the normal forms in
the generic cases i through iv. Consider, for example, case i. Then, using (2.73) and the
notation of Section 5.5.7, we may write

gN2 = −2αf 2 − 2βb2, (32.2.91)

fa2 = φ1f
1 + φ2f

2 + φ3f
3 + γ1g

1 + γ2g
2 + γ3g

3. (32.2.92)

Here the φj and γj are arbitrary parameters. See (5.7.4) and (5.7.31). From the Poisson
bracket rules (5.7.32) through (5.7.37) we find the result

: fa2 : gN2 = [fa2 , g
N
2 ] = −[gN2 , f

a
2 ]

= 4βφ1f
3 − 4βφ3f

1 + 4βγ1g
3 − 4βγ3g

1

− 4αφ1b
3 + 4αφ3b

1 + 4αγ2b
0. (32.2.93)

Finally, all the terms on the right of (2.91) are orthogonal to all the terms on the right of
(2.93). See Exercise 7.3.8. It follows that (2.90) is true, and therefore gN2 is indeed at least
a local minimum.

32.2.2.3 Case of General 2n-Dimensional Phase Space

For the general case of 2n dimensional phase space normal-form results are also fully known,
but considerably more complicated. However, based on our experience with the two and four
dimensional cases, we are prepared for some statements about the general 2n-dimensional
case. The first is that nothing new, beyond what has already been seen for the 4-dimensional
case, happens in the general case providing all the eigenvalues are distinct (as is generically
true). When the eigenvalues are distinct (no degeneracy), the normal form gN2 can always
be taken to be a sum of terms of the form (2.73) through (2.76). Also, if zero occurs only as
a doubly repeated eigenvalue, then the normal form gN2 can be taken to be a sum of terms
of the form (2.73) through (2.76) possibly augmented by a term of the form ±q2

j , as occurs
for example in (2.79) and (2.80).

The second observation is that, as is already clear in the 4-dimensional case, repeated
(degenerate) eigenvalues can cause complications. When the eigenvalues are degenerate
there is the possibility of having the Hamiltonian analog of Jordan blocks. Fortunately,
these complications are completely understood in the general case, and detailed results can
be found in the literature. Moreover, it is important to note that there are two common
cases where degeneracy causes no problems. In the first case, suppose we are working with
a Hamiltonian that can be written in the form h2 = T2(p) + V2(q) where the kinetic energy
term T2 is known to be positive definite. Then standard normal mode theory shows that
the Hamiltonian can always be diagonalized by a linear canonical transformation [Sp(2n)
element] even if some or all eigenvalue pairs are degenerate. Second, suppose that g2 is
known to be positive definite. Then gN2 can always be taken to be a sum of harmonic
oscillators, for example as in (2.74), with all signs positive even if some or all eigenvalue
pairs are degenerate. This result will be proved and used in Chapter 33.



2136 32. SOLVED AND UNSOLVED POLYNOMIAL ORBIT PROBLEMS

Exercises

32.2.1. Verify the equivalence relation (2.27). Find an R such that Rq = p and Rp = −q.

32.2.2. Study cases iii and iv for 2-dimensional phase space and show that your results are
identical to those obtained for cases i and ii. In particular, exhibit transforming matrices M
analogous to (2.21) and (2.32). For example, show that for γ > 0 one may use the matrix

M =

(
1/
√
γ −α/√γ

0
√
γ

)
. (32.2.94)

32.2.3. Verify (2.50).

32.2.4. Solve Hamilton’s equations of motion using the normal forms (2.25), (2.35), (2.26),
(2.36), and (2.31) as Hamiltonians.

32.2.5. Equation (2.69) shows that the invariant C can be expressed in terms of the Lie
element B and various manifestly invariant trace operations. What can be said about the
discriminant invariants δ and D?

Use (3.7.115) to show that

δ = det(B) = −(1/2) tr(B2) = −(1/2)(B,B)F (32.2.95)

in the 2 × 2 case. (Recall that B is traceless.) Observe that stability is determined by the
value of (B,B)F . Show, by examining Figure 2.1, that stability occurs when (B,B)F < 0.

Use (3.7.117) to show that

D = det(B) = (1/8)[tr(B2)]2 − (1/4) tr(B4) = (1/2)C2 − (1/4) tr(B4) (32.2.96)

in the 4 × 4 case. Show, by employing (2.69) and examining Figure 2.3, that, unlike the
2× 2 case, knowledge of more that (B,B)F is required to determine stability.

In view of the ingredients of (2.95) and (2.96), δ and D could also be called Casimir
polynomials.

32.2.6. This Exercise studies the dimensionality of the orbits {gN2 } for various normal forms
gN2 . Suppose gN2 is some normal form. Then the orbit of gN2 consists of all elements of the
form

gtr
2 = RgN2 . (32.2.97)

Since R is a continuous and invertible mapping (a homeomorphism) of P2 into itself, the
dimensionality of {gN2 } will be the same at every point on the orbit, and it suffices to
determine the dimensionality in the vicinity of gN2 . In this case we may take R to be near
the identity, which means that it can be written in the form

R = exp(ε : f2 :) (32.2.98)

for some small, but finite, ε. Correspondingly we may rewrite (2.94) in the form

gtr
2 = exp(ε : f2 :)gN2 = gN2 + ε : f2 : gN2 +O(ε2). (32.2.99)
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Thus, infinitesimally, the dimensionality of {gN2 } is given by the number of linearly indepen-
dent elements produced by terms of the form : f2 : gN2 for arbitrary choices of f2. Note that
there is the relation

: f2 : gN2 = [f2, g
N
2 ] = −[gN2 , f2] = − : gN2 : f2. (32.2.100)

All terms of the form (: gN2 : f2) for arbitrary f2 comprise what is called the range (in P2)
of the operator : gN2 :. It is easy to check that the range of a linear operator is a linear
vector space. (Check it!) Consequently, we may also say that the dimensionality of {gN2 } as
a manifold is equal to the linear vector space dimensionality of the range of : gN2 :.

Now carry out the calculations described below:

a) Suppose gN2 is given by (2.73) as in case i. We are going to study the range of this
: gN2 : in P2. Let λj be the eigenvalues for this case labeled by the scheme

λ1 = α + iβ, (32.2.101)

λ2 = −α + iβ, (32.2.102)

λ3 = −α− iβ, (32.2.103)

λ4 = α− iβ. (32.2.104)

Let gj1 be the first-order polynomials defined by the relations

g1
1 = p1 − ip2, (32.2.105)

g2
1 = q1 − iq2, (32.2.106)

g3
1 = q1 + iq2, (32.2.107)

g4
1 = p1 + ip2. (32.2.108)

Evidently they are linearly independent. Verify the eigen relations

: gN2 : gj1 = 2λjgj1. (32.2.109)

Next let gjk2 be the second-order polynomials defined by the relations

gjk2 = gj1g
k
1 . (32.2.110)

Show that there are 10 such polynomials (since there is symmetry in the j, k indices),
and that they are all linearly independent. They consequently form a basis for P2

[and, therefore, also for sp(4)] in the case of a four-dimensional phase space. Show
that these polynomials satisfy the eigen relations

: gN2 : gjk2 = 2(λj + λk)gjk2 . (32.2.111)

Thus, : gN2 : is diagonal in this basis. Verify that g13
2 and g24

2 are eigenvectors with
eigenvalue zero, and verify that all the other eight eigenvectors have nonzero eigenval-
ues.
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The gjk2 form a complex basis for P2. Verify that a real basis is provided by the
elements

g1
2 = Re(g11

2 ) = Re(g44
2 ) = p2

1 − p2
2, (32.2.112)

g2
2 = Im(g11

2 ) = −Im(g44
2 ) = −2p1p2, (32.2.113)

g3
2 = Re(g12

2 ) = Re(g34
2 ) = q1p1 − q2p2, (32.2.114)

g4
2 = Im(g12

2 ) = −Im(g34
2 ) = −q1p2 − q2p1, (32.2.115)

g5
2 = Re(g13

2 ) = Re(g24
2 ) = q1p1 + q2p2, (32.2.116)

g6
2 = Im(g13

2 ) = −Im(g24
2 ) = q2p1 − q1p2, (32.2.117)

g7
2 = g14

2 = p2
1 + p2

2, (32.2.118)

g8
2 = Re(g22

2 ) = Re(g33
2 ) = q2

1 − q2
2, (32.2.119)

g9
2 = Im(g22

2 ) = −Im(g33
2 ) = −2q1q2, (32.2.120)

g10
2 = g23

2 = q2
1 + q2

2. (32.2.121)

Indeed, verify that these elements are mutually orthogonal for the inner product of
Section 7.3.

Using this basis, write an arbitrary f2 in the form

f2 =
10∑
j=1

ajg
j
2 (32.2.122)

where the aj are arbitrary coefficients. Verify the relation

: gN2 : f2 = 4(αa1 + βa2)g1
2 + 4(−βa1 + αa2)g2

2 + 4βa4g
3
2 − 4βa3g

4
2

+ 4αa7g
7
2 + 4(−αa8 + βa9)g8

2 + 4(−βa8 − αa9)g9
2

− 4αa10g
10
2 . (32.2.123)

Observe that all the gj2 except g5
2 and g6

2 appear on the right side of (2.123). Therefore,
the range of : gN2 : is potentially 8 dimensional. To be sure we must show that any
linear combination of g1

2, g2
2, g3

2, g4
2, and g7

2, g8
2, g9

2, g10
2 can be obtained on the right side

of (2.123) for a suitable choice of the aj in (2.122). Evidently there are no problems
with g3

2, g4
2, g7

2, and g10
2 since their coefficients are simply 4βa4, −4βa3, 4αa7, and

−4αa10, respectively, and a3, a4, a7, and a10 appear nowhere else on the right side of
(2.123). For the coefficients of g1

2 and g2
2 we may write the matrix relation(

α β
−β α

)(
a1

a2

)
=

(
αa1 + βa2

−βa1 + αa2

)
. (32.2.124)

The determinant of the matrix appearing on the left side of (2.124) has the value
(α2 + β2). Therefore the matrix is always invertible, and we can achieve any desired
combination of g1

2 and g2
2 on the right side of (2.123). Show that a similar argument

holds for the coefficients of g8
2 and g9

2. We conclude that the range of : gN2 : is indeed
8 dimensional. Correspondingly, {gN2 } is 8 dimensional.
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For any gN2 , consider the set of all polynomials h0
2 such that

: gN2 : h0
2 = 0. (32.2.125)

They comprise what is called the null space or kernel (in P2) of : gN2 :. Show that these
polynomials form a Lie subalgebra with the Poisson bracket as a Lie product. (Hint:
use the Jacobi identity.) Show, for the gN2 given by (2.73), that this Lie algebra is two
dimensional and is spanned by the elements (q1p1 + q2p2) and (q1p2− q2p1), which are
the real and imaginary parts of g13

2 and g24
2 . [Hint: Write h0

2 in the form (2.122) and
use (2.123).] Verify that gN2 is constructed from them and that they are in involution.

Let H be the corresponding subgroup of Sp(4) generated by the : h0
2 : and consider

the coset space Sp(4)/H. Show that in some finite neighborhood of the identity any
element in R can be written in the factored form

R = exp(: hR2 :) exp(: h0
2 :) (32.2.126)

where hR2 is in the range of : gN2 : and h0
2 is in the null space of : gN2 :. The factor

exp(: h0
2 :) corresponds to an element in H, and the factor exp(: hR2 :) corresponds to

some element in the coset Sp(4)/H. From the relation

: h0
2 : gN2 = [h0

2, g
N
2 ] = −[gN2 , h

0
2] = − : gN2 : h0

2 = 0 (32.2.127)

show that

exp(: h0
2 :)gN2 = gN2 (32.2.128)

and

gtr
2 = RgN2 = exp(: hR2 :)gN2 . (32.2.129)

This construction goes beyond the infinitesimal, and shows that the orbit {gN2 } may
be identified with the coset space Sp(4)/H. Evidently, an analogous result holds for
any phase space dimension. In the terminology of Section 5.12, {gN2 } is a homogeneous
space and H is the stability group for gN2 .

b) Carry out similar calculations for the remaining generic cases ii through iv. You should
find that {gN2 } is 8 dimensional in each case.

c) As an example of a degenerate case, consider the specific subcase of case ix for which
gN2 is given by the relation

gN2 = q2
1. (32.2.130)

Following the notation of (2.64), let us write an arbitrary f2 in the form

f2 = aq2
1 + 2bq1p1 + 2cq1q2 + 2dq1p2 + ep2

1

+ 2rp1q2 + 2sp1p2 + tq2
2 + 2uq2p2 + vp2

2. (32.2.131)

Show that

: gN2 : f2 = 4bq2
1 + 4eq1p1 + 4rq1q2 + 4sq1p2. (32.2.132)
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Since all the monomials on the right of (2.132) are linearly independent, inspection
indicates that the range of : gN2 : is 4 dimensional. Corresponding, {gN2 } is 4 dimen-
sional. Since P2 is 10 dimensional, in this case there must be 4 more invariants in
addition to C and D.

Show that the condition : gN2 : h2 = 0, with h2 written in the form (2.131), requires
that b = e = r = s = 0. Therefore, the null space of : gN2 : is 6 dimensional. Verify, as
expected, that the null space is a Lie subalgebra.

Show that

: gN2 :2 za = 0, (32.2.133)

which implies that

B2 = 0. (32.2.134)

We say that B is nilpotent. Correspondingly, {gN2 } in this case is called a nilpotent
orbit. Show that if gtr

2 is any element lying on a nilpotent orbit, it must satisfy the
relation

: gtr
2 :2 za = 0, (32.2.135)

and conversely.

Show that the other normal forms of case ix also produce nilpotent orbits, and find
their dimensions.

Show that each of the ladder elements r̃(µ) given by (21.5.11) through (21.5.18) lies
on a nilpotent orbit. Show that any linear combination of ladder elements of the
form [aαr̃(α) + aβ r̃(β) + aγ r̃(γ)] lies on a nilpotent orbit. Are there other linear
combinations of ladder operators that lie on nilpotent orbits? Represent a general
element g2 in sp(4) as a linear combination of the basis elements given by (21.5.9)
through (21.5.18). What are the necessary and sufficient conditions on the expansion
coefficients for g2 to lie on a nilpotent orbit?

d) Determine the dimension of {gN2 } for some of the other normal forms in cases v through
viii. For example, show for

gN2 = 2αq1p1 (32.2.136)

that {gN2 } is 6 dimensional, and that the null space of : gN2 : has dimension 4. Is this
{gN2 } nilpotent?

32.2.7. Consider the motion of a nonrelativistic particle of rest mass m and charge q in a
uniform magnetic field B with

B = B̃ez. (32.2.137)

Show that this field can be generated by the vector potential

A = −(1/2)(r ×B) = (B̃/2)(xey − yex). (32.2.138)

[This choice of vector potential for B is sometimes called the symmetric gauge. In view of
the facts that ∇ ·A = 0 and r ·A = 0, this choice can also be called the Poincaré-Coulomb
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gauge. See Section 15.2.4 and (16.1.14).] Show that motion in this field is governed by the
Hamiltonian

H = (px + qB̃y/2)2/(2m) + (py − qB̃x/2)2/(2m) + p2
z/(2m)

= (p2
x + p2

y)/(2m) + [q2B̃2/(8m)](x2 + y2)− [qB̃/(2m)](xpy − ypx) + p2
z/(2m)

= (p2
x + p2

y)/(2m) + [q2B̃2/(8m)](x2 + y2)− [qB̃/(2m)]Lz + p2
z/(2m).

(32.2.139)

Here Lz = xpy − ypx is the z component of the canonical angular momentum. Verify that
Lz is an integral of motion.

Evidently the motion in the z direction is uncoupled from the motion in the x, y plane,
and we can devote our attention to the latter. Show that this motion is governed by the
Hamiltonian

Hxy = (z, Sz) (32.2.140)

where the symbol z now stands for the phase-space variables z = (x, px, y, py) and S is the
symmetric matrix

S =


q2B̃2/(8m) 0 0 −qB̃/(4m)

0 1/(2m) qB̃/(4m) 0

0 qB̃/(4m) q2B̃2/(8m) 0

−qB̃/(4m) 0 0 1/(2m)

 . (32.2.141)

Show that the corresponding Hamiltonian matrix B = JS is given by the relation

B =


0 1/(2m) qB̃/(4m) 0

−q2B̃2/(8m) 0 0 qB̃/(4m)

−qB̃/(4m) 0 0 1/(2m)

0 −qB̃/(4m) −q2B̃2/(8m) 0

 . (32.2.142)

Show that for this B the invariants C and D have the values

C = [qB̃/(2m)]2 , D = 0. (32.2.143)

Show that these invariant values correspond to case viii or case ii with β = 0, and that the
eigenvalues of B are

λ = ±iqB̃/(2m) , 0 , 0. (32.2.144)

We now want to find the transformation R that brings Hxy to its normal form.
Introduce the notation

λ± = ±iqB̃/(2m). (32.2.145)

Show that the vectors w± given by

w± =


1

±iqB̃/2
±i
−qB̃/2

 (32.2.146)
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satisfy the relations
w∓ = w±, (32.2.147)

and are eigenvectors of B with eigenvalues λ±,

Bw± = λ±w±. (32.2.148)

Show that the vectors r and s given by

r =


0

−qB̃/2
1
0

 , (32.2.149)

s =


1
0
0

qB̃/2

 , (32.2.150)

are eigenvectors of B with eigenvalue 0,

Br = 0 , Bs = 0. (32.2.151)

Define scaled vectors û, v̂, r̂, ŝ by the relation

û = (qB̃)−1/2 Re(w+) =


(qB̃)−1/2

0
0

−(qB̃)1/2/2

 , (32.2.152)

v̂ = (qB̃)−1/2 Im(w+) =


0

(qB̃)1/2/2

(qB̃)−1/2

0

 , (32.2.153)

r̂ = (qB̃)−1/2r =


0

−(qB̃)1/2/2

(qB̃)−1/2

0

 , (32.2.154)

ŝ = (qB̃)−1/2s =


(qB̃)−1/2

0
0

(qB̃)1/2/2

 . (32.2.155)

Show that these vectors obey the “symplectic” orthonormality conditions

(û, Jv̂) = 1, (32.2.156)

(r̂, Jŝ) = 1, (32.2.157)
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(û, Jr̂) = (v̂, J r̂) = (û, Jŝ) = (v̂, Jŝ) = 0. (32.2.158)

See Sections 3.5 and 4.6 for similar constructions.
Let R be the matrix defined by the relation

R = (û, v̂, r̂, ŝ) =


(qB̃)−1/2 0 0 (qB̃)−1/2

0 (qB̃)1/2/2 −(qB̃)1/2/2 0

0 (qB̃)−1/2 (qB̃)−1/2 0

−(qB̃)1/2/2 0 0 (qB̃)1/2/2

 .

(32.2.159)

Here each vector û, v̂, r̂, ŝ is to be viewed as a column vector so that the collection (2.159)
forms a real 4 × 4 matrix. Show that R, as a consequence of (2.156) through (2.158), is a
symplectic matrix. Verify the relations

B(û± iv̂) = ±i[qB̃/(2m)](û± iv̂), (32.2.160)

Bû = −[qB̃/(2m)]v̂, (32.2.161)

Bv̂ = [qB̃/(2m)]û. (32.2.162)

Show that

BR = (Bû,Bv̂, Br̂, Bŝ) = (−[qB̃/(2m)]v̂, [qB̃/(2m)]û, 0, 0)

=


0 (qB̃)1/2/(2m) 0 0

−(qB̃)3/2/(4m) 0 0 0

−(qB̃)1/2/(2m) 0 0 0

0 −(qB̃)3/2/(4m) 0 0



= R


0 qB̃/(2m) 0 0

−qB̃/(2m) 0 0 0
0 0 0 0
0 0 0 0



= RJ


qB̃/(2m) 0 0 0

0 qB̃/(2m) 0 0
0 0 0 0
0 0 0 0

 . (32.2.163)

Show that

Btr = R−1BR =


0 qB̃/(2m) 0 0

−qB̃/(2m) 0 0 0
0 0 0 0
0 0 0 0

 (32.2.164)

and

Str = J−1Btr = RTSR =


qB̃/(2m) 0 0 0

0 qB̃/(2m) 0 0
0 0 0 0
0 0 0 0

 . (32.2.165)
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It follows that Hxy belongs to case ii with β = 0, and has the normal form

HN
xy = (ω/2)(p2

1 + q2
1) (32.2.166)

where ω is the cyclotron frequency,

ω = (qB̃/m). (32.2.167)

Note that HN
xy does not depend on q2, p2 at all!

Let qi1, pi1, qi2, pi2 be initial conditions at t = 0. For these initial conditions show that the
Hamiltonian HN

yt generates the trajectory

q1(t) = qi1 cos(ωt) + pi1 sin(ωt), (32.2.168)

p1(t) = −qi1 sin(ωt) + pi1 cos(ωt), (32.2.169)

q2(t) = qi2, (32.2.170)

p2(t) = pi2. (32.2.171)

Show that the old and new variables are related by the equation
x
px
y
py

 = R


q1

p1

q2

p2

 , (32.2.172)

and therefore the trajectory in the original phase-space variables is given by the equations

x(t) = (qB̃)−1/2[q1(t) + p2(t)]

= (qB̃)−1/2[qi1 cos(ωt) + pi1 sin(ωt) + pi2], (32.2.173)

px(t) = [(qB̃)1/2/2][p1(t)− q2(t)]

= [(qB̃)1/2/2][−qi1 sin(ωt) + pi1 cos(ωt)− qi2], (32.2.174)

y(t) = (qB̃)−1/2[p1(t) + q2(t)]

= (qB̃)−1/2[−qi1 sin(ωt) + pi1 cos(ωt) + qi2], (32.2.175)

py(t) = [(qB̃)1/2/2][−q1(t) + p2(t)]

= [(qB̃)1/2/2][−qi1 cos(ωt)− pi1 sin(ωt) + pi2]. (32.2.176)

Show that the orbit in the x, y plane is a circle with a radius ρ given by the relation

ρ2 = [(qi1)2 + (pi1)2]/(qB̃), (32.2.177)

and that the center of the circle has coordinates xc, yc given by the relations

xc = (qB̃)−1/2pi2, (32.2.178)

yc = (qB̃)−1/2qi2. (32.2.179)

Note the curious fact that xc and yc do not “commute”. Evaluate the Poisson bracket [xc, yc].
What modifications are required if the particle is relativistic?
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32.2.8. Verify that (2.90) holds for all the generic normal forms.

32.2.9. This is an exercise on Krein collisions. Our aim is to study a simple example
for which Krein collisions are avoided (as expected) when phase advances have the same
sign, and can be seen to occur when phase advances have opposite signs. Consider the
Hamiltonian

H = (ω1/2)(p2
1 + q2

1) + (ω2/2)(p2
2 + q2

2) + εq1q2 (32.2.180)

and the associated map R given by

R = exp(− : H :). (32.2.181)

Since R is a linear map, its action on phase space is described by a matrix R. Following the
discussion surrounding (10.4.24), show that this Hamiltonian can be written in the form

H = (1/2)(z, Sz) (32.2.182)

where the symbol z now stands for the phase-space variables z = (q1, p1, q2, p2) and S is the
symmetric matrix

S =


ω1 0 ε 0
0 ω1 0 0
ε 0 ω2 0
0 0 0 ω2

 . (32.2.183)

Show that the corresponding Hamiltonian matrix B = JS is given by the relation

B =


0 ω1 0 0
−ω1 0 −ε 0

0 0 0 ω2

−ε 0 −ω2 0

 . (32.2.184)

According to (10.4.8) there is the relation

R = exp(B). (32.2.185)

Show that, when ε = 0, R is the matrix

R =


cos(ω1) sin(ω1) 0 0
− sin(ω1) cos(ω1) 0 0

0 0 cos(ω2) sin(ω2)
0 0 − sin(ω2) cos(ω2)

 . (32.2.186)

Therefore, when there is no perturbation, the eigenvalues of R are exp(±iω1) and exp(±iω2),
and the phase advances of R are ω1 and ω2. See Example 5.1 in Section 3.5.

What concerns us are the eigenvalues of B. Once we know them, we will also know
the eigenvalues of R. In particular, if the eigenvalues of B are pure imaginary, then the
eigenvalues of R will lie on the unit circle. Moreover if, under perturbation, the eigenvalues
of B leave the imaginary axis to become a complex quartet, then the eigenvalues of R will
leave the unit circle to form a Krein quartet as in Figure 3.5.1.
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Show that for this B the invariants C and D have the values

C = (ω2
1 + ω2

2), (32.2.187)

D = ω1ω2(ω1ω2 − ε2). (32.2.188)

Evidently, for finite values of ω1, ω2 and ε sufficiently small, both C and D are positive.
Thus, our attention should be turned to the upper right quadrant of Figure 2.3; and we are
concerned with cases i and ii and the transition between them.

With (2.72) and Figure 2.3 in mind, show that

C2 − 4D = (ω2
1 − ω2

2)2 + 4ε2ω1ω2. (32.2.189)

Show that, when ε = 0, the eigenvalues of B are given by

λ = ±iω1, ±iω2. (32.2.190)

Evidently they are pure imaginary, and they are distinct unless ω1 = ω2 or ω1 = −ω2.
Suppose that ω1 and ω2 have the same sign. Show that in this case

C2 − 4D ≥ 0 (32.2.191)

no matter what the value of ε. Prove, consequently, that if ω1, ω2 are finite and of the same
sign, then the eigenvalues remain pure imaginary for sufficiently small ε.1 Indeed, suppose
that

ω1 = ω2 = Ω. (32.2.192)

Show that in this case that
λ = ±iΩ[1± ε/Ω]1/2 (32.2.193)

where all ± signs are to be taken independently. Thus, in this case, the eigenvalues remain
pure imaginary under perturbation (ε 6= 0 but sufficiently small) if ω1, ω2 are finite and of
the same sign. Correspondingly, there is no Krein collision of the eigenvalues of R. Suppose,
instead, that

ω1 = −ω2 = Ω. (32.2.194)

Show that in this case that
λ = ±iΩ[1± iε/Ω]1/2 (32.2.195)

where all ± signs are to be taken independently. Now, under perturbation, the eigenvalues
leave the imaginary axis to become a complex quartet. Correspondingly, the eigenvalues of
R leave the unit circle to become a Krein quartet.

Suppose that ω1 and ω2 are opposite in sign, but not exactly equal in magnitude. What
happens then under perturbation? Show that the eigenvalues of B leave the imaginary axis
to become a complex quartet when

ε ≥ (1/2)|ω2
1 − ω2

2|/(|ω1ω2|)1/2 (32.2.196)

1For sufficiently large ε they can be driven to the situation depicted in the lower right quadrant of Figure
2.3.
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or
ε ≤ −(1/2)|ω2

1 − ω2
2|/(|ω1ω2|)1/2. (32.2.197)

We conclude from this example that, as might be expected, Krein collisions are imminent
when phase advances are of opposite sign and nearly equal (even if not exactly equal) in
magnitude.

Consider the case, corresponding to tunes of approximately ±1/4, for which

ω1 = 1.5, ω2 = −1.6. (32.2.198)

Figure 2.4 displays the eigenvalues λ of B as a function of ε for this case. When ε = 0,
the eigenvalues have values of ±1.5i, ± 1.6i with all signs taken independently. As ε is
increased, they merge in pairs and then leave the imaginary axis. Verify analytically that
they merge and then leave the imaginary axis when ε ≈ ±.10. See Figure 2.4 and the
upper-right quadrant of Figure 2.3.

Figure 32.2.4: Eigenvalues of B as a function of ε when ω1 = 1.5 and ω2 = −1.6.

32.2.10. Consider quadratic polynomials in the phase-space variables for the case of a
4-dimensional phase space. For each of the normal-form cases i through ix, find the Hamil-
tonian matrix B associated with the specified gN2 , verify that the invariants C and D have
the indicated values, and that the eigenvalues λ have the indicated values.
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32.2.11. Consider quadratic polynomials in the phase-space variables for the case of a 4-
dimensional phase space. In each of the coupled cases i, v, vi, and ix the normal form gN2
is the sum of two terms. Verify, in each case, that the two terms are in involution.

32.2.12. Consider quadratic polynomials in the phase-space variables for the case of a 4-
dimensional phase space. For each of the cases i through ix, consider the motion generated
by gN2 . Do this by studying the behavior of z′(t) defined by

z′a(t) = exp(−t : gN2 :)za. (32.2.199)

Show that the motion is unbounded (the origin is an unstable equilibrium point) for large
|t| in all cases except ii.

32.2.13. Review Exercise 2.12 above. A matrix with distinct eigenvalues can always be
diagonalized by a similarity transformation. When the eigenvalues are not distinct, there
are matrices for which the best that can be done by a similarity transformation is to bring
them to Jordan normal form. In the 2× 2 case the eigenvalues for the symplectic matrix

M =

(
1 `
0 1

)
(32.2.200)

are not distinct (they are both +1), and moreover M cannot be brought to diagonal form
when ` 6= 0.

When an eigenvalue collision occurs on the unit circle in the 4 × 4 symplectic case as
in Figure 3.5.1, the eigenvalues are not distinct. Are there real 4 × 4 symplectic matrices
for which the eigenvalues are complex, lie on the unit circle but are not distinct, and which
cannot be diagonalized? What happens at the moment of collision for the two cases of
ω1 ' ω2 and ω1 ' −ω2 in Exercise 2.9 above? Is R diagonalizable?

32.3 Mostly Unsolved Polynomial Orbit Problems

In this section we will describe briefly the case of orbits in Pm with m > 2. Now the
situation is far more complicated because we do not have the matrix trick simplification
that led to (2.14), and only limited results are available. Some results are known for 2-
dimensional phase space. Much less is known for higher-dimensional phase spaces. Even the
2-dimensional case is very difficult for large m.

For the case of 4 and higher dimensional phase space no normal forms seem to be known
even for g3. However, some few invariants are known for any Pm and any phase-space
dimension. They are sufficiently complicated that it requires several pages to write out any
one of them explicitly. It is also known that in principle there are many such invariants, and
an empirical estimation of their number is available. Finally, for any Pm and any phase-
space dimension, it is known that all invariants can be computed in terms of the monomial
coefficients and (when viewed as a tensor) the entries of J .

The previous section described equivalence classes and normal forms, under the action
of Sp(2n,R), for the cases of P1 and P2. The next few paragraphs provide a sample of some
known results for P3 and P4.
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32.3.1 Cubic Polynomials

For the case of P3 and 2-dimensional phase space we may write the most general g3 in the
form

g3 = a0q
3 + 3a1q

2p+ 3a2qp
2 + a3p

3 (32.3.1)

where the aj are arbitrary coefficients. Note, as in often convenient, we have multiplied
the coefficients of q3, q2p, qp2, p3 by the factors 1, 3, 3, 1. These factors are the binomial
coefficients in the expansion of (q + p)3. [We remark that homogeneous polynomials in
two variables are called binary forms in the Mathematics literature. Thus, (3.1) is called a
cubic binary form.] It can be shown in this case that there is the invariant D, called the
discriminant of the cubic form, given by the relation

D = a2
0a

2
3 − 6a0a1a2a3 + 4a0a

3
2 + 4a3

1a3 − 3a2
1a

2
2. (32.3.2)

(The discriminant of a binary form gm is an invariant with the special property that its
vanishing indicates that the equation gm = 0 has at least one repeated root.) Associated
with g3 is a quadratic form H, called the Hessian of g3, defined by the equation

H = (1/36) det(∂2g3/∂zi∂zj)

= (a0a2 − a2
1)q2 + (a0a3 − a1a2)qp+ (a1a3 − a2

2)p2. (32.3.3)

Here we have used our customary notation z = (q, p).
With this background in mind, it can be shown for the case D > 0 that g3 has the normal

form
gN3 = D1/4(q3 + p3) for D > 0. (32.3.4)

And, if D < 0, g3 has the normal form

gN3 = (−D/4)1/4(q3 − 3qp2) for D < 0. (32.3.5)

If the discriminant vanishes but the coefficients of the Hessian are not all zero, g3 has the
normal form

gN3 = qp2 for D = 0 and H 6= 0. (32.3.6)

Finally, if both the discriminant and all coefficients in the Hessian vanish, g3 has the normal
form

gN3 = q3 for D = 0 and H = 0. (32.3.7)

Evidently cases (3.4) and (3.5) are generic while cases (3.6) and (3.7) are increasingly specific.
It is interesting to note that the generic normal forms (3.4) and (3.5) minimize 〈gtr

3 , g
tr
3 〉. See

Exercise 3.1. Note also that, under the canonical transformation q → p and p → −q, (3.5)
takes monkey-saddle form. See Exercise 22.5.4.

32.3.2 Quartic Polynomials

For the case of P4 and 2-dimensional phase space we may write the most general g4 in the
form

g4 = a0q
4 + 4a1q

3p+ 6a2q
2p2 + 4a3qp

3 + a4p
4. (32.3.8)
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It can be shown that in this case there are two functionally independent invariants S and
T ,

S = a0a4 − 4a1a3 + 3a2
2, (32.3.9)

T = a0a2a4 + 2a1a2a3 − a0a
2
3 − a2

1a4 − a3
2. (32.3.10)

For even degree forms there is always an invariant (with some algebraic/geometrical signifi-
ance that need not concern us here) given the wonderful name catalecticant. In this case T
is the catalecticant of g4. The discriminant D of g4 is functionally dependent on S and T
and is given by the relation

D = S3 − 27T 2. (32.3.11)

In the case that D is positive g4 has the normal form

gN4 = ±a(q4 + p4) + 6bq2p2 for D > 0 (32.3.12)

with

a > 0, (32.3.13)

S = a2 + 3b2, (32.3.14)

T = a2b− b3, (32.3.15)

D = a2(a2 − 9b2)2. (32.3.16)

In the case that D is negative g4 has the normal form

gN4 = a(q4 − p4) + 6bq2p2 for D < 0 (32.3.17)

with

a > 0, (32.3.18)

S = −a2 + 3b2, (32.3.19)

T = −a2b− b3, (32.3.20)

D = −a2(a2 − 9b2)2. (32.3.21)

These are the generic cases. Like g3, there are also several specific cases for which D = 0,
and each such case has its own normal form. We will not record them here, but results are
available in the literature.

Exercises

32.3.1. Exercise on minimization.
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32.4 Application to Analytic Properties

Let N be the two-dimensional nonlinear map defined by the relation

N = exp(: g3 :) (32.4.1)

with g3 given by (3.1). It has the action

Z(z) = exp(: g3 :)z. (32.4.2)

As usual, we write z = (q; p) and Z = (Q;P ). What we wish to determine in this section are
the analytic properties N . That is, we wish to study the analytic properties of the quantities
Q(q, p) and P (q, p) as functions of the variables q and p. We will see that the answer to this
question depends on the normal form of g3.

Let R be a linear symplectic map, and consider transformed maps of the form

N tr = RNR−1 = Rexp(: g3 :)R−1 = exp(: Rg3 :) = exp(: gtr
3 :). (32.4.3)

We see that a study of the analytic properties of N is equivalent to studying the analytic
properties of exp(: gtr

3 :) where gtr
3 is any of the normal form polynomials given by (3.4)

through (3.7).
Consider these cases one at a time and in order of increasing complexity. The simplest

case is (3.7), for which we find that

q̄ = exp(: q3 :)q = q, (32.4.4)

p̄ = exp(: q3 :)p = p+ 3q2. (32.4.5)

Evidently N tr in this case has no singularities save at infinity, and therefore is entire. Cor-
respondingly, all maps in its equivalence class are also entire.

The next simplest case is (3.6), for which we find that

q̄ = exp(: qp2 :)q = q(1− p)2, (32.4.6)

p̄ = exp(: qp2 :)p = p/(1− p). (32.4.7)

Here we have used results from Section 1.4.2. In this case N tr has a pole on the surface
p = 1. Correspondingly, maps in its equivalence class also have pole singularities.

The case (3.4) is next in order of increasing difficulty. Now we have

gtr
3 = λ(q3 + p3) with λ = D1/4 (32.4.8)

so that
N tr = exp(λ : q3 + p3 :). (32.4.9)

Define a parameter dependent map N tr(t) by the relation

N tr(t) = exp(t : gtr
3 :) = exp(tλ : q3 + p3 :) (32.4.10)

and write
q̄(t) = N tr(t)q = exp(tλ : q3 + p3 :)q, (32.4.11)
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p̄(t) = N tr(t)p = exp(tλ : q3 + p3 :)p. (32.4.12)

We will show that there is a curve in the real q, p plane such that q̄(1) = −∞ and p̄(1) = +∞.
Therefore N tr = N tr(1) is singular on this curve.

Differentiate (4.11) and (4.12) with respect to t to obtain the equations of motion

˙̄q = exp(tλ : q3 + p3 :)λ : q3 + p3 : q = exp(tλ : q3 + p3 :)(−3λp2) = −3λp̄2, (32.4.13)

˙̄p = exp(tλ : q3 + p3 :)λ : q3 + p3 : p = exp(tλ : q3 + p3 :)(3λq2) = 3λq̄2. (32.4.14)

They have the integral
− λ(q̄3 + p̄3) = Λ. (32.4.15)

Figure 4.1 shows the curves of constant Λ/λ. Also shown as arrows are the directions of
the flow that follow from the equations of motion (4.13) and (4.14). Evidently q̄ = p̄ = 0 is
the only equilibrium point, and it lies on the curve Λ = 0. Moreover, all points on the flow
line p̄ = −q̄ and having q̄ > 0 flow to the origin. All other points flow asymptotically to the
point at infinity q̄ = −∞, p̄ = +∞.

Figure 32.4.1: Curves of constant Λ/λ and flow directions for the equations of motion (4.13)
and (4.14). These curves were made with λ = 1, which simply sets the scale for q and p,
and Λ = 0,±5.

Let us compute the speed at which points move along flow lines. The Euclidean distance
in the q̄, p̄ plane is given by the relation

(ds)2 = (dq̄)2 + (dp̄)2 (32.4.16)
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and therefore
(ds/dt)2 = ( ˙̄q)2 + ( ˙̄p)2 = 9λ2(q̄4 + p̄4). (32.4.17)

Here we have used the equations of motion (4.13) and (4.14). We see that the speed is
always positive save for the equilibrium point at the origin.

Evidently the right sides of the differential equations (4.13) and (4.14) are analytic save
at infinity. Therefore, according to Section 1.3, the final conditions will be analytic functions
of the initial conditions as long as the intermediate points on the flow are finite. What we
wish to compute are the points for which, when regarded as initial conditions at t = 0, the
flow reaches q̄ = −∞, p̄ = +∞ when t = 1. These points will be the frontier at which
N tr(1) becomes singular.

Consider first the case Λ = 0 for which

p̄(t) = −q̄(t). (32.4.18)

As stated earlier, points on the line p̄ = −q̄ with q̄ > 0 flow along the line and into the
origin; and points on the line with q̄ < 0 flow along the line to q̄ = −∞ and p̄ = +∞. What
we will show is that on the line there is an initial condition q̄(0), p̄(0) with q̄(0) < 0 such
that

q̄(1) = −∞ (32.4.19)

and
p̄(1) = +∞ (32.4.20)

To do so, employ (4.18) in (4.13) to find the relation

˙̄q = −3λq̄2 (32.4.21)

from which it follows that
dt = −dq̄/(3λq̄2). (32.4.22)

Integrate both sides of (4.22) to find the result∫ tf

ti
dt = −

∫ q̄f

q̄i
dq̄/(3λq̄2), (32.4.23)

from which it follows that

tf − ti = [1/(3λ)](1/q̄)|q̄
f

q̄i
= [1/(3λ)](1/q̄f − 1/q̄i). (32.4.24)

Now set
ti = 0, tf = 1, q̄f = −∞ (32.4.25)

to obtain the result
1 = [1/(3λ)](−1/q̄i) (32.4.26)

from which it follows that
q̄(0) = q̄i = −1/(3λ) (32.4.27)

and
p̄(0) = −q̄(0) = 1/(3λ). (32.4.28)
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Next consider the case Λ > 0. We will again find that there is an initial condition on the
curve (4.15) such that (4.19) and (4.20) hold. In this case (4.15) can be solved for p̄ to give
the result

p̄ = (−Λ/λ− q̄3)1/3. (32.4.29)

Here the negative cube root is to be extracted if the quantity (−Λ/λ− q̄3) is negative, and
the positive square root is to be extracted if the quantity is positive. Thus,

p̄ = −(Λ/λ+ q̄3)1/3 < 0 when q̄ > −(Λ/λ)1/3, (32.4.30)

p̄ = 0 when q̄ = −(Λ/λ)1/3, (32.4.31)

p̄ = (−Λ/λ− q̄3)1/3 > 0 when q̄ < −(Λ/λ)1/3. (32.4.32)

Observe that p̄2 is always ≥ 0 and is given by the relation

p̄2 = [(Λ/λ+ q̄3)2]1/3. (32.4.33)

Now the differential equation (4.13) takes the form

˙̄q = −3λ[(Λ/λ+ q̄3)2]1/3, (32.4.34)

from which we conclude

dt = −[1/(3λ)]dq̄/[(Λ/λ+ q̄3)2]1/3. (32.4.35)

And integrating both sides of (4.35) yields the result∫ tf

ti
dt = −

∫ q̄f

q̄i
[1/(3λ)]dq̄/[(Λ/λ+ q̄3)2]1/3 (32.4.36)

from which it follows that

1 = −
∫ −∞
q̄i

[1/(3λ)]dq̄/[(Λ/λ+ q̄3)2]1/3 =

∫ q̄i

−∞
[1/(3λ)]dq̄/[(Λ/λ+ q̄3)2]1/3. (32.4.37)

Here we have again used (4.25).
What about the case Λ < 0? Here (4.29) and (4.33) continue to hold. Now we must use

p̄ = −(Λ/λ+ q̄3)1/3 < 0 when q̄ > (−Λ/λ)1/3, (32.4.38)

p̄ = 0 when q̄ = (−Λ/λ)1/3, (32.4.39)

p̄ = (−Λ/λ− q̄3)1/3 > 0 when q̄ < (−Λ/λ)1/3. (32.4.40)

With this understanding, (4.37) also continues to hold.
Taken together, (4.27) and (4.37) yield q̄i as a function of Λ. And, when q̄i is known

and Λ is specified, (4.30) through (4.32) and (4.38) through (4.41) give p̄i. This curve,
shown in Figure 4.2 superimposed on an enlarged portion of Figure 4.1, provides (in the real
q̄, p̄ plane) the set of points at which N tr(1) becomes singular. The map is well defined and
analytic in the initial conditions for initial conditions to the right of this curve. Its status for
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points to left of this curve is not yet established. To do so would require, among other things
some compactification procedure analogous to the Riemann sphere but in four dimensions.
At this stage we do not know whether the map has only a pole or poles as was the case
for (4.7), or has more complicated singularities, such as branch points that preclude single-
valued analytic continuation, or singularities that preclude any analytic continuation at all.
Finally we note that this one-dimensional curve is the real intersection of a two-dimensional
manifold in the full four-dimensional domain of two complex variables. This manifold is
specified by letting Λ be complex in (4.37) and in the relations for p̄i in terms of q̄i and Λ.

Figure 32.4.2: (Place Holder) Curve on which the map N tr(1) becomes singular. The map
is well defined and analytic for phase-space points to the right of this curve. Points on the
curve are sent to infinity. The possible action of the map on points to the left of the curve
is unknown.

The last and most difficult case is (3.5). Now we have

gtr
3 = λ(q3 − 3qp2) with λ = (−D)1/4 (32.4.41)

so that

N tr = exp(λ : q3 − 3qp2 :). (32.4.42)

Again define a parameter dependent map N tr(t), now by the relation

N tr(t) = exp(t : gtr
3 :) = exp(tλ : q3 − 3qp2 :) (32.4.43)
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and write
q̄(t) = N tr(t)q = exp(tλ : q3 − 3qp2 :)q, (32.4.44)

p̄(t) = N tr(t)p = exp(tλ : q3 − 3qp2 :)p. (32.4.45)

We will again show that there is a curve in the real q, p plane on which N tr = N tr(1) is
singular.

Differentiate (4.44) and (4.45) with respect to t to obtain the equations of motion

˙̄q = exp(tλ : q3 − 3qp2 :)λ : q3 − 3qp2 : q = exp(tλ : q3 − 3p2 :)(3λqp) = 3λq̄p̄, (32.4.46)

˙̄p = exp(tλ : q3 − 3qp2 :)λ : q3 − 3qp2 : p = exp(tλ : q3 − 3qp2 :)3λ(q2 − p2) = 3λ(q̄2 − p̄2).
(32.4.47)

They have the integral
− λ(q̄3 − 3q̄p̄2) = Λ. (32.4.48)

Observe that if we set Λ = 0 we find the three lines

q̄ = 0, (32.4.49)

q̄ = (
√

3)p̄, (32.4.50)

q̄ = −(
√

3)p̄. (32.4.51)

Figure 4.3 shows these lines and the remaining curves of constant Λ/λ. Also shown as arrows
are the directions of the flow that follow from the equations of motion (4.46) and (4.47). For
the speed along these flow lines we find the result

(ds/dt)2 = ( ˙̄q)2 + ( ˙̄p)2 = 9λ2[(q̄2 − p̄2)2 + (q̄p̄)2]. (32.4.52)

Evidently q̄ = p̄ = 0 is the only equilibrium point, and it lies on the intersection of the lines
(4.49) through (4.51). Moreover, we can conclude the following:

• All points on the flow line (4.49)with p > 0 flow into the origin. All points on that
line with p < 0 flow to the point at infinity (q̄, p̄) = (0,−∞).

• All points on the flow line (4.50 )with p < 0 flow into the origin. All points on that
line with p > 0 flow to the point at infinity (q̄, p̄) = (∞

√
3,∞).

• All points on the flow line (4.51 )with p < 0 flow into the origin. All points on that
line with p > 0 flow to the point at infinity (q̄, p̄) = (−∞

√
3,∞).

• All other points on all other flow lines eventually flow into one of the three points at
infinity listed above.

The text below requires further work
Evidently the right sides of the differential equations (3.13) and (3.14) are analytic save

at infinity. Therefore, according to Section 1.3, the final conditions will be analytic functions
of the initial conditions as long as the intermediate points on the flow are finite. What we
wish to compute are the points for which, when regarded as initial conditions at t = 0, the
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Figure 32.4.3: (Place Holder) Curves of constant Λ/λ and flow directions for the equations
of motion (4.44) and (4.45). These curves were made with λ = 1, which simply sets the
scale for q and p, and Λ = 0,±5.
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flow reaches q̄ = −∞, p̄ = +∞ when t = 1. These points will be the frontier at which
N tr(1) becomes singular.

Consider first the case Λ = 0 for which

p̄(t) = −q̄(t). (32.4.53)

As stated earlier, points on the line p̄ = −q̄ with q̄ > 0 flow along the line and into the
origin; and points on the line with q̄ < 0 flow along the line to q̄ = −∞ and p̄ = +∞. What
we will show is that on the line there is an initial condition q̄(0), p̄(0) with q̄(0) < 0 such
that

q̄(1) = −∞ (32.4.54)

and
p̄(1) = +∞ (32.4.55)

To do so, employ (3.18) in (3.13) to find the relation

˙̄q = −3λq̄2 (32.4.56)

from which it follows that
dt = −dq̄/(3λq̄2). (32.4.57)

Integrate both sides of (3.22) to find the result∫ tf

ti
dt = −

∫ q̄f

q̄i
dq̄/(3λq̄2). (32.4.58)

from which it follows that

tf − ti = [1/(3λ)](1/q̄)|q̄
f

q̄i
= [1/(3λ)](1/q̄f − 1/q̄i). (32.4.59)

Now set
ti = 0, tf = 1, q̄f = −∞ (32.4.60)

to obtain the result
1 = [1/(3λ)](−1/q̄i) (32.4.61)

from which it follows that
q̄(0) = q̄i = −1/(3λ) (32.4.62)

and
p̄(0) = −q̄(0) = 1/(3λ). (32.4.63)

Next consider the case Λ > 0. We will again find that there is an initial condition on the
curve (3.15) such that (3.19) and (3.20) hold. In this case (3.15) can be solved for p̄ to give
the result

p̄ = (−Λ/λ− q̄3)1/3. (32.4.64)

Here the negative cube root is to be extracted if the quantity (−Λ/λ− q̄3) is negative, and
the positive square root is to be extracted if the quantity is positive. Thus,

p̄ = −(Λ/λ+ q̄3)1/3 < 0 when q̄ > −(Λ/λ)1/3, (32.4.65)
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p̄ = 0 when q̄ = −(Λ/λ)1/3, (32.4.66)

p̄ = (−Λ/λ− q̄3)1/3 > 0 when q̄ < −(Λ/λ)1/3. (32.4.67)

Observe that p̄2 is always ≥ 0 and is given by the relation

p̄2 = [(Λ/λ+ q̄3)2]1/3. (32.4.68)

Now the differential equation (3.13) takes the form

˙̄q = −3λ[(Λ/λ+ q̄3)2]1/3, (32.4.69)

from which we conclude

dt = −[1/(3λ)]dq̄/[(Λ/λ+ q̄3)2]1/3. (32.4.70)

And integrating both sides of (3.35) yields the result∫ tf

ti
dt = −

∫ q̄f

q̄i
[1/(3λ)]dq̄/[(Λ/λ+ q̄3)2]1/3 (32.4.71)

from which it follows that

1 = −
∫ −∞
q̄i

[1/(3λ)]dq̄/[(Λ/λ+ q̄3)2]1/3 =

∫ q̄i

−∞
[1/(3λ)]dq̄/[(Λ/λ+ q̄3)2]1/3 (32.4.72)

Here we have again used (3.25).
What about the case Λ < 0? Here (3.29) and (3.33) continue to hold. Now we must use

p̄ = −(Λ/λ+ q̄3)1/3 < 0 when q̄ > (−Λ/λ)1/3, (32.4.73)

p̄ = 0 when q̄ = (−Λ/λ)1/3, (32.4.74)

p̄ = (−Λ/λ− q̄3)1/3 > 0 when q̄ < (−Λ/λ)1/3. (32.4.75)

With this understanding, (3.37) also continues to hold.
Taken together, (3.27) and (3.37) yield q̄i as a function of Λ. And, when q̄i is known

and Λ is specified, (3.30) through (3.32) and (3.38) through (3.41) give p̄i. This curve,
shown in Figure 3.2 superimposed on an enlarged portion of Figure 3.1, provides (in the real
q̄, q̄ plane) the set of points at which N tr(1) becomes singular. The map is well defined and
analytic in the initial conditions for initial conditions to the right of this curve. Its status for
points to left of this curve is not yet established. To do so would require, among other things
some compactification procedure analogous to the Riemann sphere but in four dimensions.
At this stage we do not know whether the map has only a pole or poles as was the case
for (3.7), or has more complicated singularities, such as branch points that preclude single-
valued analytic continuation, or singularities that preclude any analytic continuation at all.
Finally we note that this one-dimensional curve is the real intersection of a two-dimensional
manifold in the full four-dimensional domain of two complex variables. This manifold is
specified by letting Λ be complex in (3.37) and in the relations for p̄i in terms of q̄i and Λ.

Exercises
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Figure 32.4.4: (Place Holder) Curve on which the map N tr(1) becomes singular. The map
is well defined and analytic for phase-space points to the right of this curve. Points on the
curve are sent to infinity. The possible action of the map on points to the left of the curve
is unknown.
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Chapter 33

Beam Description and Moment
Transport

33.1 Preliminaries

The previous chapters dealt with single-particle orbit theory. In this chapter we will treat
many-particle distributions in the approximation that the particles are noninteracting. Un-
der this noninteracting assumption all results about particle distributions are derivable from
properties of the single-particle transfer map M. Here we will find it convenient to use the
phase-space variable ordering

z = (z1, z2, . . . , z2n−1, z2n) = (q1, p1, q2, p2, . . . , qn, pn). (33.1.1)

That is, we will employ the ordering (3.2.20) presented in Exercise 3.2.6, but will omit the
prime for notational simplicity. Also, we will use the matrix J ′ given by (3.2.10) and (3.2.11),
but will again omit the prime. See Section 3.2.

Suppose h(z) is some density function describing a collection of particles in phase space.
That is d6N , the number of particles in a phase-space volume d6z, is given by the relation

d6N = h(z)d6z, (33.1.2)

and there is the result

N =

∫
d6z h(z) (33.1.3)

where N is the number of particles under consideration.
More specifically, suppose hi(z) is a function describing some initial distribution of par-

ticles in phase space. Next suppose the particle distribution is transported through some
system described by a map M. Then, by Liouville’s theorem, the final distribution hf (z)
at the end of the system is given by the relation

hf (z) = hi(M−1z). (33.1.4)

See Subsection 6.8.1 and Exercise 6.8.2. Also recall that, as sketched in Section 6.8, the
problem of determining what distribution can be sent into what under the action of some
symplectic map M, which is what (1.4) describes, is deep and only partially understood.
See also Chapter 29.
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33.2 Moments and Moment Transport

Suppose, as before, that hi(z) is a function describing some initial distribution of particles
in phase space. Since hi(z) is a function, generally an infinite number of parameters are
required for its specification. One way to characterize hi(z) is in terms of initial moments
Zi
abc··· defined by the rule

Zi
abc··· = 〈zazbzc · · · 〉i = (1/N)

∫
d6z hi(z)zazbzc · · · . (33.2.1)

We use the term characterize advisedly rather than specify because in general the problem
of reconstructing (uniquely determining) a function given its moments is ill posed. Never-
theless, moments may provide some useful information about hi(z).

How are initial and final moments related? To answer this question it is useful to employ
a different notation for moments. Let Pα(z), where α is some running index, denote a
complete set of homogeneous polynomials in z through terms of some fixed degree. See
Chapter 36. Then one can define initial moments mi

α by the rule

mi
α = (1/N)

∫
d6z hi(z)Pα(z). (33.2.2)

Correspondingly, the final moments are given by the relation

mf
α = (1/N)

∫
d6z hf (z)Pα(z) = (1/N)

∫
d6z hi(M−1z)Pα(z)

= (1/N)

∫
d6z̄ hi(z̄)Pα(Mz̄). (33.2.3)

Here we have used (1.4). And, to obtain the last line, we have changed variables of integration
by the rule

z̄ =M−1z. (33.2.4)

Doing so required calculation of the determinant of the Jacobi matrix M associated with
M. However, it is a property of symplectic matrices that they all have determinant +1.
Therefore the determinant of M is +1 and need not appear explicitly in (2.3).

Since the Pα are complete, there is an expansion of the form

Pα(Mz̄) =
∑
β

Dαβ(M)Pβ(z̄) (33.2.5)

where the Dαβ(M) are coefficients that can be calculated for any transfer mapM. Employ-
ing (2.5) in (2.3) gives the intermediate result

mf
α = (1/N)

∫
d6z̄ hi(z̄)Pα(Mz̄) = (1/N)

∫
d6z̄ hi(z̄)

∑
β

Dαβ(M)Pβ(z̄)

=
∑
β

Dαβ(M)(1/N)

∫
d6z̄ hi(z̄)Pβ(z̄). (33.2.6)
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It follows that moments transform linearly according to the rule

mf
α =

∑
β

Dαβ(M)mi
β. (33.2.7)

Note that by this method one can find the evolution of moments without tracking (following
orbits of individual particles in) particle distributions.

33.3 Various Beam Distributions and Beam Matching

33.4 Some Properties of First-Order Moments

33.4.1 Transformation Properties

For reasons that will become clear later, see Section 5, in this subsection we will examine
the transformation properties of first-order moments under the action of the inhomogeneous
symplectic group ISp(2n). Recall Section 9.2 for a discussion of ISp(2n).

Properties under Translations

Let us first find the transformation properties of first-order moments under the action of
translations. Let T be the translation map given by

T = exp : g1 : (33.4.1)

with
g1(z) = −(δ, Jz). (33.4.2)

It has the property that
T za = za + δa. (33.4.3)

See Section 7.7. Conversely, there is the inverse relation

T −1za = za − δa. (33.4.4)

As a special case of the Liouville relation (1.4), under the action of T the distribution
function h becomes a transformed distribution function h′ with

h′(z) = h(T −1z). (33.4.5)

From the definition (2.1) we see that the transformed moments 〈za〉′ are given by the
relation

〈za〉′ = (1/N)

∫
d6 h′(z)za = (1/N)

∫
d6z h(T −1z)za. (33.4.6)

Introduce new variables z̄ by the rule

z = T z̄ (33.4.7)
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or, equivalently,
z̄ = T −1z. (33.4.8)

The relation (4.7) implies the component relations

za = z̄a + δa (33.4.9)

Also, we see that
d6z = d6z̄. (33.4.10)

With these facts in mind, we see that (4.6) can be rewritten in the form

〈za〉′ = (1/N)

∫
d6z̄ (z̄a + δa)h(z̄)

= (1/N)

∫
d6z̄ z̄ah(z̄) + (1/N)

∫
d6z̄ δah(z̄)

= 〈za〉+ δa, (33.4.11)

which has the more compact vector form

〈z〉′ = 〈z〉+ δ. (33.4.12)

We may view the first-order moments of a distribution as specifying the centroid of a
distribution. According to (4.12), under the action of a translation, the centroid transforms
like the coordinates of a particle located at the centroid. The centroid is simply translated,
as expected. We observe also that the transformation rule is the same for all distributions
having the same first-order moments. Finally note that the steps leading from (4.6) to
(4.12) are simply (for the translation case and for first-order moments) a more detailed
recapitulation of the steps (2.3) through (2.7).

Properties under Linear Symplectic Maps

Next let us find the transformation properties of first-order moments under the action of a
linear symplectic map R described by the symplectic matrix R. Now the Liouville relation
(1.4) relating the initial distribution function h and the transformed distribution function
h′ takes the form

h′(z) = h(R−1z). (33.4.13)

From the definition (2.1) we see that the transformed moments 〈za〉′ are given by the relation

〈za〉′ = (1/N)

∫
d6z h′(z)za = (1/N)

∫
d6z h(R−1z)za. (33.4.14)

Introduce new variables z̄ by the rule

z = Rz̄ (33.4.15)

or, equivalently,
z̄ = R−1z. (33.4.16)
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The relation (4.15) implies the component relations

za =
∑
c

Racz̄c. (33.4.17)

Also, because R is symplectic and therefore must have determinant one, we find that

d6z = [det(R)]d6z̄ = d6z̄. (33.4.18)

With these facts in mind, we see that (4.14) can be rewritten in the form

〈za〉′ = (1/N)

∫
d6z̄

∑
c

Racz̄ch(z̄)

=
∑
c

Rac(1/N)

∫
d6z̄ z̄ch(z̄)

=
∑
c

Rac〈zc〉, (33.4.19)

which has the more compact matrix form

〈z〉′ = R〈z〉. (33.4.20)

Recall that we may view the first-order moments of a distribution as specifying the
centroid of a distribution. According to (4.20), under the action of a linear symplectic map,
the centroid transforms like the coordinates of a particle located at the centroid. We observe,
in particular, that the transformation rule is the same for all distributions having the same
first-order moments. Note also that the steps leading from (4.14) to (4.20) are again (for the
linear case and for first-order moments) simply a more detailed recapitulation of the steps
(2.3) through (2.7).

33.4.2 Normal Form

From the work of Subsection 3.6.5 we know that Sp(2n) acts transitively on phase space.
See (3.6.114) through (3.6.116). Therefore, unless 〈z〉 = 0, there is a sympletic matrix R
such that

〈z〉′ = R〈z〉 = e1. (33.4.21)

That is, all the components of 〈z〉′ vanish save for the first, which has the value 1. Alterna-
tively, if 〈z〉 vanishes, then 〈z〉′ also vanishes. Thus the set of first-order moments consists,
under the action of Sp(2n), of two equivalence classes: the elements that are equivalent to
e1 (which is the set all nonzero 〈z〉) and the zero element 〈z〉 = 0. Correspondingly, we may
view the vectors e1 and 0 as being normal forms for the set of all first-order moments.

33.5 Kinematic Moment Invariants

Definition

Let m be a vector with components mα, and let D(M) be a matrix with entries Dαβ(M).
Write (2.7) in the more compact form

mf = D(M)mi. (33.5.1)
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A function of moments I[m] is said to be a kinematic moment invariant if it obeys the
relations

I[mf ] = I[mi], (33.5.2)

or

I[D(M)m] = I[m], (33.5.3)

for all symplectic maps M.

Rather little is known about the existence and properties of kinematic moment invariants
for the set of all symplectic maps. However, kinematic moment invariants are known to
exist and all kinematic moment invariants have been found when the symplectic maps M
are restricted to be those associated with the inhomogeneous symplectic group ISp(2n).
Moreover, their existence is a consequence of group theory applied to ISp(2n). We note
that, if deviation variables are employed, the full M is well approximated by translation
and linear maps provided excursions about the design orbit are sufficiently small.

First-Order Moments

At this point we can observe that there are no significant kinematic invariants in the case of
first-order moments. Evidently, by definition, a kinematic invariant has the same value for all
moments that belong to the same equivalence class. If only translations T are considered,
(4.12) shows that any set of first-order moments can be transformed to any other, and
therefore there is only one equivalence class. Consequently I must have a constant value.
And, if only linear symplectic transformations R are considered, we have seen that for the
case of first-order moments there are only two equivalence classes. Consequently, in this
case I can have only two possible values.

Second-Order Moments

Of particular interest are kinematic moment invariants that can be constructed from the
second-order moments Zab with

Zab = 〈zazb〉 = (1/N)

∫
d6z h(z)zazb. (33.5.4)

For a given particle distribution, let Z be the matrix with entries Zab. In the case of a
1-degree of freedom system phase space is 2 dimensional, and the matrix Z in this case is
2× 2. It is easily verified that in this case a kinematic moment invariant [under the action
of Sp(2)] is given by the rule

I[Z] = tr[(ZJ2)2] = 2[(Z12)2 − Z11Z22] = −2(〈q2〉〈p2〉 − 〈qp〉2). (33.5.5)

See Exercise 6.1 where this result is verified and shown to be a consequence of group theory
applied to Sp(2). Note that in this case I is proportional to the mean square emittance ε2

defined by the rule

ε2 = 〈q2〉〈p2〉 − 〈qp〉2. (33.5.6)
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In the case of a 3-degree of freedom system it can be shown that there are 3 such functionally
independent invariants given by the rules

I(n)[Z] = tr[(ZJ)n], n = 2, 4, 6; (33.5.7)

and all other invariants constructed from second-order moments are functions of these in-
variants. See Exercises 6.2 and 6.3.

33.6 Some Properties of Second-Order Moments

In this section we will explore various properties of Z.

33.6.1 Positive Definite Property

We begin by showing that the matrix Z, which is obviously real and symmetric, is also
positive definite. Since h(z) is a phase-space density, it is positive or zero for all z,

h(z) ≥ 0 for all z; (33.6.1)

and it follows from (6.1) and continuity that there must be some finite phase-space volume
for which h(z) > 0. Next let u be any real six-dimensional nonzero vector. Form the function
(u, z)2. It has the property

(u, z)2 ≥ 0 for all z. (33.6.2)

Moreover, in the volume where h(z) > 0, there must be some subvolume where (u, z)2 > 0.
It follows that there is the result

(u, Zu) =
∑
ab

uaZabub = (1/N)

∫
d6z h(z)

∑
ab

uazaubzb

= (1/N)

∫
d6z h(z)(u, z)2 > 0. (33.6.3)

33.6.2 Transformation Properties

Properties under Translations

From the definition (2.1) we see that under translations the transformed moments 〈zazb〉′
are given by the relation

〈zazb〉′ = (1/N)

∫
d6 h′(z)zazb = (1/N)

∫
d6z h(T −1z)zazb. (33.6.4)
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As in Subsection 4.1, introduce new variables z̄ by the rules (4.7) through (4.9) and employ
(4.10). So doing reveals that (6.4) can be rewritten in the form

〈zazb〉′ = (1/N)

∫
d6z̄ (z̄a + δa)(z̄b + δb)h(z̄)

= (1/N)

∫
d6z̄ z̄az̄bh(z̄) + (1/N)

∫
d6z̄ z̄aδbh(z̄)

+(1/N)

∫
d6z̄ δaz̄bh(z̄) + (1/N)

∫
d6z̄ δaδbh(z̄)

= 〈zazb〉+ 〈za〉δb + δa〈zb〉+ δaδb. (33.6.5)

Properties under Linear Symplectic Maps

Let us next find the transformation properties of second-order moments under the action of
a linear symplectic map R described by the symplectic matrix R. From the definition (4.1)
and (4.13) we see that the transformed moments 〈zazb〉′ are given by the relation

〈zazb〉′ = (1/N)

∫
d6z h′(z)zazb = (1/N)

∫
d6z h(R−1z)zazb. (33.6.6)

Again introduce new variables z̄ by the rules (4.15) through (4.17) and supplement (4.17)
with the relation

zb =
∑
d

Rbdz̄d. (33.6.7)

Also employ the relation (4.18). With these tools we see that (6.6) can be rewritten in the
form

〈zazb〉′ = (1/N)

∫
d6z̄

∑
cd

RacRbdz̄cz̄dh(z̄)

=
∑
cd

RacRbd(1/N)

∫
d6z̄ z̄cz̄dh(z̄)

=
∑
cd

RacRbd〈zczd〉. (33.6.8)

In terms of the notation employed in (5.4), the relation (6.8) can be rewritten in the com-
ponent form

Z ′ab =
∑
cd

RacRbdZcd =
∑
cd

RacZcd(R
T )db, (33.6.9)

which has the more compact matrix form

Z ′ = RZRT . (33.6.10)

This matrix relation specifies how second-order moments transform under a linear symplectic
map. We observe, in particular, that the transformation rule is the same for all distributions
having the same second-order moments.
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33.6.3 Williamson Normal Form

Even more can be said. Since the matrix Z is real, symmetric, and positive definite, according
to a theorem of Williamson there is a symplectic matrix A such that

AZAT = D (33.6.11)

where D is the diagonal matrix

D = diag{λ1, λ1, λ2, λ2, λ3, λ3} (33.6.12)

with all λj > 0. The right side of (6.11) is called the Williamson normal form of Z.
Two things should be noted about this remarkable result. Define the matrix Znorm by

the rule

Znorm = AZAT = D. (33.6.13)

Then, from (6.12 and (6.13), we see that there are the results

〈qjqk〉norm = 〈pjpk〉norm = 0 if j 6= k, (33.6.14)

〈q2
j 〉norm = 〈p2

j〉norm = λj, (33.6.15)

〈qjpk〉norm = 0. (33.6.16)

Also, we observe that (6.11) is of the form (6.10) with R = A. Thus, if a beam transport
system can be found whose transfer matrix is A, then this transport system will bring the
second-order moments to the normal form given by (6.14) through (6.16).

33.6.4 Eigen Emittances

We will next see that two second-order moment matrices Z ′ and Z have the same Williamson
normal form if they are connected by a relation of the form (6.10). Indeed, observe that we
may write the relation

AR−1Z ′(AR−1)T = AR−1RZRT (RT )−1AT

= AZAT = D. (33.6.17)

[Here we have used the result (R−1)T = (RT )−1 which holds for any invertible matrix.]
But, by the group property of symplectic matrices, the matrix AR−1 is symplectic if the
matrices A and R are symplectic. We see from (6.17) that the symplectic matrix AR−1

brings Z ′ to Williamson normal form and, according to (6.13), this normal form is the same
as that for Z. The quantities λ2

j are called mean-square eigen emittances, or simply eigen
remittances. It follows that while the entries in Z evolve as a particle distribution propagates
through various elements, see (6.10), the eigen emittances remain unchanged (in the linear
approximation). Thus, given an initial particle distribution, one can compute the initial
second moments 〈zazb〉i, and from them the eigen emitances. And these eigen emittances
will remain unchanged (in the linear approximation) as the particle distribution evolves.
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It can be shown that the eigen emittances generalize the 1-degree of freedom mean-square
emittance given by (5.6) to the fully coupled case. Indeed, it can be shown that in terms of
the λj the kinematic invariants I(n) given by (5.7) have the values

I(n) = 2(−1)n/2(λn1 + λn2 + λn3 ). (33.6.18)

See Exercise 6.3.
There are symplectic matrix routines that, given Z, find A and the λj. If only the λj

are required, they can be found from the eigenvalues of JZ. Note that JZ is a Hamiltonian
matrix. See Exercise 3.17.14.

To see that the λj can be found from the eigenvalues of JZ, suppose both sides of (6.11)
are multiplied by J to give the result

JAZAT = JD. (33.6.19)

From the symplectic condition for A it follows that there is the relation

JA = (AT )−1J. (33.6.20)

Consequently (6.19) can be rewritten in the form

(AT )−1JZAT = JD, (33.6.21)

which reveals that the matrices JZ and JD are related by a similarity transformation, and
therefore have the same eigenvalues. See Exercise 3.7.16.

What remains is to find the eigenvalues of JD which, according to (3.2.10), (3.2.11), and
(6.12) can be written in the block form

JD =

 λ1J2

λ2J2

λ3J2

 . (33.6.22)

Let W2 be the unitary and (complex) symplectic 2× 2 matrix

W2 =
1√
2

(
1 i
i 1

)
. (33.6.23)

[See (3.9.12).] It has the property

W−1
2 J2W2 = iK2 (33.6.24)

where K2 is the matrix

K2 =

(
−1 0
0 1

)
. (33.6.25)

From W2 construct the the 6× 6 matrix W given in block form by the rule

W =

 W2

W2

W2

 . (33.6.26)
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It follows from (6.22) and (6.24) that there is the relation

W−1JDW =

 iλ1K2

iλ2K2

iλ3K2

 . (33.6.27)

We see that the eigenvalues of JD, and hence JZ, are pure imaginary and come in the ±
pairs

σj = ±iλj. (33.6.28)

Conversely, if the eigenvalues ±σj of JZ are computed, then the eigen emittances are given
by the relation

λj = |σj]. (33.6.29)

Suppose we combine the relations (6.21) and (6.27) to find the result

W−1(AT )−1JZATW =

 iλ1K2

iλ2K2

iλ3K2

 = diag{−iλ1, iλ1,−iλ2, iλ2,−iλ3, iλ3}.

(33.6.30)
Let A′ be the matrix defined by the rule

A′ = ATW, (A′)−1 = W−1(AT )−1. (33.6.31)

It will be symplectic since A (and hence AT ) and W are symplectic. With the aid of A′ the
relation (6.30) takes the form

(A′)−1JZA′ = diag{−iλ1, iλ1,−iλ2, iλ2,−iλ3, iλ3}. (33.6.32)

We observe that since Z is positive definite, JZ is a particular/special kind of Hamiltonian
matrix. As a consequence of Williamson’s theorem we have seen that it can be diagonalized
by a similarity transformation even if its eigenvalues are not distinct; moreover the diago-
nalizing matrix A′ can be chosen to be symplectic. And, as stated earlier, the eigenvalues
of JZ are pure imaginary.

Finally, we note that multiplying both sides of (6.10) by J produces the relation

JZ ′ = JRZRT = (RT )−1JZRT . (33.6.33)

Here we have used the fact that R is symplectic. We see that with the use of J the evolution
rule (6.10) for Z becomes the similarity transformation rule (6.33) for JZ. Since eigenvalues
are preserved by similarity transformations, we have found an alternative explanation of why
the eigen emittances remain unchanged as a particle distribution evolves.

33.6.5 Classical Uncertainty Principle

Statement

The results of the previous subsection can be used to derive a classical uncertainty principle.
What we will show is that there is the inequality

〈q2
i 〉〈p2

i 〉 ≥ λ2
min, i = 1, 2, 3, (33.6.34)
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where λmin is the minimum of the λk. No matter what is done to a beam (ignoring nonlinear
and nonsymplectic effects), the products of the mean-square deviations in qi and pi for any
plane must exceed, or at best equal, λ2

min.

Proof

Begin by rewriting (6.13) in the form

Z = A−1Znorm(A−1)T = NTZnormN = NTDN (33.6.35)

where we have made the definition

N = (A−1)T . (33.6.36)

We note that N will be symplectic if A is symplectic, and conversely.
Let us compute the 〈q2

i 〉 and 〈p2
i 〉. To compute the 〈q2

i 〉 set

a = j with j = 1, 3, 5 when i = 1, 2, 3. (33.6.37)

We then find from (6.35) that

〈q2
i 〉 = Zaa = (NTDN)aa =

∑
cd

(NT )acDcdNda

=
∑
c

NcaDccNca =
∑
c

(Nca)
2Dcc

≥ λmin

∑
c

(Nca)
2. (33.6.38)

Similarly, to compute the 〈p2
i 〉, upon setting

b = j + 1, (33.6.39)

we find that

〈p2
i 〉 = Zbb = (NTDN)bb =

∑
cd

(NT )bcDcdNdb

=
∑
d

NdbDddNdb =
∑
d

(Ndb)
2Ddd

≥ λmin

∑
d

(Ndb)
2. (33.6.40)

It follows that

〈q2
i 〉〈p2

i 〉 ≥ λ2
min

[∑
c

(Nca)
2

][∑
d

(Ndb)
2

]
. (33.6.41)

To proceed further, let ua and ub be vectors with the entries

uac = Nca, (33.6.42)
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ubd = Ndb. (33.6.43)

Evidently ua and ub are the ath and bth columns of N . With these definitions we may write
(6.41) in the more compact form

〈q2
i 〉〈p2

i 〉 ≥ λ2
min||ua||2 ||ub||2 (33.6.44)

where || ∗ || denotes the Euclidean norm. Since N is a symplectic matrix, it follows from the
symplectic condition that there is also the relation

(ua, Jub) = 1. (33.6.45)

See Exercise 3.6.13. It can be shown using the spectral norm for J that (6.45) in turn entails
the inequality.

||ua|| ||ub|| ≥ 1. (33.6.46)

See Exercise 3.7.1. Upon combining (6.44) and (6.46) we find the advertised result (6.34).

33.6.6 Minimum Emittance Theorem

Statement

The classical uncertainty principle shows that (in the linear approximation) no matter how
a beam is transformed, the product of the spreads in position and the conjugate momentum
must satisfy the relation (6.34). There is a related constraint on the mean-square emittances
εi defined by

ε2i = 〈q2
i 〉〈p2

i 〉 − 〈qipi〉2. (33.6.47)

What we will show is that (in the linear approximation) no matter how a beam is transformed
(symplectically) there is the constraint

ε2i ≥ λ2
min, i = 1, 2, 3. (33.6.48)

Together the information provided by the classical uncertainty principle and the minimum
emittance theorem is useful when designing a beam line to perform emittance manipulations
because it sets lower limits on what one can hope to achieve.

Proof

Suppose, in the 6 × 6 case under consideration, that we partition Z into nine 2 × 2 blocks
by writing

Z =

 Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

 . (33.6.49)

Because Z is symmetric, the blocks will satisfy the relations

(Zij)T = Zji. (33.6.50)
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Let R be a 6× 6 matrix having the block form

R =

 A 0 0
0 I 0
0 0 I

 . (33.6.51)

It will be symplectic if A is symplectic. Its use in (6.10) produces a Z ′ given by

Z ′ =

 A 0 0
0 I 0
0 0 I

 Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

 AT 0 0
0 I 0
0 0 I

 . (33.6.52)

Carrying out the indicated multiplication gives the result

Z ′ =

 AZ11AT AZ12 AZ13

Z21AT Z22 Z23

Z31AT Z32 Z33

 . (33.6.53)

In particular, we see that
(Z ′)11 = AZ11AT . (33.6.54)

We will now seek a symplectic A that brings Z11 to Williamson normal form. Define the
quantity ε1 by the rules

ε21 = Z11
11Z

11
22 − (Z11

12)2 = 〈q2
1〉〈p2

1〉 − 〈q1p1〉2, (33.6.55)

ε1 = +
√
ε21. (33.6.56)

It follows from the Schwarz inequality that there is the relation

〈q1p1〉2 ≤ 〈q2
1〉〈p2

1〉 (33.6.57)

and therefore the right side of (6.55) can never be negative. See Exercise 6.4. Consequently
ε1 is well defined by (6.55) and (6.56), and is positive. Next define “beam” betatron functions
α, β, γ by the rules

α = −Z11
12/ε1 = −〈q1p1〉/ε1, (33.6.58)

β = Z11
11/ε1 = 〈q2

1〉/ε1, (33.6.59)

γ = Z11
22/ε1 = 〈p2

1〉/ε1. (33.6.60)

In terms of these definitions, Z11 takes the form

Z11 = ε1

(
β −α
−α γ

)
. (33.6.61)

From (6.59) and (6.60) there are the inequalities β ≥ 0 and γ ≥ 0. And, from (6.55)
through (6.60), there is the relation

1 = βγ − α2. (33.6.62)
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Finally, define the matrix A by the rule

A =

(
1/
√
β 0

α/
√
β
√
β

)
. (33.6.63)

Since A is 2× 2 and evidently has unit determinant, it is symplectic. Correspondingly, the
R given by (6.51) is symplectic. And, from the definitions made and executing the matrix
multiplications AZ11AT indicated in (6.54), we find that

(Z ′)11 = AZ11AT = diag(ε1, ε1). (33.6.64)

See Exercise 6.5.
We will now exploit these results. From (6.64) we find that

〈q2
1〉′ = (Z ′)11

11 = ε1, (33.6.65)

〈p2
1〉′ = (Z ′)11

22 = ε1. (33.6.66)

It follows that
〈q2

1〉′ 〈p2
1〉′ = ε21. (33.6.67)

But we also have the relation (6.34). We conclude that there is the inequality

ε21 ≥ λ2
min, (33.6.68)

in accord with (6.48). Analogous results hold for the other planes.

Sharpening

We close this subsection by noting that the minimum emittance theorem (6.48) sharpens
the classical uncertainty principle (6.34). Indeed, combining (6.47) and (6.48) produces the
result

〈q2
i 〉〈p2

i 〉 ≥ λ2
min + 〈qipi〉2, i = 1, 2, 3. (33.6.69)

We see that to minimize 〈q2
i 〉〈p2

i 〉 we must insure that 〈qipi〉 vanishes.

33.6.7 Nonexistence of Maximum Emittances

The classical uncertainty principle (6.34) and the minimum emittance theorem (6.48) show
that the mean square emittances are bounded from below under the action of linear sym-
plectic maps. We will now see that they are not bounded from above if the phase space has
4 or more dimensions.

Consider the 4-dimensional case, and suppose initially a particle distribution has all
quadratic moments zero save for the moments 〈q2

1〉, 〈p2
1〉, 〈q2

2〉, and 〈p2
2〉. (From the work

of Subsection 6.3 we know that there is always a linear symplectic transformation that will
bring the quadratic moments to this form.) In this case the mean square emittances ε2i are
given by the relation

ε2i = 〈q2
i 〉〈p2

i 〉. (33.6.70)
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Let R be the linear symplectic map

R = exp(ν : q1p2 :). (33.6.71)

Here ν is some some real parameter. It is easily verified that this map has the properties

q̄1 = Rq1 = q1, (33.6.72)

p̄1 = Rp1 = p1 + νp2, (33.6.73)

q̄2 = Rq2 = q2 − νq1, (33.6.74)

p̄2 = Rp2 = p2. (33.6.75)

It is also easily verified that there are the transformed moment relations

〈q̄2
1〉 = 〈q2

1〉, (33.6.76)

〈p̄2
1〉 = 〈(p1 + νp2)2〉 = 〈p2

1〉+ ν2〈p2
2〉, (33.6.77)

〈q̄1p̄1〉 = 0; (33.6.78)

〈q̄2
2〉 = 〈(q2 − νq1)2〉 = 〈q2

2〉+ ν2〈q2
1〉, (33.6.79)

〈p̄2
2〉 = 〈p2

2〉, (33.6.80)

〈q̄2p̄2〉 = 0. (33.6.81)

Correspondingly, the transformed mean square emittance ε̄21 satisfies the relation

ε̄21 = 〈q̄2
1〉〈p̄2

1〉 − 〈q̄1p̄1〉2

= 〈q2
1〉(〈p2

1〉+ ν2〈p2
2〉)

= ε21 + ν2〈q2
1〉〈p2

2〉. (33.6.82)

Similarly the transformed mean square emittance ε̄22 satisfies the relation

ε̄22 = ε22 + ν2〈q2
1〉〈p2

2〉. (33.6.83)

We conclude that both ε̄21 and ε̄22 can be made arbitrarily large by making |ν| arbitrarily
large.

33.6.8 Second-Order Moments about the Beam Centroid

Definition

Define second-order moments About the Beam Centroid, denoted as ZABC
ab , by the rule

ZABC
ab = 〈(za − 〈za〉)(zb − 〈zb〉)〉 = (1/N)

∫
d6z h(z)(za − 〈za〉)(zb − 〈zb〉). (33.6.84)
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Executing the indicated operations gives the result

ZABC
ab = 〈(za − 〈za〉)(zb − 〈zb〉)〉

= 〈zazb〉 − 〈za〈zb〉〉 − 〈〈za〉zb〉+ 〈〈za〉〈zb〉〉
= 〈zazb〉 − 〈za〉〈zb〉
= Zab − ZOBC

ab . (33.6.85)

Here ZOBC
ab denotes the set of second-order moments Of the Beam Centroid defined by the

rule
ZOBC
ab = 〈za〉〈zb〉. (33.6.86)

Intuitively, ZOBC may be viewed as the collection of second-order moments of a beam distri-
bution consisting of a single macro particle located at the beam centroid. We also observe,
in passing, that (6.85) can be rewritten in the form

Z = ZABC + ZOBC, (33.6.87)

which is analogous to the fact that the inertia tensor of a rigid body about some specified
origin is the sum of its inertia tensor about its center of mass plus the inertia tensor of its
center of mass about the specified origin.

Properties under Translations

What are the transformation properties of ZABC under the action of a translation T ? Start-
ing from the definition (6.83) we find the chain of equalities

(ZABC
ab )′ = (〈(za − 〈za〉′)(zb − 〈zb〉′)〉)′

= (1/N)

∫
d6z h′(z)(za − 〈za〉′)(zb − 〈zb〉′)

= (1/N)

∫
d6z h(T −1z)(za − 〈za〉′)(zb − 〈zb〉′)

= (1/N)

∫
d6z̄ h(z̄)(z̄a + δa − 〈za〉′)(z̄b + δb − 〈zb〉′)

= (1/N)

∫
d6z̄ h(z̄)(z̄a − 〈za〉)(z̄b − 〈zb〉)

= ZABC
ab . (33.6.88)

Here we have used (4.9) and (4.10) to change variables and have used (4.12) to obtain the
relation

(z̄a + δa − 〈za〉′)(z̄b + δb − 〈zb〉′) = (z̄a − 〈za〉)(z̄b − 〈zb〉). (33.6.89)

We see that ZABC is invariant under translations. (For an alternate proof of this result, see
Exercise 6.6.) The quantity ZABC describes an intrinsic property of the beam distribution
in that it does not depend on the location of the beam relative to the design orbit. Note
that, according to (6.85) and(6.86), each component ZABC

ab of ZABC depends on first and
second moments. Therefore, each component is a moment invariant under the action of
translations.
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Properties under Linear Symplectic Maps

What are the transformation properties of ZABC under the action of a linear symplectic map
R? Evidently, according to (6.85), we may write the relation

(ZABC)′ = Z ′ − (ZOBC)′. (33.6.90)

We see from (4.19) that there is the relation

(ZOBC
ab )′ = 〈za〉′〈zb〉′ =

∑
cd

RacRbd〈zc〉〈zd〉, (33.6.91)

which can be written in the more compact form

(ZOBC)′ = RZOBCRT . (33.6.92)

Recall also the relation (6.10). It follows that there is the result

(ZABC)′ = RZRT −RZOBCRT = RZABCRT . (33.6.93)

We conclude that Z, ZABC, and ZOBC all transform in the same manner.

Positive Definiteness

What about positive definiteness? First consider ZOBC. As in Subsection 6.1, u be any real
nonzero vector. It follows from (6.86) that there is the result

(u, ZOBCu) =
∑
ab

uaZ
OBC
ab ub =

∑
ab

ua〈za〉〈zb〉ub = (u, 〈z〉)2 ≥ 0. (33.6.94)

We see that (u, ZOBCu) can never be negative. However if (u, 〈z〉) = 0, which is certainly
possible, then (u, ZOBCu) = 0. Therefore ZOBC is not positive definite.

Even more can be said. Let R be a symplectic matrix that has the property (4.21). Then
we see from (6.91) that in this case

(ZOBC)′ = D (33.6.95)

where D is a diagonal matrix with all entries zero save for D11 which has the value D11 = 1.
Correspondingly, DJ has all entries zero save that (DJ)12 = 1. Consequently, the eigenvalues
of DJ and JD, and hence of ZOBCJ and JZOBC, all vanish. Recall Exercises 3.7.18 and
3.7.16. Moreover, there is the relation

(DJ)2 = 0, (33.6.96)

from which it follows that
(ZOBCJ)2 = 0. (33.6.97)

We conclude from (5.7) and (6.97) that for ZOBC there is the result

I(n)[ZOBC] = 0. (33.6.98)
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The second-order moment invariants of a beam distribution consisting of a single macro
particle all vanish.

What about second-order moments about the beam centroid, those described by ZABC?
Calculation/insight shows that ZABC is positive definite. See Exercise 6.7. Therefore it
has a Williamson normal form and is characterized by eigen emittances. Note that because
ZABC is invariant under translations, these eigen emittances are invariant under the action
of the full group ISp(2n).

We also observe that in general these eigen emittances may differ from those of Z, but
they may be of interest if the beam centroid is quite far from the design orbit. See Exercise
6.8. However in practice it is probably desirable, as one of the criteria for beam matching, to
arrange to have the beam centroid coincide with the design orbit. This is also natural from
an instrumentation perspective since beam position monitors essentially record the spatial
coordinates of the beam centroid. Recall Section 3.

33.6.9 Summary of What We Have Learned

The information provided by the classical uncertainty principle and the minimum emittance
theorem is useful when designing a beam line to perform emittance manipulations on a beam
because it sets lower limits on what one can hope to achieve. It should also be useful in
analyzing the results of beam cooling experiments. In this case one can measure all quadratic
moments before and after a cooling channel. Next compute the eigen emittances of Z before
and Z after. Ideally, one would like to find that all the λ2

j have decreased, or at least the
minimum of the λ2

j has decreased.

We have seen that, in considering what can be achieved under beam transport (in the
linear approximation), what counts are the eigen emittances, and these can be viewed as
properties of the initial particle distribution. Moreover, according to (6.14) through (6.16),
the best that can be achieved are the spread relations

〈q2
i 〉〈p2

i 〉 = λ2
i , i = 1, 2, 3 (33.6.99)

where the λi are the eigen emittances in some order. Thus, in the combined context of
both source and beam-line design, the challenge is to produce an initial particle distribution
having optimal eigen emittances and to then transform the initial particle distribution in
such a way that the optimal spread relations are realized in the desired planes. The next
sections will describe various methods for producing initial particle distributions having
optimal eigen emittances and how to then transform these distributions in such a way that
the optimal spread relations are realized in the desired planes.

Exercises

33.6.1. Verify (5.5). Next suppose that Z ′ and Z are related by (6.10) and that R is
symplectic. Verify that

I[Z ′] = tr[(Z ′J2)2] = tr[(RZRTJ2)2]. (33.6.100)
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Next verify that

tr[(RZRTJ2)2] = tr[RZRTJ2RZR
TJ2] = tr[RZJ2ZR

TJ2]

= tr[ZJ2ZR
TJ2R] = tr[ZJ2ZJ2]

= tr[(ZJ2)2] = I[Z]. (33.6.101)

Here we have used that assumption that R is symplectic and the trace property (3.6.130).
Combining (6.100) and (6.101) shows that I is invariant,

I[Z ′] = I[Z]. (33.6.102)

How might we have known that there should be an invariant? Consider the space of
all quadratic polynomial functions of the two-dimensional phase-space variables q, p. For
present purposes, a convenient basis for these polynomials is given by the monomials

c1 = q2, (33.6.103)

c2 = qp, (33.6.104)

c3 = p2. (33.6.105)

According to Section 24.2, these polynomials carry the sp(2) representation Γ(2). Also,
comparison of (2.5) and (2.7) shows that polynomials Pα and moments mα have the same
transformation properties. Therefore, and in particular, second-order moments of the two-
dimensional phase-space variables q, p also carry the representation Γ(2).

Next we observe that, for sp(2), there is the Clebsch-Gordan series result

Γ(2)⊗ Γ(2) = Γ(0)⊕ Γ(2)⊕ Γ(4). (33.6.106)

This is just the sp(2) analog of the familiar statement that spin 1 and spin 1 combine to
make spin 0, spin 1, and spin 2. Even more familiar, it is the analog of the statement
that two vectors can be combined to make a scalar by use of the dot product, or can be
combined to make another vector by use of the cross product, or can be combined to make a
tensor by use of the tensor product. By definition, an entity (if is nonzero) that carries the
representation Γ(0) will be an invariant. Therefore, according to (6.106), there is at least
the hope/possibility of constructing an invariant out of quadratic products of second-order
moments. Note that the contents of (5.5) are indeed quadratic products of second-order
moments.

How can we construct an entity that carries the representation Γ(0)? We have already
seen some such constructions in Section 24.11, which you should review. You will now have
the pleasure of making a similar construction for the problem at hand.

Begin by finding the symmetric matrices Sj associated with the cj by the rule

cj = (z, Sjz). (33.6.107)

Show that these matrices are given by the relations

S1 =

(
1 0
0 0

)
, (33.6.108)



33.6. SOME PROPERTIES OF SECOND-ORDER MOMENTS 2183

S2 = (1/2)

(
0 1
1 0

)
, (33.6.109)

S3 =

(
0 0
0 1

)
. (33.6.110)

Next find the associated sp(2) matrices Cj defined by the rule

Cj = JSj. (33.6.111)

Show that these matrices are given by the relations

C1 =

(
0 0
−1 0

)
, (33.6.112)

C2 = (1/2)

(
1 0
0 −1

)
, (33.6.113)

C3 =

(
0 1
0 0

)
. (33.6.114)

From these sp(2) matrices construct the associated down-index metric tensor g by the
rule

gjk = tr(CjCk). (33.6.115)

Show that g has the entries

g =

 0 0 −1
0 1/2 0
−1 0 0

 . (33.6.116)

With g in hand, construct the up-index metric tensor ĝ by the rule

ĝjk = (g−1)jk. (33.6.117)

Show that ĝ has the entries

ĝ =

 0 0 −1
0 2 0
−1 0 0

 . (33.6.118)

Finally, based on arguments provided in Section 24.11, the quantity I defined by

I =
∑
jk

〈cj〉ĝjk〈ck〉 (33.6.119)

should be invariant. Verify that

I =
∑
jk

〈cj〉ĝjk〈ck〉 = −2〈c1〉〈c3〉+ 2〈c2〉2 = −2(〈q2〉〈p2〉 − 〈qp〉2), (33.6.120)

which agrees with (5.6). If we look at (6.120) from a group-theory perspective, we see that
the quantities ĝjk are the Sp(2) Clebsch-Gordan coefficients that couple Γ(2) and Γ(2) down
to Γ(0).
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There is one further proof of the invariance of I as given by (5.5), actually of ε2 as
given by (5.6), that historically probably came first. Begin by verifying, in the case of a
two-dimensional phase space, that the second-order moment matrix Z has the form

Z =

(
〈q2〉 〈qp〉
〈qp〉 〈p2〉

)
. (33.6.121)

Consequently, the determinant of Z has the value

det Z = 〈q2〉〈p2〉 − 〈qp〉2 = ε2. (33.6.122)

Next look at the transformation rule (6.10) in the two-dimensional phase space case. Verify
that taking the determinant of both sides of (6.10) and recalling Section 3.3.3 give the result

det Z ′ = det RZRT = (det R)(det Z)(det RT ) = det Z, (33.6.123)

thereby demonstrating the invariance of the mean-square emittance in the two-dimensional
phase space case.

33.6.2. The aim of this exercise is to show that I(n)[Z] as given by (5.7) is invariant. First,
as warmup steps, verify the relations

I [n] = 0 for odd n, (33.6.124)

tr[(ZJ)n] = tr[(JZ)n]. (33.6.125)

Deduce from (6.33) that

(JZ ′)n = [(RT )−1JZRT ]n = (RT )−1(JZ)nRT . (33.6.126)

Next verify from (6.126) that
tr[(JZ ′)n] = tr[(JZ)n]. (33.6.127)

You have shown that

I(n)[Z ′] = tr[(JZ ′)n] = tr[(Jz)n] = I(n)[Z]. (33.6.128)

33.6.3. The aim of this exercise is to prove (6.18) and to remark on one of its consequences.
To do so, begin by verifying the following chain of equalities:

I(n)[Z] = I(n)[AZAT ] = I(n)[D] = tr[(DJ)n] = tr[(JD)n]. (33.6.129)

Here we have used the invariance of I(n), the relation (6.11), and the relation (6.125). Next
use (6.22) to show that

(JD)2 = −diag{λ2
1, λ

2
1, λ

2
2, λ

2
2, λ

2
3, λ

2
3}, (33.6.130)

from which it follows that

(JD)n = (−1)n/2diag{λn1 , λn1 , λn2 , λn2 , λn3 , λn3}. (33.6.131)
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Here we assume n is even since the case of odd n has already been covered in (6.124). Finally,
verify that

tr[(JD)n] = 2(−1)n/2(λn1 + λn2 + λn2 ) (33.6.132)

thereby proving (6.18).
As a parting comment we remark that, if desired, relations of the form (6.18) can be

solved for the λj in terms of the I [n], and that the solution is given in terms of radicals for
the cases where the phase-space dimension is less than or equal to 8. Find explicit results
when the phase-space dimension is 2 or 4.

33.6.4. Let f(z) and g(z) be any two real polynomial functions. Such functions form a
vector space. By using the phase-space density h(z), which is assumed to fall off sufficiently
fast at infinity, define a scalar product (f, g) by the rule

(f, g) = (1/N)

∫
d6z h(z)f(z)g(z). (33.6.133)

Verify that (6.133) satisfies all the requirements to be a scalar product including the positive-
definite conditions

(f, f) ≥ 0, (33.6.134)

(f, f) = 0⇔ f = 0. (33.6.135)

Note also that, in terms of moment notation, there is the relation

(f, g) = 〈fg〉. (33.6.136)

Prove the Schwarz inequality in this context, and use it to verity the result (6.57). See
Exercise 3.7.1.

33.6.5. Verify (6.62). Let I be the 2× 2 identity matrix, and let Z11 and A be the matrices
(6.61) and (6.63), respectively. Verify the matrix multiplication result

AZ11AT = ε1I. (33.6.137)

33.6.6. The aim of this exercise is to provide an alternate proof of (6.88).

33.6.7. Suppose Z and Z ′ are two matrices related by (6.10). Under the assumption that
R is nonsingular, but not necessarily symplectic, show that Z ′ is symmetric and positive
definite if the same is true for Z.

A further task is to show that ZABC is positive definite. First provide a proof along the
lines of that in Subsection 6.1. Next · · · .

33.6.8. The purpose of this exercise is to illustrate by a simple example that translation can
change an emittance. Consider, for simplicity, the case of a two-dimensional phase space,
and suppose a beam initially has the moments

〈q2〉 = 〈p2〉 = λ, (33.6.138)

〈qp〉 = 〈q〉 = 〈p〉 = 0. (33.6.139)
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Then the initial mean-square emittance ε2 has the value

ε2 = λ2. (33.6.140)

Next consider the effect of a translation that simply augments q by an amount δ. Then, to
compute the final emittance, we need the quantities

〈q2〉′ = 〈(q + δ)2〉 = 〈(q2 + 2qδ + δ2)〉 = 〈q2〉+ 2δ〈q〉+ δ2 = λ+ δ2, (33.6.141)

〈p2〉′ = 〈p2〉 = λ (33.6.142)

〈qp〉′ = 〈(q + δ)p〉 = 〈qp〉+ δ〈p〉 = 0. (33.6.143)

From these quantities show that the transformed mean-square emittance is given by the
relation

(ε2)′ = 〈q2〉′〈p2〉′ − (〈qp〉′)2 = (λ+ δ2)λ = λ2 + δ2λ. (33.6.144)

Upon comparing (6.140) and (6.144), we see that the mean-square emittance has been
increased by an amount δ2λ.

33.7 Construction of Initial Distributions with

Small/Optimized Eigen Emittances

33.8 Realization of Eigen Emittances as Mean-Square

Emittances
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(2006).

[12] M.A. de Gosson and F. Luef, “Symplectic capacities and the geometry of uncertainty:
The irruption of symplectic topology in classical and quantum mechanics”, Physics
Reports 484, 131-179, Elsevier (2009).

2187

www.physics.umd.edu/dsat/


2188 BIBLIOGRAPHY

[13] M.A. de Gosson, “The symplectic egg in classical and quantum mechanics”, American
Journal of Physics 81, 328 (2013).



Chapter 34

Optimal Evaluation of Symplectic
Maps

34.1 Overview of Symplectic Map Approximation

Several previous chapters have been devoted to the subject of describing, computing, manip-
ulating, and analyzing symplectic maps. This chapter is devoted to the subject of applying
symplectic maps to phase-space data. That is, we are given a symplectic map M in some
some form and a general phase-space point z, and we wish to find the phase-space point z̄
given by

z̄ =Mz. (34.1.1)

This task is more difficult and more complicated than one might suppose.
In practice, generally the only symplectic maps we can deal with in an explicit way are

truncated Taylor series of the form (7.5.5) or (7.6.1) or (7.7.13). These Taylor series will
obey the symplectic condition to the order through they have been calculated, i.e. they are
symplectic jets.1 But usually they will fail to obey the symplectic condition exactly because
of the missing higher-order terms. Of course, we can always make the Lie factorization
(7.7.23) and then truncate the infinite product at some order. So doing will still yield a
symplectic map. However, its evaluation will generally involve summing infinite series of the
form (5.4.1) and (5.42). When working numerically, at best these series can be evaluated to
machine precision. But usually this is impractical because of the great effort involved if this
is to be done very often. Usually we must truncate the Lie series, in which case we are again
left with a symplectic jet which generally does not satisfy the symplectic condition exactly.

Put another way, suppose the map M is factored in the form

M = exp(: f1 :)RN (34.1.2)

where
N = exp(: f3 :) exp(: f4 :) exp(: f5 :) · · · . (34.1.3)

Then we can evaluate exp(: f1 :) exactly because it simply produces a translation, and we
can evaluate the linear part R to produce a matrix R that is symplectic to machine precision

1See Section 7.5.
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using the methods of Chapter 4. However, there is generally no easy way to evaluate the
action of the nonlinear part N . In particular, approximating its action as a jet generally
violates the symplectic condition.

Failure to satisfy the symplectic condition exactly may not produce serious errors when
tracking particles through single-pass systems such as beam lines or electron microscopes
or spot forming systems or linear accelerators or linear colliders. However, failure to satisfy
the symplectic condition is very serious when one tries to model the long-term behavior of
particles in circulating devices such as synchrotrons or damping rings or storage rings.

As a simple example, consider the two-dimensional symplectic map M given by the
relation

M = RN (34.1.4)

with linear part

R = exp(−(θ/2) : p2 + q2 :) (34.1.5)

and nonlinear part

N = exp(: qp2 :). (34.1.6)

The map R can be evaluated exactly, see (1.2.48) and (1.2.49). And, thanks to its simplicity,
so can the map N . There is the result

q̄ = N q = q(1− p)2, (34.1.7)

p̄ = Np = p/(1− p). (34.1.8)

See Section 1.4.2. Therefore M can also be evaluated exactly.
Figure 1.1 shows the result of applying M repeatedly to seven initial conditions for the

case θ/2π = 0.22. That is, seven initial conditions have been selected and their orbits have
been found under the repeated action ofM. One initial condition is near the origin, and its
orbit appears to lie on a closed curve that is nearly elliptical. (It would be nearly circular
had the horizontal and vertical scales been equal.) This is to be expected because the effect
of the nonlinear part N is small on such orbits so that such orbits are essentially those of R.
By contrast, the other initial conditions are successively farther from the origin where the
effect of N becomes ever more significant. Their orbits appear to lie on closed curves that,
the farther they are from the origin, are more and more noticeably distorted from circular
by nonlinearities.

Now suppose the nonlinear map N is truncated, to become the map N tr, by retaining
only the first two terms in its Taylor expansion,

N tr = I + : qp2 : . (34.1.9)

The truncated map N tr has the effect

q̄ = N trq = (I + : qp2 :)q = q + [qp2, q] = q − 2qp, (34.1.10)

p̄ = N trp = (I + : qp2 :)p = p+ [qp2, p] = p+ p2. (34.1.11)

Evidently N tr is a degree-two symplectic jet map.
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Figure 34.1.1: Phase-space portrait, in the case θ/2π = 0.22, resulting from applying the
map M repeatedly (2000 times) to the seven initial conditions (q, p) = (.01, 0), (.1, 0),
(.15, 0), (.2, 0), (.25, 0), (.3, 0), and (.35, 0) to find their orbits.
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Next define a corresponding map Mtr by writing

Mtr = RN tr. (34.1.12)

Figure 1.2 shows the orbits of Mtr for two initial conditions, one near the origin and one
quite far away. Inspection of the figure shows that orbits are no longer distorted circles, but
instead appear to spiral into the origin. This motion into the origin occurs because N tr,
and consequentlyMtr, is not symplectic. See Exercise 1.1. Indeed, following the discussion
of Section 22.1, the map Mtr must have a factorization of the form

Mtr = exp(G4) exp(G5) exp(G6) · · · ×
exp(−(θ/2) : p2 + q2 :) exp(: qp2 :) exp(: f4 :) exp(: f5 :) · · · (34.1.13)

with the non-Hamiltonian vector field G4 being nonzero.
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Figure 34.1.2: Phase-space portrait, in the case θ/2π = 0.22, resulting from applying the
mapMtr repeatedly (2000 times) to the two initial conditions (q, p) = (.01, 0) and (.4, 0) to
find their orbits. The orbits appear to spiral into the origin.

Suppose we also retain the next term in the Lie series for exp(: qp2 :) to form the
degree-three symplectic jet map

N tr3 = I+ : qp2 : + : qp2 :2 /2. (34.1.14)
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The truncated map N tr3 has the effect

q̄ = N tr3q = (I + : qp2 : + : qp2 :2 /2)q

= q + [qp2, q] + [qp2, [qp2, q]]/2 = q − 2qp+ qp2, (34.1.15)

p̄ = N tr3p = (I + : qp2 : + : qp2 :2 /2)p

= p+ [qp2, p] + [qp2, [qp2, p]]/2 = p+ p2 + p3. (34.1.16)

Again define a corresponding map Mtr3 by writing

Mtr3 = RN tr3. (34.1.17)

Figure 1.3 shows the orbits ofMtr3 for four initial conditions relatively near the origin. Now
orbits move away from the origin. And the farther they are from the origin, the faster they
move further away from the origin. Indeed, the orbits of initial conditions somewhat farther
from the origin move very far from the origin under 2000 applications ofMtr3. This motion
away from the origin occurs because N tr3, and consequently Mtr3, is again not symplectic,
although more nearly symplectic than N tr because N tr3 is a degree-three symplectic jet
whereas N tr is a degree-two symplectic jet. Now, following the discussion of Section 22.1,
the map Mtr3 must have a factorization of the form

Mtr3 = exp(G5) exp(G6) exp(G7) · · · ×
exp(−(θ/2) : p2 + q2 :) exp(: qp2 :) exp(: f5 :) exp(: f6 :) · · · (34.1.18)

with the non-Hamiltonian vector field G5 being nonzero.
We have learned that violation of the symplectic condition can lead both to spurious

damping (motion toward the origin) and spurious growth (motion away from the origin).
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Figure 34.1.3: Phase-space portrait, in the case θ/2π = 0.22, resulting from applying the
map Mtr3 repeatedly (2000 times) to the four initial conditions (q, p) = (.01, 0), (.075, 0),
(.1, 0), and (.125, 0) to find their orbits. The orbits appear to move away from origin.



34.2. SYMPLECTIC COMPLETION OF SYMPLECTIC JETS 2195

Exercises

34.1.1. Verify that (1.10) and (1.11) are truncated Taylor expansions of (1.7) and (1.8).
Show that the map N tr given by (1.10) and (1.11) satisfies the relation

[q̄, p̄] = 1− 4p2, (34.1.19)

and is therefore a symplectic jet but not a symplectic map.

34.1.2. Find G4 and f4 in the factorization (1.13) for the map Mtr

34.2 Symplectic Completion of Symplectic Jets

34.2.1 Criteria

34.2.2 Monomial Approximation

34.2.3 Generating Function Approximation

34.2.4 Cremona Maps

Kick Approximation

Jolt Approximation

34.3 Connection Between Mixed-Variable Generating

Functions and Lie Generators

Sections 6.5 through 6.7 described the parameterization of symplectic maps in terms of
mixed-variable generating functions. Chapters 7 through 9 described, among other things,
the parameterization of symplectic maps in terms of Lie generators. The purpose of this
section is to study the relation between these two parameterizations.

In particular, suppose N is a nonlinear symplectic map of the form

N = exp(: f3 :) exp(: f4 :) exp(: f5 :) · · · . (34.3.1)

Select some Darboux matrix α. Then, generally, there will be some source function g(u)
that will produce the same map using (6.7.21). We will see that the source function g(u)
has a homogeneous polynomial expansion of the form

g = g2 + g3 + g4 + · · · . (34.3.2)

What we wish to do is to find the relation between the fm and the gm.
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34.3.1 Method of Calculation

The task we have posed is algebraically complicated. As a first step, with the aid of the
CBH series, we combine all the exponents appearing in (3.1) into one grand exponent : e :.
Thus, we may also write

N = exp(: e :) (34.3.3)

with
e = e3 + e4 + e5 + · · · (34.3.4)

where

e3 = f3,

e4 = f4,

e5 = f5 + [f3, f4],

e6 = f6+, etc. (34.3.5)

Next define a function h by the rule

h = −e = h3 + h4 + h5 + · · · (34.3.6)

so that N can be written in the form

N = exp(− : h :). (34.3.7)

That is, N can be viewed as the map generated by integrating from t = 0 to t = 1 the
equations of motion arising from the time-independent Hamiltonian h. Our intermediate
goal now is to find a relation between the hm and the gm.

This goal can be achieved with the aid of the results of Section 6.7.3.2. There we learned
that the source function and the Hamiltonian are related by (6.7.131) and (6.7.145). In this
instance, we should set ti = 0, t = 1, and H(ζ, τ) = h(ζ) to give the result

g(u) = g(u, t = 1) = (1/2)(Ẑ, αTSαẐ) + (1/2)A′(u, t = 1) (34.3.8)

with

A′(u, t = 1) =

∫ 1

0

dτ [(ζ, Jζ̇) + 2h(ζ)]. (34.3.9)

It is this result that we will manipulate and evaluate to bring it into usable form.
Let us begin with the first term appearing on the right side of (3.8). For this term we

undo (6.7.144) to write

(1/2)(Ẑ, αTSαẐ) = (1/2)(U, u) = (1/2)(u, U) (34.3.10)

with
U = AαZ +Bαz. (34.3.11)

Now work on (1/2)A′(u, t = 1), the second term on the right side of (3.8). Consider the
first term appearing in the integrand of (3.9). We know that ζ(τ) is given by the relation

ζ(τ) = exp(−τ : h :)z (34.3.12)
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and therefore
ζ̇ = − exp(−τ : h :) : h : z = − exp(−τ : h :)[h, z]. (34.3.13)

Consequently we find that

(ζ, Jζ̇) = −(exp(−τ : h :)z, J exp(−τ : h :)[h, z]) = − exp(−τ : h :)(z, J [h, z]). (34.3.14)

Let us evaluate (z, J [h, z]). In terms of components, and employing the convention of
summing over repeated indices, we find that

(z, J [h, z]) = zaJab[h, zb] = zaJab(∂h/∂zc)Jcd(∂zb/∂zd)

= zaJab(∂h/∂zc)Jcdδbd

= zaJab(∂h/∂zc)Jcb

= zaJab(J
T )bc(∂h/∂zc)

= za(JJ
T )ac(∂h/∂zc)

= za(∂h/∂za). (34.3.15)

The right side of (3.15) cries out for Euler’s homogeneous function theorem. By this
theorem, for each homogeneous component appearing in (3.6), we have the result

za(∂hm/∂za) = mhm. (34.3.16)

Therefore we may also write

(z, J [h, z]) =
∞∑
m=3

mhm. (34.3.17)

It follows that

(ζ, Jζ̇) = −(exp(−τ : h :)
∞∑
m=3

mhm. (34.3.18)

We also note that the second term appearing in the integrand of (3.9) can be rewritten
in the form

2h(ζ) = 2h(exp(−τ : h :)z) = 2 exp(−τ : h :)h(z). (34.3.19)

Consequently, the full integrand can be rewritten as

(ζ, Jζ̇) + 2h(ζ) = exp(−τ : h :)
∞∑
m=3

(2−m)hm. (34.3.20)

Correspondingly, the integral takes the form

A′(u, t = 1) =

∫ 1

0

dτ [exp(−τ : h :)
∞∑
m=3

(2−m)hm. (34.3.21)

Since the τ behavior has been isolated, this integral can be evaluated to give the result

A′(u, t = 1) = iex(− : h :)
∞∑
m=3

(2−m)hm. (34.3.22)
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We can now put all our results together to obtain the relation

g(u) = (1/2)(u, U) + (1/2)iex(− : h :)
∞∑
m=3

(2−m)hm. (34.3.23)

Recall the relation (6.7.18), which can be rewritten in the form

u = CαZ +Dαz = CαN z +Dαz = Cα exp(− : h :)z +Dαz. (34.3.24)

This relation is to solved to give z in terms of u. This z(u) must then be substituted into the
right side of (3.23) to yield g(u). Finally, g must be expanded in homogeneous polynomials
as in (3.2).

34.3.2 Computing g2

We begin with the computation g2. The relation (3.24) has the expansion

u = Cα exp(− : h :)z +Dαz = Cα(I− : h : + · · · )z +Dαz

= (Cα +Dα)z + Cα(− : h : + · · · )z. (34.3.25)

Thus, because the quantity [(− : h : + · · · )z] consists of terms that are of order 2 and higher,
the expansion (3.24) has the inverse expansion

z = z(1)(u) +O(u2) (34.3.26)

with

z(1)(u) = (Cα +Dα)−1u. (34.3.27)

Observe that the second set of terms on the right side of (3.23) is of order 3 and higher in z.
It follows that second set of terms contributes only terms of order u3 and higher. Therefore
second degree terms, the ones required for g2, can only come from the quantity (1/2)(u, U),
the first term on the right side of (3.23). We have from (3.11) the expansion

U = AαZ +Bαz = AαN z +Bαz

= Aα exp(− : h :)z +Bαz = Aα(I− : h : + · · · )z +Bαz

= (Aα +Bα)z + Aα(− : h : + · · · )z
= (Aα +Bα)z +O(z2). (34.3.28)

Next substitute (3.26) and (3.27) into (3.28) to yield the expansion

U = (Aα +Bα)(Cα +Dα)−1u+O(u2). (34.3.29)

Also observe that the matrix product appearing in (3.29) can be written in the Möbius
transformation form

(Aα +Bα)(Cα +Dα)−1 = (AαI +Bα)(CαI +Dα)−1 = Tα(I). (34.3.30)
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Therefore (3.29) can be rewritten as

U = Wu+O(u2) (34.3.31)

with

W = Tα(I), (34.3.32)

and it follows that

(1/2)(u, U) = (1/2)(u,Wu) +O(u3). (34.3.33)

Thus we have the result

g2(u) = (1/2)(u,Wu), (34.3.34)

which is what we should have expected. Consult Exercise 6.7.1. We see that W is well
defined provided

det(Cα +Dα) 6= 0, (34.3.35)

which was also required to write (3.27).

34.3.3 Low Order Results: Computing g3 and g4

Let us push on to compute g3 and g4. To do so, we will need to retain various higher-order
terms in the expressions we have already encountered. We might think that we need to
retain higher order terms in (3.25) or (3.26), in (3.28), and in the second term on the right
side of (3.23). In fact, this would be one way to proceed. However, at this stage, it is also
possible to avoid dealing with (3.28) entirely, thereby achieving a considerable simplification.

Again Euler comes to the rescue. We thought we had to deal with (3.28) because it ap-
peared to be needed to compute the first term on the right side of (3.23), namely (1/2)(u, U).
However, using (6.7.14), we may write

(u, U) =
∑
a

ua(∂g/∂ua). (34.3.36)

Therefore, if we decompose g into homogeneous polynomials as in (3.2) by writing

g =
∞∑
n=2

gn, (34.3.37)

we find by Euler’s theorem the result

(1/2)(u, U) = (1/2)
∑
a

ua(∂g/∂ua) = (1/2)
∞∑
n=2

∑
a

ua(∂gn/∂ua) = (1/2)
∞∑
n=2

ngn.

(34.3.38)
Moreover, we find that

g − (1/2)(u, U) =
∞∑
n=2

(1− n/2)gn. (34.3.39)
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Consequently, when (6.7.14) is taken into account, the defining relation (3.23) can also be
written in the form

∞∑
n=3

(2− n)gn = iex(− : h :)
∞∑
m=3

(2−m)hm. (34.3.40)

It is this form that we will employ to compute g3 and g4.
We must still retain higher-order terms in (3.25). Doing so gives the result

u = (Cα +Dα)z + Cα(− : h : + : h :2 /2! + · · · )z
= (Cα +Dα)z + Cα(− : h3 : + : h3 :2 /2! − : h4 : + · · · )z
= (Cα +Dα)z + Cα(−[h3, z] + (1/2)[h3, [h3, z]]− [h4, z] + · · · ). (34.3.41)

Let us rewrite this relation in the implicit form

z = (Cα +Dα)−1u− (Cα +Dα)−1Cα{−[h3, z] + (1/2)[h3, [h3, z]]− [h4, z] + · · · }.
(34.3.42)

We can now invert the relation by iteration. In lowest order we have the results (3.26) and
(3.27). In next order, we find

z = z(2)(u) +O(u3). (34.3.43)

with
z(2)(u) = (Cα +Dα)−1u− (Cα +Dα)−1Cα{−[h3, z]}|z=z(1) . (34.3.44)

Also, we need to expand the right side of (3.40). Through terms of degree 4 we have the
result

iex(− : h :)
∞∑
m=3

(2−m)hm = (I− : h : /2 + · · · )(−h3 − 2h4 − · · · )

= −h3 − 2h4 +O(z5). (34.3.45)

Next we need to express both sides of (3.45) as functions of u using (3.26) and (3.43).
Doing so we find the result

{iex(− : h :)
∞∑
m=3

(2−m)hm}|z=z(2) = −(h3)|z=z(2) − 2(h4)|z=z(1) +O(u5). (34.3.46)

Note that because z(2)(u) contains quadratic terms in u, see (3.44), the first quantity on the
right of (3.46) will contribute terms that are both of degree 3 and 4 in u. Let us see what
they are. Rewrite (3.44) in the form

z(2)(u) = z(1)(u) + ∆ (34.3.47)

where
∆ = −(Cα +Dα)−1Cα{−[h3, z]}|z=z(1) . (34.3.48)

With this notation, and inspired by Taylor, we find the result

(h3)|z=z(2) = h3(z(1) + ∆) = h3(z(1)) +
∑
a

∆a(∂h3/∂za)|z=z(1) +O(∆2). (34.3.49)
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Also, the quantity [h3, z] appearing in ∆ can be evaluated,

[h3, za] =
∑
bc

(∂h3/∂zb)Jbc(∂za/∂zc) =
∑
bc

(∂h3/∂zb)Jbcδac

=
∑
b

(∂h3/∂zb)Jba = −
∑
b

Jab(∂h3/∂zb). (34.3.50)

This result can be written more compactly in vector notation as

[h3, z] = −J(∂h3/∂z). (34.3.51)

Correspondingly, ∆ takes the more compact form

∆ = K(∂h3/∂z) (34.3.52)

where K is the matrix

K = −(Cα +Dα)−1CαJ. (34.3.53)

Finally, (3.49) takes the compact form

(h3)|z=z(2) = (h3)|z=z(1) + ((∂h3/∂z), K(∂h3/∂z))|z=z(1) +O(u5), (34.3.54)

and (3.46) becomes

{iex(− : h :)
∞∑
m=3

(2−m)hm}|z=z(2) = −(h3)|z=z(1) − ((∂h3/∂z), K(∂h3/∂z))|z=z(1)

−2(h4)|z=z(1) +O(u5). (34.3.55)

Now we are ready to equate terms of like degree in (3.40). Equating terms of degree 3
gives the result

− g3(u) = −h3(z)|z=z(1) , (34.3.56)

or

g3(u) = h3(z)|z=z(1) . (34.3.57)

And equating terms of degree 4 gives the result

− 2g4(u) = −((∂h3/∂z), K(∂h3/∂z))|z=z(1) − 2h4(z)|z=z(1) (34.3.58)

or

g4(u) = (1/2)((∂h3/∂z), K(∂h3/∂z))|z=z(1) + h4(z)|z=z(1) (34.3.59)

In terms of the fm, these relations can be written in the form

g3(u) = −f3(z)|z=z(1) , (34.3.60)

g4(u) = (1/2)((∂f3/∂z), K(∂f3/∂z))|z=z(1) − f4(z)|z=z(1) . (34.3.61)
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34.3.4 Two Examples

Eventually we will want to find higher-order results to determine the gn(u) for, say, n ≤ 8
and some select Darboux matrices α. Before doing so, let us see what can be said so far for
familiar choices of α. If we look at the Darboux α matrices for the generating functions F1

and F4, see Table 6.7.1, we observe that the matrices (Cα + Dα) are singular. Hence these
Darboux matrices cannot be used for our purposes. By contrast, the matrices (Cα + Dα)
for the three Darboux matrices associated with F2, F3, and F+ are invertible. We will study
the cases of F2 and F+. The case of F3 is similar to that of F2.

The Case of F2

First consider the case of F2. We find from (6.7.56) that

Cα +Dα = I2n (34.3.62)

and

Cα =

(
0 0
0 In

)
. (34.3.63)

It follows from (3.27) that
z(1)(u) = u. (34.3.64)

Also, from (6.7.55) and (3.32), we find that

W =

(
0 In

In 0

)
. (34.3.65)

Finally, from (3.41), (3.47), and (3.63), we find that

K = −CαJ =

(
0 0
In 0

)
. (34.3.66)

We are now ready to compute g2(u) through g4(u). As in Exercise 6.7.5, partition u into
position-like and momentum-like components by writing

u = (v;w). (34.3.67)

Then, from (3.42), (3.48), and (3.49) we have for g2(u) the result

g2(u) = (v, w), (34.3.68)

which can also be written in the form

g2(u) = (q, p)|z=u. (34.3.69)

Next, from (3.45) and (3.47), we find that

g3(u) = −f3(u). (34.3.70)

Finally, from (3.46), (3.47), and taking into account the form of K given by (3.49), we find
the results

g4(u) = −f4(u) + (1/2)(∂f3/∂q, ∂f3/∂p)|z=u. (34.3.71)
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The Case of F+

Next consider the case of F+. We find from (6.7.67) that

Cα +Dα =
√

2I2n (34.3.72)

and

Cα = (1/
√

2)I2n. (34.3.73)

It follows that in this case

z(1)(u) = (1/
√

2)u. (34.3.74)

Also, from (6.7.67) and (3.15), we find that

W = 0. (34.3.75)

Finally, from (3.41), (3.55), and (6.7.67), we find that

K = −(1/2)J. (34.3.76)

We are again ready to compute g2(u) through g4(u). From (3.42) and (3.56) we find that

g2(u) = 0. (34.3.77)

Next, from (3.45) and (3.55), we find that

g3(u) = −f3(u/
√

2). (34.3.78)

Finally we observe from (3.57) that

((∂f3/∂z), K(∂f3/∂z)) = −(1/2)((∂f3/∂z), J(∂f3/∂z)) = 0 (34.3.79)

since J is an antisymmetric matrix. It follows from (3.46) and (3.60) that in this case g4

takes the simple form

g4(u) = −f4(u/
√

2). (34.3.80)

34.3.5 Exploration

Let us explore what maps are produced when the source function consists only of quadratic
and cubic terms,

g(u) = g2(u) + g3(u). (34.3.81)

For simplicity, we will explore only the use of F2 and F+ generating functions, and work
with only a two-dimensional phase space so that z = (q; p) and Z = (Q;P ).
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Use of F2

General Discussion

Let us begin with the use of F2. In that case, we will consider generating functions of the
form

F2(q, P ) = qP + aq3 + bq2P + cqP 2 + dP 3 (34.3.82)

with arbitrary coefficients a through d. Then use of (6.7.54) produces the implicit relations

p = P + 3aq2 + 2bqP + cP 2, (34.3.83)

Q = q + bq2 + 2cqP + 3dP 2. (34.3.84)

Since these equations are quadratic, they can be solved exactly, and we will do so shortly.
First, however, let us find the first few terms in the Taylor expansions of Q(q, p) and P (q, p)
in powers of q and p. Rewrite (3.64) in the form

P = p− 3aq2 − 2bqP − cP 2. (34.3.85)

Now we can expand Q and P in powers of q and p by iteration of (3.65) and (3.66). In
lowest approximation, they have the solution

Q = q +O(z2), (34.3.86)

P = p+O(z2). (34.3.87)

Now substitute (3.67) and (3.68) into (3.65) and (3.66) to get the improved solution

Q = q + bq2 + 2cqp+ 3dp2 +O(z3), (34.3.88)

P = p− 3aq2 − 2bqp− cp2 +O(z3) (34.3.89)

For our present purposes we will be content with expansions that retain terms through
degree three. This can be achieved by substituting (3.69) and (3.70) into (3.65) and (3.66).
Doing so gives the results

Q = q + bq2 + 2cqp+ 3dp2 + ∗q3 + ∗q2p+ ∗qp2 + ∗p3 +O(z4), (34.3.90)

P = p− 3aq2 − 2bqp− cp2 + ∗q3 + ∗q2p+ ∗qp2 + ∗p3 +O(z4). (34.3.91)

For comparison, let us evaluate the Taylor series for the transformation

Z = N z (34.3.92)

where

N = exp(: f3 :) (34.3.93)

with

f3(z) = −aq3 − bq2p− cqp2 − dp3. (34.3.94)
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Then it is easily verified that the Lie transformation

Z = exp(: f3 :)z =
∞∑
m=0

(1/m!) : f3 :m z = z+ : f3 : z + (1/2!) : f3 :2 z +O(z4) (34.3.95)

gives the result

Q = q + bq2 + 2cqp+ 3dp2 + ∗q3 + ∗q2p+ ∗qp2 + ∗p3 +O(z4), (34.3.96)

P = p− 3aq2 − 2bqp− cp2 + ∗q3 + ∗q2p+ ∗qp2 + ∗p3 +O(z4). (34.3.97)

We see that the linear and quadratic terms in (3.71) and (3.72) agree with those in (3.77)
and (3.78), respectively. However, the cubic terms do not.

These results are to be expected based on the findings of Subsection 27.3.3. There we
saw that g3 and f3 should be related by (3.53), and that is what has been done in writing
(3.63) and (3.76). Therefore the quadratic terms in in (3.71) and (3.72) should agree with
those in (3.77) and (3.78). With regard to cubic terms, in writing (3.62) we have implicitly
made the requirement

gn(u) = 0 for n ≥ 4. (34.3.98)

And, in writing (3.74), we have implicitly made the requirement

fn(z) = 0 for n ≥ 4. (34.3.99)

But we see from (3.54) that in general these requirements are incompatible. Therefore we
expect differences in the cubic (and higher-order) terms.

As promised, let us now solve the relations (3.65) and (3.66) exactly. We must distinguish
two cases:

The Case When c = 0

If c = 0, (3.66) has the immediate solution

P = (p− 3aq2)/(2bq + 1). (34.3.100)

And substituting this result into (3.65) gives the complementary result

Q = q + bq2 + 3d(p− 3aq2)2/(2bq + 1)2. (34.3.101)

The Case When c 6= 0

When c 6= 0, the relation (3.66) is quadratic in P and has the solution

P = [1/(2c)]{−(2bq + 1) + [(2bq + 1)2 + 4c(p− 3aq2)]1/2}. (34.3.102)

The implicit relation (3.64) can be solved to give the explicit relation

P = [1/(2c)]{−(1 + 2bq) + [1 + 4bq + cp+ 3(b2 − 4ac)q2]1/2}. (34.3.103)
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And (3.81) can then be substituted into (3.65) to give the complementary explicit relation

Q = . (34.3.104)

We see that, as functions of q and p, Q and P generically have branch points.2 They occur
on the surface

1 + 4bq + cp+ 3(b2 − 4ac)q2 = 0. (34.3.105)

By contrast, we know from the work of Section 25.3 that the map given by (3.73) and (3.74)
generally has poles.

Case When Only a 6= 0

Let us consider some special cases. First suppose that only a 6= 0. Then the Lie transfor-
mation series (3.76) terminates and gives the exact result

Q = q, (34.3.106)

P = p− 3aq2. (34.3.107)

Also, in this case, solution of the implicit relations (3.64) and (3.65) gives identical results.
Thus in this case, which is easily verified to be that of a kick map, the use of F2 and the
exact Lie transformation give the same result. It is an easy calculation to show that the
same holds true when only d 6= 0.

Jolt Case

Next assume that f3 is of the form

f3 = (αq − βp)3 (34.3.108)

which amounts to setting
a = −α3, (34.3.109)

b = 3α2β, (34.3.110)

c = −3αβ2, (34.3.111)

d = β3. (34.3.112)

Then it is easily verified that the Lie transformation series (3.76) also terminates and gives
the exact result

Q = q + 3β(αq − βp)2, (34.3.113)

P = p+ 3α(αq − βp)2. (34.3.114)

See Section 22.3. In fact, N in this case is a jolt map. See Exercise *. By contrast, solution
of the implicit relations (3.64) and (3.65) in this case gives the results

Q =, (34.3.115)

2However.
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P = . (34.3.116)

We see that the Q and P given by (3.91) and (3.92) are entire functions of q and p. By
contrast, the relations (3.93) and (3.94) show that the map produced by F2 in this case has
branch points. They are located on the surface

= . (34.3.117)

Case When Only c 6= 0

As another example, suppose f3 is of the form

f3 = −cqp2 (34.3.118)

as in (1.6). So doing amounts to assuming that only c 6= 0 in (3.75). As already seen, setting
c = −1 in (3.73) and (3.74) leads to the relation

Q = N q = q(1− p)2, (34.3.119)

P = Np = p/(1− p). (34.3.120)

By contrast, the implicit equations (3.64) and (3.65) in this case have the explicit solution

Q = q(1 + 4cp)1/2, (34.3.121)

P = [1/(2c)][(1 + 4cp)1/2 − 1]. (34.3.122)

We see that in this case the map produced by F2 has a branch point (when c = −1) on the
surface p = 1/4 while, according to (3.98), the exact Lie transformation map has a pole on
the surface p = 1.

The last case to be considered in this vein is that of b 6= 0 and all other coefficients in
(3.63 ) or (3.75) set to zero. You, dear reader, will have the pleasure of doing so in Exercise
*.

F2 Symplectic Completion of N tr

Let N sc be the map given by (3.99) and (3.100) when c = −1. We may view N sc as a sym-
plectic completion of the degree-two symplectic jet map N tr given by (1.9). Corespondingly,
we define the associated map Msc by the relation

Msc = RN sc. (34.3.123)

Figure 3.1 shows the result of applyingMsc repeatedly to four initial conditions for the case
θ/2π = 0.22. Note that, unlike the cases of Figures 1.2 and 1.3, points on the orbit no longer
spiral into or out of the origin. Moreover, the behavior of the orbits is similar to that shown
in Figure 1.1.
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Figure 34.3.1: Phase-space portrait, in the case θ/2π = 0.22, resulting from applying the
map Msc repeatedly (2000 times) to the four initial conditions (q, p) = (.01, 0), (.1, 0),
(.15, 0), and (.2, 0) to find their orbits.
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Root Trick

Of course, we know that in this case use of N sc can at best make sense for |p| < 1/4. What
can be done for points farther from the origin? For a map of the form (3.3) we can easily
extract a square root. In accord with the relation (3.6), we will write

N 1/2 = N (1/2). (34.3.124)

Also, let N sc(1/2) denote the map given by (3.99) and (3.100) with c = −1/2. We may
view N sc(1/2) as the F2 symplectification of the degree-two jet map N tr(1/2). We see, from
(3.99) and (3.100) with c = −1/2, that the map N sc(1/2) is well defined for |p| < 1/2.

Now watch closely. We know that

M = RN 1/2N 1/2. (34.3.125)

Therefore, it makes sense to consider what we will call the improved symplectically completed
map Misc defined by the relation

Misc = RN sc(1/2)N sc(1/2). (34.3.126)

This map will be defined over a larger region of phase space and will be a better approx-
imation to M. Figure 3.2 shows the result of applying Misc repeatedly to seven initial
conditions for the case θ/2π = 0.22. Again points on the orbits neither spiral into or out of
the origin, and the orbits more nearly approximate those of Figure 1.1.

Use of the Poincaré Generating Function F+

General Discussion

We now repeat much of the work above, but this time for the case where F+ is used. Now
(3.58) holds and, in accord with (3.59), the source function g3 will have the form

g3(u) = (1/
√

2)3(av3 + bv2w + cvw2 + dw3). (34.3.127)

In this case use of (6.7.21) with α given by (6.7.67) gives the implicit relations

Q = q + (1/4)[b(Q+ q)2 + 2c(Q+ q)(P + p) + 3d(P + p)2], (34.3.128)

P = p− (1/4)[3a(Q+ q)2 + 2b(Q+ q)(P + p) + c(P + p)2]. (34.3.129)

Since these equations are quadratic, they can again be solved exactly. However, the solutions
are far too long to record. In section 3.5 we will see they again involve square roots, and
therefore the functions Q(q, p) and P (q, p), like the F2 case, have square root branch-point
singularities.

But, again, we can obtain Taylor expansions of Q and P in terms if q and p by iteration.
Doing so gives, as first and second passes, the expansions (3.67) through (3.70). And the
third pass gives the expansions (3.77) and (3.78). That is, unlike the F2 case, use of F+

gives expansions that agree with the exact result through terms of third order.
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Figure 34.3.2: Phase-space portrait, in the case θ/2π = 0.22, resulting from applying the
map Misc repeatedly (2000 times) to the seven initial conditions (q, p) = (.01, 0), (.1, 0),
(.15, 0), (.2, 0), (.25, 0), (.3, 0), and (.35, 0) to find their orbits.
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This accuracy is again to be expected based on the findings of Subsection 27.3.3. There
we saw that g3 and f3 should be related by (3.59), and that is what has been done in writing
(3.105). Therefore the maps produced by the use of F+ should agree with those produced
by the N given by (3.73) through quadratic terms. With regard to cubic terms, we see from
(3.61) that the implicit assumptions (3.79), which are still in effect, imply that f4 vanishes.
Therefore, the cubic terms must also agree. Later we will see that quartic and higher-order
terms need not agree.

Cases When Only a or d 6= 0

Let us again consider some special cases. First suppose that only a 6= 0. Then (3.106) and
(3.107) can be solved immediately to give the results (3.84) and (3.85). And if only d 6= 0,
(3.106) and (3.107) have the solution

Q = q + 3dp2, (34.3.130)

P = p. (34.3.131)

Thus, like F2, use of F+ also gives exact results for kick maps.

Jolt Case

Suppose the values of a through d given by (3.114) through (3.117) are employed in (3.106)
and (3.107); and that also the quantities Q and P appearing in (3.106) and (3.107) are
replaced by the right sides of equations (3.91) and (3.92). Upon doing so one finds that the
resulting two equations (which now involve only the quantities α, β, q, and p) are satisfied
identically for all values of α, β, q, and p. It follows that, unlike the case of F2, the use of F+

gives exact results for jolt maps as well. Why this should be so is explained in a subsequent
section.

Case When Only c 6= 0

If only c 6= 0, (3.106) and (3.107) have the solution

Q = q(1 + 2cp)1/2/[2− (1 + 2cp)1/2], (34.3.132)

P = −[p+ (2/c)] + (2/c)(1 + 2cp)1/2. (34.3.133)

We see that in this case use of F+ produces a map that has a branch point on the surface

p = −1/(2c). (34.3.134)

By contrast, according to (3.100), use of F2 in this case produces a map that has a branch
point on the surface

p = −1/(4c). (34.3.135)

Therefore the branch-point surface for F+ is farther from the origin than that of F2. In
particular, for c = −1, it is located at p = 1/2. But note that it is still closer to the origin
than the pole of the exact map which, we have seen, is on the surface p = 1.

Again the last case to be considered in this vein is that of only b 6= 0. This case is treated
in Exercise *.
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F+ Symplectic Completion of N tr

Let N psc be the map given by (3.113) and (3.114) when c = −1. We may view N psc as the
Poincaré symplectic completion of the degree-two symplectic jet map N tr given by (1.9).
Corespondingly, we define the associated map Mpsc by the relation

Mpsc = RN psc. (34.3.136)

Figure 3.3 shows the result of applying Mpsc repeatedly to seven initial conditions for the
case θ/2π = 0.22. Again there is no spurious spiraling into or out of the origin. Note also
that we have been able to apply this map to a larger region of phase space than we could
for N sc. Compare Figures 3.1 and 3.3.
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Figure 34.3.3: Phase-space portrait, in the case θ/2π = 0.22, resulting from applying the
map Mpsc repeatedly (2000 times) to the to the seven initial conditions (q, p) = (.01, 0),
(.1, 0), (.15, 0), (.2, 0), (.25, 0), (.3, 0), and (.35, 0) to find their orbits.

Root Trick for F+

Evidently the root trick can be applied to any symplectification procedure. Here we will
explore its use for our example of Poincaré symplectification. Let N psc(1/2) denote the
map given by (3.113) and (3.114) with c = −1/2. We may view N psc(1/2) as the F+
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symplectification of the degree-two jet map N tr(1/2). We see, from (3.115) with c = −1/2,
that the map N psc(1/2) has a branch point on the surface p = 1, the same surface on
which the origin map has a pole. We will now study the behavior of the improved Poincaré
symplectically completed map Mipsc defined by the relation

Mipsc = RN psc(1/2)N psc(1/2). (34.3.137)

Figure 3.4 shows the result of applying Mipsc repeatedly to seven initial conditions for the
case θ/2π = 0.22. We see that now the orbits approximate those of Figure 1.1 remarkably
well. Presumably one reason for this improvement is the larger domain of analyticity for
N psc(1/2).
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Figure 34.3.4: Phase-space portrait, in the case θ/2π = 0.22, resulting from applying the
map Mipsc repeatedly (2000 times) to the seven initial conditions (q, p) = (.01, 0), (.1, 0),
(.15, 0), (.2, 0), (.25, 0), (.3, 0), and (.35, 0) to find their orbits.

34.3.6 Comments and Comparisons

At this point some comments and comparisons are in order. Based on our experience so far,
we may draw the following (sometimes tentative) conclusions:

1. The symplectification of symplectic jets overcomes the problem of spurious spiraling
into or out of the origin.



2214 34. OPTIMAL EVALUATION OF SYMPLECTIC MAPS

2. The use of either F2 or F+ (Poincaré) generating functions gives exact results for jets
that are kick maps. Kick maps are, of course, symplectic, and their symplectification
by use of either F2 or F+ (Poincaré) generating functions leaves them unchanged.

3. The use of F+ (Poincaré) generating functions gives exact results for jets that are jolt
maps. Such jet maps are also also exactly symplectic, and their Poincaré symplec-
tification also leaves them unchanged. Such is not the case for F2 symplectification.
Given a jolt map, it generally converts this map into some other map. While the result
of this conversion is a symplectic map, it is not generally the original jolt map. Put
colloquially, Poincaré symplectification has the good sense to leave a good thing alone,
but F2 symplectification generally does not. In fact, in this case F2 symplectification
replaces a map with no singularities by a map with singularities.

4. The root trick enlarges the applicable domain and improves accuracy. It might also
appear to require more work because now a symplectified nonlinear map has to be
evaluated twice. However, the iterative method employed to solve numerically the
implicit equations associated with the use of N psc(1/2) is expected to converge faster
than that for N psc(1) because N psc(1/2) is less nonlinear; and this gain in convergence
speed is likely to be greater than the loss associated with evaluating N psc(1/2) twice.

5. Compared to a F2 symplectified map, a Poincaré symplectified map has a larger domain
of applicability.

6. Compared to a F2 symplectified map, a Poincaré symplectified map has higher-order
accuracy.

Let us explore item 5 above in some more detail. In Section 26.2 we listed the normal
forms for cubic polynomials in two variables, namely those given by (26.2.4) through (26.2.7).
It is instructive to compare F2 and Poincaré symplectification for each. We have already
considered the cases (26.2.6) and (26.2.7). We now consider the two remaining cases.

Case When a = 1, b = −3, c = d = 0

We begin with the case (26.2.5), which is the easier of the two. In this case, by suitable
rescaling, there is no loss of generality in taking a and b as the the only nonzero coefficients
and giving them the values a = 1 and b = −3.

For these values use of (3.81) and (3.82) gives the map

Q = q − 3q2, (34.3.138)

P = (p− 3q2)/(1− 6q). (34.3.139)

We see that for the F2 case the map is singular on the surface

? = . (34.3.140)

For these same values of a and b, the implicit relations (3.106) and (3.107), produced by
the use of F+, take the form

Q = q − (3/4)(Q+ q)2, (34.3.141)
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P = p− (1/4)[3(Q+ q)2 − 6(Q+ q)(P + p)]. (34.3.142)

These implicit relations have the solution

Q = (2/3){−[1 + (3/2)q] + [1 + 6q]1/2}, (34.3.143)

P = . (34.3.144)

We see that for the F+ case the map is singular on the surface

? = . (34.3.145)

Case When a = d = 1, b = c = 0

For the remaining case (26.2.4) there is no loss of generality in taking a and d as the only
nonzero coefficients and giving them the values a = d = 1.

For these values use of (3.81) and (3.82) gives the map

Q =, (34.3.146)

P = . (34.3.147)

We see that for the F2 case the map is singular on the surface

? = . (34.3.148)

For these same values of a and d, the implicit relations (3.106) and (3.107), produced by
the use of F+, take the form

Q = q + (3/4)(P + p)2, (34.3.149)

P = p− (3/4)(Q+ q)2. (34.3.150)

These implicit relations have the solution

Q =, (34.3.151)

P = . (34.3.152)

We see that for the F+ case the map is singular on the surface

? = . (34.3.153)

Let us also explore item 6 above in some more detail. To do so it is convenient to make
some definitions. First, suppose N is some nonlinear map. We will define n(N , z), the local
nonlinearity of N , by the rule

n(N , z) = ||(N − I)z||/||z||. (34.3.154)

Here || || denotes the vector norm of a phase-space vector in the usual Euclidean metric.
The quantity n(N , z) measures how much a phase-space point z moves under the action of
N normalized by its distance from the origin.
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It may be the case that N is a symplectic jet. In that case, it is useful to have some
measure of the violation of the symplectic condition associated with the action of N . One
possibility is to define sv(N , z), the local symplectic violation, by the rule

sv(N , z) = ||([N za,N zb]− Jab)||. (34.3.155)

Here || || denotes some matrix norm, say the maximum column sum norm.
Given two nonlinear maps N1 and N2, we will also want to have some measure of the

difference between them. One way to do so is to introduce the quantity d(N1,N2, z) by the
rule

d(N1,N2, z) = ||N1z −N2z||. (34.3.156)

34.4 Use of Poincaré Generating Function

34.4.1 Determination of Poincaré Generating Function
in Terms of H

Suppose we are given a time-independent Hamiltonian H. Use it to generate the symplectic
map

M(τ) = exp(−τ : H :) (34.4.1)

Let F+(Σ, τ) be the Poincaré generating function associated with M(τ). We want to find
a formula for F+ in terms of H. To do so we will seek a Taylor expansion of F+(Σ, τ) in
powers of τ .

We first note that F+ is odd in τ . From (2.1) we have the relation

M(−τ) = exp(+τ : H :) =M−1(τ). (34.4.2)

Next we observe that (6.6.45), which can be written in the form

Z = z + J∂ΣF+|Σ=(Z+z)/2, (34.4.3)

can be rewritten in the form

z = Z − J∂ΣF+|Σ=(Z+z)/2, (34.4.4)

which reveals that if the Poincaré generating function associated with M(τ) is F+(Σ, τ),
then the Poincaré generating function associated withM−1(τ) is −F+(Σ, τ). Consequently,
we conclude that

F+(Σ,−τ) = −F+(Σ, τ). (34.4.5)

Since F+ is odd in τ , only odd powers of τ can occur in its Taylor expansion so that we
may write

F+(Σ, τ) = F
(1)
+ (Σ)τ + F

(3)
+ (Σ)τ 3 + F

(5)
+ (Σ)τ 5 + · · · . (34.4.6)

The first term in the expansion is H itself,

F
(1)
+ (Σ) = H(Σ). (34.4.7)
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Let S(H) denote the Hessian of H,

S(H)ab = ∂a∂bH. (34.4.8)

Then the next term in the expansion is given by the equation

F
(3)
+ (Σ) = (1/24)(∂H, JS(H)J∂H). (34.4.9)

The successive terms are ever more complicated to state in explicit form. For F
(5)
+ there is

the intermediate result
F

(5)
+ (Σ) = (34.4.10)

and the final result
F

(5)
+ (Σ) = . (34.4.11)

34.4.2 Application to Quadratic Hamiltonian

As a preliminary application of these results, let us first consider the simple case where

H(z) = h2(z) = (1/2)(z, Sz). (34.4.12)

Then we have the relations
∂aH = Sabzb, (34.4.13)

S(H) = S. (34.4.14)

Correspondingly, we find the results

F
(1)
+ (Σ) = H(Σ) = (1/2)(Σ, SΣ), (34.4.15)

F
(3)
+ (Σ) = (1/24)(∂aHJabS(H)bcJcd∂dH) = (1/24)(Σ, SJSJSΣ), (34.4.16)

F
(5)
+ (Σ) = . (34.4.17)

The net result is that F+(Σ, τ) has the expansion

F+(Σ, τ) = (Σ, [(1/2)τS + (1/24)τ 3S(JS)2 + ()τ 5S(JS)4 + · · · ]Σ) (34.4.18)

However, thanks to (), we already know that in this case

F+(Σ, τ) = (1/2)(Σ,W ′Σ) = (Σ,−J tanh[τJS/2]Σ)

= (Σ, [−JτJS/2 + J(1/3)(τJS/2)3 + J(2/15)(τJS/2)5/3 + · · · ]Σ)

= (Σ, [(1/2)τS + (1/24)τ 3S(JS)2 + (1/240)τ 5S(JS)4 + · · · ]Σ). (34.4.19)

Here we have used the series

tanhx = x− (1/3)x3 + (2/15)x5 + · · · . (34.4.20)

Evidently the expansions () and () agree.
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34.4.3 Application to Symplectic Approximation

As a second application, suppose H has a homogeneous polynomial expansion of the form

H = h3 + h4 + h5 + · · · . (34.4.21)

In this case we wish to obtain a homogeneous polynomial expansion for F+(Σ, τ) of the form

F+(Σ, τ) = F 3
+(Σ, τ) + F 4

+(Σ, τ) + F 5
+(Σ, τ) + · · · . (34.4.22)

We will now find that each Fm
+ (Σ, τ) is also polynomial in the variable τ . Therefore, we may

set τ = 1, and drop τ from our variable list. Then we will have the relation

M = exp(− : H :). (34.4.23)

For this symplectic map there will be the Poincaré generating function

F+(Σ) = F 3
+(Σ) + F 4

+(Σ) + F 5
+(Σ) + · · · (34.4.24)

with
Fm

+ (Σ) = Fm
+ (Σ, τ = 1). (34.4.25)

Upon equating like powers of Σ on both sides of () and (), we find, through terms of
degree 8, the results

F 3
+ = h3, (34.4.26)

F 4
+ = h4, (34.4.27)

F 5
+ = h5 + (1/24)(∂h3, JS(h3)J∂h3), (34.4.28)

F 6
+ = h6 + (1/24)(∂h3, JS(h4)J∂h3) + (1/12)(∂h3, JS(h3)J∂h4), (34.4.29)

F 7
+ = h7 + (1/24)(∂h4, JS(h3)J∂h4) + (1/12)(∂h3, JS(h4)J∂h4), (34.4.30)

F 8
+ = h8 + (1/24)(∂h4, JS(h4)J∂h4). (34.4.31)

Suppose we know h3 through hn and wish to ‘evaluate’

M[n] = exp(− : H [n] :) (34.4.32)

where
H [n] = h3 + h4 + · · ·+ hn. (34.4.33)

For this purpose, let us use a corresponding Poincaré generating function also truncated
beyond terms of degree n. That is, we use the function F

[n]
+ defined by the rule

F
[n]
+ = F 3

+ + F 4
+ + · · ·+ F n

+ (34.4.34)

Let M[n]
+ be the symplectic map produced by the use of F

[n]
+ . By construction it will have

the single-exponent Lie representation

M[n]
+ = exp(− : h3 : − : h4 : − · · ·− : hn : + : gn+1 : + : gn+2 : + · · · ). (34.4.35)
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That is, the exponent of M[n]
+ will agree with that of M[n] through terms of degree n, but

there will generally be additional terms gn+1, gn+2, · · · which reflect the fact that the maps

M[n]
+ andM are generally not identical. We will see that these additional terms depend on

the given/known hm, and that this dependence has three desirable properties.
Suppose, for example, that n = 4 so that

M[4] = exp(− : h3 : − : h4 :), (34.4.36)

F
[4]
+ = F 3

+ + F 4
+, (34.4.37)

and

M[4]
+ = exp(− : h3 : − : h4 : + : g5 : + : g6 : + · · · ). (34.4.38)

Evidently truncating the series (2.34) beyond terms of degree 4 is equivalent to including
all terms in the series and requiring that

Fm
+ = 0 for all m > 4. (34.4.39)

Inspection of (2.28) through (2.31) shows that the requirement (2.39) produces, through
terms of degree 8, the relations

− h5 = (1/24)(∂h3, JS(h3)J∂h3), (34.4.40)

− h6 = (1/24)(∂h3, JS(h4)J∂h3) + (1/12)(∂h3, JS(h3)J∂h4), (34.4.41)

− h7 = (1/24)(∂h4, JS(h3)J∂h4) + (1/12)(∂h3, JS(h4)J∂h4), (34.4.42)

− h8 = (1/24)(∂h4, JS(h4)J∂h4), (34.4.43)

and we see that

gm = −hm for all m > 4 (34.4.44)

with the hm for m > 4 defined by in terms of h3 and h4 by the relations (2.40) through
(2.43).

Now we are ready to examine in some detail the properties of the dependence of the
gn+1, gn+2, · · · on the h3, h4, · · · hn. To do so, it is useful to introduce a somewhat more

elaborate notation. Let us employ, in place of M[n]
+ , the symbols M[n]

+ {H [n]} to indicate

that the map M[n]
+ depends on h3, h4, · · · hn. The first property is this: Suppose all the

hm are replaced by −hm. Then we see, from () through () and () through (), that all the
Fm

+ and all the gm are replaced by −Fm
+ and −gm, respectively. Consequently, there is the

relation

M[n]
+ {−H [n]} = (M[n]

+ {H [n]})−1. (34.4.45)

In words, if M[n]
+ is the symplectic approximation to M[n], then (M[n]

+ )−1 is the symplectic
approximation to (M[n])−1. We may invert and then symplectically approximate, or sym-
plectically approximate and then invert. The result of both procedures is the same. We may
say that symplectic approximation by the use of a Poincaré generating function is invariant
under the operation of map inversion.
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The second property is more subtle. SupposeR is a linear symplectic map with associated
symplectic matrix R. Suppose the hm are transformed under the action of R to become the
homogeneous polynomials htr

m by the rule

htr
m(z) = Rhm(z) = hm(Rz). (34.4.46)

Also, let gtr
n+1(z), gtr

n+2(z), · · · be the functions obtained by applying the rules defining the
gn+1(z), gn+2(z), · · · to the htr

m. Then there is also the result

gtr
n+1(z) = Rgn+1,

gtr
n+2(z) = Rgn+2, etc. (34.4.47)

Suppose we assume, for the moment, that (2.47) is correct. It follows that there is then the
relation

M[n]
+ {RH [n]} = RM[n]

+ {H [n]}(R)−1. (34.4.48)

Of course, we also have the relation

RM[n](R)−1 = exp(− : RH [n] :). (34.4.49)

In words, if we conjugate the map M[n] with R and then symplectically approximate the
result, the outcome is the same as first symplectically approximatingM[n] and then conjugat-
ing with R. We may say that symplectic approximation by the use of a Poincaré generating
function is invariant under the operation of conjugation with the linear symplectic map R.

34.5 Use of Other Generating Functions

34.6 Cremona Approximation

Decomposition of the sp(6,R) representation Γ(`, 0, 0) into representations of su(3).
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Chapter 36

Reversal Symmetry

The concept of reversibility, and that reversibility has various implications for charged-
particle and light optics (and the study of general dynamical systems), are part of the
common lore of those working in these fields, and its role and value are generally understood
at least on an intuitive level. The purpose of this chapter is to explore reversal symmetry
systematically. Reversal symmetry is defined; it is shown that the transfer maps for most
common beam-line elements are reversal symmetric including nonlinear effects; and various
linear and nonlinear consequences of reversal symmetry are worked out in some detail.

Section 1 defines the operation of reversal and works out some of its properties. Section
2 describes some of the applications of these properties. In particular it defines what is
meant for a transfer map to be reversal symmetric, and shows that the transfer maps for
many common beam-line elements are reversal symmetric. Section 3 works out some of the
general consequences of reversal symmetry for straight and circular machines, and Section 4
treats some special cases. Section 5 studies the consequences of reversal symmetry for closed
orbits in a circular machine, and Section 6 studies the consequences for the Courant-Snyder
functions in a circular machine. A final section treats various nonlinear consequences of
reversal symmetry. It seems remarkable that such a simple concept should be so rich in
consequences.

36.1 Reversal Operator

We will work with a coordinate system that is particularly useful for charged-particle optics.
We write

z = (x, px; y, py; τ, pτ ). (36.1.1)

The quantities x and y are transverse deviations from a design trajectory, and px and py
are their conjugate momenta. The quantity τ is the difference (time deviation) between the
arrival/departure time of a given particle and a particle on the design trajectory. Finally,
pτ is the negative of the energy difference between that of the given particle and that of
a particle on the design trajectory. Note that this choice of variables presumes that some
coordinate (it could be Cartesian or angular or path length along some design trajectory)
is taken to play the role of the independent (time-like) variable. When this is done, its
conjugate momentum does not appear in the associated Hamiltonian, and τ and pτ are both

2225
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dependent variables. Finally, we note that in accelerator physics it is common to scale the
transverse coordinates x and y by some convenient scale length `, to scale the transverse
momenta px and py by some “design” momentum p0, to scale pt (which is the negative of
the energy) by p0c (where c is the speed of light), and to scale the time t by `/c. In this
chapter we do not do so. In particular, for the purpose of this chapter, pτ is defined in terms
of pt simply by subtracting off the design value of pt without any scaling, and τ is defined
in terms of t simply by subtracting off the time of flight for the design orbit, again without
any scaling factor.

Let z be any point in phase space as specified by (1.1). Define a “reversal” operator R
acting on phase space by the rule

Rz = zr (36.1.2)

with
zr = (x,−px; y,−py;−τ, pτ ). (36.1.3)

The reversal operation is analogous to time reversal, but differs from it in two essential
ways. First, recall that the definitions (1.1) through (1.3) presume that some coordinate is
playing the role of the independent (time-like) variable, its conjugate momentum is absent,
and τ and pτ are dependent variables. Second, the magnetic field does not change sign. It
is for these reasons that, as we will see, a transfer map can violate what we will define as
reversal symmetry even though the fundamental laws that govern charged-particle motion,
the electromagnetic field, and the electromagnetic interaction are all invariant under time
reversal as usually defined.

It is easily verified that, when acting on phase space, the effect of R can be described by
a matrix R with

Rza = (Rz)a (36.1.4)

where R is the matrix

R =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

 . (36.1.5)

We note for future reference that J and R have the properties

JR =


0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 , (36.1.6)

J2 = −I, (36.1.7)

R2 = I, (36.1.8)

(JR)2 = I, (36.1.9)
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RJR = −J, (36.1.10)

RJ = −JR. (36.1.11)

Here we use the form (3.2.10) for J . We also remark that since R is a symmetric matrix,
RT = R, (1.10) can also be written in the form

RTJR = −J. (36.1.12)

Therefore, R is an antisymplectic matrix. See Exercise 3.12.8. Correspondingly, we will say
thatR is an antisymplectic map. We have learned that, in our setting of Classical Mechanics,
evolution (with some coordinate playing the role of the independent variable) is described
by a symplectic map acting on phase space, and reversal is described by an antisymplectic
map. This terminology is analogous to that employed in Quantum Mechanics where time
evolution is described by a unitary transformation acting on Hilbert space, and time reversal
is described by what is called an antiunitary transformation.

We have seen that R is an antisymplectic map. The same is true of the maps MR and
RM if M is symplectic. To prove this, let N be the map given by the product

N =MR. (36.1.13)

By the chain rule its Jacobian matrix N is given by the relation

N = MR, (36.1.14)

and we find the result
NTJN = RMTJMR = RJR = −J. (36.1.15)

Similarly, if N is the map given by the product

N = RM, (36.1.16)

we find the results
N = RM (36.1.17)

and
NTJN = MTRJRM = MT (−J)M = −J. (36.1.18)

We also note the converse conclusion: If N is an antisymplectic map, then the maps RN
and NR are symplectic. Finally, there is an immediate generalization: The product of
a symplectic map and an antisymplectic map is antisymplectic, and the product of two
antisymplectic maps is symplectic.

Extend R to phase-space functions f(z) by the rule

Rf = f r (36.1.19)

with
f r(z) = f(zr). (36.1.20)

Evidently R is a linear operator with the property

R2 = I or R−1 = R. (36.1.21)
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For any two functions g and h there is also the property

R(gh) = (Rg)(Rh). (36.1.22)

Finally we note that since the application of R commutes with the operation of scaling
variables, everything we will conclude about reversal properties of maps given in terms of
unscaled variables will also hold for maps given in terms of scaled variables.

Let us determine the effect of reversal on Lie operators. We claim thatR has the property

R : f : R = − : Rf := − : f r : (36.1.23)

for any Lie operator : f :. To prove this claim, let R : f : R act on any function g. The
calculation is a bit delicate, and is best done in stages and pieces. To begin, we have the
result

R : f : Rg = R[f,Rg]

= R{
∑
j

(∂f/∂qj)(∂(Rg)/∂pj)− (∂f/∂pj)(∂(Rg)/∂qj)}

=
∑
j

{R(∂f/∂qj)}{R(∂(Rg)/∂pj)}

− {R(∂f/∂pj)}{R(∂(Rg)/∂qj)}. (36.1.24)

Here we have used (1.22). Next, it follows from (1.2) and (1.3) that there are the operator
relations

R(∂/∂za) = (∂/∂za)R for a = 1, 3, 6; (36.1.25)

R(∂/∂za) = −(∂/∂za)R for a = 2, 4, 5. (36.1.26)

Therefore we find for the j = 1 terms in (1.24) the results

{R(∂f/∂x)}{R(∂(Rg)/∂px)} = {∂(Rf)/∂x)}(−1){R2(∂g/∂px)}
= −(∂f r/∂x)(∂g/∂px), (36.1.27)

−{R(∂f/∂px)}{R(∂(Rg)/∂x)} = +{∂(Rf)/∂px}{R2(∂g/∂x)}
= (∂f r/∂px)(∂g/∂x). (36.1.28)

Analogous results hold for the j = 2 terms, which involve the y, py pair. And for the j = 3
terms, which involve the τ, pτ pair, we find the results

{R(∂f/∂τ)}{R(∂(Rg)/∂pτ )} = −{∂(Rf)/∂τ}{R2(∂g/∂pτ )}
= −(∂f r/∂τ)(∂g/∂pτ ), (36.1.29)

−{R(∂f/∂pτ )}{R(∂(Rg)/∂τ)} = −{∂(Rf/∂pτ )}(−1){R2(∂g/∂τ)}
= (∂f r/∂pτ )(∂g/∂τ). (36.1.30)
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Now put all these results into (1.24) to obtain the relation

R : f : Rg =
∑
j

{R(∂f/∂qj)}{R(∂(Rg)/∂pj)}

− {R(∂f/∂pj)}{R(∂(Rg)/∂qj)}
= −

∑
j

(∂f r/∂qj)(∂g/∂pj)− (∂f r/∂pj)(∂g/∂qj)

= −[f r, g] = − : f r : g. (36.1.31)

Evidently (1.23) is the operator version of (1.31).
Let us next determine the effect of reversal on Lie transformations. From (1.21) and

(1.23) we find the additional property

R : f :n R = R : f :: f :: f : · · · : f : R
= R : f : RR : f : RR : f : R· · ·R : f : R
= (R : f : R)n = (−1)n : Rf :n= (−1)n : f r :n . (36.1.32)

Suppose M is a map that, for some f , can be written in the single exponent form

M = exp(: f :) =
∞∑
n=0

: f :n /n!. (36.1.33)

Then, from (1.32) and (1.33), we find the result

RMR =
∞∑
n=0

R : f :n R/n! =
∞∑
n=0

(−1)n : Rf :n /n!

= exp(− : Rf :) = exp(− : f r :). (36.1.34)

The stage is set to define the effect of reversal on maps. Suppose M is any map that
sends initial points zi to final points zf ,

zf =Mzi. (36.1.35)

Reverse both zi and zf to yield Rzi and Rzf . We define the reversed map Mr to be that
map which sends Rzf to Rzi,

MrRzf = Rzi. (36.1.36)

See Figure 1.1. Combining (1.35) and (1.36) gives the result

MrRMzi = Rzi. (36.1.37)

Equivalently, we have the operator relation

MrRM = R. (36.1.38)

This relation can be solved for Mr to give the intermediate result

Mr = R(RM)−1 = RM−1R−1, (36.1.39)
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and use of (1.21) in (1.39) gives the final equivalent definition for Mr:

Mr = RM−1R. (36.1.40)

Note that, in analogy to (1.21), reversing a map twice leaves it unchanged:

(Mr)r = (RM−1R)r = R(RM−1R)−1R
= RR−1MR−1R =M. (36.1.41)

From (1.21), (1.38), and (1.40) we deduce the chain of relations

MrRMR = I, (36.1.42)

MrR(M−1)−1R = I, (36.1.43)

Mr(M−1)r = I, (36.1.44)

(M−1)r = (Mr)−1. (36.1.45)

Rzi Rzfzfzi
r

M M

Figure 36.1.1: Actions of a map M and its reversed counterpart Mr.

We also observe that if M can be written in the single exponent form (1.33), then use of
(1.34) and (1.40) shows that there is the relation

Mr = R exp(− : f :)R = exp(: f r :). (36.1.46)

If M is a symplectic map, so is Mr. To prove this, let M r be the Jacobian matrix of
Mr. From (1.40) and the chain rule we find the result

M r = RM−1R. (36.1.47)

Let us check whether M r is a symplectic matrix. We find from (3.1.2), (1.47), and (1.11)
the result

(M r)TJM r = R(M−1)TRJRM−1R

= −R(M−1)TJM−1R = −RJR = J. (36.1.48)

We see that M r is a symplectic matrix, and hence Mr is a symplectic map. The observant
reader will have noticed that the same conclusion could have been reached immediately from
the discussion surrounding equations (1.13) through (1.18).

Suppose we combine (1.47) with the symplectic condition. From the symplectic condition
(3.1.2) we deduce that

M−1 = −JMTJ, (36.1.49)
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and hence (1.47) can also be written in the form

M r = JRMTJR = JRMT (JR)−1. (36.1.50)

Here we have also used (1.11) and (1.9).
From (1.50) it follows that M and M r have the same spectrum. Indeed, let P and P r be

the characteristic polynomials of M and M r,

P (λ) = det(M − λI), (36.1.51)

P r(λ) = det(M r − λI). (36.1.52)

Then, by use of (1.50), we have the result

P r(λ) = det(M r − λI) = det[JRMT (JR)−1 − λI]

= det[(JR)(MT − λI)(JR)−1]

= det(JR) det[(JR)−1] det(MT − λI)

= det(M − λI) = P (λ). (36.1.53)

The last task for this section is to determine the effect of reversal on a relation involving
the action of a map on a function. Suppose the function h is the result of the symplectic
map M acting on the function g,

h =Mg. (36.1.54)

Letting R act on both sides of (1.54) and using (1.21) and (1.42) give the results

Rh = RMg = RMRRg = (Mr)−1Rg, (36.1.55)

or
hr = (Mr)−1gr. (36.1.56)

36.2 Applications

Suppose M is a product of several maps M1 to Mn,

M =M1M2M3 · · ·Mn. (36.2.1)

Then, from (1.21) and (1.22), there is the result

Mr = R(M1M2M3 · · ·Mn)−1R
= R(M−1

n · · ·M−1
3 M−1

2 M−1
1 )R

= RM−1
n R· · ·RM−1

3 RRM−1
2 RRM−1

1 R
= Mr

n · · ·Mr
3Mr

2Mr
1. (36.2.2)

Thus, the reverse of a product of maps is the product of the reverses of the individual maps
taken in opposite order.
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Define a map M to be reversal symmetric if it equals its reverse,

Mr =M. (36.2.3)

For a reversal symmetric map (1.38) can be rewritten in the forms

RMR =M−1 or MRM = R; (36.2.4)

RMRM = I, (36.2.5)

MRMR = I, or (36.2.6)

(RM)2 = (MR)2 = I. (36.2.7)

Here we have used (1.21). A map whose square is the identity is called an involution. We
have seen that RM and MR are involutions if M is reversal symmetric. According to
(1.21), R is also an involution. Finally, sinceMk will be reversal symmetric ifM is reversal
symmetric, the maps RMk and MkR for any k are also involutions,

(RMk)(RMk) = (RMkR)(Mk) =M−kMk = I, (36.2.8)

(MkR)(MkR) =Mk(RMkR) =MkM−k = I. (36.2.9)

Moreover, there are the obvious identities

M = RRM = (R)(RM), (36.2.10)

M =MRR = (MR)(R), (36.2.11)

Mk = RRMk = (R)(RMk), (36.2.12)

Mk =MkRR = (MkR)(R). (36.2.13)

They show that if M is reversal symmetric, then M and Mk for any k can be written as
the product of two involutions. The discovery and classification of the fixed points (closed
orbits) of a map are greatly simplified if the map can be written as the product of two
involutions. See Section 7.

SupposeM can be written in the single exponent form (1.33), and is reversal symmetric.
Then we see from (1.46) that the generator f must satisfy the relation

f r = f. (36.2.14)

Suppose M can be written as a product of several maps M1 to Mn and their reverses,

M =M1M2 · · ·MnMr
n · · ·Mr

2Mr
1. (36.2.15)

Then, simple calculation shows thatM is reversal symmetric. Indeed, from (2.2) and (1.40)
we find the result

Mr = (Mr
1)r(Mr

2)r · · · (Mr
n)rMr

n · · ·Mr
2Mr

1

= M1M2 · · ·MnMr
n · · ·Mr

2Mr
1 =M. (36.2.16)
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We next claim, based on end-to-end symmetry, that the transfer maps M for many
common beamline elements are reversal symmetric. These elements include drifts, bends
(including combined-function bends) with equal entry and exit angles, quadrupoles, sex-
tupoles, octupoles, etc. This statement holds even if fringe-field and multipole effects are
included provided the element in question has end-to-end symmetry. We will also show that
the transfer map for a short on-phase RF cavity (a cavity that maintains bunching, but
provides no net acceleration) is reversal symmetric. Finally, we note that the transfer map
for a solenoid with end-to-end symmetry is not reversal symmetric. Instead, the reversed
map for such a solenoid is the map for that solenoid with opposite magnetic field. That is,
if M[B(r)] is the map for such a solenoid with magnetic field B(r), there is the relation

Mr[B(r)] =M[−B(r)]. (36.2.17)

Here we have used a square-bracket notation to indicate that the mapM is a functional of
the magnetic field B(r).

Imagine integrating (10.1.8) to find the map M for some beamline element. Divide
the integration interval into 2N equal segments each of “duration” h. Label the intervals
1, 2, · · ·N followed by Ñ , · · · 2̃, 1̃. Then M can be written in the product form

M =M1M2 · · ·MNMÑ · · ·M2̃M1̃ (36.2.18)

where Mj is the map for the jth segment. The segments N and Ñ are on either side of the
center of the element, and the segments 1 and 1̃ are at the leading and trailing ends, etc.
For each map Mj we have an approximation of the form

Mj = exp(−h : Hj :) +O(h2) (36.2.19)

where Hj is the Hamiltonian evaluated at the center of the jth segment. Let us compute
(Mj)

r. From (1.34), (1.46), and (2.19) we find the result

(Mj)
r = exp[−h : (Hj)

r :] +O(h2). (36.2.20)

We now make the symmetry assumption

(Hj̃)
r = Hj for j = 1, 2, · · ·N. (36.2.21)

It then follows that
(Mj̃)

r =Mj +O(h2) (36.2.22)

and, by (1.41),
Mj̃ = (Mj)

r +O(h2). (36.2.23)

Correspondingly, we may rewrite (2.18) in the form

M =M1M2 · · ·MN(MN)r · · · (M2)r(M1)r +O(Nh2). (36.2.24)

Here, as a worst case estimate, we assume that all the O(h2) terms in (2.18) add construc-
tively to produce a possible term of order Nh2 in (2.24). Comparison of (2.15), (2.16), and
(2.24) gives the result

Mr =M+O(Nh2). (36.2.25)
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Now let the number N of segments approach infinity and the duration h of each approach
zero. Then in this limit, Nh2 → 0, and we see that Mr must equal M exactly, and hence
M is reversal symmetric.

There is a related result that is also of use. Let us write (2.18) in the form

M =M`Mt (36.2.26)

where M`, the leading half of M, is given by the product

M` =M1M2 · · ·MN , (36.2.27)

and Mt, the trailing half of M, is given by the product

Mt =MÑ · · ·M2̃M1̃. (36.2.28)

From (2.27) there is the relation

(M`)
r = (MN)r · · · (M2)r(M1)r, (36.2.29)

and by combining this relation with (2.23) we obtain the estimate

(M`)
r =MÑ · · ·M2̃M1̃ +O(Nh2) =Mt +O(Nh2). (36.2.30)

Again let the number N of segments approach infinity and the duration h of each approach
zero so that Nh2 → 0. By so doing we conclude that the estimate (2.30) must in fact be
the equality

(M`)
r =Mt. (36.2.31)

A few words need to be said about the symmetry assumption (2.21). Consider first static
elements for which H does not depend on τ . In this case it is only necessary to examine how
H depends on px and py. For a drift Hj is an even function (depends only on p2

x and p2
y)

and, of course, independent of the segment j. Therefore (2.21) holds. The same is true for
the body of any multipole (including dipoles and combined-function dipoles), and therefore
(2.21) again holds.

At the ends of a multipole H can have odd terms in px and py. For example, for a
quadrupole, the Hamiltonian is of the form

H = −[(pt/c)
2 −m2c2 − (px − qAx)2 − (py − qAy)2]1/2 − qAz. (36.2.32)

Here we have abandoned the notation (1.1). Instead, z is now a Cartesian coordinate in the
longitudinal direction, and we take it to be the independent variable. Also, pt is the negative
of the total energy. The vector potentialA for a quadruple has an expansion (shown through
fourth order) of the form

Ax =
g′(z)

4
(x3 − xy2) + · · · , (36.2.33)

Ay = −g
′(z)

4
(y3 − x2y) + · · · , (36.2.34)

Az = −g(z)

2
(x2 − y2) +

g′′(z)

12
(x4 − y4) + · · · . (36.2.35)
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Here g(z) is the on-axis field gradient, and the quantities g′(z) and g′′(z) are derivatives
of g with respect to z. We note that once g(z) is specified (and quadrupole symmetry is
imposed), then all other terms are determined by the Maxwell equations. Inspection of
(2.32) shows that H is unchanged by the substitution (px, py)→ (−px,−py) provided there
is also the substitution (Ax, Ay) → (−Ax,−Ay). Suppose, for convenience, we choose the
z coordinate so that z = 0 is at the center of the quadrupole. Then, for what we would
intuitively call a symmetric quadrupole in the sense of having end-to-end symmetry, g(z)
should be an even function of z,

g(−z) = g(z). (36.2.36)

From (2.36) we deduce that g′′(z), giv(z), etc. are then also even functions of z; and g′(z),
g′′′(z), etc. are odd functions of z. It follows from (2.33) through (2.35) that, for a quadrupole
with end-to-end symmetry, Ax and Ay are odd functions of z,

Ax(x, y,−z) = −Ax(x, y, z), (36.2.37)

Ay(x, y,−z) = −Ay(x, y, z), (36.2.38)

and Az is an even function,
Az(x, y,−z) = Az(x, y, z). (36.2.39)

[Note that the conditions (2.37) through (2.39) imply for the magnetic field the symmetry
relations Bx,y(x, y,−z) = Bx,y(x, y, z) and Bz(x, y,−z) = −Bz(x, y, z)]. From (2.32) and
(2.37) through (2.39) we conclude that

Hr(−z) = H(z), (36.2.40)

and therefore (2.21) is again satisfied. Thus, our intuitive sense of symmetry for a quadrupole
coincides with the precise definition (2.21) for the Hamiltonian, which in turn implies the
reversal symmetry condition (2.3) for the associated transfer map.

The same can be shown to be true for any multipole, including skew multipoles, with
end-to-end symmetry. Finally, the same can be shown to be true for any dipole, with
or without additional multipoles intended or otherwise, provided the magnet (including all
multipole and fringe fields) has end-to-end symmetry. [Note that the Hamiltonian (2.32) can
also be used for curved elements providing the bending angle is less than π. And for larger
bend angles an analogous treatment can be formulated using cylindrical coordinates.] That
is, in all these cases the relations (2.37) through (2.39) hold, and they imply the relation
(2.40). By contrast, the transfer map for a dipole with unequal entry and exit angles, or for
a combined function dipole with excessive quadrupole field at one end, will not be reversal
symmetric.

Consider next the case of a short RF cavity phased to act as a buncher. Such an idealized
cavity can be described by a map M of the form (1.32) with f given by the relation

f = (V/ω) cosωτ. (36.2.41)

Here V and ω are the voltage and frequency of the cavity. We see that f is even in τ , and
therefore f r = f . It follows that M is reversal symmetric. The case of a finite length RF
cavity with realistic electromagnetic fields awaits investigation. Finally, it is evident that
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the transfer map for a short RF cavity phased to operate as an accelerating element rather
than a bunching element [cosωτ replaced by cos(ωτ + φ)] is not reversal symmetric.

We have seen that the transfer maps for many common beam-line elements are reversal
symmetric. Suppose that M1, M2, and M3 are reversal symmetric maps. Then, by (2.1)
and (2.2), the maps M given by products of the form

M =M1M2M1, (36.2.42)

M =M1M2M3M2M1 (36.2.43)

will be reversal symmetric. For example, M1 could be the map for a drift and M2 could
be the map for a quadrupole. It follows that the map for a quadrupole sandwiched between
two equal length drifts, given by (2.42), is reversal symmetric. Or M1 and M3 could be
maps for quadrupoles andM2 could be the map for a drift. Then (2.43) would be the map
for a quadrupole triplet, and we conclude that such maps are reversal symmetric. In the
case of solenoids with end-to-end symmetry we could consider maps of the form

M =M1M2M3 (36.2.44)

whereM1 is a solenoid map,M2 is a drift or quadrupole, andM3 is a map for an identical
solenoid except for a reversed field. These maps (2.44) would also be reversal symmetric.

It frequently happens that a given map M is not reversal symmetric, but is conjugate
to a map N that is reversal symmetric. That is, given M, there exists a conjugating map
A such that M can be written in the form

M = A−1NA (36.2.45)

where N is reversal symmetric. Consider, for example, the case of a FODO cell. Its map
M is given by the product

M = FODO (36.2.46)

where F and D are the maps for (horizontally) focusing and defocussing quadrupoles and
O is the map for a drift (or a reversal symmetric dipole). Evidently M is not reversal
symmetric although, according to our previous discussion, its factors are. However, we
know that F (including all multipole and fringe-field effects) can be written as the product

F = F`Ft (36.2.47)

where F` and Ft are the maps for the leading and trailing halves of the focusing quadrupole.
Moreover, there is the relation

F r` = Ft. (36.2.48)

As a result of (2.47) M can be written in the form

M = F`FtODO = F`FtODOF`F−1
` = A−1NA (36.2.49)

with
A−1 = F` (36.2.50)
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and
N = FtODOF`. (36.2.51)

Let us compute the reverse of N . We find, using (2.1) and (2.48), the result

N r = F r`OrDrOrF rt = FtODOF` = N . (36.2.52)

Therefore, N is reversal symmetric. This example illustrates that the one-turn map for
a ring is often reversal symmetric providing the surface of section (location at which the
one-turn map is computed) is properly chosen.

As a second illustration, suppose that (through some order)M can be brought to normal
form. (For example, assume that the eigenvalues of the linear part of M lie on the unit
circle and that the corresponding tunes are not resonant through some order.) Then we may
take A to be the normalizing map, and N to be the normal form of M. The map N can
be written in terms of a single exponent,

N = exp(: h :). (36.2.53)

In the case of a static ring (no RF) h takes the form

h = −(φx/2)(p2
x + x2)− (φy/2)(p2

y + y2) + b1p2
τ + b2p3

τ + b3p4
τ

+axx(p
2
x + x2)2 + axy(p

2
x + x2)(p2

y + y2) + ayy(p
2
y + y2)2

+c1
x(p

2
x + x2)pτ + c2

x(p
2
x + x2)p2

τ

+c1
y(p

2
y + y2)pτ + c2

y(p
2
y + y2)p2

τ + · · · . (36.2.54)

We see that h is a power series in the quantities Kx, Ky, and pτ where

Kx = (p2
x + x2), (36.2.55)

Ky = (p2
y + y2). (36.2.56)

The quantities [φ/(2π)] are (fractional) tunes, the quantities b are related to phase slip
(momentum compaction), the quantities a are related to anharmonicities, and the quantities
c are related to chromaticities. In the dynamic case h takes the form

h = −(φx/2)Kx − (φy/2)Ky − (φτ/2)Kτ

+axxK
2
x + ayyK

2
y + aττK

2
τ + axyKxKy

+axτKxKτ + ayτKyKτ + · · · . (36.2.57)

Now h is a power series in Kx, Ky, and Kτ with Kx, Ky defined as above and

Kτ = (p2
τ + τ 2). (36.2.58)

We see that in both cases hr = h, and therefore N is reversal symmetric. Of course, the
normal form procedure usually leads to divergent series and therefore these normal form
results are only approximate in the formal sense of holding to any order, but usually not
exactly.



2238 36. REVERSAL SYMMETRY

We have defined a map M to be reversal symmetric if it satisfies the condition (2.3).
We now define a map to be reversal antisymmetric if it satisfies the condition

Mr =M−1. (36.2.59)

SupposeM can be written in the single exponent form (1.33), and is reversal antisymmetric.
Then we see from (1.46) that the generator f must satisfy the relation

f r = −f. (36.2.60)

Note that reversal antisymmetric maps form a subgroup. In particular, if two mapsM1 and
M2 are reversal antisymmetric, so is their product M1M2:

(M1M2)r =Mr
2Mr

1 = (M−1
2 )(M−1

1 ) = (M1M2)−1. (36.2.61)

Correspondingly, functions that satisfy (2.60) form a Lie algebra under Poisson bracketing.
Indeed, if f and g are any two functions, there is the general relation

R[f, g] = R : f : g = R : f : RRg = − : f r : gr = −[f r, gr]. (36.2.62)

And, if f and g satisfy (2.60), there is the result

R[f, g] = −[f, g]. (36.2.63)

Thus, if f and g change sign under reversal, so does their Poisson bracket.
We close this section by showing that under certain circumstances a symplectic map

M can be written uniquely as the product of a reversal symmetric symplectic map and a
reversal antisymmetric symplectic map. Given any symplectic mapM, define an associated
symplectic map B by the relation

B =MMr. (36.2.64)

Then, by (2.1) and (2.2), B is reversal symmetric. Assume that it is possible to find a square
root S for B, and that this square root is also reversal symmetric. That is, assume there is
an S satisfying

Sr = S (36.2.65)

such that
B = S2. (36.2.66)

For example, suppose that B can be written in the single exponent form

B = exp(: f :) (36.2.67)

and that f has the property (2.14). Then we may define S by the relation

S = exp(: f : /2). (36.2.68)

Next define a symplectic map A by the relation

A = S−1M. (36.2.69)



36.2. GENERAL CONSEQUENCES FOR STRAIGHT AND CIRCULAR . . . 2239

Then A will be reversal antisymmetric. Indeed, we have the results

Ar =MrS−1, (36.2.70)

AAr = S−1MMrS−1 = S−1BS−1 = S−1S2S−1 = I, (36.2.71)

and therefore A is reversal antisymmetric. Finally, (2.69) can be rewritten in the form

M = SA. (36.2.72)

We see that, under the assumptions made, M can be written as the product of a reversal
symmetric map S and a reversal antisymmetric map A, and we have found expressions for
each.

Exercises

36.2.1. Review the first part of Exercise 6.2.9. Let S3 be the set of all reversal antisymmetric
symplectic maps. Show that S3 forms a group, and that there is the inclusion relation

S0 ⊃ S1 ⊃ S2 ⊃ S3. (36.2.73)

36.3 General Consequences for Straight and Circular

Machines

Suppose M has a factorization of the form

M = L exp : f3 : exp : f4 : · · · . (36.3.1)

Here L is the linear part of M. Then, we find for Mr the factorization

Mr = · · · [exp(: f4 :)]r[exp(: f3 :)]rLr

= · · · exp(: f r4 :) exp(: f r3 :)Lr. (36.3.2)

Here we have used (2.2) and (1.46). Also, if the action of Lr is described by the matrix Lr,
then the operator relation

Lr = RL−1R (36.3.3)

yields the matrix relation

Lr = RL−1R (36.3.4)

consistent with (1.47). Also, as done before for (1.49), we deduce from the symplectic
condition (3.1.2) that (3.3) can also be written in the form

Lr = JRLTJR. (36.3.5)
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Let us (in the 6× 6 case) write L using the standard matrix notation,

L =


L11 L12 L13 L14 L15 L16

L21 L22 L23 L24 L25 L26

L31 L32 L33 L34 L35 L36

L41 L42 L43 L44 L45 L46

L51 L52 L53 L54 L55 L56

L61 L62 L63 L64 L65 L66

 . (36.3.6)

Then, upon evaluating (3.5), we find that Lr is the matrix

Lr =


L22 L12 L42 L32 −L62 −L52

L21 L11 L41 L31 −L61 −L51

L24 L14 L44 L34 −L64 −L54

L23 L13 L43 L33 −L63 −L53

−L26 −L16 −L46 −L36 L66 L56

−L25 −L15 −L45 −L35 L65 L55

 . (36.3.7)

Now suppose thatM is reversal symmetric so that (2.3) holds. Taken together (2.3) and
(3.2) give the result

· · · exp(: f r4 :) exp(: f r3 :)Lr = L exp(: f3 :) exp(: f4 :) · · · . (36.3.8)

The right side of (3.8) can be rewritten in the form

L exp(: f3 :) exp(: f4 :) · · · = L exp(: f3 :) exp(: f4 :) · · · L−1L
= · · · exp(: g4 :) exp(: g3 :)L, (36.3.9)

where the quantities g3, g4, · · · are yet to be determined. Upon comparing (3.8) and (3.9)
we see that reversal symmetry requires the relations

Lr = L, (36.3.10)

f rm = gm. (36.3.11)

The linear part L ofM must be reversal symmetric, and the Lie generators of the nonlinear
part must satisfy (3.11).

To work out the implications of (3.11) for the nonlinear part in more detail, we must
find the gm in terms of the fm. From (3.9) we conclude that there is the relation

exp(: Lf3 :) exp(: Lf4 :) · · · = · · · exp(: g4 :) exp(: g3 :). (36.3.12)

Now use the Baker-Campbell-Hausdorff series (8.2.28) and (8.2.29) to combine the exponents
on each side of (3.12) and equate terms of like degree. Doing so yields the relations

g3 = Lf3, (36.3.13)

g4 = Lf4, (36.3.14)
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g5 = Lf5 + [Lf3,Lf4], (36.3.15)

g6 = Lf6 + [Lf3,Lf5] + (1/2)[Lf3, [Lf3,Lf4]], etc. (36.3.16)

Finally, employ (3.11) in the relations (3.13) through (3.16) to find the results

f r3 = Lf3, (36.3.17)

f r4 = Lf4, (36.3.18)

f r5 = Lf5 + [Lf3,Lf4], (36.3.19)

f r6 = Lf6 + [Lf3,Lf5] + (1/2)[Lf3, [Lf3,Lf4]], etc. (36.3.20)

Let us explore the consequences of reversal symmetry for L. The relation (3.15) implies
the associated matrix relation

Lr = L. (36.3.21)

In view of (3.6) and (3.7), and in the 6 × 6 case, simple enumeration shows that reversal
symmetry places on the entries in L the 15 restrictions listed below:

L11 = L22, (36.3.22)

L13 = L42, (36.3.23)

L14 = L32, (36.3.24)

L15 = −L62, (36.3.25)

L16 = −L52, (36.3.26)

L23 = L41, (36.3.27)

L24 = L31, (36.3.28)

L25 = −L61, (36.3.29)

L26 = −L51, (36.3.30)

L33 = L44, (36.3.31)

L35 = −L64, (36.3.32)

L36 = −L54, (36.3.33)

L45 = −L63, (36.3.34)

L46 = −L53, (36.3.35)

L55 = L66. (36.3.36)

Of course, there are also restrictions on L that follow from the symplectic condition.
Suppose that M is a static (time independent) map. From the work of Section 19.4 we
know that in the static case L must have the form

L =


L11 L12 L13 L14 0 (Ľδ)1

L21 L22 L23 L24 0 (Ľδ)2

L31 L32 L33 L34 0 (Ľδ)3

L41 L42 L43 L44 0 (Ľδ)4

−δ2 δ1 −δ4 δ3 1 L56

0 0 0 0 0 1

 . (36.3.37)
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Recall that we have previously defined a matrix L̂ by the rule

L̂ =


L11 L12 L13 L14 0 0
L21 L22 L23 L24 0 0
L31 L32 L33 L34 0 0
L41 L42 L43 L44 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (36.3.38)

and that we have used the notation

L̂ =

(
Ľ 0
0 I

)
(36.3.39)

where Ľ is the 4× 4 matrix

Ľ =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

 . (36.3.40)

See (19.*.*). Moreover, we know that the linear map L̂ associated with the matrix L̂ is a
symplectic map, and hence L̂ and Ľ are symplectic matrices.

Suppose, now, that the static linear map described by (3.37) is also reversal symmetric
so that the conditions (3.22) through (3.36) also hold. Then, from the form (3.37) for L,
it is evident that the five conditions (3.25), (3.29), (3.32), (3.34), and (3.36) on the matrix
elements L15 through L55 are automatically satisfied. By contrast, the four conditions (3.26),
(3.30), (3.33), and (3.35) on the matrix elements L16 through L46 yield the relations

(Ľδ)1 = −δ1, (36.3.41)

(Ľδ)2 = δ2, (36.3.42)

(Ľδ)3 = −δ3, (36.3.43)

(Ľδ)4 = δ4. (36.3.44)

In the spirit of (3.40), let us use J and R as given by (3.2.10) and (1.5) to define associated
4× 4 matrices J̌ and Ř,

J̌ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (36.3.45)

Ř =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (36.3.46)
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With the aid of Ř the relations (3.41) through (3.44) can be written in the more compact
forms

Ľδ = −Řδ (36.3.47)

or

ŘĽδ = −δ. (36.3.48)

Moreover, the remaining six reversal symmetry relations (3.22), (3.23), (3.24), (3.27), (3.28),
and (3.31) for the entries of Ľ can be written in the compact form

Ľ = J̌ŘĽT J̌Ř. (36.3.49)

Finally, the entries of Ľ must also satisfy the symplectic condition

ĽT J̌ Ľ = J̌ . (36.3.50)

The imposition of reversal symmetry on L also implies an associated relation that must
be satisfied by the f1 in (19.*.*). This relation can be obtained by matrix and vector
manipulation using (19.*.*) and (3.48). It is also instructive to obtain the condition on f1

by Lie manipulation starting with (19.*.*). Rewrite (19.*.*) in the explicit form

L = exp(: ξp2
τ :) exp(: pτf1 :)L̂, (36.3.51)

and apply reversal to find the equivalent relation

Lr = L̂r exp(: pτf
r
1 :) exp(: ξp2

τ :)

= exp(: ξp2
τ :)L̂r exp(: pτf

r
1 :)(L̂r)−1L̂r

= exp(: ξp2
τ :) exp(: pτ L̂rf r1 :)L̂r. (36.3.52)

Here we have also used (8.2.27). Now require that L satisfy the reversal symmetry condition
(3.10). Comparison of (3.51) and (3.52) then gives the relation

L̂r = L̂, (36.3.53)

which is equivalent to (3.49), and the relation

L̂rf r1 = f1. (36.3.54)

In view of (3.53), the relation (3.54) can also be written in the form

f r1 = L̂−1f1, (36.3.55)

which is equivalent to (3.47) or (3.48).
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36.4 Consequences for some Special Cases

Let us explore the implication of reversal symmetry for some special cases. Again assume
that M is static, and suppose further that Ľ does not couple the x, px, and y, py degrees of
freedom. In this case L as given by (3.37) takes the form

L =



a b 0 0 0 δ̌1

c d 0 0 0 δ̌2

0 0 e f 0 δ̌3

0 0 g h 0 δ̌4

−δ2 δ1 −δ4 δ3 1 L56

0 0 0 0 0 1

 (36.4.1)

where
δ̌a = (Ľδ)a. (36.4.2)

And, by combining (3.6), (3.7), and (3.48), Lr takes the form

Lr =


d b 0 0 0 −δ1

c a 0 0 0 δ2

0 0 h f 0 −δ3

0 0 g e 0 δ4

−δ̌2 −δ̌1 −δ̌4 −δ̌3 1 L56

0 0 0 0 0 1

 . (36.4.3)

Imposing the reversal symmetry condition (3.21) yields the relations

δ̌1 = −δ1, (36.4.4)

δ̌2 = δ2, (36.4.5)

δ̌3 = −δ3, (36.4.6)

δ̌4 = δ4, (36.4.7)

which echo (3.41) through (3.44), and the additional relations

a = d, (36.4.8)

e = h. (36.4.9)

Moreover, the symplectic condition (3.50) provides the relations

ad− bc = 1, (36.4.10)

eh− fg = 1. (36.4.11)

Suppose we further assume that, say in the x, px plane, the system is imaging (and therefore
b = 0) or telescopic (and therefore c = 0). Then it follows from (4.8) and (4.10) that

a = d = ±1. (36.4.12)
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Similar conclusions hold for the y, py plane. We have learned that if a system is rever-
sal symmetric and imaging or telescopic, then (up to a sign) the system must have unit
magnification or unit “parallelization”.

Suppose instead that the eigenvalues of Ľ lie on the unit circle (but differ from ±1) and
that the x, px and y, py degrees of freedom are uncoupled. Then L̂ can be written in the
form

L̂ = exp(: f2 :) (36.4.13)

where

f2 = − (φx/2)(βxp
2
x + 2αxxpx + γxx

2)

− (φy/2)(βyp
2
y + 2αyypy + γyy

2). (36.4.14)

Here [φx/(2π)] and [φy/2π] are the horizontal and vertical (fractional) tunes, and αx, βx, γx
and αy, βy, γy are the horizontal and vertical Courant-Snyder (Twiss) functions. Then re-
versal symmetry requires the relation (2.14) from which it follows that

αx = αy = 0. (36.4.15)

Thus, the Courant-Snyder ellipses for both the x and y degrees of freedom are upright ifM
is reversal symmetric.

36.5 Consequences for Closed Orbit in a Circular

Machine

There is a further factorization of a static linear sympletic map L as given by (19.*.*) that
is of use. Let Ad be the map given by the relation

Ad = exp(: pτg1 :) (36.5.1)

where g1 is yet to be determined (but does not depend on τ and pτ ). Here we use the
subscript d to indicate that Ad is analogous to D as given by (19.*.*). Consider the map
Nd given by

Nd = AdLA−1
d . (36.5.2)

From (19.*.*) we have the result

Nd = AdCDL̂A−1
d = CAdDL̂A−1

d = CAdDL̂A−1
d L̂

−1L̂. (36.5.3)

At this point we ask if there is a choice of Ad such that

AdDL̂A−1
d L̂

−1 = C(ξ′) (36.5.4)

where C(ξ′) is a map of the form (19.*.*). With the aid of (5.13.14), (8.2.27) and the
Baker-Campbell-Hausdorff series (3.7.34) we find the result

AdDL̂A−1
d L̂

−1 =

exp(: pτg1 :) exp(: pτf1 :)L̂ exp(− : pτg1 :)L̂−1 =

exp(: pτg1 :) exp(: pτf1 :) exp(− : pτ L̂g1)

= exp{: pτ (g1 + f1 − L̂g1) :} ×
exp{: (p2

τ/2)(−[f1, L̂g1] + [g1, f1]− [g1, L̂g1]) :}. (36.5.5)



2246 36. REVERSAL SYMMETRY

We see that (5.4) can be achieved providing a g1 can be found such that

(L̂ − I)g1 = f1. (36.5.6)

Inspection of (3.39) and (3.40) shows that (5.6) can be solved (uniquely) to obtain g1 in
terms of f1 providing Ľ as given by (3.40) does not have +1 as an eigenvalue. That is,
neither transverse tune is integer. For the record, we also note that when g1 is specified by
(5.6), the map C(ξ′) is given by the relation

ξ′ = [g1, f1]/2. (36.5.7)

By combining (5.3) and (5.4), we find the relation

Nd = C(η)L̂ (36.5.8)

with C(η) given by the product

C(η) = C(ξ)C(ξ′) = C(ξ + ξ′). (36.5.9)

Finally, solving (5.2) for L and use of (5.8) yields the factorization

L = C(η)A−1
d L̂Ad. (36.5.10)

The quantities η and g1 appearing in C(η) and Ad have a physical interpretation. In
analogy with (19.*.*), write g1 in the form

g1 = ∆2x−∆1px + ∆4y −∆3py. (36.5.11)

The operator relation (5.10) is equivalent to the matrix relation

L = AdL̂A
−1
d C(η) = AdC(η)L̂A−1

d (36.5.12)

where C(η) and Ad are the matrices associated with C(η) and Ad. In analogy with (19.*.*)
and (19.*.*) they are given by the equations

C(η) = C(ξ + ξ′), (36.5.13)

Ad = D(∆), (36.5.14)

A−1
d = D(−∆). (36.5.15)

[Note that in writing (5.12) we have employed the fact that C(η) commutes with A−1
d , L̂,

and Ad.] Now let z0(pτ ) be the vector with all zero entries save for pτ in the last entry,

z0(pτ ) = (0, 0, 0, 0, 0, pτ ). (36.5.16)

It evidently has the properties
L̂z0(pτ ) = z0(pτ ), (36.5.17)

C(η)z0(pτ ) = z̄0(pτ ) (36.5.18)
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where z̄0(pτ ) has the entries

z̄0(pτ ) = (0, 0, 0, 0, ηpτ , pτ ). (36.5.19)

Next let zc(pτ ) be the vector defined by the relation

zc(pτ ) = Adz
c(pτ ). (36.5.20)

Carrying out the indicated multiplication shows that it has the entries

zc(pτ ) = (∆1pτ ,∆2pτ ,∆3pτ ,∆4pτ , 0, pτ ). (36.5.21)

Also, by construction, it has the property

z0(pτ ) = A−1
d zc(pτ ). (36.5.22)

Finally, let us apply L to zc(pτ ). From (5.12), (5.17) through (5.20), and (5.22) we find the
result

Lzc(pτ ) = AdC
′′L̂A−1

d zc(pτ ) = AdC
′′L̂z0(pτ )

= AdC
′′z0(pτ ) = Adz

0(pτ ) = z̄c(pτ ) (36.5.23)

where z̄c(pτ ) is the vector
z̄c(pτ ) = Adz̄

0(pτ ). (36.5.24)

From (19.*.*), (5.14), (5.19), and (5.24) we find that z̄c(pτ ) has the entries

z̄c(pτ ) = (∆1pτ ,∆2pτ ,∆3pτ ,∆4pτ , ηpτ , pτ ). (36.5.25)

Comparison of (5.21) and (5.25) shows that zc(pτ ) and z̄c(pτ ) agree in all entries except
for the fifth. We conclude that the quantities ∆apτ , for a = 1 to 4, are the transverse
phase-space coordinates for the closed orbit (in the linear approximation toM described by
L). Thus, the quantities ∆1 and ∆3 are dispersions, and ∆2 and ∆4 are their momentum
counterparts. And, as is evident from the fifth components of zc(pτ ) and z̄c(pτ ), the quantity
ηpτ is the differential time-of-flight on the closed orbit. Correspondingly, η is the phase slip
factor.

What can be said about g1 and Ad if L is reversal symmetric? Rewrite (5.6) in the form

f1 = L̂g1 − g1. (36.5.26)

Applying reversal produces the equivalent relation [see (1.56)]

f r1 = (L̂r)−1gr1 − gr1, (36.5.27)

and multiplying both sides of this relation by L̂r yields the result

L̂rf r1 = gr1 − L̂rgr1. (36.5.28)

Now suppose that L is reversal symmetric so that (3.53) and (3.54) hold. Then (5.28)
becomes

f1 = gr1 − L̂gr1, (36.5.29)
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and this result when combined with (5.26) yields the relation

(L̂ − I)g1 = −(L̂ − I)gr1. (36.5.30)

We have already assumed that (L̂−I) is invertible, and therefore (5.30) implies the relation

gr1 = −g1. (36.5.31)

This is the condition for Ad to be reversal antisymmetric. We have learned that if L is
reversal symmetric, it can be written in the form (5.10) withAd being reversal antisymmetric,

Ard = A−1
d . (36.5.32)

Moreover, comparison of (5.11) and (5.31) shows that there is the relation

∆2 = ∆4 = 0 (36.5.33)

if L is reversal symmetric. In view of (5.21), this relation can also be written in the form

Rzc(pτ ) = zc(pτ ). (36.5.34)

If L is reversal symmetric the off-energy closed orbit has no transverse momentum compo-
nents (at the ring location for which L is computed).

How do the quantities ∆a and η vary from place to place around a ring? We will
see shortly that η is constant. First let us consider the ∆a. Suppose that in the linear
approximation the one-turn map L for a ring can be written as the product of 2n maps in
the form

L = L1L2 · · · LnLñ · · · L2̃L1̃ (36.5.35)

with
Lj̃ = Lrj . (36.5.36)

Figure 5.1 illustrates such a ring. In view of (5.36), we may say that the ring has location
0 as a symmetry point. From (2.15) and (2.16) we see that L is reversal symmetric, i.e.
(3.10) holds. Our task is to compute the closed-orbit quantities ∆a at various other locations
(Poincaré surfaces of section) j and j̃ around the ring.

Introduce the maps Sj and S j̃ defined by the rules

Sj = L1L2 · · · Lj, (36.5.37)

S j̃ = Lj̃ · · · L2̃L1̃, (36.5.38)

and let Sj and S j̃ be their corresponding matrices. Let zcj be the closed-orbit vector at
location j. In analogy to (5.21) we write it in the form

zcj(pτ ) = (∆j
1pτ ,∆

j
2pτ ,∆

j
3pτ ,∆

j
4pτ , ∗, pτ ) (36.5.39)

where the entry labeled ∗ need not concern us. Also, from (5.21) and (5.34), the closed-orbit
vector at location 0, denote it by zc0(pτ ), is given by the relation

zc0(pτ ) = zc(pτ ) = (∆0
1pτ , 0,∆

0
3pτ , 0, 0, pτ ) (36.5.40)
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Figure 36.5.1: Schematic drawing of a ring showing the locations (Poincaré surfaces of
section) 0; 1, 1̃; 2, 2̃; 3, 3̃; etc.

with ∆0
1 = ∆1 and ∆0

3 = ∆3. Then, inspection of Figure 5.1 shows that the closed-orbit
vector at location j must be the result of propagating the closed-orbit initial conditions from
location 0 to location j. That is, there is the vector and matrix relation

zcj(pτ ) = Sjzc0. (36.5.41)

Similarly, let zcj̃ be the closed-orbit vector at location j̃, and write it in the form

zcj̃(pτ ) = (∆j̃
1pτ ,∆

j̃
2pτ ,∆

j̃
3pτ ,∆

j̃
4pτ , ∗, pτ ). (36.5.42)

Then, by following the closed orbit backwards from location 0 to location j̃, we see that
there is the relation

zcj̃ = (S j̃)−1zc0. (36.5.43)

We are now prepared to compare zcj and zcj̃. From (5.36) through (5.38) it is easily
checked that there is the operator relation

(Sj)r = S j̃ (36.5.44)

and hence also the corresponding matrix relation

(Sj)r = S j̃. (36.5.45)

It follows that (5.43) can be written in the form

zcj̃ = ((Sj)r)−1zc0 = (R(Sj)−1R)−1zc0

= RSjRzc0 = RSjzc0 = Rzcj. (36.5.46)

Here we have also used (1.8), (3.4), and (5.34). From (5.46) we conclude that there are the
relations

∆j̃
1 = ∆j

1, (36.5.47)
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∆j̃
2 = −∆j

2, (36.5.48)

∆j̃
3 = ∆j

3, (36.5.49)

∆j̃
4 = −∆j

4. (36.5.50)

We have learned that ∆1 and ∆3 are “even” functions of position about the symmetry
location 0, and ∆2 and ∆4 are “odd” functions.

36.6 Consequences for Courant-Snyder Functions in a

Circular Machine

We next turn to the task of determining the behavior of the Courant-Snyder lattice functions
(as well as the phase slip η) for a ring with a reversal symmetric one-turn map, and for a
ring that also has a symmetry point. Some preparatory work is required. The relation (5.10)
can be rewritten in the form

L = A−1
d [C(η)L̂]Ad. (36.6.1)

In this form we see that a general L has been expressed as the similarity transform of the
simpler map C(η)L̂. Let us now further simplify L̂ itself. With reference to (3.39) and (3.40),
suppose that the eigenvalues of Ľ lie on the unit circle and are distinct. Then, according to
normal form theory, there is a symplectic matrix Ǎb such that

Ǎ−1
b ĽǍb = Ňb (36.6.2)

where Ňb takes the simple (normal) form

Ňb(φ1, φ2) =


cosφ1 sinφ1 0 0
− sinφ1 cosφ1 0 0

0 0 cosφ2 sinφ2

0 0 − sinφ2 cosφ2

 . (36.6.3)

Here the quantities φ are the (eigen) phase advances of Ľ and the [φ/(2π)] are the (eigen)
tunes. The subscript b indicates the connection that Ǎb and Ňb have with betatron oscilla-
tions.

In the spirit of (3.39), let Âb and N̂b denote the matrices

Âb =

(
Ǎb 0
0 I

)
, (36.6.4)

N̂b =

(
Ňb 0
0 I

)
, (36.6.5)

and let Ab and Nb denote the corresponding symplectic maps. Then the matrix relation
(6.2) is equivalent to the map relation

AbL̂A−1
b = Nb. (36.6.6)
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We note that Nb can be written in the Lie form

Nb = exp(: h2 :) (36.6.7)

with

h2 = −(φ1/2)(p2
x + x2)− (φ2/2)(p2

y + y2). (36.6.8)

The relation (6.6) can also be written in the form

L̂ = A−1
b NbAb, (36.6.9)

and then inserted into (6.1) to give the relation

L = A−1
d C(η)A−1

b NbAbAd. (36.6.10)

From (19.*.*) and (6.4) it is evident that C(η) and A−1
b commute. Therefore (6.10) can be

cast in the still simpler form

L = A−1NA (36.6.11)

where

A = AbAd, (36.6.12)

N = C(η)Nb. (36.6.13)

Inspection of (19.*.*), (5.13), (6.7), and (6.8) shows that N can be written in the form

N = exp(: h2 :) (36.6.14)

with

h2 = −(φ1/2)(p2
x + x2)− (φ2/2)(p2

y + y2)− (η/2)p2
τ . (36.6.15)

Let us again explore the effect of reversal. Applying reversal to (6.6) produces the
equivalent result

(A−1
b )rL̂rArb = N r

b , (36.6.16)

which can be rewritten in the form

(Arb)−1L̂rArb = Nb. (36.6.17)

Here we have used (2.2) and the fact that N̂b is manifestly reversal symmetric. Let us solve
(6.16) and (6.17) for L̂ and L̂r to yield the relations

L̂ = A−1
b NbAb, (36.6.18)

L̂r = ArbNb(Arb)−1. (36.6.19)

Now suppose that L is reversal symmetric, in which case L̂ is also reversal symmetric. See
(3.53). Then comparison of (6.18) and (6.19) gives the relation

A−1
b NbAb = ArbNb(Arb)−1, (36.6.20)
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which can be rewritten in the forms

(Arb)−1A−1
b NbAbA

r
b = Nb, (36.6.21)

(AbArb)−1Nb(AbArb) = Nb, (36.6.22)

Nb(φ1, φ2)(AbArb) = (AbArb)Nb(φ1, φ2). (36.6.23)

In the last form we have made explicit the dependence of Nb on φ1 and φ2.
The relation (6.23) states that the product (AbArb) commutes with Nb. Inspection of

(6.7) and (6.8) shows that (6.23) can hold only if the product (AbArb) is of the form

AbArb = Nb(φ′1, φ′2) (36.6.24)

for some values of φ′1 and φ′2. We now show that, without loss of the desired relations (6.6)
through (6.8), we can require the condition

AbArb = I or Arb = A−1
b . (36.6.25)

That is, if L is reversal symmetric, there is a reversal antisymmetric Ab that accomplishes
the desired goals (6.6) through (6.8). Indeed, given an Ab that satisfies (6.24), define an
associated map Āb by the rule

Āb = Nb(−φ′1/2,−φ′2/2)Ab. (36.6.26)

From (6.6) we see that it satisfies the desired normalizing relation,

ĀbL̂Ā−1
b = Nb(−φ′1/2,−φ′2/2)AbL̂A−1

b [Nb(−φ′1/2,−φ′2/2)]−1

= Nb(−φ′1/2,−φ′2/2)Nb(φ1, φ2)[Nb(−φ′1/2,−φ′2/2)]−1

= Nb(φ1, φ2). (36.6.27)

Also, it has the desired product relation,

ĀbĀrb = Nb(−φ′1/2,−φ′2/2)AbArbNb(−φ′1/2,−φ′2/2)

= Nb(−φ′1/2,−φ′2/2)Nb(φ′1, φ′2)Nb(−φ′1/2,−φ′2/2)

= I. (36.6.28)

The generalized Courant-Snyder quadratic invariants Ix and Iy (which include the pos-
sibility of coupling between the x, px and y, py degrees of freedom) are defined by the rules

Ix = A−1
b (p2

x + x2), (36.6.29)

Iy = A−1
b (p2

y + y2). (36.6.30)

In the no-coupling case they take the form

Ix = βxp
2
x + 2αxxpx + γxx

2, etc. (36.6.31)

The relations (6.29) and (6.30) have the reversed counterparts

Irx = Arb(p2
x + x2), etc. (36.6.32)
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Here we have used (1.56). Now assume that L is reversal symmetric so that Ab can be taken
to satisfy (6.25). In this case we find the relations

Irx = Arb(p2
x + x2) = A−1

b (p2
x + x2) = Ix, etc. (36.6.33)

Thus, if L is reversal symmetric, the generalized Courant-Snyder invariants (at the location
for which L is computed) are free of terms that are odd in the momenta.

We now explore how Ix, Iy, and η vary about a ring that has a symmetry point. Refer
again to Figure 5.1. Let L0 be the one-turn map starting at location 0,

L0 = L1L2 · · · LnLñ · · · L2̃L1̃ = L. (36.6.34)

Similarly, let L1 and L1̃ be the maps starting at the locations 1 and 1̃. For these maps we
find the results

L1 = L2L3 · · · LnLñ · · · L2̃L1̃L1

= L−1
1 L1L2L3 · · · LnLñ · · · L2̃L1̃L1

= L−1
1 LL1, (36.6.35)

L1̃ = L1̃L1L2 · · · LnLñ · · · L3̃L2̃

= L1̃L1L2 · · · LnLñ · · · L1̃L2̃L1̃L−1
1̃

= L1̃LL−1
1̃
. (36.6.36)

In the same way we find for L2 and L2̃ the results

L2 = L−1
2 L−1

1 LL1L2 = (L1L2)−1L(L1L2), (36.6.37)

L2̃ = L2̃L1̃LL−1
1̃
L−1

2̃
= (L2̃L1̃)L(L2̃L1̃)−1. (36.6.38)

Finally, in terms of the maps Sj and S j̃ defined by (5.37) and (5.38), the relations (6.34)
through (6.38) etc. take the general form

Lj = (Sj)−1LSj, (36.6.39)

Lj̃ = (S j̃)L(S j̃)−1. (36.6.40)

Insert the representation (6.11) into (6.39) and (6.40) to obtain the relations

Lj = (Sj)−1A−1NA(Sj), (36.6.41)

Lj̃ = (S j̃)A−1NA(S j̃)−1. (36.6.42)

These relations can be rewritten in the form

Lj = (Aj)−1N jAj, (36.6.43)

Lj̃ = (Aj̃)−1N j̃Aj̃, (36.6.44)
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where
Aj = ASj, (36.6.45)

N j = N , (36.6.46)

Aj̃ = A(S j̃)−1, (36.6.47)

N j̃ = N . (36.6.48)

Comparison of (6.46) and (6.48) immediately gives the result

N j̃ = N j, (36.6.49)

from which we conclude that φ1, φ2 and η are global properties of a ring. [See (6.15).] Their
values are independent of the choice of the surface of section. Note that in arriving at this
conclusion no assumptions were required about reversal symmetry.

Next, in analogy to (6.12), make the factorizations

Aj = AjbA
j
d, (36.6.50)

Aj̃ = Aj̃bA
j̃
d. (36.6.51)

Here the maps Ajd and Aj̃d are defined by the analogs of (5.1) and (5.11):

Ajd = exp(: pτg
j
1 :) (36.6.52)

with
gj1 = ∆j

2x−∆j
1px + ∆j

4y −∆j
3py; (36.6.53)

Aj̃d = exp(: pτg
j̃
1 :) (36.6.54)

with
gj̃ = ∆j̃

2x−∆j̃
1px + ∆j̃

4y −∆j̃
3py. (36.6.55)

So far we have not necessarily assumed that L is reversal symmetric and that the ring
has 0 as a symmetry point. Do so now. Then (5.47) through (5.50) can be used to rewrite
(6.53) in the form

gj1 = −∆j̃
2x−∆j̃

1px −∆j̃
4y −∆j̃

3py. (36.6.56)

Now we see that there is the relation

(gj1)r = −gj̃1, (36.6.57)

from which it follows that
(Ajd)

r = (Aj̃d)
−1. (36.6.58)

We also know that, since L is reversal symmetric, the maps Ad and Ab are reversal antisym-
metric. See (5.32) and (6.25). It follows from the group property for reversal antisymmetric
maps that A as given by (6.12) is also reversal antisymmetric,

Ar = A−1. (36.6.59)
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We are now prepared to study the relation between Ajb and Aj̃b. Solving (6.50) and (6.51)

for Ajb and Aj̃b and using (6.45) and (6.47) give the results

Ajb = Aj(Ajd)
−1 = ASj(Ajd)

−1, (36.6.60)

Aj̃b = Aj̃(Aj̃d)
−1 = A(S j̃)−1(Aj̃d)

−1. (36.6.61)

Let us compute the map ((Ajb)r)−1. From (6.60) we find the results

(Ajb)
r = ((Ajd)

−1)r(Sj)rAr, (36.6.62)

((Ajb)
r)−1 = (Ar)−1((Sj)r)−1(Ajd)

r

= A(S j̃)−1(Aj̃d)
−1

= Aj̃b. (36.6.63)

Here we have used (5.44), (6.58), and (6.59). Note that (6.63) can also be written in the
form

(Ajb)
r = (Aj̃b)

−1, (36.6.64)

which is analogous to the relation (6.58) for (Ajd)r.
We are ready for the coup de mâıtre. The horizontal Courant-Snyder (eigen) invariants

at the locations j and j̃ are given by the expressions

Ijx = (Ajb)
−1(p2

x + x2), (36.6.65)

I j̃x = (Aj̃b)
−1(p2

x + x2); (36.6.66)

and there are analogous expressions for their vertical counterparts. Now apply the reversal
operation to (6.65). Doing so gives the result

(Ijx)
r = (Ajb)

r(p2
x + x2) = (Aj̃b)

−1(p2
x + x2) = I j̃x. (36.6.67)

Similarly, there is the relation
(Ijy)

r = I j̃y . (36.6.68)

Consider the coefficients of the monomials in Ijx or Ijy that are even under R. The relations
(6.67) and (6.68) show that these coefficients are also even functions of position about the
symmetry location 0. For example, in the no-coupling case (6.31), there are the relations

β j̃x = βjx, (36.6.69)

γ j̃x = γjx. (36.6.70)

Next consider the coefficients of the monomials in Ijx or Ijy that are odd under R. The
relations (6.67) and (6.68) show that these coefficients are also odd functions of position
about the symmetry location 0. For example, in the non-coupling case (6.31) there is the
relation

αj̃x = −αjx. (36.6.71)
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36.7 Some Nonlinear Consequences

So far we have mostly explored the consequences of reversal symmetry for L, the linear part
ofM. We now explore some of the consequences of reversal symmetry for the full mapM.
One line of inquiry would be to generalize the results of the previous Sections 5 and 6 to
include nonlinear terms. Equations (5.25) and (5.39) give the linear terms of a power series
(in pτ ) expansion of zcj(pτ ). The higher order terms in this expansion could be found and
their dependence on the location j could be explored. Similarly a full normalization of M
[analogous to that given in (6.11) for its linear part L] could be found. The betatron part
of the associated normalizing map could then be used in (6.65), etc., to find the generalized
Courant-Snyder invariants that take into account all nonlinear effects through any desired
order. These invariants contain, in addition to quadratic monomials, monomials of degree 3
and higher. When considered as functions of location j, the coefficients of these monomials
yield nonlinear lattice functions. Just how these coefficients depend on j could also be
explored.

We will leave these generalizations to the reader. Instead, we will devote this section to
the exploration of how reversal symmetry affects the dynamic aperture of a ring including
the location of fixed points, and how it limits the kind of nonlinearities that can occur in
M.

Consider the map M on two-dimensional phase space given by the product

M(θ) = exp[−(φ/4) :p2 + q2 :] exp(:q3 :) exp[−(φ/4) :p2 + q2 :]. (36.7.1)

As described in Section 1.2.3, this map consists of a φ/2 phase advance, followed by a
sextupole kick, followed again by a φ/2 phase advance. It may be viewed as describing
horizontal betatron motion in an idealized storage ring with a single thin sextupole insertion
S, and an observation point O (Poincaré surface of section) located diametrically across the
ring from the sextupole insertion. Recall Figure 1.2.8. We verified in Section 18.8.4 that
this map is a variant of the usual Hénon map, and differs from it only by a linear change of
variables. Now we note that M as given by (7.1) is reversal symmetric.

Figure 7.1, which is a replication of Figure 1.2.9, shows the dynamic aperture for our
variant of the Hénon map for the case φ/(2π) = .22. Points in the black area of the q, p
(mapping) plane remain there under repeated application of the map. [Actually, the points
shown remain there for at least 10,000 iterations (Mn with n ≤ 10, 000).] By contrast, any
point launched in the white area eventually iterates away to infinity. Inspection of the figure
suggests symmetry about the q axis. That is, all features of the figure are invariant under
reversal.

By construction, the map sends the origin into itself (the origin is a fixed point of M),
and the origin is unchanged under reversal. Not shown, because it is unstable and also
outside the viewing window, there is also a fixed point of M at p = 0 and q = .7158, and
this point is also unchanged under reversal. Next observe that there are 5 islands. They
surround 5 fixed points of the map M5. [Note that the tune φ/(2π) = .22 is close to 1/5.]
These fixed points appear to be located symmetrically about the q axis. Also, each island
is surrounded by 6 smaller islands. These smaller islands surround fixed points ofM30, and
these fixed points appear to be located symmetrically about the q axis. Finally, the whole
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Figure 36.7.1: The dynamic aperture of the Hénon map for the case φ/(2π) = 0.22.

dynamic aperture for our variant of the Hénon map appears to be symmetrical about the q
axis. That is, the dynamic aperture appears to be invariant under reversal.

To explore these conjectures, let us first think about fixed points of M and its powers.
SupposeM is a general map in any number of phase-space dimensions, and suppose zf is a
fixed point,

Mzf = zf . (36.7.2)

Suppose also that M is reversal symmetric so that (2.5) holds. Applying RMR to both
sides of (7.2) yields the result

RMRMzf = RMRzf . (36.7.3)

Use of (2.5) in (7.3) gives the relation

zf = RMRzf , (36.7.4)

which, in view of (1.21), can be rewritten as

M(Rzf ) = (Rzf ). (36.7.5)

We see that if zf is a fixed point of M, so is the point Rzf . An analogous result holds for
powers of M because Mn will be reversal symmetric when M is reversal symmetric: If zf

is a fixed point of Mn, so is the point Rzf .
We define a fixed point zf to be symmetric if it satisfies the relation

Rzf = zf . (36.7.6)

For example, for the Hénon map of Figure 7.1, the origin, and the point (q, p) = (.7158, 0)
not shown, are symmetric fixed points of M; and (q, p) = (.3458, 0) is a symmetric fixed
point ofM5. From appearances there are two symmetric fixed points ofM30: those on the
q axis and surrounding the fixed point ofM5 also on the q axis. The discovery (or ruling out
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the existence) of symmetric fixed points is easier than the discovery of general fixed points.
Let Fix (R) be the set of points z satisfying

Rz = z. (36.7.7)

From the definition (1.2) and (1.3) of R it is evident that (for a 6-dimensional phase space)
the set Fix (R) is 3 dimensional. [In general, if the dimension of phase space is 2m, the
dimension of Fix (R) is m.] Consequently, the dimension of the space to be searched to find
a symmetric fixed point is only half as large as the dimension of the full phase space that
must be searched to find a general fixed point.

We next remark that we have found that R and RMk and MkR (for any k) are all
involutions. See (2.8) and (2.9). Moreover, they are all antisymplectic. We have also seen
that Fix (R) is m dimensional. Based on a theorem of Bochner and Montgomery, it can be
shown that the sets Fix (RMk) and Fix (MkR) are also m dimensional if phase space is
2m dimensional. That is, the set of points obeying

RMkz = z (36.7.8)

is m dimensional for any value of k, and so is the set of points obeying

MkRz = z. (36.7.9)

See References 19, 22, and 23 in the Bibliography at the end this chapter.
Suppose that zf is the fixed point of some power M, say Mn, but not of some lower

power. Suppose that zf is also symmetric. Then more can be said. For example, suppose
n = 2. Then we have the relations

M2zf = zf , (36.7.10)

M2Mzf =MM2zf =Mzf . (36.7.11)

Thus zf and Mzf are two distinct fixed points of M2. By assumption zf is symmetric.
What about Mzf? We have the relations

RMzf = RMRRzf =M−1zf =M−1M2zf =Mzf . (36.7.12)

Here we have used (1.21), (1.40), (7.6), and (7.10). We see that Mzf is also a symmetric
fixed point. It is easy to show that this result can be generalized to the case of any even n:
If zf is a symmetric fixed point ofMn, thenMn/2zf is also a symmetric fixed point ofMn.
Thus, symmetric fixed points ofMn occur in pairs when n is even. As an example, we have
now proved that the two fixed points of M30 that appear to lie on the q axis in Figure 5.1
are indeed symmetric.

The case of odd n is a bit more complicated. Suppose for example that n = 3. Then, if
zf is a fixed point of M3, so are the two other points Mzf and M2zf . By assumption zf

is symmetric. For Mzf and M2zf we find the following results:

RMzf = RMRRzf =M−1zf (36.7.13)

from which it follows that
(M2R)(Mzf ) = (Mzf ); (36.7.14)
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RM2zf = RM2RRzf =M−2zf (36.7.15)

from which it follows that

(MR)(M2zf ) =M−1zf =M−1M3zf = (M2zf ). (36.7.16)

We know that R andMR andM2R are involutions. Thus, the relations (7.6), (7.14), and
(7.16) are all analogous: Some particular fixed point is invariant under some particular
involution.

Finally, suppose the set of points that satisfies (7.9) for some k = k1 intersects the set of
points that satisfies (7.9) for some other k = k2. That is, suppose there is a common point
w such that

Mk1Rw = w, (36.7.17)

Mk2Rw = w. (36.7.18)

Then we have the relation

Mk2w =Mk2Mk1Rw =Mk1Mk2Rw =Mk1w, (36.7.19)

and therefore
Mk1−k2w = w. (36.7.20)

We have found a fixed point, namely w, of the map Mk1−k2 ! Note that this fixed point
need not be symmetric. For some problems it is possible to construct the m-dimensional
manifolds Fix (MkR) that satisfy (7.9) for various values of k, and then determine their
intersections to find fixed points of Mn. See References 12 and 19 in the Bibliography at
the end of this chapter.

So far we have studied fixed points. Next consider general points. What can be said
about symmetry for them? We can think about this question for a general map M in any
number of phase-space dimensions as follows: Suppose M sends the origin into itself. Let
N be some large integer, and let Σ be some set in phase space such that all the pointsMnz
with z ∈ Σ and n ∈ [1, 2N ] have some desirable property such as being near the origin. Let
Γ be the set MNΣ. It is the set of all points obtained by letting MN act on all points in
Σ. Evidently Γ is a set such that all the points Mnz with z ∈ Γ and n ∈ [−N,N ] have
the same desirable property. Now suppose that M is reversal symmetric. Then Γ is also
reversal symmetric,

Γr = Γ. (36.7.21)

That is, if the phase-space point z is in Γ, so is the point zr.
To see the truth of this assertion, suppose z ∈ Γ. Consider the set of points Mnzr for

n ∈ [1, N ]. From (1.21) and (1.39) we have the result

Mnzr = MnRz = RRMnRz
= R(RMR)nz = R(Mr)−nz

= RM−nz. (36.7.22)

Here, in the last step, we have used the assumption thatM is reversal symmetric. Now we
know that the sequence of pointsM−nz is well behaved since z ∈ Γ. Therefore the sequence
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of points RM−nz is well behaved. (Note that, for any point z̄, the points z̄ and z̄r are
equidistant from the origin.) It follows from (7.22) that the sequence of pointsMnzr is well
behaved.

Next consider the set of points M−nzr. In this case we have the result

M−nzr = M−nRz = RRM−nRz
= R(RM−1R)nz = R(Mr)nz

= RMnz. (36.7.23)

By hypothesis the sequence of points Mnz is well behaved, and therefore by (7.23) the
sequence M−nzr is well behaved.

We have learned that the pointsMnzr are well behaved for n ∈ [−N,N ]. It follows that
zr ∈ Γ, and hence (7.21) is correct.

We end this section with an exploration of what restrictions reversal invariance places
on the nonlinear part ofM. Technically, we have already found these restrictions. They are
given by the relations (3.17) through (3.20). What we want to do here is to explore these
restrictions in more detail using some of the results of previous sections. For brevity we will
treat only the case of static maps, which is actually somewhat more complicated than the
dynamic case.

Rather than working withM, it is convenient to work with the related mapM′ defined
by the relation

M′ = AMA−1 (36.7.24)

with A given by (6.12). From the representation (3.1) and (6.11) it follows thatM′ has the
representation

M′ = AL exp(: f3 :) exp(: f4 :) · · · A−1

= [ALA−1][A exp(: f3 :) exp(: f4 :) · · · A−1]

= N exp(: g3 :) exp(: g4 :) · · · (36.7.25)

where the gm are given by the relation

gm = Afm. (36.7.26)

Next use the Baker-Campbell-Hausdorff series to combine the exponents of the nonlinear
terms on the right side of (7.25),

exp(: g3 :) exp(: g4 :) exp(: g5 :) · · · = exp(: h :) (36.7.27)

where
h = h3 + h4 + h5 + h6 + · · · . (36.7.28)

with
h3 = g3, (36.7.29)

h4 = g4, (36.7.30)

h5 = g5 + (1/2)[g3, g4], (36.7.31)
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h6 = g6 + (1/2)[g3, g5] + (1/12)[g3, [g3, g4]], etc. (36.7.32)

The net result is that M′ can be written in the form form

M′ = N exp(: h :). (36.7.33)

If M is reversal symmetric, M′ will also be reversal symmetric,

(M′)r = (A−1)rMrAr = AMA−1 =M′. (36.7.34)

Here we have used (6.59), which holds if M is reversal symmetric. Now employ the repre-
sentation (7.33) in (7.34) to obtain the condition

exp(: hr :)N = N exp(: h :) (36.7.35)

or
exp(: hr :) = N exp(: h :)N−1 (36.7.36)

from which it follows that
hr = Nh. (36.7.37)

Here we have used (8.2.27) and the fact that N is reversal symmetric as is evident from
(6.14) and (6.15).

To explore the implications of (7.37) it is convenient to expand h in a static resonance
basis. Introduce polynomials Rabcde(z) and Iabcde(z) defined by the relations

Rabcde(z) = Re [(x+ ipx)
a(x− ipx)b(y + ipy)

c(y − ipy)dpeτ ], (36.7.38)

Iabcde(z) = Im [(x+ ipx)
a(x− ipx)b(y + ipy)

c(y − ipy)dpeτ ], (36.7.39)

Here the quantities (exponents) a through e are integers. The first few such polynomials of
interest are given by the relations

R11001 = (x2 + p2
x)pτ , (36.7.40)

R00111 = (y2 + p2
y)pτ , (36.7.41)

I11001 = I00111 = 0, (36.7.42)

R30000 = x3 − 3xp2
x, (36.7.43)

I30000 = 3x2px − p3
x, (36.7.44)

R20100 = x2y − p2
xy − 2xpxpy, (36.7.45)

I20100 = x2py − p2
xpy + 2xpyy. (36.7.46)

It is evident from (7.38) and (7.39) that the Rabcde and Iabcde form a basis for all static
polynomials; and it is also evident that they have the simple reversal properties

Rr
abcde = Rabcde, (36.7.47)

Irabcde = −Iabcde. (36.7.48)
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They also have simple properties under the action of N , which will allow us to exploit
(7.37). From (6.15) we have the results

N (x± ipx) = [exp(±iφ1)](x± ipx), (36.7.49)

N (y ± ipy) = [exp(±iφ2)](y ± ipy), (36.7.50)

Npτ = pτ . (36.7.51)

Introduce the resonance phase advances ψabcd defined by the rules

ψabcd = (a− b)φ1 + (c− d)φ2. (36.7.52)

It follows from (8.3.52) and (7.49) through (7.52) that there are the relations

NRabcde = (cosψabcd)Rabcde − (sinψabcd)Iabcde, (36.7.53)

N Iabcde = (sinψabcd)Rabcde + (cosψabcd)Iabcde. (36.7.54)

We are now ready to work out the implications of (7.37). Expand h in terms of the static
resonance basis by writing

h =
∑
abcde

AabcdeRabcde +BabcdeIabcde. (36.7.55)

Then, by (7.47) and (7.48), we have the relation

hr =
∑
abcde

AabcdeRabcde −BabcdeIabcde; (36.7.56)

and by (7.53) and (7.54) we have the relation

Nh =
∑
abcde

[Aabcde cosψabcd +Babcde sinψabcd]Rabcde

+ [−Aabcde sinψabcd +Babcde cosψabcd]Iabcde. (36.7.57)

Upon comparing (7.56) and (7.57) we see that (7.37) implies the restrictions

Aabcde(−1 + cosψabcd) +Babcde sinψabcd = 0, (36.7.58)

− Aabcde sinψabcd +Babcde(1 + cosψabcd) = 0. (36.7.59)

These restrictions are equivalent, and yield the final result

Babcde = [tan(ψabcd/2)]Aabcde. (36.7.60)

What we have learned is that if M is reversal symmetric, then the net Lie generator of its
nonlinear part has only about half the number of linearly independent nonlinear basis gen-
erators that it otherwise might have. For example, suppose we were to employ, in a reversal
symmetric system, various nonlinear correctors (sextupoles, octupoles, etc.) to drive vari-
ous Aabcde to zero in the representation (7.55). Then, according to (7.60), the corresponding
Babcde would also automatically be driven to zero. Applications of this principal include the
construction of high-order achromats.
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Chapter 38

Analyticity and Convergence

We have learned from Poincaré’s Theorem 1.3.3 that trajectories will be analytic functions
of the initial conditions in some domain if the right sides of the equations of motion (1.3.4)
are analytic. Appendix F shows that for particle motion in electric and magnetic fields this
desired analyticity is realized under very general circumstances. Correspondingly, the Taylor
map (7.5.5) will converge in some domain about the origin.

The purpose of this chapter is to describe in some detail what is meant by analyticity and
to apply the results of Analytic Function Theory to various problems of interest. Section
38.1 reviews briefly what is needed for the case of one complex variable, and much of its
material should already be familiar to the reader. Sections 38.2 and 38.3 treat the case of
several complex variables, and may be less familiar. The remaining sections discuss various
applications.

38.1 Analyticity in One Complex Variable

In the theory of analytic functions of one complex variable, there are two common ways
to define analyticity due to Riemann and Weierstrass, respectively. Riemann’s approach
assumes that the function in question, call it f(z), is defined in some domain (open set) D
of the complex z plane. It then says that f is analytic at the point z if it is complex (or
totally) differentiable there. Complex or totally differentiable means that the limit

f ′(z) = lim
ζ→0

[f(z + ζ)− f(z)]/ζ (38.1.1)

exists and is the same for all possible ways (e.g. directions) in which the complex variable ζ
can approach zero. This definition leads directly to the Cauchy-Riemann equations. Further,
f is said to be analytic in D if f is analytic at each point in D.

In comparison to Weierstrass’ definition of analyticity, which will be presented shortly,
Riemann’s definition is remarkably succinct. It also has some other advantages. For example,
it immediately follows from the chain rule for differentiation that the composition of two
analytic functions produces a function that is again analytic. That is, if f and g are analytic
functions, then h(z) defined by the rule

h(z) = g(f(z)) (38.1.2)
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is also an analytic function. (Of course, for z values of interest, the range of f must also be
in the domain of g.) We have the mantra “an analytic function of an analytic function is
analytic”.

By contrast, Weierstrass defines analyticity in terms of representations by convergent
Taylor series. His definition is more involved and, in order to discuss Taylor series, we first
must remind ourselves of some properties of infinite sequences and infinite series. We will do
this by recalling definitions and stating theorems without proof. Further information may
be found in the references listed at the end of this chapter.

Definition 1.1: Consider an infinite sequence cm of real or complex numbers. We say
that this sequence converges to a number c,

lim
m→∞

cm = c,

if, given any ε > 0, there exists a positive integer N such that

|cm − c| < ε if m > N.

Definition 1.2: Suppose the sequence cm has the property that, given any ε > 0, there
exists an N such that

|c` − cm| < ε if `,m > N.

Such a sequence is called Cauchy or fundamental.
Theorem 1.1: A sequence is convergent if and only if it is Cauchy.

Definition 1.3: Consider an infinite series
∞∑
n=0

bn. We say that this series converges to

the (finite) value s if the sequence of partial sums sm, with

sm =
m∑
n=0

bn, (38.1.3)

converges to the value s.
Definition 1.4: If an infinite series does not converge, we say that it is divergent. By this
definition, divergence includes the possibility that the sequence of partial sums increases (in
absolute value) without bound, or has more than one limit point. For example, the sequence
of partial sums for the series 1, 1/2, 1/3, 1/4 · · · grows without bound, and the sequence of
partial sums for the series 1, -1, 1, -1, · · · has the limit points 1 and 0.
Theorem 1.2: If the infinite series

∑
bn converges, then its terms bn must tend to zero,

lim
n→∞

bn = 0.

Theorem 1.3: Suppose the terms bn are all real and alternate in sign. Suppose also that

lim
n→∞

bn = 0.

Then the series
∑
bn converges.



38.1. ANALYTICITY IN ONE COMPLEX VARIABLE 2271

Definition 1.5: We say that the infinite series
∑
bn converges absolutely if the series∑

|bn| converges.

Theorem 1.4: If the infinite series
∑
bn converges absolutely, then it also converges in the

sense of Definition 1.3.

Definition 1.6: Suppose g(m) is a function that provides an invertible mapping of the
(non-negative) integers onto themselves (a bijection). Then we say that the series

∞∑
m=0

bg(m) (38.1.4)

is a rearrangement of the series
∑
bn.

Theorem 1.5: If the infinite series
∑
bn converges absolutely, then all rearrangements of

the series
∑
bn converge (in the sense of Definition 1.3 and also absolutely), and they all

converge to the same value s.

Definition 1.7: Supposes that the infinite series
∑
bn converges, but not absolutely. That

is, the series
∑
|bn| diverges. Then we say that the series

∑
bn converges conditionally.

Theorem 1.6 (Riemann): Suppose that the bn are all real and the series
∑
bn converges

conditionally. Then, there are rearrangments of the series that diverge. Moreover, given any
(real) number s′, there are rearrangements of the series that converge to s′.

Theorem 1.7 (Levy): Suppose the (possibly complex) series
∑
bn is conditionally conver-

gent. Then there is at least one line in the complex plane such that, upon selecting any
point w′ on that line, there is a rearrangement of the series

∑
bn that converges to w′.

Theorem 1.8 (Steinitz): All the possible sums of a conditionally convergent complex series
obtained by rearrangement lie on a straight line or else cover the whole complex plane.

Definitions 1.5 through 1.7 and Theorems 1.4 through 1.8 illustrate the importance of
absolute convergence and the need to handle conditionally convergent series with care.

We are now prepared to discuss Taylor series. Without loss of generality, we will for the
most part restrict our attention to Taylor series about the origin. Suppose the terms bn in
an infinite series are of the form anz

n where z is a complex variable and (an) is a sequence
of complex numbers. In this case we have the result

Theorem 1.9 (Abel): Suppose that for some (possibly complex) nonzero value z = z′ the
series

∑
anz

n converges. Then the series converges absolutely for |z| < |z′|.
Moreover, suppose a radius of convergence R is defined in terms of the coefficients an by the
rule

1/R = lim sup
n→∞

|an|1/n. (38.1.5)

Then we have the more specific result

Theorem 1.10 (Cauchy-Hadamard): The series
∑
anz

n converges absolutely for every z
with |z| < R, and the convergence is uniform in every closed disk |z| ≤ ρ < R. (Uniform
means that given any closed disk and any ε as in Definition 1.1, there is an associated N that
suffices for all points z in the disk.) If |z| > R, the terms in the series are unbounded, and
(by Theorem 1.2) the series is divergent. Suppose the series is differentiated term by term
any number of times. Then the resulting series is also absolutely convergent for |z| < R,
and uniformly convergent in every closed disk |z| ≤ ρ < R.
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At this point we observe that if the radius of convergence R of a Taylor series is nonzero,
then (by Theorem 1.10) we obtain an infinitely differentiable function f in some neighbor-
hood of the origin by writing

f(z) =
∞∑
n=0

anz
n. (38.1.6)

Moreover, we have the relations

an = (1/n!)f (n)(0). (38.1.7)

We are ready for Weierstrass’ definition of analyticity. According to his definition, a
function f is analytic in the domain D if, for any point z0 ∈ D, the function f(z) has a
convergent Taylor expansion about z0,

f(z) =
∞∑
n=0

an(z0)(z − z0)n. (38.1.8)

[Here we have used the notation an(z0) to indicate that the expansion coefficients in general
depend on the expansion point z0.] The definition of Weierstrass has the advantage that
initially f need not be defined for complex values of z. For example, when working around
the origin, we may at first require only that f have an expansion of the form (1.6) with
z real and near zero. Then the series (1.6) automatically extends the definition of f to
complex values of z. Moreover, it can be verified that the expansion point z0, which was
initially the origin in (1.6), can subsequently be moved to any point in the open disk |z| < R
and (26.1.8) will hold. Thus, with Weierstrass’ definition, a function that is represented
by a Taylor series about the origin is automatically analytic within its disk of convergence.
Conversely, if a function is analytic in the disc |z| < R, then it will have a Taylor expansion
about the origin that converges within that disc.

Contour integration is a fundamental tool in the Theory of Functions of a Single Complex
Variable. Applications include the integral formula specified by
Theorem 1.11 (Cauchy): An analytic function f has the representation

f(z) = (1/2πi)

∮
dz′f(z′)/(z′ − z). (38.1.9)

Also, its Taylor coefficients can be found by contour integration. Suppose f is analytic about
the origin in a disc of radius R. Let R′ = R− ε where ε is any small positive number. Then
the Taylor coefficients of f about the origin are given by the integrals

an = (1/2πi)

∮
|z|=R′

dzf(z)/zn+1. (38.1.10)

Use of this representation provides the bound

|an| ≤ K(R′)−n (38.1.11)
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where the constant K is given by the relation

K = max |f(z)| over the points |z| = R′. (38.1.12)

Suppose f is some given analytic function, and we wish to find the radius of convergence
for its Taylor expansion about some point, say the origin. One procedure would be to
find its Taylor coefficients and then form the limit (1.5). However, there is an easier way.
Simply find the location of the singularity of f that is closest to the origin. Consistent with
Theorems 1.10 and 1.11, its distance from the origin will be R.

Finally, we remark that Cauchy’s integral formula can be obtained from Riemann’s
definition of analyticity; and this formula, in turn, can be used to prove the existence of
convergent Taylor expansions. Thus we have the key result that Riemann’s and Weierstrass’
definitions of analyticity are mathematically equivalent.

Historically, the adjective holomorphic was used to describe the case where a function
was analytic as defined by Riemann, and the adjective analytic was used for analyticity as
defined by Weierstrass. Now, because these two definitions are mathematically equivalent,
these two adjective are commonly used interchangeably.

38.2 Analyticity in Several Complex Variables

The Theory of Functions of Several Complex Variables proceeds in a way that is somewhat
analogous to the case of one complex variable, but it is much richer and much less explored.
Again there are two ways to define analyticity. According to Riemann, a function f(z) =
f(z1, z2, · · · zm) of m complex variables is analytic if it is analytic (complex differentiable) in
each variable separately.

As before, Riemann’s definition immediately shows that the composition of two analytic
functions produces an analytic function. For example, let f(z1, z2, · · · zm) be an analytic
function of m complex variables, and let g(w) be an analytic function of the single complex
variable w. Then, by the chain rule, h(z1, z2, · · · zm) defined by

h(z1, z2, · · · zm) = g(f(z1, z2, · · · zm)) (38.2.1)

is also an analytic function of the m complex variables z1, z2, · · · zm providing the range of
f is in the domain of g for the z values of interest.

According to Weierstrass, a function of m complex variables is analytic in the neighbor-
hood of a point z0 = (z0

1 , z
0
2 , · · · z0

m) if it has a convergent multiple Taylor expansion of the
form

f(z) = f(z1, z2, · · · zm) =
∑

[an1,n2,···nm(z0)][(z1−z0
1)n1(z2−z0

2)n2 · · · (zm−z0
m)nm ]. (38.2.2)

The definition of Weierstrass again has the advantage that initially f need not be defined
for complex values of the z`. For example, when working around the origin, we may at first
require only that f have an expansion of the form (2.2) with z0 = 0 and the z` real and
near zero. Then, as will become evident in our subsequent discussion, the series expansion
automatically extends the definition of f to complex values of the z`. Moreover, we also get
analyticity in an open set.
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The handling of multiple Taylor series requires some care. For notational simplicity, we
mostly limit our discussion to the case of two complex variables and to expansions about
the origin. The extension to more variables and general expansion points will generally be
obvious.

In the case of double Taylor series about the origin, we have expressions of the form

f(z) = f(z1, z2) =
∑
jk

ajkz
j
1z
k
2 . (38.2.3)

Since this is a double Taylor series, there are many ways of listing its terms sequentially,
and the meaning of the infinite sum of these terms is not well defined as it stands. By an
ordering or arrangement of these terms, we mean some procedure for putting the pairs of
integers j, k into one-to-one correspondence (a bijection) with the integers n = 0, 1, 2, · · · .
Since the set of pairs of integers and the set of integers both have the same cardinality, such
a correspondence is always possible. We will denote this correspondence by writing

j = j(n), (38.2.4)

k = k(n).

In particular, for any correspondence and given any pair j′, k′, there is always a unique finite
number m such that

j′ = j(m),

k′ = k(m). (38.2.5)

With these ideas in mind we see that, to be precise and without serious loss of generality,
we may consider in place of the double series (2.3) a simple series of the form

f(z) = f(z1, z2) =
∞∑
n=0

aj(n),k(n)z
j(n)
1 z

k(n)
2 =

∞∑
n=0

bn(z) (38.2.6)

with
bn(z) = aj(n),k(n)z

j(n)
1 z

k(n)
2 . (38.2.7)

The treatment of such series is amenable to the methods of Definition 1.3. Figure 2.1
illustrates two of many possible orderings for the case of a double series. In ordering a,
successive terms are taken sequentially from the two sides of ever larger squares. In ordering
b, successive terms are taken sequentially from the long sides of ever larger triangles.

We can now discuss the convergence properties of multiple Taylor series. First, we define
the convergence set T of a Taylor series to be the set of all points for which the series (2.6)
converges for some ordering. We have already seen that, according to Theorem 1.10, the
convergence set for a Taylor series in one complex variable is a disc. What can be said about
the “shape” of the convergence set T for a Taylor series in several complex variables? We
begin with a several complex variable analog of Theorem 1.9.
Theorem 2.1: Suppose that for some pair of (possibly complex) nonzero values z′1, z′2 and
some ordering the series (2.6) converges. Define real positive numbers R′1, R′2 by the relations

R′1 = |z′1|, R′2 = |z′2|. (38.2.8)
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Figure 38.2.1: Two of many possible orderings for the terms in a double series.

Let P denote the domain (called a polydisc or polycylinder or polycircle about the origin
with radii R′`)

|z1| < R′1, |z2| < R′2. (38.2.9)

Then, the series (2.6) converges absolutely for all z1, z2 ∈ P , and (by Theorem 1.5) for any
ordering. Moreover, by a result of Fubini, the iterated series

f(z) = f(z1, z2) =
∞∑
j=0

zj1

∞∑
k=0

ajkz
k
2 =

∞∑
k=0

zk2

∞∑
j=0

ajkz
j
1 (38.2.10)

also converge (including absolutely) for z1, z2 ∈ P . Finally, all the various series and order-
ings converge to the same value.

The theorem just quoted, like Theorem 1.9, can be extended. To do so requires the
introduction of some notation and further definitions. With regard to notation, let τ =
(τ1, τ2 · · · τm) be a collection of m complex numbers. Then by the symbol τz we mean the
collection of variables (τ1z1, τ2z2, · · · τmzm). We are ready to give
Definition 2.1: Suppose R is a set having the property that if z is in R, then so is τz
providing the τ` satisfy |τ`| ≤ 1. Such a set is called a complete Reinhardt set with center
at the origin.

A complete Reinhardt set can be descripted pictorially by a Reinhardt diagram. Figure
2.2 shows a Reinhardt diagram for the case of two complex variables. Note that the diagram
displays the real numbers |z1| and |z2|. The complete Reinhardt set corresponds to the
shaded area. It may also include portions of the axes, called thorns, that correspond to the
dark lines that extend from the shaded area. A thorn is a polydisc all of whose radii are
zero save one.

We next need to define a logarithmically convex complete Reinhardt set. Suppose we
replot Figure 2.2 in terms of the variables w` = log |z`|. Figure 2.3 shows the resulting
logarithmic image of the shaded area in Figure 2.2. This image is convex if any two points
in it can be joined by a straight line that is also in the image. With these concepts in mind
we may state
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���

���

representation of

possible thorns

R1

|z2|

|z1|R2

Figure 38.2.2: Possible Reinhardt diagram for the case of two complex variables. The
complete Reinhardt set consists of those points z = (z1, z2) for which the pairs |z1|, |z2| lie
in the shaded area, or the darkened portions of the axes representing possible thorns. The
quantities R1, R2 on the boundary of the shaded area are conjugate radii.

Definition 2.2: A complete Reinhardt set is logarithmically convex if the logarithmic image
of the “shaded” portion of its corresponding Reinhardt diagram (ignoring possible thorns)
is convex.

We are now prepared to describe the characteristic features of the convergence set T of a
Taylor series in several complex variables. The result will be given for a Taylor series about
the origin,

f(z) = f(z1, z2, · · · zm) =
∑

an1,n2,···nmz
n1
1 zn2

2 · · · znmm , (38.2.11)

but can be easily extended to any expansion point z0 by simple translation.
Theorem 2.2: The (absolute) convergence set of a multiple Taylor series of the form (2.11)
is the interior of some logarithmically convex complete Reinhardt set about the origin.
(This interior is called a logarithmically convex complete Reinhardt domain.) The series
also converges absolutely in possible thorns of the set save perhaps at their “tips”. Suppose
the series is differentiated term by term any number of times with respect to any number
of its variables. Then the resulting series is also absolutely convergent. Moreover, let R`

be the value of |z`| at a point on the boundary of the set excluding points for which some
|z`| = 0. (Note that this requirement excludes thorns.) See Figure 2.2. Then the R`, called
conjugate radii, satisfy the condition [a generalization of (1.5)]

lim sup
|n|→∞

[|an1,n2,···nm|Rn1
1 R

n2
2 · · ·Rnm

m ]1/|n| = 1. (38.2.12)

Here we have introduced the notation

|n| = n1 + n2 + · · ·+ nm. (38.2.13)

For points on the boundary of the logarithmically convex complete Reinhardt set the series
may or may not converge, either absolutely or conditionally. Finally, for any point z outside
the set, the terms in the series are unbounded, and hence the series is divergent for any
ordering.
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log |z1|

log |z2|

Q

P

Figure 38.2.3: The logarithmic image of the shaded area in Figure 2.2. This image is convex
if any two points P,Q in the image can be joined by a straight line that is also in the image.

According to this theorem, a convergent multiple Taylor series about the origin defines
an infinitely differentiable function (with respect to all variables) in a logarthmically convex
complete Reinhardt domain about the origin. Moreover, we have the relations

an1,n2,···nm = (1/n1!)(1/n2!) · · · (1/nm!)∂n1
1 ∂n2

2 · · · ∂nmm f(z)|z=0 . (38.2.14)

Finally, it can be shown that the expansion point z0, which was initially the origin in (2.11),
can subsequently be moved to any interior point in the logarithmically convex complete
Reinhardt domain and (2.2) will hold for z sufficiently near z0. Thus, a function of several
complex variables that is represented by a multiple Taylor series about the origin is automat-
ically analytic within its logarithmically convex complete Reinhardt domain of convergence.
Conversely, if a function is analytic in a logarithmically convex complete Reinhardt domain
about the origin, then it will have a Taylor expansion about the origin that converges within
this logarithmically convex complete Reinhardt domain.

Contour integration also plays an important role in the Theory of Several Complex
Variables. For example, there is a generalized Cauchy’s Theorem which shows that functions
of several complex variables have integral representations of the form

f(z) = f(z1, z2, · · · zm) =

(1/2πi)m
∮ ∮

· · ·
∮
dz′1dz

′
2 · · · dz′m ×

f(z′)/(z′1 − z1)(z′2 − z2) · · · (z′m − zm). (38.2.15)

Also, the Taylor coefficients (2.14) can be found by contour integration. Let ε be any small
positive number. Define quantities R′` by the relation

R′` = R` − ε (38.2.16)



2278 38. ANALYTICITY AND CONVERGENCE

where the R` are some set of conjugate radii. Then the Taylor coefficients of f about the
origin are given by the integrals

an1,n2,···nm = (1/2πi)m
∮

|z1|=R′1

∮
|z2|=R′2

· · ·
∮

|zm|=R′m

dz1dz2 · · · dzmf(z)/(zn1+1
1 zn1+1

2 · · · znm+1
m ).

(38.2.17)
From this representation we deduce the Cauchy bound

|an1,n2,···nm| ≤ K(R′1)−n1(R′2)−n2 · · · (R′m)−nm (38.2.18)

where the constant K is given by the relation

K = max |f(z)| over the points |z1| = R′1, |z2| = R′2, · · · |zm| = R′m. (38.2.19)

Finally, starting from Riemann’s definition of analyticity, Hartogs showed that analyticity
in each variable separately implies continuity as well with respect to the set of all variables.
The generalized Cauchy’s Theorem (2.15) then follows; and from it follows the existence of
convergent multiple Taylor expansions. Thus, Hartogs obtained the celebrated result that
Riemann’s and Weierstrass’ definitions of analyticity are also equivalent in the much more
difficult case of several complex variables.

We have seen at the end of Section 31.1 that, in the case of a function of one complex
variable, it is possible to determine the radius of convergence of its Taylor series simply
from a knowledge of the locations of the singularities of the function. The same is true
for a function of several complex variables: the logarithmically convex complete Reinhardt
domain of convergence of its multiple Taylor series expansion can be found from a knowledge
of the locations of its singularities. However, the calculation is considerably more involved.

Consider, for simplicity, the case of a function f(z1, z2) of two complex variables and its
Taylor expansion about the origin. First we examine the two functions f1(z1) = f(z1, 0) and
f2(z2) = f(0, z2). They are analytic functions of a single complex variable, and the radii of
convergence of their Taylor expansions can be found using the method described at the end
of Section 31.1. These two radii determine the tips of the two possible thorns represented
in Figure 2.2.

Next we determine the conjugate radii R1 and R2. To do so we carry out the following
steps:

1. Write z1 in the form
z1 = ẑ1(φ1) = R1 exp(iφ1). (38.2.20)

2. Hold R1 fixed and positive, and initially small.

3. Examine the function
g2(z2, φ1) = f(ẑ1, z2). (38.2.21)

4. Find the locations of the singularities of g2 (viewed as a function of z2) in the complex
z2 plane for each value of φ1 ∈ [0, 2π).

5. Follow these singularities as φ1 varies from 0 to 2π.
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6. Define R2 by the relation

R2 = min
φ1

|zc2(φ1)| (38.2.22)

where |zc2(φ1)| is the distance from the origin of the singularity of g2 that is closest to
the origin for each value of φ1.

7. Repeat steps 1 through 6 above, while slowly increasing the value of R1, until R2

becomes zero.

The result of this process is the set of R1, R2 values that describe the boundary of the
logarithmically convex complete Reinhardt domain. See Figure 2.4. Alternatively, we may
carry out a similar process, but interchange the roles of z1 and z2. See Figure 2.5. It can be
shown that both processes yield identical sets of R1, R2 values.

|z2|

|z1|

Figure 38.2.4: Determining the conjugate radii by fixing R1 and searching for the closest
singularity in z2 as φ1 varies to yield R2.

|z2|

|z1|

Figure 38.2.5: Determining the conjugate radii by fixing R2 and searching for the closest
singularity in z1 as φ2 varies to yield R1.

Example 2.1: Consider the function of three variables defined by the equation

ψ(r) = [x2
1 + (x2 − 1)2 + x2

3]−1/2. (38.2.23)

Up to a normalization, ψ is the electrostatic potential due to a point charge located at unit
distance from the origin along the x2 axis. See Figure 2.6.
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Figure 38.2.6: A point charge located at unit distance from the origin along the x2 axis.

Suppose we expand ψ(r) in a triple Taylor series about the origin,

ψ(r) =
∑
jk`

ajk`x
j
1x

k
2x

`
3. (38.2.24)

To examine the convergence of this series, we consider the function

f(z) = [z2
1 + (z2 − 1)2 + z2

3 ]−1/2. (38.2.25)

It is singular when the argument of the square root vanishes,

z2
1 + (z2 − 1)2 + z2

3 = 0. (38.2.26)

The Reinhardt diagram in this case is 3-dimensional. An extension of the method just
described shows that its boundary is given by the relation

R1 = min
φ2,φ3

|{−[R2 exp(iφ2)− 1]2 − [R3 exp(iφ3)]2}1/2| with R2, R3 ∈ [0, 1], (38.2.27)

or equivalently,

R2
1 = min

φ2,φ3

|[R2 exp(iφ2)− 1]2 + [R3 exp(iφ3)]2| with R2, R3 ∈ [0, 1]. (38.2.28)

This result follows, esssentially, from solving (2.26) for z1. Now it is easily verified from
geometric considerations in the complex plane that the minimum sought in (2.28) occurs
when φ2 = 0 and φ3 = π/2. See Exercise 2.4. Consequently, we have the result

R2
1 = (R2 − 1)2 −R2

3 or R2
1 +R2

3 = (R2 − 1)2. (38.2.29)

This is just the equation for a cone. See Figure 2.7.
Example 2.2: Suppose instead we hold x3 fixed (and real) and simply expand ψ(r) in a
double Taylor series in x1 and x2 about the origin,

ψ(x1, x2;x3) =
∑
jk

ajk(x3)xj1x
k
2. (38.2.30)
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Figure 38.2.7: The Reinhardt diagram for the series (2.24), which represents the function
f(z) given by (2.25), is a cone.

To study the convergence of this series we must consider the function

f(z;x3) = [z2
1 + (z2 − 1)2 + x2

3]−1/2, (38.2.31)

which is singular when
z2

1 + (z2 − 1)2 + x2
3 = 0. (38.2.32)

For this simpler 2-dimensional example direct application of (2.20) through (2.22) gives the
result

R2 = min
φ1

|1± [−R2
1 exp(2iφ1)− x2

3]1/2|. (38.2.33)

In general the evaluation of (2.33) requires numerical computation. However for the special
case x3 = 0, there is the simple result

R1 +R2 = 1 when x3 = 0. (38.2.34)

Figure 2.8 shows, for three values of x3, the Reinhardt diagrams in the |z1|, |z2| plane of
the series (2.30) that represents f(z;x3). It is easily verified that the boundaries of these
diagrams in the |z1| = 0 and |z2| = 0 planes are hyperbolas,

R2
2 = 1 + x2

3 when |z1| = 0, (38.2.35)

R2
1 = 1 + x2

3 when |z2| = 0. (38.2.36)

Some observations are in order. Note that the double series (2.30) is an iterated version
of the triple series (2.24),

ψ =
∑
jk`

ajk`x
j
1x

k
2x

`
3 =

∑
jk

xj1x
k
2

∑
`

ajk`x
`
3 =

∑
jk

ajk(x3)xj1x
k
2, (38.2.37)



2282 38. ANALYTICITY AND CONVERGENCE

0

1

2

1

1

|z |1

|z |2

x 3

Figure 38.2.8: Reinhardt diagrams, for three values of x3, of the series (2.30) that represents
f(z;x3). Diagrams for negative values of x3 are not shown since the diagrams for ±x3 are
identical.

with
ajk(x3) =

∑
`

ajk`x
`
3. (38.2.38)

Next we observe from Figure 2.8 that, unlike the previous example of Figure 2.7, the size of
the convergence set increases with increasing |x3|. We see that summation over some of the
variables in a multiple series can yield a series with an extended convergence domain.

We close this section by describing briefly a remarkable feature of analytic functions of one
complex variable, and a further remarkable feature of functions of many complex variables
that distinguishes them from functions of a single complex variable. These features have to
do with analytic continuation.

We begin with functions of a single complex variable, which we call w. Suppose g(w)
is such a function that is defined and analytic in some arbitrarily shaped simply-connected
domain D. Then we may attempt to extend g beyond D by analytic continuation. In its
simplest description, analytic continuation consists of two steps:

1. Choose some path that leads out of D.

2. Make successive related Taylor expansions of g in overlapping discs along the path.
In this process, the Taylor coefficients for the expansion in an adjacent subsequent
disc are found from those for the previous disc by multiply differentiating the Taylor
expansion for the previous disc and evaluating the result at the new expansion point.
That is, two successive Taylor series must give identical values for g in the region where
their expansion discs overlap.

See Figure 2.9. However, this process may fail. (The convergence radii of successive Taylor
expansions may shrink to zero.) It can be shown that there are functions that are anaytic
in D, but cannot be extended in an analytic way beyond the boundary of D. Such functions
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are said to have a natural boundary, which, in this case, is the boundary of D. [Basically, a
function (of a single complex variable) with a natural boundary has a dense set of singulari-
ties on the boundary that prevent its analytic extension beyond the boundary.] Thus, given
any arbitrarily shaped boundary in the complex plane, it is possible to find a function that
has this boundary as a natural boundary.

A function that is specified and analytic on a small domain is called a germ. What we
have learned is the remarkable fact that a germ specifies the full function. If a function
of a single variable is defined and analytic is some domain ever so small (it could even be
a small line segment), then the function is uniquely extendable over the whole domain to
which it can be continued until it is defined everywhere (perhaps in a multiple sheeted way)
or a natural boundary is encountered. Moreover, any boundary in the complex plane is a
potential natural boundary for some analytic function.

The case of analytic functions of many complex variables is very different. Again, one
can begin with a function defined in a small domain, a germ, and then attempt to extend
the domain by analytic continuation. But, remarkably, now there are restrictions to what
could possibly be natural boundaries.

Specifically, suppose again that D is some arbitrary domain, but now in Cm, the space
of m complex variables. Suppose also that f(z1, z2, · · · zm) is some function that is analytic
in D, and we seek to analytically continue f beyond D. (To carry out analytic continuation
in Cm, one may use overlapping polydiscs.) What can be said about this challenge?

Consider, for example, a function f(z1, z2) of two complex variables that is analytic
within the complete Reinhardt domain whose Reinhardt diagram is displayed in Figure 2.10.
Figure 2.11, which shows the logarithmic image of Figure 2.10, illustrates that this domain
is not logarithmically convex. However, it becomes logarithmically convex if the region
corrresponding to the area below the dashed curved line segment (which is the inverse image
of the dashed straight line segment in Figure 2.11) is added to the region corresponding to
the shaded area. Indeed, this is the minimum territory that must be added to make the full
domain logarithmically convex. A domain augmented in this way is called the logarithmically
convex hull of the original domain.

It can be shown that any function f(z1, z2) that is analytic in the complete Reinhardt
domain described by the Reinhardt diagram of Figure 2.10 must have an analytic continua-
tion into the minimal logarithmically convex extension obtained by adding to the Reinhardt
diagram the area below the dashed curved line. Of course, there may be some functions
that can be analytically continued even further. However, there will be other functions that
cannot.

Suppose a domain has the property that there exists a function that is analytic in the
domain, but this function cannot be analytically continued beyond the domain. Such a
domain is called a domain of holomorphy. The determination of domains of holomorphy
is a major topic in the Theory of Analytic Functions of Several Complex Variables. An
important result, for our purposes, is that any logarithmically convex complete Reinhardt
domain is a domain of holomorphy.

Often one begins with some particular domain, and would like to know the smallest
domain of holomorphy that contains this domain. Such a domain is said to be an envelope of
holomorphy for the original domain. This question is important, because any function that is
analytic in the original domain must automatically be analytic in its envelope of holomorphy.
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w


D

Figure 38.2.9: Analytic continuation along a path out of a domain D in the complex w plane
by making successive related Taylor expansions in overlapping disks along the path.

Roughly speaking, for functions of many complex variables, the known existence of some
analyticity often implies the existence of more analyticity.

We conclude that the complete Reinhardt domain described by the Reinhardt diagram of
Figure 2.10 is not a domain of holomorphy. By contrast, the minimal logarithmically convex
extension of this domain, which is a logarithmically convex complete Reinhardt domain, is a
domain of holomorphy. Moreover, it is the envelope of holomorphy for the original domain.

���

���

�

|z1|

|z2|

Figure 38.2.10: Reinhardt diagram for a complete Reinhardt domain that is not logarith-
mically convex. The dashed curved line segment is the inverse image of the dashed straight
line segment in Figure 2.11. The domain becomes logarithmically convex if the region corre-
sponding to the area below the dashed line is annexed to that corresponding to the shaded
area.
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Figure 38.2.11: The logarithmic image of the shaded region of Figure 2.10. Augmenting the
image by adding the area below the dashed straight line segment makes the image convex.

Exercises

38.2.1. Consider the function

f(z) = 1/[1− (z1 + z2)]. (38.2.39)

Expand f in a double Taylor series about the origin, and determine the convergence set of
this series. Verify that the set is logarithmically convex.

38.2.2. Repeat Exercise 2.1 above for the function

f(z) = 1/(1− z1z2). (38.2.40)

38.2.3. Repeat Exercise 2.1 above for the function

f(z) = 1/[1− (z1 + z2 + z1z2)]. (38.2.41)

38.2.4. Find the φ2, φ3 values that minimize (2.28) by drawing suitable pictures (in the
complex plane) of the sets

[R2 exp(iφ2)− 1]2, (38.2.42)

[R3 exp(iφ3)]2, (38.2.43)

[R2 exp(iφ2)− 1]2 + [R3 exp(iφ3)]2. (38.2.44)

Verify (2.29).

38.2.5. Verify (2.33) through (2.36). Write a computer program to evaluate R2 as given by
(2.33).

38.2.6. Find the first few coefficients ajk(x3) as given by (2.30) and (2.38). Replace x3 by
the complex variable z3, and determine the domain of analyticity for the ajk(z3).
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38.2.7. Consider the map, described by (1.4.21) and (1.4.22), that arises from the monomial
Hamiltonian (1.4.20). Suppose this map is expanded in a double Taylor series about the
origin. Determine the convergence set for this series, and verify that it is logarithmically
convex. Discuss the analytic properties of the Hénon map given by (1.2.23).

38.2.8. Exercise about real environment.

38.3 Convergence of Homogeneous Polynomial Series

We have seen in Section 31.2 that, to work with multiple Taylor series in a precise way, it is
necessary to order their terms. In this section we will explore the effect of ordering and then
grouping various terms together during the process of summation. In particular, we will
study the effect of grouping terms of like degree together to form homogeneous polynomials,
and then summing the resulting series of homogeneous polynomials. For us such series are
of particular interest because, as we have seen in earlier chapters, they arise naturally in the
Lie algebraic treatment of maps.

As an illustration of the concept of grouping terms, consider the simple series (2.6). Let
n0, n1, n2, n3 · · · be a set of increasing integers with n0 = 0. Suppose we write the series
(2.6) in the form

f(z) =
∞∑
n=0

bn(z) =

n1−1∑
n=0

bn(z) +

n2−1∑
n=n1

bn(z) +

n3−1∑
n=n2

bn(z) + · · · =
∞∑
`=0

n`+1−1∑
n=n`

bn(z) =
∞∑
`=0

c`(z)

with

c`(z) =

n`+1−1∑
n=n`

bn(z). (38.3.1)

We have carried out group sums of the kind (bn` + bn`+1 + bn`+2 + · · ·+ bn`+1−1) to produce
the quantities c`, and then formed an infinite sum over the c`.

What can be said about the convergence of the sum
∑
c`? According to Definition 1.3,

to answer this question we must examine the sequence of partial sums. However inspection
reveals that, by construction, the sequence of partial sums of

∑
c` is a subsequence of

the sequence of partial sums of
∑
bn. Now we know that every subsequence of a convergent

sequence is also convergent; indeed, it must converge to the same limit that the full sequence
converges to. Moreover, a subsequence may be convergent even if the full sequence is not.
We conclude that the grouping of terms can never spoil the convergence of a series, and it
may even help in the sense that it may yield a finite result for what would otherwise have
been a divergent series. In the case that it helps, and in the context of multiple Taylor series,
we would like to show that the result obtained by arranging and grouping is equivalent to
that obtained by analytic continuation out of the original domain of convergence of the
series.

Let us apply grouping to the ordering of Figure 2.1b. Suppose the successive groups
consist of the terms corresponding to the long sides of the successive triangles. Evidently,
the terms corresponding to the long side of any given triangle all have degree (j + k), and
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their sum is a homogeneous polynomial of degree (j + k). Thus, with this ordering and
grouping, the sum (2.6) can be rewritten in the form

f(z) =
∞∑
n=0

aj(n),k(n)z
j(n)
1 z

k(n)
2 =

∞∑
`=0

P`(z) (38.3.2)

where P`(z) is the homogeneous polynomial of total degree `

P`(z) =
∑
j+k=`

aj,kz
j
1z
k
2 . (38.3.3)

We have ordered and grouped a double Taylor series into what we will call a homogeneous
polynomial series. Evidently, an analogous ordering and grouping can be carried out for
any multiple Taylor series. Moreover, we know from the results of Sections 31.1 and 31.2,
and the arguments just made, that the homogeneous polynomial series must converge in the
same set as the original Taylor series, and must converge to the same result. Indeed, we
have from (3.3) the inequality

|P`(z)| ≤
∑
j+k=`

|aj,kzj1zk2 |. (38.3.4)

Consequently, the homogeneous polynomial series
∑
P` converges absolutely whenever the

Taylor series converges absolutely. Finally, the homogeneous polynomial series may even
converge outside the convergence set of the underlying Taylor series.

How can we find the convergence set of the homogenous polynomial series? Remarkably,
we will see that this task is easier than finding the convergence set of the underlying Taylor
series.

Suppose λ is some complex number. By the symbol λz we mean the collection of variables
(λz1, λz2, · · ·λzm). Also, |z| will denote the magnitude of z defined by the rule

|z|2 =
m∑
`=1

|z`|2 =
m∑
`=1

(x2
` + y2

` ) (38.3.5)

with

z` = x` + iy`. (38.3.6)

[However, for exponents we continue to use (2.13).] Consider the function g(λ, z) defined by
the relation

g(λ, z) = f(λz) (38.3.7)

where f(z) is analytic about the origin and therefore has a convergent expansion of the form
(2.11). Combining (2.11) and (3.7) gives the expansion

g(λ, z) = f(λz) =
∑

an1,n2,···nm(λz1)n1(λz2)n2 · · · (λzm)nm

=
∑

λ|n|an1,n2,···nmz
n1
1 zn2

2 · · · znmm . (38.3.8)
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For any fixed z, this series will converge for sufficiently small λ. To see this, make some
simple estimates. Let R1, R2, · · ·Rm be some set of (nonzero) conjugate radii as described
in Theorem 2.2, and let R be the smallest of them,

R = minR`. (38.3.9)

Next define R′ by

R′ = R− ε (38.3.10)

where ε is a small positive number. Then from (2.18) we get the bound

|an1,n2,···nm| ≤ K(R′)−|n|. (38.3.11)

Also, from (3.5) we have the bounds

|z`| ≤ |z|, (38.3.12)

|zn1
1 zn2

2 · · · znmm | ≤ |z||n|. (38.3.13)

It follows that the series (3.8) has the comparison series

comparison series =
∑

K(|λ||z|/R′)|n| = K
∞∑
`=0

(|λ||z|/R′)`
∑
|n|=`

1. (38.3.14)

A moment’s reflection shows that the second sum in (3.14) is N(`,m), the number of mono-
mials of degree ` in m variables,∑

|n|=`

1 = N(`,m) = (`+m− 1)!/[`!(m− 1)!]. (38.3.15)

See (7.3.36). Moreover, for fixed m the quantity N(`,m) is a polynomial in ` of degree
(m− 1), and for large ` has the behavior

N(`,m) ∼ `m−1/(m− 1)!. (38.3.16)

It follows that the comparison series (3.14), and therefore also the series (3.8), converge
provided λ is small enough to satisfy the inequality

|λ| < R′/|z|. (38.3.17)

We have seen that the series (3.8) for g(λ, z) converges absolutely for sufficiently small
λ and z. It follows from the discussion of Section 31.2 that g is an analytic function, in the
vicinity of the origin, of all the (m+ 1) complex variables z1, z2, · · · zm and λ. Moreover, the
terms in the series for g can be arranged and grouped to take the form

g(λ, z) =
∞∑
`=0

λ`
∑
|n|=`

an1,n2,···nmz
n1
1 zn2

2 · · · znmm =
∞∑
`=0

λ`P`(z) (38.3.18)
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where P`(z) is the homogeneous polynomial

P`(z) =
∑
|n|=`

an1,n2,···nmz
n1
1 zn2

2 · · · znmm . (38.3.19)

Correspondingly, for f itself we have the homogeneous polynomial expansion

f(z) = g(1, z) =
∞∑
`=0

P`(z). (38.3.20)

For fixed z, regard (3.18) as a Taylor series in λ with Taylor coefficients P`(z). By
essentially the same arguments we have just endured, these coefficients have the bound

|P`(z)| ≤ KN(`,m)(|z|/R′)`. (38.3.21)

Consequently, as expected, this series will converge and produce an analytic function of λ
at least within the disc (3.17). It follows from Theorem 1.11 that the P`(z) are given by the
integrals

P`(z) = (1/2πi)

∮
dλg(λ, z)/λ`+1 = (1/2πi)

∮
dλf(λz)/λ`+1 (38.3.22)

for any contour about the origin in the λ plane for which (3.17) holds. Continue to hold
z fixed. Let λc(z) be the singularity of g(λ, z) = f(λz) in the λ plane that is closest to
the origin. Since f(λz) is always analytic in the disc (3.17), we know that λc(z) is always
nonzero. Define a radius R′′ by the rule

R′′ = ρ|λc(z)| (38.3.23)

where ρ is any number slightly less than but arbitrarily near 1,

ρ ' 1 but ρ < 1. (38.3.24)

Then the λ contour in (3.22) can be expanded to give the relation

P`(z) = (1/2πi)

∮
|λ|=R′′

dλf(λz)/λ`+1 (38.3.25)

and the bound
|P`(z)| ≤M/(R′′)` (38.3.26)

where
M = max |f(λz)| for |λ| = R′′. (38.3.27)

We conclude that the homogeneous polynomial expansion (3.20) converges absolutely and
uniformly provided λc(z) satisfies the relation

|λc(z)| ≥ ρ′ > 1. (38.3.28)
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Conversely, the series (3.18) must diverge for any λ that satisfies

|λ| > |λc(z)|. (38.3.29)

For if it converged, then (by Theorem 1.9 and the discussion surrounding it) g(λ, z) would
be analytic in a disc having a radius larger than |λc|, and could not be singular at λ = λc.
Finally we note that the calculations involved in the relations (3.22) through (3.27), and the
divergence criterion associated with (3.29), hold for general z.

We now have the ingredients for determining the domain of convergence of a homogeneous
polynomial expansion. The recipe is this:

1. Let S2m−1 be the unit sphere in Cm defined by the condition

|z| = 1. (38.3.30)

2. For any point ẑ ∈ S2m−1 let λc(ẑ) be the singularity of f(λẑ) in the λ plane that is
closest to the origin.

3. Define the positive number σ(ẑ) by the rule

σ(ẑ) = |λc(ẑ)|. (38.3.31)

4. Let ζ(ẑ) be the ray that goes from the origin to the point σ(ẑ)ẑ,

ζ(ẑ) = set of all points rσẑ with r ∈ [0, 1]. (38.3.32)

5. Let H be the union of all rays ζ(ẑ) for all points ẑ ∈ S2m−1,

H =
⋃

ẑ∈S2m−1

ζ(ẑ). (38.3.33)

Then the convergence set of the homogeneous polynomial expansion (3.20) isH. Specifically,
the homogeneous polynomial expansion converges absolutely for all z in the interior of H.
Moreover, if z is any point in the exterior of H, the terms P`(z) are unbounded for increasing
`, and hence the homogeneous polynomial expansion diverges at all exterior points.

We note that this recipe is considerably simpler, particularly in the case of many complex
variables, than the analogous recipe given in Section 31.2 for finding conjugate radii of Taylor
series. Moreover, it has the advantage that it can be applied, if desired, using only real points
x̂ in S2m−1. This feature is of interest because, in the context of maps, we often need to
know only about the convergence of series when all variables are real. Finally, we observe
that by construction the interior of the convergence set H has the property that if z is in
H, then so is τz where τ is any complex number satisfying |τ | ≤ 1. See Exercise 3.4. A
domain having this property is called a complete circular domain. Thus, the natural domain
of convergence for a homogeneous polynomial series is a complete circular domain.

The statements just made about convergence and divergence are easily proved. First,
given any z 6= 0, there is a unique ray that goes from the origin to z, and this ray (extended
if necessary) intersects S2m−1 in the point ẑ given by

ẑ = z/|z|. (38.3.34)
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Now suppose that z is in the interior of H. Then z can be written in the form

z = rσ(ẑ)ẑ with 0 < r ≤ ρ′′ < ρ < 1. (38.3.35)

Here ρ is the same number that appears in (3.23). For P`(z) we find, by using (3.23), (3.26),
(3.31), and (3.35), the result

|P`(z)| = |P`(rσẑ)| = |(rσ)`P`(ẑ)|
≤ |(ρ′′σ)`P`(ẑ)| = (ρ′′/ρ)`|(ρσ)`P`(ẑ)|
= (ρ′′/ρ)`|(ρ|λc(ẑ)|)`P`(ẑ)|
= (ρ′′/ρ)`|(R′′)`P`(ẑ)| ≤ (ρ′′/ρ)`M. (38.3.36)

However, from (3.35) we have the inequality

(ρ′′/ρ) < 1. (38.3.37)

It follows that (3.20) has a geometric series as a comparison series, and hence it converges
absolutely when z is an interior point in H.

To complete the proof, suppose that z is in the exterior of H. Then z can be written in
the form

z = rσ(ẑ)ẑ with r > 1. (38.3.38)

For P`(z) we find the result

P`(z) = P`(rσẑ) = (rσ)`P`(ẑ) (38.3.39)

and (3.20) becomes
∞∑
`=0

P`(z) =
∞∑
`=0

(rσ)`P`(ẑ), (38.3.40)

which is a series of the form (3.18) with

λ = rσ. (38.3.41)

Since r > 1, we see from (3.31) and (3.41) that

|λ| = |rσ| = r|λc| > |λc|, (38.3.42)

and conclude from (3.29) that the series (3.40) is divergent. Because (3.40) is a divergent
Taylor series, the terms P`(z) that comprise it must be unbounded. See (3.39) and Theorem
1.9.

It remains to be shown that if the homogeneous polynomial series converges outside the
convergence set of the underlying Taylor series, then it provides an analytic continuation of
the function specified by the Taylor series. The reader has the pleasure of working out a
proof in Exercise 3.5.
Example 3.1: Consider again the function ψ(r) given by (2.23). Suppose the series (2.24)
is grouped into homogeneous polynomials,

ψ(x1, x2, x3) =
∑
jk`

ajk`x
j
1x

k
2x

`
3 =

∞∑
m=0

∑
j+k+`=m

ajk`x
j
1x

k
2x

`
3 =

∞∑
m=0

Pm(x1, x2, x3) (38.3.43)
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where
Pm(x1, x2, x3) =

∑
j+k+`=m

ajk`x
j
1x

k
2x

`
3. (38.3.44)

Let us determine the domain of convergence of this homogeneous polynomial series in the
(real) x1,x2,x3 3-dimensional space. We parameterize points x̂1, x̂2, x̂3 ∈ S3 by writing

x̂2 = sin θ, (38.3.45)

x̂1 = cos θ cosφ, (38.3.46)

x̂3 = cos θ sinφ. (38.3.47)

From (2.26) we see that singularities in λ satisfy the equation

(λ cos θ cosφ)2 + (λ sin θ − 1)2 + (λ cos θ sinφ)2 = 0.

This equation has the solutions
λ = sin θ ± i cos θ (38.3.48)

from which we find that
|λc| = 1. (38.3.49)

It follows that the homogeneous polynomial series (3.43) for ψ(x1, x2, x3) converges in the
unit ball about the origin,

0 ≤ x2
1 + x2

2 + x2
3 ≤ 1. (38.3.50)

Note that this set includes points that lie outside the convergence set described by the
Reinhardt diagram of Figure 2.7.
Example 3.2: Suppose the series (2.30) is grouped into homogeneous polynomials,

ψ(x1, x2;x3) =
∑
jk

ajk(x3)xj1x
k
2 =

∞∑
`=0

∑
j+k=`

ajk(x3)xj1x
k
2 =

∞∑
`=0

P`(x1, x2;x3) (38.3.51)

where
P`(x1, x2;x3) =

∑
j+k=`

ajk(x3)xj1x
k
2. (38.3.52)

For fixed (real) x3, let us determine the convergence set of this homogeneous polynomial
series in the (real) x1, x2 plane. We parameterize points x̂1, x̂2 ∈ S2 by writing the relations

x̂1 = cosφ, (38.3.53)

x̂2 = sinφ. (38.3.54)

Then, from(2.32), we see that singularities in λ satisfy the equation

(λ cosφ)2 + (λ sinφ− 1)2 + x2
3 = 0. (38.3.55)

This equation has the solutions

λ = sinφ± i[cos2 φ+ x2
3]1/2 (38.3.56)
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|x |1

|x |2

x 3

Figure 38.3.1: Real x1, x2 convergence sets for the homogeneous polynomial series (3.51) for
various values of x3. Together they form a hyperbola of revolution. Sets are not shown for
negative values of x3 since the sets for ±x3 are identical.

from which we find that

|λc| = (1 + x2
3)1/2. (38.3.57)

It follows that the homogeneous polynomial series (3.51) for ψ(x1, x2;x3) converges in a disc
about the origin in the x1,x2 plane with radius (1 +x2

3)1/2. Figure 3.1 shows several of these
discs for various values of x3. Together they form the hyperbola of revolution

x2
1 + x2

2 = 1 + x2
3. (38.3.58)

Note that these sets include points that lie outside the convergence sets described by the
Reinhardt diagrams of Figure 2.8.

Exercises

38.3.1. Find the convergence set in the real x1, x2 plane for the homogeneous polynomial
expansion about the origin of the function f given by (2.39).

38.3.2. Repeat Exercise 3.1 for the f given by (2.40).

38.3.3. Repeat Exercise 3.1 for the f given by (2.41).

38.3.4. Verify Equations (3.45) through (3.50).

38.3.5. Verify Equations (3.53) through (3.58).

38.3.6. Verify that the interior of the convergence set H constructed following the steps
(3.30) through (3.33) is a complete circular domain.
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38.3.7. Show that if the homogeneous polynomial series converges outside the convergence
set of the underlying Taylor series, then it provides an analytic continuation of the function
specified by the Taylor series.

38.3.8. Consider the map, described by (1.4.21) and (1.4.22), that arises from the monomial
Hamiltonian (1.4.20). See Exercise 2.7. Suppose this map is expanded in a homogeneous
polynomial series about the origin. Find the convergence set in the real q, p plane for this
expansion.

38.3.9. Using the methods of this section, determine the domain of analyticity and the
convergence set for the monopole doublet ψ(x, y, z) given by (13.11.3).

38.4 Application to Potentials and Fields

38.5 Application to Taylor Maps: The Anharmonic

Oscillator

38.6 Application to Taylor Maps: The Pendulum

38.7 Convergence of the BCH Series

38.8 Convergence of Lie Transformations and the

Factored Product Representation
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Chapter 39

Truncated Power Series Algebra

39.1 Introduction

With regard to the simplest transcendental function, the exponential function, it has been
said that

God created ex but never heard of a polynomial.

In this chapter we will be studying polynomials in multiple variables. For mortals, polyno-
mials are a major portal to the transcendent.

Anyone familiar with the rudiments of Computer Science recognizes that the proper
choice of algorithm can make an enormous difference in both computational speed and
storage requirements. Thus, of several different algorithms which execute the same compu-
tational task, some may perform much better than others. Recall, for example, the problem
of sorting n items: the number of operations required for the simple bubble sort method
scales as n2, while that for the more sophisticated quick sort or heap sort scales as only
n log2 n. As a second example, the operation count for the ordinary discrete Fourier trans-
form scales as n2 (where n is the number of data points) while that for the celebrated fast
(discrete) Fourier transform again scales as n log2 n.

The purpose of this chapter is to describe how truncated power series (finite sums of
monomials in several variables) can be manipulated by computer. We will explore various
methods for labeling and storing monomials together with their relation to efficient algo-
rithms for executing various polynomial operations. These operations, which we refer to as
Truncated Power Series Algebra (TPSA), include addition, multiplication, differentiation,
Poisson bracketing, the commutation of vector fields, and the composition of functions. The
emphasis here will be on computational speed, storage requirements, and program flexibil-
ity. Section 32.2 describes how monomials may be labeled and stored. Subsequent sections
describe how truncated power series composed of these monomials can be added, multiplied,
and otherwise manipulated.

Since TPSA has important applications to the study of dynamical systems, our discussion
will often be couched in those terms — sometimes with a particular emphasis on applications
to accelerator physics. However, we stress that much of the material presented here applies
generically to any use of TPSA.
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Before discussing possible schemes for storing and manipulating polynomials, we intro-
duce some useful terminology and definitions: A typical monomial in d variables may be
written in the form

zj11 z
j2
2 · · · z

jd
d , (39.1.1)

where the exponents jk are a set of non-negative integers. We shall sometimes write the
d-tuple of exponents (j1, · · · , jd) simply as a vector j, and similarly abbreviate the corre-
sponding monomial by writing

zj11 · · · z
jd
d = zj. (39.1.2)

Indeed, for the sake of brevity we shall sometimes refer to the exponent vector j as “the
monomial j”. For the degree of this monomial, we introduce the notation

|j| = j1 + j2 + · · ·+ jd. (39.1.3)

Recall from Section 7.3 thatN(m, d), the number of monomials of degreem in d variables,
is given by the binomial coefficient

N(m, d) =

(
m+ d− 1

m

)
=

(m+ d− 1)!

m!(d− 1)!
. (39.1.4)

Various values of N(m, d) are listed in Table 7.3.1. Also S(m, d), the number of monomials
of degrees 1 through m in d variables, is given by the relation

S(m, d) =

(
m+ d
m

)
− 1 =

(m+ d)!

m!d!
− 1. (39.1.5)

See Section 7.9. Various values of S(m, d) are listed in Table 7.9.1. Finally, for some
calculations it is also useful to employ the quantity S0(m, d), the number of monomials of
degrees 0 through m in d variables. It is given by the relation

S0(m, d) = S(m, d) + 1 =

(
m+ d
m

)
=

(
m+ d
d

)
=

(m+ d)!

m!d!
. (39.1.6)

39.2 Monomial Indexing

Any program that manipulates polynomials must have a scheme for labeling and storing the
coefficients of the basis monomials. In this section we will describe some ways in which this
can be done.

39.2.1 An Obvious but Memory Intensive Method

One very obvious such scheme uses a multi-dimensional array indexed by the monomial
exponents. For purposes of illustration, consider the six-variable case. Then, using a phase-
space notation, we have monomials of the form

zj = Xj1P j2
x Y

j3P j4
y τ

j5P j6
τ . (39.2.1)
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Suppose, for example, we are interested in the case of homogeneous polynomials of degrees
0 through 12. Then each jk lies in the interval [0, 12], we have a 13× 13× · · · (six factors)
array, and such an array requires 136 ' 4.8×106 storage locations. By contrast, the entry for
S(12, 6) in Tablel 7.9.1 shows that in principle only 18,564 (= 18, 563 + 1) locations should
be required. In general, if we use an (m + 1) × (m + 1) · · · (d factors) array to store the
coefficients of monomials of degree 0 through m in d variables, we shall need (m+1)d storage
locations. This number is much larger than S0(m, d). As a consequence, it is desirable —
even essential — to consider other possible schemes for labeling and storing monomials.

39.2.2 Polynomial Grading

Implicit in our discussion so far is the assumption that the objects of interest really are
polynomials of degrees 0 through m. More explicitly, we assume that we are interested
in grading polynomials according to their total degree. See Section 8.9. For phase-space
variables this assumption seems natural, because we expect that the possible excursions
from a design trajectory (in suitable scaled coordinates) could be of comparable size in any
direction. It may be less natural (and perhaps a different treatment is called for) if we wish
simultaneously to make expansions in various parameter variables. Indeed, in this latter case
it might be better to have a scheme where the orders of the phase-space variables and the
parameter variables could be set independently. One would then have polynomials in the
phase-space variables whose coefficients are either numbers or polynomials in the parameter
variables.

A remark about nomenclature: Consider the set of all (zero or positive) integers j1 · · · jd
that obey the condition

|j| ≤ m (39.2.2)

for a fixed value of m. They form a collection of S0(m, d) points in d-dimensional space.
Some authors refer to this set of points as a pyramid. The reader is invited to sketch these
points in the cases d = 2 and d = 3 to see why the name is apt. A set of values assigned to
points on a pyramid is referred to as a pyramidal data structure. Finally, some authors refer
to sets of points of the kind described in Subsection 32.2.1 as (possible high dimensional)
boxes or cubes. See Appendix S.

39.2.3 Monomial Ordering

Because a well-defined ordering facilitates the systematic implementation of polynomial
algebra on a computer, we will continue this section by describing the concept of monomial
orderings.

A monomial ordering is a relation > on the set of all monomials (exponents) α =
(α1, α2 · · · ) that satisfies the following three conditions:

1. The relation > is a total ordering, meaning that for any two monomials α and β,
exactly one of the following statements holds true:

α > β , α = β , β > α. (39.2.3)

This condition allows us to arrange the terms of a polynomial in an unambiguous way.
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2. If α > β, then (α + γ) > (β + γ). To see the value of this condition, note that
multiplying both zα and zβ by zγ yields the results zα+γ and zβ+γ. Now consider a
polynomial whose terms are ordered using the relation >. If the above condition holds,
then multiplying this polynomial (term-by-term) by zγ will not alter the arrangement
of the terms.

3. The relation > is a well-ordering, meaning that every strictly decreasing sequence
α > β > γ > · · · must eventually terminate. This condition facilitiates proofs that
various polynomial algorithms terminate after a finite number of steps.

Suppose we take the S0(m, d) monomials of degrees 0 through m in d variables, and
list them sequentially in some fashion. Next we try to declare that this list constitutes
a monomial ordering. For example, as we go down the list, we might declare that each
successive monomial is less than all its predecessors. This declaration is consistent with
the requirements 1 and 3. However, it generally violates requirement 2. Consequently, we
will distinguish between orderings and arrangements. By an arrangement we will mean any
sequential listing, whereas an ordering will mean a monomial ordering as defined above.

The following examples illustrate some of the commonly used monomial orderings. Here
we will somes write zα > zβ if α > β.

Example 1. Lexicographic Order (lex). Let α = (α1, · · · , αd), β = (β1, · · · , βd). We say
α >lex β if in the vector difference α− β the left-most nonzero entry is positive. (Note that
this construction is identical to that used to order weights in Section 5.8.)

For lexicographic ordering we have the relations

(1, 0, · · · , 0) >lex (0, 1, · · · , 0) >lex · · · >lex (0, 0, · · · , 1), (39.2.4)

or, to use a more familiar notation,

z1 >lex z2 >lex · · · >lex zd. (39.2.5)

Therefore the variables zi themselves are arranged in descending order as their subscript
label increases. Moreover, it is easily checked that

(zi)
m >lex (zj)

n whenever i < j, (39.2.6)

independent of the powers m,n (but assuming m > 0).
Unfortunately, this latter property can be inconvenient for problems where the total

degree of monomials is important. (A common such problem in accelerator physics is the
construction of a factorized Lie map.) However, there is a simple remedy to this situation:
first order monomials by total degree, then apply lex ordering only to monomials of the same
total degree. A formal definition of this scheme is given in the next example.

Example 2. Graded Lexicographic Order (glex, sometimes called grlex). We say α >glex β
if either |α| > |β|, or |α| = |β| and α >lex β.

For monomials of degree one,

z1 >glex z2 >glex · · · >glex zd, (39.2.7)
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just as for lex order. For quadratic monomials,

z2
1 >glex z1z2 >glex z1z3 >glex · · · >glex z

2
2 >glex z2z3 >glex · · · >glex z

2
d. (39.2.8)

Example 3. Graded Reverse Lexicographic Order (grevlex). In this ordering we say
α >grevlex β if either |α| > |β|, or |α| = |β| and the right-most nonzero entry in the vector
difference α− β is negative.

The grevlex order may seem less intuitive than glex, but it does have certain advantages.
As with glex, the variables themselves are ordered:

z1 >grevlex z2 >grevlex · · · >grevlex zd. (39.2.9)

For quadratic monomials, by contrast,

z2
1 >grevlex z1z2 >grevlex z

2
2 >grevlex z1z3 >grevlex · · · >grevlex z

2
d. (39.2.10)

Thus as one scans monomials of a fixed degree in descending grevlex order, one encounters
later variables only after earlier ones have been “exhausted”.

39.2.4 Labeling Based on Ordering

We will now describe how monomial ordering can be used to assign a label or index to each
monomial.1 Basically, the idea is to list the monomials in some sequence, and then label the
monomials by where they occur in the list.

Consider, as a case of special interest, monomials in 6 variables as in (2.1). We have
found it useful to list them in the arrangement shown in Table 2.1 below. Note that the
monomials are graded: First the monomial of degree 0 appears, next those of degree 1,
then those of degree 2, etc. Now let us, for the moment, regard each exponent j = (j1 · · · j6)
as some six-digit number having the digits (reading from left to right) j1 through j6. Then
observe that within each group of monomials of fixed degree these six-digit numbers appear
in descending order as one reads down a column. For example, the monomials of degree 1
have the ordering 100000 > 010000 > 001000 > 000100 > 000010 > 000001. Similarly, the
monomials of degree 2 have the ordering 200000 > 110000 > 101000 > 100100 > · · · , etc.
That is, for a given degree, the monomials appear in descending lex order. We will refer to
this arrangement of monomials as modified glex sequencing.

Finally, each monomial has been given an index, starting with 0 for the monomial of
degree 0, that increases by 1 for each successive monomial.2 Thus, as the index increases,
we first encounter the monomial of degree 0, then those of degree 1, then those of degree 2,
etc. Furthermore, as the index increases within each set of monomials of a given degree, we
encounter monomials in descending lex order. Note, as is easily verified by comparison of
Tables 7.9.1 and 2.1, that there is the relation

index (00000m) = S(m, 6). (39.2.11)

1Equivalently, we will assign a label to each point in a pyramid.
2This is the indexing scheme used in the program MaryLie. MaryLie is a program for charged-particle

beam transport based on Lie algebraic methods. It is named in honor of Queen Henrietta Maria, patron of
the English colony that was to become the state of Maryland, and Sophus Lie.
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We remark that one might consider a true glex ordering in which the monomials of a
given degree would occur in ascending lexicographic order as the index increased. According
to (2.6) and (2.7), however, such an indexing scheme would list temporal variables first, and
this order is not convenient for applications to accelerator physics.

There is, though, another arrangement that is satisfactory, and perhaps even superior:
One could list the monomials by degree as before, and within each degree arrange them
in descending reverse lexicographical (revlex) order. This could be called modified grevlex
sequencing. Table 2.2 illustrates, for the case of 6 variables, an indexing scheme based on
this procedure. Note that monomials with temporal variables now occur at the end of each
monomial set of a given degree.

Table 39.2.1: Modified glex sequencing, a possible glex related indexing scheme for mono-
mials in 6 variables.

Index Exponents of
X Px Y Py τ Pτ

0 0 0 0 0 0 0
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1
7 2 0 0 0 0 0
8 1 1 0 0 0 0
9 1 0 1 0 0 0

10 1 0 0 1 0 0
11 1 0 0 0 1 0
12 1 0 0 0 0 1
13 0 2 0 0 0 0
14 0 1 1 0 0 0
15 0 1 0 1 0 0
16 0 1 0 0 1 0
17 0 1 0 0 0 1
18 0 0 2 0 0 0
19 0 0 1 1 0 0
20 0 0 1 0 1 0
21 0 0 1 0 0 1
22 0 0 0 2 0 0
23 0 0 0 1 1 0

Index Exponents of
X Px Y Py τ Pτ

24 0 0 0 1 0 1
25 0 0 0 0 2 0
26 0 0 0 0 1 1
27 0 0 0 0 0 2
28 3 0 0 0 0 0
29 2 1 0 0 0 0
30 2 0 1 0 0 0
31 2 0 0 1 0 0
32 2 0 0 0 1 0
33 2 0 0 0 0 1
34 1 2 0 0 0 0
35 1 1 1 0 0 0
36 1 1 0 1 0 0
37 1 1 0 0 1 0
38 1 1 0 0 0 1
...

77 0 0 0 1 2 0
78 0 0 0 1 1 1
79 0 0 0 1 0 2
80 0 0 0 0 3 0
81 0 0 0 0 2 1
82 0 0 0 0 1 2
83 0 0 0 0 0 3
...
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Table 39.2.2: A possible grevlex related indexing scheme for monomials in 6 variables.

Index Exponents
0 0 0 0 0 0 0
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1
7 2 0 0 0 0 0
8 1 1 0 0 0 0
9 0 2 0 0 0 0
10 1 0 1 0 0 0
11 0 1 1 0 0 0
12 0 0 2 0 0 0
13 1 0 0 1 0 0
14 0 1 0 1 0 0
15 0 0 1 1 0 0
16 0 0 0 2 0 0
17 1 0 0 0 1 0
18 0 1 0 0 1 0
19 0 0 1 0 1 0
20 0 0 0 1 1 0
21 0 0 0 0 2 0
22 1 0 0 0 0 1
23 0 1 0 0 0 1

Index Exponents
24 0 0 1 0 0 1
25 0 0 0 1 0 1
26 0 0 0 0 1 1
27 0 0 0 0 0 2
28 3 0 0 0 0 0
29 2 1 0 0 0 0
30 1 2 0 0 0 0
31 0 3 0 0 0 0
32 2 0 1 0 0 0
33 1 1 1 0 0 0
34 0 2 1 0 0 0
35 1 0 2 0 0 0
36 0 1 2 0 0 0
37 0 0 3 0 0 0
38 2 0 0 1 0 0
...

77 0 0 0 0 2 1
78 1 0 0 0 0 2
79 0 1 0 0 0 2
80 0 0 1 0 0 2
81 0 0 0 1 0 2
82 0 0 0 0 1 2
83 0 0 0 0 0 3
...

39.2.5 Formulas for Lowest and Highest Indices

For future reference, we note that any indexing scheme based on a graded ordering has the
property that all the indices associated with monomials of a fixed degree are contiguous and
lie within a fixed range. For example, reference to Tables 2.1 or 2.2 shows that (in the case
of 6 variables) monomials of degree 2 begin at index 7 and end at index 27, and those of
degree 3 begin at index 28 and end at index 83. Let itop(ideg) be the highest (top) index
for monomials of degree ideg, and let ibot(ideg) be the lowest (bottom) index. Then we have
the relations

itop(ideg) = S(ideg, d), (39.2.12)

ibot(ideg) = itop(ideg − 1) + 1 = S[(ideg − 1), d] + 1. (39.2.13)

Here d is the number of variables. Table 2.3 lists values of ibot and itop for the case of 6
variables (d = 6).
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Table 39.2.3: Lowest and highest indices for monomials of degree ideg in 6 variables.

ideg ibot itop
0 0 0
1 1 6
2 7 27
3 28 83
4 84 209
5 210 461
6 462 923
7 924 1715
8 1716 3002
9 3003 5004
10 5005 8007
11 8008 12375
12 12736 18563

39.2.6 The Giorgilli Formula

By construction, use of Table 2.1 (or Table 2.2) assigns a unique index i to each monomial
exponent j. Moreover, i takes on every possible (non-negative) integer value. Therefore,
there is a invertible function i(j) that provides a 1-to-1 mapping between the integers and
the exponent vectors j. To proceed further, it would be very useful to have an explicit
formula for i(j). Such a formula, which we will call the Giorgilli formula, exists. We will
illustrate it for the case of 6 variables with monomials indexed as in Table 2.1. In this case
the exponent vectors have the form j = (j1, · · · , j6). We begin by defining the integers

n(`; j1, · · · , j6) = `− 1 +
`−1∑
k=0

j6−k (39.2.14)

for ` ∈ {1, 2, · · · 6}. Then to the general monomial zj we assign the index

i(j) = i(j1, · · · j6) =
6∑
`=1

Binomial [n(`; j1, · · · j6), `]. (39.2.15)

Here the quantities

Binomial [n, `] =

(
n
`

)
=

{
n!

`!(n−`)! , 0 ≤ ` ≤ n

0 , otherwise

}
(39.2.16)

denote the usual binomial coefficients.

39.2.7 Finding the Required Binomial Coefficients

At this point something needs to be said about what binomial coefficients are actually
required and how they can be computed. Note that the formula (2.15) can be written in
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the form

i(j1, · · · , j6) = Binomial [n(1; j1, · · · , j6), 1] +
6∑
`=2

Binomial [n(`; j1, · · · j6), `]. (39.2.17)

From (2.14) we obtain
n(1; j1, · · · j6) = j6, (39.2.18)

and we know that
Binomial [j6, 1] = j6. (39.2.19)

Thus we may write (2.15) as

i(j1, · · · , j6) = j6 +
6∑
`=2

Binomial [n(`; j1, · · · j6), `]. (39.2.20)

Now let maxdeg be the maximum degree of the polynomials being stored. Then we have the
inequality

`−1∑
k=0

j6−k ≤ maxdeg. (39.2.21)

Consequently, according to (2.14), n(`; j1, · · · , j6) must lie in the range

n ∈ [`− 1, `− 1 +maxdeg]. (39.2.22)

We therefore need only those binomial coefficients Binomial [n, `] with ` ∈ [2, 6] and, for
each `, values of n lying in the range (2.22).

As an example, Exhibit 2.1 shows a program that computes and stores the required
binomial coefficients for the case maxdeg = 6. It uses the recursion relation (7.3.56), and
needs to be executed only once.
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Exhibit 32.2.1: A program to compute and store binomial coefficients.

subroutine binom5

c

c computes a table of the binomial coefficients

c

implicit double precision (a-h,o-z)

integer bin5(24,20)

common /bin5/ bin5

save/bin5/

do 1 i=1,20

bin5(i,1)=i

do 1 k=2,20

if (i-k) 2,3,4

2 bin5(i,k)=0

go to 1

3 bin5(i,k)=1

go to 1

4 ip=i-1

kp=k-1

bin5(i,k)=bin5(ip,kp)+bin5(ip,k)

1 continue

return

end

39.2.8 Computation of the Index i Given the Exponent Array j

We will prove eventually that the formula (2.15) does indeed produce the indexing scheme
of Table 2.1. Before doing so we will exhibit a computer program that computes i(j).
As an example, Exhibit 2.2 shows a computer program that computes i(j) using (2.20) and
stored binomial coefficients, and assuming maxdeg = 6. For efficiency, the required binomial
coefficients have been hard-wired in, and arranged in a convenient order, with the use of a
data statement. Alternatively, they could have been computed and rearranged in advance,
using a variant of the program shown in Exhibit 2.1, and then stored in a common block for
use in the program of Exhibit 2.2.

Note that the program requires various binomial lookups and 10 integer adds to compute
an index for the case of 6 variables. In the general case of d variables, computing an index
requires 2(d− 1) such adds. The program is therefore reasonably fast.
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Exhibit 32.2.2: A program to compute the index i(j) using (2.20) and stored
binomial coefficients.

subroutine ndex(j,ind)

c

c This subroutine calculates the MaryLie index ind, given j1 through j6

c which are stored in the array j, based on the Giorgilli formula.

c The use of rearrangement in this algorithm is due to Liam Healy.

c AJD 6/20/95

c

integer j(6)

c cord = cumulative order: sum of exponents from ib-th to 6th.

integer cord

c obin = binomial coefficients rearranged to speed up calculation

c obin(m,i)=Binomial[(m+6-i),(7-i)]

integer obin(0:6,5)

save obin

data obin

& /0,1,7,28,84,210,462,

& 0,1,6,21,56,126,252,

& 0,1,5,15,35, 70,126,

& 0,1,4,10,20, 35, 56,

& 0,1,3, 6,10, 15, 21/

c

c calculate the index

ind=j(6)

cord=ind

do 100 ib=5,1,-1

cord=cord+j(ib)

100 ind=ind+obin(cord,ib)

c

return

end

39.2.9 Preparing a Look-Up Table for the Exponent Array j

Given the Index i

Given any exponent array j, we have seen how to compute a corresponding index i(j). There
is also the inverse problem: Given an index i, find the exponent array

j(i) = {j1(i), j2(i), · · · jd(i)} (39.2.23)

that corresponds to this index. From a computational perspective, the most efficient proce-
dure is to prepare a look-up table (a rectangular array) that contains this information.

One way to construct an appropriate look-up table involves finding an algorithm for
generating—in the general case of d variables—a modified glex sequence of exponents. With
such an algorithm we can produce a look-up table of exponents simply by storing successive
d-tuples of exponents as they are generated. In particular, we can initialize the index by
setting i = 0 for the first exponent vector, (0, 0, · · · , 0), and then increment i by 1 with
each successive exponent vector in the sequence. We now outline a method for generating a
modified glex sequence.
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As described earlier, one may view the exponents j1 through jd that define a particular
monomial as the components of a vector j = (j1, · · · jd). Let us refer to any given sequence
of such vectors simply as a list. Now look at Table 2.1 or recall the definition of glex ordering
to see that the list of monomials of a given degree m always begins with the vector

j = (m, 0, · · · 0) (39.2.24)

and ends with the vector
j = (0, · · · 0,m). (39.2.25)

In addition, the very next element in the list after (2.25) is the vector

j = (m+ 1, 0, · · · 0), (39.2.26)

which begins the list of monomials of degree m + 1. We conclude that it is easy to specify
the monomials that begin and end the degree m portion of a modified glex sequence, and
to make the transition from the last monomial of degree m to the first one of degree m+ 1.

We now seek a rule that converts any given j vector, for some monomial of degree m,
into the j vector for the next monomial in the list. If the j vector has the form (2.25), then
obviously the next j vector has the form (2.26). Otherwise, it is evident that some of the
entries in j must be increased and some decreased in such a way as to keep the total degree
constant. Moreover, to achieve a modified glex sequence, the entries on the “left end” of j
(those jk with smaller k) should be decreased as little as possible, and the entries on the
“right end” of j (those jk with larger k) should be increased as much as possible. A careful
examination of the entries in Table 2.1 shows that one may convert from any j vector not
of the form (2.25) to the next j vector via the following sequence of steps:

• Store the value of jd as icarry, and then set jd = 0.

• Test the jk from right to left to find the right-most non-zero jk. Let `nzj be the
subscript for this jk. (Here `nzj is a mnemonic for “last non-zero j”.) Thus j`, with
` = `nzj, is the last non-zero component of j.

• Decrease j` by 1, set j`+1 = (1 + icarry), and leave intact all other entries of j.

The result of these steps is the next j in the list.
For example, consider the j in Table 2.1 having index 33, j = (200001). In this case

we have icarry = 1, and setting j6 = 0 yields the vector (200000). We then find that the
right-most non-zero entry is j1; hence `nzj = 1 and (with ` = `nzj = 1) j` = j1 = 2.
Decreasing j1 by 1 and replacing j`+1 = j2 by (1 + icarry), we find the new vector (120000).
Examination of Table 2.1 shows that this vector has index 34, as desired. Readers are invited
to check other cases in Table 2.1 to satisfy themselves that this procedure works in general.

Exhibit 2.3 shows a routine that carries out the algorithm just described in the case of
6 variables and assuming maxdeg = 4. This routine has the further feature [resulting from
the initialization of ` (`nzj) and the use of suitable ‘if’ statements] that it also automatically
makes the transition from the last monomial of degree m to the first one of degree m + 1;
and it does so by use of the same algorithm just described for generating successive j vectors
elsewhere in the list. That is, the same algorithm also produces the transition from (2.25)
to (2.26). Readers are also invited to check that this procedure works as claimed.
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Exhibit 32.2.3: A program to produce a look-up table for the exponents j(i).

subroutine jtable

c

c This program creates the look-up table jtbl based on a method of Liam Healy:

c ind = monomial index and imax = maximum value of ind.

c ipsv = phase space variable and id = number of phase space variables.

c For example when id=6, ipsv= 1...id corresponds to X...P_t.

c jtbl(ipsv,ind) is the exponent of phase space variable

c ’ipsv’ (1 to id) for monomial index ’ind’ (1 to imax).

c For example, when id=6, monomial number 109 is X*P_X*P_X*P_t.

c Consequently, jtbl(1 to 6,109)=1,2,0,0,0,1.

c

parameter (imax = 209, id=6)

dimension jtbl(id,imax)

c j = array of exponents

dimension j(id)

c initialize exponents

data j/id*0/

c icarry = temporarily stored value of j(id).

c lnzj = last non-zero j

c

c Sequentially create exponent table jtbl

c

do 150 ind=1,imax

c set quantities

icarry=j(id)

j(id)=0

lnzj=0

c search for last nonzero j

do 100 ipsv=1,id-1

if (j(ipsv).gt.0) lnzj=ipsv

100 continue

c find next set of exponents

if (lnzj.gt.0) j(lnzj)=j(lnzj)-1

j(lnzj+1)=1+icarry

c store exponents in jtbl

do 120 ipsv=1,id

jtbl(ipsv,ind)=j(ipsv)

120 continue

150 continue

c

c write out table

do 70 i=1,imax

write(6,500) i,

& jtbl(1,i),jtbl(2,i),jtbl(3,i),

& jtbl(4,i),jtbl(5,i),jtbl(6,i)

500 format (1h ,i4,2x,3(i2,1x,i2,2x))

70 continue

c

end
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39.2.10 Verification of the Giorgilli Formula

The last task for this section, as promised, is to show that the formula (2.15) does indeed
produce modified glex indexing. For this purpose, the reader is invited to examine Table
2.4 which displays a modified glex sequence for the simple case of 3 variables through terms
of degree 4.

Consider the N(m, d) monomials of degree m in d variables. We may view each of these
monomials (zj11 z

j2
2 · · · z

jd
d ) as a product of two constituent monomials:

zj11 z
j2
2 · · · z

jd
d = zj11 × z

j2
2 · · · z

jd
d . (39.2.27)

Thus, for example, monomials of degree two in three variables comprise three distinct groups
(see Table 2.4):

1. z2
1 times a monomial of degree zero in the two variables z2 and z3;

2. z1
1 times monomials of degree one in the two other variables;

3. z0
1 times monomials of degree two in the two other variables.

In general, of course, one may write all the monomials of order m in d variables as products
between the monomial zj11 —with j1 ∈ {0, 1, . . . ,m}—and the monomials of order m − j1

in the remaining d − 1 variables. The reader may observe that listing the monomials in a
modified glex sequence—as in Table 2.4—makes clear the structure just described.

Consider now only those monomials of fixed degree m, and examine their exponents as
listed in the modified glex sequence. The reader should note that because the exponents (of
fixed degree) are listed in descending lexicographic order, eliminating the left-most column—
the exponents j1—will leave behind d− 1 columns which contain exactly the modified glex
sequence for the monomials in d− 1 variables of degree m and smaller. Thus, for example,
the transformation displayed in Figure 2.1 shows explicitly how this happens for degree-
three monomials in three variables: removing the left column leaves behind the listing, in a
modified glex sequence, of all monomials in two variables of degree zero through three.

As a consequence of the observation just described, the index of a given monomial can
be determined by using a simple counting procedure, which we illustrate with the following
example:

• Look at Table 2.4 and select an exponent, say j = (1, 0, 2), whose index is to be
determined. This exponent j represents a monomial of degree 3 (|j| = j1 + j2 + j3 =
1 + 0 + 2 = 3) in 3 variables.
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Table 39.2.4: Modified glex sequence for j in 3 variables.

Index j1 j2 j3

1 1 0 0
2 0 1 0
3 0 0 1
4 2 0 0
5 1 1 0
6 1 0 1
7 0 2 0
8 0 1 1
9 0 0 2
10 3 0 0
11 2 1 0
12 2 0 1
13 1 2 0
14 1 1 1
15 1 0 2
16 0 3 0
17 0 2 1
18 0 1 2
19 0 0 3
20 4 0 0
21 3 1 0
22 3 0 1
23 2 2 0
24 2 1 1
25 2 0 2
26 1 3 0
27 1 2 1
28 1 1 2
29 1 0 3
30 0 4 0
31 0 3 1
32 0 2 2
33 0 1 3
34 0 0 4
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Figure 39.2.1: Sample extraction of a two-column array from a three-column array.

3 0 0
2 1 0
2 0 1
1 2 0
1 1 1
1 0 2
0 3 0
0 2 1
0 1 2
0 0 3

7→

0 0
1 0
0 1
2 0
1 1
0 2
3 0
2 1
1 2
0 3

• Dropping the first entry from j yields a reduced exponent j′ = (0, 2), which represents
a monomial of degree 2 (|j′| = j2 + j3 = 0 + 2 = 2) in 2 variables.

• Dropping the first two entries from j yields j′′ = (2), which represents a monomial of
degree 2 (|j′′| = j3 = 2) in 1 variable.

• Record the degrees of j, j′, and j′′, as described in the previous steps. In the present
case we obtain the numbers |j| = 3, |j′| = 2, and |j′′| = 2, respectively. Based on these
degrees, construct a “path” through Table 2.4, as illustrated in Figure 2.2: Begin
the path at the top and proceed down the j1 column until you reach exponents of
degree |j| = 3. Then shift over one column and proceed down the j2’s until you reach
exponents of degree |j′| = 2. Finally, shift over to the last column and proceed down
the j3’s until you reach exponents of degree |j′′| = 2.

• Now determine the index by the evident procedure of simply adding together the
“lengths” of the vertical portions of the path just constructed, and then adding 1.
The lengths are given by the relations

length along j1 column = S(2, 3), (39.2.28)

length along j2 column = S0(1, 2), (39.2.29)

length along j3 column = S0(1, 1), (39.2.30)

and hence the index of the monomial j = (1, 0, 2) is given by

i(j) = i(1, 0, 2) = S(2, 3) + S0(1, 2) + S0(1, 1) + 1. (39.2.31)

Using (1.6), we may write (2.31) in the more pleasing form

i(1, 0, 2) = S0(2, 3) + S0(1, 2) + S0(1, 1) = 10 + 3 + 2 = 15, (39.2.32)

in agreement with the index given in Table 2.4 (or Figure 2.2).
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Figure 39.2.2: Path to the exponent j = (1, 0, 2) down the modified glex sequence in 3
variables.

Index j1 j2 j3
1 1 0 0
2 0 1 0
3 0 0 1
4 2 0 0
5 1 1 0
6 1 0 1
7 0 2 0
8 0 1 1
9 0 0 2
10 3 0 0
11 2 1 0
12 2 0 1
13 1 2 0
14 1 1 1
15 1 0 2
16 0 3 0
17 0 2 1
18 0 1 2
19 0 0 3
20 4 0 0
21 3 1 0
22 3 0 1
23 2 2 0
24 2 1 1
25 2 0 2
26 1 3 0
27 1 2 1
28 1 1 2
29 1 0 3
30 0 4 0
31 0 3 1
32 0 2 2
33 0 1 3
34 0 0 4

S(2, 3) = 9 = S0(2, 3)− 1

S0(1, 2) = 3

S0(1, 1) = 2

1
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By generalizing the procedure of the example just described, we can now state a pro-
cedure for determining the index i(j) for any monomial whose exponent list is given by
j = (j1, j2, . . . , jd).

1. For each ν ∈ {1, . . . , d} define mν as the degree of the monomial obtained by dropping
from the exponent list j the first (ν − 1) entries:

mν =
d∑

k=ν

jk. (39.2.33)

2. Then define iν as the total number of monomials in d − (ν − 1) variables which have
degree less than mν :

iν = S0(mν − 1, d− ν + 1). (39.2.34)

3. The index i(j) is then given by the formula

i(j1, . . . , jd) =
d∑

ν=1

iν . (39.2.35)

Finally, we must demonstrate that the prescription just given for determining the index
is indeed equivalent to the formula (2.15). To see this, note first that

mν =
d∑

k=ν

jk =
d−ν∑
k=0

jd−k. (39.2.36)

Then recall the definition (2.14) and simply compute:

i(j1, . . . , jd) =
d∑

ν=1

iν =
d∑

ν=1

S0(mν − 1, d− ν + 1) =
d∑

ν=1

(
mν + d− ν
d− ν + 1

)

=
d∑

ν=1

(
(
∑d−ν

k=0 jd−k) + d− ν
d− ν + 1

)
=

d∑
`=1

(
(
∑`−1

k=0 jd−k) + `− 1
`

)

=
d∑
`=1

(
n(`; j)
`

)
. (39.2.37)

This result confirms that the formula (2.15) does indeed return the desired index.

Exercises

39.2.1. Verify that one can easily convert between the glex and grevlex orderings by a
“double reversal” procedure: among each set of monomials of a given degree first reverse
the order of the variables, then reverse the order of the monomials. For example, consider
the monomials of degree 2 in 3 variables. Under glex ordering we have

z2
1 > z1z2 > z1z3 > z2

2 > z2z3 > z2
3 . (39.2.38)
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Now reverse the order of the variables by making the replacement z1, z2, z3 → z3, z2, z1,
and replace > by <. Then (2.38) becomes

z2
3 < z2z3 < z1z3 < z2

2 < z1z2 < z2
1 , (39.2.39)

or, equivalently,
z2

1 > z1z2 > z2
2 > z1z3 > z2z3 > z2

3 . (39.2.40)

Upon comparing (2.40) and (2.10), we see that (2.40) is in grevlex order.

39.3 Scalar Multiplication and Polynomial Addition

The use of any indexing scheme optimizes the operations of scalar multiplication and poly-
nomial addition. Let Mi(z) denote the generic monomial

Mi(z) = zj(i), (39.3.1)

where it is assumed that the exponent j vectors (arrays) are indexed by an index i. Sup-
pose f is any truncated power series. Then, since the Mi form a basis, there is a unique
decomposition of the form

f =
∑
i

f iMi (39.3.2)

where the f i are known coefficients. Indeed, the function f is stored by storing each coeffi-
cient f i at the ith location in some array.

Now suppose h is some other function that is related to f by scalar multiplication:

h = af (39.3.3)

where a is some scalar. Then h has the decomposition

h =
∑
i

hiMi (39.3.4)

with the coefficients hi given by the relation

hi = af i. (39.3.5)

Thus, when any indexing scheme is employed, multiplication of a function by a scalar is
equivalent to scalar multiplication of a vector.

Next suppose that f and g are any two polynomials, and we wish to compute the sum

h = f + g. (39.3.6)

Then we have unique decompositions

f =
∑
i

f iMi, (39.3.7)
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g =
∑
i

giMi, (39.3.8)

h =
∑
i

hiMi, (39.3.9)

where the f i and gi are known coefficients, and the hi are to be determined by (3.6). It
follows, again from the fact that the Mi form a basis, that we have the relation

hi = f i + gi. (39.3.10)

Thus, when any indexing scheme is employed, polynomial addition is equivalent to the simple
process of vector addition.

39.4 Polynomial Multiplication

Multiplication of polynomials is more complicated than addition. As before, define basis
monomials Mi(z) by (3.1). Also, suppose the polynomials f and g have the decompositions

f =
∑
i

f iMi, (39.4.1)

g =
∑
k

gkMk, (39.4.2)

and we wish to compute the product
h = fg. (39.4.3)

The polynomial h will have the decomposition

h =
∑
`

h`M`, (39.4.4)

and the problem is two determine the h` from the relation

h =
∑
`

h`M` = fg =
∑
i

f iMi

∑
k

gkMk

=
∑
i,k

f igkMiMk. (39.4.5)

We see that the basic problem consists of computing the products MiMk.
There are at least 3 ways to solve this problem in the context of indexing:

1. Given the indices i and k, find (say by table look-up) the corresponding exponents j(i)
and j(k). Add these exponents as vectors to get the resultant “sum” exponent vector
js,

js = j(i) + j(k). (39.4.6)

Here we have reckoned with the obvious relation

zj(i)zj(k) = zj(i)+j(k) = zj
s

. (39.4.7)
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Next find the index ` corresponding to js. If the monomials have been indexed using
modified glex sequencing, one can evaluate the Giorgilli formula (2.15) for this purpose
to find

` = i(js). (39.4.8)

Finally, increment h` by the quantity f igk. (Here we have assumed that all the h`

were initially set to zero.)

2. Given the indices i and k, find directly from a specially prepared look-up table the
corresponding value of `. Then increment h` by the quantity f igk.

3. Given the index `, use specially prepared look-back tables to find all indices i and k
such that

MiMk = M`. (39.4.9)

Then increment h` by all the products f igk.

All these methods will be discussed and compared in subsequent sections. At this point
we simply remark that the computation of the products MiMk is facilitated by the use
of a graded indexing scheme. Since we are limiting our computations and their results to
polynomials of degree less than or equal to m, we know that many of the products MiMk

need not be computed because their results are monomials of degree larger than m. The
identification of such unneeded products is easy in any graded indexing scheme, because the
degree of a product is the sum of the degrees of the factors.

39.5 Look-Up Tables

Let f and g be two polynomials. They can be decomposed into sums of homogeneous
polynomials, and hence can be written in the form

f = f0 + f1 + f2 + f3 + f4 + f5 + f6 + · · · , (39.5.1)

g = g0 + g1 + g2 + g3 + g4 + g5 + g6 + · · · . (39.5.2)

Here fm and gm denote homogeneous polynomials of degree m. Correspondingly, the product
fg of any two polynomials can also be organized into terms of common degree. Doing so
gives the result

fg = (f0g0)0 + (f0g1 + g0f1)1 + (f0g2 + g0f2 + f1g1)2

+ (f0g3 + g0f3 + f1g2 + g1f2)3 + (f0g4 + g0f4 + f1g3 + g1f3 + f2g2)4

+ (f0g5 + g0f5 + f1g4 + g1f4 + f2g3 + g2f3)5

+ (f0g6 + g0f6 + f1g5 + g1f5 + f2g4 + g2f4 + f3g3)6 + · · · . (39.5.3)

Here the terms appearing in fg have been collected according to their degrees using paren-
theses, and the parentheses have been given a subscript indicating the degree of the terms
enclosed.

There is no particular problem in carrying out multiplications of the form f0gm and g0fm
(since this operation is equivalent to scalar multiplication if the entries in gm and fm are
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viewed as the components of a vector). Multiplications of the form fmgn and gmfn with
m,n > 0 are more complicated to execute.

Suppose we rearrange the computationally intensive terms (those not of the form f0gm
and g0fm) in (5.3) as shown below:

computationally intensive terms =

(f1g1) + (f1g2 + f1g3 + f1g4 + f1g5 + · · · ) + (g1f2 + g1f3 + g1f4 + g1f5 + · · · )
+(f2g2) + (f2g3 + f2g4 + · · · ) + (g2f3 + g2f4 + · · · )
+(f3g3) + · · · . (39.5.4)

If these multiplications were to be performed with the aid of a look-up table, what would
this table look like, and how big would it be?

As a simple but instructive example, consider the case of polynomials through degree 4
in 2 variables (m = 4 and d = 2). Table 5.1 below shows, using phase-space notation, the
monomials for this case listed in a modified glex sequence. We wish to multiply polynomials
composed of these monomials, but only retain terms through degree 4.

Table 39.5.1: Modified glex sequence when m = 4 and d = 2.

i j1 j2 |j| monomial
1 1 0 1 X
2 0 1 Px
3 2 0 2 X2

4 1 1 XPx
5 0 2 P 2

x

6 3 0 3 X3

7 2 1 X2Px
8 1 2 XP 2

x

9 0 3 P 3
x

10 4 0 4 X4

11 3 1 X3Px
12 2 2 X2P 2

x

13 1 3 XP 3
x

14 0 4 P 4
x

Now consider the result of multiplying a monomial in f with index if and a monomial
in g with index ig. The result will be some monomial in h with index ih. (Here, to simplify
notation, we denote the relevant indices by if , ig, and ih rather than the i, k, ` of the
previous Section.) Table 5.2 shows a multiplication table for this process. It gives, for each
value of if and ig, the value of ih corresponding to the product monomial. Entries with an
asterisk “*” correspond to monomials having degree greater than 4. See Table 5.1. These
entries fall outside our interest. Consider, for example, the relation

X2 ×XPx = X3Px. (39.5.5)
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Inspection of Table 5.1 shows that the monomials X2 and XPx have the indices if = 3 and
ig = 4, respectively; and their product X3Px has the index ih = 11. Correspondingly, the
entry in Table 5.2 for if = 3 and ig = 4 has the value ih = 11.

Table 39.5.2: Multiplication table (when m = 4 and d = 2) giving values of ih.

if\ig 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 3 4 6 7 8 10 11 12 13 * * * * *
2 4 5 7 8 9 11 12 13 14 * * * * *
3 6 7 10 11 12 * * * * * * * * *
4 7 8 11 12 13 * * * * * * * * *
5 8 9 12 13 14 * * * * * * * * *
6 10 11 * * * * * * * * * * * *
7 11 12 * * * * * * * * * * * *
8 12 13 * * * * * * * * * * * *
9 13 14 * * * * * * * * * * * *
10 * * * * * * * * * * * * * *
11 * * * * * * * * * * * * * *
12 * * * * * * * * * * * * * *
13 * * * * * * * * * * * * * *
14 * * * * * * * * * * * * * *

Note that Table 5.2 has the form of a symmetric matrix with 5 diagonal entries and 18
entries above the diagonal. This symmetry results from the commutativity of (ordinary)
multiplication. Let {m, d} denote the number of locations (look-up table size) required to
store a multiplication table when this symmetry is taken into account. Then we have the
result {4, 2} = (5 + 18) = 23. Table 5.3 lists values of {m, d} for various values of m and d.

As will be seen in later sections, it may sometimes be advantageous to sacrifice the
savings in storage associated with symmetry in order to gain speed. We should therefore
also calculate the storage required when symmetry is ignored. Let {m, d}ns denote the
number of locations required to store the full multiplication table when symmetry is not
taken into account. (Here the superscript ns denotes no symmetry.) Then we have the
result {4, 2}ns = (5 + 18 + 18) = 41. Table 5.4 lists values of {m, d}ns for various values of
m and d.

We close this section with a description of how the dimensions {m, d} and {m, d}ns can
be computed in a general case. Suppose, for example, we wish to know the dimensionality
of the look-up table associated with the terms displayed in (5.4). (This is equivalent to
retaining terms through degree m = 6.) Let us also consider the case of 6 variables, d = 6.
Thus, we need to find {6, 6} and {6, 6}ns.

We begin with the case where symmetry is taken into account. Since the portion of the
look-up table associated with (f1g1) is 6× 6 and symmetric, we have the result

{f1g1} = [(6× 6)− 6)]/2 + 6 = (6× 7)/2 = 21. (39.5.6)
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Here we use the notation { } to denote the dimensionality of the associated portion of the
look-up table. Similarly, we find the results

Table 39.5.3: Multiplication look-up table size for polynomials of degree 1 through m in
various numbers of variables.

m {m, 2} {m, 3} {m, 4} {m, 5} {m, 6} {m, 7} {m, 8} {m, 9}
2 3 6 10 15 21 28 36 45
3 9 24 50 90 147 224 324 450
4 23 75 185 385 714 1218 1950 2970
5 45 180 525 1260 2646 5040 8910 14850
6 82 388 1309 3570 8400 17724 34386 62403
7 134 748 2905 8960 23520 54768 116226 229020
8 210 1354 5975 20655 60087 153615 355113 757185
9 310 2300 11475 44250 142065 397320 997425 2295150
10 445 3746 20941 89501 315546 961576 2612753 6470178
11 615 5852 36489 172116 663894 2197272 6444009 17131686
12 833 8869 61270 317366 1333976 4779320 15086409 42955185

m {m, 10} {m, 11} {m, 12} {m, 13} {m, 14} {m, 15}
2 55 66 78 91 105 120
3 605 792 1014 1274 1575 1920
4 4345 6149 8463 11375 14980 19380
5 23595 36036 53235 76440 107100 146880
6 107250 176176 278551 426244 634032 920040
7 424710 748748 1264627 2058784 3246320 4977600
8 1510795 2851563 5134090 8875802 14811930 23963370
9 4915625 9912760 18990530 34807500 61386150 104652000

m {m, 16} {m, 17} {m, 18} {m, 19} {m, 20} {m, 21}
2 136 153 171 190 210 231
3 2312 2754 3249 3800 4410 5082
4 24684 31008 38475 47215 57365 69069
5 197676 261630 341145 438900 557865 701316
6 1306212 1818813 2488962 3353196 4454065 5840758

{f2g2} = (21× 22)/2 = 231, (39.5.7)

{f3g3} = (56× 57)/2 = 1596. (39.5.8)

See Table 7.3.1. Next consider the portion of the look-up table required for (f1g2 + f1g3 +
f1g4 + f1g5). We write its dimensionality in the form

{f1g2 + f1g3 + f1g4 + f1g5} = {f1} × {g2 + g3 + g4 + g5}
= 6× (21 + 56 + 126 + 252) = 2730. (39.5.9)
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Table 39.5.4: Multiplication look-up table size for polynomials of degree 1 through m in
various numbers of variables when symmetry is not exploited.

m {m, 2}ns {m, 3}ns {m, 4}ns {m, 5}ns {m, 6}ns {m, 7}ns {m, 8}ns {m, 9}ns
2 4 9 16 25 36 49 64 81
3 16 45 96 175 288 441 640 891
4 41 141 356 750 1401 2401 3856 5886
5 85 351 1036 2500 5265 10045 17776 29646
6 155 757 2584 7085 16717 35329 68608 124587
7 259 1477 5776 17865 46957 109417 232288 457821
8 406 2674 11881 41185 119965 306901 709732 1513656
9 606 4566 22881 88375 283921 794311 1994356 4589586
10 870 7437 41757 178751 630631 1922361 5224220 12938355
11 1210 11649 72853 343981 1327327 4393753 12886732 34261371
12 1639 17655 122331 634271 2667029 9556925 30169816 85905366

m {m, 10}ns {m, 11}ns {m, 12}ns {m, 13}ns {m, 14}ns {m, 15}ns
2 100 121 144 169 196 225
3 1200 1573 2016 2535 3136 3825
4 8625 12221 16836 22646 29841 38625
5 47125 71995 106380 152776 214081 293625
6 214215 351989 556648 851929 1267385 1839265
7 849135 1497133 2528800 4117009 6491961 9954385
8 3020590 5701762 10266361 17749225 29620801 47922865
9 9830250 19824156 37979241 69612621 122769241 209300125

m {m, 16}ns {m, 17}ns {m, 18}ns {m, 19}ns {m, 20}ns {m, 21}ns
2 256 289 324 361 400 441
3 4608 5491 6480 7581 8800 10143
4 49216 61846 76761 94221 114500 137886
5 395200 523090 682101 877591 1115500 1402380
6 2611456 3636487 4976595 6704853 8906360 11679493
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Here we use the notation {fm} and {gm + · · · + gn} to denote the dimensionality of the
spaces of polynomials of degree m and degrees m through n, respectively. Similarly, we find
the results

{f2g3 + f2g4} = {f2} × {g3 + g4}
= 21× (56 + 126) = 3822. (39.5.10)

Finally we note that, by symmetry, the evaluation of (f1g2 + f1g3 + f1g4 + f1g5) and (g1f2 +
g1f3 + g1f4 + g1f5) can be done with the same look-up information, and similarly for (f2g3 +
f2g4) and (g2f3 +g2f4), etc. Thus, we have covered all possibilities for polynomials of degree
1 through 6. We find that the total dimension of the look-up table for such polynomials (in
6 variables) is given by the sum

{6, 6} = 21 + 231 + 1596 + 2730 + 3822 = 8400. (39.5.11)

Consider next the case where symmetry is ignored. Then (for d = 6) we have the results

{f1g1}ns = 6× 6 = 36, (39.5.12)

{f2g2}ns = 21× 21 = 441, (39.5.13)

{f3g3}ns = 56× 56 = 3136. (39.5.14)

The quantities (5.9) and (5.10) remain unchanged, but equal numbers of storage locations
must now be allocated for their reversed counterparts. Consequently, we find that the total
number of storage locations required through degree 6 (in 6 variables) when symmetry is
not exploited is given by the relation

{6, 6}ns = 36 + 441 + 3136 + 2× 2730 + 2× 3822 = 16, 717. (39.5.15)

We see that this number is slightly less than twice (5.11).
It is remarkable how much the decision to retain only terms through degree m (e.g.

ignore the * terms in Table 5.2) affects the size of the multiplication look-up table. Consider
the case of polynomials of degree 1 through 12 in 6 variables. According to Table 7.9.1 there
are

S(12, 6) = 18, 563 (39.5.16)

basis monomials in this case. Thus one might naively expect that

18, 563× 18, 563 ' 3.4× 108 (39.5.17)

storage locations would be required for a multiplication look-up table. This number is
prohibitively large. However, examination of Table 5.4 gives the much smaller result

{12, 6}ns = 2, 667, 029. (39.5.18)

According to (2.10) and (5.16) the largest index in the case m = 12 and d = 6 is 18,563.
We note that 215 = 32,768. Thus, the indices could all be stored in 2 byte entries, and the
storage required by (5.18) would be approximately 5.3 megabytes.
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Exercises

39.5.1.

39.6 Scripts

Suppose we wish to carry out some calculation that potentially involves a great deal of index
manipulation, and suppose we have some simple-minded method for doing so. What we can
then do is carry out this simple-minded method, while at the same time making and keeping
a record of the results of the index manipulation. We will call this record a script. Then,
any time we wish to repeat the calculation, we can bypass the need for index manipulation
by use of the script.

As an example of this approach, consider the problem of multiplying two polynomials f
and g to find the product

h = fg. (39.6.1)

For simplicity, we consider only the computationally intensive terms (5.4). Exhibit 6.1 shows
a simple-minded procedure for doing so.

Exhibit 32.6.1: Simple-minded program for polynomial multiplication.

c Loop over degree ifdeg and indices if and ig.

do 10 ifdeg=1,maxdeg-1

do 20 if=ibot(ifdeg),itop(ifdeg)

do 30 ig=1,itop(maxdeg-ifdeg)

c Look up exponent vectors corresponding to if and ig and add them.

do l=1,6

jf(l)=jtbl(l,if)

jg(l)=jtbl(l,ig)

jsum(l)=jf(l)+jg(l)

end do

c Find the index of vector sum.

call ndex(jsum,ih)

c Carry out multiplication, and store result in h(ih).

h(ih)=h(ih)+f(if)*g(ig)

30 continue

20 continue

10 continue

c

return

end

What is shown is a fragment of a FORTRAN program with various parameter and dimension
statements omitted. The procedure employs a triple loop that goes through all relevant
degrees in f and all relevant index pairs if and ig. Suppose maxdeg is the maximum
degree of the monomials we wish to retain. Then, in the factor f , we only need work
with monomials whose degree ifdeg lies in the range 1 ≤ ifdeg ≤ maxdeg − 1. Note that
exponents (and hence degrees) add under the operation of multiplication; and recall that we
are only considering computationally intensive terms so that in both the factors f, g only
terms of degree 1 and higher appear. Correspondingly, when working with terms of degree
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ifdeg in the factor f , the only terms in g that are required are those whose degree igdeg
lies in the range 1 ≤ igdeg ≤ maxdeg − ifdeg. All these considerations are implemented
conveniently, as shown, with the use of the arrays ibot and itop. See Section 32.2.5.

For each if, ig pair the following operations are performed:

1. Look up the corresponding exponents jf and jg from a previously prepared and stored
table jtb`.

2. Add these exponents to find the resulting exponent.

3. Compute the index ih corresponding to this exponent.

4. Carry out the multiplication of the monomial coefficients from f and g, and increment
the monomial coefficient of h corresponding to the index ih found in step 3 by the
resulting product.

Evidently this procedure requires numerous look-ups (step 1), numerous additions (step 2),
and numerous calls to an index computation routine (in this case the subroutine ndex, see
Exhibit 2.2).

Exhibit 6.2 shows the same routine except that step 4 above is replaced by storage of the
relevant index triplets if , ig, and ih. They are stored sequentially in terms of a “counting”
index ic. The result of running this routine is the arrays (look-up tables) iftb`, igtb`, and
ihtb`. The size of each of these arrays is {m, d}ns with m = maxdeg and (in this example)
d = 6. The array icmin, whose purpose will be described later, is also filled.

Exhibit 32.6.2: Program for preparation of script for polynomial multiplication.

This program prepares the tables iftbl, igtbl, ihtbl, and records their size,

icmax. It also fills the array icmin.

c Initialize counter.

ic=0

c Loop over degree ifdeg and indices if and ig.

do 10 ifdeg=1,maxdeg-1

do 20 if=ibot(ifdeg),itop(ifdeg)

do 30 ig=1,itop(maxdeg-ifdeg)

c Look up exponent vectors corresponding to if and ig and add them.

do l=1,6

jf(l)=jtbl(l,if)

jg(l)=jtbl(l,ig)

jsum(l)=jf(l)+jg(l)

end do

c Find the index of vector sum.

call ndex(jsum,ih)

c Update counter and fill tables.

ic=ic+1

iftbl(ic)=if

igtbl(ic)=ig

ihtbl(ic)=ih

c Fill icmin.

if(ig .eq. 1) icmin(if)=ic

30 continue
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20 continue

10 continue

c Set icmax

icmax=ic

c

return

end

The arrays iftb`, igtb`, and ihtb` can now be used as a script to carry out multiplication.
Exhibit 6.3 shows how. We see, by comparing Exhibits 6.1 and 6.3, that the triple loop has
been replaced by a single loop, and all index and exponent manipulations and calculations
are replaced by table look up. Indeed, the routine consists entirely of the actual calculation
to be performed (step 4 above) and table look up. Evidently this program should run far
faster than that of Exhibit 6.1. The price paid for this speed is the storage required for the
tables iftb`, igtb`, and ihtb`.

Exhibit 32.6.3: Program for polynomial multiplication using a script.

do 10 ic=1,icmax

if=iftbl(ic)

ig=igtbl(ic)

ih=ihtbl(ic)

10 h(ih)=h(ih)+f(if)*g(ig)

end

An even more compact program for polynomial multiplication using a script.

do 10 ic=1,icmax

10 h(ihtbl(ic))=h(ihtbl(ic))+f(iftbl(ic))*g(igtbl(ic))

end

Now that we understand the basic idea of how a script works, we should seek to optimize
the procedure. In particular, the tables iftb` and igtb` are not actually necessary. This is
good because their size, {m, d}ns, can be quite large.

Here the arrays ibot and itop can again be utilized. Consider the program fragment
shown in Exhibit 6.4. Evidently, by construction, this code will produce the same set of
if and ig values, and in the same order, as those stored in the routine of Exhibit 6.2 and
used in the routine of Exhibit 6.3. Thus, the need for the tables iftb` and igtb` has been
eliminated.

Exhibit 32.6.4: Program for producing if and ig pairs using less storage and

fewer look ups.

do 10 ifdeg=1,maxdeg-1

do 20 if=ibot(ifdeg),itop(ifdeg)

do 30 ig=1,itop(maxdeg-ifdeg)

.

.

.

30 continue

20 continue
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10 continue

end

We are now ready to reap the fruit of our deliberations. We know that the routine of
Exhibit 6.4 produces the same if and ig values, and in the same order, as those stored in
the routine of Exhibit 6.2 and used in the multiplication routine of Exhibit 6.3. Also, we see
from Exhibit 6.2 that the pointer ic is incremented by 1 each time an if , ig pair is produced.
As a result of these facts, we may write a multiplication routine equivalent to that of Exhibit
6.3 using the loop structure of Exhibit 6.4. This multiplication routine is shown in Exhibit
6.5 below. We see that this routine uses the table ihtb`, as does the routine of Exhibit 6.3,
but does not use the tables iftb` and igtb`. As noted earlier, this is a considerable savings
in storage since these tables may be large.

Exhibit 32.6.5: Program for polynomial multiplication using only one index

look-up table.

ic=1

do 10 ifdeg=1,maxdeg-1

do 20 if=ibot(ifdeg),itop(ifdeg)

do 30 ig=1,itop(maxdeg-ifdeg)

h(ihtbl(ic))=h(ihtbl(ic))+f(if)*g(ig)

ic=ic+1

30 continue

20 continue

10 continue

end

There is one last possible improvement to be considered. Suppose one of the factors in
(3.1), say f , is sparse. This is often the case in problems of practical interest. In this case,
the program shown in Exhibit 6.5 can be improved to exploit sparseness in f . To see how
this may be done, consider the contents of the arrays iftb`, igtb`, and ihtb`. Table 6.1,
for example, shows the contents of these arrays in the case m = maxdeg = 4 and d = 2.
Inspection of Table 6.1 shows that for each value of if there is a minimum value of ic for
which iftb`(ic) = if . Evidently, for a given value of if , the minimum value of ic occurs
when ig = 1. Suppose these values are put in an array which we will call icmin(if). For
example, Table 6.2 shows such an array in the case m = 4 and d = 2. Finally, inspection
of the code in Exhibit 6.2 shows how the array icmin can be constructed in general, and in
particular for the case d = 6.
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Table 39.6.1: Contents of the arrays iftb`, igtb`, and ihtb` in the case m = 4 and d = 2.

ic iftb` igtb` ihtb`
1 1 1 3
2 2 4
3 3 6
4 4 7
5 5 8
6 6 10
7 7 11
8 8 12
9 9 13
10 2 1 4
11 2 5
12 3 7
13 4 8
14 5 9
15 6 11
16 7 12
17 8 13
18 9 14
19 3 1 6
20 2 7
21 3 10
22 4 11
23 5 12
24 4 1 7
25 2 8
26 3 11
27 4 12
28 5 13
29 5 1 8
30 2 9
31 3 12
32 4 13
33 5 14
34 6 1 10
35 2 11
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ic iftb` igtb` ihtb`
36 7 1 11
37 2 12
38 8 1 12
39 2 13
40 9 1 13
41 2 14

Table 39.6.2: Contents of the array icmin in the case m = 4 and d = 2.

if icmin
1 1
2 10
3 19
4 24
5 29
6 34
7 36
8 38
9 40

Now consider the program shown in Exhibit 6.6 below. It tests the factor f(if) before
going into the do loop over ig. This whole loop is skipped if f(if) is zero. If this loop were
ever skipped in the program of Exhibit 6.5, the value of ic would be upset because it is
incremented within this loop. However, if ic is properly set each time the program goes into
this loop, which is what use of the array icmin does, then ic always has the proper value
even if this loop has possibly been skipped for some earlier values of if .

Exhibit 32.6.6: Program for polynomial multiplication using only one index

look-up table and designed to exploit possible sparseness in the factor f.

do 10 ifdeg=1,maxdeg-1

do 20 if=ibot(ifdeg),itop(ifdeg)

if(f(if) .ne. 0.d0) then

ic=icmin(if)

do 30 ig=1,itop(maxdeg-ifdeg)

h(ihtbl(ic))=h(ihtbl(ic))+f(if)*g(ig)

ic=ic+1

30 continue

endif

20 continue

10 continue

end

Let us briefly compare the theoretical speeds of the programs shown in Exhibits 6.5
and 6.6. We see that the program in Exhibit 6.6 makes ifmax = itop(maxdeg − 1) =
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S(maxdeg − 1, d) “if” tests. See (2.20). When an if test is passed, there is the additional
burden of an icmin(if) look up. However, when an if test fails, there is a savings of
igmax = itop(maxdeg − ifdeg) additions and multiplies as well as the overhead and other
operations associated with the ig loop. Since igmax can often be large, and multiplications
are slow, we conclude (providing the if test burden is not too large) that the program of
Exhibit 6.6 should be significantly faster than that of Exhibit 6.5 if f is sparse, and only
slightly slower if f is dense.

In many applications both f and g are known to be homogeneous. Homogeneity may
be viewed as a kind of sparseness, and this sparseness can also be exploited to produce a
still faster multiplication routine. Exhibit 6.7 shows such a routine. Note that it is now
necessary to offset the counter ic by the amount icoff to take into account the fact that the
ig loop now begins at ig = ibot(igdeg) rather than ig = 1.

Exhibit 32.6.7: Program for polynomial multiplication using only one index

look-up table and designed to exploit the fact that f and g are homogeneous

of degrees ifdeg and igdeg, respectively. It is also designed to exploit

possible additional sparseness in the factor f.

icoff=itop(igdeg-1)

do 10 if=ibot(ifdeg),itop(ifdeg)

if(f(if) . ne. 0.d0) then

ic=icmin(if)+icoff

do 20 ig=ibot(igdeg),itop(igdeg)

h(ihtbl(ic))=h(ihtbl(ic))+f(if)*g(ig)

ic=ic+1

20 continue

endif

10 continue

end

Suppose it is known in advance which entries in f are nonzero. Then it is possible to
eliminate the if statements in programs like those in Exhibits 6.6 and 6.7 with a possible
improvement in computational speed—particularly in the case of vector or pipe-lined com-
puter architecture for which the if test burden is relatively large. If (exactly) k entries in f
are known to be nonzero, then we can set up an array nzf(i) such that the values nzf(i)
with i ∈ [1, k] are the indices for the nonzero entries in f . With this array in hand we
can, for example, reformulate the routine of Exhibit 6.7 as shown in Exhibit 6.8. Here we
assume, as in Exhibit 6.7, that f is homogeneous of degree ifdeg. We remark that by the
introduction of still further arrays it is possible to exploit known sparseness in both f and
g.

Exhibit 32.6.8: Program for polynomial multiplication using only one look-up table,

known sparseness in f, and homogeneity in f and g.

icoff=itop(igdeg-1)

do 10 i=1,k

if=nzf(i)

ic=icmin(if)+icoff

do 20 ig=ibot(igdeg),itop(igdeg)

h(ihtbl(ic))=h(ihtbl(ic))+f(if)*g(ig)
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ic=ic+1

20 continue

10 continue

end

Note that the look-up table ihtb` in Exhibits 6.5 through 6.8 has size {m, d}ns. We
close this section by commenting that it is also possible to write multiplication routines that
employ a look-up table having the minimum size {m, d}. That is, it is possible to write a
routine that exploits the commutative symmetry of multiplication. However, we have not
found a way of doing so that simultaneously exploits sparseness.

Exercises

39.6.1.

39.7 Look-Back Tables

Consider the array ihtb`(ic) of ih values described in Section 6. See, for example, the right
column of Table 6.1. For each value of ic ranging from 1 through icmax = {m, d}ns, there is
a corresponding value of ih, and this value lies in the range (d+ 1) through S(m, d). (Note
that there are no zero or first order monomials under consideration since we are only worried
about computationally intensive terms.) Since {m, d}ns > S(m, d), there are generally many
ic values that yield a given value of ih. Indeed, in (6.1) there are many factors f(if) and
g(ig) that contribute to a given h(ih).

Next look at the program in Exhibit 6.3. We see that ic runs successively through the
values 1,2,· · · icmax. However, we also see that the same result would be achieved if ic
ran through the values 1,2,· · · icmax in any order. That is, the outcome of following the
script is independent of the order in which its instructions are executed. Suppose the array
ihtb`(ic) is rearranged so that the entries are listed in order of increasing ih. At the same
time we rearrange the arrays iftb` and igtb`. Finally, we set up a new ic index that again
runs successively through the values 1,2,· · · icmax. For example, Table 7.1 below shows the
result of this rearrangement applied to Table 6.1.

Examine Table 7.1. We see that for each value of ih in the column ihtb` there are
corresponding values of if and ig in the columns iftb` and igtb`, respectively. These if, ig
pairs are the indices for the monomials that are factors of the monomial labelled by ih.
Thus, the arrays iftb` and igtb` (after the rearrangement just described) provide what we
have called look-back tables. That is, given some ih, we can look back using these tables to
find the if, ig pairs that produced this ih. We note that each table has {m, d}ns entries.

These look-back tables can be used to construct a program for multiplication. To do
this, we make some observations. We see that for each value of ih in the column ihtb` there
is a minimum (bottom) value of the variable new ic, call it icbot, and a maximum (top)
value, call it ictop. Use these observations to construct two arrays: icbot(ih) and ictop(ih).
For example, Table 7.2 shows the contents of these arrays in the case m = 4 and d = 2.
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Also, we see that ih has the minimum value ihmin given by the relation

ihmin = d+ 1, (39.7.1)

and a maximum value ihmax given by

ihmax = S(m, d) (39.7.2)

with, in this case, m = maxdeg = 4 and d = 2.
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Table 39.7.1: The result of rearranging Table 6.1 in order of increasing ih.

new ic old ic iftb` igtb` ihtb`
1 1 1 1 3
2 2 1 2 4
3 10 2 1
4 11 2 2 5
5 3 1 3 6
6 19 3 1
7 4 1 4 7
8 12 2 3
9 20 3 2
10 24 4 1
11 5 1 5 8
12 13 2 4
13 25 4 2
14 29 5 1
15 14 2 5 9
16 30 5 2
17 6 1 6 10
18 21 3 3
19 34 6 1
20 7 1 7 11
21 15 2 6
22 22 3 4
23 26 4 3
24 35 6 2
25 36 7 1
26 8 1 8 12
27 16 2 7
28 23 3 5
29 27 4 4
30 31 5 3
31 37 7 2
32 38 8 1
33 9 1 9 13
34 17 2 8
35 28 4 5
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new ic old ic iftb` igtb` ihtb`
36 32 5 4
37 39 8 2
38 40 9 1
39 18 2 9 14
40 33 5 5
41 41 9 2

Table 39.7.2: The arrays icbot and ictop in the case m = 4 and d = 2.

ih icbot ictop
3 1 1
4 2 3
5 4 4
6 5 6
7 7 10
8 11 14
9 15 16
10 17 19
11 20 25
12 26 32
13 33 38
14 39 41

Now look at Exhibit 7.1. It shows a program for polynomial multiplication using the
arrays iftb` and igtb` as look-back tables. (Note that, although we have used the same no-
tation, here the tables iftb` and igtb` are rearranged versions of their original counterparts.)
We see that, with the use of the arrays icbot and ictop, the program ranges over all the
proper values of ic, and therefore from our previous discussion must give the same result as
the program of Exhibit 6.3.

Exhibit 32.7.1: Program for polynomial multiplication using look-back tables.

do 10 ih=ihmin,ihmax

do 20 ic=icbot(ih),ictop(ih)

h(ih)=h(ih)+f(iftbl(ic))*g(igtbl(ic))

20 continue

10 continue

end

How do the programs shown in Exhibits 6.5 and 7.1 compare? Here are some reasons to
believe that (for multiplication) the use of look-up tables is preferable to the use of look-back
tables:
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1. Examine Table 6.1. Evidently successive values of iftb`(ic) and igtb`(ic) are contiguous
as one goes down the list (increments ic). Therefore successive values of f [iftb`(ic)]
and g[igtb`(ic)] are adjacent in memory. Since modern computers are often designed
to fetch many adjacent items from memory at once and place them in fast-access cache
memory or in on-chip registers in anticipation that they may be needed shortly, one
expects there may be relatively few separate calls to slow access memory to find the
coefficients in f and g when look-up tables are used. Note, by contrast, that successive
values of ihtb`(ic) are not contiguous. Therefore there is the penalty that the results
of multiplication have to be scattered into slow access memory. They are, however,
not too widely dispersed since if f and g are of given degrees (as in Exhibit 6.7),
then all the entries in h will at least be of the same fixed degree, and therefore (in a
graded indexing scheme) stored fairly close together. Moreover, if monomial ordering
is used, then for each fixed if and all successive ig, the relevant ih values also occur
in increasing order. We conclude that, with the use of look-up tables, access to the
coefficients in both f and g may be fast, and access to the coefficients in h may be
somewhat slow. Now examine Table 7.1. Here the successive values of ihtb`(ic) are
contiguous. However, those of iftb`(ic) and igtb`(ic) are not. Indeed, the entries in f
and g that need to be accessed are not even of fixed degree. We conclude that, with
the use of look-back tables, access to the coefficients in both f and g may be quite
slow, and only access to the coefficients in h may be fast. Therefore, the use of look-up
tables is likely to yield faster code.

2. It appears that the look-back method requires the storage of two tables of dimension
{m, d}ns, while the look-up method involves the storage of only one. As we have seen,
these tables may be large. However, this objection may not be as serious as it sounds.
Examination of Table 7.1 shows that, for each fixed value of ihtb`, there is a close
relation between the contents of iftb` and igtb`. Indeed, one list is the reverse of
the other. Therefore, at the expense of some slightly more complicated logic and a
few additional look ups, it may be possible to work with a single table of dimension
{m, d}ns.

3. The look-back method also requires storage of the arrays icbot and ictop which are
each roughly of size S(m, d). The look-up method requires the additional arrays ibot
and itop which are only of size (maxdeg + 1) with maxdeg = m.

4. Finally, the look-up method can be modified to exploit possible sparseness and homo-
geneity as shown in Exhibits 6.6 through 6.8. This does not seem to be possible for
the look-back method.

Strictly speaking, some of the consideration listed above apply only to the case of com-
putation with one processor. Suppose one has several processors available in some form of
large-scale parallel architecture. Then one might assign the computation of various h(ih)
values to various processors, all to be computed in parallel. In this case, each computation
would use look-back tables, and the use of look-back tables might be preferable to the use
of look-up tables.

Let us pause to reflect. Look back over our discussion so far in this section, and the
content of the previous two sections. After some thought, we see that what we have learned
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is that the idea of a script is a unifying concept, and that the use of a look-up table and the
use of look-back tables are simply alternate ways of going through the script. Indeed, if we
look at Table 6.1 and regard the indices if and ig as entries in a two-component number
(if, ig) with most significant digit if and least significant digit ig, then we see that these
numbers are arranged in increasing size as we go down the list. Alternatively, if we look
at Table 7.1, we see that the list has been “graded” according to the value of ih; and the
items having a given ih are again arranged in increasing size based on the two-component
numbers (if, ig).

We close this section by observing that look-back tables can sometimes be employed to
optimal advantage for other calculations. Their use in the calculation of Poisson brackets is
described in Section 8. Here we describe their use in the evaluation of polynomials. Suppose
f(z) is a polynomial written in the form

f(z) =
∑
i

fiMi(z), (39.7.3)

where the fi are a given set of coefficients, and we wish to know the value of f at the point
z = w. Here, as before in Section 32.3, we have used the notation

Mi(z) = zj(i). (39.7.4)

The coefficients fi may be viewed as the entries in a vector of dimension S0(m, d). Define
another such vector with entries γi given by the relation

γi = Mi(w). (39.7.5)

Then the value f(w) can be written in the form

f(w) =
∑
i

fiγi. (39.7.6)

We see that (7.6) can be viewed as a vector dot product and, providing we know the entries γi,
this dot product can be computed very efficiently by computers having vector or pipe-lined
architecture.

But how can be find the γi in an efficient manner? If we use indexing based on a modified
glex sequence, we have the results

γ0 = 1, (39.7.7)

γi = wi for i = 1, 2, · · · d. (39.7.8)

Moreover, we claim there are two look-back tables i1(i) and i2(i) such that the remaining
γi can found from a recursion relation of the form

γi = [γi1(i)][γi2(i)] , i = d+ 1, · · ·S(m, d). (39.7.9)

Thus, it is possible to evaluate the γi by carrying out only [S(m, d)− d] multiplications.
To see how to construct the tables i1(i) and i2(i), we observe that each Mi(z) of degree

n = |j(i)|, and assuming n ≥ 2, can be factored as the product of a first degree monomial
with index i1(i) and another monomial of degree n− 1 having index i2(i):

Mi(z) = [Mi1(i)(z)][Mi2(i)(z)]. (39.7.10)
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Exhibit 7.2 shows a routine written to find two tables i1(i) and i2(i) having this property.
Inspection of the routine shows that it works as follows: Find and examine the exponent
j(i). Proceeding from the left, let jk(i) be the first nonzero entry in j(i). By construction k
must lie in the range 1 ≤ k ≤ d, and we have the result

zj(i) = zj11 z
j2
2 · · · z

jd
d = zkz

j′(i) (39.7.11)

where the exponent array j′(i) has the entries

j′`(i) = j`(i)− 1 when ` = k, (39.7.12)

j′`(i) = j`(i) when ` 6= k. (39.7.13)

Now define the table entries i1(i) and i2(i) by the rules

i1(i) = index for zk = k, (39.7.14)

i2(i) = index for the exponent j′(i). (39.7.15)

Table 7.3 displays the result of running this routine for the case m = 3 and d = 6. The
entries in this table should be compared with those in Table 2.1.

Exhibit 7.3 shows a routine for computing the γi based on the relations (7.7) through
(7.9). Look at Table 7.3. We see that the results of the algorithm of Exhibit 7.2 have the
pleasing feature that, for the most part, the values of i2(i) are contiguous for successive
values of i. Inspection of the routine of Exhibit 7.3 shows that it requires the values γi1(i)

and γi2(i) for successive values of i. Since the addresses are usually contiguous, it is very
likely that the values of the required γi1(i) and γi2(i) will either be in fast-access cache or in
registers when needed, and consequently this routine should be very fast.
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Exhibit 32.7.2: Program for factoring monomials. It produces arrays i1(i) and

i2(i) such that monomial(i)=monomial(i1(i))*monomial(i2(i)) and the monomials

monomial(i1(i)) in the first factor are all of degree one.

do 10 i=1,imax

do 20 k=1,6

j(k)=jtbl(k,i)

20 continue

do 30 k=1,6

if (j(k) .ne. 0) then

j(k)=j(k)-1

il(i)=k

call ndex (j,ij)

i2(i)=ij

go to 40

endif

30 continue

40 continue

10 continue

end

Exhibit 32.7.3: Program for building vector of monomial values using look-back tables

i1(i) and i2(i).

gam(0)=1.d0

do 10 i=1,id

gam(i)=w(i)

10 continue

do 20 i=id+1,imax

gam(i)=gam(i1(i))*gam(i2(i))

20 continue

end
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Table 39.7.3: The arrays i1(i) and i2(i) in the case m = 3 and d = 6.

i i1 i2
7 1 1
8 1 2
9 1 3
10 1 4
11 1 5
12 1 6
13 2 2
14 2 3
15 2 4
16 2 5
17 2 6
18 3 3
19 3 4
20 3 5
21 3 6
22 4 4
23 4 5
24 4 6
25 5 5
26 5 6
27 6 6

i i1 i2
28 1 7
29 1 8
30 1 9
31 1 10
32 1 11
33 1 12
34 1 13
35 1 14
36 1 15
37 1 16
38 1 17
...

77 4 25
78 4 26
79 4 27
80 5 25
81 5 26
82 5 27
83 6 27
...

Exercises

39.7.1.

39.8 Poisson Bracketing

When computing Poisson brackets of homogeneous polynomials, there are three natural
cases to consider. First, there are brackets of the form [f1, g1]. They are trivial to compute
in view of (1.7.10). Next in order of complexity are brackets of the form [fm, za] with m ≥ 2.
They will be referrred to as single-variable Poisson brackets, and are an essential ingredient
in the computation ofMza as in (7.1.1). With the aid of (7.6.10), they can be evaluated by
the formula

: fm : za = [fm, za] = −∂fm/∂z∗a. (39.8.1)

Finally, there are brackets of the form [fm, gn] with m,n ≥ 2. They will be called general
Poisson brackets.
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The purpose of this section is to describe efficient algorithms for the computation of
single-variable and general Poisson brackets.

We begin with the case of single-variable Poisson brackets. That is, we wish to compute

g =: f : za. (39.8.2)

For the discussion of Poisson brackets it is convenient to order the q’s and p’s in conjugate
pairs and to define zj (for the case of a 6-dimensional phase-space) in analogy with (2.1),

zj = qj11 p
j2
1 q

j3
2 p

j4
2 q

j5
3 p

j6
3 . (39.8.3)

Then, for example and in agreement with (8.1), we find the result

: zj : q1 = [zj, q1] = −∂zj/∂p1 = −j2q
j1
1 p

j2−1
1 qj32 p

j4
2 q

j5
3 p

j6
3 . (39.8.4)

Evidently every monomial single-variable Poisson bracket [zj, za] results in at most one
term, and many produce none. This circumstance can be exploited using look-back tables.
Suppose the monomial zk with

zk = qk1
1 p

k2
1 q

k3
2 p

k4
2 q

k5
3 p

k6
3 (39.8.5)

produces the monomial zj as a result of the multiplication

zkzb = zj. (39.8.6)

Then we have the result
∂zj/∂zb = jbz

k (39.8.7)

with jb guaranteed to be nonzero. Let i = i(k) be the index of the monomial with exponent
k. Then, corresponding to the relation (8.6), we can define a single-variable multiplication
table msv(i, b) by the rule

msv(i, b) = index of monomial with exponent j. (39.8.8)

Exhibit 8.1 below shows a program that prepares a script for single-variable Poisson
bracketing. It makes the single-variable multiplication table msv(i, b) as well as the tables
coef(i, b) and scoef(i, b), which contain various coefficients such as the (−j2) that appears in
(8.4). From their construction it is evident that all these tables have the modest dimension
itop(maxdeg− 1)× 6. [Actually the table coef(i, b) is not needed for single-variable Poisson
bracketing, but is useful for multplication-based general Poisson bracketing. See Exhibit
8.5.]

Exhibit 32.8.1: Program to produce script for single-variable

Poisson bracket routine.

subroutine svpbs

c

data icon /2,1,4,3,6,5/

data sign /1.d0,-1.d0,1.d0,-1.d0,1.d0,-1.d0/

c
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c Loop over phase-space variables z_k

c

do 10 k=1,6

izc=icon(k)

c

c Loop over ic

c

do 20 ic=ibot(1), itop(maxdeg-1)

c

c find and store exponents

c

do m=1,6

jl(m)=jtbl(m,ic)

end do

jltizc=jl(izc)

c

c fill tables

c

jl(izc)=jltizc+1

ifac=jl(izc)

coef(ic,k)=dfloat(ifac)

scoef(ic,k)=sign(k)*coef(ic,k)

if=ndex(jl)

msv(ic,k)=if

c

c restore exponent

c

jl(izc)=jltizc

c

20 continue

10 continue

c

return

end

Exhibit 8.2 shows the actual single-variable Poisson bracketing routine that uses the
script prepared by the program of Exhibit 8.1. It works directly with the index ig for
each monomial in the result g, and uses the table msv to look back to find the index
if = msv(ig, k) of the monomial in f that produced this result. Because each monomial
in f contributes to at most one term in g, no attempt has been made to exploit possible
sparseness in f . To test in advance of their use the various f(if) to see if they vanished
would result in significant computational overhead with little associated reward. Finally, we
note that, due to the use of monomial ordering, successive if values appear in an increasing
sequence. The required f(if) values are therefore likely to be in cache or in on-chip registers.

Exhibit 32.8.2: Program for single variable Poisson bracket.

subroutine svpb(f,ideg,k,g)

c

c This subroutine finds the single variable Poisson
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c bracket g=:f:z_k. Here f is homogeneous of degree ideg.

c

do ig=ibot(ideg-1),itop(ideg-1)

g(ig)=scoef(ig,k)*f(msv(ig,k))

end do

c

return

end

We next turn to the general Poisson bracket case. We wish to compute h = [f, g] when
both f and g are of degree two and higher. For a 6-dimensional phase space, the Poisson
bracket of any two monomials is given by the standard rule

[zj, zk] =
3∑
i=1

(∂zj/∂qi)(∂z
k/∂pi)− (∂zj/∂pi)(∂z

k/∂qi). (39.8.9)

At first count it might appear that a typical monomial Poisson bracket could contain 6
distinct terms. In fact, there are at most 3 distinct terms. To verify this assertion, consider
the i = 1 terms on the right side of (8.9). They give the result

(∂zj/∂q1)(∂zk/∂p1)− (∂zj/∂p1)(∂zk/∂q1)

= (j1z
j1−1
1 zj22 z

j3
3 z

j4
4 · · · )(k2z

k1
1 z

k2−1
2 zk3

3 z
k4
4 · · · )

−(j2z
j1
1 z

j2−1
2 zj33 z

j4
4 · · · )(k1z

k1−1
1 zk2

2 z
k3
3 z

k4
4 · · · )

= (j1k2 − j2k1)(zj1+k1−1
1 zj2+k2−1

2 zj3+k3

3 zj4+k4

4 · · · ). (39.8.10)

Evidently in the Poisson bracket result there is at most one monomial term for each value
of i in the sum (8.9), and there is none whenever (for odd `) the coefficient (j`k`+1− j`+1k`)
vanishes.

Exhibit 8.3 below shows a program that prepares a script for general Poisson bracketing.

Exhibit 32.8.3: Program to produce script for general Poisson bracket routine.

subroutine pbsc

c

c

c set counters

c

ic1=0

ic2=0

c

c loop over degrees

c

do 10 ifdeg=2,maxdeg

maxgdeg=maxdeg+2-ifdeg

do 20 igdeg=2,maxgdeg

c

c loop over if and ig

c

do 30 if=ibot(ifdeg),itop(ifdeg)

do 40 ig=ibot(igdeg),itop(igdeg)
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c

c find and store exponents and their sums

c

do k=1,6

jf(k)=jtbl(k,if)

jg(k)=jtbl(k,ig)

js(k)=jf(k)+jg(k)

end do

c

c increment ic2 counter

c

ic2=ic2+1

c

c find and count possible ih indices and coefficients,

c and set up tables

c

it=0

do 50 k=5,1,-2

iz=k

izc=k+1

ival=jf(iz)*jg(izc)-jf(izc)*jg(iz)

if(ival .eq. 0) go to 50

c

c compute exponents from exponent sums,

c and compute index

c

jsizt=js(iz)

jsizct=js(izc)

js(iz)=jsizt-1

js(izc)=jsizct-1

index=ndex(js)

c

c restore exponent sums

c

js(iz)=jsizt

js(izc)=jsizct

c

c increment it and ic1 counters,

c and store coefficients and indices

c

it=it+1

ic1=ic1+1

pbcoef(ic1)=dfloat(ival)

ih(ic1)=index

c

50 continue

c

c store the number of terms

c

nt(ic2)=it

c

40 continue

c

c set reset tables just after leaving ig loop
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c

irst1(if,igdeg)=ic1

irst2(if,igdeg)=ic2

c

30 continue

20 continue

10 continue

c

c record maximum required storage

c

maxic1=ic1

maxic2=ic2

c

return

end

The sizes of the arrays produced by this script can be quite large. The array nt is indexed
by the integer variable ic2, and has dimension maxic2. The arrays pbcoef and ih are indexed
by the integer variable ic1, and have dimension maxic1. The values of maxic1 and maxic2
are listed in Table 8.1 for various values of maxdeg, the maximum degree of the polynomials
one is considering.

The computation of maxic2 is elementary. The variable ic2 labels all possible if , ig pairs
that can potentially occur in a Poisson bracket calculation, and maxic2 is the total number
of such pairs. For example, if maxdeg = 3, we have to consider Poisson bracket terms of the
form [f2, f2], [f2, f3], and [f3, f2]. Inspection of Table 7.3.1 shows that (for a 6-dimensional
phase space) there are 21 f2 basis monomials and 56 f3 basis monomials. Thus, in this case
we expect the result

maxic2 = 21× 21 + 21× 56 + 56× 21 = 441 + 1176 + 1176 = 2793,

in agreement with the corresponding entry in Table 8.1. We note that the quantites
maxic2 (maxdeg) for Lie (Poisson bracket) multiplication are much larger than their counter-
parts {maxdeg, 6}ns for ordinary multiplication. Compare Tables 5.4 and 8.1. This increased
size results from the (−2) term in (7.6.16), which does not occur for ordinary multiplication.
As a simple example, many of the absent terms denoted by an asterisk “*” in Table 5.2 for
ordinary multiplication would not be absent for Poisson bracket multiplication.

The computation of maxic1 is more complicated, and is most easily done simply by
counting as in Exhibit 8.3. As described earlier, each possible if , ig monomial pair is
labeled by a value of ic2. The quantity nt(ic2) is the number of monomial terms that result
from Poisson bracketing the monomial pair with label ic2. We have already seen that this
number (including the possibility of a vanishing bracket) ranges from 0 to 3. The quantity
maxic1 is the sum over nt,

maxic1 =
maxic2∑
ic2=1

nt(ic2). (39.8.11)

Thus, for a fixed value of maxdeg, the quantity maxic1 is the number of nonzero monomials
that can occur in a Poisson bracket calculation including repetitions.
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Inspection of Table 8.1 shows that maxic1, for maxdeg ≤ 6, is smaller than or comparable
to maxic2. Evidently, although the Poisson bracket of each monomial pair could potentially
produce as many as 3 monomial terms, most Poisson brackets produce fewer or are in fact
zero. By contrast, maxic1 exceeds maxic2 for maxdeg > 6.

Table 39.8.1: Array sizes maxic1 and maxic2 (in the case of 6 phase-space variables) for
various values of maxdeg.

maxdeg maxic1 maxic2 maxdeg maxic1 maxic2
2 210 441 8 648342 570619
3 1662 2793 9 1514382 1231279
4 7986 11221 10 3320694 2518565
5 29622 35917 11 6902358 4923317
6 92802 99421 12 13701822 9254645
7 257190 247933

Exhibit 8.4 shows the actual general Poisson bracket routine that uses the script prepared
by the program of Exhibit 8.3. It is designed to exploit possible sparseness in f and known
homogeneity in both f and g. The array pbcoef(ic1) contains precomputed (and nonzero)
coefficients of the form (j`k`+1 − j`+1k`), and the look-up table ih(ict1) specifies where
contributions to the various terms in h are to be placed. For each if ,ig pair, the ih values
for successive ict1 values are arranged in increasing order in the hope of rapid memory
access. Thanks to the contents of the array nt(ic2), only potentially nonzero terms are
computed. The arrays irst1 and irst2 set the counters ic1 and ic2 to take into account
skipped terms due to sparseness and homogeneity.

Exhibit 32.8.4: Script-driven program for general Poisson bracket.

subroutine pb(f,ifdeg,g,igdeg,h)

c

c This subroutine computes the Poisson bracket

c h=[f,g]. The input polynomials f and g are

c homogeneous of degrees ifdeg and igdeg, respectively.

c

c clear h

c

do i=1,imax

h(i)=0.d0

end do

c

c find offsets

c

ic1=irst1(itop(ifdeg-1),igdeg)

ic2=irst2(itop(ifdeg-1),igdeg)

c

c loop over if and ig

c

do 10 if=ibot(ifdeg),itop(ifdeg)
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if(f(if) .eq. 0.d0) then

ic1=irst1(if,igdeg)

ic2=irst2(if,igdeg)

go to 10

end if

do 20 ig=ibot(igdeg),itop(igdeg)

if(g(ig) .eq. 0.d0) then

ic1=ic1+nt(ic2)

ic2=ic2+1

go to 20

end if

if(nt(ic2) .ne. 0) then

prod=f(if)*g(ig)

do 30 it=1,nt(ic2)

h(ih(ic1)) = h(ih(ic1)) + pbcoef(ic1)*prod

ic1=ic1+1

30 continue

end if

ic2=ic2+1

20 continue

10 continue

c

return

end

As remarked earlier, Table 8.1 shows that the script arrays required to drive the routine
of Exhibit 8.4 can be quite large for vaues of maxdeg beyond 9. This may not be an issue
as memory becomes ever more plentiful. However, it is worth remarking that there is an
alternate approach that requires much less memory but, of course, is computationally slower.
What one can do, as in the case of single-variable Poisson brackets, is use look-back tables
to find the various terms in ∂f/∂za and ∂g/∂zb, and then use look-up tables, as in Exhibit
6.8, to carry out the multiplications (∂f/∂za)(∂g/∂zb). Exhibit 8.5 below shows a general
Poisson bracket routine that uses this procedure.

Exhibit 32.8.5: General Poisson bracket program based on multiplication.

subroutine pb(f,ifdeg,g,igdeg,h)

c

data icon /2,1,4,3,6,5/

c

icoff=ibot(igdeg-1)

do 10 iz=1,6

izc=icon(iz)

c

do 20 ifl=ibot(ifdeg-1),itop(ifdeg-1)

if=msv(ifl,iz)

if(f(if) .ne. 0.d0) then

ic=icmin(ifl)+icoff

do 30 igl=ibot(igdeg-1),itop(igdeg-1)

ig=msv(igl,izc)

if(g(ig).ne. 0.d0) then

fac=scoef(ifl,iz)*coef(igl,izc)
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h(ihtbl(ic))=h(ihtbl(ic))+fac*f(if)*g(ig)

end if

ic=ic+1

30 continue

end if

20 continue

10 continue

c

return

end

39.9 Linear Map Action

Let f be any function of the 2n phase-space variables z, and let M be any 2n× 2n matrix.
Then we define a transformed function g by the rule

g(z) = f(Mz). (39.9.1)

One may view (9.1) as the action of the linear (usually but not necessarily symplectic) map
respresented by the matrix M on the function f . See (8.4.23) and (10.4.36) where actions of
this type arise in the concatenation and computation of maps. The purpose of this section
is to describe an efficient algorithm for carrying out the operation (9.1).

To achieve efficiency, it is useful to employ a precomputed list of variables jvblist(iv, ind).
Here ind is a monomial index, and for an nth-order monomial there will be n non-zero
variable numbers. For example, for the indexing scheme of Table 2.1, the monomial with
index 7 is X2 = XX. Correspondingly, the variable list (array) jvblist will have the entries

jvblist(iv = 1 to 2, 7) = 1, 1. (39.9.2)

As a second example, the monomial with index 19 is Y Py. Correspondingly jvblist will have
the entries

jvblist(iv = 1 to 2, 19) = 3, 4. (39.9.3)

For a third example, the monomial with index 77 is Pyτ
2 = Pyττ . Correspondingly jvblist

will have the entries
jvblist(iv = 1 to 3, 77) = 4, 5, 5. (39.9.4)

Exhibit 9.1 below shows a program that produces jvblist. It is a modification of the program
in Exhibit 2.3 so that both jtbl and jvblist are created simultaneously.

Exhibit 32.9.1: A program to produce both jtbl and jvblist based on a

method of Liam Healy.

subroutine tables

c ind = monomial index and imax = maximum value of ind.

c ipsv = phase space variable and id = number of phase space

variables.

c

parameter (imax = 209, id=6)
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dimension jtbl(id,imax), jvblist(id,imax)

c j = array of exponents

dimension j(id)

c initialize exponents

data j/id*0/

c icarry = temporarily stored value of j(id).

c lnzj = last non-zero j

c

c sequentially create exponent table jtbl and the array jvblist

c

do ind=1,imax

c

c set quantities

c

icarry=j(id)

j(id)=0

lnzj=0

c

c search for last nonzero j

c

do ipsv=1,id-1

if (j(ipsv).gt.0) lnzj=ipsv

enddo

c

c find next set of exponents

c

if (lnzj.gt.0) j(lnzj)=j(lnzj)-1

j(lnzj+1)=1+icarry

c

c store exponents in jtbl

c

do ipsv=1,id

jtbl(ipsv,ind)=j(ipsv)

enddo

c

c create jvblist

c

iv=1

do ipsv=1,id

do k=1,j(ipsv)

jvblist(iv,ind)=ipsv

iv=iv+1

enddo

enddo

c

enddo

c

return

end

With this background information in mind, we are ready to present the algorithm that
carries out the operation (9.1). It is shown in Exhibit 9.2 below.

Exhibit 32.9.2: Program for linear map action.
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subroutine xform(f,ideg,em,g)

c

c Transforms a polynomial f of degree ideg by the linear

c map whose matrix representation is em. The coefficients

c of the resultant polynomial f(em*z) are stored in the

c array g. Thus g=f(em*z).

c

c initialise g array

c

do k=1,imax

g(k) = 0.d0

end do

c

c loop over monomials of degree ideg

c

do 100 n=ibot(ideg),itop(ideg)

if(f(n) .eq. 0.d0) goto 100

c

c clear the array ta

c

do k=7,itop(ideg)

ta(k) = 0.d0

end do

c

c work on the ideg variables in the monomial

c

c treatment of first variable

c

c transform first variable in monomial and place result in ta1

c and ta

c

jiv = jvblist(1,n)

do k=1,6

ta1(k) = em(jiv,k)

ta(k) = ta1(k)

end do

c

c loop over remaining variables

c

do 110 iv=2,ideg

c

c find next variable

c

jivn = jvblist(iv,n)

c

c if next variable is the same as the previous one,

c build up product in ta

c

if(jivn .eq. jiv) go to 120

c

c otherwise, if the next variable is different from

c the previous one, transform that variable, place

c result in ta1, and build up product in ta
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c

jiv = jivn

do k=1,6

ta1(k) = em(jiv,k)

end do

c

120 continue

c

c build up product

c

icdeg = iv-1

do 130 i1=1,6

if(ta1(i1) .ne. 0.d0) then

do 140 i2=ibot(icdeg),itop(icdeg)

140 ta(iprodex(i2,i1)) = ta1(i1)*ta(i2)

endif

130 continue

c

110 continue

c

c accumulate sum in g

c

do nn=ibot(ideg),itop(ideg)

g(nn) = g(nn) + f(n)*ta(nn)

end do

c

100 continue

c

return

end

39.10 General Vector Fields

Let f = (f1, f2, · · · fd) be a collection of d functions of z, and suppose each function fa is a
truncated power series in z. Let Lf be the vector field associated with f . See Section 5.3.

Using the tools already developed, it is easy to envision how to construct programs that
would represent, multiply by scalars, and from linear combinations of such vector fields. We
simply store and manipulate the underlying collections of functions in the obvious way.

Beyond these operations, we would also like to apply Lf to a function g where it assumed

that g is also a truncated power series. That is, we wish to find the truncated power series
for h defined by the equation

h = Lf g =
∑
a

fa(∂g/∂za). (39.10.1)

Moreover, suppose f and g are two collections of truncated power series. Let Lf and

Lg be their associated vector fields. It is easily verified that the commutator of two vector
fields is again a vector field. That is, there is a collection of functions h such that

#Lf#Lg = {Lf ,Lg} = LfLg − LgLf = Lh. (39.10.2)
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Given the collections of truncated power series for f and g, we would like to find the
collection of truncated power series for h.

The purpose of this section is to describe programs for computing h in (10.1) and h in
(10.2).

It is evident from (10.1) that the computation of h involves partial differentiation and
function multiplication. The same is true for the computation of h. From the representation

Lh =
∑
b

hb(∂/∂zb) (39.10.3)

and (10.2) we find the result

ha = Lhza = LfLgza − LgLf za = Lf ga − Lgfa. (39.10.4)

Therefore, the computation of commutators involves the action (10.1) of vector fields on
functions which, in turn, again involves partial differentiation and function multiplication.

In principle, it is possible to write scripted programs that would perform all the opera-
tions in (10.1) and (10.3) in an optimal way. However, for simplicity, we will only describe a
scripted program for partial differentiation. This program can then be used in conjunction
with those for multplication and addition to carry out all the required operations.

The operation of partial differentiation is similar to, and in fact simpler than, single-
variable Poisson bracketing. See (8.1). Therefore, it is conviently done with the aid of a
script and look-back tables. Exhibit 10.1 shows a program that generates a script for partial
differentiation. It makes the single-variable multiplication table msv(ic, k) and the table
coef(ic, k) that contains the coefficients jb that occur in (8.7). Finally, Exhibit 10.2 shows
the partial differentiation routine that uses the script prepared by the program of Exhibit
10.1.

Exhibit 32.10.1: Program to produce script for partial

differentiation routine.

subroutine pds

c

c Loop over phase-space variables z_k

c

do 10 k=1,6

iz=k

c

c Loop over ic

c

do 20 ic=ibot(1), itop(maxdeg-1)

c

c Find and store exponents

c

do m=1,6

jl(m)=jtbl(m,ic)

end do

jltiz=jl(iz)

c

c Fill tables
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c

jl(iz)=jlizt+1

ifac=jl(iz)

coef(ic,k)=dfloat(ifac)

if=ndex(jl)

msv(ic,k)=if

c

c Restore exponent

c

jl(iz)=jltiz

c

20 continue

10 continue

c

return

end

Exhibit 32.10.2: Program for partial differentiation.

subroutine pd(f,ideg,k,g)

c

c This subroutine finds the partial derivative

c g=df/dz_k. Here f is homogeneous of degree ideg.

c

do ig=ibot(ideg-1), itop(ideg-1)

g(ig)=coef(ig,k)*f(msv(ig,k))

end do

c

return

end

39.11 Expanding Functions of Polynomials

39.12 Differential Algebra

39.13 Other Methods
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Appendix A

Størmer-Cowell and Nyström
Integration Methods

The differential equations of classical mechanics often involve only second derivatives with
no first derivatives present. In this case it is possible to work directly with the second order
equations instead of converting them into a first order set of twice the dimensionality. The
result can be a saving in computer time and an increase in accuracy. We shall describe
methods due to Størmer and Cowell and Nyström. See Chapter 2 for notation.

A.1 Preliminary Derivation of Størmer-Cowell

Method

Consider a set of second-order equations of the form

ÿ(t) = f(y, t). (A.1.1)

[We remark that if a Hamiltonian is of the form H = p · p/2 +V (q, t), it leads to differential
equations of the form (1.1).] Then, using arguments similar to those of Chapter 2, we have
the integration formulas

∇2yn+1 = ∇2D−2fn+1, (A.1.2)

∇2yn+1 = ∇2(1−∇)−1D−2fn. (A.1.3)

By expanding (1.2) and (1.3) and using (2.4.13), we may rewrite our results as

yn+1 = 2yn − yn−1 + h2[∇/ log(1−∇)]2fn+1, (A.1.4)

yn+1 = 2yn − yn−1 + h2(1−∇)−1[∇/ log(1−∇)]2fn. (A.1.5)

As in Chapter 2, we interpret the right sides (1.4) and (1.5) in terms of power series.
After truncation we obtain the predictor and corrector formulas

yn+1 = 2yn − yn−1 + h2

N∑
k=0

αk∇kfn+1, (corrector) (A.1.6)

2357



2358 A. STØRMER-COWELL AND NYSTRÖM INTEGRATION METHODS

yn+1 = 2yn − yn−1 + h2

N∑
k=0

βk∇kfn, (predictor) (A.1.7)

or the expanded versions

yn+1 = 2yn − yn−1 + h2

N∑
k=0

∼
α
N

k f
n+1−k, (corrector) (A.1.8)

yn+1 = 2yn − yn−1 + h2

N∑
k=0

∼
β
N

k f
n−k. (predictor) (A.1.9)

The corrector and predictor truncation errors associated with (1.6) and (1.7) may be
estimated using arguments similar to the Adams case. The result is

yn+1
true − yn+1

corr ≈ hN+3αN+1(dN+3y/dtN+3)|t=tn , (A.1.10)

yn+1
true − yn+1

pred ≈ hN+3βN+1(dN+3y/dtN+3)|t=tn . (A.1.11)

Note that the predictor and corrector are one order higher accurate than their Adams
counterparts. See (2.4.37) and (2.4.38). This increase in accuracy arises from the fact that
the original differential equations being integrated are second order with no first derivatives
present.

The coefficients αk, βk are listed in Table 1 below, and the associated coefficients
∼
α
N

k ,
∼
β
N

k

are listed in Tables 2 and 3.

Table 1

k 0 1 2 3 4 5 6 7 8 9
αk 1 −1 1

12
0 −1

240
−1
240

−221
60480

−19
6048

−9829
3628800

−407
172800

βk 1 0 1
12

1
12

19
240

3
40

863
12096

275
4032

33953
518400

8183
129600

|βk/αk| 1 0 1 ∞ 19 18 ∼ 20 ∼ 22 ∼ 24 ∼ 27

Table 2

The Størmer-Cowell Corrector Coefficients
∼
α
N

k .

k N 2 3 4 5 6 7 8 9
0 1

12
1
12

19
240

18
240

4315
60480

4125
60480

237671
3628800

229124
3628800

1 10 10 204 209 53994 55324 3398072 3474995
2 1 1 14 4 −2307 −6297 −653032 −960724
3 0 4 14 7948 14598 1426304 2144252
4 −1 −6 −4827 −11477 −1376650 −2453572
5 1 1578 5568 884504 1961426
6 −221 −1551 −368272 −1086220
7 190 90032 397724
8 −9829 −86752
9 8547

The denominator of each of the coefficients of the first line is to be repeated for all the
coefficients of the corresponding column.
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Table 3

The Størmer-Cowell Predictor Coefficients
∼
β
N

k .

k N 2 3 4 5 6 7 8 9
0 13

12
14
12

299
240

317
240

168398
120960

176648
120960

5537111
3628800

5766235
3628800

1 −2 −5 −176 −266 −185844 −243594 −9209188 −11271304
2 1 4 194 374 317946 491196 21390668 29639132
3 −1 −96 −276 −311704 −600454 −31323196 −50569612
4 19 109 184386 473136 30831050 59700674
5 −18 −60852 −234102 −20331636 −49202260
6 8630 66380 8646188 27892604
7 −8250 −2148868 −10397332
8 237671 2299787
9 −229124

The denominator of each of the coefficients of the first line is to be repeated for all the
coefficients of the corresponding column. Note that the entries for N = 6 and N = 7 are
not reduced to lowest terms. Both numerator and denominator should be divided by two.

Exercises

A.1.1. Make a study of the
∼
α’s and

∼
β’s similar to that made in Exercise 2.4.4 for the

∼
a’s

and
∼
b’s.

A.2 Summed Formulation

In principle the integration formulas (1.8) and (1.9) can be used as they stand. However in
practice it has been found that a so called summed formulation has better performance with
respect to round-off errors. It also reduces the truncation error by an additional factor of h
without requiring additional starting values. Because the derivation of the summed formu-
lation is a bit involved, we shall first state the procedure, and then provide the derivation.

A.2.1 Procedure

Suppose we know the values y0 · · ·yN and f 0 · · ·fN from some starting routine such as
Runge-Kutta. [Note that to use standard Runge-Kutta, one must first convert the set (1.1)
into a first-order set. There are variants of Runge-Kutta due to Nyström that work directly
with (1.1). See Section 5 at the end of this appendix.] We use the starting values to make
some preparatory calculations. Define vectors Gn for n = −1, 0, · · · , N by the rule

G−1 = 0, (A.2.1)
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Gn = h
n∑

m=0

fm for n ∈ [0, N ].

Next define a vector σ using

σ = h−1(yN − yN−1)−
N+1∑
k=0

∼
α
N+1

k GN−k. (A.2.2)

Finally, define vectors gn for n = −1, 0, · · · , N by writing

gn = Gn + σ. (A.2.3)

This completes the preparatory calculations.
The integration routine itself is given by the rules

yn+1 = yn + h
N+1∑
k=0

∼
α
N+1

k gn+1−k, (corrector) (A.2.4)

yn+1 = yn + h
N+1∑
k=0

∼
β
N+1

k gn−k, (predictor) (A.2.5)

gn+1 = gn + hfn+1. (A.2.6)

Their truncation errors have the estimates

yn+1
true − yn+1

corr ≈ hN+4αN+2(dN+4y/dtN+4)|t=tn , (A.2.7)

yn+1
true − yn+1

pred ≈ hN+3βN+1(dN+3y/dtN+3)|t=tn . (A.2.8)

Note that the corrector error is a factor of h smaller than that of the predictor. Whether
or not this improvement in accuracy is realized in practice depends upon how many times
the corrector is iterated. It can be shown that the simplest sequence PEC is insufficient.
For this reason, and to check the convergence of successive iterations, it is better to use the
sequences PECEC or PECECE.

A.2.2 Derivation

We now present the derivation for this procedure. We begin by rewriting (1.6) and (1.7)
with an upper summation limit of N + 1:

∇2yn+1 = h2

N+1∑
k=0

αk∇kfn+1, (corrector) (A.2.9)

∇2yn+1 = h2

N+1∑
k=0

βk∇kfn. (predictor) (A.2.10)
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We observe that the vectors gn obey the rules

g−1 = σ, (A.2.11)

gn = h
n∑

m=0

fm + σ for n ≥ 0.

It is easily checked that

∇gn = hfn for n ≥ 0. (A.2.12)

Insert (2.12) into (2.9). The result is

∇2yn+1 = h∇
N+1∑
k=0

αk∇kgn+1. (A.2.13)

Suppose we could peel off a ∇ from each side of (2.13). The result would be

∇yn+1 = h
N+1∑
k=0

αk∇kgn+1. (A.2.14)

Normally this operation is not justified since, by (2.4.5), the two sides of (2.14) could differ
by a constant vector. However, in our case we assert that the value of σ was cleverly defined
in (2.2) to insure that (2.14) would be correct. To check this claim, set n+ 1 = N in (2.14).
The result, using (2.3), is

∇yN = hαoσ + h
N+1∑
k=0

αk∇kGN . (A.2.15)

From Table 1 we find αo = 1, and, after expansion, we see that (2.15) is equivalent to (2.2).
Thus (2.14) is correct. Upon expansion it gives the corrector (2.4).

Let us now work on the predictor (2.10). Use of (2.12) gives

∇2yn+1 = h∇
N+1∑
k=0

βk∇kgn. (A.2.16)

Again we peel off a ∇ from each side, but this time we must insert a constant vector c. The
result is

∇yn+1 = h
N+1∑
k=0

βk∇kgn + c. (A.2.17)

What should c be? We shall see that to within sufficient accuracy it can be set to zero.
Assuming this to be the case, the expansion of (2.17) gives the predictor (2.5).

We now estimate the size of c. From the analog of (2.4.20) for g we find

gn = (1−∇)gn+1 (A.2.18)
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so that (2.17) can also be written as

∇yn+1 = h(1−∇)
N+1∑
k=0

βk∇kgn+1 + c. (A.2.19)

Subtract (2.14) from (2.19). The result is

c = h[
N+1∑
k=0

αk∇k − (1−∇)
N+1∑
k=0

βk∇k]gn+1. (A.2.20)

From their definition in (1.4) and (1.5), the coefficients αk and βk satisfy the identity

(1− z)
∞∑
0

βkz
k =

∞∑
0

αkz
k. (A.2.21)

It follows that
N+1∑
k=0

αk∇k − (1−∇)
N+1∑
k=0

βk∇k = βN+1∇N+2. (A.2.22)

Using (2.12) and (2.22), the expression for c can be simplified to give

c = h2βN+1∇N+1fn+1. (A.2.23)

Finally, remembering that f = ÿ and using (2.4.12) we find

c ≈ hN+3βN+1(dN+3y/dtN+3)|t=tn . (A.2.24)

Since (2.17) is equivalent to (2.10), we know it has the intrinsic error given in (1.11) with N
replaced by N + 1. This error is of order h smaller than c. Thus the error made in dropping
c is the dominant predictor error, and (2.8) is correct.

Exercises

A.2.1. Verify (2.21).

A.3 Computation of First Derivative

It often happens that values of ẏ are required at various points of a trajectory. For example,
from time to time we may need the velocity to compute the energy. If the trajectory is being
integrated with the Adams method, the velocity is available at each step. However, with
Størmer-Cowell only the coordinates yn are computed.

This apparent defect can be overcome with numerical differentiation. We observe that
by using (2.4.13) the equation

ẏn+1 = Dyn+1 (A.3.1)
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can be written in the form

ẏn+1 = −h−1 log(1−∇)yn+1. (A.3.2)

To use (3.2) as it stands requires the storage of previous y’s. However, we may rewrite it in
the form

ẏn+1 = −h−1[log(1−∇)/∇]∇yn+1, (A.3.3)

or using (2.14),

ẏn+1 = −[log(1−∇)/∇]
N+1∑

0

αk∇kgn+1. (A.3.4)

From the definition of the coeffients ak and αk [see (2.4.23), (1.4), and (1.6)] we learn that

− [log(1− z)/z]
∞∑
0

αkz
k =

∞∑
0

akz
k. (A.3.5)

Consequently, we also may write to within sufficient accuracy

ẏn+1 =
N+2∑
k=0

ak∇kgn+1, (A.3.6)

or expanding out,

ẏn+1 =
N+2∑
k=0

∼
a
N+2

k gn+1−k. (A.3.7)

We conclude that ẏ can be computed in terms of the stored g’s any time it is required. [If
the reader is wondering about the upper summation limit of N + 2 in (3.6) and (3.7), it is
not a misprint. He or she should see Exercise 4.2 at the end of Section A.4.]

Exercises

A.3.1. Verify (3.5).

A.4 Example Program and Numerical Results

We show below, with some associated subroutines, a summed Størmer-Cowell program.

A.4.1 Program

The program is written to solve (2.2.5) with the initial conditions (2.2.6). We have set N = 3
and h = 1/10, and the solution is initiated with the Runge-Kutta routine rk3 using a step
size of h/20.
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c This is the main program for illustrating a Stormer-Cowell

c method for numerical integration.

c

implicit double precision (a-h,o-z)

c

c Print heading.

c

write(6,100)

100 format

& (1h ,’time’,4x,’ycomp’,10x,’ydcomp’,10x,’ytrue’,

& 10x,’ydtrue’,/)

c

c Set up initial conditions and parameters. n is the number of integration

c steps we wish to make.

c

t=0.d0

h=.1d0

n=15

y=0.d0

ydot=1.d0

c

call sc(t,h,n,y,ydot)

c

end

c

c This is a sixth order Stormer-Cowell integration subroutine.

c

subroutine sc(t,h,n,y,ydot)

implicit double precision (a-h,o-z)

dimension g(5)

c

write(6,*) ’Starting with Runge-Kutta integration’

c

c Set up initial g values.

c

g(1)=0.d0

call evalsc(y,t,f)

g(2)=h*f

call prints(t,y,ydot,y1true(t),y2true(t),0)

do 10 i=2,4

call rk3(t,h/20.d0,20,y,ydot)

call evalsc(y,t,f)

g(i+1)=g(i)+h*f

if(i .eq. 3) yb=y

call prints(t,y,ydot,y1true(t),y2true(t),0)

10 continue

sigma=(y-yb)/h-(1.d0/240.d0)*

& (19.d0*g(5)+204.d0*g(4)+14.d0*g(3)+4.d0*g(2))

do 20 i=1,5

20 g(i)=g(i)+sigma

hdiv=h/240.d0

n=n-3

tint=t

write (6,*) ’Continuing with Stormer-Cowell integration’
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c

c Printing and integration loop.

c

do 100 i=1,n

c

c Predictor step.

c

t=t+h

p=y+hdiv*(299.d0*g(5)-176.d0*g(4)+194.d0*g(3)

& -96.d0*g(2)+19.d0*g(1))

call evalsc(p,t,f)

g6=g(5)+h*f

call dif(g,g6,ydot)

call prints(t,p,ydot,y1true(t),y2true(t),0)

c

c Corrector steps.

c

do 50 j=1,3

c=y+hdiv*(19.d0*g6+204.d0*g(5)+14.d0*g(4)

& +4.d0*g(3)-1.d0*g(2))

call evalsc(c,t,f)

g6=g(5)+h*f

call dif(g,g6,ydot)

call prints(t,c,ydot,y1true(t),y2true(t),1)

50 continue

c

c Update gs

c

do 60 j=1,4

60 g(j)=g(j+1)

g(5)=g6

y=c

t=tint+float(i)*h

100 continue

c

return

end

c This subroutine computes ydot from the g values.

c

subroutine dif(g,g6,ydot)

implicit double precision (a-h,o-z)

dimension g(5)

c

ydot=(1.d0/1440.d0)*(475.d0*g6+1427.d0*g(5)-798.d0*g(4)

& +482.d0*g(3)-173.d0*g(2)+27.d0*g(1))

c

return

end

c

c This subroutine evaluates f, the right side of the

c differential equation for the second order set.

c

subroutine evalsc(y,t,f)
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implicit double precision (a-h,o-z)

c

f=2.d0*t-y

c

return

end

A.4.2 Numerical Results

Below are the results of running this program. The format of the column ycomp is the same
as that of y1comp in Example 2.4.1. The column ydcomp contains values of ẏ computed
using (A.42). We observe that the solution is accurate to essentially eight significant figures.

time ycomp ydcomp ytrue ydtrue

Starting with Runge-Kutta integration

0.0000 0.00000000E+00 0.10000000E+01 0.00000000E+00 0.10000000E+01

0.1000 0.10016658E+00 0.10049958E+01 0.10016658E+00 0.10049958E+01

0.2000 0.20133067E+00 0.10199334E+01 0.20133067E+00 0.10199334E+01

0.3000 0.30447979E+00 0.10446635E+01 0.30447979E+00 0.10446635E+01

Continuing with Stormer-Cowell integration

0.4000 0.41058164E+00 0.10789390E+01 0.41058166E+00 0.10789390E+01

0.41058166E+00 0.10789390E+01

0.41058166E+00 0.10789390E+01

0.41058166E+00 0.10789390E+01

0.5000 0.52057444E+00 0.11224174E+01 0.52057446E+00 0.11224174E+01

0.52057446E+00 0.11224174E+01

0.52057446E+00 0.11224174E+01

0.52057446E+00 0.11224174E+01

0.6000 0.63535750E+00 0.11746644E+01 0.63535753E+00 0.11746644E+01

0.63535753E+00 0.11746644E+01

0.63535753E+00 0.11746644E+01

0.63535753E+00 0.11746644E+01

0.7000 0.75578228E+00 0.12351578E+01 0.75578231E+00 0.12351578E+01

0.75578232E+00 0.12351578E+01

0.75578232E+00 0.12351578E+01

0.75578232E+00 0.12351578E+01

0.8000 0.88264387E+00 0.13032933E+01 0.88264391E+00 0.13032933E+01

0.88264392E+00 0.13032933E+01

0.88264392E+00 0.13032933E+01

0.88264392E+00 0.13032933E+01

0.9000 0.10166730E+01 0.13783900E+01 0.10166731E+01 0.13783900E+01

0.10166731E+01 0.13783900E+01

0.10166731E+01 0.13783900E+01

0.10166731E+01 0.13783900E+01

1.0000 0.11585290E+01 0.14596977E+01 0.11585290E+01 0.14596977E+01

0.11585290E+01 0.14596977E+01

0.11585290E+01 0.14596977E+01

0.11585290E+01 0.14596977E+01

1.1000 0.13087926E+01 0.15464039E+01 0.13087926E+01 0.15464039E+01

0.13087927E+01 0.15464039E+01

0.13087927E+01 0.15464039E+01

0.13087927E+01 0.15464039E+01
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1.2000 0.14679609E+01 0.16376422E+01 0.14679609E+01 0.16376422E+01

0.14679609E+01 0.16376422E+01

0.14679609E+01 0.16376422E+01

0.14679609E+01 0.16376422E+01

1.3000 0.16364418E+01 0.17325012E+01 0.16364418E+01 0.17325012E+01

0.16364418E+01 0.17325012E+01

0.16364418E+01 0.17325012E+01

0.16364418E+01 0.17325012E+01

1.4000 0.18145502E+01 0.18300328E+01 0.18145503E+01 0.18300329E+01

0.18145503E+01 0.18300328E+01

0.18145503E+01 0.18300328E+01

0.18145503E+01 0.18300328E+01

1.5000 0.20025050E+01 0.19292628E+01 0.20025050E+01 0.19292628E+01

0.20025050E+01 0.19292628E+01

0.20025050E+01 0.19292628E+01

0.20025050E+01 0.19292628E+01

Exercises

A.4.1. Compare the error estimate (2.7) with the actual error made in the example above.

A.4.2. Check the derivation of (3.7) and find a formula similar to (2.7) for the expected
error in ẏ. Compare with the error in the example above. Suppose the sum in (3.6) were
terminated at N + 1. Show that the error in its expanded form, the analog of (3.7), would
then be larger.

A.5 Nyström Runge-Kutta Methods

We close this appendix with a brief description of Nyström Runge-Kutta (NRK) methods.
They are analogous to ordinary Runge-Kutta methods, but are designed to work directly
with second-order equations of the form (1.1). We will present methods that are analogous
to the Runge-Kutta methods RK3 given by (2.3.2), (2.3.3) and RK4 given by (2.3.4), (2.3.5).
Unlike Størmer-Cowell methods, we will need integration formulas for both y and ẏ.

The method that is analogous to RK3 is given by

yn+1 = yn + hẏn + (h2/6)(a+ 2b), (A.5.1)

ẏn+1 = ẏn + (h/6)(a+ 4b+ c), (A.5.2)

where at each step
a = f(yn, tn), (A.5.3)

b = f [yn + (h/2)ẏn + (h2/8)a, tn + h/2], (A.5.4)

c = f [yn + hẏn + (h2/2)b, tn + h]. (A.5.5)

This is a three-stage fourth-order method. That is, it is locally correct through order h4,
and makes local errors of order h5. Note that this method is one order higher in accuracy
than its counterpart RK3. Accordingly, we will call it NRK4. This increase in accuracy



2368 A. STØRMER-COWELL AND NYSTRÖM INTEGRATION METHODS

again arises from the fact that the original differential equations being integrated are second
order with no first derivatives present.

The method that is analogous to RK4 is given by

yn+1 = yn + hẏn + (h2/192)(23a+ 75b− 27c+ 25d), (A.5.6)

ẏn+1 = ẏn + (h/192)(23a+ 125b− 81c+ 125d), (A.5.7)

where at each step
a = f(yn, tn), (A.5.8)

b = f [yn + (2/5)hẏn + (2/25)h2a, tn + (2/5)h], (A.5.9)

c = f [yn + (2/3)hẏn + (2/9)h2a, tn + (2/3)h], (A.5.10)

d = f [yn + (4/5)hẏn + (4/25)h2(a+ b), tn + (4/5)h]. (A.5.11)

This is a four-stage fifth-order method, and is again one order higher in accuracy than its
counterpart RK4. Accordingly, we will call it NRK5.

Nyström Runge-Kutta methods can also be described in terms of Butcher tableaux. Let
b̄, b, and c be s-dimensional vectors with real entries, and let ā be an s× s matrix with real
entries. Consider stepping formulas of the form

yn+1 = yn + hẏn + h2

s∑
i=1

b̄iki, (A.5.12)

ẏn+1 = ẏn + h
s∑
i=1

biki, (A.5.13)

where at each step

ki = f(yn + hciẏ
n + h2

s∑
j=1

āijkj, t
n + cih). (A.5.14)

Evidently the procedures (5.1) through (5.5) and (5.6) through (5.11) are of this form.
In terms of the the notation just introduced, the general problem now is to impose various

conditions on the vectors b̄, b, and c and the matrix ā so that the integration method will
be of some particular order m, and perhaps have some other desirable properties. For this
purpose, it is convenient to arrange the vectors b̄, b, and c and the matrix ā into a tableau
(again called a Butcher tableau) of the form

c1 ā11 · · · ā1s

...
...

...
cs ās1 · · · āss

b̄1 · · · b̄s
b1 · · · bs

. (A.5.15)

The Butcher tableau for NRK4, the method (5.1) through (5.5), is
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0 0 0 0
1/2 1/8 0 0
1 0 1/2 0

1/6 2/6 0
1/6 4/6 1/6

. (A.5.16)

The Butcher tableau for NRK5, the method (5.6) through (5.11), is

0 0 0 0 0
2/5 2/25 0 0 0
2/3 2/9 0 0 0
4/5 4/25 4/25 0 0

23/192 75/192 −27/192 25/192
23/192 125/192 −81/192 125/192

. (A.5.17)

At this point we observe that, as in the case of ordinary Runge Kutta, it is sometimes
useful to rewrite the relations (5.12) through (5.14) in a somewhat different form. At each
step introduce intermediate times ti and coordinates yi by the rules

ti = tn + cih, (A.5.18)

yi = yn + hciẏ
n + h2

s∑
j=1

āijkj. (A.5.19)

With this convention (5.14) can be rewritten in the form

ki = f(yi, ti). (A.5.20)

Finally we copy (5.12) and (5.13) and place them last,

yn+1 = yn + hẏn + h2

s∑
i=1

b̄iki, (A.5.21)

ẏn+1 = ẏn + h
s∑
i=1

biki, (A.5.22)

Evidently the relations (5.18) through (5.22) are equivalent to the relations (5.12) through
(5.14), but in this expanded form it is clear that the ki are the values of f at the intermediate
points ti, yi.

Finally, we remark that there are Nyström counterparts to embedded Runge-Kutta pairs
so that it is possible to develop Nyström procedures with adaptive step-size control. Also,
as described in Section 12.2, there are symplectic Nyström-Runge-Kutta procedures. See
the books of Hairer et al. and Sanz-Serna and Calvo listed in the bibliography at the end
of this appendix.
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Exercises

A.5.1. Apply one step of the fourth-order Nyström method (5.1) through (5.5) to the
differential equation

ÿ = t2 (A.5.23)

with the initial conditions
y(0) = 0 and ẏ(0) = 0. (A.5.24)

That is, use (5.1) and (5.2) to compute y(h) and ẏ(h). Verify that your result has the
advertised accuracy. Repeat the calculation for the case ÿ = t3, and show that, as expected,
the result is not exact.



Bibliography

[1] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations. (John Wiley
1962) QA 372.H48. Error Propagation for Difference Methods. (John Wiley 1963) QA
431.H44.

[2] J.F. Frankena, “Størmer-Cowell: straight, summed and split. An overview”, J. Com-
putational and Applied Mathematics 62, p. 129-154 (1995).

[3] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I. Non-
stiff Problems, Springer (1993).

[4] J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall
(1994).

2371





Appendix B

Computer Programs for Numerical
Integration

In this appendix we list computer programs that are more efficient versions of those described
in Chapter 2. The programs are all subroutines, and need to be supplemented by a main
calling program and input and output statements of the reader’s own design. For the most
part, the programs are self-explanatory. All the integration programs call the subroutine eval
(or feval), which computes the vector f appearing in the differential equation ẏ = f(y, t).
To change from one set of differential equations to another, it is only necessary to change
eval. The integration routines themselves are general purpose. One only need specify ne,
the number of equations to be simultaneously integrated. As listed, the routines are set up
to integrate the equation used in the Examples in Chapter 2, i.e. ẍ+ x = 2t.

The routines given in this appendix are suitable for semi-serious use. Readers who
wish to pursue numerical integration in a serious way may wish to use a canned integration
package. Much work has gone into writing some such routines. However, the reader should
be sure to understand how the package he or she has selected actually works. Some produce
unpleasant surprises. See the references at the end of Chapter 2.
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B.1 A 3rd Order Runge-Kutta Routine

B.1.1 Butcher Tableau for RK3

The Butcher tableau for RK3 is given in (2.3.9).

B.1.2 The Routine RK3

subroutine rk3 (h,ns,nf,t,y)

c This is a Runge Kutta routine that makes local errors of order

c h**4. h is the step size, ns is the number of steps, t is the

c time, and y is the dependent variable array. Finally, nf is a

c flag to control whatever.

c In the next line, put in after ne the number of equations to be

c integrated.

parameter (ne=2)

dimension y(ne),yt(ne),f(ne),a(ne),b(ne),c(ne)

c yt is a temporary storage array and f is ydot.

c a, b, and c are used in integration.

tint=t

c tint is the initial time.

do 100 i=1,ns

call eval (t,y,f)

c eval is a subroutine that evaluates ydot.

do 10 j=1,ne

10 a(j)=h*f(j)

do 20 j=1,ne

20 yt(j)=y(j)+.5*a(j)

tt=t+.5*h

c tt is a temporary time

call eval (tt,yt,f)

do 30 j=1,ne

30 b(j)=h*f(j)

do 40 j=1,ne

40 yt(j)=y(j)+2.*b(j)-a(j)

tt=t+h

call eval (tt,yt,f)

do 50 j=1,ne

50 c(j)=h*f(j)

do 60 j=1,ne

60 y(j)=y(j)+(a(j)+4.*b(j)+c(j))/6.

t=tint+float(i)*h

100 continue

return

end

Note: The flag nf is not actually used. It is incorporated to make the program easier to
modify.
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B.2 A 4th Order Runge-Kutta Routine

B.2.1 Butcher Tableau for RK4

The Butcher tableau for RK4 is given in (2.3.10).

B.2.2 The Routine RK4

subroutine rk4 (h,ns,nf,t,y)

c This is a Runge Kutta routine that makes local errors of order

c h**5. h is the step size, ns is the number of steps, t is the

c time, and y is the dependent variable array. Finally, nf is a

c flag to control whatever.

c In the next line, put in after ne the number of equations to be

c integrated.

parameter (ne=2)

dimension y(ne),yt(ne),f(ne),a(ne),b(ne),c(ne),d(ne)

c yt is a temporary storage array and f is ydot.

c a, b, c, and d are used in integration.

tint=t

c tint is the initial time.

do 100 i=1,ns

call eval (t,y,f)

c eval is a subroutine that evaluates ydot.

do 10 j=1,ne

10 a(j)=h*f(j)

do 20 j=1,ne

20 yt(j)=y(j)+.5*a(j)

tt=t+.5*h

c tt is a temporary time

call eval (tt,yt,f)

do 30 j=1,ne

30 b(j)=h*f(j)

do 40 j=1,ne

40 yt(j)=y(j)+.5*b(j)

call eval (tt,yt,f)

do 50 j=1,ne

50 c(j)=h*f(j)

do 60 j=1,ne

60 yt(j)=y(j)+c(j)

tt=t+h

call eval (tt,yt,f)

do 70 j=1,ne

70 d(j)=h*f(j)

do 80 j=1,ne

80 y(j)=y(j)+(a(j)+2.*b(j)+2.*c(j)+d(j))/6.

t=tint+float(i)*h

100 continue

return

end
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Note: The flag nf is not actually used. It is incorporated to make the program easier to
modify.

B.3 A Subroutine to Compute f

subroutine eval (t,y,f)

c This is a subroutine that evaluates ydot.

dimension y(*),f(*)

c In the following lines put in the expressions for the f(i).

f(1)=y(2)

f(2)=2.*t-y(1)

return

end
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B.4 A Partial Double-Precision Version of RK3

subroutine rk3pdp (h,ns,nf,t,y)

c This is a Runge Kutta routine that works in partial double precision

c and makes local errors of order h**4. h is the step size, ns is the

c number of steps, t is the time, and y is the dependent variable array.

c Finally, nf is a flag to control whatever.

c In the next line, put in after ne the number of equations to be

c integrated.

parameter (ne=2)

dimension y(ne),yt(ne),f(ne),a(ne),b(ne),c(ne),yd(ne)

double precision yd

c yt is a temporary storage array and f is ydot.

c yd is a double precision storage array.

c a, b, and c are used in integration.

tint=t

c tint is the initial time.

do 2 j=1,ne

2 yd(j)=dble(y(j))

c The input array y is transferred into the double precision array yd.

c Beginning of rk3 loop.

do 100 i=1,ns

call eval (t,y,f)

c eval is a subroutine that evaluates ydot.

do 10 j=1,ne

10 a(j)=h*f(j)

do 20 k=1,ne

20 yt(j)=y(j)+.5*a(j)

tt=t+.5*h

c tt is a temporary time

call eval (tt,yt,f)

do 30 j=1,ne

30 b(j)=h*f(j)

do 40 j=1,ne

40 yt(j)=y(j)+2.*b(j)-a(j)

tt=t+h

call eval (tt,yt,f)

do 50 j=1,ne

50 c(j)=h*f(j)

do 60 j=1,ne

60 yd(j)=yd(j)+dble((a(j)+4.*b(j)+c(j))/6.)

c The array yd is incremented in double precision.

t=tint+float(i)*h

do 70 j=1,ne

70 y(j)=sngl(yd(j))

c Preparation of y for transfer out or the next run through the loop.

100 continue

return

end
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The error curve for this routine is exactly the same as that given in Figure (2.3.1) when
the step size h is .05 or larger. However, for smaller h the error curve is much better. The
error continues to decrease as h3 until h reaches a value a little less than 10−7 and then
remains approximately constant as h is decreased further. This is because the only serious
round-off error occurs in the statement y(j) = sngl(yd(j)), and this error is independent of
the number of steps. We see that partial double precision is worthwhile if good accuracy is
required.
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B.5 A 6th Order 8 Stage Runge-Kutta Routine

This section describes a sixth-order eight-stage Runge-Kutta routine. Note that, according
to Table 2.3.1, it should be possible to achieve sixth-order accuracy using seven stages.
Therefore the routine in this section, while workable, is not optimal with regard to employing
only the minimum number of required stages. On the other hand, again according to Table
2.3.1, there is no eight-stage method that has an order higher than six.

B.5.1 Butcher Tableau for RK6

The Butcher tableau for RK6 is

0 0 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0

1/6 2/6 2/6 1/6 ∗ ∗ ∗ ∗

. (B.5.1)

B.5.2 The Routine RK6

subroutine rk6(h,ns,t,y)

c Written by Rob Ryne, Spring 1986, based on a routine of

c J. Milutinovic.

c For a reference, see page 76 of F. Ceschino and J. Kuntzmann,

c Numerical Solution of Initial Value Problems, Prentice Hall 1966.

c This integration routine makes local truncation errors at each

c step of order h**7.

c That is, it is locally correct through terms of order h**6.

c Each step requires 8 function evaluations: The method has

c 8 stages.

c

implicit double precision (a-h,o-z)

c

parameter (ne=2)

dimension y(ne),yt(ne),f(ne),a(ne),b(ne),c(ne),d(ne),

# e(ne),g(ne),o(ne),p(ne)

c

tint=t

do 200 i=1,ns

call feval(t,y,f)

do 10 j=1,ne

10 a(j)=h*f(j)

do 20 j=1,ne

20 yt(j)=y(j)+a(j)/9.d+0

tt=t+h/9.d+0

call feval(tt,yt,f)
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do 30 j=1,ne

30 b(j)=h*f(j)

do 40 j=1,ne

40 yt(j)=y(j) + (a(j) + 3.d+0*b(j))/24.d+0

tt=t+h/6.d+0

call feval(tt,yt,f)

do 50 j=1,ne

50 c(j)=h*f(j)

do 60 j=1,ne

60 yt(j)=y(j)+(a(j)-3.d+0*b(j)+4.d+0*c(j))/6.d+0

tt=t+h/3.d+0

call feval(tt,yt,f)

do 70 j=1,ne

70 d(j)=h*f(j)

do 80 j=1,ne

80 yt(j)=y(j) + (-5.d+0*a(j) + 27.d+0*b(j) -

# 24.d+0*c(j) + 6.d+0*d(j))/8.d+0

tt=t+.5d+0*h

call feval(tt,yt,f)

do 90 j=1,ne

90 e(j)=h*f(j)

do 100 j=1,ne

100 yt(j)=y(j) + (221.d+0*a(j) - 981.d+0*b(j) +

# 867.d+0*c(j)- 102.d+0*d(j) + e(j))/9.d+0

tt = t+2.d+0*h/3.d+0

call feval(tt,yt,f)

do 110 j=1,ne

110 g(j)=h*f(j)

do 120 j=1,ne

120 yt(j) = y(j)+(-183.d+0*a(j)+678.d+0*b(j)-472.d+0*c(j)-

# 66.d+0*d(j)+80.d+0*e(j) + 3.d+0*g(j))/48.d+0

tt = t + 5.d+0*h/6.d+0

call feval(tt,yt,f)

do 130 j=1,ne

130 o(j)=h*f(j)

do 140 j=1,ne

140 yt(j) = y(j)+(716.d+0*a(j)-2079.d+0*b(j)+1002.d+0*c(j)+

# 834.d+0*d(j)-454.d+0*e(j)-9.d+0*g(j)+72.d+0*o(j))/82.d+0

tt = t + h

call feval(tt,yt,f)

do 150 j=1,ne

150 p(j)=h*f(j)

do 160 j=1,ne

160 y(j) = y(j)+(41.d+0*a(j)+216.d+0*c(j)+27.d+0*d(j)+

# 272.d+0*e(j)+27.d+0*g(j)+216.d+0*o(j)+41.d+0*p(j))/840.d+0

t=tint+i*h

200 continue

return

end

Note: This program calls the subroutine feval, which is another name for eval.
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B.6 Embedded Runge-Kutta Pairs

In this section we will describe the construction of Runge-Kutta pairs and provide two ex-
amples. Our discussion here is meant to provide background, but not actual code. As in
the case of other adaptive codes, much time has been spent by professional mathematicians
and numerical analysts writing optimal code for embedded Runge-Kutta procedures. Read-
ers are advised not to try writing such code on their own without first exploring existing
programs and without being prepared to expend considerable time and effort.

B.6.1 Preliminaries

Section 2.5.1 sketched the possibility of pairs of Runge-Kutta methods whose orders differ
(usually by one) and that, in making one integration step, share many or all intermediate
evaluation points. By subtracting the higher-order result from the lower-order result, one
can estimate the error in the lower-order result, and adjust the step size accordingly. In this
section we will describe two examples of Runge-Kutta pairs. Each example has the feature
that both methods of each pair employ the same k vectors. Thus both methods can be
carried out simultaneously with little added expense.

Equations (2.3.6) through (2.3.8) described the general Runge-Kutta method and its
characterization by an associated Butcher table. If there are two methods that utilize the
same k vectors, we may make definitions of the form

yn+1 = yn + h
s∑
i=1

biki, stepping formula (B.6.1)

ŷn+1 = yn + h
s∑
i=1

b̂iki, error estimator (B.6.2)

where at each step

ki = f(yn + h
s∑
j=1

aijkj, t
n + cih). (B.6.3)

This pair of methods may be described by an extended Butcher tableau of the form

c1 a11 · · · a1s

...
...

...
cs as1 · · · ass

b1 · · · bs

b̂1 · · · b̂s

(B.6.4)

As the annotation is intended to indicate, the relation (6.1) is to be used as a stepping
formula to propagate the solution, and the relation (6.2) is to be used in conjunction with
(6.1) to estimate and control the local error in making a given step.
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B.6.2 Fehlberg 4(5) Pair

Fehlberg was the first to propose and develop embedded pairs. One such pair, called Fehlberg
4(5), is that described by the (extended) Butcher tableau below:

Butcher Tableau for Fehlberg 4(5)

0 0 0 0 0 0 0

1
4

1
4

0 0 0 0 0

3
8

3
32

9
32

0 0 0 0

12
13

1932
2197

−7200
2197

7296
2197

0 0 0

1 439
216

−8 3680
513

− 845
4104

0 0

1
2
− 8

27
2 −3544

2565
1859
4104

−11
40

0

25
216

0 1408
2565

2197
4104

−1
5

0

16
135

0 6656
12825

28561
56430

− 9
50

2
55

(B.6.5)

The procedure has s = 6 stages. The stepping formula is locally exact through terms of
order h4. The error estimator is locally exact through terms of order h5. This procedure is
therefore referred to as a 4(5) procedure. Because the stepping formula used to propagate
the solution is of order 4, the whole procedure itself is locally exact through terms of order
m = 4. Note that, according to Table 2.3.1, the highest order a 6-stage method can have is
m = 5. Although the order 4 is relatively low in view of the number of stages involved, there
is some freedom in selecting the entries in the matrix a and the vectors b and b̂; and Fehlberg
selected them to minimize the size of the order h5 error terms in the stepping formula.

Error Estimation

Since yn+1 is locally exact through order 4 and ŷn+1 is locally exact through order 5, we
may define a local error vector ∆n by the rule

∆n = yn+1 − ŷn+1 = h
6∑
i=1

diki (B.6.6)

where
di = bi − b̂i. (B.6.7)

Note that in this approach only yn+1 is computed using (6.1), ŷn+1 is not computed, and
∆n is computed using the far right side of (6.6). So doing minimizes work and round-off
error.
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Control of Step Size

We now wish to use ||∆n|| to control the subsequent step size hn+1 or to specify how to
repeat, if necessary, the current step with a smaller step size.1 Exactly how to do so is an art
based on considerable experience with various possibilities, and is best left to professional
numerical analysts. Typical programs require the user to specify some desired tolerance
Tol and perhaps some initial step size h0, and the program automatically adjusts the step
size as the integration proceeds based on this information.2 As is the case with adaptive
predictor-corrector and extrapolation methods, the prospective user is advised to first try
and understand programs professionally written before attempting to write any of his/her
own.

Interpolation-Dense Output

When employing a fixed step size method it is easy to integrate from some initial time t0 to
the final time t0 + T simply by requiring the relation

Nh = T (B.6.8)

between the step size h and the interval duration T . Recall Section 2.1. However, when the
time step is variable, the time t0 + T is generally not among the times tn at which the yn

are computed, and so the quantity y(t0 + T ) is not among the yn.

In the case of a Runge-Kutta method, since it is a single-step method, this problem of
finding an accurate y(t0 + T ) is fairly easy to solve. First, over the course of integration,
monitor the times tn and find the first such time, call it tn

∗
, for which

tn
∗ ≥ t0 + T. (B.6.9)

Next, define a step size h∗ by the rule

h∗ = t0 + T − tn∗ . (B.6.10)

Note that h∗ ≤ 0. Finally, execute one step of the Rung-Kutta method in use with the time
step h∗ and the initial condition yn

∗
. So doing determines y(t0 + T ) to the accuracy of the

integration method. In effect, this method integrates backward from the time tn
∗

to the
time t0 + T .

There are some situations, for example when graphical output is needed, in which one
desires an accurate and efficient method for finding y(tn + θhn) for any θ ∈ [0, 1]. There
are procedures that prepare, at each integration step, polynomials in θ for this purpose, and
these procedures utilize the k vectors computed in the course of a Runge-Kutta step. See,
for example, the book of Hairer, Nørsett, and Wanner cited at the end of this appendix.

1For computational efficiency, in this application it is convenient to define the vector norm || ∗ || to be
the component moduli sum norm (3.7.20).

2There are also procedures for determining h0 automatically so that only Tol need be specified.
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B.6.3 Dormand-Prince 5(4) Pair

Inspired by the work of Fehlberg, Dormand and Prince and others developed procedures for
which the stepping formula is higher order than the error estimator, and the stepping formula
is optimized to minimize its still higher-order error terms.3 One procedure of Dormand and
Prince is specified by the following Butcher tableau:

Butcher Tableau for Dormand-Prince 5(4)

0 0 0 0 0 0 0 0

1
5

1
5

0 0 0 0 0 0

3
10

3
40

9
40

0 0 0 0 0

4
5

44
45

−56
15

32
9

0 0 0 0

8
9

19372
6561

−25360
2187

64448
6561

−212
729

0 0 0

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

0 0

1 35
384

0 500
1113

125
192

−2187
6784

11
84

0

35
384

0 500
1113

125
192

−2187
6784

11
84

0

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

(B.6.11)

The procedure has 7 stages. But the method for the stepping formula is FSAL, and therefore
only requires the work of a 6-stage method after the first integration step. See the material
at the end of Subsection 2.3.4. The stepping formula is locally exact through terms of order
h5. The error estimator is locally exact through terms of order h4. This method is therefore
referred to as a 5(4) method.4 Because the stepping formula is of order 5, and is used to
propagate the solution, the whole procedure itself is locally exact through terms of order
m = 5. Note that, according to Table 2.3.1, the highest order a 6-stage method can have
is m = 5. Thus the order is optimum in view of the effective number of stages involved.
Moreover, there is still some freedom in selecting the entries in the matrix a and the vectors
b and b̂. As mentioned at the beginning of this subsection, Dormand and Prince selected
them to minimize the size of the order h6 error terms in the stepping formula.5

3Procedures that use the higher-order formula for stepping are called local extrapolation procedures. Note
that here the word extrapolation has a different meaning than in Section 2.6.

4Some authors use the notation (4)5. However, whatever the notation, it is always the order of the
stepping formula that is not in parentheses, and the order of the error estimator that is in parentheses.

5Why choose, for the stepping formula, a seven-stage FSAL method rather than a six-stage non-FSAL
method? Both choices could yield a fifth-order stepping formula and a fourth-order error estimator. Dor-
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Error Estimation

Since yn+1 is locally exact through order 5 and ŷn+1 is locally exact through order 4, we
may now define a local error vector ∆n by the rule

∆n = ŷn+1 − yn+1 = −h
7∑
i=1

diki. (B.6.12)

Note that in carrying out the sum (6.12) the i = 2 term may be omitted since, according to
(6.11), both b2 and b̂2 vanish, and therefore d2 = 0.

Control of Step Size

We again wish to use ||∆n|| to control the step size. In this case it should be understood
that what is now being controlled is the error in the lower order error estimator with the
hope that, since it is of one order higher, the error in the stepping formula will be even better
controlled. Again, there are several possible procedures, and again the prospective user is
advised to first try and understand programs professionally written before attempting to
write any of his/her own.

Interpolation-Dense Output

The same methods and considerations apply here as in Subsection 6.2.

mand and Prince found that by so doing they were better able to choose the entries in the matrix a and the
vectors b and b̂ to minimize the order h6 error terms in the stepping formula.
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B.7 A 5th Order PECEC Adams Routine

subroutine adams5 (h,ns,nf,t,y)

c This is an N=4 PECEC Adams routine that is locally correct

c through terms of order h**5 and makes local errors of

c order h**6.

c h is the step size, and ns is the number of steps. t is the time, and

c y is the dependent variable array. nf is a flag that controls the mode

c of entry. If nf = ’start’, the trajectory is started with Runge Kutta.

c If nf = ’cont’, the solution is continued using previous "f" values.

c ns must exceed 4 when Adams is called with nf = ’start’.

c In the next line, put in after ne the number of equations to be

c integrated.

parameter (ne=2)

dimension y(ne),yp(ne),yc(ne),f1(ne),f2(ne),f3(ne),

& f4(ne),f5(ne),f6(ne)

c yp and yc are corrector arrays. f1 through f6 form the array of

c "f" values.

dimension a(5),am(5),b(5),bm(5)

c a,am and b,bm are coefficients used in the corrector and predictor,

c respectively.

data (a(i), i=1,5) /-19.,106.,-264.,646.,251./

data (b(i), i=1,5) /251.,-1274.,2616.,-2774.,1901./

save am,bm,f1,f2,f3,f4,f5

nsa=ns

c nsa is the number of steps to be made by Adams.

if (nf .eq. ’cont’) go to 20

c When nf = ’cont’, the integration has already been started earlier,

c and "f" values are assumed to exist. Otherwise, start with Runge Kutta.

c Set up the initial f array using Runge Kutta.

call eval (t,y,f1)

c eval is a subroutine that evaluates ydot.

call rk3 (h/5.,5,0,t,y)

call eval (t,y,f2)

call rk3 (h/5.,5,0,t,y)

call eval (t,y,f3)

call rk3 (h/5.,5,0,t,y)

call eval (t,y,f4)

call rk3 (h/5.,5,0,t,y)

call eval (t,y,f5)

c Now go into the finite difference procedure.

nsa=ns-4

c nsa is the number of steps to be made by Adams. If the integration

c began with Runge Kutta, Adams has 4 fewer steps to make.

hdiv=h/720.

do 10 i=1,5

am(i)=hdiv*a(i)

10 bm(i)=hdiv*b(i)

c am and bm are used in the corrector and predictor.

20 tint=t

c tint is the initial time for Adams.

do 100 i=1,nsa

c Begin with predictor.
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do 30 j=1,ne

30 yp(j)=y(j)+bm(1)*f1(j)+bm(2)*f2(j)+bm(3)*f3(j)

& +bm(4)*f4(j)+bm(5)*f5(j)

c First evaluation.

call eval (t+h,yp,f6)

c First use of corrector. Here we use yp as a storage array.

do 40 j=1,ne

yp(j)=y(j)+am(1)*f2(j)+am(2)*f3(j)+am(3)*f4(j)

& +am(4)*f5(j)

40 yc(j)=yp(j)+am(5)*f6(j)

c Second evaluation.

call eval (t+h,yc,f6)

c Second use of corrector.

do 50 j=1,ne

50 y(j)=yp(j)+am(5)*f6(j)

c Update table of f values.

do 60 j=1,ne

f1(j)=f2(j)

f2(j)=f3(j)

f3(j)=f4(j)

f4(j)=f5(j)

60 f5(j)=f6(j)

t=tint+float(i)*h

100 continue

return

end

Note: Here the flag nf controls the mode of entry.
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B.8 A 10th Order PECEC Adams Routine

subroutine adams10(h,ns,nf,t,y)

c Written by Rob Ryne, Spring 1986, based on a routine of Alex Dragt.

c This N=9 Adams integration routine makes local truncation errors

c at each step of order h**11. That is, it is locally correct through

c order h**10. Due to round off errors, its true precision is

c realized only when more than 64 bits are used.

c Warning: because this is a high-order method, the step size must be

c correspondingly small to achieve stability. For example, for the simple

c harmonic oscillator with unit frequency (xdoubleprime+x=0), at least

c 50 steps per oscillation are require to safely achieve stability and

c for the error analysis based on finite-difference considerations

c to be relevant.

implicit double precision (a-h,o-z)

c

character*6 nf

parameter (ne=2)

c

dimension y(ne),yp(ne),yc(ne),f1(ne),f2(ne),f3(ne),f4(ne),

# f5(ne),f6(ne),f7(ne),f8(ne),f9(ne),f10(ne),f11(ne)

c

dimension a(10),am(10),b(10),bm(10)

c

data (a(i),i=1,10)/57281.d0,-583435.d0,2687864.d0,

# -7394032.d0,13510082.d0,-17283646.d0,16002320.d0,

# -11271304.d0,9449717.d0,2082753.d0/

data (b(i),i=1,10)/-2082753.d0,20884811.d0,-94307320.d0,

# 252618224.d0,-444772162.d0,538363838.d0,-454661776.d0,

# 265932680.d0,-104995189.d0,30277247.d0/

c

nsa=ns

if (nf.eq.’cont’) go to 20

c

c rk start

iqt=5

qt=float(iqt)

hqt=h/qt

call feval(t,y,f1)

call rk78ii(hqt,iqt,t,y)

call feval(t,y,f2)

call rk78ii(hqt,iqt,t,y)

call feval(t,y,f3)

call rk78ii(hqt,iqt,t,y)

call feval(t,y,f4)

call rk78ii(hqt,iqt,t,y)

call feval(t,y,f5)

call rk78ii(hqt,iqt,t,y)

call feval(t,y,f6)

call rk78ii(hqt,iqt,t,y)

call feval(t,y,f7)

call rk78ii(hqt,iqt,t,y)

call feval(t,y,f8)
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call rk78ii(hqt,iqt,t,y)

call feval(t,y,f9)

call rk78ii(hqt,iqt,t,y)

call feval(t,y,f10)

nsa=ns-9

hdiv=h/7257600.0d+00

do 10 i=1,10

am(i)=hdiv*a(i)

10 bm(i)=hdiv*b(i)

c

c Adams routine

c

20 tint=t

do 100 i=1,nsa

do 30 j=1,ne

yp(j)=y(j)+bm(1)*f1(j)+bm(2)*f2(j)+bm(3)*f3(j)

# +bm(4)*f4(j)+bm(5)*f5(j)+bm(6)*f6(j)+bm(7)*f7(j)

# +bm(8)*f8(j)+bm(9)*f9(j)+bm(10)*f10(j)

30 continue

call feval(t+h,yp,f11)

do 40 j=1,ne

yp(j)=y(j)+am(1)*f2(j)+am(2)*f3(j)+am(3)*f4(j)+am(4)*f5(j)

# +am(5)*f6(j)+am(6)*f7(j)+am(7)*f8(j)+am(8)*f9(j)+am(9)*f10(j)

40 yc(j)=yp(j)+am(10)*f11(j)

41 call feval(t+h,yc,f11)

do 50 j=1,ne

50 y(j)=yp(j)+am(10)*f11(j)

do 60 j=1,ne

f1(j)=f2(j)

f2(j)=f3(j)

f3(j)=f4(j)

f4(j)=f5(j)

f5(j)=f6(j)

f6(j)=f7(j)

f7(j)=f8(j)

f8(j)=f9(j)

f9(j)=f10(j)

60 f10(j)=f11(j)

t=tint+i*h

100 continue

return

end

Notes: This program calls the subroutine feval, which is another name for eval. Here
the flag nf controls the mode of entry.
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Appendix C

Baker-Campbell-Hausdorff and
Zassenhaus Formulas, Bases, and
Paths

The purpose of this appendix is to describe the Lie-algebraic results of Henry Frederick
Baker (1866-1956), John Edward Campbell (1862-1924), and Felix Hausdorff (1868-1942),
and the related results of Hans Zassenhaus (1912-1991). We also discuss differentiating the
exponential function, bases for Lie algebras, and paths in Lie groups and Lie algebras.

C.1 Differentiating the Exponential Function

C.2 The Baker-Campbell-Hausdorff Formula

C.3 The Baker-Campbell-Hausdorff Series

log(eyex) = x+ y − 1

2
[x, y] +

1

12
[x, [x, y]] +

1

12
[[x, y], y]− 1

24
[x, [[x, y], y]]

− 1

720
[x, [x, [x, [x, y]]]] +

1

180
[x, [x, [[x, y], y]]] +

1

180
[x, [[[x, y], y], y]]

+
1

120
[[x, y], [[x, y], y]] +

1

360
[[x, [x, y]], [x, y]]− 1

720
[[[[x, y], y], y]y]

+
1

1440
[x, [x, [x, [[x, y], y]]]]− 1

360
[x, [x, [[[x, y], y], y]]]− 1

240
[x, [[x, y], [[x, y], y]]]

− 1

720
[x, [[x, [x, y]], [x, y]]] +

1

1440
[x, [[[[x, y], y], y], y]] +

1

30240
[x, [x, [x, [x, [x, [x, y]]]]]]

− 1

5040
[x, [x, [x, [x, [[x, y], y]]]]] +

1

3780
[x, [x, [x, [[[x, y], y], y]]]]

+
1

1680
[x, [x, [[x, y], [[x, y], y]]]] +

1

10080
[x, [x, [[x, [x, y]], [x, y]]]]

+
1

3780
[x, [x, [[[[x, y], y], y], y]]] +

13
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[x, [[x, y], [[[x, y], y], y]]]
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AND PATHS

+
1
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[[[x, [x, y]], [x, y]], [x, [[x, y], y]]]− 1

21600
[[x, [x, [[[x, y], y], y]]], [x, [x, y]]]

− 1

30240
[[x, [[x, [x, y]], [x, y]]], [x, [x, y]]] +

1

60480
[[x, [[[[x, y], y], y], y]], [[x, y], y]]

+
1

15120
[[[x, y], [[[x, y], y], y]], [[x, y], y]]− 1

10080
[[x, [[x, y], [[[x, y], y], y]]], [x, y]]

+
1

21600
[[x, [[[[[x, y], y], y], y], y]], [x, y]] +

1

20160
[[[, x[[x, y], y]], [[x, y], y]], [x, y]]

+
1

10080
[[[x, [[[x, y], y], y]], [x, y]], [x, y]] +

1

50400
[[[[x, [x, y]], [x, y]], [x, y]], [x, y]]

− 1

1209600
[[[[[[[[x, y], y], y], y], y], y], y], y] +

1

2419200
[x, [x, [x, [x, [x, [x, [x, [[x, y], y]]]]]]]]

− 1

302400
[x, [x, [x, [x, [x, [x, [[[x, y], y], y]]]]]]] +

1

604800
[x, [x, [x, [x, [x, [[x, y], [[x, y], y]]]]]]]

− 1

403200
[x, [x, [x, [x, [x, [[x, [x, y]], [x, y]]]]]]] +

37

3628800
[x, [x, [x, [x, [x, [[[[x, y], y], y], y]]]]]]

+
1

56700
[x, [x, [x, [x, [[x, y], [[[x, y], y], y]]]]]] +

1

37800
[x, [x, [x, [x, [[x, [[x, y], y]], [x, y]]]]]]

− 1

67200
[x, [x, [x, [x, [[[[[x, y], y], y], y], y]]]]] +

17

604800
[x, [x, [x, [[x, y], [[x, y], [[x, y], y]]]]]]

− 11

241920
[x, [x, [x, [[x, y], [[[[x, y], y], y], y]]]]] +

1

75600
[x, [x, [x, [[x, [x, y]], [x, [[x, y], y]]]]]]

− 1

40320
[x, [x, [x, [[[x, y], y], [[[x, y], y], y]]]]] +

1

241920
[x, [x, [x, [[x, [x, [x, y]]], [x, [x, y]]]]]]

− 1

43200
[x, [x, [x, [[x, [[x, y], y]], [[x, y], y]]]]]− 29

453600
[x, [x, [x, [[x, [[[x, y], y], y]], [x, y]]]]]

− 1

50400
[x, [x, [x, [[[x, [x, y]], [x, y]], [x, y]]]]] +

37

3628800
[x, [x, [x, [[[[[[x, y], y], y], y], y], y]]]]



2396
C. BAKER-CAMPBELL-HAUSDORFF AND ZASSENHAUS FORMULAS, BASES,

AND PATHS

− 1

12096
[x, [x, [[x, y], [[x, y], [[[x, y], y], y]]]]] +

23

604800
[x, [x, [[x, y], [[[[[x, y], y], y], y], y]]]]

− 23

604800
[x, [x, [[x, [x, y]], [x, [[[x, y], y], y]]]]]− 1

75600
[x, [x, [[x, [x, y]], [[x, [x, y]], [x, y]]]]]

+
11

241920
[x, [x, [[[x, y], y], [[[[x, y], y], y], y]]]]− 1

50400
[x, [x, [[x, [x, [[x, y], y]]], [x, [x, y]]]]]

+
1

30240
[x, [x, [[x, [[[x, y], y], y]], [[x, y]y]]]] +

1

40320
[x, [x, [[[x, y], [[x, y], y]], [[x, y]y]]]]

− 1

67200
[x, [x, [[x, [[x, y], [[x, y], y]]], [x, y]]]] +

1

15120
[x, [x, [[x, [[[[x, y], y], y], y]], [x, y]]]]

+
17

201600
[x, [x, [[[x, [[x, y], y]], [x, y]], [x, y]]]]− 1

302400
[x, [x, [[[[[[[x, y], y], y], y], y], y], y]]]

− 1

20160
[x, [[x, y], [[x, y], [[x, y], [[x, y], y]]]]] +

1

15120
[x, [[x, y], [[x, y], [[[[x, y], y], y], y]]]]

+
1

30240
[x, [[x, y], [[[x, y], y], [[[x, y], y], y]]]]− 1

86400
[x, [[x, y], [[[[[[x, y], y], y], y], y], y]]]

− 1

50400
[x, [[x, [x, y]], [x, [[x, y], [[x, y], y]]]]] +

1

34560
[x, [[x, [x, y]], [x, [[[[x, y], y], y], y]]]]

+
1

16800
[x, [[x, [x, y]], [[x, [x, y]], [x, y]]]]− 1

67200
[x, [[[x, y], y], [[[[[x, y], y], y], y], y]]]

− 1

86400
[x, [[x, [x, [x, y]]], [x, [x, [[x, y], y]]]]]− 1

120960
[x, [[x, [[x, y], y]], [x, [[[x, y], y], y]]]]

− 1

40320
[x, [[x, [[x, y], y]], [[x, y], [[x, y], y]]]]− 1

120960
[x, [[[[x, y], y], y], [[[[x, y], y], y], y]]]

− 1

604800
[x, [[x, [x, [x, [x, y]]]], [x, [x, [x, y]]]]]− 1

134400
[x, [[x, [x, [[x, y], y]]], [x, [[x, y], y]]]]

− 1

181440
[x, [[x, [[[x, y], y], y]], [[[x, y], y], y]]] +

1

50400
[x, [[[x, [x, y]], [x, y]], [x, [[x, y], y]]]]

+
1

43200
[x, [[x, [x, [[[x, y], y], y]]], [x, [x, y]]]] +

1

60480
[x, [[x, [[x, [x, y]], [x, y]]], [x, [x, y]]]]

− 1

120960
[x, [[x, [[[[x, y], y], y], y]], [[x, y], y]]]− 1

30240
[x, [[[x, y], [[[x, y], y], y]], [[x, y], y]]]

+
1

20160
[x, [[x, [[x, y], [[[x, y], y], y]]], [x, y]]]− 1

43200
[x, [[x, [[[[[x, y], y], y], y], y]], [x, y]]]

− 1

40320
[x, [[[x, [[x, y], y]], [[x, y], y]], [x, y]]]− 1

20160
[x, [[[x, [[[x, y], y], y]], [x, y]], [x, y]]]

− 1

100800
[x, [[[[x, [x, y]], [x, y]], [x, y]], [x, y]]] +

1

2419200
[x, [[[[[[[[x, y], y], y], y], y], y], y], y]]

+ · · ·

Exercises

C.3.1. According to the BCH theorem the exponential function has the remarkable property
that the quantity C in the relation

exp(A) exp(B) = exp(C) (C.3.1)
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depends only on elements in the Lie algebra generated by A and B. See Section 3.7.3 and
the BCH series in Section C.3 above. The purpose of this exercise is to study the properties
of two other functions.

Begin with the truncated exponential function t1exp defined by

t1exp(A) = I + A. (C.3.2)

See (4.1.22). Show that
t1exp(A)t1exp(B) = t1exp(C) (C.3.3)

with
C = A+B + AB. (C.3.4)

Evidently the degree 1 term A + B is in the Lie algebra generated by A and B, but the
degree 2 term AB is not.

Next consider the truncated exponential function t2exp defined by

t2exp(A) = I + A+ A2/2!. (C.3.5)

Show that in this case
t2exp(A)t2exp(B) = t2exp(C) (C.3.6)

with
C = A+B + (1/2)(AB −BA) + · · · . (C.3.7)

Evidently the terms explicitly displayed on the right side of (C.3.7) are in the Lie algebra
generated by A and B. Show that the remaining terms, which are of degree 3 and higher,
are not.

C.3.2. Exercise on BCH like relation for the Cayley function.

C.4 Zassenhaus Formulas

C.5 Bases

C.6 Paths

C.6.1 Paths in the Group Yield Paths in the Lie Algebra

C.6.2 Paths in the Lie Algebra Yield Paths in the Group

C.6.3 Differential Equations
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Appendix F

Analyticity, Aberration Expansions,
and Smoothing

F.1 The Static Case

According to Poincaré’s Theorem 1.3.3, trajectories will be analytic functions of the initial
conditions in some domain if the right sides of the equations of motion (1.3.4) are ana-
lytic. Correspondingly, according to the results of Section 26.2, the Taylor map (7.5.5) will
converge in some domain about the origin. For problems of particular interest to us the
Hamiltonians, and hence the equations of motion, will involve the scalar and vector po-
tentials ψ and A as in, for example, (1.5.29), (1.6.16), and (1.6.17). Consequently, we are
interested in knowing the analytic properties of ψ and A.

In the static case these potentials are determined in terms of the charge density ρ(r) and
the current density j(r) by the Poisson equations

∇2ψ = −4πρ, (F.1.1)

∇2A = −4πj/c, (F.1.2)

which have the solutions

ψ(r) =

∫
d3r′ρ(r′)/ ‖ r′ − r ‖, (F.1.3)

A(r) = (1/c)

∫
d3r′j(r′)/ ‖ r′ − r ‖ . (F.1.4)

Here the notation ‖ ‖ indicates the Euclidean norm,

‖ r′ − r ‖= [(x′ − x)2 + (y′ − y)2 + (z′ − z)2]1/2. (F.1.5)

It follows immediately from (1.1) that if ψ(r) is analytic in the components x, y, z of r at
some point r0, then ρ(r) must also be analytic at r0. The purpose of this appendix is to
show the converse: if ρ(r) is analytic at some point r0, then ψ(r) will also be analytic at r0.
We note, with some surprise, that this is a local statement. Although, according to (1.3),
the value of ψ(r) at the point r is determined by the value of ρ(r′) at all points r′, the
quantity ρ(r′) need not be analytic everywhere, but only at r0, for ψ(r) to be analytic at

2405



2406 F. ANALYTICITY, ABERRATION EXPANSIONS, AND SMOOTHING

r0. Finally, since (1.4) is analogous to (1.3), our proof will also show that if all components
of j(r) are analytic at r0, then all components of A(r) will also be analytic at r0.

Before proceeding further, and so as to not raise the reader’s expectations too high, we
confess that the analyticity we will prove is analyticity in the vicinity of real points. That
is, at any real point (x0, y0, z0), we will be able to prove analyticity in the complex variables
(x0 + ix̃, y0 + iỹ, z0 + iz̃) for x̃, ỹ, z̃ finite but possibly small.

Why should we be interested in this question? First, we note that if ρ(r) is zero in
some region, then it is automatically analytic in that region. Therefore, as a particular case,
we will find that vacuum solutions to Poisson’s equation (solutions to Laplace’s equation)
must be analytic. This particular case is in fact the most common case since we are usually
interested in orbits that remain within evacuated beam pipes. However, in some cases we
are interested in the behavior of orbits that pass through regions of nonzero charge and/or
current densities. Examples that come to mind include plasma lenses, electron cloud lenses,
lithium lenses, beam-beam effects, and space-charge effects. In these cases we may still
expect to have convergent aberration expansions provided ρ(r) and j(r) are analytic in the
region traversed by all orbits of interest. We emphasize again that no analyticity assumptions
need be made about the behavior of ρ(r) and j(r) in regions not traversed by orbits. From
a mathematical perspective, the discussion that follows will be somewhat discursive; but it
will have the advantage of obtaining several interesting results along the way. For a more
direct approach, see Exercises 17 and 18.

By a suitable translation, and without loss of generality, we may take r0 to be the origin.
Then, by the theory of Section 26.2, the assumption that ρ is analytic implies that it has an
expansion of the form

ρ(r) =
∑
ijk

cijkx
iyjzk (F.1.6)

that converges in some polydisc D given by inequalities of the form

|x| < Rx, |y| < Ry, |z| < Rz. (F.1.7)

Here we are treating x, y, z as three complex variables. For further discussion, it is convenient
to work within a smaller domain R contained within D. Let ε be some fixed small positive
number. Define a quantity R by the rule

R = minimum of (Rx − ε), (Ry − ε), (Rz − ε). (F.1.8)

Then we define R to be the closed set

|x| ≤ R, |y| ≤ R, |z| ≤ R. (F.1.9)

We are now in a position to obtain a bound on the Taylor coefficients cijk. From the
Cauchy formula

cjk` =
1

(2πi)3

∮
|x|=R

∮
|y|=R

∮
|z|=R

dxdydz
ρ(x, y, z)

xj+1yk+1z`+1
(F.1.10)

we get the result
|cjk`| ≤ KR−(j+k+`) (F.1.11)
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where the constant K is defined by the equation

K = max |ρ(x, y, z)| for |x| = |y| = |z| = R. (F.1.12)

Suppose the terms in the series (1.6) are grouped together according to their total degree.
Doing so gives the result

ρ(r) =
∞∑
D=0

N(D,3)∑
α=1

dDαh
α
D(r). (F.1.13)

Here hαD(r) denotes a monomial of the form xiyjzk and of degree D (that is, i+ j + k = D)
and labelled by an index α. From (6.3.36) we know that N(D, 3), the number of monomials
of degree D in 3 variables, is given by the relation

N(D, 3) =
(D + 2)!

D!2!
= (D + 2)(D + 1)/2. (F.1.14)

Hence, we may label the monomials of degree D in such a way that the index α ranges over
the values of 1 to N(D, 3), as indicated in (1.13). We note that that (1.13) is an ordering
and grouping of (1.6), and hence is a permissible operation that cannot change its value for
r ∈ R. See Sections 26.1 through 26.3.

We next study the relation between the monomials hαD, harmonic polynomials, and spher-
ical harmonics. For the moment let x, y, and z be real. Introduce, in the standard way,
spherical coordinates by the relations

x = r sin θ cosφ, (F.1.15)

y = r sin θ sinφ, (F.1.16)

z = r cos θ, (F.1.17)

with r given by the relation
r = (x2 + y2 + z2)1/2. (F.1.18)

Now consider the functions Hm
` (r) defined by the relation

Hm
` (r) = r`Y m

` (θ, φ) (F.1.19)

where the Y m
` are the usual spherical harmonics. We observe that the Hm

` are homogeneous
polynomials of degree ` in the variables x, y, z. In fact, for H`

` we have the relation

H`
` (r) = r`Y `

` (θ, φ) = (2`+ 1)1/2{4π[(2`)!]}−1/2r`P `
` (cos θ)

= [(−1)`/(2``!)]{[(2`+ 1)/(4π)][(2`)!]}1/2r`(sin θ)`ei`φ

= [(−1)`/(2``!)]{[(2`+ 1)/(4π)][(2`)!]}1/2(x+ iy)`. (F.1.20)

To see that the remaining Hm
` are also homogeneous polynomials of degree ` we define, in

the usual way, the angular momentum operator L by the rule

L = −ir × ∂. (F.1.21)
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By convention and construction the Y m
` have the property

L−Y m
` = [(`+m)(`−m+ 1)]1/2Y m−1

` (F.1.22)

where L− is defined by the rule
L− = Lx − iLy. (F.1.23)

It is easily verified that L commutes with r, and hence we also have the relation

L−Hm
` = [(`+m)(`−m+ 1)]1/2Hm−1

` . (F.1.24)

Moreover, we see from (1.21) and (1.23) that L− maps homogeneous polynomials into ho-
mogeneous polynomials, and leaves their degrees unchanged. It follows that all the Hm

`

are homogeneous polynomials of degree `. Finally, we see from (1.19) that the Hm
` satisfy

Laplace’s equation,
∇2Hm

` = 0, (F.1.25)

and therefore are entitled to be called harmonic polynomials.
Consider now the functions Hms

` (r) defined by the relations

Hms
` (r) = r2sr`Y m

` = r2sHm
` (r), s = 0, 1, 2, · · · . (F.1.26)

They are evidently homogeneous polynomials in x, y, z of degree D, with D given by the
relation

D = `+ 2s. (F.1.27)

See (1.18). They are also linearly independent. Let us count their number for fixed D. The
cases of even and odd D need to be treated separately. For even D we have the polynomials

rDY m
D , r

2rD−2Y m
D−2, · · · rD−2r2Y m

2 , rD, (F.1.28)

and their total number is

number = [2D + 1] + [2(D − 2) + 1] + · · ·+ [2(2) + 1] + 1

= (D + 2)(D + 1)/2 = N(D, 3). (F.1.29)

For odd D we have the polynomials

rDY m
D , r

2rD−2Y m
D−2, · · · rD−1rY m

1 , (F.1.30)

and their total number is

number = [2D + 1] + [2(D − 2) + 1] + · · ·+ [2(1) + 1]

= (D + 2)(D + 1)/2 = N(D, 3). (F.1.31)

Comparison of (1.14), (1.29), and (1.31) shows that the number of homogeneous polynomials
Hms
` with fixed degree D equals the number of monomials hαD with fixed D. Consequently,

there exist expansion coefficients a and relations of the form

xiyjzk = hαD(r) =
∑

`+2s=D

∑̀
m=−`

aDαm`sr
2sr`Y m

`

=
∑

`+2s=D

∑̀
m=−`

aDαm`sH
ms
` (r). (F.1.32)
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With the aid of (1.32), the series (1.13) can also be written in the form

ρ(r) =
∞∑
D=0

∑
`+2s=D

∑̀
m=−`

bm`sr
2sr`Y m

`

=
∞∑
D=0

∑
`+2s=D

∑̀
m=−`

bm`sr
2sHm

` (r). (F.1.33)

In this form we see, as a consequence of analyticity, that spherical harmonics Y m
` always

occur in conjunction with powers of r of the form r`+2s with s = 0, 1, 2, · · · .
The transition from the Taylor series (1.13) to what we will call the harmonic series

(1.33) is not simply a different ordering, and therefore questions of convergence have to be
examined anew. We begin by finding bounds for the polynomials Hm

` (r). For this purpose
it is convient to use the familiar expansion

1

‖ r′ − r ‖
= 4π

∑
`,m

(2`+ 1)−1r`Y m
` (Ω)(r′)−`−1Y

m

` (Ω′) for r < r′. (F.1.34)

For real angles we note the bound

|Y m
` (Ω)| ≤ [(2`+ 1)/4π]1/2. (F.1.35)

It follows that the expansion (1.34) is absolutely convergent for r and r′ real and r < r′.
Now multiply both sides of (134) by Y m′

`′ (Ω′), integrate over Ω′, and use the orthogonality
of the Y m

` to get the integral representation

Hm
` (r) = r`Y m

` (Ω) = (4π)−1(2`+ 1)(r′)`+1

∫
dΩ′ Y m

` (Ω′)/ ‖ r′ − r ‖ . (F.1.36)

As it stands, the representation (1.36) holds for r real and satisfying r < r′. We will now
analytically continue it to possibly complex r while keeping r′ real. There is no difficulty
in extending the left side of (1.36) to complex r since it is a polynomial. The extension
of the right side is also straight forward. Moreover, when the left and right sides of (1.36)
are extended to complex r, they will continue to agree. That is, the integral representation
(1.36) is also valid for complex r. See Exercise 9. Introduce the unit vector

e(Ω′) = r′/r′ = ex sin θ′ cosφ′ + ey sin θ′ sinφ′ + ez cos θ′. (F.1.37)

Also introduce real vectors ξ and η and a complex vector ζ by the relation

r/r′ = ξ + iη = ζ. (F.1.38)

With the aid of these definitions (1.36) can be recast in the form

Hm
` (r) = (4π)−1(2`+ 1)(r′)`

∫
dΩ′ Y m

` (Ω′)/ ‖ e(Ω′)− ζ ‖ . (F.1.39)

Let us examine the denominator ‖ e− ζ ‖. It has the form

‖ e− ζ ‖= [(e− ζ) · (e− ζ)]1/2. (F.1.40)
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For the dot product appearing in (1.40) we find the expression

(e− ζ) · (e− ζ) = e · e− 2e · ζ + ζ · ζ
= 1− 2e · ζ + ζ · ζ = (1− 2e · ξ + ξ · ξ − η · η)

+ 2i(ξ · η − e · η). (F.1.41)

Suppose the vectors ξ and η are restricted in length to satisfy the relations

ξ · ξ ≤ 1/16, η · η ≤ 1/16. (F.1.42)

Then the quantities appearing in the real part of (1.41) obey the inequalities

|e · ξ| ≤‖ e ‖‖ ξ ‖≤ 1/4, (F.1.43)

− 1/16 ≤ ξ · ξ − η · η ≤ 1/16, (F.1.44)

and the real part itself satisfies the inequality

|1− 2e · ξ + ξ · ξ − η · η| ≥ 7/16. (F.1.45)

From (1.41) and (1.45) it follows that ‖ e− ζ ‖ satisfies the inequality

|[‖ e− ζ ‖]| = |[(e− ζ) · (e− ζ)]1/2| ≥
√

7/4. (F.1.46)

Now use (1.35) and (1.46) in (1.39) to get the bound

|Hm
` (r)| ≤ (16π/

√
7)[(2`+ 1)/4π]3/2(r′)`. (F.1.47)

Suppose r is in the closed polydisc R given by (1.9). Then we have the relations

ξx = Re(x)/r′ ≤ R/r′, etc.; (F.1.48)

ηx = Im(x)/r′ ≤ R/r′, etc. (F.1.49)

From these relations it follows that

ξ · ξ ≤ 3(R/r′)2, (F.1.50)

η · η ≤ 3(R/r′)2. (F.1.51)

Finally set r′ to the value
r′ = 4

√
3R. (F.1.52)

Then the inequalities (1.42) are satisfied and (1.47) takes the final form

|Hm
` (r)| ≤ (16π/

√
7)[(2`+ 1)/4π]3/2(4

√
3)`R` for r ∈ R. (F.1.53)

Inspection of (1.33) shows that what we really require are bounds on the polynomials
r2sHm

` (r). From the definition (1.18) and (1.9) we find the result

|r2| = |x2 + y2 + z2| ≤ |x2|+ |y2|+ |z2| ≤ 3R2. (F.1.54)
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Consequently we find for the quantity r2s the bound

|r2s| = |r2|s ≤ 3sR2s ≤ (
√

3)2sR2s ≤ (4
√

3)2sR2s. (F.1.55)

It follows that the polynomials r2sHm
` (r) have the bounds

|r2sHm
` (r)| ≤ (16π/

√
7)[(2`+ 1)/4π]3/2(4

√
3)`+2sR`+2s. (F.1.56)

We next find bounds on the coefficients bm`s. For each degree D we have the relation

∑
i+j+k=D

cijkx
iyjzk =

∑
`+2s=D

∑̀
m=−`

bm`sr
`+2sY m

` (θ, φ). (F.1.57)

Multiply both sides of (1.57) by Y
m′

`′ and integrate over solid angle to obtain the relation

bm′`′s′r
D = rD

∫
dΩ

∑
i+j+k=D

cijk(sin θ cosφ)i(sin θ sinφ)j(cos θ)kY
m′

`′ (θ, φ) (F.1.58)

where s′ satisfies the condition
`′ + 2s′ = D. (F.1.59)

Here we have also used (1.15) through (1.17). It follows from (1.35) and (1.58) that we have
the inequality

|bm′`′s′ | ≤ 4π[(2`+ 1)/4π]1/2
∑

i+j+k=D

|cijk|. (F.1.60)

Now use (1.11), and the fact that the number of terms appearing in the sum (1.60) is
N(D, 3), to get the result

|bm′`′s′| ≤ 2πK[(2`+ 1)/4π]1/2(D + 2)(D + 1)R−D. (F.1.61)

Let us use the results (1.56) and (1.61) to examine the convergence of the series (1.33).
Suppose r is in a polydisc of the form (1.9) with R replaced by some value R′′ yet to be
selected. Consider the series

∞∑
D=0

∑
`+2s=D

∑̀
m=−`

2πK[(2`+ 1)/4π]1/2(D + 2)(D + 1)R−D|r2sHm
` (r)|

≤ K(2/
√

7)
∞∑
D=0

∑
`+2s=D

∑̀
m=−`

(D + 2)(D + 1)(2`+ 1)2(4
√

3)D(R′′/R)D

≤ K(2/
√

7)
∞∑
D=0

(D + 2)(D + 1)(4
√

3)D(R′′/R)D
∑

`+2s=D

(2`+ 1)3. (F.1.62)

Here we have used (1.56) with R replaced by R′′. Evidently the series (1.62) is convergent
if R′′ satisfies the inequality

R′′ < (4
√

3)−1R. (F.1.63)
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We conclude that the series (1.33) converges absolutely in the polydisc

|x| ≤ R′′, |y| ≤ R′′, |z| ≤ R′′ (F.1.64)

with R′′ given by (1.63).
With these matters concerning the series (1.6) and (1.33) for ρ(r) behind us, we turn

to the behavior of ψ(r). Break up the integration required by (1.3) into two regions by
rewriting it in the form

ψ(r) = ψ<(r) + ψ>(r) (F.1.65)

where

ψ<(r) =

∫
‖r′‖≤R′

d3r′ρ(r′)/ ‖ r′ − r ‖, (F.1.66)

ψ>(r) =

∫
‖r′‖≥R′

d3r′ρ(r′)/ ‖ r′ − r ‖ . (F.1.67)

We will examine each of the functions ψ<(r) and ψ>(r) separately.
The behavior of ψ>(r) near the origin is relatively easy to discern. By analysis similar

to that of equations (1.40) through (1.46), we see that (1/ ‖ r′ − r ‖) with ‖ r′ ‖≥ R′

is analytic in the components of r in a small neighborhood of the origin. Consequently,
ψ>(r) is also analytic in the components of r in a small neighborhood of the origin, and
this conclusion is independent of the nature of ρ(r′) for ‖ r′ ‖≥ R′ save for some mild
distribution theoretic or integrability conditions such as, for example, that the integral
(1.67) be absolutely convergent. We also observe that (1/ ‖ r′ − r ‖) with ‖ r′ ‖≥ R′ is
harmonic in the variables r in a small neighborhood of the origin,

∇2(1/ ‖ r′− r ‖) = (∂2
x + ∂2

y + ∂2
z )(1/ ‖ r′− r ‖) = 0 for ‖ r′ ‖≥ R′ and r near 0. (F.1.68)

Consequently, ψ>(r) is also harmonic around the origin,

∇2ψ>(r) = 0 for r near 0. (F.1.69)

Finding the behavior of ψ<(r) near the origin requires more work. We know that an
expansion for ρ(r′) of the form (1.33) converges for r′ in some sufficiently small polydisc.
Select the R′ in (1.66) and (1.67) such that the region r′ real and ‖ r′ ‖≤ R′ lies within this
polydisc. Then we may use the expansion (1.33) for ρ(r′) in the integral (1.66) to compute
ψ<(r).

Let us do this one term at a time. Define functions Xm`s(r) by the rule

Xm`s(r) =

∫
‖r′‖≤R′

d3r′(r′)2s+`Y m
` (Ω′)/ ‖ r′ − r ‖ . (F.1.70)

Then, ψ<(r) will have the expansion

ψ<(r) =
∞∑
D=0

∑
`+2s=D

∑̀
m=−`

bm`sXm`s(r). (F.1.71)
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The integral (1.70) can be written in the iterated form

Xm`s(r) =

∫ R′

0

dr′(r′)2(r′)2s+`

∫
dΩ′ Y m

` (Ω′)/ ‖ r′ − r ‖ . (F.1.72)

The second integral in (1.72) has the value∫
dΩ′ Y m

` (Ω′)/ ‖ r′ − r ‖= [4π/(2`+ 1)](r`</r
`+1
> )Y m

` (Ω), (F.1.73)

where r< and r> are defined by the equations

r< = the lesser of r, r′, (F.1.74)

r> = the greater of r, r′. (F.1.75)

This value can be used in (1.72) to yield the result

Xm`s(r) = X 1
m`s(r) + X 2

m`s(r), (F.1.76)

where

X 1
m`s(r) = −4π[(2`+ 1) + (2s+ 2)]−1(2s+ 2)−1r2s+2r`Y m

` (θ, φ), (F.1.77)

X 2
m`s(r) = 4π[(2`+ 1)(2s+ 2)]−1(R′)2s+2r`Y m

` (θ, φ). (F.1.78)

We see that Xm`s(r) is a linear combination of the functions r2s+2r`Y m
` and r`Y m

` . From
our earlier work we know that both these functions are polynomials in the components of
r, and are therefore entire analytic functions of the variables x, y, z.

The next thing to check is that the series (1.71) for ψ<(r) converges. Following the
decomposition (1.76), we will write ψ<(r) in the form

ψ<(r) = ψ1
<(r) + ψ2

<(r) (F.1.79)

where

ψ1
<(r) = −4π

∞∑
D=0

∑
`+2s=D

∑̀
m=−`

bm`s[(2`+ 1) + (2s+ 2)]−1(2s+ 2)−1r2s+2r`Y m
` (θ, φ), (F.1.80)

ψ2
<(r) = 4π

∞∑
D=0

∑
`+2s=D

∑̀
m=−`

bm`s[(2`+ 1)(2s+ 2)]−1(R′)2s+2r`Y m
` (θ, φ). (F.1.81)

It is easily verified, using the bounds (1.56) and (1.61), that both the series ψ1
<(r) and ψ2

<(r)
converge, and converge absolutely, for r sufficiently near the origin and R′ sufficiently small.
Consequently, ψ<(r) itself is analytic in a neighborhood of the origin. We now know that
both ψ> and ψ< are analytic around the origin, and hence their sum ψ is analytic about the
origin, which is what we have wanted to prove.
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At this point we make some observations about the functions ψ1
<(r) and ψ2

<(r). We
claim that they satisfy the equations

∇2ψ1
<(r) = −4πρ(r), (F.1.82)

∇2ψ2
<(r) = 0. (F.1.83)

Since the series for ψ1
< and ψ2

< converge absolutely, the operator ∇2 can be taken under the
summation signs and allowed to act term by term. The claim (1.83) then follows immediately
from (1.25). To verify (1.82) we note that the operator ∇2 has the spherical decomposition

∇2 = r−1∂2
rr − L2/r2, (F.1.84)

and the spherical harmonics have the property

L2Y m
` = `(`+ 1)Y m

` . (F.1.85)

It follows that

∇2(r2s+2r`Y m
` ) = {[(r−1∂2

rr)− `(`+ 1)/r2]r`+2s+2}Y m
`

= [(`+ 2s+ 3)(`+ 2s+ 2)− `(`+ 1)]r`+2sY m
`

= [(2`+ 1) + (2s+ 2)](2s+ 2)r2sr`Y m
` . (F.1.86)

We see that the ` and s dependent multiplicative factors in (1.86) cancel like factors in the
denominators appearing in (1.80), and comparison of the resulting expression for ∇2ψ1

< with
that given in (1.33) for ρ shows that the assertion (1.82) is also correct.

Exercises

F.1.1. This section has been devoted to the rather laborious task of showing that if ρ(r)
is analytic in the components of r at some point r0, then the same is true for ψ(r). By
contrast, the converse is easy to prove. Show that if ψ(r) is analytic in the components of
r at some point r0, then the same is true for ρ(r).

F.1.2. Consider, as examples, three possible forms for ρ(r) as shown below. In each case
find the corresponding ψ(r), and discuss its analytic properties.

ρ(r) = constant for ‖ r ‖≤ R,

= 0 for ‖ r ‖> R; (F.1.87)

ρ(r) = a exp(−br2); (F.1.88)

ρ(r) = a exp(−br). (F.1.89)

F.1.3. Show that the electron charge density for any hydrogen atom energy eigenstate,

ρ(r) = X (r)X (r), (F.1.90)

is not analytic at the origin. Relate this “singular” behavior to the fact that the energy
eigenstate wave function X (r) satisfies the Schroedinger equation

− [~2/(2m)]∇2X − (e2/r)X = EX . (F.1.91)
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F.1.4. Suppose that f(D, r) is a homogeneous polynomial of degree D in the components
of r. According to Exercise 1.5.12 it obeys the relation

(r · ∂)f(D, r) = Df(D, r). (F.1.92)

Show that the operators (r ·∂) and L commute. You have provided another demonstration
that L− maps homogeneous polynomials into themselves and leaves their degrees unchanged.

F.1.5. Verify (1.25) directly for H`
` as given by (1.20). Show that ∇2 commutes with L,

and hence (1.25) holds for all Hm
` .

F.1.6. Verify the sums (1.29) and (1.31).

F.1.7. Verify the bound (1.35).

F.1.8. Verify (1.36) through (1.53). Verify that H`
` as given by (1.20) satisfies the bound

(1.53).

F.1.9. The conditions (1.42) were chosen to simplify analysis. Show that the analysis can
be modified to improve the bound (1.53) and the requirement (1.63) by replacing (4

√
3) by

a smaller factor. Verify that H`
` as given by (1.20) satisfies your improved bound. Hint:

Let δ be a real number in the open interval 0 < δ < 1. Show that if ξ and η satisfy the
conditions

ξ · ξ ≤ (1− δ)2/4, η · η ≤ (1− δ)2/4, (F.1.93)

then one has the inequality

|[‖ e− ζ ‖]| ≥ δ1/2. (F.1.94)

F.1.10. Since Hm
` is a homogeneous polynomial of degree `, show that both sides of (1.39)

can be divided by (r′)` so that, with the aid of (1.38), it can be rewritten in the form

Hm
` (ζ) = (4π)−1(2`+ 1)

∫
dΩ′Y m

` (Ω′)/ ‖ e(Ω′)− ζ ‖ . (F.1.95)

Verify that the right side of (1.95) is analytic in the components of ζ for ζ sufficiently near
0, and that it has a Taylor expansion about 0 that converges absolutely for ζ in a sufficiently
small polydisc about the origin. (Here you may assume that the composition of two analytic
functions is again analytic. See Section 38.2.) Show that the coefficients of this Taylor
expansion can be determined from a knowledge of the values of the right side of (1.95) when
ζ is real and near 0. We know that both sides of (1.95) are equal when ζ is real and near
0. (Such a set is an example of what is called a real environment. See Exericse 38.2.8.) It
follows that both sides of (1.95) have identical Taylor coefficients. Consequently, both sides
of (1.95) must also be equal when ζ is complex and in a sufficiently small polydisc about
the origin. Show, in fact, that they must be equal in the domain (1.93).

F.1.11. Verify that (1.61) is a consequence of (1.11).

F.1.12. Verify that the series (1.62) is convergent if (1.64) is satisfied.
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F.1.13. Verify that if (in the static case) ρ vanishes in some region, then ψ is analytic in
this region.

F.1.14. Verify (1.77) and (1.78). Show that the series (1.80) and (1.81) converge.

F.1.15. Verify (1.86) and (1.82).

F.1.16. Our discussion so far of how ψ inherits the analytic properties of ρ has taken a
rather circuitous path through the territory of Taylor and harmonic series. Is there an
approach that displays the inheritance directly? There is. Consider ψ< as given by (1.66).
Introduce the variable ∆ by the definition

r′ = r + ∆, (F.1.96)

and show that (1.66) can also be written in the form

ψ<(r) =

∫
‖r+∆‖≤R′

d3∆ ρ(r + ∆)/ ‖∆ ‖ . (F.1.97)

Next introduce polar coordinates for ∆ by the relation

∆ = ∆e(Ω). (F.1.98)

Show that (1.97) can be rewritten in the form

ψ<(r) =

∫
dΩ

∫ ∆̃

0

d∆ ∆ρ(r + ∆), (F.1.99)

where ∆̃ is given by the expression

∆̃(r,Ω, R′) = −r · e(Ω) + {(R′)2 + [r · e(Ω)]2 − r2}1/2. (F.1.100)

Finally, introduce the variable τ by writing

∆ = τ∆̃, (F.1.101)

and show that (1.99) can be rewritten as

ψ<(r) =

∫
dΩ

∫ 1

0

dτ τ∆̃2ρ[r + τ∆̃e(Ω)]. (F.1.102)

As it stands, (1.102) may be viewed as an integral representation for ψ<(r) that is valid for
small real r. Now consider making r complex. Verify that ∆̃ as given by (1.100) is analytic
in r for r contained in a sufficiently small polydisc about 0. By hypothesis, ρ(r) is also
analytic in some such polydisc. Verify that the same is true for the function ρ[r+ τ∆̃e(Ω)].
Finally, show that ψ<(r) as given by (1.102) must be analytic in some such polydisc.



F.2. THE TIME DEPENDENT CASE 2417

F.2 The Time Dependent Case

We will now sketch how the results obtained so far can be extended to the time dependent
case. In the time dependent case the scalar potential satisfies the inhomogeneous wave
equation

[∇2 − (1/c2)∂2
t ]ψ(r, t) = −4πρ(r, t). (F.2.1)

Let us assume that ρ, although time dependent, has a bounded Fourier spectrum. That is,
we assume that ρ(r, t) can be written in the form

ρ(r, t) = (1/2π)

∫ ωmax

−ωmax

dωρ̃(r, ω) exp(−iωt) (F.2.2)

where ωmax is some finite frequency cutoff. Then ψ(r, t) will also have a bounded Fourier
spectrum,

ψ(r, t) = (1/2π)

∫ ωmax

−ωmax

dωψ̃(r, ω) exp(−iωt). (F.2.3)

We know from (2.1) that the Fourier transform ψ̃ satisfies the inhomogeneous Helmholtz
equation

(∇2 + k2)ψ̃(r, ω) = −4πρ̃(r, ω) (F.2.4)

where
k = ω/c. (F.2.5)

With the assumption of an outgoing wave boundary condition, equation (2.4) has the solu-
tion

ψ̃(r, ω) =

∫
d3r′ρ̃(r′, ω)[exp(ik ‖ r′ − r ‖)]/ ‖ r′ − r ‖ . (F.2.6)

We now assume that ρ̃(r, ω), for all ω in the closed interval [−ωmax, ωmax], is analytic
in the components of r at some point r0. Then it can be shown that ψ̃(r, ω) will also be
analytic at r0. It follows from (2.3) that ψ(r, t) will also be analytic in the components of r
at r0 for all t. Finally, again from (2.3), we see that ψ(r, t) will also be an analytic function
of t for all t.

We now outline the proof of this assertion. As before, we take r0 to be the origin and
break up the region of integration in (2.6) to write

ψ̃(r, ω) = ψ̃<(r, ω) + ψ̃>(r, ω) (F.2.7)

where

ψ̃<(r, ω) =

∫
‖r′‖≤R′

d3r′ρ̃(r′, ω)[exp(ik ‖ r′ − r ‖)]/ ‖ r′ − r ‖, (F.2.8)

ψ̃>(r, ω) =

∫
‖r′‖≥R′

d3r′ρ̃(r′, ω)[exp(ik ‖ r′ − r ‖)]/ ‖ r′ − r ‖ . (F.2.9)

It follows, from arguments similar to those made earlier, that ψ̃>(r, ω) is analytic in the
components of r in a small neighborhood of the origin, and satisfies the Helmholtz equation

[∇2 + k2]ψ̃>(r, ω) = 0 for r near 0. (F.2.10)
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To study the behavior of ψ̃< we assume, as before, that R′ is sufficiently small that
ρ̃(r′, ω) has a convergent expansion of the form (1.33) where the coefficients bm`s(ω) are now
ω dependent. Again consider each term at a time and, in analogy to (1.78), examine the
integrals

X̃m`s(r, ω) =

∫ R′

0

dr′(r′)2(r′)2s+`

∫
dΩ′Y m

` (Ω′)[exp(ik ‖ r′ − r ‖)]/ ‖ r′ − r ‖ . (F.2.11)

The second integral in (2.11) has the value∫
dΩ′Y m

` (Ω′)[exp(ik ‖ r′ − r ‖)]/ ‖ r′ − r ‖= 4πikj`(kr<)h1
`(kr>)Y m

` (Ω). (F.2.12)

Consequently our problem is reduced to studying the behavior of the integral∫ R′

0

dr′(r′)`+2s+24πikj`(kr<)h1
`(kr>). (F.2.13)

It can be shown that this integral has the same analytic behavior as the related integral∫ R′

0

dr′(r′)`+2s+2[4π/(2`+ 1)]r`</r
`+1
> (F.2.14)

for the analogous time independent case. In particular, X̃m`s can be written in the form

X̃m`s(r, ω) = X̃ 1
m`s(r, ω) + X̃ 2

m`s(r, ω) (F.2.15)

where both X̃ 1 and X̃ 2 are entire analytic functions of the variables x, y, z. Correspondingly,
ψ̃<(r, ω) can be written in the form

ψ̃<(r, ω) = ψ̃1
<(r, ω) + ψ̃2

<(r, ω) (F.2.16)

where both ψ̃1
< and ψ̃2

< are analytic in a neighborhood about the origin, and satisfy the
equations

(∇2 + k2)ψ̃1
<(r, ω) = −4πρ̃(r, ω), (F.2.17)

(∇2 + k2)ψ̃2
<(r, ω) = 0. (F.2.18)

Exercises

F.2.1. Review Exercise 1.13. Now consider the time dependent case. Show that the fre-
quency cutoff in (2.2) is essential to the argument. Show that if all frequencies are allowed,
then the effect of singularities in ρ can propagate. That is, a singularity in ρ at some point
r′, and some time, can produce a singularity in ψ at some other point r at some later time
even though ρ may be analytic at r.

F.2.2. Evaluate the integral (2.13), and complete the analysis of the time dependent case.

F.2.3. Extend the method of Exercise 1.16 to the time-dependent case (2.6.
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F.3 Smoothing Properties of the Laplacian Kernel

In Section 22.2 we encountered the relation

H(r) = [1/(4π)]

∫
V

d3r′ F (r′)G(r, r′). (F.3.1)

See (22.2.92). It follows from the work at the beginning of this appendix that if F (r′) is
analytic, then H(r) will also be analytic. Now we will assume only that F (r′) is smooth,
and then study what can be said about the properties of H(r). By smooth, we mean that
....
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Appendix H

Harmonic Functions

Section 13.2 provided cylindrical harmonic expansions for the harmonic function ψ. This
appendix does the same for the gradients of ψ. It also studies the range of the transverse
gradient operators when acting on the space of harmonic functions. In particular, given a
harmonic function χ, it shows that there exists a harmonic function ψ such that ∂xψ = χ
or a ψ such that ∂yψ = χ. Finally, it provides representations for harmonic functions in two
variables.

H.1 Representation of Gradients

We know that the harmonic function ψ(x, y, z) has the representation (13.2.37). We would
like to find similar representations for ∂xψ(x, y, z), ∂yψ(x, y, z), and ∂zψ(x, y, z) which, of
course, are also harmonic functions.

H.1.1 Low-Order Results

We will begin by finding low-order results, and then work out results to all orders. Refer to
(13.2.37) to write ψ in the form

ψ = ψ0 + ψc + ψs (H.1.1)

where

ψ0(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
0 (z)ρ2`, (H.1.2)

ψc(x, y, z) =
∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`+m

=
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)ρ2`<(x+ iy)m, (H.1.3)
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ψs(x, y, z) =
∞∑
m=1

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`+m

=
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)ρ2`=(x+ iy)m. (H.1.4)

Let us expand ψ through terms of third order. We can then differentiate this expansion
to find the first few terms in the expansions of its gradients. Through terms of degree 3, we
find for the constituents of ψ the expansions

ψ0 = C
[0]
0 (z)− (1/4)(x2 + y2)C

[2]
0 (z) + · · · , (H.1.5)

ψc = <(x+ iy)C
[0]
1,c(z) + <(x+ iy)2C

[0]
2,c(z) + <(x+ iy)3C

[0]
3,c(z)

−(1/8)(x2 + y2)<(x+ iy)C
[2]
1,c(z) + · · ·

= xC
[0]
1,c(z) + (x2 − y2)C

[0]
2,c(z) + (x3 − 3xy2)C

[0]
3,c(z)− (1/8)(x2 + y2)xC

[2]
1,c(z) + · · · ,

= xC
[0]
1,c(z) + (x2 − y2)C

[0]
2,c(z)

+x3[C
[0]
3,c(z)− (1/8)C

[2]
1,c(z)]− xy2[3C

[0]
3,c(z) + (1/8)C

[2]
1,c(z)] + · · · ,

(H.1.6)

ψs = =(x+ iy)C
[0]
1,s(z) + =(x+ iy)2C

[0]
2,s(z) + =(x+ iy)3C

[0]
3,s(z)

−(1/8)(x2 + y2)=(x+ iy)C
[2]
1,s(z) + · · ·

= yC
[0]
1,s(z) + 2xyC

[0]
2,s(z) + (−y3 + 3x2y)C

[0]
3,s(z)− (1/8)(x2 + y2)yC

[2]
1,s(z) + · · · ,

= yC
[0]
1,s(z) + 2xyC

[0]
2,s(z)

−y3[C
[0]
3,s(z) + (1/8)C

[2]
1,s(z)] + x2y[3C

[0]
3,s(z)− (1/8)C

[2]
1,s(z)] + · · · .

(H.1.7)

Differentiating these expansions, and retaining terms through second order, give the
results

∂zψ0 = C
[1]
0 (z)− (1/4)(x2 + y2)C

[3]
0 (z) + · · · , (H.1.8)

∂zψc = xC
[1]
1,c(z) + (x2 − y2)C

[1]
2,c(z) + · · · , (H.1.9)

∂zψs = yC
[1]
1,s(z) + 2xyC

[1]
2,s(z) + · · · , (H.1.10)

∂xψ0 = −(1/2)xC
[2]
0 (z) + · · · , (H.1.11)

∂xψc = C
[0]
1,c(z) + 2xC

[0]
2,c(z) + 3x2[C

[0]
3,c(z)− (1/8)C

[2]
1,c(z)]

−y2[3C
[0]
3,c(z) + (1/8)C

[2]
1,c(z)] + · · · , (H.1.12)

∂xψs = 2yC
[0]
2,s(z) + 2xy[3C

[0]
3,s(z)− (1/8)C

[2]
1,s(z)] + · · · , (H.1.13)
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∂yψ0 = −(1/2)yC
[2]
0 (z) + · · · , (H.1.14)

∂yψc = −2yC
[0]
2,c(z)− 2xy[3C

[0]
3,c(z) + (1/8)C

[2]
1,c(z)] + · · · , (H.1.15)

∂yψs = C
[0]
1,s(z) + 2xC

[0]
2,s(z)− 3y2[C

[0]
3,s(z) + (1/8)C

[2]
1,s(z)]

+x2[3C
[0]
3,s(z)− (1/8)C

[2]
1,s(z)] + · · · . (H.1.16)

Finally, upon employing the decomposition (1.1), we find the results

∂zψ = C
[1]
0 (z) + xC

[1]
1,c(z) + yC

[1]
1,s(z)

+(x2 − y2)C
[1]
2,c(z) + 2xyC

[1]
2,s(z)− (1/4)(x2 + y2)C

[3]
0 (z) + · · ·

= C
[1]
0 (z) + xC

[1]
1,c(z) + yC

[1]
1,s(z)

+x2[C
[1]
2,c(z)− (1/4)C

[3]
0 (z)]− y2[C

[1]
2,c(z) + (1/4)C

[3]
0 (z)] + 2xyC

[1]
2,s(z) + · · · ,

(H.1.17)

∂xψ = C
[0]
1,c(z) + x[2C

[0]
2,c(z)− (1/2)C

[2]
0 (z)] + 2yC

[0]
2,s(z)

+3x2[C
[0]
3,c(z)− (1/8)C

[2]
1,c(z)]− y2[3C

[0]
3,c(z) + (1/8)C

[2]
1,c(z)]

+2xy[3C
[0]
3,s(z)− (1/8)C

[2]
1,s(z)] · · · , (H.1.18)

∂yψ = C
[0]
1,s(z)− y[2C

[0]
2,c(z) + (1/2)C

[2]
0 (z)] + 2xC

[0]
2,s(z)

−3y2[C
[0]
3,s(z) + (1/8)C

[2]
1,s(z)] + x2[3C

[0]
3,s(z)− (1/8)C

[2]
1,s(z)]

−2xy[3C
[0]
3,c(z) + (1/8)C

[2]
1,c(z)] + · · · . (H.1.19)

H.1.2 Results to All Orders

Let us study the effect of the operators ∂x, ∂y, and ∂z on each of the terms in (1.1). Finding

the effect of ∂z is easy because it acts only on the C
[n]
m,α(z) to raise the value of n by 1. The

effects of ∂x and ∂y are more complicated. Observe that ψ0, ψc, and ψs are sums over the
“basis” functions ρ2`, ρ2`<(x+ iy)m, and ρ2`=(x+ iy)m, respectively. We will first compute
∂x and ∂y of these basis functions; then compute ∂x and ∂y of ψ0, ψc, and ψs; and finally
compute ∂xψ and ∂yψ and also ∂zψ.

Transverse Gradients of ρ2`

Let us begin by calculating ∂x and ∂y of ρ2`. We find that

∂xρ
2` = ∂x(x

2 + y2)` = `(x2 + y2)`−12x = 2`ρ2`−2<(x+ iy) (H.1.20)

and
∂yρ

2` = ∂y(x
2 + y2)` = `(x2 + y2)`−12y = 2`ρ2`−2=(x+ iy). (H.1.21)
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Transverse Gradients of ρ2`<(x+ iy)m and ρ2`=(x+ iy)m

Determining the transverse gradients of ρ2`<(x+ iy)m and ρ2`=(x+ iy)m requires somewhat
more work. Note that for these calculations we have m ≥ 1. We find that

∂x[ρ
2`<(x+ iy)m] = ∂x{ρ2`[(x+ iy)m + (x− iy)m]/2}

= [∂xρ
2`][(x+ iy)m + (x− iy)m]/2 + ρ2`∂x[(x+ iy)m + (x− iy)m]/2

= 2`ρ2`−2<(x+ iy)[(x+ iy)m + (x− iy)m]/2 + ρ2`m[(x+ iy)m−1 + (x− iy)m−1]/2

= `ρ2`−2[(x+ iy) + (x− iy)][(x+ iy)m + (x− iy)m]/2 +mρ2`<(x+ iy)m−1

= `ρ2`−2{[(x+ iy)m+1 + (x− iy)m+1] + ρ2[(x+ iy)m−1 + (x− iy)m−1]}/2
+mρ2`<(x+ iy)m−1

= `ρ2`−2<(x+ iy)m+1 + (`+m)ρ2`<(x+ iy)m−1,

(H.1.22)

∂x[ρ
2`=(x+ iy)m] = ∂x{ρ2`[(x+ iy)m − (x− iy)m]/(2i)}

= [∂xρ
2`][(x+ iy)m − (x− iy)m]/(2i) + ρ2`∂x[(x+ iy)m − (x− iy)m]/(2i)

= 2`ρ2`−2<(x+ iy)[(x+ iy)m − (x− iy)m]/(2i) + ρ2`m[(x+ iy)m−1 − (x− iy)m−1]/(2i)

= `ρ2`−2[(x+ iy) + (x− iy)][(x+ iy)m − (x− iy)m]/(2i) +mρ2`=(x+ iy)m−1

= `ρ2`−2{[(x+ iy)m+1 − (x− iy)m+1] + ρ2[(x+ iy)m−1 − (x− iy)m−1]}/(2i)
+mρ2`=(x+ iy)m−1

= `ρ2`−2=(x+ iy)m+1 + (`+m)ρ2`=(x+ iy)m−1,

(H.1.23)

∂y[ρ
2`<(x+ iy)m] = ∂y{ρ2`[(x+ iy)m + (x− iy)m]/2}

= [∂yρ
2`][(x+ iy)m + (x− iy)m]/2 + ρ2`∂y[(x+ iy)m + (x− iy)m]/2

= 2`ρ2`−2=(x+ iy)[(x+ iy)m + (x− iy)m]/2 + ρ2`im[(x+ iy)m−1 − (x− iy)m−1]/2

= `ρ2`−2[(x+ iy)− (x− iy)][(x+ iy)m + (x− iy)m]/(2i)−mρ2`=(x+ iy)m−1

= `ρ2`−2{[(x+ iy)m+1 − (x− iy)m+1]− ρ2[(x+ iy)m−1 − (x− iy)m−1]}/(2i)
−mρ2`=(x+ iy)m−1

= `ρ2`−2=(x+ iy)m+1 − (`+m)ρ2`=(x+ iy)m−1,

(H.1.24)

∂y[ρ
2`=(x+ iy)m] = ∂y{ρ2`[(x+ iy)m − (x− iy)m]/(2i)}

= [∂yρ
2`][(x+ iy)m − (x− iy)m]/(2i) + ρ2`∂y[(x+ iy)m − (x− iy)m]/(2i)

= 2`ρ2`−2=(x+ iy)[(x+ iy)m − (x− iy)m]/(2i) + ρ2`im[(x+ iy)m−1 + (x− iy)m−1]/(2i)

= −`ρ2`−2[(x+ iy)− (x− iy)][(x+ iy)m − (x− iy)m]/2 +mρ2`<(x+ iy)m−1

= −`ρ2`−2{[(x+ iy)m+1 + (x− iy)m+1]− ρ2[(x+ iy)m−1 + (x− iy)m−1]}/2
+mρ2`<(x+ iy)m−1

= −`ρ2`−2<(x+ iy)m+1 + (`+m)ρ2`<(x+ iy)m−1.

(H.1.25)
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Transverse Gradients of ψ0

We are now prepared to compute the transverse gradients of ψ0. Based on (1.2), (1.20), and
(1.21), we find that

∂xψ0 =
∞∑
`=0

(−1)`
2`

22``!`!
C

[2`]
0 (z)ρ2`−2<(x+ iy)

=
∞∑
`=1

(−1)`
2`

22``!`!
C

[2`]
0 (z)ρ2`−2<(x+ iy)

=
∞∑
`=0

(−1)`+1 (2`+ 2)

22`+2(`+ 1)!(`+ 1)!
C

[2`+2]
0 (z)ρ2`<(x+ iy)

=
∞∑
`=0

(−1)`+1 2

22`+2`!(`+ 1)!
C

[2`+2]
0 (z)ρ2`<(x+ iy) (H.1.26)

and

∂yψ0 =
∞∑
`=0

(−1)`
2`

22``!`!
C

[2`]
0 (z)ρ2`−2=(x+ iy)

=
∞∑
`=1

(−1)`
2`

22``!`!
C

[2`]
0 (z)ρ2`−2=(x+ iy)

=
∞∑
`=0

(−1)`+1 (2`+ 2)

22`+2(`+ 1)!(`+ 1)!
C

[2`+2]
0 (z)ρ2`=(x+ iy)

=
∞∑
`=0

(−1)`+1 2

22`+2`!(`+ 1)!
C

[2`+2]
0 (z)ρ2`=(x+ iy) (H.1.27)

Transverse Gradients of ψc and ψs

We are also ready to compute the transverse gradients of ψc and ψs. These results are more
lengthy. Based on (1.3), (1.4), and (1.22) through (1.25), we find the following results.
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Result for ∂xψc

∂xψc =
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)[`ρ2`−2<(x+ iy)m+1 + (`+m)ρ2`<(x+ iy)m−1]

=
∞∑
m=1

∞∑
`=1

(−1)`
m!`

22``!(`+m)!
C [2`]
m,c(z)ρ2`−2<(x+ iy)m+1

+
∞∑
m=1

∞∑
`=0

(−1)`
m!(`+m)

22``!(`+m)!
C [2`]
m,c(z)ρ2`<(x+ iy)m−1

=
∞∑
m=1

∞∑
`=0

(−1)`+1 m!(`+ 1)

22`+2(`+ 1)!(`+m+ 1)!
C [2`+2]
m,c (z)ρ2`<(x+ iy)m+1

+
∞∑
m=1

∞∑
`=0

(−1)`
m!(`+m)

22``!(`+m)!
C [2`]
m,c(z)ρ2`<(x+ iy)m−1

=
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,c (z)ρ2`<(x+ iy)m+1

+
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,c(z)ρ2`<(x+ iy)m−1

=
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,c (z)ρ2`<(x+ iy)m+1

+
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,c (z)ρ2` +

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,c (z)ρ2`<(x+ iy)

+
∞∑
m=3

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,c(z)ρ2`<(x+ iy)m−1

=
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,c (z)ρ2` +

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,c (z)ρ2`<(x+ iy)

+
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,c (z)ρ2`<(x+ iy)m+1

+
∞∑
m=3

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,c(z)ρ2`<(x+ iy)m−1

=
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,c (z)ρ2` +

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,c (z)ρ2`<(x+ iy)

+
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z)− [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`<(x+ iy)m.

(H.1.28)



H.1. REPRESENTATION OF GRADIENTS 2431

Result for ∂xψs

∂xψs =
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)[`ρ2`−2=(x+ iy)m+1 + (`+m)ρ2`=(x+ iy)m−1]

=
∞∑
m=1

∞∑
`=1

(−1)`
m!`

22``!(`+m)!
C [2`]
m,s(z)ρ2`−2=(x+ iy)m+1

+
∞∑
m=1

∞∑
`=0

(−1)`
m!(`+m)

22``!(`+m)!
C [2`]
m,s(z)ρ2`=(x+ iy)m−1

=
∞∑
m=1

∞∑
`=0

(−1)`+1 m!(`+ 1)

22`+2(`+ 1)!(`+m+ 1)!
C [2`+2]
m,s (z)ρ2`=(x+ iy)m+1

+
∞∑
m=1

∞∑
`=0

(−1)`
m!(`+m)

22``!(`+m)!
C [2`]
m,s(z)ρ2`=(x+ iy)m−1

=
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,s (z)ρ2`=(x+ iy)m+1

+
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,s(z)ρ2`=(x+ iy)m−1

=
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,s (z)ρ2`=(x+ iy)m+1

+
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`=(x+ iy)

+
∞∑
m=3

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,s(z)ρ2`=(x+ iy)m−1.

=
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`=(x+ iy)

+
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,s (z)ρ2`=(x+ iy)m+1

+
∞∑
m=3

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,s(z)ρ2`=(x+ iy)m−1.

=
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`=(x+ iy)

+
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z)− [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`=(x+ iy)m.

(H.1.29)
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Result for ∂yψc

∂yψc =
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,c(z)[`ρ2`−2=(x+ iy)m+1 − (`+m)ρ2`=(x+ iy)m−1]

=
∞∑
m=1

∞∑
`=1

(−1)`
m!`

22``!(`+m)!
C [2`]
m,c(z)ρ2`−2=(x+ iy)m+1

−
∞∑
m=1

∞∑
`=0

(−1)`
m!(`+m)

22``!(`+m)!
C [2`]
m,c(z)ρ2`=(x+ iy)m−1

=
∞∑
m=1

∞∑
`=0

(−1)`+1 m!(`+ 1)

22`+2(`+ 1)!(`+m+ 1)!
C [2`+2]
m,c (z)ρ2`=(x+ iy)m+1

−
∞∑
m=1

∞∑
`=0

(−1)`
m!(`+m)

22``!(`+m)!
C [2`]
m,c(z)ρ2`=(x+ iy)m−1

=
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,c (z)ρ2`=(x+ iy)m+1

−
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,c(z)ρ2`=(x+ iy)m−1

=
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,c (z)ρ2`=(x+ iy)m+1

−
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,c (z)ρ2`=(x+ iy)

−
∞∑
m=3

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,c(z)ρ2`=(x+ iy)m−1

= −
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,c (z)ρ2`=(x+ iy)

+
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,c (z)ρ2`=(x+ iy)m+1

−
∞∑
m=3

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,c(z)ρ2`=(x+ iy)m−1

= −
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,c (z)ρ2`=(x+ iy)

−
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z) + [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`=(x+ iy)m.

(H.1.30)
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Result for ∂yψs

∂yψs =
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`]
m,s(z)[−`ρ2`−2<(x+ iy)m+1 + (`+m)ρ2`<(x+ iy)m−1]

= −
∞∑
m=1

∞∑
`=1

(−1)`
m!`

22``!(`+m)!
C [2`]
m,s(z)ρ2`−2<(x+ iy)m+1

+
∞∑
m=1

∞∑
`=0

(−1)`
m!(`+m)

22``!(`+m)!
C [2`]
m,s(z)ρ2`<(x+ iy)m−1

= −
∞∑
m=1

∞∑
`=0

(−1)`+1 m!(`+ 1)

22`+2(`+ 1)!(`+m+ 1)!
C [2`+2]
m,s (z)ρ2`<(x+ iy)m+1

+
∞∑
m=1

∞∑
`=0

(−1)`
m!(`+m)

22``!(`+m)!
C [2`]
m,s(z)ρ2`<(x+ iy)m−1

= −
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,s (z)ρ2`<(x+ iy)m+1

+
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,s(z)ρ2`<(x+ iy)m−1

= −
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,s (z)ρ2`<(x+ iy)m+1

+
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,s (z)ρ2` +

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`<(x+ iy)

+
∞∑
m=3

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,s(z)ρ2`<(x+ iy)m−1

=
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,s (z)ρ2` +

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`<(x+ iy)

−
∞∑
m=1

∞∑
`=0

(−1)`+1 m!

22`+2`!(`+m+ 1)!
C [2`+2]
m,s (z)ρ2`<(x+ iy)m+1

+
∞∑
m=3

∞∑
`=0

(−1)`
m!

22``!(`+m− 1)!
C [2`]
m,s(z)ρ2`<(x+ iy)m−1

=
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,s (z)ρ2` +

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`<(x+ iy)

+
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z) + [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`<(x+ iy)m.

(H.1.31)



2434 H. HARMONIC FUNCTIONS

Gradients of ψ

The last step is to put all the previous results together using (1.1). So doing gives the
following final results.

Result for ∂xψ

∂xψ(x, y, z) = ∂xψ0 + ∂xψc + ∂xψs

=
∞∑
`=0

(−1)`+1 2

22`+2`!(`+ 1)!
C

[2`+2]
0 (z)ρ2`<(x+ iy)

+
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,c (z)ρ2` +

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
0 (z)ρ2`<(x+ iy)

+
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z)− [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`<(x+ iy)m

+
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`=(x+ iy)

+
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z)− [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`=(x+ iy)m

=
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,c (z)ρ2`

+
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
[C

[2`]
2,c (z)− (1/4)C

[2`+2]
0 (z)]ρ2`<(x+ iy)

+
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z)− [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`<(x+ iy)m

+
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`=(x+ iy)

+
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z)− [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`=(x+ iy)m.

(H.1.32)
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Result for ∂yψ

∂yψ(x, y, z) = ∂yψ0 + ∂yψc + ∂yψs

=
∞∑
`=0

(−1)`+1 2

22`+2`!(`+ 1)!
C

[2`+2]
0 (z)ρ2`=(x+ iy)

−
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,c (z)ρ2`=(x+ iy)

−
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z) + [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`=(x+ iy)m

+
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,s (z)ρ2` +

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`<(x+ iy)

+
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z) + [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`<(x+ iy)m

=
∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,s (z)ρ2` +

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`<(x+ iy)

+
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z) + [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`<(x+ iy)m

−
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
[C

[2`]
2,c (z) + (1/4)C

[2`+2]
0 ]ρ2`=(x+ iy)

−
∞∑
m=2

∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z) + [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`=(x+ iy)m.

(H.1.33)

Result for ∂zψ

∂zψ(x, y, z) = ∂zψ0 + ∂zψc + ∂zψs

=
∞∑
`=0

(−1)`
1

22``!`!
C

[2`+1]
0 (z)ρ2`

+
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,c (z)ρ2`<(x+ iy)m

+
∞∑
m=1

∞∑
`=0

(−1)`
m!

22``!(`+m)!
C [2`+1]
m,s (z)ρ2`=(x+ iy)m.

(H.1.34)



2436 H. HARMONIC FUNCTIONS

Exercises

H.1.1. Verify (1.22) through (1.22) for selected example values of ` and m.

H.1.2. Verify (1.26) and (1.27).

H.1.3. Verify (1.28) through (1.31).

H.1.4. Verify (1.32) through (1.34). Show that, when expanded to low order, they yield
results identical to (1.17) through (1.19).

H.1.5. Write
B = ∇ψ (H.1.35)

to find the cylindrical coordinate results

Bρ = ∂ψ/∂ρ, (H.1.36)

Bφ = (1/ρ)∂ψ/∂φ, (H.1.37)

Bz = ∂ψ/∂z. (H.1.38)

Also invoke the relations
Bx = (cosφ)Bρ − (sinφ)Bφ (H.1.39)

By = (sinφ)Bρ + (cosφ)Bφ. (H.1.40)

Use these results to derive (1.32) through (1.34).

H.2 Range of Transverse Gradient Operators

We next enquire about the range of the operators ∂x and ∂y. Consider ∂x. Suppose χ is
some given (real) harmonic function. Can we find a (real) harmonic ψ such that either

∂xψ = χ (H.2.1)

or
∂yψ = χ? (H.2.2)

We will verify, by construction, that the answer is yes.

H.2.1 Solution of ∂xψ = χ

Since χ is assumed (real) harmonic, it has a representation of the form

χ(x, y, z) =
∞∑
`=0

(−1)`
1

22``!`!
B

[2`]
0 (z)ρ2`

+
∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,c(z)ρ2`+m

+
∞∑
m=1

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,s(z)ρ2`+m.

(H.2.3)
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Evidently, we must compare (1.32) and (2.3). We must try to satisfy the pair of equations

∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,c (z)ρ2` +

+ cos(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
[C

[2`]
2,c (z)− (1/4)C

[2`+2]
0 (z)]ρ2`+1

+
∞∑
m=2

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z)− [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`+m

?
=
∞∑
`=0

(−1)`
1

22``!`!
B

[2`]
0 (z)ρ2` +

∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,c(z)ρ2`+m

(H.2.4)

and

sin(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`+1

+
∞∑
m=2

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z)− [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`+m

?
=
∞∑
m=1

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,s(z)ρ2`+m. (H.2.5)

Here we have used (13.2.7) and (13.2.8).

Let us first work on question (2.4). Suppose we set

C
[0]
1,c(z) = B

[0]
0 (z). (H.2.6)

Then (2.4) becomes the question

+ cos(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
[C

[2`]
2,c (z)− (1/4)C

[2`+2]
0 (z)]ρ2`+1

+
∞∑
m=2

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z)− [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`+m

?
=
∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,c(z)ρ2`+m.

(H.2.7)
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Note that the right side of (2.7) can be written in the form

∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,c(z)ρ2`+m

= cos(φ)
∞∑
`=0

(−1)`
1

22``!(`+ 1)!
B

[2`]
1,c (z)ρ2`+1

+
∞∑
m=2

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,c(z)ρ2`+m.

(H.2.8)

Therefore, upon equating like terms, we see that (2.7) is equivalent to the two questions

2[C
[2`]
2,c (z)− (1/4)C

[2`+2]
0 (z)]

?
=B

[2`]
1,c (z) (H.2.9)

and
(m+ 1)C

[2`]
m+1,c(z)− [1/(4m)]C

[2`+2]
m−1,c(z) = B[2`]

m,c(z)? for m ≥ 2. (H.2.10)

We will solve (2.9) by making the stipulation

C
[0]
0 = 0, (H.2.11)

in which case (2.9) has the solution

C
[0]
2,c(z) = (1/2)B

[0]
1,c(z). (H.2.12)

Let us next rewrite (2.10) in the recursive form

C
[2`]
m+1,c(z) = [1/(m+ 1)]B[2`]

m,c(z) + {1/[(4m)(m+ 1)]}C [2`+2]
m−1,c(z)? for m ≥ 2. (H.2.13)

In view of (2.6) and (2.12), this is a well-defined recursion relation. For example, putting
m = 2 in (2.13) gives the result

C
[0]
3,c(z) = (1/3)B

[0]
2,c(z) + {1/[(8)(3)]}C [2]

1,c(z), (H.2.14)

which, using (2.6), can be rewritten as

C
[0]
3,c(z) = (1/3)B

[0]
2,c(z) + (1/24)B

[2]
0 (z). (H.2.15)

Now put m = 3. Doing so gives the result

C
[0]
4,c(z) = (1/4)B

[0]
3,c(z) + {1/[(12)(4)]}C [2]

2,c(z), (H.2.16)

which, using (2.12), can be rewritten as

C
[0]
4,c(z) = (1/4)B

[0]
3,c(z) + (1/96)B

[2]
1,c(z). (H.2.17)
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Finally, put m = 4, The result is

C
[0]
5,c(z) = (1/5)B

[0]
4,c(z) + {1/[(16)(5)]}C [2]

3,c(z), (H.2.18)

which, using (2.15), can be rewritten as

C
[0]
5,c(z) = (1/5)B

[0]
4,c(z) + (1/240)B

[2]
2,c(z) + (1/1920)B

[4]
0 (z). (H.2.19)

The pattern is now clear. All the C
[0]
m,c(z) are determined in terms of the B

[n]
m,c(z), and (2.4)

is satisfied.
Move on to look at (2.5), which can also be written in the form

sin(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`+1

+
∞∑
m=2

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z)− [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`+m

?
= sin(φ)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
B

[2`]
1,s (z)ρ2`+1

+
∞∑
m=2

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,s(z)ρ2`+m.

(H.2.20)

Upon equating like terms in (2.20) we see that it is equivalent to the two relations

2C
[2`]
2,s (z)

?
=B

[2`]
1,s (z) (H.2.21)

and
(m+ 1)C

[2`]
m+1,s(z)− [1/(4m)]C

[2`+2]
m−1,s(z)

?
=B[2`]

m,s(z) for m ≥ 2. (H.2.22)

The relation (2.21) has the solution

C
[0]
2,s(z) = (1/2)B

[0]
1,s(z), (H.2.23)

and (2.22) can be written in the recursive form

C
[2`]
m+1,s(z)

?
=[1/(m+ 1)]B[2`]

m,s(z) + {1/[(4m)(m+ 1)]}C [2`+2]
m−1,s(z) for m ≥ 2. (H.2.24)

Now make the stipulation
C

[0]
1,s(z) = 0. (H.2.25)

Then, for m = 2, we get the result

C
[0]
3,s(z) = (1/3)B

[0]
2,s(z). (H.2.26)

Now put m = 3 to get the result

C
[0]
4,s(z) = (1/4)B

[0]
3,s(z) + {1/[(12)(4)]}C [2]

2,s(z), (H.2.27)
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which, when combined with (2.23), gives the result

C
[0]
4,s(z) = (1/4)B

[0]
3,s(z) + (1/96)B

[2]
1,s(z). (H.2.28)

To continue the calculation, put m = 4 to find

C
[0]
5,s(z) = (1/5)B

[0]
4,s(z) + {1/[(16)(5)]}C [2]

3,s(z), (H.2.29)

which, when combined with (2.26), gives the result

C
[0]
5,s(z) = (1/5)B

[0]
4,s(z) + (1/240)B

[2]
2,s(z). (H.2.30)

The pattern becomes clear when m = 5. In this case we find that

C
[0]
6,s(z) = (1/6)B

[0]
5,s(z) + {1/[(20)(6)]}C [2]

4,s(z), (H.2.31)

which, when combined with (2.28), gives the result

C
[0]
6,s(z) = (1/6)B

[0]
5,s(z) + (1/480)B

[2]
3,s(z) + (1/11520)B

[4]
1,s(z). (H.2.32)

We see that all the C
[0]
m,s(z) are determined in terms of the B

[n]
m,s(z), and (2.5) is satisfied.

Thus, both (2.4) and (2.5) have been satisfied, and therefore our goal (2.1) has been met.
At this point we should comment on the stipulations (2.11) and (2.25). Evidently the

stipulation (2.11) specifies that all terms of the form

∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
0 (z)ρ2` (H.2.33)

are omitted from ψ. And the stipulation (2.25) specifies that all terms of the form

sin(φ)
∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`]
1,s (z)ρ2`+1 (H.2.34)

are omitted from ψ. We have seen that these terms are not needed to meet the goal (2.1),
and their omission simplifies the recursion relations that specify ψ in terms of χ.

H.2.2 Solution of ∂yψ = χ

We next address the question of whether there is a ψ such that (2.2) is satisfied. By symmetry
we know that there must be such a ψ, but it is instructive to work out the details. Evidently
we must compare (1.33) and (2.3). We must try to satisfy the pair of equations

∞∑
`=0

(−1)`
1

22``!`!
C

[2`]
1,s (z)ρ2` + cos(φ)

∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`+1

+
∞∑
m=2

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z) + [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`+m

?
=
∞∑
`=0

(−1)`
1

22``!`!
B

[2`]
0 (z)ρ2` +

∞∑
m=1

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,c(z)ρ2`+m

(H.2.35)
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and

− sin(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
[C

[2`]
2,c (z) + (1/4)C

[2`+2]
0 ]ρ2`+1

−
∞∑
m=2

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z) + [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`+2

?
=
∞∑
m=1

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,s(z)ρ2`+m. (H.2.36)

Let us first work on question (2.35). Begin by setting

C
[0]
1,s(z) = B

[0]
0 (z). (H.2.37)

When this is done, (2.35) becomes

cos(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
C

[2`]
2,s (z)ρ2`+1

+
∞∑
m=2

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,s(z) + [1/(4m)]C

[2`+2]
m−1,s(z)}ρ2`+m

?
= cos(φ)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
B

[2`]
1,c (z)ρ2`+1

+
∞∑
m=2

cos(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,c(z)ρ2`+m,

(H.2.38)

which is equivalent to the questions

2C
[0]
2,s(z)

?
=B

[0]
1,c(z) (H.2.39)

and
(m+ 1)C

[0]
m+1,s(z) + [1/(4m)]C

[2]
m−1,s(z)

?
=B[0]

m,c(z) for m ≥ 2. (H.2.40)

The question (2.39) has the answer

C
[0]
2,s(z) = (1/2)B

[0]
1,c(z), (H.2.41)

and (2.40) can be written in the recursive form

C
[0]
m+1,s(z)

?
=[1/(m+ 1)]B[0]

m,c(z)− {1/[(4m)(m+ 1)]}C [2]
m−1,s(z). (H.2.42)

We see from (2.37) and (2.41) that this recursion relation has a unique solution. Setting
m = 2 in (2.42) gives the result

C
[0]
3,s(z) = (1/3)B

[0]
2,c(z)− {1/[(8)(3)]}C [2]

1,s(z), (H.2.43)
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which, in view of (2.37), becomes

C
[0]
3,s(z) = (1/3)B

[0]
2,c(z)− (1/24)B

[2]
0 (z). (H.2.44)

Setting m = 3 gives

C
[0]
4,s(z) = (1/4)B

[0]
3,c(z)− {1/[(12)(4)]}C [2]

2,s(z), (H.2.45)

which, in view of (2.41), becomes

C
[0]
4,s(z) = (1/4)B

[0]
3,c(z)− (1/96)B

[2]
1,c(z). (H.2.46)

Setting m = 4 gives

C
[0]
5,s(z) = (1/5)B

[0]
3,c(z)− {1/[(16)(5)]}C [2]

3,s(z), (H.2.47)

which, in view of (2.44), becomes

C
[0]
5,s(z) = (1/5)B

[0]
4,c(z)− (1/96)B

[2]
2,c(z)− (1/96)B

[4]
0 (z). (H.2.48)

Evidently we are able to find all the C
[0]
m,s(z) in terms of the B

[n]
m,c(z), and therefore (2.35)

can be satisfied.
Now turn to satisfying (2.36), which is equivalent to the question

− sin(φ)
∞∑
`=0

(−1)`
2

22``!(`+ 1)!
[C

[2`]
2,c (z) + (1/4)C

[2`+2]
0 ]ρ2`+1

−
∞∑
m=2

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
{(m+ 1)C

[2`]
m+1,c(z) + [1/(4m)]C

[2`+2]
m−1,c(z)}ρ2`+2

?
= sin(φ)

∞∑
`=0

(−1)`
1

22``!(`+ 1)!
B

[2`]
1,s (z)ρ2`+1

+
∞∑
m=2

sin(mφ)
∞∑
`=0

(−1)`
m!

22``!(`+m)!
B[2`]
m,s(z)ρ2`+m. (H.2.49)

Upon equating like terms, we find the questions

2[C
[0]
2,c(z) + (1/4)C

[2]
0 ]

?
=−B[0]

1,s(z) (H.2.50)

and
(m+ 1)C

[0]
m+1,c(z) + [1/(4m)]C

[2]
m−1,c(z)

?
=−B[0]

m,s(z). (H.2.51)

We again make the stipulation (2.11) so that (2.50) has the answer

C
[0]
2,c(z) = −(1/2)B

[0]
1,s(z). (H.2.52)

Moreover, (2.51) is equivalent to the recursion relation

C
[0]
m+1,c(z)

?
=− [1/(m+ 1)]B[0]

m,s(z)− {1/[(4m)(m+ 1)]}C [2]
m−1,c(z). (H.2.53)
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We now add the further stipulation

C
[0]
1,c(z) = 0. (H.2.54)

In view of (2.52) and (2.54), the recursion relation (2.53) now has a unique solution. Setting
m = 2 and using (2.54) give the result

C
[0]
3,c(z) = −(1/3)B

[0]
2,s(z). (H.2.55)

Next set m = 3 to find the result

C
[0]
4,c(z) = −(1/4)B

[0]
3,s(z)− {1/[(12)(4)]}C [2]

2,c(z), (H.2.56)

which, in view of (2.52), becomes the relation

C
[0]
4,c(z) = −(1/4)B

[0]
3,s(z) + (1/96)B

[2]
1,s(z). (H.2.57)

Now set m = 4 to find the result

C
[0]
5,c(z) = −(1/5)B

[0]
4,s(z)− {1/[(16)(5)]}C [2]

3,c(z), (H.2.58)

which, in view of (2.55), becomes the relation

C
[0]
5,c(z) = −(1/5)B

[0]
4,s(z) + (1/240)B

[2]
2,s(z). (H.2.59)

Set m = 5 to find the result

C
[0]
6,c(z) = −(1/6)B

[0]
5,s(z)− {1/[(20)(6)]}C [2]

4,c(z), (H.2.60)

which, in view of (2.57), becomes the relation

C
[0]
6,c(z) = −(1/6)B

[0]
5,s(z) + (1/480)B

[2]
3,s(z)− (1/11520)B

[4]
1,s(z). (H.2.61)

Evidently we are able to find all the C
[0]
m,c(z) in terms of the B

[n]
m,s(z), and therefore (2.36)

can be satisfied. Since both (2.35) and (2.36) have been satisfied, our goal (2.2) has been
met.

We note that the stipulation (2.54) specifies that all terms of the form

cos(φ)
∞∑
`=0

(−1)`
1

22``!(`+ 1)!
C

[2`]
1,c (z)ρ2`+1 (H.2.62)

are omitted from ψ. We have seen that these terms [and those of (2.33)] are not needed to
meet the goal (2.2), and their omission simplifies the recursion relations that specify ψ in
terms of χ.

H.3 Harmonic Functions in Two Variables and Their

Associated Fields

It is also useful to have representations for harmonic functions in two variables. We will
consider the two cases of harmonic functions in the variable pairs x, z and y, z.
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H.3.1 Harmonic Functions in x, z

Suppose ψ(x, z) is a harmonic function in the two variables x, z. That is, we have the relation

[(∂x)
2 + (∂z)

2]ψ(x, z) = 0. (H.3.1)

Decompose ψ into even and odd parts with respect to its x dependence,

ψ = ψev + ψod. (H.3.2)

Then, because the operation x → −x commutes with [(∂x)
2 + (∂z)

2], each separate part of
ψ must be harmonic,

[(∂x)
2 + (∂z)

2]ψev(x, z) = 0, (H.3.3)

[(∂x)
2 + (∂z)

2]ψod(x, z) = 0. (H.3.4)

Series Representation

For the even part let us make the Ansatz

ψev(x, z) =
∞∑
n=0

(−1)n[1/(2n)!]x2nE[2n](z)

= E[0](z)− (1/2)x2E[2](z) + (1/24)x4E[4](z) + · · · , (H.3.5)

where the functions E[n](z) and the meaning of the [n] notation are yet to be determined.
For such a ψev to be harmonic there must be the relation

0 = ∇2ψev(x, z) = ∂2
xψev(x, z) + ∂2

zψ(x, z)

= [∂2
zE

[0](z)− E[2](z)]− (1/2)x2[∂2
zE

[2](z)− E[4](z)] + · · · , (H.3.6)

from which we conclude that

E[n+2](z) = ∂2
zE

[n](z). (H.3.7)

Similarly, for the odd part we make the Ansatz

ψod(x, z) =
∞∑
n=0

(−1)n[1/(2n+ 1)!]x2n+1O[2n](z)

= xO[0](z)− (1/6)x3O[2](z) + (1/120)x5O[4](z) + · · · . (H.3.8)

Now the harmonic requirement yields the result

0 = ∇2ψod(x, z) = ∂2
xψod(x, z) + ∂2

zψod(x, z)

= x[∂2
zO

[0](z)−O[2](z)]− (1/6)x3[∂2
zO

[2](z)−O[4](z)] + · · · , (H.3.9)

from which we conclude that

O[n+2](z) = ∂2
zO

[n](z). (H.3.10)
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We see that in both cases the [n] notation is the usual one. Thus, ψ is specified by the
two functions E[0](z) and O[0](z). These functions may, in principle, be chosen arbitrarily.
Often they are required to go to zero as |z| → ∞.

Let us compute the “fields” associated with ψev and ψod, call them Bev and Bod. We
find the results

Bev
x = ∂xψev = −xE[2](z) + (1/6)x3E[4](z)− (1/120)x5E[6](z) + · · · , (H.3.11)

Bev
y = ∂yψev = 0, (H.3.12)

Bev
z = ∂zψev = E[1](z)− (1/2)x2E[3](z) + (1/24)x4E[5](z) + · · · ; (H.3.13)

Bod
x = ∂xψod = O[0](z)− (1/2)x2O[2](z) + (1/24)x4O[4](z) + · · · , (H.3.14)

Bod
y = ∂yψod − 0, (H.3.15)

Bod
z = ∂zψod = xO[1](z)− (1/6)x3O[3](z) + (1/120)x5O[5](z) + · · · . (H.3.16)

Note that, because the fields are the gradients of harmonic functions, the Cartesian compo-
nents of Bev and Bod must also be harmonic functions.

Explicit Construction from Analytic Functions

As is well known, there is an intimate connection between harmonic functions in two variables
and analytic functions of a complex variable. This connection facilitates obtaining closed-
form expressions for harmonic functions rather than dealing solely with power series. Let w
be a complex variable written in the form

w = u+ iv. (H.3.17)

Suppose f(w) is a real-analytic function. That is, f is defined, analytic, and real for w on the
real axis. Such a function can be extended into the complex plane by analytic continuation.
For complex arguments, decompose f into real and imaginary parts by writing

f(u+ iv) = fr(u, v) + ifi(u, v). (H.3.18)

For fr and fi we find, by the chain rule, the result

[(∂u)
2 + (∂v)

2][fr(u, v) + ifi(u, v)] = f ′′(u+ iv)(1 + i2) = 0. (H.3.19)

Thus, upon equating real and imaginary parts in (H.19), we see that both fr and fi are
harmonic.

Let us expand f as a power series in the quantity iv. From Taylor’s theorem we find the
result

f(u+ iv) =
∞∑
n=0

f [n](u)(iv)n/n!

=
∞∑
n=0

(−1)n[1/(2n)!]v2nf [2n](u)

+i
∞∑
n=0

(−1)n[1/(2n+ 1)!]v2n+1f [2n+1](u). (H.3.20)
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Upon comparing (H.18) and (H.20), we see that there are the relations

fr(u, v) =
∞∑
n=0

(−1)n[1/(2n)!]v2nf [2n](u)

= f [0](u)− (1/2)v2f [2](u) + (1/24)v4f [4](u) + · · · (H.3.21)

and

fi(u, v) =
∞∑
n=0

(−1)n[1/(2n+ 1)!]v2n+1f [2n+1](u)

= vf [1](u)− (1/6)v3f [3](u) + (1/120)v5f [5](u) + · · · . (H.3.22)

Observe the resemblance between the pair (H.5) and (H.8) and the pair (H.21) and
(H.22). Upon making the identifications

z ↔ u, (H.3.23)

x↔ v, (H.3.24)

E[0](z)↔ f [0](u), (H.3.25)

and
O[0](z)↔ f [1](u), (H.3.26)

we see that these two pairs are the same. Thus, with these identifications, we have the
relations

ψev(x, z) = fr(z, x), (H.3.27)

ψod(x, z) = fi(z, x). (H.3.28)

Note that the identifications (H.25) and (H.26) require the restrictive relation

O[0] = E[1]. (H.3.29)

Of course, in general, ψev and ψod need not be the real and imaginary parts of the same
real-analytic function.

Since fr and fi are the real and imaginary parts of the analytic function f , they must
satisfy the Cauchy-Riemann relations

∂zfr = ∂xfi, (H.3.30)

∂xfr = −∂zfi. (H.3.31)

Consequently, if ψev and ψod are the real and imaginary parts of the same real-analytic
function, we have the relations

Bev
x = ∂xψev = ∂xfr = −∂zfi = −∂zψod = −Bod

z , (H.3.32)

Bev
z = ∂zψev = ∂zfr = ∂xfi = ∂xψod = Bod

x . (H.3.33)

These relations also follow from the representations (H.11) through (H.16) and the relation
(H.29).

There is another application of the relation between analytic and harmonic functions
that is useful. We will formulate and apply it in the subsection after the next where we
discuss harmonic functions in the y, z variables. From that discussion the reader can easily
infer the analogous results for harmonic functions in the variables x, z.
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H.3.2 Harmonic Functions in y, z

The case of harmonic functions in the variables y, z is analogous to the x, z case. It is only
necessary to make the substitution x→ y in the relations found above.

Suppose ψ(y, z) is a harmonic function in the two variables y, z. That is, we have the
relation

[(∂y)
2 + (∂z)

2]ψ(y, z) = 0. (H.3.34)

Decompose ψ into even and odd parts with respect to its y dependence,

ψ = ψev + ψod. (H.3.35)

Then, because the operation y → −y commutes with [(∂y)
2 + (∂z)

2], each separate part of
ψ must be harmonic,

[(∂y)
2 + (∂z)

2]ψev(y, z) = 0, (H.3.36)

[(∂y)
2 + (∂z)

2]ψod(y, z) = 0. (H.3.37)

Series Representation

For the even part there is the representation

ψev(y, z) =
∞∑
n=0

(−1)n[1/(2n)!]y2nE[2n](z)

= E[0](z)− (1/2)y2E[2](z) + (1/24)y4E[4](z) + · · · . (H.3.38)

For the odd part there is the representation

ψod(y, z) =
∞∑
n=0

(−1)n[1/(2n+ 1)!]y2n+1O[2n](z)

= yO[0](z)− (1/6)y3O[2](z) + (1/120)y5O[4](z) + · · · . (H.3.39)

Thus, ψ is specified by the two functions E[0](z) and O[0](z). These functions may, in
principle, be chosen arbitrarily. Often they are required to go to zero as |z| → ∞.

For the “fields” associated with ψev and ψod, call them Bev and Bod, there are the results

Bev
x = ∂xψev = 0, (H.3.40)

Bev
y = ∂yψev = −yE[2](z) + (1/6)y3E[4](z)− (1/120)y5E[6](z) + · · · , (H.3.41)

Bev
z = ∂zψev = E[1](z)− (1/2)y2E[3](z) + (1/24)y4E[5](z) + · · · ; (H.3.42)

Bod
x = ∂xψod = 0, (H.3.43)

Bod
y = ∂yψod = O[0](z)− (1/2)y2O[2](z) + (1/24)y4O[4](z) + · · · , (H.3.44)

Bod
z = ∂zψod = yO[1](z)− (1/6)y3O[3](z) + (1/120)y5O[5](z) + · · · . (H.3.45)

Again, because the fields are the gradients of harmonic functions, the Cartesian components
of Bev and Bod must also be harmonic functions.
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Explicit Construction from Analytic Functions

Suppose the functions ψev(y, z) and ψod(y, z) are related to the real and imaginary parts of
a real-analytic function f . Make the identifications

z ↔ u, (H.3.46)

y ↔ v, (H.3.47)

E[0](z)↔ f [0](u), (H.3.48)

and

O[0](z)↔ f [1](u). (H.3.49)

With these identifications, we have the relations

ψev(y, z) = fr(y, x), (H.3.50)

ψod(y, z) = fi(y, x). (H.3.51)

The identifications (H.48) and (H.49) again require the restrictive relation

O[0] = E[1]. (H.3.52)

But, since fr and fi are the real and imaginary parts of the analytic function f , they
must satisfy the Cauchy-Riemann relations

∂zfr = ∂xfi, (H.3.53)

∂xfr = −∂zfi. (H.3.54)

Thus, we have the relations

Bev
y = −Bod

z , (H.3.55)

Bev
z = Bod

y . (H.3.56)

These relations also follow from the representations (H.40) through (H.45) and the relation
(H.52).

H.3.3 More About Bod(y, z) and Another Application of Analytic
Function Theory

To keep the promise made in Subsection H.3.1, we now discuss another application of the
relation between analytic and harmonic functions. Consider the field Bod(y, z) given by
(H.43) through (H.45). It is a candidate magnetic field for an infinitely wide (in x) parallel-
faced dipole, see Figures 1.6.1 and 1.6.2, with symmetry about the midplane y = 0. Given
a real-analytic function f(w), define a related function g(w) by the rule

g(w) = f [1](w). (H.3.57)
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Evidently g will also be real analytic. As before, employ the relation (H.17) and decompose
g into real and imaginary parts by writing

g(u+ iv) = gr(u, v) + gi(u, v). (H.3.58)

In analogy to what was done for f , expand g(u + iv) as a Taylor series in iv to get the
relation

g(u+ iv) =
∞∑
n=0

g[n](u)(iv)n/n!

= [g[0](u)− (1/2)v2g[2](u) + (1/24)v4g[4](u) + · · · ]
+i[vg[1](u)− (1/6)v3g[3](u) + (1/120)v5g[5](u) + · · · ]. (H.3.59)

We see that
gr(u, v) = g[0](u)− (1/2)v2g[2](u) + (1/24)v4g[4](u) + · · · (H.3.60)

and
gi(u, v) = vg[1](u)− (1/6)v3g[3](u) + (1/120)v5g[5](u) + · · · . (H.3.61)

Make the identifications (H.46) and (H.47) and compare the series on the right side of
(H.59) with the series (H.44) and (H.45) for Bod

y and Bod
z . We see that they are analogous

if we make the identification
O[0] = g[0]. (H.3.62)

In particular, we have the relations

Bod
y (y, z) = gr(z, y) = g[0](z)− (1/2)y2g[2](z) + (1/24)y4g[4](z) + · · · , (H.3.63)

Bod
z (y, z) = gi(z, y) = yg[1](z)− (1/6)y3g[3](z) + (1/120)y5g[5](z) + · · · . (H.3.64)

The Cauchy-Riemann relations again hold for gr and gi,

∂ugr(u, v) = ∂vgi(u, v), (H.3.65)

∂vgr(u, v) = −∂ugi(u, v). (H.3.66)

In this case, because of (H.63) and (H.64), they have the consequence

∂zB
od
y (y, z) = ∂zgr(z, y) = ∂ygi(y, z) = ∂yB

od
z (y, z), (H.3.67)

∂yB
od
y (y, z) = ∂ygr(z, y) = −∂zgi(y, z) = −∂zBod

z (y, z). (H.3.68)

These relations can also be verified directly form the representations (H.63) and (H.64).
We already know that ∇ ×Bod = 0 because Bod is the gradient of a scalar field. See

(H.43) through (H.45). What can be said about ∇·Bod? From the second Cauchy-Riemann
relation (H.68) we see that

∇ ·Bod = ∂yB
od
y + ∂zB

od
z = 0, (H.3.69)

as expected and required.
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Also observe that, in complex notation, the relations (H.58), (H.63), and (H.64) can be
expressed in the compact form

Bodd
y (y, z) + iBodd

z (y, z) = g(z + iy). (H.3.70)

Thus, in this application, the selection of one real-analytic function g(w) specifies both
components of the field for an infinitely wide parallel-faced dipole. Indeed, the application
is even broader. It would also apply to an infinitely wide parallel-faced wiggler. In this case
g(u) would be roughly oscillatory in u. All that is required in both applications is that g(u)
vanish as u→ ±∞, in which case Bod(y, z) will vanish as z → ±∞. Suppose, for example,
that we set

g(u) = B bump(u, c`, L) (H.3.71)

where bump(u, c`, L) is one of the bump functions defined in Section 11.11. These functions
are real analytic, and therefore the representation (H.70) can be implemented.

There is one last item to be discussed. Namely, it would be good to have a vector
potential Aod from which Bod could be derived. Consider the following Ansatz,

Aodx (x, y, z) = 0, (H.3.72)

Aody (x, y, z) = xBod
z (y, z), (H.3.73)

Aodz (x, y, z) = −xBod
y (y, z). (H.3.74)

(Evidently, this vector potential is horizontal free.) It is easily verified that

(∇×Aod)x = ∂yA
od
z − ∂zAody = x[−∂yBod

y (y, z)− ∂zBod
z (y, z)] = 0 = Bod

x (y, z), (H.3.75)

(∇×Aod)y = ∂zA
od
x − ∂xAodz = −∂xAodz = Bod

y (y, z), (H.3.76)

(∇×Aod)z = ∂xA
od
y − ∂yAodx = ∂xA

od
y = Bod

z (y, z), (H.3.77)

as desired. Also, we find that

∇ ·Aod = ∂yA
od
y + ∂zA

od
z = x[∂yB

od
z (y, z)− ∂zBod

y (y, z)] = 0. (H.3.78)

Here we have used the first Cauchy-Riemann relation (H.67). Thus, in addition to being
horizontal free, the vector potential Aod(x, y, z) is in the Coulomb gauge. Since Aod(x, y, z)
is in the Coulomb gauge, it follows, as is also readily verified from (H.72) through (H.74),
that its Cartesian components are harmonic functions.

Note also, from its definition (H.72) through (H.74), that Aod(x, y, z) vanishes as z →
±∞ if Bod(y, z) does so. This feature is desirable because we would like canonical and
mechanical momenta to be equal in field-free regions. We also note the convenient feature
that Aody (x, y, z) vanishes in the midplane,

Aody (x, y = 0, z) = xBod
z (y = 0, z) = 0. (H.3.79)

See (H.64). Thus, for the design orbit which lies in the midplane, there is no difference
between mechanical and canonical for the x and y components of the momentum. Finally,
as in the case of the vector potentials found in Exercises 13.3.4 and 13.5.5, the vector
potential is primarily in the z direction except in the fringe-field regions.
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Appendix I

Poisson Bracket Relations

I.1 Poisson Brackets

zaJaa′za′ = 0 (I.1.1)

[fm, za] = (∂bfm)Jbb′∂b′za = (∂bfm)Jbb′δb′a = (∂bfm)Jba (I.1.2)

[fm, za]Jaa′za′ = (∂bfm)JbaJaa′za′ = −(∂bfm)δba′za′

= −zb(∂bfm) = −mfm (I.1.3)

[fm, [fn, za]] = [fm, (∂bfn)]Jba = (∂cfm)Jcc′(∂c′∂bfn)Jba (I.1.4)

[fm, [fn, za]]Jaa′za′ = (∂cfm)Jcc′(∂c′∂bfn)JbaJaa′za′ = −(∂cfm)Jcc′(∂c′∂bfn)δba′za′

= −(∂cfm)Jcc′zb(∂c′∂bfn) (I.1.5)

zb(∂c′∂bfn) = ∂c′(zb∂bfn)− δc′b(∂bfn) = (n− 1)(∂c′fn) (I.1.6)

[fm, [fn, za]]Jaa′za′ = −(n− 1)(∂cfm)Jcc′(∂c′fn) = −(n− 1)[fm, fn] (I.1.7)

[f`, [fm, [fn, za]]] = [f`, (∂cfm)(∂c′∂bfn)]Jcc′Jba

= (∂df`){∂d′ [(∂cfm)(∂c′∂bfn)]}Jdd′Jcc′Jba
= (∂df`)[(∂d′∂cfm)(∂c′∂bfn) + (∂cfm)(∂d′∂c′∂bfn)]Jdd′Jcc′Jba (I.1.8)
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[f`, [fm, [fn, za]]]Jaa′za′

= (∂df`)(∂d′∂cfm)(∂c′∂bfn)Jdd′Jcc′JbaJaa′za′ +

(∂df`)(∂cfm)(∂d′∂c′∂bfn)Jdd′Jcc′JbaJaa′za′

= −(∂df`)(∂d′∂cfm)(∂c′∂bfn)Jdd′Jcc′δba′za′ −
(∂df`)(∂cfm)(∂d′∂c′∂bfn)Jdd′Jcc′δba′za′

= −(∂df`)(∂d′∂cfm)zb(∂c′∂bfn)Jdd′Jcc′ −
(∂df`)(∂cfm)zb(∂d′∂c′∂bfn)Jdd′Jcc′

(I.1.9)

∂d′∂c′(zb∂bfn) = ∂d′ [δc′b∂bfn + zb∂c′∂bfn]

= ∂d′ [∂c′fn + zb∂c′∂bfn]

= ∂d′∂c′fn + ∂d′(zb∂c′∂bfn)

= ∂d′∂c′fn + δd′b∂c′∂bfn + zb∂d′∂c′∂bfn

= ∂d′∂c′fn + ∂c′∂d′fn + zb∂d′∂c′∂bfn

= 2∂d′∂c′fn + zb∂d′∂c′∂bfn

(I.1.10)

zb∂d′∂c′∂bfn = (n− 2)∂d′∂c′fn (I.1.11)

[f`, [fm, [fn, za]]]Jaa′za′

= −(∂df`)(∂d′∂cfm)zb(∂c′∂bfn)Jdd′Jcc′ −
(∂df`)(∂cfm)zb(∂d′∂c′∂bfn)Jdd′Jcc′

= −(∂df`)(∂d′∂cfm)(n− 1)(∂c′fn)Jdd′Jcc′ −
(∂df`)(∂cfm)(n− 2)(∂d′∂c′fn)Jdd′Jcc′

= −(n− 1)(∂df`)Jdd′(∂d′∂cfm)Jcc′(∂c′fn)−
(n− 2)(∂df`)(∂cfm)Jdd′Jcc′(∂d′∂c′fn)

= −(n− 1)(∂df`)Jdd′(∂d′∂cfm)Jcc′(∂c′fn) +

(n− 2)(∂df`)(∂cfm)Jdd′Jc′c(∂d′∂c′fn)

= −(n− 1)(∂df`)Jdd′(∂d′∂cfm)Jcc′(∂c′fn) +

(n− 2)(∂df`)Jdd′(∂d′∂c′fn)Jc′c(∂cfm)

= −(∂df`)Jdd′(∂d′∂cfm)Jcc′(∂c′fn)

(I.1.12)
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[fk, [f`, [fm, [fn, za]]]] = [fk, (∂df`){(∂d′∂cfm)(∂c′∂bfn) + (∂cfm)(∂d′∂c′∂bfn)}]Jdd′Jcc′Jba
= [fk, (∂df`)(∂d′∂cfm)(∂c′∂bfn)]Jdd′Jcc′Jba + [fk, (∂df`)(∂cfm)(∂d′∂c′∂bfn)]Jdd′Jcc′Jba

(I.1.13)

[fk, (∂df`)(∂d′∂cfm)(∂c′∂bfn)] = (∂efk)Jee′{∂e′ [(∂d′∂cfm)(∂c′∂bfn)]}
= (∂efk)Jee′ [(∂e′∂d′∂cfm)(∂c′∂bfn)+]

(I.1.14)

[fk, (∂df`)(∂cfm)(∂d′∂c′∂bfn)]

= (I.1.15)

I.2 Preparatory Results

(z, Jz) = zaJaa′za′ = 0 (I.2.1)

(: fn : z, Jz) = ([fn, z], Jz) = [fn, za]Jaa′za′ = −nfn (I.2.2)

(: fm :: fn : z, Jz) = ([fm, [fn, z]], Jz) = [fm, [fn, za]]Jaa′za′ = −(n− 1)[fm, fn] (I.2.3)

(: f` :: fm :: fn : z, Jz) = ([f`, [fm, [fn, z]]], Jz) = [f`, [fm, [fn, za]]]Jaa′za′

= (∂df`)Jdd′(∂d′∂cfm)Jcc′(∂c′fn)

= (∂f`, JS(fm)J∂fn). (I.2.4)

Here S(fm) is the Hessian of fm,

Sab(fm) = ∂a∂bfm. (I.2.5)

[fk, [f`, [fm, [fn, za]]]]Jaa′za′ =

(I.2.6)
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I.3 Application

Suppose ti = 0 and tf = 1 in (1.2.57) and (6.6.57). Suppose also that we confine our interest
to the case where only h3 through h6 are possibly nonzero. Our task will be to find the
Poincaré generating function F+ corresponding to M.

From (6.6.57) we have the result

F (z) = −
∑
m

(m− 2)hm(z). (I.3.1)

And from (6.6.37) we know that

F+(z) = [F + (Z, Jz)]/2. (I.3.2)

Also, by definition,
Z =Mz. (I.3.3)

Upon combining () through () we conclude that F+ is given by the relation

F+(z) = (1/2)[(Mz, Jz)−
∑
m

(m− 2)hm(z)]. (I.3.4)

Our task will be to work out the implications of (). What we will find will be a homogeneous
polynomial expansion for F+.

Evidently the hard part is to find an expansion for (Mz, Jz). Let us write

M = exp(− : H :) = I− : H : + : H :2 /2!− : H :3 /3! : +H :4 /4! + · · · (I.3.5)

where the terms retained are sufficient to compute F+ through terms of degree 6. Let Z(n) be
the contribution to Z made by the term : −H :n /n! in M and let Y (n) be the contribution
that it makes to F+. That is, we make the definitions

Z(n) = [: −H :n /n!]z (I.3.6)

and
Y (n)(z) = (Z(n), Jz) = ([: −H :n /n!]z, Jz). (I.3.7)

From the relations listed in Section 23.1 above, we easily find the results

Y (0)(z) = (Z(0), Jz) = (z, Jz) = 0, (I.3.8)

Y (1)(z) = (Z(1), Jz) = (: −H : z, Jz) = −
∑
m

(: hm : z, Jz)

=
∑
m

mhm(z). (I.3.9)

It follows from the work done so far that

F+(z) = (1/2)[(Mz, Jz)−
∑
m

(m− 2)hm(z)]

= (1/2){[
∑
m

mhm(z)]− [
∑
m

(m− 2)hm(z)] + · · · } = H(z) + · · · .

(I.3.10)
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As already stated, we ultimately desire to have an expansion of F+ in homogeneous polyno-
mials. Let Fm

+ denote the term in F+ that is homogeneous of degree n. Then, based on the
work done so far, we have the result

Fm
+ = hm + · · · . (I.3.11)

The next term we need is Y (2)(z). We have the result

Y (2)(z) = (Z(2), Jz) = (: H :2 z, Jz)/2!. (I.3.12)

The term : H :2 has the expansion

: H :2 =
∑
m

∑
n

: hm :: hn :

= : h3 :2 + : h3 :: h4 : + : h4 :: h3 :

+ : h4 :2 + : h3 :: h5 : + : h5 :: h3 : + · · · (I.3.13)

where we have displayed only the terms that will contribute to the Fm
+ for m ≤ 6. Corre-

spondingly, we find for Y (2) the result

Y (2)(z) = (1/2!)[(: h3 :2 z, Jz)

+ (: h3 :: h4 : z, Jz) + (: h4 :: h3 : z, Jz)

+ (: h4 :2 z, Jz)

+ (: h3 :: h5 : z, Jz) + (: h5 :: h3 : z, Jz)]

= (1/2!)([h3, h3] + [h4, h4]

+ [h3, h4] + [h4, h3] + [h3, h5] + [h5, h3])

= (1/2)([h3, h4] + [h3, h5]). (I.3.14)

We are now able to conclude that
F 3

+ = h3, (I.3.15)

F 4
+ = h4, (I.3.16)

F 5
+ = h5 + (1/4)[h3, h4] + · · · , (I.3.17)

F 6
+ = h6 + (1/4)[h3, h5] + · · · . (I.3.18)

Let us move on to the term

Y (3)(z) = (Z(3), Jz) = −(: H :3 z, Jz)/3!. (I.3.19)

The term : H :3 has the expansion

: H :3 =
∑
`

∑
m

∑
n

: h` :: hm :: hn :

= : h3 :3 + : h3 :2: h4 : + : h3 :: h4 :: h3 : + : h4 :: h3 :2 + · · ·
(I.3.20)
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where we have displayed only the terms that will contribute to the Fm
+ for m ≤ 6. Corre-

spondingly, we find for Y (3) the result

Y (3)(z) = (1/2!)[(: h3 :3 z, Jz)

+ (: h3 :2: h4 : z, Jz) + (: h3 :: h4 :: h3; z, Jz) + (: h4 :: h3 :2 z, Jz)]

= (I.3.21)

We are now able to conclude that
F 3

+ = h3, (I.3.22)

F 4
+ = h4, (I.3.23)

F 5
+ = h5 + (1/4)[h3, h4] + (∂h3, JS(h3)J∂h3) (I.3.24)

F 6
+ = h6 + [h3, h5] + (∂h3, JS(h3)J∂h4) + (∂h3, JS(h4)J∂h3) + · · · . (I.3.25)

Finally, as we will see, we need the term

Y (4)(z) = (Z(4), Jz) = −(: H :4 z, Jz)/3!. (I.3.26)

The term : H :4 has the expansion

: H :4 =
∑
k

∑
`

∑
m

∑
n

: hk :: h` :: hm :: hn :

= : h3 :4 + · · · (I.3.27)

where we have again displayed only the terms that will contribute to the Fm
+ for m ≤ 6.

Correspondingly, we find for Y (3) the result

Y (4)(z) = (1/2!)[(: h3 :4 z, Jz) = (I.3.28)

We are now able to conclude that
F 3

+ = h3, (I.3.29)

F 4
+ = h4, (I.3.30)

F 5
+ = h5 + (1/4)[h3, h4] + (∂h3, JS(h3)J∂h3), (I.3.31)

F 6
+ = h6 + [h3, h5] + (∂h3, JS(h3)J∂h4) + (∂h3, JS(h4)J∂h3) + . (I.3.32)



Appendix J

Feigenbaum Cascade
Denied/Achieved

Section 1.2.1 described Feigenbaum infinite period doubling cascades and mentioned that, for
some maps in some parameter ranges, period doubling cascades begin but do not continue to
completion. The purpose of this appendix is to provide a simple example of both incomplete
and complete cascades.

J.1 Simple Map and Its Initial Bifurcations

Consider the simple one-dimensional map given by the relation

xn+1 =Mxn = f(a, b;xn) = a+ bxn/[1 + (xn)2] (J.1.1)

where a and b are parameters. Figure 1.1 shows the curves y = f(a, b;x) for b = 11.5 and
selected values of a. As is evident from (1.1) and from the figure, these curves are all vertical
displacements of eachother.

Also shown is the line y = x. Any intersection of the line y = x and the curve y =
f(a, b;x) corresponds to a fixed point of M. Observe that for sufficiently negative values
of a there is only one intersection, and hence only one fixed point. This is the fixed point
whose path is shown as a function of a in the lower left portion of the bifurcation diagram
provided by Figure 1.2. Its path extends forever to the left, and has the asymptotic form

x∞ ' a as a→ −∞. (J.1.2)

Further computation shows that this fixed point is stable.
However, as a is increased slightly beyond −5, Figure 1.1 shows that there are two more

intersections of the curve y = f(a, b;x) with the line y = x. When these two intersections
first occur (when the curve and line are tangent), a pair of fixed points is born together in a
blue-sky bifurcation. These are the two fixed points that appear out of the blue at a ' −4.8
and x∞ ' +1 in Figure 1.2, and move along separate paths as a is further increased. One
of these fixed points (the one on the lower of the two paths) is unstable, and the other (the
one on the very top path) is stable.
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Figure J.1.1: The curves y = f(a, b;x) for b = 11.5 and various values of a ∈ [−5, 0]. Also
shown is the line y = x. Intersections of the line and the curve correspond to fixed points.

J.2 Complete Cascade Denied

As a is increased still further, the fixed point on the very top path begins a period doubling
cascade, which we will call the upper cascade, at a ' −4.3 and x ' +1.5. Again see Figure
1.2. However, as is evident from the figure, the period doubling cascade does not run to
completion. Instead it ceases and then begins to undo itself by successive mergers that begin
at a ' −3.2 so that for a ' −.8 there is again a single fixed point. Its path extends forever
to the right, and has the asymptotic form

x∞ ' a as a→ +∞. (J.2.1)

Further computation shows that this fixed point is stable.

We began our discussion with the fixed point whose path appears in the lower left side of
Figure 1.2 and has the asymptotic form (1.2). Let us now follow its history as a is increased.
As indicated in Figure 1.2, it too begins a period doubling cascade, which we will call the
lower cascade, and this cascade begins at a ' +.8 and q∞ ' −2.8. And, like the upper
period doubling cascade, it also does not run to completion. Instead it stops and then
undoes itself by successive mergers so that for a ' +4.3 there is again a single fixed point.
This fixed point is stable. Inspection of Figure 1.2 shows that, as a is increased still further,
this fixed point blue-sky merges with the unstable fixed point that came out of the blue-sky
bifurcation at a ' −4.8 and q∞ ' +1 so that they are mutually annihilated at q∞ ' −1
when a ' +4.8.
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Figure J.1.2: Bifurcation diagram showing x∞ as a function of a for the map (1.1) with
b = 11.5 and a ∈ [−5, 5]. For a = −5, there is only one fixed point, and it is stable. As
a is increased from this value, a blue-sky bifurcation occurs at x∞ ' +1 when a =' −4.8.
Here a pair of fixed points, one stable and one unstable, is born. Now there are three fixed
points. The one that bifurcates to larger values of x∞ is stable, and the one that bifurcates
to smaller values of x∞ is unstable. The original fixed point persists, and remains stable. At
x∞ ' +1 and a =' +4.8 a blue-sky merger occurs where two fixed points, one stable and
the other unstable, annihilate. For a values larger than this there is only one fixed point.
In between the values a ' −4.8 and a ' +4.8 there are two incomplete period-doubling
cascades.
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Exercises

J.2.1. Figure 2.1 displays intersections between the curve y = f(a, b;x) and the line y = x,
and we have seen how these intersections are related to the blue-sky bifurcation at a ' −4.8.
Show that the blue-sky merger at a ' +4.8 can also be understood in terms of intersections
between the curve y = f(a, b;x) and the line y = x.

J.3 Complete Cascade Achieved

We have seen, from Figure 1.2, that for b = 11.5 the period-doubling cascades fail to run to
completion. By contrast in Figure 3.1, for which b = 11.7, each Feigenbaum cascade runs to
completion followed by a region of chaos. Then, it is fascinating to see, each cascade undoes
itself by successive mergers as a is further increased until eventually there is again only the
one stable fixed point.1 Note also there that there are two visible windows of stability at
a ' −3.3 and a ' −3.05. These windows contain stable period-twelve fixed points (as
well as numerous unstable fixed points that do not appear because this is a Feigenbaum
diagram).

1In fact there are dynamical systems for which a large or even infinite number of period doubling cascades
followed by inverse cascades occur.
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Figure J.3.1: A portion of the Feigenbaum diagram for the map (1.1) with b = 11.7. Also
shown are the paths of all period-one fixed points, both stable and unstable. The full
diagram is similar to that of Figure 1.2 except that both period-doubling cascades now run
to completion. Specifically, for the upper cascade shown here, a blue-sky bifurcation again
occurs and, as a is further increased, the stable fixed point begins a Feigenbaum perioding
doubling cascade that now runs to completion followed by a region of chaos. But then, as a
is increased still further, the cascades undoes itself until there is again only a single stable
fixed point. The behavior for the lower cascade is analogous.
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Appendix K

Supplement to Chapter 17

K.1 Computation of Generalized Gradients from

Spinning Coil Data

A widely used method to measure the magnetic field in magnets for beam optics relies on
spinning coils [*]. By using spinning coils one can achieve very accurate measurements of
the angular Fourier components of the magnetic field. In this section, which is restricted to
the case of straight elements, we show how it is possible using a short length (i.e. with a
length shorter than the region of the magnet where the fields are z-dependent) rectangular
spinning coil to recover the full z-dependent profiles of the fields and in particular the profiles
of the generalized gradients that are necessary to compute accurately both the linear and
nonlinear parts of the transfer map for the magnet.

We consider the case of a rectangular coil rotating in such a way that one side of the coil
is always positioned along the magnetic axis of the magnet. The idea is to make repeated
measurements of angular field data (integrated over the coil area) by moving the coil along
the magnet axis by small steps. The Fourier transforms of the experimental data for each
angular harmonic are than calculated, multiplied by a suitable kernel, and then Fourier
transformed back to obtain the desired generalized gradients.

For the kind of coil we consider in this section the only relevant component of the
magnetic field is Bφ because it is the only one generating a flux linked to the coil. It should
be mentioned that tangential coils are also used for which the relevant component of the
magnetic field is Bρ. The treatment of that case would follow the same lines as for the kind
of coils considered here.

The E.M.F. produced by a rectangular spinning coil (or set of coils, in a realistic setup),
with barycenter positioned at z is given by

E(z, t) = −
∫ z+`c

z−`c
dz′
∫ R

0

dBφ

dt
dρ, (K.1.1)

where 2`c is the length of coil and R is its radius. The E.M.F. can be written in terms of a
Fourier series in time,

E(z, t) =
∑
m=0

Em,s(z) sin(mωt) + Em,c(z) cos(mωt), (K.1.2)

2467



2468 K. SUPPLEMENT TO CHAPTER 17

where we assume Em,s(z) and Em,c(z) can be experimentally determined over a sufficient
number of locations in z in the end and fringe regions where the field varies with z. The
angular frequency of the spinning coil is ω.

By using (2.3) we can write Bφ as

Bφ =
1

ρ

∂ψ

∂φ
=

∞∑
m=1

∫ ∞
−∞

dkeikzm
Im(kρ)

ρ
[b̂m(k) cosmφ− âm(k) sinmφ]. (K.1.3)

By substituting (5.3) into (5.1) with φ = ωt we get

E(z, t) =
ω√
2π

∞∑
m=1

∫ ∞
−∞

dkeikz
2m2 sin k`c

k
[b̂m(k) sinmωt+ âm(k) cosmωt]. (K.1.4)

Then, by comparing (5.2) and (5.4), we find the relations

Em,c(z) =
m2ω√

2π

∫ ∞
−∞

dkeikzIm(kR)
2 sin k`c

k
b̂m(k), (K.1.5)

Em,s(z) =
m2ω√

2π

∫ ∞
−∞

dkeikzIm(kR)
2 sin k`c

k
âm(k). (K.1.6)

Here we have defined the new function

Im(kR) =

∫ R

0

Im(kρ)

ρ
dρ =

∫ kR

0

Im(x)

x
dx. (K.1.7)

Finally use of (5.5) and (5.6) allows us to write the expression for the generalized gradi-
ents,

C [n]
m,α(z) =

in

2m+1m!m2ω

1√
2π

∫ ∞
−∞

dkeikz
km+n+1Ẽm,α(k)

Im(kR) sin k`c
, (K.1.8)

where the Ẽm,α(k) are the Fourier transforms of the experimental data,

Ẽm,α(k) =
1√
2π

∫ ∞
−∞

dz−ikzEm,α(z). (K.1.9)

Notice that because of the asymptotic form of the Bessel function Im, as k → ∞ the
function Im(kR) grows exponentially at infinity as ekR/

√
k. Because the function Im(kR)

is in the denominator of the integrand in (5.8), there is again an effective cut-off in k.
The integral (5.7) for a general m cannot be carried out analytically, but it can easily be

reduced to an infinite series either in the Bessel functions or, most conveniently, directly in
kR:

Im(kR) =
1

kR

2

m

∞∑
n=0

(−1)n(m+ 2n+ 1)Im+2n+1(kR), (K.1.10)

Im(kR) =
∑
`=0

1

(2`+m)`!(`+m)!

(
kR

2

)m+2`

. (K.1.11)
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In the particular case m = 2 we have

I2(kR) =
I1(kR)

kR
− 1

2
. (K.1.12)

For numerical purposes use of (5.11) may be perfectly adequate (in particular if speed is
not an issue). We will see later that we are often interested in values of kR that satisfy the
condition kR < 20. For such kR values, one can obtain values for Im(kR) that are accurate
through 15 digits by retaining the first 30 terms in the series.

K.2 Computation of Generalized Gradients from Coil

Geometry and Current Data
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Appendix L

Spline Routines

! The following are double precision versions of the subroutines

! "spline" and "splint" used for 1-D cubic spline interpolation, found in Numerical

! Recipes pp. 107-110. Instructions for use:

!

! 1) Call spline(x,y,n,yp1,ypn,y2).

!

!Here x={x_k} is an array of length n containing the x-values on which the function is given, and y is an

!array of the same length containing the corresponding function values {f(x_k)}. Also, yp1 and ypn are

!the first derivatives of the function at the points x_1 and x_n, respectively. The routine returns an

!array y2 of length n, which contains the second derivatives of the interpolating function at the

!tabulated points x_n.

!

!The subroutine spline is called only once for a given data set, to set up the array y2.

!

! 2) For a given point x at which the interpolating function is desired, call

splint(xa,ya,y2,n,x,y).

!

!Here xa and ya are the arrays {x_n} and {f(x_n)} as above. The array y2 is the output from the

!subroutine "spline" above. Again, n is the number of points in x. Finally, the double precision number

!x is the value at which the interpolating function is to be evaluated. The resulting value f(x) is given

!as the double precision number y.

!

! C. E. M. 5/27/08

SUBROUTINE splint(xa,ya,y2a,n,x,y)

INTEGER n

double precision x,y,xa(n),y2a(n),ya(n)

INTEGER k,khi,klo

double precision a,b,h

klo=1

khi=n

1 if (khi-klo.gt.1) then

k=(khi+klo)/2

if(xa(k).gt.x)then

khi=k

else

klo=k
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endif

goto 1

endif

h=xa(khi)-xa(klo)

if (h.eq.0.d0) pause ’bad xa input in splint’

a=(xa(khi)-x)/h

b=(x-xa(klo))/h

y=a*ya(klo)+b*ya(khi)+((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**

*2)/6.d0

return

END

SUBROUTINE spline(x,y,n,yp1,ypn,y2)

implicit none

INTEGER n,NMAX

double precision yp1,ypn,x(n),y(n),y2(n)

PARAMETER (NMAX=10001)

INTEGER i,k

double precision p,qn,sig,un,u(NMAX)

c if (yp1.gt..99e30) then

c We set the natural bc with vanishing second derivative.

if (yp1.gt..99e30) then

y2(1)=0.d0

u(1)=0.d0

else

y2(1)=-0.5d0

u(1)=(3.d0/(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)

c u(1)=yp1

endif

do 11 i=2,n-1

sig=(x(i)-x(i-1))/(x(i+1)-x(i-1))

p=sig*y2(i-1)+2.d0

y2(i)=(sig-1.d0)/p

u(i)=(6.d0*((y(i+1)-y(i))/(x(i+

& 1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*

& u(i-1))/p

11 continue

if (ypn.gt..99e30) then

c We set the natural upper bc with second derivative = 0.

qn=0.d0

un=0.d0

else

qn=0.5d0

un=(3.d0/(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1)))

c un=ypn

endif

y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.d0)

do 12 k=n-1,1,-1

y2(k)=y2(k)*y2(k+1)+u(k)

12 continue

return

END
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PROGRAM PERSPLINE

C

C ===============================================================

C Periodic cubic spline interpolation.

C ===============================================================

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION x(801),y(801),y2(801),xa(801),ya(801)

pi=4.d0*atan(1.d0)

n=20

open(unit=26,file=’output’,status=’new’)

c Define the data points to be used for interpolation.

z=0.d0

dz=(2*pi)/(n-2)

do 10 i=1,n

y(i)=cos(3*z)

x(i)=z

ya(i)=y(i)

xa(i)=x(i)

z=z+dz

10 continue

call pspline(x,y,n,y2)

c write(*,*) ’Values of M0, MN = ’,y2(1),y2(2),y2(3),y2(4)

c write(*,*) ’x=’,xa(1),xa(2),xa(3),’...’,xa(n)

write(*,*) ’Spline calls completed.’

c Compute interpolated values.

z=0.0d0

nmax=801

dz=(2*pi)/(nmax-1)

do 20 j=1,nmax

call splint(xa,ya,y2,n,z,C1)

exact=cos(3*z)

write(26,*) z,C1,exact

z=z+dz

20 continue

end

SUBROUTINE pspline(x,y,n,y2)

c Takes as input vectors x(n), y(n) defining evaluation of

c the periodic function at its sampling points.

c Produces output vectors x - solution to A’x = r

c y2 - solution to A’z = u

c Uses the tridiagonal algorithm for LU decomposition to solve

c both systems simultaneously.

c Outputs the vector y2 of second derivatives y’’ at sampling points.

INTEGER n,NMAX

REAL*8 yp1,ypn,x(n),y(n),y2(n)

PARAMETER (NMAX=500)
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INTEGER i,k

REAL*8 p,qn,sig,un,u1(NMAX),u2(NMAX)

write(*,*) ’Inside spline’

c Set boundary conditions for lower end. Here u1 is the intermediate

c solution for A’x=r in the LU decomposition, and u2 is the

c intermediate solution of A’z=u in the LU decomposition.

y2(1)=-1.0d0

u1(1)=0.0d0

u2(1)=-1.0d0

do 11 i=2,n-1

sig=(x(i)-x(i-1))/(x(i+1)-x(i-1))

write(*,*) ’sig =’,sig

p=sig*y2(i-1)+2.0d0

y2(i)=(sig-1.d0)/p

write(*,*) ’Beta, gamma = ’,p,-1.d0*y2(i)

u1(i)=(6.d0*((y(i+1)-y(i))/(x(i+

& 1)-x(i))-(y(i)-y(i-1))/(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*

& u1(i-1))/p

u2(i)=((sig-1.d0)*u2(i-1))/p

write(*,*) ’u1,u2 = ’,u1(i),u2(i)

11 continue

c Set boundary conditions for upper end.

x(n)=-1.d0*u1(n-1)/(y2(n-1)+1.d0)

y2(n)=-1.d0*(1.d0+u2(n-1))/(y2(n-1)+1.d0)

write(*,*) ’xn, y2n = ’,x(n),y2(n)

do 12 k=n-1,1,-1

x(k)=y2(k)*x(k+1)+u1(k)

y2(k)=y2(k)*y2(k+1)+u2(k)

write(*,*) ’x,y2 = ’,x(k),y2(k)

12 continue

c Given the two solutions x(k) and y2(k), we use the Sherman-Morrison

c formula to construct the solution to the periodic spline system with

c its off-diagonal terms. Here ’fact’ is the correction to the

c intermediate solution vector x due to the off-diagonal terms.

fact = (x(2)+x(n-1))/(1.d0+y2(2)+y2(n-1))

do 10 i=1,n

y2(i) = x(i) - fact*y2(i)

write(*,*) ’y2(i) = ’,y2(i)

10 continue

return

END

SUBROUTINE splint(xa,ya,y2a,n,x,y)

implicit double precision(a-h,o-z)

INTEGER n

REAL*8 x,y,xa(n),y2a(n),ya(n)

INTEGER k,khi,klo

REAL*8 a,b,h

klo=1

khi=n

1 if (khi-klo.gt.1) then

k=(khi+klo)/2

if(xa(k).gt.x)then

khi=k
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else

klo=k

endif

goto 1

endif

h=xa(khi)-xa(klo)

if (h.eq.0.0d0) pause ’bad xa input in splint’

a=(xa(khi)-x)/h

b=(x-xa(klo))/h

y=a*ya(klo)+b*ya(khi)+((a**3-a)*y2a(klo)+

& (b**3-b)*y2a(khi))*(h**2)/6.d0

return

END





Appendix M

Routines for Mathieu Separation
Constants an(q) and bn(q)

SUBROUTINE CVA2(KD,M,Q,A)

C

C ======================================================

C Purpose: Calculate a specific characteristic value of

C Mathieu functions

C Input : m --- Order of Mathieu functions

C q --- Parameter of Mathieu functions

C KD --- Case code

C KD=1 for cem(x,q) ( m = 0,2,4,...)

C KD=2 for cem(x,q) ( m = 1,3,5,...)

C KD=3 for sem(x,q) ( m = 1,3,5,...)

C KD=4 for sem(x,q) ( m = 2,4,6,...)

C Output: A --- Characteristic value

C Routines called:

C (1) REFINE for finding accurate characteristic

C values using an iteration method

C (2) CV0 for finding initial characteristic

C values using polynomial approximation

C (3) CVQM for computing initial characteristic

C values for q 3*m

C (3) CVQL for computing initial characteristic

C values for q m*m

C ======================================================

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

IF (M.LE.12.OR.Q.LE.3.0*M.OR.Q.GT.M*M) THEN

CALL CV0(KD,M,Q,A)

IF (Q.NE.0.0D0) CALL REFINE(KD,M,Q,A,1)

ELSE

NDIV=10

DELTA=(M-3.0)*M/NDIV

IF ((Q-3.0*M).LE.(M*M-Q)) THEN

5 NN=INT((Q-3.0*M)/DELTA)+1

DELTA=(Q-3.0*M)/NN

Q1=2.0*M
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CALL CVQM(M,Q1,A1)

Q2=3.0*M

CALL CVQM(M,Q2,A2)

QQ=3.0*M

DO 10 I=1,NN

QQ=QQ+DELTA

A=(A1*Q2-A2*Q1+(A2-A1)*QQ)/(Q2-Q1)

IFLAG=1

IF (I.EQ.NN) IFLAG=-1

CALL REFINE(KD,M,QQ,A,IFLAG)

Q1=Q2

Q2=QQ

A1=A2

A2=A

10 CONTINUE

IF (IFLAG.EQ.-10) THEN

NDIV=NDIV*2

DELTA=(M-3.0)*M/NDIV

GO TO 5

ENDIF

ELSE

15 NN=INT((M*M-Q)/DELTA)+1

DELTA=(M*M-Q)/NN

Q1=M*(M-1.0)

CALL CVQL(KD,M,Q1,A1)

Q2=M*M

CALL CVQL(KD,M,Q2,A2)

QQ=M*M

DO 20 I=1,NN

QQ=QQ-DELTA

A=(A1*Q2-A2*Q1+(A2-A1)*QQ)/(Q2-Q1)

IFLAG=1

IF (I.EQ.NN) IFLAG=-1

CALL REFINE(KD,M,QQ,A,IFLAG)

Q1=Q2

Q2=QQ

A1=A2

A2=A

20 CONTINUE

IF (IFLAG.EQ.-10) THEN

NDIV=NDIV*2

DELTA=(M-3.0)*M/NDIV

GO TO 15

ENDIF

ENDIF

ENDIF

RETURN

END

SUBROUTINE REFINE(KD,M,Q,A,IFLAG)

C

C =====================================================

C Purpose: calculate the accurate characteristic value
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C by the secant method

C Input : m --- Order of Mathieu functions

C q --- Parameter of Mathieu functions

C A --- Initial characteristic value

C Output: A --- Refineed characteristic value

C Routine called: CVF for computing the value of F for

C characteristic equation

C ========================================================

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

EPS=1.0D-14

MJ=10+M

CA=A

DELTA=0.0D0

X0=A

CALL CVF(KD,M,Q,X0,MJ,F0)

X1=1.002*A

CALL CVF(KD,M,Q,X1,MJ,F1)

5 DO 10 IT=1,100

MJ=MJ+1

X=X1-(X1-X0)/(1.0D0-F0/F1)

CALL CVF(KD,M,Q,X,MJ,F)

IF (ABS(1.0-X1/X).LT.EPS.OR.F.EQ.0.0) GO TO 15

X0=X1

F0=F1

X1=X

10 F1=F

15 A=X

IF (DELTA.GT.0.05) THEN

A=CA

IF (IFLAG.LT.0) THEN

IFLAG=-10

ENDIF

RETURN

ENDIF

IF (ABS((A-CA)/CA).GT.0.05) THEN

X0=CA

DELTA=DELTA+0.005D0

CALL CVF(KD,M,Q,X0,MJ,F0)

X1=(1.0D0+DELTA)*CA

CALL CVF(KD,M,Q,X1,MJ,F1)

GO TO 5

ENDIF

RETURN

END

SUBROUTINE CVF(KD,M,Q,A,MJ,F)

C

C ======================================================

C Purpose: Compute the value of F for characteristic

C equation of Mathieu functions

C Input : m --- Order of Mathieu functions

C q --- Parameter of Mathieu functions
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C A --- Characteristic value

C Output: F --- Value of F for characteristic equation

C ======================================================

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

B=A

IC=INT(M/2)

L=0

L0=0

J0=2

JF=IC

IF (KD.EQ.1) L0=2

IF (KD.EQ.1) J0=3

IF (KD.EQ.2.OR.KD.EQ.3) L=1

IF (KD.EQ.4) JF=IC-1

T1=0.0D0

DO 10 J=MJ,IC+1,-1

10 T1=-Q*Q/((2.0D0*J+L)**2-B+T1)

IF (M.LE.2) THEN

T2=0.0D0

IF (KD.EQ.1.AND.M.EQ.0) T1=T1+T1

IF (KD.EQ.1.AND.M.EQ.2) T1=-2.0*Q*Q/(4.0-B+T1)-4.0

IF (KD.EQ.2.AND.M.EQ.1) T1=T1+Q

IF (KD.EQ.3.AND.M.EQ.1) T1=T1-Q

ELSE

IF (KD.EQ.1) T0=4.0D0-B+2.0D0*Q*Q/B

IF (KD.EQ.2) T0=1.0D0-B+Q

IF (KD.EQ.3) T0=1.0D0-B-Q

IF (KD.EQ.4) T0=4.0D0-B

T2=-Q*Q/T0

DO 15 J=J0,JF

15 T2=-Q*Q/((2.0D0*J-L-L0)**2-B+T2)

ENDIF

F=(2.0D0*IC+L)**2+T1+T2-B

RETURN

END

SUBROUTINE CV0(KD,M,Q,A0)

C

C =====================================================

C Purpose: Compute the initial characteristic value of

C Mathieu functions for m 12 or q 300 or

C q m*m

C Input : m --- Order of Mathieu functions

C q --- Parameter of Mathieu functions

C Output: A0 --- Characteristic value

C Routines called:

C (1) CVQM for computing initial characteristic

C value for q 3*m

C (2) CVQL for computing initial characteristic

C value for q m*m

C ====================================================

C
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IMPLICIT DOUBLE PRECISION (A-H,O-Z)

Q2=Q*Q

IF (M.EQ.0) THEN

IF (Q.LE.1.0) THEN

A0=(((.0036392*Q2-.0125868)*Q2+.0546875)*Q2-.5)*Q2

ELSE IF (Q.LE.10.0) THEN

A0=((3.999267D-3*Q-9.638957D-2)*Q-.88297)*Q

& +.5542818

ELSE

CALL CVQL(KD,M,Q,A0)

ENDIF

ELSE IF (M.EQ.1) THEN

IF (Q.LE.1.0.AND.KD.EQ.2) THEN

A0=(((-6.51E-4*Q-.015625)*Q-.125)*Q+1.0)*Q+1.0

ELSE IF (Q.LE.1.0.AND.KD.EQ.3) THEN

A0=(((-6.51E-4*Q+.015625)*Q-.125)*Q-1.0)*Q+1.0

ELSE IF (Q.LE.10.0.AND. KD.EQ.2) THEN

A0=(((-4.94603D-4*Q+1.92917D-2)*Q-.3089229)

& *Q+1.33372)*Q+.811752

ELSE IF (Q.LE.10.0.AND.KD.EQ.3) THEN

A0=((1.971096D-3*Q-5.482465D-2)*Q-1.152218)

& *Q+1.10427

ELSE

CALL CVQL(KD,M,Q,A0)

ENDIF

ELSE IF (M.EQ.2) THEN

IF (Q.LE.1.0.AND.KD.EQ.1) THEN

A0=(((-.0036391*Q2+.0125888)*Q2-.0551939)*Q2

& +.416667)*Q2+4.0

ELSE IF (Q.LE.1.0.AND.KD.EQ.4) THEN

A0=(.0003617*Q2-.0833333)*Q2+4.0

ELSE IF (Q.LE.15.AND.KD.EQ.1) THEN

A0=(((3.200972D-4*Q-8.667445D-3)*Q

& -1.829032D-4)*Q+.9919999)*Q+3.3290504

ELSE IF (Q.LE.10.0.AND.KD.EQ.4) THEN

A0=((2.38446D-3*Q-.08725329)*Q-4.732542D-3)

& *Q+4.00909

ELSE

CALL CVQL(KD,M,Q,A0)

ENDIF

ELSE IF (M.EQ.3) THEN

IF (Q.LE.1.0.AND.KD.EQ.2) THEN

A0=((6.348E-4*Q+.015625)*Q+.0625)*Q2+9.0

ELSE IF (Q.LE.1.0.AND.KD.EQ.3) THEN

A0=((6.348E-4*Q-.015625)*Q+.0625)*Q2+9.0

ELSE IF (Q.LE.20.0.AND.KD.EQ.2) THEN

A0=(((3.035731D-4*Q-1.453021D-2)*Q

& +.19069602)*Q-.1039356)*Q+8.9449274

ELSE IF (Q.LE.15.0.AND.KD.EQ.3) THEN

A0=((9.369364D-5*Q-.03569325)*Q+.2689874)*Q

& +8.771735

ELSE

CALL CVQL(KD,M,Q,A0)

ENDIF
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ELSE IF (M.EQ.4) THEN

IF (Q.LE.1.0.AND.KD.EQ.1) THEN

A0=((-2.1E-6*Q2+5.012E-4)*Q2+.0333333)*Q2+16.0

ELSE IF (Q.LE.1.0.AND.KD.EQ.4) THEN

A0=((3.7E-6*Q2-3.669E-4)*Q2+.0333333)*Q2+16.0

ELSE IF (Q.LE.25.0.AND.KD.EQ.1) THEN

A0=(((1.076676D-4*Q-7.9684875D-3)*Q

& +.17344854)*Q-.5924058)*Q+16.620847

ELSE IF (Q.LE.20.0.AND.KD.EQ.4) THEN

A0=((-7.08719D-4*Q+3.8216144D-3)*Q

& +.1907493)*Q+15.744

ELSE

CALL CVQL(KD,M,Q,A0)

ENDIF

ELSE IF (M.EQ.5) THEN

IF (Q.LE.1.0.AND.KD.EQ.2) THEN

A0=((6.8E-6*Q+1.42E-5)*Q2+.0208333)*Q2+25.0

ELSE IF (Q.LE.1.0.AND.KD.EQ.3) THEN

A0=((-6.8E-6*Q+1.42E-5)*Q2+.0208333)*Q2+25.0

ELSE IF (Q.LE.35.0.AND.KD.EQ.2) THEN

A0=(((2.238231D-5*Q-2.983416D-3)*Q

& +.10706975)*Q-.600205)*Q+25.93515

ELSE IF (Q.LE.25.0.AND.KD.EQ.3) THEN

A0=((-7.425364D-4*Q+2.18225D-2)*Q

& +4.16399D-2)*Q+24.897

ELSE

CALL CVQL(KD,M,Q,A0)

ENDIF

ELSE IF (M.EQ.6) THEN

IF (Q.LE.1.0) THEN

A0=(.4D-6*Q2+.0142857)*Q2+36.0

ELSE IF (Q.LE.40.0.AND.KD.EQ.1) THEN

A0=(((-1.66846D-5*Q+4.80263D-4)*Q

& +2.53998D-2)*Q-.181233)*Q+36.423

ELSE IF (Q.LE.35.0.AND.KD.EQ.4) THEN

A0=((-4.57146D-4*Q+2.16609D-2)*Q-2.349616D-2)*Q

& +35.99251

ELSE

CALL CVQL(KD,M,Q,A0)

ENDIF

ELSE IF (M.EQ.7) THEN

IF (Q.LE.10.0) THEN

CALL CVQM(M,Q,A0)

ELSE IF (Q.LE.50.0.AND.KD.EQ.2) THEN

A0=(((-1.411114D-5*Q+9.730514D-4)*Q

& -3.097887D-3)*Q+3.533597D-2)*Q+49.0547

ELSE IF (Q.LE.40.0.AND.KD.EQ.3) THEN

A0=((-3.043872D-4*Q+2.05511D-2)*Q

& -9.16292D-2)*Q+49.19035

ELSE

CALL CVQL(KD,M,Q,A0)

ENDIF

ELSE IF (M.GE.8) THEN

IF (Q.LE.3.*M) THEN
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CALL CVQM(M,Q,A0)

ELSE IF (Q.GT.M*M) THEN

CALL CVQL(KD,M,Q,A0)

ELSE

IF (M.EQ.8.AND.KD.EQ.1) THEN

A0=(((8.634308D-6*Q-2.100289D-3)*Q+.169072)*Q

& -4.64336)*Q+109.4211

ELSE IF (M.EQ.8.AND.KD.EQ.4) THEN

A0=((-6.7842D-5*Q+2.2057D-3)*Q+.48296)*Q+56.59

ELSE IF (M.EQ.9.AND.KD.EQ.2) THEN

A0=(((2.906435D-6*Q-1.019893D-3)*Q+.1101965)*Q

& -3.821851)*Q+127.6098

ELSE IF (M.EQ.9.AND.KD.EQ.3) THEN

A0=((-9.577289D-5*Q+.01043839)*Q+.06588934)*Q

& +78.0198

ELSE IF (M.EQ.10.AND.KD.EQ.1) THEN

A0=(((5.44927D-7*Q-3.926119D-4)*Q+.0612099)*Q

& -2.600805)*Q+138.1923

ELSE IF (M.EQ.10.AND.KD.EQ.4) THEN

A0=((-7.660143D-5*Q+.01132506)*Q-.09746023)*Q

& +99.29494

ELSE IF (M.EQ.11.AND.KD.EQ.2) THEN

A0=(((-5.67615D-7*Q+7.152722D-6)*Q+.01920291)*Q

& -1.081583)*Q+140.88

ELSE IF (M.EQ.11.AND.KD.EQ.3) THEN

A0=((-6.310551D-5*Q+.0119247)*Q-.2681195)*Q

& +123.667

ELSE IF (M.EQ.12.AND.KD.EQ.1) THEN

A0=(((-2.38351D-7*Q-2.90139D-5)*Q+.02023088)*Q

& -1.289)*Q+171.2723

ELSE IF (M.EQ.12.AND.KD.EQ.4) THEN

A0=(((3.08902D-7*Q-1.577869D-4)*Q+.0247911)*Q

& -1.05454)*Q+161.471

ENDIF

ENDIF

ENDIF

RETURN

END

SUBROUTINE CVQL(KD,M,Q,A0)

C

C ========================================================

C Purpose: Compute the characteristic value of Mathieu

C functions for q 3m

C Input : m --- Order of Mathieu functions

C q --- Parameter of Mathieu functions

C Output: A0 --- Initial characteristic value

C ========================================================

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

IF (KD.EQ.1.OR.KD.EQ.2) W=2.0D0*M+1.0D0

IF (KD.EQ.3.OR.KD.EQ.4) W=2.0D0*M-1.0D0

W2=W*W
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W3=W*W2

W4=W2*W2

W6=W2*W4

D1=5.0+34.0/W2+9.0/W4

D2=(33.0+410.0/W2+405.0/W4)/W

D3=(63.0+1260.0/W2+2943.0/W4+486.0/W6)/W2

D4=(527.0+15617.0/W2+69001.0/W4+41607.0/W6)/W3

C1=128.0

P2=Q/W4

P1=DSQRT(P2)

CV1=-2.0*Q+2.0*W*DSQRT(Q)-(W2+1.0)/8.0

CV2=(W+3.0/W)+D1/(32.0*P1)+D2/(8.0*C1*P2)

CV2=CV2+D3/(64.0*C1*P1*P2)+D4/(16.0*C1*C1*P2*P2)

A0=CV1-CV2/(C1*P1)

RETURN

END

SUBROUTINE CVQM(M,Q,A0)

C

C =====================================================

C Purpose: Compute the characteristic value of Mathieu

C functions for q m*m

C Input : m --- Order of Mathieu functions

C q --- Parameter of Mathieu functions

C Output: A0 --- Initial characteristic value

C =====================================================

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

HM1=.5*Q/(M*M-1.0)

HM3=.25*HM1**3/(M*M-4.0)

HM5=HM1*HM3*Q/((M*M-1.0)*(M*M-9.0))

A0=M*M+Q*(HM1+(5.0*M*M+7.0)*HM3

& +(9.0*M**4+58.0*M*M+29.0)*HM5)

RETURN

END

FUNCTION fac(n)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

INTEGER n,J

IF (n.EQ.0) fac = 1.d0

f=1.d0

DO 11 J=1,n

f = J*f

11 CONTINUE

fac = f

RETURN

END



Appendix N

Mathieu-Bessel Connection
Coefficients

As a consequence of the symmetry properties (13.9.40) through (13.9.43), the Fourier ex-
pansions (13.10.144) and (13.10.150) for the cen(v, q) and sen(v, q) can be written in the
form

ce2n(v, q) =
∞∑
m=0

A2n
2m(q) cos(2mv), (N.0.1)

ce2n+1(v, q) =
∞∑
m=0

A2n+1
2m+1(q) cos[(2m+ 1)v], (N.0.2)

se2n+1(v, q) =
∞∑
m=0

B2n+1
2m+1(q) sin[(2m+ 1)v], (N.0.3)

se2n+2(v, q) =
∞∑
m=0

B2n+2
2m+2(q) sin[(2m+ 2)v]. (N.0.4)

In all these relations n = 0, 1, 2, 3, · · · . Put another way, the symmetry properties require
that the coefficients Anm and Bn

m vanish unless both m and n are even or both m and n are
odd.

In this appendix we will see that the same symmetry properties hold for the Mathieu-
Bessel connection coefficients αnm and βnm. That is, formulas (13.9.64) and (13.9.65) can be
written in the corresponding form

Ce2n(u, q) ce2n(v, q) =
∞∑
m=0

α2n
2m(k)I2m(kρ) cos(2mφ), (N.0.5)

Ce2n+1(u, q) ce2n+1(v, q) =
∞∑
m=0

α2n+1
2m+1(k)I2m+1(kρ) cos[(2m+ 1)φ], (N.0.6)

Se2n+1(u, q) se2n+(v, q) =
∞∑
m=0

β2n+1
2m+1(k)I2m+1(kρ) sin[(2m+ 1)φ], (N.0.7)
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Se2n+2(u, q) se2n+2(v, q) =
∞∑
m=0

β2n+2
2m+2(k)I2m+2(kρ) sin[(2m+ 2)φ]. (N.0.8)

Moreover, there are the relations

α2n
2m(k) = g2n

c (k)A2n
2m(q), (N.0.9)

α2n+1
2m+1(k) = g2n+1

c (k)A2n+1
2m+1(q), (N.0.10)

β2n+1
2m+1(k) = g2n+1

s (k)B2n+1
2m+1(q), (N.0.11)

β2n+2
2m+2(k) = g2n+2

s (k)B2n+2
2m+2(q), (N.0.12)

where
g2n
c (k) = [ce2n(π/2, q) ce2n(0, q)]/A2n

0 (q), (N.0.13)

g2n+1
c (k) = −2[ce′2n+1(π/2, q) ce2n+1(0, q)]/[kfA2n+1

1 (q)], (N.0.14)

g2n+1
s (k) = 2[se2n+1(π/2, q) se′2n+1(0, q)]/[kfB2n+1

1 (q)], (N.0.15)

g2n+2
s (k) = [se′2n+2(π/2, q) se′2n+2(0, q)]/[qB2n+2

2 (q)]. (N.0.16)

Here a ′ denotes d/dv.



Appendix O

Quadratic Forms

O.1 Background

Let L be a real m ×m matrix, let w be a real m-component vector, and let (∗, ∗) denote
the usual real inner product. Define a quadratic form Q(w) by the rule

Q(w) = (w,Lw). (O.1.1)

The matrix L can be uniquely decomposed into symmetric and antisymmetric parts S and
A by writing

L = S + A (O.1.2)

with
S = (1/2)(L+ LT ) (O.1.3)

and
A = (1/2)(L− LT ). (O.1.4)

Then, since only the symmetric part of L contributes to Q, we may equally well write

Q(w) = (w, Sw). (O.1.5)

According to standard matrix theory, any real m ×m symmetric matrix S has m real
eigenvalues and m associated real eigenvectors that can arranged to form an orthonormal
basis. (Note that no assumption needs to be made about the eigenvalues being distinct.)
Call the eigenvalues σj and the associated orthonormal eigenvectors vj. Then we may write
S in the dyadic form

S =
m∑
j=1

σj|vj)(vj|. (O.1.6)

With the aid of this representation for S we find that Q takes the form

Q(w) = (w, Sw) =
m∑
j=1

σj(w, vj)(vj, w) =
m∑
j=1

σj(w, vj)
2. (O.1.7)

We see that Q will be positive definite if all σj > 0. Conversely, since the vj are orthonormal,
it is evident that all the σj will be positive if Q is positive definite. Similarly, Q will be
negative definite if all σj < 0, and conversely. Finally, Q will be indefinite if not all σj have
the same sign or some are zero.
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O.2 Effect of Small Perturbations in the Definite

Case

Now suppose, for example, that Q is positive definite and that all the eigenvalues σj of S
are substantially different from 0. Next suppose that L is slightly perturbed so that S is
also slightly perturbed. Thus, we may write that

S = S0 + S1 (O.2.1)

where S0 is the initial S before perturbation and S1 is a small symmetric matrix that
describes the perturbation. Now the quadratic form Q becomes Q′ with

Q′(w) = (w, [S0 + S1]w) = (w, S0w) + (w, S1w) = Q(w) + (w, S1w). (O.2.2)

It is easy to see from (1.7) that

Q(w) ≥ σmin

m∑
j=1

(w, vj)
2 = σmin(w,w) = σmin||w||2 (O.2.3)

where σmin is the smallest eigenvalue of S. Also, we have the estimate

|(w, S1w)| ≤ ||w|| ||S1w|| ≤ ||w|| ||S1|| ||w|| = ||S1|| ||w||2. (O.2.4)

It follows that Q′ will also be positive definite providing

||S1|| < σmin. (O.2.5)

We conclude that if Q is positive definite, it will remain positive definite under small per-
turbations of L. Similarly, if Q is negative definite, it will remain negative definite under
small perturbations of L.

Even more can be said. The rank of Q is defined to be the number of nonzero eigenvectors
of S, and the signature is defined to be the number of positive eigenvalues minus the number
of negative eigenvalues. It can be shown that if under a continuous change in S the rank
does not change (no eigenvalue passes through the value 0), then the signature also does not
change. This result follows from the fact that the eigenvalues of S are continuous functions
of the matrix elements of S.
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Appendix P

Parameterization of the Coset Space
GL(2n,R)/Sp(2n,R)

P.1 Introduction

Suppose that M ∈ GL(2n,R) has a symplectic polar decomposition,

M = QR (P.1.1)

where Q is J-symmetric and R is symplectic.1 We know that such a decomposition is possible
for M sufficiently near the symplectic group and is unique. We know that the ordinary
(orthogonal) polar decomposition can be made globally. By contrast, from counter examples,
we know that symplectic polar decomposition is not possible globally. We also see that, by
construction, J-symmetric matrices Q are related to the cosets GL(2n,R)/Sp(2n,R). We
want to find what restrictions must be imposed on M for a symplectic polar decomposition
to be possible, and suspect that these restrictions are related to coset structure.

P.2 M Must Have Positive Determinant

From (1.1) we find
detM = (detQ)(detR) = detQ. (P.2.1)

According to Lemma 3.6 of Section 4.3 of Lie Methods, any J-symmetric matrix Q can be
written in the form

Q = JA (P.2.2)

where A is real and antisymmetric. It follows that

detQ = (det J)(detA) = detA ≥ 0. (P.2.3)

Here we have used the fact that a real antisymmetric matrix cannot have a negative deter-
minant. It follows from (1.1), (2.1), and (2.3) that, if M is to be nonsingular and have a
symplectic polar decomposition, it must have positive determinant,

detM > 0. (P.2.4)

1We adopt the terminology of Chapter 4 of Lie Methods · · · .
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Then, from (2.1), we also have
detQ > 0. (P.2.5)

P.3 It is Sufficient to Consider SL(2n,R)/Sp(2n,R)
Suppose N is any matrix in GL(2n,R) and detN > 0. Define an associated matrix M by
the rule

M = (detN)−1/(2n)N. (P.3.1)

By construction, M will be in SL(2n,R).
Next assume that M has the symplectic polar decomposition (1.1). Then (1.1) and (3.1)

imply that
N = (detN)1/(2n)M = (detN)1/(2n)QR = Q′R (P.3.2)

where
Q′ = (detN)1/(2n)Q. (P.3.3)

By the lemmas of Section 4.3 of Lie Methods, Q′ will also be J-symmetric, and therefore
N has a symplectic polar decomposition. Thus, it is sufficient to study whether any M ∈
SL(2n,R) has a symplectic polar decomposition.

P.4 Some Symmetries

Consider the map Σ of SL(2n,R) into itself defined by the rule

Σ(M) = J(MT )−1J−1. (P.4.1)

We will now explore the properties of Σ.
Suppose M1 and M2 are any two SL(2n,R) matrices. Then we find the relation

Σ(M1M2) = J [(M1M2)T ]−1J−1 = J [MT
2 M

T
1 ]−1J−1

= J(MT
1 )−1(MT

2 )−1J−1 = J(MT
1 )−1J−1J(MT

2 )−1J−1

= Σ(M1)Σ(M2). (P.4.2)

Thus, Σ is a homomorphism.
Next we observe that

Σ(I) = I (P.4.3)

and
Σ(J) = J(JT )−1J−1 = J(−J)−1J−1 = JJJ−1 = J. (P.4.4)

Similarly, we find
Σ(J−1) = J−1. (P.4.5)

Also, there is the property

Σ(M−1) = J [(M−1)T ]−1J−1 = JMTJ−1 = [J(MT )−1J−1]−1 = [Σ(M)]−1. (P.4.6)
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[This result also follows from (4.2) and (4.3).] Consequently, Σ is an isomorphism.
We claim that Σ acts as the identity map on Sp(2n,R). That is, all elements

R ∈ Sp(2n,R) are fixed points of Σ. Indeed, suppose that R ∈ Sp(2n,R). Then we have
the result

RJRT = J, (P.4.7)

which is equivalent to the relation

J−1 = (RJRT )−1 = (RT )−1J−1R−1, (P.4.8)

which in turn is equivalent to the relation

R = J(RT )−1J−1 = Σ(R). (P.4.9)

Note that (4.3) through (4.5) are special cases of (4.9).
Let us next find the action of Σ on any J-symmetric matrix Q. We find the result

Σ(Q) = J(QT )−1J−1 = (JQTJ−1)−1 = Q−1. (P.4.10)

Note that (2.5) guarantees that Q−1 exists.
Upon combining (4.9) and (4.10) we find that the effect of Σ on any matrix M having

the factorization (1.1) is given by the relation

Σ(M) = Σ(QR) = Σ(Q)Σ(R) = Q−1R. (P.4.11)

Finally, Σ is an involution. By calculating we find that

Σ2(M) = Σ[Σ(M)] = Σ[J(MT )−1J−1] = Σ(J)Σ[(MT )−1]Σ(J−1)

= JΣ[(MT )−1]J−1 = JJ{[(MT )−1]T}−1J−1J−1

= JJMJ−1J−1 = (−I)M(−I) = M. (P.4.12)

We have found a symmetry for SL(2n,R). We will now see that Σ produces an associated
symmetry σ on the Lie algebra s`(2n,R). Let B be any element in the Lie algebra s`(2n,R).
Let σ be the associated induced map in the Lie algebra defined by the relation

Σ[exp(B)] = exp[σ(B)]. (P.4.13)

By calculation we find

Σ[exp(B)] = J{[exp(B)]T}−1J−1 = J{exp(BT )}−1J−1

= J exp(−BT )J−1 = exp(−JBTJ−1). (P.4.14)

Upon comparing (4.13) and (4.14) in the vicinity of the identity, we conclude that

σ(B) = −JBTJ−1. (P.4.15)

Let us explore the properties of σ. Any element B ∈ s`(2n,R) can be written uniquely
in the form

B = JS + JA (P.4.16)
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where S is symmetric, A is antisymmetric, and JA is traceless. The elements JS are a basis
for sp(2n,R), and together with the elements of the form JA form a basis for s`(2n,R).
Computation gives the results

σ(JS) = −J(JS)TJ−1 = −JSTJTJ−1 = −JS(−J)J−1 = JS, (P.4.17)

σ(JA) = −J(JA)TJ−1 = −JATJTJ−1 = JA(−J)J−1 = −JA. (P.4.18)

We see from (4.17) that sp(2n,R) is invariant under σ. That is, σ acts as the identity on
sp(2n,R). This is the local consequence of the global result that Σ acts as the identity on
Sp(2n,R). And, since σ is manifestly linear, we have

σ(B) = σ(JS + JA) = σ(JS) + σ(JA) = JS − JA. (P.4.19)

From (4.16) through (4.19) we find that

σ2(B) = σ[σ(B)] = B. (P.4.20)

Thus, σ is an involution on s`(2n,R).

P.5 Connection between Symmetries and Being

J-Symmetric

A matrix Q is called J-symmetric if it satisfies the condition

JQTJ−1 = Q, (P.5.1)

which is equivalent to the condition

σ(Q) = −Q. (P.5.2)

Suppose we represent Q in the form
Q = JX (P.5.3)

where the properties of X are yet to be determined. Then we find

σ(Q) = σ(JX) = −J(JX)TJ−1 = −JXTJTJ−1 = JXT . (P.5.4)

Thus, in this representation, the J-symmetric condition (5.2) yields the requirement

JXT = −JX, (P.5.5)

from which it follows that
XT = −X. (P.5.6)

That is,
Q = JA′ (P.5.7)

where A′ is antisymmetric.
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Suppose we instead represent Q in the form

Q = exp(JX). (P.5.8)

Then we find the relation

σ(Q) = σ[exp(JX)] = −J [exp(JX)]TJ−1 = −J exp[(JX)T ]J−1

= −J exp(−XTJ)J−1 = − exp(−JXT ). (P.5.9)

In this context requiring (5.2) produces the relation

exp(JX) = exp(−JXT ), (P.5.10)

which again produces (5.5) and hence (5.6) and consequently

Q = exp(JA) (P.5.11)

where A is antisymmetric.
As a side comment, we have discovered, upon comparing (5.7) and (5.11), the relation

JA′ = exp(JA), (P.5.12)

or,
A′ = −J exp(JA), (P.5.13)

which maps antisymmetric matrices A into antisymmetric matrices A′. Keeping the first
few terms in the power series we find that

A′ = −J [I + JA+ (JA)2/2! + (JA)3/3! + · · · ]
= −J + A− J(JA)2/2!− J(JA)3/3! + · · ·
= −J + A+ AJA/2! + AJAJA/3! + · · · . (P.5.14)

In this form we see that any Taylor series in JA would have the same mapping property.
Finally, let us apply Σ to Q as given by (5.11). We find the result

Σ(Q) = Σ[exp(JA)] = exp[σ(JA)] = exp(−JA) = Q−1 (P.5.15)

as before.

P.6 Relation to Darboux Matrices

According to Lie Methods the matrix N(M) is J-symmetric, and we seek a J-symmetric
matrix Q such that

Q2 = N(M). (P.6.1)

Use the result of Lemma 3.6 of Lie Methods to write the representations

N(M) = JA′ (P.6.2)
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and

Q = JA (P.6.3)

where A′ and A are antisymmetric. With these representations (6.1) becomes

JAJA = JA′, (P.6.4)

which yields the relation

A′ = AJA. (P.6.5)

Since A is assumed to be antisymmetric, (6.5) can also be written in the form

− A′ = AJAT , (P.6.6)

which shows that A, if it exists, is a Darboux matrix connecting −A′ and J . Thus, the
problem of finding Q is equivalent to showing that it is possible to find a Darboux matrix
connecting −A′ and J that is also antisymmetric.

P.7 Some Observations on SL(2n,R)/Sp(2n,R)
By its nature, SL(2n,R)/Sp(2n,R) is a homogeneous space. That is, SL(2n,R) when acting
on this space can send any point into any other point. See Section 5.12 for a description of
group action on cosets. Between the JS and the JA there are the relations (4.3.2) through
(4.3.4). Consequently SL(2n,R)/Sp(2n,R) is a reductive homogeneous space. Since σ is an
involution on s`(2n,R) that leaves sp(2n,R) invariant, it follows that SL(2n,R)/Sp(2n,R)
is a symmetric space. Moreover, at least for the cases n = 2 and n = 3 and presumably
for all n, the elements of the form JA with JA traceless transform irreducibly under the
action of sp(2n,R). Therefore SL(2n,R)/Sp(2n,R) is an irreducible symmetric space. For
example, in the case n = 2 the elements of the form JA with JA traceless carry the
irreducible representation Γ(0, 1) of sp(4,R); and in the case n = 3 they carry the irreducible
representation Γ(0, 1, 0) of sp(6,R). See the weight diagrams 27.5.4 and 27.8.4 in Chapter
27.

Digesting Goodman Notes

P.8 Action of σ on s`(2n,R)
Consider the action of σ on s`(2n,R). First we see that, for a real symmetric matrix,

σ(S) = −JSTJ−1 = −JSJ−1 = JSJ (P.8.1)

so that

[σ(S)]T = [JSJ ]T = JTSTJT = JSJ = σ(S). (P.8.2)

Therefore, σ maps the space of real symmetric matrices into itself.
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Next suppose B and B′ are two matrices in s`(2n,R). Define their inner product to be

(B,B′) = tr(BB′). (P.8.3)

Then we find that σ preserves the inner product,

(σ(B), σ(B′)) = tr[(−J)BTJ−1(−J)(B′)TJ−1] = tr[JBT (B′)TJ−1] = tr[BT (B′)T ]

= tr[(B′B)T ] = tr[B′B] = tr[BB′] = (B,B′). (P.8.4)

Suppose we write for any real symmetric matrix S the decomposition

S = Sa + Sc (P.8.5)

where Sa anticommutes with J and Sc commutes with J . See Section 3.8 of Lie Methods.
Then we find that

σ(Sa) = −JSaJ−1 = SaJJ−1 = Sa, (P.8.6)

and

σ(Sc) = −JScJ−1 = −ScJJ−1 = −Sc. (P.8.7)

We see that σ, which we already know is a linear operator that maps the space of real
symmetric matrices into itself, has eigenvalues ±1. This is to be expected because σ is an
involution.

As an application of this result, we find that

(Sa, Sc) = −(σ(Sa), σ(Sc)) = −(Sa, Sc) (P.8.8)

from which it follows that

(Sa, Sc) = 0 (P.8.9)

for any Sa, Sc pair.

P.9 Lie Triple System

Let S, S ′, and S ′′ be real symmetric matrices. Then we have

{S ′, S} = A (P.9.1)

where A is an antisymmetric matrix. And,

{S ′′, {S ′, S}} = S ′′′ (P.9.2)

where S ′′′ is again a symmetric matrix. Thus symmetric matrices comprise a Lie triple
system.

Let Sa, Sa′, and S
a′′ be real symmetric matrices that anticommute with J . Then we

have

{Sa′, Sa} = Ac (P.9.3)
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where Ac is an antisymmetric matrix that commutes with J . And,

{Sa′′, {Sa′, Sa}} = Sa′′′ (P.9.4)

where Sa′′′ is again a symmetric matrix that anticommutes with J . Thus symmetric matrices
that anticommute with J also comprise a Lie triple system.

Similarly, it can be verified that real symmetric matrices of the form Sc comprise a Lie
triple system,

{Sc′′, {Sc′, Sc}} = Sc′′′ (P.9.5)

where Sc′′′ is again a symmetric matrix that commutes with J .

P.10 A Factorization Theorem (Theorem 1.1 of

Goodman)

P.10.1 A Particular Mapping from Real Symmetric Matrices to
Positive-Definite Matrices

Define for any S an associated matrix P (S) by the rule

P (S) = exp(Sa) exp(Sc) exp(Sa). (P.10.1)

Evidently, P is real, symmetric and nonsingular. It is also positive definite because we have

(v, Pv) = (v, exp(Sa) exp(Sc) exp(Sa)v) = (exp(Sa)v, exp(Sc) exp(Sa)v)

= ([exp(Sa)v], exp(Sc)[exp(Sa)v]) > 0 if v 6= 0 (P.10.2)

because exp(Sa) is symmetric and invertible and exp(Sc) is positive definite.
We will eventually see that the map (10.1) is invertible. That is, given any real symmetric

positive-definite matrix P , there are (unique) matrices Sa and Sc such that (10.1) holds.
Thus, (10.1) provides a factorization of any real symmetric positive-definite matrix P .

P.10.2 The Map Is Real Analytic

Evidently, by the nature of the exponential function, P (S) is a real analytic function of Sa

and Sc. We claim that P (S) is also an analytic function of S. Note that

Sa = (S − J−1SJ)/2 (P.10.3)

and

Sc = (S + J−1SJ)/2 (P.10.4)

Therefore Sa and Sc are analytic functions of S. Since the various exponential functions
appearing in (10.1) are analytic functions of their arguments, it follows that P (S) is an
analytic function of S.
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P.10.3 Trace and Determinant Properties

From (10.3) we find

tr(Sa) = (1/2)[tr(S)− tr(J−1SJ)] = (1/2)[tr(S)− tr(JJ−1S)]

= (1/2)[tr(S)− tr(S)] = 0. (P.10.5)

From (10.4) we find

tr(Sc) = (1/2)[tr(S) + tr(J−1SJ)] = (1/2)[tr(S) + tr(JJ−1S)]

= (1/2)[tr(S) + tr(S)] = tr(S). (P.10.6)

Now take the determinant of both sides of (10.1). So doing gives the result

det[P (S)] = exp[tr(Sa)] exp[tr(Sc)] exp[tr(Sa)] = exp[tr(S)]. (P.10.7)

P.10.4 Study of the Inverse of the Map

Conversely, it is claimed that S is an analytic function of P . If true, then, by (10.3) and
(10.4), Sa and Sc are also analytic functions of P . Proceed as follows: Since P is real,
symmetric, and positive definite, there is a real symmetric matrix Z such that

P (S) = exp(Z) = exp(Sa) exp(Sc) exp(Sa), (P.10.8)

and Z will be analytic in P and therefore in S. What we want to do is find Sa and Sc in
terms of Z.

P.10.5 Formula for Sa in terms of Z

Begin by finding Sa in terms of Z. Apply Σ to both sides of (10.8) to find the result

Σ[P (S)] = Σ[exp(Z)] = Σ[exp(Sa)]Σ[exp(Sc)]Σ[exp(Sa)], (P.10.9)

from which it follows that

exp[σ(Z)] = exp[σ(Sa)] exp[σ(Sc)] exp[σ(Sa)], (P.10.10)

from which it follows that

exp[σ(Z)] = exp(Sa) exp(−Sc) exp(Sa). (P.10.11)

Next take inverses of both sides of (10.8) to find the relation

exp(−Z) = exp(−Sa) exp(−Sc) exp(−Sa), (P.10.12)

from which it follows that

exp(−Sc) = exp(Sa) exp(−Z) exp(Sa). (P.10.13)
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Use (10.13) in (10.11) to get the relation

exp[σ(Z)] = exp(2Sa) exp(−Z) exp(2Sa), (P.10.14)

which is a relation between Z and Sa.
Next show that, given Z, (10.14) has, in fact, a unique solution Sa. In particular, we

want to verify the assertion

exp(2Sa) = exp(Z/2) exp(T ) exp(Z/2) (P.10.15)

where

exp(2T ) = exp(−Z/2) exp[σ(Z)] exp(−Z/2). (P.10.16)

Note that the right side of (10.16) is real, symmetric, and positive definite. Therefore T
and consequently exp(T ) are well defined (real analytic) functions of Z. Correspondingly,
the right side of (10.15) is well defined, real, symmetric, and positive definite. Therefore
Sa is well defined, and a real analytic function of Z. We also observe that (10.16) can be
rewritten in the form

exp[σ(Z)] = exp(Z/2) exp(2T ) exp(Z/2). (P.10.17)

To prove the assertion, take (10.15) and (10.16) to be the definition of Sa. Then, using
(10.15), we find that

exp(2Sa) exp(−Z) exp(2Sa) =

exp(Z/2) exp(T ) exp(Z/2) exp(−Z) exp(Z/2) exp(T ) exp(Z/2) =

exp(Z/2) exp(2T ) exp(Z/2) = exp[σ(Z)]. (P.10.18)

Here, in the last step, we have also used (10.17). Thus, we see that (10.14) is satisfied.

P.10.6 Uniqueness of Solution for Sa

What about uniqueness? Suppose Ŝa also satisfies (10.14). That is, assume

exp[σ(Z)] = exp(2Ŝa) exp(−Z) exp(2Ŝa). (P.10.19)

Substitute (10.19) into (10.16) to get

exp(2T ) = exp(−Z/2) exp[σ(Z)] exp(−Z/2)

= exp(−Z/2){exp(2Ŝa) exp(−Z) exp(2Ŝa)} exp(−Z/2)

= exp(−Z/2){exp(2Ŝa) exp(−Z/2) exp(−Z/2) exp(2Ŝa)} exp(−Z/2)

= [exp(−Z/2) exp(2Ŝa) exp(−Z/2)]2. (P.10.20)

Therefore, by the uniqueness of the positive-definite square root of a positive-definite matrix,
we have

exp(T ) = exp(−Z/2) exp(2Ŝa) exp(−Z/2), (P.10.21)
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which can be rewritten in the form

exp(2Ŝa) = exp(Z/2) exp(T ) exp(Z/2). (P.10.22)

Now compare (10.15) and (10.22) to get

exp(2Sa) = exp(2Ŝa), (P.10.23)

from which it follows that

Sa = Ŝa. (P.10.24)

P.10.7 Verification of Expected Symmetry for Sa

Also, does the Sa just found satisfy (8.6)? Apply Σ to both sides of (10.14) to get the
relation

exp{σ[σ(Z)]} = exp[2σ(Sa)] exp[−σ(Z)] exp[2σ(Sa)], (P.10.25)

form which it follows by (4.20) that

exp(Z) = exp[2σ(Sa)] exp[−σ(Z)] exp[2σ(Sa)]. (P.10.26)

Rewrite (10.26) in the form

exp[−2σ(Sa)] exp(Z) exp[−2σ(Sa)] = exp[−σ(Z)]. (P.10.27)

Now invert both sides of (10.27) to get

exp[σ(Z)] = exp[2σ(Sa)] exp(−Z) exp[2σ(Sa)]. (P.10.28)

Upon comparing (10.14) and (10.28) we see that Sa and σ(Sa) obey the same equation.
Therefore, from the uniqueness of the solution, we have

σ(Sa) = Sa, (P.10.29)

which is (8.6).

P.10.8 Formula for Sc in Terms of Z

The last thing to do is, given Z, find Sc. Look at (10.8). It can be rewritten in the form

exp(Sc) = exp(−Sa) exp(Z) exp(−Sa). (P.10.30)

And, since Sa is now known, we may regard (10.30) as a formula for Sc.
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P.10.9 Verification of Expected Symmetry for Sc

However, it would be good to check that (8.7) holds. Apply Σ to both sides of (10.30) and
manipulate to find

exp[σ(Sc)] = exp[−σ(Sa)] exp[σ(Z)] exp[−σ(Sa)]

= exp(−Sa) exp[σ(Z)] exp(−Sa)
= exp(−Sa){exp(2Sa) exp(−Z) exp(2Sa)} exp(−Sa)
= exp(Sa) exp(−Z) exp(Sa)

= exp(−Sc), (P.10.31)

from which it follows that
σ(Sc) = −Sc, (P.10.32)

as required by (8.7). Here we used (10.14) and the relation

exp(−Sc) = exp(Sa) exp(−Z) exp(Sa) (P.10.33)

which follows from (10.30).

P.10.10 Conclusion

In summary, we have learned that both Sa and Sc are real-analytic functions of Z.

P.10.11 Motivation for Mapping

Suppose P is a real, symmetric, and positive-definite matrix. Use it to define a matrix Q
by the relation

Q = P−1/2JP−1/2. (P.10.34)

(Note that Goodman defines Q by Q = P 1/2JP−1/2, but presumably this is a misprint.) By
calculation we find that

QT = −P−1/2JP−1/2 = −Q. (P.10.35)

Evidently Q is real, antisymmetric, and nonsingular. Then P̂ given by

P̂ = QTQ (P.10.36)

will be real, symmetric, and positive definite. Goodman claims that

P = exp(X) exp(Y ) exp(X) (P.10.37)

with
exp(X) = (P 1/2P̂ 1/2P 1/2)1/2 (P.10.38)

and
exp(Y ) = exp(−X)P exp(−X). (P.10.39)

Let us see if this is true. Evidently (10.37) and (10.39) are logically equivalent for any
matrices P , X, and Y . So, perhaps we should examine the properties of X and Y .
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Evidently X is real analytic in P . Squaring both sides of (10.38) gives

exp(2X) = P 1/2P̂ 1/2P 1/2. (P.10.40)

Define Z by writing
exp(Z) = P. (P.10.41)

Evidently Z is real analytic in P and

exp(Z/2) = P 1/2. (P.10.42)

With this definition, (10.40) can be rewritten in the form

exp(2X) = exp(Z/2)P̂ 1/2 exp(Z/2). (P.10.43)

Next, define T by writing
exp(T ) = P̂ 1/2. (P.10.44)

Then we have the result
exp(2T ) = P̂ . (P.10.45)

Also, (10.43) can now be written in the form

exp(2X) = exp(Z/2) exp(T ) exp(Z/2). (P.10.46)

Now work out an expression for P̂ . From (10.34) through (10.36) we find that

P̂ = −P−1/2JP−1/2P−1/2JP−1/2 = P−1/2JP−1J−1P−1/2

= exp(−Z/2)J exp(−Z)J−1 exp(−Z/2) = exp(−Z/2) exp(−JZJ−1) exp(−Z/2)

= exp(−Z/2) exp[σ(Z)] exp(−Z/2). (P.10.47)

Thus, we get the result

exp(2T ) = exp(−Z/2) exp[σ(Z)] exp(−Z/2). (P.10.48)

We see that (10.46) is the counterpart to (10.22), and (10.48) is the counterpart to (10.16).
Therefore we have the relations

X = Sa (P.10.49)

and
Y = Sc. (P.10.50)

P.11 Theorem 1.2 of Goodman Due to Mostow

Consider the triplet {k ∈ O(2n,R), Sc, Sa}. Use it to construct g ∈ GL(2n,R) by the rule

g = k exp(Sc) exp(Sa). (P.11.1)

It is claimed that (11.1) provides an analytic isomorphism between the triplet andGL(2n,R).
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Let us pause to do a dimension count. The dimension of Sc plus the dimension of Sa is
the dimension of all symetric matrices S. And the dimension of O(2n,R) is the dimension
of all antisymmetric matrices A. Taken together, these dimensions add up to the dimension
of all 2n× 2n matrices, which is just the dimension of GL(2n,R).

To continue, first we verify that (11.1) is injective. That is, different triplets must
yield different elements in GL(2n,R). For suppose that two triplets yield the same element
g ∈ GL(2n,R),

g = k1 exp(Sc1) exp(Sa1 ) (P.11.2)

and
g = k2 exp(Sc2) exp(Sa2 ). (P.11.3)

From (11.2) we find

gTg = exp(Sa1 ) exp(Sc1)kT1 k1 exp(Sc1) exp(Sa1 ) = exp(Sa1 ) exp(2Sc1) exp(Sa1 ), (P.11.4)

and from (11.3) we find

gTg = exp(Sa2 ) exp(Sc2)kT2 k1 exp(Sc2) exp(Sa2 ) = exp(Sa2 ) exp(2Sc2) exp(Sa2 ). (P.11.5)

Thus, we have the relation

exp(Sa1 ) exp(2Sc1) exp(Sa1 ) = exp(Sa2 ) exp(2Sc2) exp(Sa2 ). (P.11.6)

From Theorem 1.1 and (11.6) we conclude that

Sa1 = Sa2 (P.11.7)

and
Sc1 = Sc2. (P.11.8)

Then, from (11.2) and (11.3), se see that

k1 = k2. (P.11.9)

Next, we verify that any g ∈ GL(2n,R) can be written in the form (11.1). Given any
g ∈ GL(2n,R), define a real symmetric positive-definite matrix P by the rule

P = gTg. (P.11.10)

Evidently P is real analytic in g. Therefore, by the factorization theorem, there are unique
matrices Sa and Sc, that depend real-analytically on P and therefore real-analytically on g,
such that

P = exp(Sa) exp(2Sc) exp(Sa). (P.11.11)

Now define k by the rule
k = (gT )−1 exp(Sa) exp(Sc). (P.11.12)

Then k is also real-analytic in g. Moreover, we find that

kT = exp(Sc) exp(Sa)(g)−1, (P.11.13)
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from which it follows that

kTk = exp(Sc) exp(Sa)(g)−1(gT )−1 exp(Sa) exp(Sc)

= exp(Sc) exp(Sa)P−1 exp(Sa) exp(Sc)

= exp(Sc) exp(Sa) exp(−Sa) exp(−2Sc) exp(−Sa) exp(Sa) exp(Sc)

= exp(Sc) exp(−2Sc) exp(Sc) = I. (P.11.14)

Therefore k ∈ O(2n,R).
Finally, suppose that g ∈ SL(2n,R). In this case, take the determinant of both sides of

(11.1) to get the result

1 = det(g) = det(k) exp[tr(Sc)] exp[tr(Sa)] = det(k) exp[tr(Sc)] (P.11.15)

where we have used (10.5). We know that

det(k) = ±1. (P.11.16)

We see that, in order for (11.15) to be satisfied, we must have the relations

det(k) = +1 so that k ∈ SO(2n,R) (P.11.17)

and
tr(Sc) = 0. (P.11.18)

We conclude the following: Consider the triplet {k ∈ SO(2n,R), Sc with tr(Sc) = 0, Sa}.
Use it to construct g ∈ SL(2n,R) by the rule

g = k exp(Sc) exp(Sa). (P.11.19)

Then (11.19) provides an analytic isomorphism between the triplet and SL(2n,R).

P.12 Goodman’s Work on Symplectic Polar

Decomposition

Consider the group G = SL(2n,R), and its subgroups H = Sp(2n,R) and K = SO(2n,R).
We want to study the coset space G/H.

P.12.1 Some More Symmetry Operations

To do so it is useful to introduce some additional symmetry operations on G. The operation
Σ has already been defined by (4.1). We will define two more.

Introduce the operation Θ by the rule

Θ(M) = (MT )−1 (P.12.1)

for any M ∈ G. Evidently this map preserves the condition det(M) = 1, and therefore sends
G unto itself. Also we find that

Θ(I) = I, (P.12.2)
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Θ(J) = J, (P.12.3)

Θ(M1M2) = [(M1M2)T ]−1 = [(MT
2 M

T
1 )]−1 = (MT

1 )−1(MT
2 )−1 = Θ(M1)Θ(M2), (P.12.4)

Θ[Θ(M)] = {[(MT )−1]T}−1 = M. (P.12.5)

Thus Θ, like Σ, is an isomorphism and an involution.
Next, we discover that Σ and Θ commute. From the definition of Σ we find that

Σ[Θ(M)] = J{[Θ(M)]T}−1J−1. (P.12.6)

But, from (12.1),
{[Θ(M)]T}−1 = {[(MT )−1]T}−1 = M. (P.12.7)

Therefore, we conclude that
Σ[Θ(M)] = JMJ−1. (P.12.8)

Applying the symmetries in opposite order gives

Θ[Σ(M)] = {[Σ(M)]T}−1. (P.12.9)

But, from (4.1), we have the relations

[Σ(M)]T = [J(MT )−1J−1]T = JM−1J−1 (P.12.10)

and
{[Σ(M)]T}−1 = [JM−1J−1]−1 = JMJ−1. (P.12.11)

It follows that
Θ[Σ(M)] = JMJ−1. (P.12.12)

We see that the right sides of (12.8) and (12.12) agree, and therefore

Σ[Θ(M)] = Θ[Σ(M)] (P.12.13)

or, in operator notation,
ΣΘ = ΘΣ. (P.12.14)

Next define the operation Υ as the product

Υ = ΣΘ = ΘΣ. (P.12.15)

From (12.8) or (12.2) we find that

Υ(M) = JMJ−1. (P.12.16)

We see that Υ is also an isomorphism. And, from (12.16), we see that

Υ[Υ(M)] = J [JMJ−1]J−1 = M, (P.12.17)

and therefore Υ is an involution as is expected for the product of commuting involutions.
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Let θ and τ be the associated induced maps in the Lie algebra defined by

Θ[exp(B)] = exp[θ(B)], (P.12.18)

Υ[exp(B)] = exp[τ(B)]. (P.12.19)

For (12.18) we find

Θ[exp(B)] = {[exp(B)]T}−1 = [exp(BT )]−1 = exp(−BT ), (P.12.20)

and conclude that
θ(B) = −BT . (P.12.21)

For (12.19) we find
Υ[exp(B)] = J exp(B)J−1 = exp(JBJ−1), (P.12.22)

and conclude that
τ(B) = JBJ−1. (P.12.23)

Let us check some expected relations: First, we find the results

θ[θ(B)] = θ[−BT ] = −[−BT ]T = B (P.12.24)

so that θ, like σ, is an involution, as expected. Second, we find the results

σ[θ(B)] = σ[−BT ] = −J [−BT ]TJ−1 = JBJ−1 = τ(B), (P.12.25)

θ[σ(B)] = θ[−JBTJ−1] = −[−JBTJ−1]T = JBJ−1 = τ(B). (P.12.26)

Thus, we conclude that
σθ = θσ = τ. (P.12.27)

It follows that τ is also an involution, as is also obvious from (12.22). Moreover, we note
the relations

στ = τσ = θ, (P.12.28)

θτ = τθ = σ. (P.12.29)

Finally we should check the effects of θ and τ on scalar products. First we see that, for
a real symmetric matrix,

θ(S) = −ST = −S (P.12.30)

so that
[θ(S)]T = −ST = −S = θ(S). (P.12.31)

Therefore, θ maps the space of real symmetric matrices into itself.
Next suppose B and B′ are two matrices in s`(2n,R). As before, define their inner

product to be
(B,B′) = tr(BB′). (P.12.32)

Then we find that θ preserves the inner product,

(θ(B), θ(B′)) = tr[(−BT )(−B′)T )] = tr[BT (B′)T ] = tr[(B′B)T ]

= tr[B′B] = tr[BB′] = (B,B′). (P.12.33)

Using (12.25), because σ and θ preserve the inner product, we see that τ also preserves the
inner product,

(τ(B), τ(B′)) = (σ[θ(B)], σ[θ(B′)]) = ([θ(B)], [θ(B′)]) = (B,B′). (P.12.34)
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P.12.2 Fixed-Point Subgroups Associated with Symmetry
Operations

In Section 4 we found that the fixed points of Σ comprise the subgroup Sp(2n,R). Now we
will find that the fixed points of Θ and Υ also yield subgroups of GL(2n,R).

Suppose g is a fixed point of Θ. Then we find that

Θ(g) = g ⇔ (gT )−1 = g ⇔ gTg = I. (P.12.35)

Thus, the fixed points of Θ comprise SO(2n,R). [Here we have already assumed g ∈
SL(2n,R) so that we know that det g = 1. Otherwise the fixed points of Θ comprise
O(2n,R).]

Suppose g is a fixed point of Υ. Then we find that

Υ(g) = g ⇔ JgJ−1 = g ⇔ Jg = gJ. (P.12.36)

Thus, the fixed points of Υ comprise the matrices in GL(2n,R) that commute with J . They
also obviously form a group. But what is this group?

Write g in the block form

g =

(
a b
c d

)
, (P.12.37)

where the matrices a, b, c, and d are real and n× n. Then we find the results

Jg =

(
c d
−a −b

)
, (P.12.38)

and

gJ =

(
−b a
−d c

)
. (P.12.39)

Therefore, requiring that g commute with J yields the restrictions

c = −b (P.12.40)

and
d = a. (P.12.41)

Thus, g is of the form

g =

(
a b
−b a

)
. (P.12.42)

Next define matrices A and B by the rules

A =

(
a 0
0 a

)
, (P.12.43)

and

B =

(
b 0
0 b

)
. (P.12.44)
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Then both A and B commute with J , and we also have the relation

JB =

(
0 b
−b 0

)
. (P.12.45)

Therefore, we may also write
g = A+ JB. (P.12.46)

Suppose g1 and g2 are two matrices that commute with J and we use the representation
(12.46) to write

gk = Ak + JBk (P.12.47)

Then, recalling that the Ak and Bk commute with J and that J2 = −I, we find the product
relation

g1g2 = (A1A2 −B1B2) + J(A1B2 +B1A2). (P.12.48)

We see that, in (12.47) and (12.48), the matrix J plays a role analogous to the imaginary
number i.

This analogy can be made explicit using the machinery of Section 3.9 of Lie Methods.
Suppose m is an arbitrary n× n matrix with possibly complex entries. Evidently it can be
written in the form

m = a+ ib (P.12.49)

where a and b are real n×n matrices. Let us multiply two such matrices together. So doing
gives the result

m1m2 = (a1a2 − b1b2) + i(a1b2 + b1a2). (P.12.50)

Note the resemblance between the pairs (12.46), (12.49) and (12.48), (12.50).
To pursue the analogy further, let W be the unitary and (complex) symplectic matrix

W =
1√
2

(
I iI
iI I

)
. (P.12.51)

Here each block in W is n× n. Now, as in Section 3.9 of Lie Methods, define an associated
2n× 2n matrix g(m) by the rule

g(m) = M(m) = W

(
m 0
0 m

)
W−1. (P.12.52)

Then it is easily verified that there are the relations

g(I) = I, (P.12.53)

g(m1m2) = g(m1)g(m2), (P.12.54)

g(m−1) = g−1(m). (P.12.55)

Also, if (12.52) is multiplied out explicitly, we find the result

g(m) =

(
Re(m) Im(m)
−Im(m) Re(m)

)
=

(
a b
−b a

)
. (P.12.56)
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It follows that g(m) is real for any m.

Matrices of the form (12.49) constitute the group SL(n,C) provided we add the condition

det(m) = 1. (P.12.57)

Now take the determinant of both sides of (12.52). Doing so gives the result

det(g) = [det(W )][det(m)][det(m)][det(W−1)]

= [det(m)][det(m)] = | det(m)|2 ≥ 0. (P.12.58)

If (12.57) holds, then from (12.58) we also have the condition

det(g) = 1. (P.12.59)

From (12.49) through (12.59) we conclude that the set of matrices g ∈ SL(2n,R) that
also commute with J constitutes a group that is isomorphic to SL(n,C). More precisely,
the set of matrices g ∈ SL(2n,R) that also commute with J constitutes a group that is the
representation SL(n,C)⊕ SL(n,C) of SL(n,C). If we relax the determinant condition, we
conclude that the set of matrices g ∈ GL(2n,R,+) that also commute with J constitutes a
group that is the representation GL(n,C)⊕GL(n,C) of GL(n,C).

To summarize, let GΣ be the fixed-point group associated with the symmetry Σ. Then
we have the result

GΣ = Sp(2n,R) = H. (P.12.60)

Similarly, we have

GΘ = SO(2n,R) = K, (P.12.61)

and

GΥ ∼= SL(n,C). (P.12.62)

Also, from Section 3.9 of Lie Methods, we know that

K ∩H = SO(2n,R) ∩ Sp(2n,R) ∼= U(n)⊕ U(n). (P.12.63)

Finally, suppose

m = exp(iφ)I, (P.12.64)

which corresponds to

a = cos(φ)I (P.12.65)

and

b = sin(φ)I. (P.12.66)

Then we find the result

g(m) =

(
cos(φ)I sin(φ)I
− sin(φ)I cos(φ)I

)
= I cos(φ) + J sin(φ) = exp(φJ). (P.12.67)
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P.13 Decomposition of Lie Algebras

Denote the Lie algebras of G = SL(2n,R), H = Sp(2n,R), and K = SO(2n,R) by the
symbols g, h, and k, respectively. The effects of σ, θ, and τ on g = sl(2n,R) have already
been determined in (4.15), (12.21), and (12.23), respectively. To recapitulate, we find the
results

σ(B) = −JBTJ−1 = B for B ∈ h (P.13.1)

and
θ(B) = −BT = B for B ∈ k. (P.13.2)

That is, h is the +1 eigenspace of σ in g, and k (the antisymmetric matrices) is the +1
eigenspace of θ in g.

Define the subspace p by the requirement

p = {B ∈ g | θ(B) = −B}. (P.13.3)

That is, p consists of the symmetric traceless matrices, and is the -1 eigenspace of θ in g.
Then we have the direct sum decomposition (±1 eigenspaces of θ)

g = k⊕ p, (P.13.4)

which is just the familiar statement that any matrix can be uniquely decomposed into
antisymmetric and symmetric parts. These parts are also mutually orthogonal relative to
the trace form. Indeed, we have

(A, S) = tr(AS) = tr[(AS)T ] = tr(STAT ) = tr(−SA) = tr(−AS) = −(A, S) (P.13.5)

and therefore
(A, S) = 0. (P.13.6)

Here A and S are antisymmetric and symmetric matrices, respectively.
Likewise, define the subspace q by the requirement

q = {B ∈ g | σ(B) = −B}. (P.13.7)

Then we have the direct sum decomposition (±1 eigenspaces of σ)

g = h⊕ q. (P.13.8)

We should check that these eigenspaces are also mutually orthogonal relative to the trace
form. The elements of h are matrices of the form JS where S is symmetric. From (4.18)
we know that the elements of q are matrices of the form JA where A is antisymmetric. For
their inner product we find that

(JS, JA) = tr(JSJA) = tr[(JSJA)T ] = tr[ATJTSTJT ]

= tr[−AJSJ ] = tr[−JSJA] = −(JS, JA), (P.13.9)

from which we conclude that
(JS, JA) = 0. (P.13.10)
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Finally, we observe that the relation (13.8) is just the assertion that every traceless matrix
can be written as the sum (JS + JA) where A is chosen to make JA traceless. (Note that
JS is automatically traceless for any S.)

Next we can refine the decompositions (13.4) and (13.8) using both θ and σ. For example,
the decomposition (13.4) used θ to decompose g into k+p. We can now further decompose k
and p using σ. Alternatively, the decomposition (13.8) used σ to decompose g into h+q. We
can now further decompose h and q using θ. These refinements are possible because θ and
σ commute. The eigenspaces of θ are invariant under the action of σ, and the eigenspaces
of σ are invariant under the action of θ.

Let s and s′ be sign variables that take on the values ±1. Define subspaces gss′ by the
requirements

σ(B) = sB (P.13.11)

and
θ(B) = s′B (P.13.12)

for any B ∈ gss′ . Then we have the direct sum decomposition

g = g1,1 ⊕ g1,−1 ⊕ g−1,1 ⊕ g−1.−1. (P.13.13)

Also, we have the result
τ(B) = ss′B (P.13.14)

for any B ∈ gss′ .
Let us examine the contents of each subspace gss′ . Begin with g1,1. From (4.17) we see

that it must be of the form JS. From (12.23) and (13.14) we see that it must be of the form
JSc. Thus we have

B ∈ g1,1 ⇔ B = JSc. (P.13.15)

Similarly, we find that elements in g1,−1 must be of the form JSa,

B ∈ g1,−1 ⇔ B = JSa. (P.13.16)

Together g1,1 and g1,−1 span h = sp(2n,R),

h = g1,1 ⊕ g1,−1. (P.13.17)

Next consider g−1,1. By (4.18) it must be of the form JA. By (13.14) it must be of the form
JAa where Aa is an antisymmetric matrix that anticommutes with J ,

B ∈ g−1,1 ⇔ B = JAa. (P.13.18)

Finally, any B ∈ g−1,−1 must be of the form JAc where Ac is an antisymmetric matrix that
commutes with J ,

B ∈ g−1,−1 ⇔ B = JAc. (P.13.19)

In summary, the claim is that any matrix B ∈ sl(2n,R) can be uniquely be decomposed
as the sum

B = JSc + JSa + JAa + JAc, (P.13.20)
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which is, in fact, almost obvious upon inspection.
These elements are also mutually orthogonal. We find from (8.9) the result

(JSc, JSa) = tr(JScJSa) = tr(ScJJSa) = −tr(ScSa) = −(Sc, Sa) = 0. (P.13.21)

From (13.10) we find the results

(JSc, JAa) = (JSc, JAc) = (JSa, JAa) = (JSa, JAc) = 0. (P.13.22)

Lastly, we find

(JAa, JAc) = tr(JAaJAc) = −tr(AaJJAc) = tr(AaAc) = (Aa, Ac). (P.13.23)

But we also find

(JAa, JAc) = tr(JAaJAc) = tr(JAaAcJ) = tr(JJAaAc) = −(Aa, Ac), (P.13.24)

from which we conclude that

(JAa, JAc) = 0. (P.13.25)

These orthogonality proofs just provided are brute force. A more elegant proof, in the style
of (8.8) and (8.9), can be given based on (13.1) and (13.2) and the fact that σ and θ preserve
the inner product.

Together g1,1 and g−1,1 span k = so(2n,R),

k = g1,1 ⊕ g−1,1. (P.13.26)

Inspection of (3.15) and (3.18) shows that

B ∈ g1,1 ⊕ g−1,1 ⇔ B = JSc + JAa. (P.13.27)

Matrices of the form (B = JSc + JAa) are evidently antisymmetric. It is also easily verified
that matrices of the form (JSa + JAc) are symmetric. Since all the matrices appearing
in (13.20), when taken together, span g`(2n,R), it follows that matrices of the form (B =
JSc + JAa) span the full space of antisymmetric matrices. See also (13.28) and (13.30)
below.

It remains to be seen what matrices in (13.20) are traceless. We already know that JSc

and JSa are traceless, and JAa is also traceless because it is antisymmetric. The remaining
candidate is JAc. It contains the possibility JJ = −I, which is not traceless.

Finally, using the notation of intersecting sets, we may write

g1,1 = h ∩ k = matrices of the form JSc ∼= Ac, (P.13.28)

g1,−1 = h ∩ p = matrices of the form JSa ∼= Sa, (P.13.29)

g−1,1 = q ∩ k = matrices of the form JAa ∼= Aa, (P.13.30)

g−1,−1 = q ∩ p = matrices of the form JAc ∼= Sc. (P.13.31)
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Here we have included the fact that various categories of matrices are are isomorphic. For
example, matrices of the form JSc are evidently antisymmetric, and commute with J . There-
fore they are of the form Ac. We also note, from the discussion of the previous paragraph,
that all the gs,s′ are traceless with the possible exception of g−1,−1.

By using these isomorphisms in (13.20), we find that any matrix B ∈ s`(2n,R) can also
be uniquely be decomposed as the sum

B = Ac + Sa + Aa + Sc, (P.13.32)

which is also obvious upon inspection.

We have already noted in (13.17) that g1,1 and g1,−1 together span h = sp(2n,R). They,
in fact, provide the Cartan decomposition of sp(2n,R).

Finally, Goodman makes the claims

g1,−1 = h ∩ p = {B ∈ E | trB = 0}, (P.13.33)

g−1,−1 = q ∩ p = {B ∈ F | trB = 0}. (P.13.34)

But, E is defined by the requirements

E = {B | BT = B and σ(B) = B}, (P.13.35)

which is equivalent to the requirements

E = {B | θ(B) = −B and σ(B) = B}. (P.13.36)

In our notation, these requirements simply state that

E = g1,−1. (P.13.37)

We already know that matrices in g1,−1 are traceless, and so (13.33) is verified. Moreover,
F is defined by the requirements

F = {B | BT = B and σ(B) = −B}, (P.13.38)

which is equivalent to the requirements

F = {B | θ(B) = −B and σ(B) = −B}. (P.13.39)

In our notation, these requirements simply state that

F = g−1,−1. (P.13.40)

We know from (13.19) that in this case there is a matrix that has trace, namely JJ , and
therefore in this case (13.34) is also verified provided the JJ case is excluded.
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P.14 Preparation for Lemma 2.1 of Goodman

Let Sd consist of all the real diagonal symmetric matrices sd of the form

sd =

(
d 0
0 d

)
(P.14.1)

where
d = diag[d1, · · · , dn] and tr(d) = 0. (P.14.2)

(Goodman uses the symbol A for what we call Sd. However, we have already used A to
denote antisymmetric matrices.) Then, from Section 12.2, we have the relation

τ(sd) = sd. (P.14.3)

And, from (12.21), we see that
θ(sd) = −sd. (P.14.4)

Therefore, from (12.29), we conclude that

σ(sd) = −sd, (P.14.5)

and consequently
Sd ⊂ g−1,−1 = q ∩ p. (P.14.6)

Let S+
d be the open subset of Sd consisting of the matrices sd with

d1 > d2 > · · · > dn. (P.14.7)

Let S+c
d be the closure of S+

d . Then we also have the relations

S+
d ⊂ g−1,−1 = q ∩ p, (P.14.8)

and
S+c
d ⊂ g−1,−1 = q ∩ p. (P.14.9)

Also, let D+ be the set of matrices d of the form (14.2) with (14.7) satisfied, and let D+c

denote its closure.

P.15 Lemma 2.1 of Goodman

Suppose x is of the form x = exp(B) where B ∈ g−1,−1. Then we know there is a matrix of
the form JAc such that

x = exp(JAc). (P.15.1)

We may also require that JAc be traceless. By inspection, JAc is symmetric and commutes
with J . Therefore, consistent with (13.31), there is a real traceless symmetric matrix Sc

such that
JAc = Sc, (P.15.2)
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and we have the relation

x = exp(Sc). (P.15.3)

It follows from (15.3) that x is real, symmetric, and positive definite.
Let us see what can be said about Sc. Since it commutes with J , by the work of Section

12.2, it must be of the form

Sc =

(
α β
−β α

)
. (P.15.4)

Since Sc is traceless, α must be traceless. Since Sc is symmetric, the matrices α and β must
have have the properties

αT = α, (P.15.5)

βT = −β. (P.15.6)

Note that, by (15.6), the matrix β is traceless. Define the matrix m by the rule

m = α + iβ. (P.15.7)

Then, we have the relation

Sc = Sc(m) = M(m) = W

(
m 0
0 m

)
W−1. (P.15.8)

We also observe that

m† = αT − iβT = α + iβ = m (P.15.9)

so that m is Hermitian. Since both α and β are traceless, m is also traceless.
Since m is Hermitian and traceless, there is a unitary matrix v and a matrix d ∈ D+c

such that

m = vdv−1. (P.15.10)

Since d is real, we also have the relation

m = vdv−1. (P.15.11)

It follows that Sc has the representation

Sc(m) = W

(
v 0
0 v

)(
d 0
0 d

)(
v−1 0

0 v−1

)
W−1. (P.15.12)

Insert factors of W and W−1 into (15.12) to rewrite it in the form

Sc(m) = W

(
v 0
0 v

)
W−1W

(
d 0
0 d

)
W−1W

(
v−1 0

0 v−1

)
W−1. (P.15.13)

Since d is real, we see that (15.13) can be rewritten in the form

Sc(m) = M(v)M(d)M(v−1). (P.15.14)
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We also know, since d is real, that we have

M(d) = sd, (P.15.15)

with sd ∈ S+c
d , so that there is also the relation

Sc = M(v)sdM(v−1). (P.15.16)

Define the matrix O by the rule
O = M(v). (P.15.17)

Since v is unitary, O will be real, symplectic, and orthogonal. Thus we have the result

Sc = OsdO
−1. (P.15.18)

Finally, exponentiate both sides of (15.18). So doing gives the result

x = O exp(sd)O
−1 (P.15.19)

with
O ∈ SO(2n,R) ∩ Sp(2n,R ∼= U(n)⊕ U(n). (P.15.20)

Note that since O is orthogonal, (15.19) can also be written in the form

x = O exp(sd)O
T , (P.15.21)

from which we again see that x is real, symmetric, and positive definite.
Goodman claims that sd depends analytically on x when the eigenvalues of x, which will

be the quantities exp(dj), are distinct. We will worry about proving this later. We know
from (15.3) that Sc is real analytic in x, and from (15.4) through (15.7) we see that m is
analytic in Sc. What remains to be shown is that the eigenvalues of m, with m Hermitian
and traceless, are analytic in m under the assumption that the eigenvalues are distinct.

P.16 Preparation for Theorem 2.1 of Goodman

Let u be any n×n unitary matrix, and consider M(u). From Section 3.9 of Lie methods we
know that

M(u) ∈ SO(2n,R) ∩ Sp(2n,R) ∼= U(n)⊕ U(n), (P.16.1)

and given any M ′ ∈ SO(2n,R) ∩ Sp(2n,R) there is a unique u ∈ U(n) such that

M(u) = M ′. (P.16.2)

Let L ⊂ SO(2n,R) ∩ Sp(2n,R) be the subgroup of matrices g such that

gsdg
−1 = sd for all sd ∈ Sd. (P.16.3)

By definition for any such sd there is a corresponding d given by (14.1) and (14.2), and we
have the relation

sd = M(d). (P.16.4)
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Also, given any g ∈ SO(2n,R) ∩ Sp(2n,R), there is a unique u ∈ U(n) such that

M(u) = g. (P.16.5)

With these definitions, the relation (16.3) becomes

M(u)M(d)[M(u)]−1 = M(d) for all d. (P.16.6)

By the isomorphic property of M this relation is equivalent to the requirement

udu−1 = d for all d. (P.16.7)

All such u must be diagonal unitary matrices, and therefore have the explicit form

u = diag[exp(iφ1), · · · , exp(iφn)]. (P.16.8)

Thus, we have the isomorphism
L ∼= T n. (P.16.9)

Moreover, since SO(2n,R) has rank n, L is a maximal torus in SO(2n,R). Goodman
says that this means that SO(2n,R)/L is the flag manifold for SO(2n,R).

By the definition of L we see from (16.3) that

`sd`
−1 = sd for all ` ∈ L and all sd ∈ Sd. (P.16.10)

It follows that
` exp(sd)`

−1 = exp(`sd`
−1) = exp(sd). (P.16.11)

Introduce the notation
ŝd = exp(sd). (P.16.12)

Then, for future use, we have the relation

`ŝd = ŝd` for all ` ∈ L and all ŝd ∈ exp(Sd). (P.16.13)

Also, we see directly that
` ∈ SO(2n,R) ∩ Sp(2n,R) (P.16.14)

since ` is of the form M(u) with u given by (16.8).
For insight, let us work out the explicit matrix form of `. We have the relation

` = M(u) =

(
Re(u) Im(u)
−Im(u) Re(u)

)
=

(
C S
−S C

)
. (P.16.15)

Here C and S are n× n diagonal matrices given by the relations

C =


cos(φ1)

cos(φ2)
. . .

cos(φn)

 , (P.16.16)

S =


sin(φ1)

sin(φ2)
. . .

sin(φn)

 . (P.16.17)
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P.17 Theorem 2.1 of Goodman

Recall that G = SL(2n,R), H = Sp(2n,R), and K = SO(2n,R). Goodman claims that
any g ∈ G has the decomposition

g = kŝdh (P.17.1)

where k ∈ K, h ∈ H, and ŝd ∈ exp(S+c
d ).

The argument goes as follows. Recall that, according to Theorem 1.2, every
g ∈ SL(2n,R) has the factorization

g = k exp(Sc) exp(Sa) (P.17.2)

with k ∈ SO(2n,R) and tr(Sc) = 0. Also, we know from (15.3) and (15.20) that there is
the representation

exp(Sc) = O exp(sd)O
T , (P.17.3)

so that we also have the factorization

g = kO exp(sd)O
T exp(Sa). (P.17.4)

Rewrite this relation in the form

g = [kO][exp(sd)][O
T exp(Sa)]. (P.17.5)

Note from (13.29) that Sa ∈ g1,−1 = h ∩ p and Sa ∼= JSa. Therefore,

exp(Sa) ∈ Sp(2n,R). (P.17.6)

Also O is in both SO(2n,R) and Sp(2n,R). Consequently there are the following group
relations,

kO ∈ SO(2n,R), (P.17.7)

OT exp(Sa) ∈ Sp(2n,R). (P.17.8)

Define group elements k′, ŝd, and h by the rules

k′ = kO, (P.17.9)

ŝd = exp(sd), (P.17.10)

h = OT exp(Sa). (P.17.11)

Then, we may write
g = k′ŝdh, (P.17.12)

which is a factorization of the form (17.1).
Consider the map

(K,Sd) 7→ G (P.17.13)

given by the rule
g(k, sd) = k[exp(sd)]. (P.17.14)
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Then, we find that
g(k`, sd) = k`[exp(sd)] = k[exp(sd)]` (P.17.15)

where we have used (16.12). Also we know that

` ∈ SO(2n,R) ∩ Sp(2n,R) (P.17.16)

and therefore
` ∈ Sp(2n,R). (P.17.17)

Thus, we may write (17.15) in the form

g(k`, sd) = k`[exp(sd)] = k[exp(sd)]` = g(k, sd)h (P.17.18)

with
h = ` and h ∈ Sp(2n,R). (P.17.19)

We see that g(k`, sd) and g(k, sd) are in the same coset in the coset space G/H,

g(k`, sd) ∼ g(k, sd) mod Sp(2n,R). (P.17.20)

Also, we know that k` and k are in the same coset in the coset space K/L,

k` ∼ k mod L. (P.17.21)

Therefore (17.14) provides a map

(K/L, Sd) 7→ G/H. (P.17.22)

But, by (17.1), we know that every element of G/H can be obtained in this way. Thus, we
conjecture that there is a correspondence of the form

[K/L]× S+c
d ↔ G/H. (P.17.23)

Let us check dimensions. We want to check the relation

dim K − dim L+ dim S+c
d = dim G− dim H. (P.17.24)

We have the counts
dim K = n(2n− 1), (P.17.25)

dim L = n, (P.17.26)

dim S+c
d = n− 1, (P.17.27)

dim H = n(2n+ 1), (P.17.28)

dim G = (2n)2 − 1. (P.17.29)

Therefore we have to check the relation

n(2n− 1)− n+ (n− 1) = [(2n)2 − 1]− n(2n+ 1)? (P.17.30)
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A little algebra shows that both sides of (17.30) simplify to the expression (2n2 − n− 1) so
that the relation does indeed hold.

We still have to check uniqueness. Suppose (k1, sd1) and (k2, sd2) are sent to g1 and g2

under (17.14),
k1[exp(sd1)] = g1, (P.17.31)

k2[exp(sd2)] = g2. (P.17.32)

Also suppose that
g2 ∼ g1 mod H. (P.17.33)

Then, we want to show that
k2 ∼ k1 mod L (P.17.34)

and
sd2 = sd1. (P.17.35)

Suppose (17.33) holds. Then there is an h ∈ H such that

g2 = g1h, (P.17.36)

and therefore, from (17.31) and (17.32), there is the relation

k2[exp(sd2)] = k1[exp(sd1)]h. (P.17.37)

To be continued.

Application to Dragt’s Symplectic Polar Decompostion

P.18 Search for Counter Examples

In view of the results of the previous section, we will also get elements g′ in all possible
cosets GL(2n,R)/Sp(2n,R) by the the rule

g′(k, s′d) = ks′d (P.18.1)

where s′d is of the form (14.1) but d is no longer required to be traceless. Comparison of this
rule with (17.14) shows that we may get some overlap by this procedure, but (18.1) appears
easier to work with.

The search for counter examples can be begun with the case k = I for which

g′(I, s′d) = Is′d = s′d, (P.18.2)

and we have found counter examples in the 4 × 4 matrix context. They demonstrate that
symplectic polar decomposition of a matrix M is not possible globally even with the restric-
tion det(M) > 0. See Section 4.3.5 of Lie Methods.

We can next examine the case s′d = I for which the g′ are matrices of the form

g′(k, I) = k. (P.18.3)
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When k is in the vicinity of the identity, g′ will be near the identity, and therefore have a
symplectic polar decomposition. But what happens when we consider all k ∈ SO(2n,R)?
Exercise 4.3.19 of Lie Methods studies a particular one-parameter subgroup of SO(4,R) and
shows that for all such elements symplectic polar decomposition is always possible, but the
rayλ2N(M) need not always intersect the unit ball around I. Exercise 4.3.22 shows that all
elements of SO(4,R) have symplectic polar decompositions.

Let H be the subgroup consisting of all elements g ∈ GL(2n,R,+) such that

{g, J} = 0. (P.18.4)

We know that H is isomorphic to GL(n,C). Exercise 4.3.21 shows that all elements of H
have symplectic polar decompositions.

We should now think about more general elements of GL(4,R). For example, Exercise
4.3.20 describes a one parameter closed path of elements that includes elements that do
and do not have symplectic polar decompositions. It would be interesting to see where the
decomposition first fails.

Also, suppose symplectic polar decomposition is possible for some matrix M . What
can be said about matrices in the neighborhood of M? Similarly, suppose symplectic polar
decomposition is impossible for some matrix M . What can be said then about matrices in
the neighborhood of M? What is the nature of the transition from having to not having a
symplectic polar decomposition?
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Appendix Q

Improving Convergence of Fourier
Representation

Q.1 Introduction

Suppose f(u) is a function defined on the interval u ∈ [0, 2π], and suppose f is continuous
and has a continuous first derivative. What can be said about a Fourier representation of
f over this interval? We observe that, by definition, a Fourier series produces a periodic
function, and straight-forward application of Fourier’s theorem to f produces a function with
period 2π. But, f may not have a periodic extension unless some kind of singularity (say a
discontinuity in f or one of its derivatives) is introduced at the points u = 0,±2π,±4π, · · · .
For example, if f(0) 6= f(2π), the periodic extension of f cannot be continuous. The net
effect of this discontinuity is that in this case the Fourier coefficients of f can fall off no
faster than (1/n) for large n. In Section 14.5 we saw that this situation can be improved
somewhat by doubling the domain of definition for f and imposing an evenness condition on
its extension. The net result is a modified Fourier representation over the domain [−2π, 2π]
whose coefficients fall off like (1/n)2. The purpose of this appendix is to describe and apply
a further trick that makes it possible to obtain a Fourier-like representation for which the
coefficients fall off still faster.

Begin by writing f in the form

f(u) = c+ [d/(2π)]u+ g(u) (Q.1.1)

where
c = f(0) and d = f(2π)− f(0). (Q.1.2)

Then the function g(u) is also defined for u ∈ [0, 2π], is continuous, and has a continuous
first derivative. Moreover, it has the property

g(0) = g(2π) = 0. (Q.1.3)

Extend g to the interval [−2π, 0] by requiring that g be odd,

g(u) = −g(−u) for u ∈ [−2π, 0]. (Q.1.4)
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Then, because of (1.3) and (1.4), the extended g is continuous at u = 0. Moreover, we find
that

g(−2π) = −g(2π) = 0. (Q.1.5)

Finally, from (1.4) we find that

g′(u) = g′(−u) for u ∈ [−2π, 0], (Q.1.6)

from which it follows that the extended g′ is continuous at u = 0. Thus, g has now been
defined for u ∈ [−2π, 2π], and is continuous and has a continuous first derivative in the open
interval u ∈ (−2π, 2π).

Further extend g to the full interval u ∈ (−∞,∞) by requiring that g be periodic with
period 4π,

g(u+ 4π) = g(u). (Q.1.7)

We will now see that this extension results in a g that is also continuous and has a continuous
first derivative at the points u = ±2π and their 4π periodic extensions. Thus the net result
is that, by these extensions, g has been defined everywhere and is continuous and has a
continuous first derivative everywhere. Let us check first the case u = 2π. From the
definitions so far we have the relations

g(2π + ε) = g(−2π + ε) = −g(2π − ε). (Q.1.8)

In view of (1.3) and (1.8), continuity at u = 2π has been established. Also, using periodicity
and (1.6), we have the relations

g′(2π + ε) = g′(−2π + ε) = g′(2π − ε), (Q.1.9)

from which it follows that g has a continuous first derivative at u = 2π. Similarly, we find
that

g(−2π − ε) = g(2π − ε) = −g(−2π + ε) (Q.1.10)

and
g′(−2π − ε) = g′(2π − ε) = g′(−2π + ε), (Q.1.11)

from which it follows that g is continuous and has a continuous first derivative at u = −2π.
We are now ready to invoke the results of Fourier. Since g is 4π periodic, it has an

expansion over the interval u ∈ [−2π, 2π] of the form

g(u) =
∞∑
n=0

an cos(nu/2) +
∞∑
n=1

bn sin(nu/2). (Q.1.12)

Since g is odd, all the an must vanish, and we are left with

g(u) =
∞∑
n=1

bn sin(nu/2). (Q.1.13)

The coefficients bn are given by the integrals

bn = [1/(2π)]

∫ 2π

−2π

du g(u) sin(nu/2) = (1/π)

∫ 2π

0

du g(u) sin(nu/2). (Q.1.14)
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Note that the integrals on the far right side of (1.14) depend only on the knowledge of
g, and hence f , in the original interval u ∈ [0, 2π]. Finally, since g will generally have a
discontinuous second derivative at the points u = 0,±2π,±4π, · · · , the coefficients bn will
generally fall off according to the rule

bn ∼ (1/n)3 as n→∞. (Q.1.15)

The net result of our efforts is that f has the representation

f(u) = c+ [d/(2π)]u+
∞∑
n=1

bn sin(nu/2) (Q.1.16)

with the coefficients bn obeying (1.15).
Consider the function h(v) defined by

h(v) = f(v + π). (Q.1.17)

It is defined on the interval v ∈ [−π, π]. According to (1.16) it has the expansion

h(v) = c+ [d/(2π)](v + π) +
∞∑
n=1

bn sin[n(v + π)/2]

= [h(π) + h(−π)]/2 + {[h(π)− h(−π)]/(2π)}v +
∞∑
n=1

bn sin[n(v + π)/2](Q.1.18)

with

Q.2 Application
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Appendix R

Abstract Lie Group Theory

The purpose of this appendix is to show that the Jacobi identity in a Lie algebra is related to
the assumed associativity of group multiplication in the corresponding Lie group. When a
Lie group is realized in terms of matrices, the associative condition for group multiplication
is automatically satisfied because matrix multiplication is associative. Correspondingly, the
Jacobi identity is readily verified for Lie algebras realized in terms of matrices with the Lie
product taken to be the matrix commutator. Treating the case of an abstract Lie group
requires somewhat more effort.
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Observe that the equation in Corollary 6.7a should read

exp[(t1 + t2)X] = [exp(t1X)][exp(t2X)].
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Appendix S

Mathematica Realization of TPSA
and Taylor Map Computation

S.1 Background

The forward integration method (Section 10.12.4) for computing Taylor maps can be im-
plemented by a code employing the tools of automatic differentiation (AD) described by
Neidinger [1].1 In this approach arrays of Taylor coefficients of various functions are referred
to as AD variables or pyramids since, as will be seen, they have a hyper-pyramidal structure.
Generally the first entry in the array will be the value of the function about some expansion
point, and the remaining entries will be the higher-order Taylor coefficients about the expan-
sion point and truncated beyond some specified order. Such truncated Taylor expansions
are also commonly called jets. Recall Section 7.5.

In our application elements in these arrays will be addressed and manipulated with the
aid of scalar indices and associated look-up and look-back tables generated at run time. We
have also replaced the original APL implementation of Neidinger with a code written in
the language of Mathematica (Version 6, or 7) [2,3]. Where necessary, for those unfamiliar
with the details of Mathematica, we will explain the consequences of various Mathematica
commands. Recall that we wish to integrate equations of the form

ża = fa(z, t), a = 1,m (S.1.1)

and their associated complete variational equations. The inputs to the code are the right
sides (RS) of (1.1). Other input parameters are the number of variables m, the desired order
of the Taylor map p, and the initial conditions (zda)

i for the design solution.
Various AD tools for describing and manipulating pyramids are outlined in Section S.2.

There we show how pyramid operations are encoded in the case of polynomial RS, as needed,
for example, for the Duffing equation. For brevity, we omit the cases of rational, fractional
power, and transcendental RS. These cases can also be handled using various methods based
on functional identities and known Taylor coefficients, or the differential equations that such

1Some authors refer to AD as truncated power series algebra (TPSA) since AD algorithms arise from
manipulating multivariable truncated power series. Other authors refer to AD as Differential Algebra (DA).
There is a substantial literature on this subject. See the Web site http://www.autodiff.org/.
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functions obey along with certain recursion relations [1]. In Section S.3, based on the work of
Section S.2, we in effect obtain and integrate numerically the complete variational equations
(10.12.36) in pyramid form, i.e. valid for any map order and any number of variables. Section
S.4 treats the specific case of the Duffing equation. A final Section S.5 describes in more
detail the relation between integrating equations for pyramids and the complete variational
equations.

S.2 AD Tools

This section describes how arithmetic expressions representing fa(z, t), the right sides of
(1.1) where z denotes the dependent variables, are replaced with expressions for arrays
(pyramids) of Taylor coefficients. These pyramids in turn constitute the input to our code.
Such an ad-hoc replacement, according to the problem at hand, as opposed to operator
overloading where the kind of operation depends on the type of its argument, is also the
approach taken in [1,4,5].

Let u, v, w be general arithmetic expressions, i.e. scalar-valued functions of z. They
contain various arithmetic operations such as addition/subtraction (±), multiplication (∗),
and raising to a power (∧). (They may also entail the computation of various transcendental
functions such as the sine function, etc. However, as stated earlier, for simplicity we will
omit these cases.) The arguments of these operations may be a constant, a single variable
or multiple variables za, or even some other expression. The idea of AD is to redefine the
arithmetic operations in such a way (see Definition 1), that all functions u, v, w can be
consistently replaced with the arrays of coefficients of their Taylor expansions. For example,
by redefining the usual product of numbers (∗) and introducing the pyramid operation PROD,
u ∗ v is replaced with PROD[U,V].

We use upper typewriter font for pyramids (U,V,...) and for operations on pyramids
(PROD, POW, ...). Everywhere, equalities written in typewriter fonts have equivalent Math-
ematica expressions. That is, they have associated realizations in Mathematica and directly
correspond to various operations and commands in Mathematica. In effect, our code oper-
ates entirely on pyramids. However, as we will see, any pyramid expression contains, as its
first entry, its usual arithmetic counterpart.

We begin with a description of our method of monomial labeling. In brief, we list all
monomials in a polynomial in some sequence, and label them by where they occur in the list.
Next follow Definition 1 and the recipes for encoding operations on pyramids. Subsequently,
by using Definition 2, which simply states the rule by which an arithmetic expression is
replaced with its pyramid counterpart, we show how a general expression can be encoded
by using only the pyramids of a constant and those of the various variables involved.

S.2.1 Labeling Scheme

A monomial Gj(z) in m variables is of the form

Gj(z) = (z1)j1(z2)j2 · · · (zm)jm . (S.2.1)
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Here we have introduced an exponent vector j by the rule

j = (j1, j2, · · · jm). (S.2.2)

Evidently j is an m-tuple of non-negative integers. The degree of Gj(z), denoted by |j|, is
given by the sum of exponents,

|j| = j1 + j2 + · · ·+ jm. (S.2.3)

The set of all exponents for monomials in m variables with degree less than or equal to p
will be denoted by Γpm,

Γpm = {j | |j| ≤ p}. (S.2.4)

According to Section 32.1, this set has L(m, p) entries with L(m, p) given by a binomial
coefficient,

L(m, p) = S0(m, p) =

(
p+m

p

)
. (S.2.5)

With this notation, a Taylor series expansion (about the origin) of a scalar-valued function
u of m variables z = (z1, z2, . . . zm), truncated beyond terms of degree p, can be written in
the form

u(z) =
∑
j ∈ Γpm

U(j) Gj(z). (S.2.6)

Assuming that m and p are fixed input variables, we will often simply write Γ and L. Here,
for now, U simply denotes an array of numerical coefficients. When employed in code that
has symbolic manipulation capabilities, each U(j) may also be a symbolic quantity.

To proceed, what is needed is some way of listing monomials systematically. With such a
list, as described in Subsections 32.3.3 and 32.3.4, we may assign a label r to each monomial
based on where it appears in the list. We will use a variant of modified glex sequencing, the
only change being that we will begin the list with the monomial of degree 0. For example,
Table 2.1 shows a list of monomials in three variables. As one goes down the list, first the
monomial of degree D = 0 appears, then the monomials of degree D = 1, etc. Within
each group of monomials of fixed degree the individual monomials appear in descending lex
order. Note that Table 2.1 is similar to Table 32.2.4 except that it begins with the monomial
of degree 0. Other possible listings include ascending true glex order in which monomials
appear in ascending lex order within each group of degree D, and lex order for the whole
monomial list as in [1].



2540
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

Table S.2.1: A labeling scheme for monomials in three variables.

r j1 j2 j3 D
1 0 0 0 0
2 1 0 0 1
3 0 1 0 1
4 0 0 1 1
5 2 0 0 2
6 1 1 0 2
7 1 0 1 2
8 0 2 0 2
9 0 1 1 2
10 0 0 2 2
11 3 0 0 3
12 2 1 0 3
13 2 0 1 3
14 1 2 0 3
15 1 1 1 3
16 1 0 2 3
17 0 3 0 3
18 0 2 1 3
19 0 1 2 3
20 0 0 3 3
. . . . .
. . . . .
. . . . .

28 1 2 1 4
. . . . .
. . . . .
. . . . .

With the aid of the scalar index r the relation (2.6) can be rewritten in the form

u(z) =

L(m,p)∑
r=1

U(r)Gr(z), (S.2.7)

because (by construction and with fixed m) for each positive integer r there is a unique
exponent j(r), and for each j there is a unique r. Here U may be viewed as a vector with
entries U(r), and Gr(z) denotes Gj(r)(z).

Consider, in an m-dimensional space, the points defined by the heads of the vectors
j ∈ Γpm. See (2.4). Figure 2.1 displays them in the case m = 3 and p = 4. Evidently they
form a grid that lies on the surface and interior of what can be viewed as an m-dimensional
pyramid in m-dimensional space. At each grid point there is an associated coefficient U(r).



S.2. AD TOOLS 2541

Because of its association with this pyramidal structure, we will refer to the entire set of
coefficients in (2.6) or (2.7) as the pyramid U of u(z).

01234
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1

2

3

4

j3

Figure S.2.1: A grid of points representing the set Γ4
3. For future reference a subset of Γ4

3,
called a box, is shown in blue.

S.2.2 Implementation of Labeling Scheme

We have seen that use of modified glex sequencing, for any specified number of variables
m, provides a labeling rule such that for each positive integer r there is a unique exponent
j(r), and for each j there is a unique r. That is, there is a invertible function r(j) that
provides a 1-to-1 correspondence between the positive integers and the exponent vectors j.
To proceed further, it would be useful to have this function and its inverse in more explicit
form.

From the work of Subsection 32.2.6, we already know a formula for r(j) based on the
Giorgilli formula (32.2.15),

r(j) = r(j1, · · · jm) = 1 + i(j1, · · · jm). (S.2.8)

Below is simple Mathematica code that implements this formula (which we call Gfor) in
the case of three variables, and evaluates it for selected exponents j. Observe that these
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evaluations agree with results in Table 2.1.

Gfor[j1 , j2 , j3 ] := (

s1 = j3; s2 = 1 + j3 + j2; s3 = 2 + j3 + j2 + j1;

t1 = Binomial[s1, 1]; t2 = Binomial[s2, 2]; t3 = Binomial[s3, 3];

r = 1 + t1 + t2 + t3; r

)

Gfor[0, 0, 0]

Gfor[1, 0, 0]

Gfor[2, 0, 1]

Gfor[1, 2, 1]

1

2

13

28 (S.2.9)

For the inverse relation we have found it convenient to introduce a rectangular matrix
associated with the set Γpm. By abuse of notation, it will also be called Γ. It has L(m, p)
rows and m columns with entries

Γr,a = ja(r). (S.2.10)

For example, looking a Table 2.1, we see (when m = 3) that Γ1,1 = 0 and Γ17,2 = 3. Indeed,
if the first and last columns of Table 2.1 are removed, what remains (when m = 3) is the
matrix Γr,a. In the language of Subsection 32.2.9, Γ is a look up table that, given r, produces
the associated j. In our Mathematica implementation Γ is the matrix GAMMA with elements
GAMMA[[r, a]].

The matrix GAMMA is constructed using the Mathematica code illustrated below,

Needs["Combinatorica‘"];

m = 3; p = 4;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA]

r = 17; a = 2;

GAMMA[[r]]

GAMMA[[r, a]]

35

{0, 3, 0}
3 (S.2.11)

It employs the Mathematica commands Compositions, Reverse, and Join.
We will now describe the ingredients of this code and illustrate the function of each:



S.2. AD TOOLS 2543

• The command Needs["Combinatorica‘"]; loads a combinatorial package.

• The command Compositions[i, m] produces, as a list of arrays (a rectangular array),
all compositions (under addition) of the integer i into m integer parts. Further-
more, the compositions appear in ascending lex order. For example, the command
Compositions[0, 3] produces the single row

0 0 0 (S.2.12)

As a second example, the command Compositions[1, 3] produces the rectangular array

0 0 1

0 1 0

1 0 0 (S.2.13)

As a third example, the command Compositions[2, 3] produces the rectangular array

0 0 2

0 1 1

0 2 0

1 0 1

1 1 0

2 0 0 (S.2.14)

• The command Reverse acts on the list of arrays, and reverses the order of the list
while leaving the arrays intact. For example, the nested sequence of commands
Reverse[Compositions[1, 3]] produces the rectangular array

1 0 0

0 1 0

0 0 1 (S.2.15)

As a second example, the nested sequence of commands Reverse[Compositions[2, 3]]
produces the rectangular array

2 0 0

1 1 0

1 0 1

0 2 0

0 1 1

0 0 2 (S.2.16)

Now the compositions appear in descending lex order.
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• Look, for example, at Table 2.1. We see that the exponents ja for the r = 1 entry
are those appearing in (2.12). Next, exponents for the r = 2 through r = 4 entries
are those appearing in (2.15). Following them, the exponents for the r = 5 through
r = 10 entries, are those appearing in (2.16), etc. Evidently, to produce the exponent
list of Table 2.1, what we must do is successively join various lists. That is what the
Mathematica command Join accomplishes.

We are now ready to describe how GAMMA is constructed:

• The second line in (2.11) sets the values of m and p. They are assigned the values
m = 3 and p = 4 for this example, which will construct GAMMA for the case of Table
2.1. The third line in (2.11) initially sets GAMMA to a row of m zeroes. The fourth line
is a Do loop that successively redefines GAMMA by generating and joining to it successive
descending lex order compositions. The net result is the exponent list of Table 2.1.

• The quantity L = L(m, p) is obtained by applying the Mathematica command Length

to the the rectangular array GAMMA.

• The last 6 lines of (2.11) illustrate that L is computed properly and that the command
GAMMA[[r, a]] accesses the array GAMMA in the desired fashion. Specifically, in this exam-
ple, we find from (2.5) that L(3, 4) = 35 in agreement with the Mathematica output
for L. Moreover, GAMMA[[17]] produces the exponent array {0, 3, 0}, in agreement with
the r = 17 entry in Table 2.1, and GAMMA[[17, 2]] produces Γ17,2 = 3, as expected.

S.2.3 Pyramid Operations: General Procedure

Here we derive the pyramid operations in terms of j-vectors by using the ordering previously
described, and provide scripts to encode them in the r-representation (2.7).

Definition 1. Suppose that w(z) arises from carrying out various arithmetic operations on
u(z) and v(z), and the associated pyramids U and V are known. The corresponding pyramid
operation on U and V is so defined that it yields the pyramid W of w(z).

Here we assume that u, v, w are polynomials such as (2.6).

S.2.4 Pyramid Operations: Scalar Multiplication and Addition

We begin with the operations of scalar multiplication and addition, which are easy to define
and implement. If

w(z) = c u(z), (S.2.17)

then
W(r) = c U(r), (S.2.18)

and we write
W = c U. (S.2.19)

If
w(z) = u(z) + v(z), (S.2.20)
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then
W(r) = U(r) + V(r), (S.2.21)

and we write
W = U + V. (S.2.22)

In both cases all operations are performed coordinate-wise (as for vectors).
Implementation of scalar multiplication and vector addition is easy in Mathematica be-

cause, as the example below illustrates, it has built in vector routines. There we define two
vectors, multiply them by scalars, and add the resulting vectors.

Unprotect[V];

U = {1, 2, 3};
V = {4, 5, 6};
W = .1U + .2V

{.9, 1.2, 1.5} (S.2.23)

Since V is a “protected” symbol in the Mathematica language, and, for purposes of illustra-
tion, we wish to use it as an ordinary vector variable, it must first be unprotected as in line
1 above. The last line shows that the Mathematica output is indeed the desired result.

S.2.5 Pyramid Operations: Background for Polynomial
Multiplication

The operation of polynomial multiplication is more involved. Now we have the relation

w(z) = u(z) ∗ v(z), (S.2.24)

and we want to encode
W = PROD[U, V]. (S.2.25)

Shown below is Mathematica code that implements this operation,

PROD[U , V ] := Table[U[[B[[k]]]] · V[[Brev[[k]]]], {k, 1, L, 1}]; (S.2.26)

Our next task is to describe and explain the ingredients in (2.26).
Let us write u(z) in the form (2.6), but with a change of dummy indices, so that it has

the representation

u(z) =
∑
i ∈ Γpm

U(i) Gi(z). (S.2.27)

Similarly, write v(z) in the form

v(z) =
∑
j ∈ Γpm

V(j) Gj(z). (S.2.28)

Then there is the result

u(z) ∗ v(z) =
∑
i ∈ Γpm

∑
j ∈ Γpm

U(i)V(j)Gi(z) ∗Gj(z). (S.2.29)
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From (2.1) we observe that

Gi(z) ∗Gj(z) = (z1)i1(z2)i2 · · · (zm)im ∗ (z1)j1(z2)j2 · · · (zm)jm

= (z1)i1+j1(z2)i2+j2 · · · (zm)im+jm = Gi+j(z). (S.2.30)

Therefore, we may also write

u(z) ∗ v(z) =
∑
i ∈ Γpm

∑
j ∈ Γpm

U(i)V(j)Gi+j(z). (S.2.31)

Now we see that there are two complications. First, there may be terms on the right side of
(2.31) whose degree is higher than p and therefore need not be computed. Second, there are
generally many terms on the right side of (2.31) that contribute to a given monomial term
in w(z) = u(z) ∗ v(z). Suppose we write

w(z) =
∑
k

W(k) Gk(z). (S.2.32)

Upon comparing (2.31) and (2.32) we conclude that there is the multidimensional Cauchy
product rule

W(k) =
∑
i+j=k

U(i)V(j) =
∑
j≤k

U(k − j)V(j). (S.2.33)

Here, by j ≤ k, we mean that the sum ranges over all j such that ja ≤ ka for all a ∈ [1,m].
That is,

j ≤ k ⇔ ja ≤ ka for all a ∈ [1,m]. (S.2.34)

Evidently, to implement the relation (2.33) in terms of r labels, we need to describe the
exponent relation j ≤ k in terms of r labels. Suppose k is some exponent vector with label
r(k) as, for example, in Table 2.1. Introduce the notation

k = r(k). (S.2.35)

This notation may be somewhat confusing because k is not the norm of the vector k, but
rather the label associated with k. However, this notation is very convenient. Now, given a
label k, we can find k. Indeed, from (2.10), we have the result

ka = Γk,a. (S.2.36)

Having found k, we define a set of exponents Bk by the rule

Bk = {j|j ≤ k}. (S.2.37)

This set of exponents is called the kth box. Note that the heads of the vectors j that satisfy
(2.37) for some fixed vector k do indeed lie within some hyper-rectangular volume (box).
For example (when m = 3), suppose k = 28. Then we see from Table 2.1 that k = (1, 2, 1).
Table 2.2 lists, in modified glex order, all the vectors in B28, i.e. all vectors j such that
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Table S.2.2: The vectors in B28 = {j|j ≤ (1, 2, 1)}.

r j1 j2 j3 D
1 0 0 0 0
2 1 0 0 1
3 0 1 0 1
4 0 0 1 1
6 1 1 0 2
7 1 0 1 2
8 0 2 0 2
9 0 1 1 2
14 1 2 0 3
15 1 1 1 3
18 0 2 1 3
28 1 2 1 4

j ≤ (1, 2, 1). These are the vectors whose heads are shown in blue in Figure 2.1. Finally,
with this notation, we can rewrite (2.33) in the form

W(k) =
∑
j∈Bk

U(k − j)V(j). (S.2.38)

What can be said about the vectors (k − j) as j ranges over B`? Table 2.3 lists, for
example, the vectors j ∈ B28 and the associated vectors i with i = (k − j). Also listed are
the labels r(j) and r(i). Compare columns 2,3,4, which specify the j ∈ B28, with columns
5,6,7, which specify the associated i vectors. We see that every vector that appears in the
j list also occurs somewhere in the i list, and vice versa. This to be expected because the
operation of multiplication is commutative: we can also write (2.33) in the form

W(k) =
∑
j∈Bk

U(j)V(k − j). (S.2.39)

We also observe the more remarkable feature that the two lists are reverses of each other:
running down the j list gives the same vectors as running up the i list, and vice versa. This
feature is a consequence of our ordering procedure.

As indicated earlier, what we really want is a version of (2.33) that involves labels instead
of exponent vectors. Looking at Table 2.3, we see that this is easily done. We may equally
well think of Bk as containing a collection of labels r(j), and we may introduce a reversed
array Brevk of complementary labels rc(j) where

rc(j) = r(i). (S.2.40)

That is, for example, B28 would consist of the first column of Table 2.3 and Brev28 would
consist of the last column of Table 2.3. Finally, we have already introduced k as being the



2548
S. MATHEMATICA REALIZATION OF TPSA

AND TAYLOR MAP COMPUTATION

label associated with k. We these understandings in mind, we may rewrite (2.33) in the
label form

W(k) =
∑
r∈Bk

U(rc)V(r) =
∑
r∈Bk

U(r)V(rc). (S.2.41)

This is the rule W = PROD[U, V] for multiplying pyramids. In the language of Section 32.7,
Bk and Brevk, when taken together, provide a look back table that, given k, look back to
find all monomial pairs with labels r, rc which produce, when multiplied, the monomial with
label k.

Table S.2.3: The vectors j and i = (k − j) for j ∈ B28 and ka = Γ28,a.

r(j) j1 j2 j3 i1 i2 i3 r(i)
1 0 0 0 1 2 1 28
2 1 0 0 0 2 1 18
3 0 1 0 1 1 1 15
4 0 0 1 1 2 0 14
6 1 1 0 0 1 1 9
7 1 0 1 0 2 0 8
8 0 2 0 1 0 1 7
9 0 1 1 1 1 0 6
14 1 2 0 0 0 1 4
15 1 1 1 0 1 0 3
18 0 2 1 1 0 0 2
28 1 2 1 0 0 0 1

S.2.6 Pyramid Operations: Implementation of Multiplication

The code shown below in (2.42) illustrates how Bk and Brevk are constructed using Math-
ematica.

JSK[list , K ] :=

Position[Apply[And, Thread[#1<=#2&[#,K]]]& /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[k]]], {k, 1, L}];
Brev = Reverse /@ B; (S.2.42)

As before, some explanation is required. The main tasks are to implement the j ≤ k
operation (2.34) and then to employ this implementation. We will begin by implementing
the j ≤ k operation. Several steps are required, and each of them is described briefly below:

• When Mathematica is presented with a statement of the form j <= k, with j and
k being integers, it replies with the answer True or the answer False. (Here j <= k
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denotes j ≤ k.) Two sample Mathematica runs are shown below:

3 <= 4

True (S.2.43)

5 <= 4

False (S.2.44)

• A Mathematica function can be constructed that does the same thing. It takes the
form

#1 <= #2 & [j, k] (S.2.45)

Here the symbols #1 and #2 set up two slots and the symbol & means the operation to
its left is to be regarded as a function and is to be applied to the arguments to its right
by inserting the arguments into the slots. Below is a Mathematica run illustrating this
feature.

j = 3; k = 4;

#1 <= #2 & [j, k]

True (S.2.46)

Observe that the output of this run agrees with that of (2.43).

• The same operation can be performed on pairs of arrays (rather than pairs of numbers)
in such a way that corresponding entries from each array are compared, with the output
then being an array of True and False answers. This is done using the Mathematica
command Thread. Below is a Mathematica run illustrating this feature.

j = {1, 2, 3}; k = {4, 5, 1};
Thread[#1 <= #2 & [j, k]]

{True,True,False} (S.2.47)

Note that the first two answers in the output array are True because the statements
1 ≤ 4 and 2 ≤ 5 are true. The last answer in the output array is False because the
statement 3 ≤ 1 is false.

• Suppose, now, that we are given two arrays j and k and we want to determine if j ≤ k
in the sense of (2.34). This can be done by applying the logical And operation (using
the Mathematica command Apply) to the True/False output array described above.
Below is a Mathematica run illustrating this feature.

j = {1, 2, 3}; k = {4, 5, 1};
Apply[And, Thread[#1 <= #2 & [j, k]]]

False (S.2.48)

Note that the output answer is False because at least one of the entries in the output
array in (2.47) is False. The output answer would be True if, and only if, all entries
in the output array in (2.47) were True.
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• Now that the j ≤ k operation has been defined for two exponent arrays, we would like
to construct a related operator/function, to be called JSK. (Here the letter S stands
for smaller than or equal to.) It will depend on the exponent array k, and its task will
be to search a list of exponent arrays to find those j within it that satisfy j ≤ k. The
first step in this direction is to slightly modify the function appearing in (2.48). Below
is a Mathematica run that specifies this modified function and illustrates that it has
the same effect.

j = {1, 2, 3}; k = {4, 5, 1};
Apply[And, Thread[#1 <= #2 & [#, k]]] & [j]

False (S.2.49)

Comparison of the functions in (2.48) and (2.49) reveals that what has been done is to
replace the argument j in (2.48) by a slot #, then follow the function by the character
&, and finally add the symbols [j]. What this modification does is to redefine the
function in such a way that it acts on what follows the second &.

• The next step is to extend the function appearing in (2.49) so that it acts on a list of
exponent arrays. To do this, we replace the symbols [j] by the symbols /@ list. The
symbols /@ indicate that what stands to their left is to act on what stands to their
right, and what stands to their right is a list of exponent arrays. The result of this
action will be a list of True/False results with one result for each exponent array in
the list. Below is a Mathematica run that illustrates how the further modified function
acts on lists.

k = {4, 5, 1};
ja = {3, 4, 1}; jb = {1, 2, 3}; jc = {1, 2, 1};
list = {ja, jb, jc};
Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list

{True,False,True} (S.2.50)

Observe that the output answer list is {True,False,True} because {3, 4, 1} ≤ {4, 5, 1}
is True, {1, 2, 3} ≤ {4, 5, 1} is False, and {1, 2, 1} ≤ {4, 5, 1} is True.

• What we would really like to know is where the True items are in the list, because that
will tell us where the j that satisfy j ≤ k reside. This can be accomplished by use of
the Mathematica command Position in conjunction with the result True. Below is a
Mathematica run that illustrates how this works.

k = {4, 5, 1};
ja = {3, 4, 1}; jb = {1, 2, 3}; jc = {1, 2, 1};
list = {ja, jb, jc};
Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]

{{1}, {3}} (S.2.51)



S.2. AD TOOLS 2551

Note that the output is an array of positions in the list for which j ≤ k. There
is, however, still one defect. Namely, the output array is an array of single-element
subarrays, and we would like it to be simply an array of location numbers. This
defect can be remedied by appending the Mathematica command Flatten, preceded
by //, to the instruction string in (2.51). The Mathematica run below illustrates this
modification.

k = {4, 5, 1};
ja = {3, 4, 1}; jb = {1, 2, 3}; jc = {1, 2, 1};
list = {ja, jb, jc};
Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten

{1, 3} (S.2.52)

Now the output is a simple array containing the positions in the list for which j ≤ k.

• The last step is to employ the ingredients in (2.52) to define the operator JSK[list, k].
The Mathematica run below illustrates how this can be done.

k = {4, 5, 1};
ja = {3, 4, 1}; jb = {1, 2, 3}; jc = {1, 2, 1};
list = {ja, jb, jc};
JSK[list , k ] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

JSK[list, k]

{1, 3} (S.2.53)

Lines 4 and 5 above define the operator JSK[list, k], line 6 invokes it, and line 7
displays its output, which agrees with the output of (2.52).

• With the operator JSK[list, k] in hand, we are prepared to construct tables B and
Brev that will contain the Bk and the Brevk. The Mathematica run below illustrates
how this can be done.

B = Table[JSK[GAMMA, GAMMA[[k]]], {k, 1, L, 1}];
Brev = Reverse /@ B;

B[[8]]

Brev[[8]]

B[[28]]

Brev[[28]]

{1, 3, 8}
{8, 3, 1}
{1, 2, 3, 4, 6, 7, 8, 9, 14, 15, 18, 28}
{28, 18, 15, 14, 9, 8, 7, 6, 4, 3, 2, 1} (S.2.54)
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The first line employs the Mathematica command Table in combination with an im-
plied Do loop to produce a two-dimensional array B. Values of k in the range [1, L] are
selected sequentially. For each k value the associated exponent array k(k) = GAMMA[[k]]
is obtained. The operator JSK then searches the full GAMMA array to find the list of r
values associated with the j ≤ k. All these r values are listed in a row. Thus, the
array B consists of list of L rows, of varying width. The rows are labeled by k ∈ [1, L],
and in each row are the r values associated with the j ≤ k. In the second line the
Mathematica command Reverse is applied to B to produce a second array called Brev.
Its rows are the reverse of those in B. For example, as the Mathematica run illustrates,
B[[8]], which is the 8th row of B, contains the list {1, 3, 8}, and Brev[[8]] contains the list
{8, 3, 1}. Inspection of the r = 8 monomial in Table 2.1, that with exponents {0, 2, 0},
shows that it has the monomials with exponents {0,0,0}, {0,1,0}, and {0,2,0} as fac-
tors. And further inspection of Table 2.1 shows that the exponents of these factors
have the r values {1, 3, 8}. Similarly B[[28]], which is the 28th row of B, contains the
same entries that appear in the first column of Table 2.3. And Brev[[28]], which is the
28th row of Brev, contains the same entries that appear in the last column of Table
2.3.

Finally, we need to explain how the arrays B and Brev can be employed to carry out
polynomial multiplication. This can be done using the Mathematica dot product command:

• The exhibit below shows a simple Mathematica run that illustrates the use of the dot
product command.

Unprotect[V];

U = {.1, .2, .3, .4, .5, .6, .7, .8};
V = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8};
U.V

u = {1, 3, 5};
v = {6, 4, 2};
U[[u]]

V[[v]]

U[[u]].V[[v]]

5.64

{.1, .3, .5}
{1.6, 1.4, 1.2}
1.18 (S.2.55)

As before, V must be unprotected. See line 1. The rest of the first part this run (lines
2 through 4) defines two vectors U and V and then computes their dot product. Note
that if we multiply the entries in U and V pairwise and add, we get the result

.1× 1.1 + .2× 1.2 + · · ·+ .8× 1.8 = 5.64,
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which agrees with the Mathematica result for U · V. See line 10.

The second part of this Mathematica run, lines 5 through 9, illustrates a powerful
feature of the Mathematica language. Suppose, as illustrated, we define two arrays u

and v of integers, and use these arrays as arguments for the vectors by writing U[[u]]
and V[[v]]. Then Mathematica uses the integers in the two arrays u and v as labels
to select the corresponding entries in U and V, and from these entries it makes new
corresponding vectors. In this example, the 1st, 3rd, and 5th entries in U are .1, .3, and
.5. And the 6th, 4th, and 2nd entries in V are 1.6, 1.4, and 1.2. Consequently, we find
that

U[[u]] = {.1, .3, .5},
V[[v]] = {1.6, 1.4, 1.2},

in agreement with lines 11 and 12 of the Mathematica results. Correspondingly, we
expect that U[[u]] · V[[v]] will have the value

U[[u]] · V[[v]] = .1× 1.6 + .3× 1.4 + .5× 1.2 = 1.18,

in agreement with the last line of the Mathematica output.

• Now suppose, as an example, that we set k = 8 and use B[[k]] and Brev[[k]] in place of
the arrays u and v. The Mathematica fragment below shows what happens when this
is done.

k = 8;

B[[k]]

Brev[[k]]

U[[B[[k]]]]

V[[Brev[[k]]]]

U[[B[[k]]]] · V[[Brev[[k]]]]

{1, 3, 8}
{8, 3, 1}
{.1, .3, .8}
{1.8, 1.3, 1.1}
1.45 (S.2.56)

From (2.54) we see that B[[8]] = {1, 3, 8} and Brev[[8]] = {8, 3, 1} in agreement with
lines 7 and 8 of the Mathematica output above. Also, the 1st, 3rd, and 8th entries in U

are .1, .3, and .8. And the 8th, 3rd, and 1st entries in V are 1.8, 1.3, and 1.1. Therefore
we expect the results

U[[B[[k]]]] = {.1, .3, .8},
V[[Brev[[k]]]] = {1.8, 1.3, 1.1},

U[[B[[k]]]] · V[[Brev[[k]]]] = .1× 1.8 + .3× 1.3 + .8× 1.1 = 1.45,

in agreement with the last three lines of (2.56).
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• Finally, suppose we carry out the operation U[[B[[k]]]] · V[[Brev[[k]]]] for all k ∈ [1, L]
and put the results together in a Table with entries labeled by k. According to (2.41),
the result will be the pyramid for the product of the two polynomials whose individual
pyramids are U and V. The Mathematica fragment (2.26), which is displayed again
below, shows how this can be done to define a product function, called PROD, that acts
on general pyramids U and V, using the command Table with an implied Do loop over
k.

PROD[U , V ] := Table[U[[B[[k]]]] · V[[Brev[[k]]]], {k, 1, L, 1}];

Let us verify that this whole multiplication procedure works for a simple example. For
the sake of brevity, we will consider the case of m = 2 variables and work through terms
of degree p = 3. In this case pyramids have the modest length L(2, 3) = 10. Table 2.4
provides a labeling scheme for monomials in two variables using our standard modified glex
sequencing.

Table S.2.4: A labeling scheme for monomials in two variables.

r j1 j2

1 0 0
2 1 0
3 0 1
4 2 0
5 1 1
6 0 2
7 3 0
8 2 1
9 1 2
10 0 3
· · ·
· · ·

Suppose, for example, that u and v are the functions

u(z) = 1 + 2z1 + 3z2 + 4z1z2 (S.2.57)

and

v(z) = 5 + 6z1 + 7z2
2 . (S.2.58)

From Table 2.4 we find that the corresponding pyramids U and V are

U = {1, 2, 3, 0, 4, 0, 0, 0, 0, 0} (S.2.59)

and

V = {5, 6, 0, 0, 0, 7, 0, 0, 0, 0}. (S.2.60)
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Polynomial multiplication gives the result

w(z) = u(z) ∗ v(z)

= 5 + 16z1 + 15z2 + 12z2
1 + 38z1z2 + 7z2

2 + 24z2
1z2 + 14z1z

2
2 + 21z3

2 + 28z1z
3
2 .

(S.2.61)

Correspondingly, through terms of degree 3, the pyramid W = PROD[U, V] is given by

W = {5, 16, 15, 12, 38, 7, 0, 24, 14, 21}. (S.2.62)

Below is an execution of a Mathematica program illustrating the use of the product
function for the polynomials u and v given by (2.57) and (2.58).

Clear["Global‘ ∗ "];

Needs["Combinatorica‘"];

m = 2; p = 3;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA]

JSK[list , k ] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[r]]], {r, 1, L, 1}];
Brev = Reverse/@ B;

PROD[U , V ] := Table[U[[B[[k]]]].V[[Brev[[k]]]], {k, 1, L, 1}];
U = {1, 2, 3, 0, 4, 0, 0, 0, 0, 0};
V = {5, 6, 0, 0, 0, 7, 0, 0, 0, 0};
10

PROD[U, V]

{5, 16, 15, 12, 38, 7, 0, 24, 14, 21} (S.2.63)

The first 11 lines of the code set up the necessary arrays and define the product function in
pyramid form. The next two lines specify the pyramids U and V given in (2.59) and (2.60).
The third line from the bottom, which results from the command in line 6, illustrates that
indeed L(2, 3) = 10. The final two lines show that use of the product function when applied
to the pyramids U and V does indeed product the pyramid W given by (2.62).
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S.2.7 Pyramid Operations: Implementation of Powers

With operation of multiplication in hand, it is easy to implement the operation of raising a
pyramid to a power. The code shown below in (2.64) demonstrates how this can be done.

POWER[U , 0] := C1;

POWER[U , 1] := U;

POWER[U , 2] := PROD[U, U];

POWER[U , 3] := PROD[U, POWER[U, 2]];

... (S.2.64)

Here C1 is the pyramid for the Taylor series having one as its constant term and all other
terms zero,

C1 = {1, 0, 0, 0, · · · }. (S.2.65)

It can be set up by the Mathematica code

C1 = Table[KroneckerDelta[k, 1], {k, 1, L, 1}]; (S.2.66)

which employs the Table command, the Kronecker delta function, and an implied Do loop
over k. This code should be executed before executing (2.64), but after the value of L has
been established.

S.2.8 Replacement Rule and Automatic Differentiation

Definition 2. The transformation A(z) A means replacement of every real variable za in
the arithmetic expression A(z) with an associated pyramid, and of every operation on real
variables in A(z) with the associated operation on pyramids.

Automatic differentiation is based on the following corollary: if A(z)  A, then A is the
pyramid of A(z).

For simplicity, we will begin our discussion of the replacement rule with examples in-
volving only a single variable z. In this case monomial labeling, the relation between labels
and exponents, is given directly by the simple rules

r(j) = 1 + j and j(r) = r − 1. (S.2.67)

See Table 2.5.
As a first example, consider the expression

A = 2 + 3(z ∗ z). (S.2.68)

We have agreed to consider the case m = 1. Suppose we also set p = 2, in which case L = 3.
In ascending glex order, see Table 2.5, the pyramid for A is then

2 + 3z2  A = (2, 0, 3). (S.2.69)

Now imagine that A was not such a simple polynomial, but some complicated expression.
Then the pyramid A could be generated by computing derivatives of A at z = 0 and dividing
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Table S.2.5: A labeling scheme for monomials in one variable.

r j
1 0
2 1
3 2
4 3
· ·
· ·

them by the appropriate factorials. Automatic differentiation offers another way to find
A. Assume that all operations in the arithmetic expression A have been encoded according
to Definition 1. For our example, these are + and PROD. Let C1 and Z be the pyramids
associated with 1 and z,

1 C1 = (1, 0, 0), (S.2.70)

z  Z = (0, 1, 0). (S.2.71)

The quantity 2+3z2 results from performing various arithmetic operations on 1 and z. Def-
inition 1 says that the pyramid of 2+3z2 is identical to the pyramid obtained by performing
the same operations on the pyramids C1 and Z. That is, suppose we replace 1 and z with
their associated pyramids C1 and Z, and also replace ∗ with PROD. Then, upon evaluating
PROD, multiplying by the appropriate scalar coefficients, and summing, the result will be the
same pyramid A,

2 C1 + 3 PROD[Z, Z] = A. (S.2.72)

In this way, by knowing only the basic pyramids C1 and Z (prepared beforehand), one can
compute the pyramid of an arbitrary A(z). Finally, in contrast to numerical differentiation,
all numerical operations involved are accurate to machine precision. Mathematica code that
implements (2.72) will be presented shortly in (2.73).

Frequently, if A(z) is some complicated expression, the replacement rule will result in a
long chain of nested pyramid operations. At every step in the chain the present pyramid,
the pyramid resulting from the previous step, will be combined with some other pyramid to
produce a new pyramid. Each such operation has two arguments (the present pyramid and
some other pyramid), and Definition 1 applies to each step in the chain. Upon evaluating
all pyramid operations, the final result will be the pyramid of A(z).

By using the replacement operation the above procedure can be represented as:

1 C1, z  Z, A A.

The following general recipe then applies: In order to derive the pyramid associated with
some arithmetic expression, apply the  rule to all its variables, or parts, and replace all
operations with operations on pyramids. Here “apply the  rule” to something means
replace that something with the associated pyramid. And the term “parts” means subex-
pressions. Definition 1 guarantees that the result will be the same pyramid A no matter how
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we split the arithmetic expression A into subexpressions. It is only necessary to recognize,
in case of using subexpressions, that one pyramid expression should be viewed as a function
of another.

For illustration, suppose we regard the A given by (2.68) to be the composition of two
functions, F (z) = 2 + 3z and G(z) = z2, so that A(z) = F (G(z)). Instead of associating
a constant and a single variable with their respective pyramids, let us now associate whole
subexpressions. In addition, let us label the pyramid expressions on the right of  with
with some names, F and G:

2 + 3z  2 C1 + 3 Z = F[Z]

z2  PROD[Z, Z] = G[Z]

A(z) F[G[Z]] = A.

We have indicated the explicit dependence on Z. It is important to note that F[Z] is a pyramid
expression prior to executing any the pyramid operations, i.e it is not yet a pyramid, but is
simply the result of formal replacements that follow the association rule.

Mathematica code for the simple example (2.72) is shown below,

C1 = {1, 0, 0};
Z = {0, 1, 0};
2 C1 + 3 PROD[Z, Z]

{2, 0, 3} (S.2.73)

Note that the result (2.73) agrees with (2.69). This example does not use any nested
expressions. We will now illustrate how the same results can be obtained using nested
expressions.

We begin by displaying a simple Mathematica program/execution, that employs ordi-
nary variables, and uses Mathematica’s intrinsic abilities to handle nested expressions. The
program/execution is

f[z ] := 2 + 3z;

g[z ] := z2;

f[g[z]]

2 + 3z2 (S.2.74)

With Mathematica the underscore in z indicates that z is a dummy variable name, and the
symbols := indicate that f is defined with a delayed assignment. That is what is done in
line one above. The same is done in line two for g. Line three requests evaluation of the
nested function f(g(z)), and the result of this evaluation is displayed in line four. Note that
the result agrees with (2.68).

With this background, we are ready to examine a program with analogous nested pyra-
mid operations. The same comments apply regarding the use of underscores and delayed
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assignments. The program is

C1 = {1, 0, 0};
Z = {0, 1, 0};
F[Z ] := 2 C1 + 3 Z;

G[Z ] := PROD[Z, Z];

F[G[Z]]

{2, 0, 3} (S.2.75)

Note that line (2.75) agrees with line (2.73), and is consistent with line (2.69).

S.2.9 Taylor Rule

We close this section with an important consequence of the replacement rule and nested
operations, which we call the Taylor rule. We begin by considering functions of a single
variable. Suppose the function G(x) has the special form

G(x) = zd + x (S.2.76)

where zd is some constant. Let F be some other function. Consider the composite (nested)
function A defined by

A(x) = F (G(x)) = F (zd + x). (S.2.77)

Then, assuming the necessary analyticity and by the chain rule, A evidently has a Taylor
expansion in x about the origin of the form

A = A(0) + A′(0)x+ (1/2)A′′(0)x2 + · · ·
= F (zd) + F ′(zd)x+ (1/2)F ′′(zd)x2 + · · · . (S.2.78)

We conclude that if we know the Taylor expansion of A about the origin, then we also know
the Taylor expansion of F about zd, and vice versa. Suppose, for example, that

F (z) = 1 + 2z + 3z2 (S.2.79)

and
zd = 4. (S.2.80)

Then there is the result

A(x) = F (G(x)) = F (zd + x) = 1 + 2(4 + x) + 3(4 + x)2 = 57 + 26x+ 3x2. (S.2.81)

We now show that this same result can be obtained using pyramids. The Mathematica
fragment below illustrates how this can be done.

C1 = {1, 0, 0};
X = {0, 1, 0};
zd = 4;

F[Z ] := 1 C1 + 2 Z + 3 PROD[Z, Z];

G[X ] := zd C1 + X;

F[G[X]]

{57, 26, 3} (S.2.82)
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Note that (2.82) agrees with (2.81). See also Table 2.5.

Let us also illustrate the Taylor rule in the two-variable case. Let F (z1, z2) be some
function of two variables. Introduce the functions G(x1) and H(x1) having the special forms

G(x1) = zd1 + x1, (S.2.83)

H(x2) = zd2 + x2, (S.2.84)

where zd1 and zd2 are some constants. Consider the function A defined by

A(x1, x2) = F (G(x1), H(x2)) = F (zd1 + x1, z
d
2 + x2). (S.2.85)

Then, again assuming the necessary analyticity and by the chain rule, A evidently has a
Taylor expansion in x1 and x2 about the origin (0, 0) of the form

A = A(0, 0) + [∂1A(0, 0)]x1 + [∂2A(0, 0)]x2

+(1/2)[(∂1)2A(0, 0)]x2
1 + [∂1∂2A(0, 0)]x1x2 + (1/2)[(∂2)2A(0, 0)]x2

2 + · · ·
= F (zd1 , z

d
2) + [∂1F (zd1 , z

d
2)]x1 + [∂2F (zd1 , z

d
2)]x2

+(1/2)[(∂1)2F (zd1 , z
d
2)]x2

1 + [∂1∂2AF (zd1 , z
d
2)]x1x2 + (1/2)[(∂2)2A(F (zd1 , z

d
2))]x2

2 + · · ·
(S.2.86)

where

∂1 = ∂/∂x1, ∂2 = ∂/∂x2 (S.2.87)

when acting on A, and

∂1 = ∂/∂z1, ∂2 = ∂/∂z2 (S.2.88)

when acting on F . We conclude that if we know the Taylor expansion of A about the origin
(0, 0), then we also know the Taylor expansion of F about (zd1 , z

d
2), and vice versa.

As a concrete example, suppose that

F (z1, z2) = 1 + 2z1 + 3z2 + 4z2
1 + 5z1z2 + 6z2

2 (S.2.89)

and

zd1 = 7, zd2 = 8. (S.2.90)

Then, hand calculation shows that F (G(x1), H(x2)) takes the form

F (zd1 + x1, z
d
2 + x2) = F (G(x1), H(x2))

= 899 + 98x1 + 4x2
1 + 134x2 + 5x1x2 + 6x2

2. (S.2.91)
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Below is a Mathematica execution that finds the same result,

F[z1 , z2 ] := 1 + 2 z1 + 3 z2 + 4 z12 + 5 z1 z2 + 6 z22

G[x1 ] := zd1 + x1;

H[x2 ] := zd2 + x2;

zd1 = 7;

zd2 = 8;

A = F[G[x1], H[x2]]

Expand[A]

1 + 2 (7 + x1) + 4 (7 + x1)2 + 3 (8 + x2) + 5 (7 + x1) (8 + x2) + 6 (8 + x2)2

899 + 98 x1 + 4 x12 + 134 x2 + 5 x1 x2 + 6 x22

(S.2.92)

The calculation above dealt with the case of a function of two ordinary variables. We now
illustrate, for the same example, that there is an analogous result for pyramids. Following
the replacement rule, we should make the substitutions

zd1 + x1  zd1 C1 + X1, (S.2.93)

zd2 + x2  zd2 C1 + X2, (S.2.94)

1 + 2 z1 + 3 z2 + 4 z2
1 + 5 z1 z2 + 6 z2

2  

C1 + 2 Z1 + 3 Z2 + 4 PROD[Z1, Z1] + 5 PROD[Z1, Z2] + 6 PROD[Z2, Z2].

(S.2.95)

The Mathematica fragment below, executed for the case m = 2 and p = 2, in which case
L = 6, illustrates how the analogous result is obtained using pyramids,

C1 = {1, 0, 0, 0, 0, 0};
X1 = {0, 1, 0, 0, 0, 0};
X2 = {0, 0, 1, 0, 0, 0};
F[Z1 , Z2 ] := C1 + 2 Z1 + 3 Z2 + 4 PROD[Z1, Z1] + 5 PROD[Z1, Z2]

+6 PROD[Z2, Z2];

G[X1 ] := z01 C1 + X1;

H[X2 ] := z02 C1 + X2;

zd1 = 7;

zd2 = 8;

F[G[X1], H[X2]]

{899, 98, 134, 4, 5, 6} (S.2.96)

Note that, when use is made of Table 2.4, the last line of (2.96) agrees with (2.91) and the
last line of (2.92).
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S.3 Numerical Integration and Replacement Rule

S.3.1 Numerical Integration

Consider the set of differential equations (1.1). As described in Chapter 2, a standard
procedure for their numerical integration from an initial time ti = t0 to some final time tf

is to divide the time axis into a large number of steps N , each of small duration h, thereby
introducing successive times tn defined by the relation

tn = t0 + nh with n = 0, 1, · · · , N. (S.3.1)

By construction, there will also be the relation

Nh = tf − ti. (S.3.2)

The goal is to compute the vectors zn, where

zn = z(tn), (S.3.3)

starting from the vector z0. The vector z0 is assumed given as a set of definite numbers,
i.e. the initial conditions at t0.

If we assume for the solution piece-wise analyticity in t, or at least sufficient differentia-
bility in t (which will be the case if the fa are piece-wise analytic or at least have sufficient
differentiability in t), we may convert the set of differential equations (1.1) into a set of
recursion relations for the zn in such a way that the zn obtained by solving the recursion
relations differ from the true zn by only small truncation errors of order hm. (Here m is
not the number of variables, but rather some fixed integer describing the accuracy of the
integration method.) One such procedure, a fourth-order Runge Kutta (RK4) method, is
the set of marching/recursion rules

zn+1 = zn +
1

6
(a+ 2b+ 2c+ d) (S.3.4)

where, at each step,
a = hf(zn, tn), (S.3.5)

b = hf(zn +
1

2
a, tn +

1

2
h),

c = hf(zn +
1

2
b, tn +

1

2
h),

d = hf(zn + c, tn + h).

Thanks to the genius of Runge and Kutta, the relations (3.4) and (3.5) have been constructed
in such a way that the method is locally (at each step) correct through order h4, and makes
local truncation errors of order h5. Recall Section 2.3.2

In the case of a single variable, and therefore a single differential equation, the relations
(3.4) and (3.5) may be encoded in the Mathematica form shown below. Here Zvar is the
dependent variable, t is the time, Zt is a temporary variable, tt is a temporary time, and
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ns is the number of integration steps. The program employs a Do loop over i so that the
operations (3.4) and (3.5) are carried out ns times.

RK4 := (

t0 = t;

Do[

Aa = h F[Zvar, t];

Zt = Zvar + (1/2)Aa;

tt = t + h/2;

Bb = h F[Zt, tt];

Zt = Zvar + (1/2)Bb;

Cc = h F[Zt, tt];

Zt = Zvar + Cc;

tt = t + h;

Dd = h F[Zt, tt];

Zvar = Zvar + (1/6)(Aa + 2 Bb + 2 Cc + Dd);

t = t0 + i h;,

{i, 1, ns, 1}
]

)

(S.3.6)

S.3.2 Replacement Rule, Single Equation/Variable Case

We now make what, for our purposes, is a fundamental observation: The operations that
occur in the Runge Kutta recursion rules (3.4) and (3.5) and realized in the code above
can be extended to pyramids by application of the replacement rule. In particular, the
dependent variable z can be replaced by a pyramid, and the various operations involved in
the recursion rules can be replaced by pyramid operations. Indeed if we look at the code
above, apart from the evaluation of F, we see that the quantities Zvar, Zt, Aa, Bb, Cc, and
Dd can be viewed, if we wish, as pyramids since the only operations involved are scalar
multiplication and addition. The only requirement for a pyramidal interpretation of the RK4

Mathematica code is that the right side of the differential equation, F[∗, ∗], be defined for
pyramids. Finally, we remark that the features that make it possible to interpret the RK4

Mathematica code either in terms of ordinary variables or pyramidal variables will hold for
Mathematica realizations of many other familiar numerical integration methods including
other forms of Runge Kutta, predictor-corrector methods, and extrapolation methods.

To make these ideas concrete, and to understand their implications, let us begin with a
simple example. Suppose, in the single variable case, that the right side of the differential
equation has the simple form

f(z, t) = −2tz2. (S.3.7)
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The differential equation with this right side can be integrated analytically to yield the
solution

z(t) = z0/[1 + z0(t− t0)2]. (S.3.8)

In particular, for the case t0 = 0, z0 = 1, and t = 1, there is the result

z(1) = z0/[1 + z0] = 1/2. (S.3.9)

Let us also integrate the differential equation with the right side (3.7) numerically. Shown
below is the result of running the associated Mathematica Runge Kutta code for this case.

Clear["Global‘ ∗ "];

F[Z , t ] := −2 t Z2;

h = .1;

ns = 10;

t = 0;

Zvar = 1.;

RK4;

t

Zvar

1.

0.500001

(S.3.10)

Note that the last line of (3.10) agrees with (3.9) save for a “1” in the last entry. As expected,
and as experimentation shows, this small difference, due to accumulated truncation error,
becomes even smaller if h is decreased (and correspondingly, ns is increased).

Suppose we expand the solution (3.9) about the design initial condition zd0 = 1 by
replacing z0 by zd0 +x and expanding the result in a Taylor series in x about the point x=0.
Below is a Mathematica run that performs this task.

zd0 = 1;

Series[(zd0 + x)/(1 + zd0 + x), {x, 0, 5}]
1

2
+
x

4
− x2

8
+
x3

16
− x4

32
+
x5

64
+O[x]6

(S.3.11)

We will now see that the same Taylor series can be obtained by the operation of numerical
integration applied to pyramids. The Mathematica code below shows, for our example
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differential equation, the application of numerical integration to pyramids.

Clear["Global‘ ∗ "];

Needs["Combinatorica‘"];

m = 1; p = 5;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA];

JSK[list , k ] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[r]]], {r, 1, L, 1}];
Brev = Reverse/@ B;

PROD[U , V ] := Table[U[[B[[k]]]].V[[Brev[[k]]]], {k, 1, L, 1}];
F[Z , t ] := −2 t PROD[Z, Z];

h = .01;

ns = 100;

t = 0;

zd0 = 1;

C1 = {1, 0, 0, 0, 0, 0};
X = {0, 1, 0, 0, 0, 0};
Zvar = zd0 C1 + X;

RK4;

t

Zvar

1.

{0.5, 0.25,−0.125, 0.0625,−0.03125, 0.015625} (S.3.12)

The first 11 lines of the code set up what should be by now the familiar procedure for
labeling and multiplying pyramids. In particular, m = 1 because we are dealing with a
single variable, and p = 5 since we wish to work through fifth order. The line

F[Z , t ] := −2 t PROD[Z, Z] (S.3.13)

defines F[∗, ∗] for the case of pyramids, and is the result of applying the replacement rule to
the right side of f as given by (3.7),

− 2 t z2  −2 t PROD[Z, Z]. (S.3.14)

Lines 13 through 15 play the same role as lines 3 through 5 in (3.10) except that, in order
to improve numerical accuracy, the step size h has been decreased and correspondingly the
number of steps ns has been increased. Lines 16 through 19 now initialize Zvar as a pyramid
with a constant part zd0 and first-order monomial part with coefficient 1,

Zvar = zd0 C1 + X. (S.3.15)
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These lines are the pyramid equivalent of line 6 in (3.10). Finally lines 20 through 22 are
the same as lines 7 through 9 in (3.10). In particular, the line RK4 in (3.10) and the line RK4

in (3.12) refer to exactly the same code, namely that in (3.6).
Let us now compare the outputs of (3.10) and (3.12). Comparing the penultimate lines

in each we see that the final time t = 1 is the same in each case. Comparing the last lines
shows that the output Zvar for (3.12) is a pyramid whose first entry agrees with the last line
of (3.10). Finally, all the entries in the pyramid output agree with the Taylor coefficients in
the expansion (3.11). We see, in the case of numerical integration (of a single differential
equation), that replacing the dependent variable by a pyramid, with the initial value of the
pyramid given by (3.15), produces a Taylor expansion of the final condition in terms of the
initial condition.

What accounts for this near miraculous result? It’s the Taylor rule described described
in Subsection 2.9. We have already learned that to expand some function F (z) about some
point zd we must evaluate F (zd + x). See (2.77). We know that the final Zvar, call it
Zvarfin, is an analytic function of the initial Zvar, call it Zvarin, so that we may write

Zvarfin = Zvarfin(Zvarin) = g(Zvarin) (S.3.16)

where g is the function that results from following the trajectory from t = tin to t = tfin.
Therefore, by the Taylor rule, to expand Zvarfin about Zvarin = zd0, we must evaluate
Zvarfin(zd0 + x). That, with the aid of pyramids, is what the code (3.12) accomplishes.

S.3.3 Multi Equation/Variable Case

Because of Mathematica’s built-in provisions for handling arrays, the work of the previous
section can easily be extended to the case of several differential equations. Consider, as an
example, the two-variable case for which f has the form

f1(z, t) = −z2
1 ,

f2(z, t) = +2z1z2. (S.3.17)

The differential equations associated with this f can be solved in closed form to yield, with
the understanding that t0 = 0, the solution

z1(t) = z0
1/(1 + tz0

1),

z2(t) = z0
2(1 + tz0

1)2. (S.3.18)

For the final time t = 1 we find the result

z1(1) = z0
1/(1 + z0

1),

z2(1) = z0
2(1 + z0

1)2. (S.3.19)

Let us expand the solution (3.19) about the design initial conditions

zd0
1 = 1,

zd0
2 = 2, (S.3.20)
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by writing

z0
1 = zd0

1 + x1 = 1 + x1,

z0
2 = zd0

2 + x2 = 2 + x2. (S.3.21)

Doing so gives the results

z1(1) = (1 + x1)/(2 + x1) = (2 + x1 − 1)/(2 + x1) = 1− 1/(2 + x1) =

= 1− (1/2)(1 + x1/2)−1 = 1− (1/2)[1− x1/2 + (x1/2)2 − (x1/2)3 + · · ·
= (1/2) + (1/4)x1 − (1/8)x2

1 + (1/16)x3
1 + · · · ,

(S.3.22)

z2(1) = (2 + x2)(2 + x1)2

= 8 + 8x1 + 4x2 + 2x2
1 + 4x1x2 + x2

1x2. (S.3.23)

We will now explore how this same result can be obtained using the replacement rule
applied to the operation of numerical integration. As before, we will label individual mono-
mials by an integer r. Recall that Table 2.5 shows our standard modified glex sequencing
applied to the case of two variables.

The Mathematica code below shows, for our two-variable example differential equation,
the application of numerical integration to pyramids. Before describing the code in some
detail, we take note of the bottom two lines. When interpreted with the aid of Table 2.4,
we see that the penultimate line of (3.24) agrees with (3.22), and the last line of (3.24)
nearly agrees with (3.23). The only discrepancy is that for the monomial with label r = 7
in the last line of (3.24). In the Mathematica output it has the value −1.16563 × 10−7

while, according to (3.23), the true value should be zero. This small discrepancy arises from
the truncation error inherent in the RK4 algorithm, and becomes smaller as the step size
h is decreased (and ns is correspondingly increased), or if some more accurate integration
algorithm is used. We conclude that, with the use of pyramids, it is also possible in the
two-variable case to obtain Taylor expansions of the final conditions in terms of the initial
conditions. Indeed, what is involved is again the Taylor rule applied, in this instance, to the
case of two variables.
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Clear["Global‘ ∗ "];

Needs["Combinatorica‘"];

m = 2; p = 3;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA];

JSK[list , k ] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[r]]], {r, 1, L, 1}];
Brev = Reverse/@ B;

PROD[U , V ] := Table[U[[B[[k]]]].V[[Brev[[k]]]], {k, 1, L, 1}];
F[Z , t ] := {−PROD[Z[[1]], Z[[1]]], 2. PROD[Z[[1]], Z[[2]]]};
h = .01;

ns = 100;

t = 0;

zd0 = {1., 2.};
C1 = Table[KroneckerDelta[k, 1], {k, 1, L, 1}];
X[1] = Table[KroneckerDelta[k, 2], {k, 1, L, 1}];
X[2] = Table[KroneckerDelta[k, 3], {k, 1, L, 1}];
Zvar = {zd0[[1]] C1 + X[1], zd0[[2]] C1 + X[2]};
RK4;

t

Zvar

1.

{{0.5, 0.25, 0.,−0.125, 0., 0., 0.0625, 0., 0., 0, },
{8., 8., 4., 2., 4., 0.,−1.16563× 10−7, 1., 0., 0.}} (S.3.24)

Let us compare the structures of the routines for the single variable case and multi (two)
variable case as illustrated in (3.12) and (3.24). The first difference occurs at line 3 where
the number of variables m and the maximum degree p are specified. In (3.24) m is set to
2 because we wish to treat the case of two variables, and p is set to 3 simply to limit the
lengths of the output arrays. The next difference occurs in line 12 where the right side F

of the differential equation is specified. The major feature of the definition of F in (3.24) is
that it is specified as two pyramids because the right side of the definition has the structure
{∗, ∗} where each item ∗ is an instruction for computing a pyramid. In particular, the two
pyramids are those for the two components of f as given by (3.17) and use of the replacement
rule,

− z2
1  −PROD[Z[[1]], Z[[1]]], (S.3.25)
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2z1z2  2. PROD[Z[[1]], Z[[2]]]. (S.3.26)

The next differences occur in lines 16 through 20 of (3.24). In line 16, since specification
of the initial conditions now requires two numbers, see (3.20), zd0 is specified as a two-
component array. In lines 17 and 18 of (3.12) the pyramids C1 and X are set up explicitly
for the case p = 5. By contrast, in lines 17 through 19 of (3.24), the pyramids C1, X[1], and
X[2] are set up for general p with the aid of the Table command and the Kronecker delta
function. Recall (2.66) and observe from Tables 2.1, 2.4, and 2.5 that, no matter what the
values of m and p, the constant monomial has the label r = 1 and the monomial x1 has
the label r = 2. Moreover, as long as m ≥ 2 and no matter what the value of p, the x2

monomial has the label r = 3. Finally, compare line 19 in (3.12) with line 20 in (3.24),
both of which define the initial Zvar. We see that the difference is that in (3.12) Zvar is
defined as a single pyramid while in (3.24) it is defined as a pair of pyramids of the form
{∗, ∗}. Most remarkably, all other corresponding lines in (3.12) and (3.24) are the same. In
particular, the same RK4 code, namely that given by (3.6), is used in the scalar case (3.10),
the single pyramid case (3.12), and the two-pyramid case (3.24). This multi-use is possible
because of the convenient way in which Mathematica handles arrays.

We conclude that the pattern for the multivariable case is now clear. Only the following
items need to be specified in an m dependent way:

• The value of m.

• The entries in F with entries entered as an array {∗, ∗, · · · } of m pyramids.

• The design initial condition array zd0.

• The pyramids for C1 and X[1] through X[m].

• The entries for the initial Zvar specified as an array

{zd0[[1]] C1 + X[1], zd0[[2]] C1 + X[2], · · · , zd0[[m]] C1 + X[m]} of m pyramids.

S.4 Duffing Equation Application

Let us now apply the methods just developed to the case of the Duffing equation with param-
eter dependence as described by the relations (10.12.133) through (10.12.138). Mathematica
code for this purpose is shown below. By looking at the final lines that result from executing
this code, we see that the final output is an array of the form {{∗}, {∗}, {∗}}. That is, the
final output is an array of three pyramids. This is what we expect, because now we are
dealing with three variables. See line 3 of the code, which sets m = 3. Also, for convenience
of viewing, results are calculated and displayed only through third order as a consequence
of setting p = 3.
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Clear["Global‘ ∗ "];

Needs["Combinatorica‘"];

m = 3; p = 3;

GAMMA = Compositions[0, m];

Do[GAMMA = Join[GAMMA, Reverse[Compositions[d, m]]], {d, 1, p, 1}];
L = Length[GAMMA];

JSK[list , k ] :=

Position[Apply[And, Thread[#1 <= #2 & [#, k]]] & /@ list, True]//Flatten;

B = Table[JSK[GAMMA, GAMMA[[r]]], {r, 1, L, 1}];
Brev = Reverse/@ B;

PROD[U , V ] := Table[U[[B[[k]]]].V[[Brev[[k]]]], {k, 1, L, 1}];
POWER[U , 2] := PROD[U, U];

POWER[U , 3] := PROD[U, POWER[U, 2]];

C0 = Table[0, {k, 1, L, 1}];
F[Z , t ] := {Z[[2]],

−2. beta PROD[Z[[3]], Z[[2]]]− PROD[POWER[Z[[3]], 2], Z[[1]]]−
POWER[Z[[1]], 3]− eps Sin[t] POWER[Z[[3]], 3],

C0};
ns = 100;

t = 0;

h = (2Pi)/ns;

beta = .1; eps = 1.5;

zd0 = {.3, .4, .5};
C1 = Table[KroneckerDelta[k, 1], {k, 1, L, 1}];
X[1] = Table[KroneckerDelta[k, 2], {k, 1, L, 1}];
X[2] = Table[KroneckerDelta[k, 3], {k, 1, L, 1}];
X[3] = Table[KroneckerDelta[k, 4], {k, 1, L, 1}];
Zvar = {zd0[[1]] C1 + X[1], zd0[[2]] C1 + X[2], zd0[[3]] C1 + X[3]};
RK4;

t

Zvar
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2π

{{−0.0493158, 0.973942,−0.110494, 5.51271, 3.54684, 3.46678,

11.2762, 2.36463, 1.0985, 23.3332,−1.03541,−3.23761,−12.8064,

4.03421,−23.4342,−17.8967, 1.96148, 5.07403,−36.9009, 25.1379},
{0.439713, 1.05904, 0.427613, 3.3177, 0.0872459, 0.635397,−3.02822,

1.77416,−4.10115, 3.16981,−2.43002,−5.33643,−7.77038,−6.08476,

− 0.541465,−21.1672,−1.4091,−9.54326, 14.6334,−39.2312},
{0.5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}

(S.4.1)

The first unusual fragments in the code are lines 12 and 13, which define functions that
implement the calculation of second and third powers of pyramids. Recall Subsection 2.7.
The first new fragment is line 14, which defines the pyramid C0 with the aid of the Table
command and an implied Do loop. As a result of executing this code, C0 is an array of L
zeroes. The next three lines, lines 15 through 18, define F, which specifies the right sides of
equations (10.12.133) through (10.12.135). See (10.12.136) through (10.12.138). The right
side of F is of the form {∗, ∗, ∗}, an array of three pyramids. By looking at (10.12.136) and
recalling the replacement rule, we see that the first pyramid should be Z[[2]],

z2  Z[[2]]. (S.4.2)

The second pyramid on the right side of F is more complicated. It arises by applying the
replacement rule to the right side of (10.12.137) to obtain the associated pyramid,

− 2βz3z2 − z2
3z1 − z3

1 − εz3
3 sin t 

−2. beta PROD[Z[[3]], Z[[2]]]− PROD[POWER[Z[[3]], 2], Z[[1]]]−
POWER[Z[[1]], 3]− eps Sin[t] POWER[Z[[3]], 3]. (S.4.3)

The third pyramid on the right side of F is simplicity itself. From (10.12.138) we see that
this pyramid should be the result of applying the replacement rule to the number 0. Hence,
this pyramid is C0,

0 C0 = {0, 0, · · · , 0}. (S.4.4)

The remaining lines of the code require little comment. Line 20 sets the initial time to
0, and line 21 defines h in such a way that the final value of t will be 2π. Line 22 establishes
the parameter values β = .1 and ε = 1.5, which are those for Figure 1.4.9. Line 23 specifies
that the design initial condition is

z1(0) = zd0
1 = .3, z2(0) = zd0

2 = .4, z3(0) = zd0
3 = .5 = σ, (S.4.5)

and consequently
ω = 1/σ = 2. (S.4.6)

See (10.12.104). Also, it follows from (10.12.103) and (10.12.106) that

q(0) = ωQ(0) = ωz1(0) = (2)(.3) = .6, (S.4.7)
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q′(0) = ω2Q̇(0) = ω2z2(0) = (22)(.4) = 1.6. (S.4.8)

Next, lines 24 through 28 specify that the expansion is to be carried out about the initial
conditions (7.124). Finally, line 29 invokes the RK4 code given by (3.6). That is, as before,
no modifications are required in the integration code.

A few more comments about the output are appropriate. Line 32 shows that the final
time t is indeed 2π, as desired. The remaining output lines display the three pyramids that
specify the final value of Zvar. From the first entry in each pyramid we see that

z1(2π) = −0.0493158, (S.4.9)

z2(2π) = 0.439713, (S.4.10)

z3(2π) = .5, (S.4.11)

when there are no deviations in the initial conditions. The remaining entries in the pyramids
are the coefficients in the Taylor series that describe the changes in the final conditions that
occur when changes are made in the initial conditions (including the parameter σ). We are,
of course, particularly interested in the first two pyramids. The third pyramid has entries
only in the first place and the fourth place, and these entries are the same as those in the third
pyramid pyramid for Zvar at the start of the integration, namely those in zd0[3] C1 + X[3].
The fact that the third pyramid in Zvar remains constant is the expected consequence of
(10.12.138).

At this point we should also describe how theM8 employed in Section 22.12 was actually
computed. It could have been computed by setting p = 8 in (4.1) and specifying a small
step size h and a great number of steps ns to insure good accuracy. Of course, when p = 8,
the pyramids are large. Therefore, one does not usually print them out, but rather writes
them to files or sends them directly to other programs for further use.

However, rather than using RK4 in (4.1), we replaced it with an adaptive 4-5th order
Runge-Kutta-Fehlberg routine that dynamically adjusts the time step h during the course
of integration to achieve a specified local accuracy, and we required that the error at each
step be no larger than 10−12. (Recall Subsection 2.1.1.) Like the RK4 routine, the Runge-
Kutta-Fehlberg routine, when implemented in Mathematica, has the property that it can
integrate any number of equations both in scalar variable and pyramid form without any
changes in the code.2

S.5 Relation to the Complete Variational Equations

At this point it may not be obvious to the reader that the use of pyramids in integration
routines to obtain Taylor expansions is the same as integrating the complete variational
equations. We now show that the integration of pyramid equations is equivalent to the
forward integration of the complete variational equations. For simplicity, we will examine
the single variable case with no parameter dependence. The reader who has mastered this
case should be able to generalize the results obtained to the general case.

2A Mathematica version of this code is available from Dobrin Kaltchev (kaltchev@triumf.ca) upon request.
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In the single variable case with no parameter dependence (1.1) becomes

ż = f(z, t). (S.5.1)

Let zd(t) be some design solution and introduce a deviation variable ζ by writing

z = zd + ζ. (S.5.2)

Then the equation of motion (5.1) takes the form

żd + ζ̇ = f(zd + ζ, t). (S.5.3)

Also, the relations (10.12.14) and (10.12.15) take the form

f(zd + ζ, t) = f(zd, t) + g(zd, t, ζ) (S.5.4)

where g has an expansion of the form

g(zd, t, ζ) =
∞∑
j=1

gj(t)ζj. (S.5.5)

Finally, (10.12.16) and (10.12.17) become

żd = f(zd, t), (S.5.6)

ζ̇ = g(zd, t, ζ) =
∞∑
j=1

gj(t)ζj, (S.5.7)

and (10.12.18) becomes

ζ =
∞∑
j=1

hj(t)(ζi)
j. (S.5.8)

Insertion of (5.8) into both sides of (5.7) and equating like powers of ζi now yields the set
of differential equations

ḣj
′′
(t) =

∞∑
j=1

gj(t)U j′′

j (hs) with j, j′′ ≥ 1 (S.5.9)

where the (universal) functions U j′′

j (hs) are given by the relations(
∞∑
j′=1

hj
′
(ζi)

j′

)j

=
∞∑

j′′=1

U j′′

j (hs)(ζi)
j′′ . (S.5.10)

The equations (5.6) and (5.9) are to be integrated from t = tin = t0 to t = tfin with the
initial conditions

zd(t0) = zd0, (S.5.11)
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h1(t0) = 1, (S.5.12)

hj
′′
(t0) = 0 for j′′ > 1. (S.5.13)

Let us now consider the numerical integration of pyramids. Upon some reflection, we see
that the numerical integration of pyramids is equivalent to finding the numerical solution
to a differential equation with pyramid arguments. For example, in the single-variable case,
let Zvar(t) be the pyramid appearing in the integration process. Then, its integration is
equivalent to solving numerically the pyramid differential equation

(d/dt)Zvar(t) = F(Zvar, t). (S.5.14)

We now work out the consequences of this observation. By the inverse of the replacement
rule, we may associate a Taylor series with the pyramid Zvar(t) by writing

Zvar(t) c0(t) +
∑
j≥1

cj(t)x
j. (S.5.15)

By (5.15) it is intended that the entries in the pyramid Zvar(t) be used to construct a
corresponding Taylor series with variable x. In view of (3.15), there are the initial conditions

c0(t0) = zd(t0), (S.5.16)

c1(t0) = 1, (S.5.17)

cj(t0) = 0 for j > 1. (S.5.18)

We next seek the differential equations that determine the time evolution of the cj(t).
Under the inverse replacement rule, there is also the correspondence

(d/dt)Zvar(t) ċ0(t) +
∑
j≥1

ċj(t)x
j. (S.5.19)

We have found a representation for the left side of (5.14). We need to do the same for the
right side. That is, we need the Taylor series associated with the pyramid F(Zvar, t). By
the inverse replacement rule, it will be given by the relation

F(Zvar, t) f(
∑
j≥0

cj(t)x
j, t). (S.5.20)

Here it is understood that the right side of (5.20) is to be expanded in a Taylor series about
x = 0. From (5.4), (5.5), and (5.10) we have the relations

f(
∑
j≥0

cj(t)x
j, t) = f(c0(t)) + g(c0(t), t,

∑
j≥1

cj(t)x
j)

= f(c0(t)) +
∑
k≥1

gk(t)(
∑
j≥1

cj(t)x
j))k

= f(c0(t)) +
∑
k≥1

gk(t)
∑
j≥1

U j
k(c`)x

j.

(S.5.21)



S.6. ACKNOWLEDGMENT 2575

Therefore, there is the inverse replacement rule

F(Zvar, t) f(c0(t)) +
∑
k≥1

gk(t)
∑
j≥1

U j
k(c`)x

j. (S.5.22)

Upon comparing like powers of x in (5.19) and (5.22), we see that the pyramid differential
equation (5.14) is equivalent to the set of differential equations

ċ0(t) = f(c0(t)), (S.5.23)

ċj(t) =
∑
k≥1

gk(t)U j
k(c`). (S.5.24)

Finally, compare the initial conditions (5.11) through (5.13) with the initial conditions
(5.16) through (5.18), and compare the differential equations (5.6) and (5.9) with the differ-
ential equations (5.23) and (5.24). We conclude that that there must be the relations

c0(t) = zd(t), (S.5.25)

cj(t) = hj(t) for j ≥ 1. (S.5.26)

We have verified, in the single variable case, that the use of pyramids in integration routines
is equivalent to the solution of the complete variational equations using forward integration.
As stated earlier, verification of the analogous m-variable result is left to the reader.

We also observe the wonderful convenience that, when pyramid operations are imple-
mented and employed, it is not necessary to explicitly work out the forcing terms gra(t)
of Subsection 10.12.1 and the universal functions U r′′

r (hsn) of Subsection 10.12.3, nor is it
necessary to explicitly set up the complete variational equations (10.12.36). All these com-
plications are handled implicitly and automatically by the pyramid routines.

S.6 Acknowledgment

Dobrin Kaltchev made major contributions to the work of this appendix.

Exercises

S.6.1. Verify, in the general m variable case, that the use of pyramids in integration routines
is equivalent to the solution of the complete variational equations using forward integration.
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Appendix T

Quadrature and Cubature Formulas

T.1 Quadrature Formulas

T.1.1 Introduction

Suppose we wish to integrate some function f(x) over some (finite) interval. Without loss
of generality, by suitable translation and scaling, we may take this interval to be [0, 1]. A
quadrature formula is a set of k sampling points xi in the interval [0, 1] and weights wi such
that ∫ 1

0

dx f(x) '
k∑
i=1

wif(xi). (T.1.1)

The challenge is to select the sampling points and weights in such a way that the approx-
imation (1.1) is optimal and to define what is meant by optimal. From the Weierstrass
approximation theorem we know that the monomials are dense on any bounded domain.
Also, according to Taylor’s theorem, monomials are the building blocks for analytic func-
tions. Therefore, for our purposes, we will define optimal to mean that the relation (1.1) is
to hold exactly for polynomials in x of as high a degree as possible. That is, for a given set
of sampling points, we select the wi in such a way that

k∑
i=1

wi(xi)
` =

∫ 1

0

dx x` = 1/(`+ 1) (T.1.2)

for ` = 0, 1, 2, · · · up to as large an ` value (for a given k) as possible.
At this point some discussion is required. Suppose we reason as follows: Let m be an

integer with m ≥ 0. Assume f(x) is a polynomial of maximum degree m. It will then have

k = m+ 1 (T.1.3)

coefficients in its Taylor series representation, and these coefficients can be found by sampling
the value of f at k different points xi on the interval [0, 1]. Put another way, suppose we are
given k values v1, v2, · · · , vk. Then f(x) is the unique polynomial of degree m whose graph
passes through the points {xi, vi}. Now, with the coefficients known, the Taylor series can
be integrated to determine the left side of (1.1). Thus, with a knowledge of f at k sampling
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sampling points, it is in principle possible to integrate exactly polynomials of degree ` ≤ m
with m given by m = k − 1.

We next observe that once the k sampling points have been determined, the k weights
wi are uniquely determined. Let Li(x), called the Lagrange polynomial, be the degree m
polynomial that takes on the value 1 at the sampling point xi and has the value 0 at all the
other sampling points,

Li(xj) = δij. (T.1.4)

It is given by the construction

Li(x) =

[∏
j 6=i

(x− xj)

]/[∏
j 6=i

(xi − xj)

]
. (T.1.5)

Evidently there are k such polynomials. Also, as a result of (1.4), it follows that f(x) given
by

f(x) =
k∑
i=1

viLi(x) (T.1.6)

has the property
f(xj) = vj. (T.1.7)

Moreover, we see that ∫ 1

0

dx f(x) =
∑
i

vi

∫ 1

0

dx Li(x). (T.1.8)

Therefore, in view of (1.7) and the desire (1.1), we make the definition

wi =

∫ 1

0

dx Li(x) (T.1.9)

to achieve the result ∫ 1

0

dx f(x) =
∑
i

wif(xi). (T.1.10)

We conclude that given k sampling points, there are k weights wi, uniquely determined by
(1.9), such that (1.2) holds for ` ≤ m with m = k − 1.

Given the k sampling points xi, and the associated weights wi, can it happen that (1.2)
also holds for some ` values with ` > m, i.e. ` > k − 1? Let `max be the largest integer
for which (1.2) holds. More precisely, we require that (1.2) holds for ` ≤ `max, but not for
` = `max + 1. We will see that exactly how large `max can be depends on how the sampling
points are chosen. In particular, we will learn that there is a unique optimum sampling
procedure (called Legendre Gauss) for which `max has the optimum value

`max = 2k − 1. (T.1.11)

Upon combining (1.3) and (1.11) we see that for any sampling procedure there is the range
relation

k − 1 ≤ `max ≤ 2k − 1. (T.1.12)
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Put another way, if `max is specified, we will see that there can be sampling procedures
such that (1.2) holds for all ` ≤ `max with k < `max + 1. Indeed, if `max is odd, k can be as
small as kmin with

kmin = (`max + 1)/2. (T.1.13)

Since we know that `max+1 sampling points are necessary to determine the Taylor coefficients
of a polynomial of degree `max, how can it be that we can exactly integrate over the interval
[0, 1] such polynomials using just k sampling points with k < `max + 1? The answer is that
the only thing we want to know is the value of the integral over the fixed interval [0, 1], and
not the values of the individual Taylor coefficients. What happens is that the value of the
integral depends only on the value of a certain combination of the Taylor coefficients, and
the value of this combination can be found by sampling the function at fewer than `max + 1
points providing these points are judiciously chosen. See Exercise 1.2.

T.1.2 Newton Cotes

One sampling option is to space the xi evenly with x1 = 0 and xk = 1,

xi = (i− 1)/(k − 1). (T.1.14)

Doing so gives the family of Newton-Cotes quadrature formulas.1 For example, for the case
k = 3, the sampling points are

(x1, x2, x3) = (0, 1/2, 1), (T.1.15)

the associated weights are found, using (1.9), to be

(w1, w2, w3) = (1/6, 4/6, 1/6), (T.1.16)

thereby yielding the celebrated Simpson’s rule 1-4-1 formula∫ 1

0

dx f(x) ' (1/6)f(0) + (4/6)f(1/2) + (1/6)f(1). (T.1.17)

In this case (1.2) holds for ` = 0, 1, 2, and 3; and errors first begin to appear for ` ≥ 4. For
` = 4 the sum on the left side of (1.2) has the value

3∑
i=1

wi(xi)
4 = 1/(4 + 1) + 4!/[90(25)] = 1/5 + 4!/2880. (T.1.18)

Correspondingly, assuming that f is sufficiently differentiable, use of Newton Cotes gives
(for the case k = 3) the approximation∫ 1

0

dx f(x) = (1/6)f(0) + (4/6)f(1/2) + (1/6)f(1)− (1/2880)f (4)(ξ) (T.1.19)

1Newton’s student Roger Cotes urged and inspired Newton to write a second and enlarged edition of his
Principia, and wrote the preface to this edition. He died of a violent fever at the early early age of 33. At
Cotes’ death Newton remarked, “If he had lived we would have known something.” It is interesting to note
that several years before Euler wrote his famous formula exp(iθ) = cos θ + i sin θ, Cotes wrote the inverse
relation log(cos θ + i sin θ) = iθ.
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where ξ ∈ [0, 1].
As a second example, for the case k = 4 the sampling points are

(x1, x2, x3, x4) = (0, 1/3, 2/3, 1), (T.1.20)

the associated weights are found to be

(w1, w2, w3, w4) = (1/8, 3/8, 3/8, 1/8), (T.1.21)

and we have the equally celebrated Simpson’s 3/8 rule∫ 1

0

dx f(x) = (1/8)f(0) + (3/8)f(1/3) + (3/8)f(2/3) + (1/8)f(1)

−(1/6480)f (4)(ξ) (T.1.22)

where again ξ ∈ [0, 1].
Table 1.1 lists `max as a function of k for Newton Cotes.2 Evidently, when k is odd, there

is no increase in order when using instead the next even value of k. Doing so does result
in a decrease in the coefficient in the error term, but this decrease is fairly modest. For
this reason, odd values of k are frequently preferred. Note that for even k the entries in the
Table take the floor value `max = k− 1 guaranteed by (1.12), and beat this value for odd k.

Table T.1.1: Maximum Order `max for k Newton-Cotes Sampling Points.

k 1 2 3 4 5 6 7 8 9 10
`max 1 1 3 3 5 5 7 7 9 9

T.1.3 Legendre Gauss

Another appealing sampling option is not to space the xi evenly, but rather to select them
in such a way that (for a fixed k) the number of successive ` values for which (1.2) holds
is maximized. This choice produces the family of Legendre-Gauss quadrature formulas.
Legendre-Gauss quadrature is most naturally described in terms of the interval [−1, 1]. It
can be shown that the Legendre polynomial Pk(x) has k distinct zeroes on the interval
[−1, 1], and it is these zeroes that are used in k-sampling point Legendre-Gauss quadrature.

Three examples of Legendre Gauss are given below. For ease of comparison with Newton-
Cotes quadrature, we have transformed Legendre-Gauss results to the interval [0, 1].

For k = 3, the (transformed) Legendre-Gauss sampling points are given by

(x1, x2, x3) = (1/2−
√

15/10, 1/2, 1/2 +
√

15/10). (T.1.23)

2Strictly speaking, for the Newton-Cotes we have been describing, the k = 1 table entry is meaningless.
However, it does apply in the case of open Newton Cotes. See Exercise 1.1.
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The corresponding weights, calculated using (1.9), are given by

(w1, w2, w3) = (5/18, 8/18, 5/18). (T.1.24)

Correspondingly, there is the formula∫ 1

0

dxf(x) ' (5/18)f(1/2−
√

15/10) + (8/18)f(1/2) + (5/18)f(1/2 +
√

15/10). (T.1.25)

In this case (1.2) holds for ` = 0 through 5, but not ` = 6. Therefore `max = 5. And for
` = 6 the sum on the left side of (1.2) has the value

3∑
i=1

wi(xi)
6 = 1/7− 6!/2016000. (T.1.26)

Correspondingly, again assuming that f is sufficiently differentiable, use of Legendre Gauss
gives (for the case k = 3) the approximation∫ 1

0

dx f(x) = (5/18)f(1/2−
√

15/10) + (8/18)f(1/2) + (5/18)f(1/2 +
√

15/10)

+(1/2016000)f (6)(ξ). (T.1.27)

As another example, consider the case k = 2. Then there is the formula∫ 1

0

dx f(x) ' (1/2)f(1/2−
√

3/6) + (1/2)f(1/2 +
√

3/6). (T.1.28)

It corresponds to sampling points and weights given by the rules

(x1, x2) = (1/2−
√

3/6, 1/2 +
√

3/6), (T.1.29)

(w1, w2) = (1/2, 1/2). (T.1.30)

In this case (1.2) holds for ` = 0 through 3, but not for ` = 4. That is, `max = 3. For ` = 4
the sum on the left side of (1.2) has the value

2∑
i=1

wi(xi)
4 = 1/5− 4!/4320. (T.1.31)

Correspondingly, use of Legendre Gauss gives (for the case k = 2) the approximation∫ 1

0

dx f(x) = (1/2)f(1/2−
√

3/6) + (1/2)f(1/2 +
√

3/6) + (1/4320)f (4)(ξ). (T.1.32)

Compare (1.32), Legendre Gauss for k = 2, with (1.19), Newton Cotes for k = 3. They
are of the same order, but Legendre Gauss has a somewhat smaller error coefficient. Thus,
Legendre Gauss for k = 2 not only requires one less evaluation of f than Newton Cotes for
k = 3, it is also slightly more accurate.
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Finally, consider the case k = 1. It has sampling point and weight given by

x1 = 1/2, (T.1.33)

w1 = 1, (T.1.34)

and yields the midpoint rule ∫ 1

0

dx f(x) ' f(1/2). (T.1.35)

In this case (1.2) holds for ` = 0 and 1, but not for ` = 2. Therefore `max = 1. And for
` = 2 the sum on the left side of (1.2) has the value

w1(x1)2 = 1/3− 2!/24. (T.1.36)

Correspondingly, use of Legendre Gauss gives (for the case k = 1) the approximation∫ 1

0

dx f(x) = f(1/2) + (1/24)f (2)(ξ). (T.1.37)

It can be shown that for Legendre Gauss the relation (1.11) holds. Moreover, for a given
k value, there is no sampling procedure with larger `max than that of Legendre Gauss. All
other sampling-point choices yield a smaller value of `max. Comparison of Table 1.1 and
(1.11) shows that, with increasing k, Legendre Gauss rapidly becomes far more efficient
than Newton Cotes.

T.1.4 Clenshaw Curtis

Like Legendre Gauss, Clenshaw-Curtis quadrature is most naturally described on the interval
[−1, 1]. It uses the Chebyshev points as sampling points. For k = 1 the Chebyshev point
is 0.3 For k = 2 the Chebyshev points are ∓1, and for k = 3 the Chebyshev points are
{−1, 0, 1}. For k ≥ 2 select k equally spaced angles θi with θ1 = −π and θk = π,

θi = −π + 2π(i− 1)/(k − 1). (T.1.38)

For k ≥ 2 the Chebyshev points are given by the rule

xi = cos(θi). (T.1.39)

Let Tk−1(x) be the Chebyshev polynomial of degree k − 1. It can be shown, for k ≥ 2, that
Tk−1 has k extrema on the interval [−1, 1] (all of which are ∓1). Moreover, for k ≥ 2, these
extrema are the k Chebyshev sampling points defined by (1.38) and (1.39).

Evidently for k ≤ 3 the Chebyshev points, when transformed to the interval [0, 1], are
the same as the sampling points for Newton Cotes, and therefore Table 1 provides the value
of `max in these cases. It can be shown that in fact Table 1 provides the correct value of

3Some authors omit this point since it is really a Chebyshev point of the second kind.
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`max for Clenshaw Curtis in all cases. That is, Table 1 holds for both Newton Cotes and
Clenshaw Curtis.4

Although the order of Clenshaw-Curtis quadrature is the same as that for Newton Cotes,
and therefore much less that that of Legendre Gauss, its use has two advantages. First, if
the value of k − 1 is doubled, thereby doubling the order, essentially half of the sampling
points are the same as before. Therefore, in the same spirit as embedded Runge Kutta, it
is relatively easy to devise adaptive integration schemes. A second advantage, as described
in the next subsection, has to do with convergence.

T.1.5 Convergence

What happens in the limit k → ∞? For the interval [−1, 1] it can be shown that Newton-
Cotes quadrature converges to the correct result providing f(x) is analytic in a disk centered
about x = 0 and having radius slightly larger than 1; and is divergent if f fails to be analytic
in the open unit disk centered about x = 0. (The case where f has singularities on the
boundary of this open unit disk requires a more refined analysis.)5 When the interval is
[0, 1], this result for convergence translates to the requirement that f be analytic in a disk
centered about x = 1/2 and having radius slightly larger than 1/2.

By contrast, and working in the interval [−1, 1], Legendre-Gauss quadrature is guaran-
teed to converge under the much less restrictive condition that f(x) simply be sufficiently
smooth for x ∈ [−1, 1]. An adequate condition for sufficiently smooth, which is generally
realized in practice, is that f(x) be Lipschitz continuous for x ∈ [−1, 1]. Correspondingly,
when transformed to the interval [0, 1], Legendre-Gauss quadrature is guaranteed to converge
if f(x) is sufficiently smooth for x ∈ [0, 1].

The reason for this difference is that Taylor series on the interval [−1, 1] converge in
disks about x = 0 whereas Legendre polynomial expansions in the interval [−1, 1] converge
in ellipses (sometimes called Bernstein ellipses) with foci at x = ∓1.

Although for a given k Clenshaw-Curtis quadrature has relatively low order (the same
as Newton Cotes) compared to Legendre Gauss, its convergence properties are similar to
those for Legendre Gauss. It too, when transformed to the interval [0, 1], is guaranteed to
converge under the much less restrictive condition that f(x) simply be sufficiently smooth
for x ∈ [0, 1].

What can be said about Legendre-Gauss and Clenshaw-Curtis convergence in the case
that f is analytic? Again it is most convenient to employ the interval [−1, 1] with the
understanding that the results obtained for this interval can be easily be transformed to the
interval [0, 1]. Let ρ be a real number with ρ > 1. Consider the points z in the complex
plane given by the rule

z = ρ exp(iφ) (T.1.40)

4From (1.38) and (1.39) it follows that the Chebyshev points are symmetrically distributed about x = 0.
Correspondingly the weights for the points ∓xi are the same. Therefore, by symmetry, Clenshaw Curtis is
exact (yields the value 0) for all odd-degree monomials.

5Runge considered the function f(x) = 1/(1 + 25x2), now called the Runge function, on the interval
x ∈ [−1, 1] and showed that Newton-Cotes quadrature diverges for this example. Note that Runge’s f is
analytic on this interval, but has poles at the points x = ±i/5, and these poles lie inside the unit disk
centered about the origin.
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with φ ∈ [0, 2π). Evidently they lie on a circle about the origin with radius ρ. Next consider
points w related to points z by the rule

w = (1/2)(z + z−1). (T.1.41)

It can be verified that the image of the circle (1.40) under the transformation (1.41) is an
ellipse in the complex plane (a Bernstein ellipse Eρ) with foci ∓1,

semi-major axis = (1/2)(ρ+ 1/ρ), (T.1.42)

and
semi-minor axis = (1/2)(ρ− 1/ρ). (T.1.43)

Suppose f is analytic on [−1, 1] and that it can be analytically continued (see Figure
32.4.9) into the interior of some Eρ without encountering a singularity, and also suppose
that there are no singularities on the boundary (Eρ itself). Then it can be shown that for
large k the error in Legendre-Gauss quadrature must go to zero at least as fast as

Legendre-Gauss quadrature error ∼ exp[−2k log(ρ)].

And for Clenshaw-Curtis quadrature the error must go to zero at least as fast as

Clenshaw-Curtis quadrature error ∼ exp[−k log(ρ)].

Thus, in both cases, the error goes to zero exponentially with increasing k. And the larger
the value of ρ can be without there being singularities inside or on Eρ, the more rapid the
exponential decrease.

Exercises

T.1.1. The sampling option (1.14) involves use of the endpoints 0 and 1, and for this reason
is more precisely called closed Newton Cotes. It is also possible to employ a sampling
procedure, called open Newton Cotes, for which the xi are still equally spaced but the
endpoints are not used. Consider, for example, the case k = 3 and the two equally spaced
sampling procedures

(x1, x2, x3) = (0, 1/2, 1) closed Newton Cotes, (T.1.44)

and
(x1, x2, x3) = (1/4, 1/2, 3/4) open Newton Cotes. (T.1.45)

For k = 3 open Newton Cotes the weights are

(w1, w2, w3) = (2/3,−1/3, 2/3). (T.1.46)

Show that, just as for the case of closed Newton Cotes, (1.2) holds for k = 3 open Newton
Cotes when ` = 0, 1, 2, 3. Show that, for k = 3 open Newton Cotes,

3∑
i=1

wi(xi)
4 = 1/(4 + 1) + (14)(4!)/[45(45)] = 1/5 + (4!)(7/23040). (T.1.47)
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Correspondingly, assuming that f is sufficiently differentiable, use of k = 3 open Newton
Cotes gives the approximation∫ 1

0

dx f(x) = (2/3)f(1/4)− (1/3)f(1/2) + (2/3)f(3/4) + (7/23040)f (4)(ξ) (T.1.48)

where ξ ∈ [0, 1].
For k = 4 open Newton Cotes the sampling points are

(x1, x2, x3, x4) = (1/5, 2/5, 3/5, 4/5), (T.1.49)

and the weights are

(w1, w2, w3, w4) = (11/24, 1/24, 1/24, 11/24). (T.1.50)

Correspondingly, assuming that f is sufficiently differentiable, use of k = 4 open Newton
Cotes gives the approximation∫ 1

0

dx f(x) = (11/24)f(1/5) + (1/24)f(2/5) + (1/24)f(3/5) + (11/24)f(4/5)

+(19/90000)f (4)(ξ) (T.1.51)

where again ξ ∈ [0, 1].
It can be shown that, for a given value of k, both closed and open Newton Cotes have

the same `max. Thus Table 1.1 holds for both open and closed Newton Cotes. Comparison
of (1.19) and (1.48) shows that for k = 3 the error coefficient for open Newton Cotes is
slightly smaller than that for closed Newton Cotes. This case is an anomaly. For k ≥ 4
closed Newton Cotes has a smaller error coefficient than open Newton Cotes. Finally, we
remark that k = 1 Legendre Gauss my also be viewed as being k = 1 open Newton Cotes.

T.1.2. Consider quadrature on the interval [−1, 1]. Let f(x) be the third-order polynomial

f(x) = a+ bx+ cx2 + dx3. (T.1.52)

Verify that ∫ 1

−1

dx f(x) = 2a+ (2/3)c. (T.1.53)

Observe that the right side of (1.53) is a particular linear combination of the Taylor coeffi-
cients for f , and the value of the integral on the left side of (1.53) depends only on the value
of this particular combination.

The k = 2 Legendre-Gauss sampling points and weights on the interval [−1, 1] are

(x1, x2) = (−1/
√

3, 1/
√

3), (T.1.54)

(w1, w2) = (1, 1). (T.1.55)

Verify that
2∑
i=1

wif(xi) = 2a+ (2/3)c, (T.1.56)

and therefore k = 2 Legendre-Gauss quadrature is exact for all polynomials of degree 3 or
less. Verify that Legendre Gauss is the unique k = 2 quadrature rule with this property.
Also verify that k = 2 Legendre-Gauss quadrature fails for x4.
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T.1.3. There is another way of viewing quadrature formulas that is more akin to the numer-
ical integration of differential equations. Consider the single-variable differential equation

dy/dt = g(t) (T.1.57)

with the initial condition
y(0) = 0. (T.1.58)

Note that g does not depend on y, and therefore (1.57) has the immediate solution

y(t) =

∫ t

0

dt′g(t′). (T.1.59)

Suppose, in the spirit of a local stepping formula, we wish to compute y(h) through some
order in h. From (1.59) we find

y(h) =

∫ h

0

dtg(t). (T.1.60)

Bring the right side of (1.60) to the
∫ 1

0
standard form by making the change of variable and

definition
t = xh, (T.1.61)

f(x) = g(xh). (T.1.62)

Show that (1.60) then becomes

y(h) = h

∫ 1

0

dxf(x). (T.1.63)

Suppose the right side of (1.63) is evaluated using Newton Cotes with k odd. Show that
there is the result

y(h) = h
k∑
i=1

wif(xi) + ck+1hf
k+1(ξ) (T.1.64)

where ck+1 is a coefficient that can be read off from formulas such as (1.19) and (1.48).
Finally, show that

fk+1(ξ) = hk+1gk+1(τ), (T.1.65)

where τ ∈ [0, h], so that (1.64) becomes

y(h) = h

k∑
i=1

wig(xih) + ck+1h
k+2gk+1(τ), k odd. (T.1.66)

We see that, for k function evaluations with k odd, Newton Cotes provides a stepping
formula with local error of order hk+2, and therefore local accuracy through terms of order
hk+1.

Suppose the right side of (1.63) is evaluated using Newton Cotes with k even. Show that
then there is the result

y(h) = h

k∑
i=1

wif(xi) + ckhf
k(ξ) (T.1.67)
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where ck is a coefficient that can be read off from formulas such as (1.22) and (1.51). Finally,
show that

fk(ξ) = hkgk(τ), (T.1.68)

where τ ∈ [0, h], so that (1.67) becomes

y(h) = h

k∑
i=1

wig(xih) + ckh
k+1gk(τ), k even. (T.1.69)

We see that, for k function evaluations with k even, Newton Cotes provides a stepping
formula with local error of order hk+1, and therefore local accuracy through terms of order
hk.

Suppose, instead, that the right side of (1.63) is evaluated using Legendre Gauss. Then
there is the result

y(h) = h
k∑
i=1

wif(xi) + c2khf
2k(ξ) (T.1.70)

where c2k is a coefficient that can be read off from formulas such as (1.27), (1.32), and (1.37).
Now show that

f 2k(ξ) = h2kg2k(τ), (T.1.71)

where τ ∈ [0, h], so that (1.70) becomes

y(h) = h
k∑
i=1

wig(xih) + c2kh
2k+1g2k(τ). (T.1.72)

We see that, for k function evaluations, Legendre Gauss provides a stepping formula with
local error of order h2k+1, and therefore local accuracy through terms of order h2k.

T.1.4. Verify that Eρ given by (1.40) and (1.41) is indeed an ellipse with the advertised
properties.

T.2 Cubature Formulas

T.2.1 Introduction

Cubature formulas extend the concept of qudrature formulas to the case of domains D having
dimension greater than one. All such formulas are called cubature formulas, no matter what
the dimension of D, as long as this dimension is greater than one.

Let D be some domain having dimension m. Label points within D by m-dimensional
vectors

x = (x1, x2, · · · , xm), (T.2.1)

and let f(x) be a function defined on D. Then a cubature formula is a set of k sampling
points in D, now call them xi, and weights wi such that∫

D

dmx f(x) '
k∑
i=1

wif(xi). (T.2.2)
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Again the challenge is to select the sampling points and weights in such a way that the
approximation (2.2) is optimal and to define what is meant by optimal. Results are known
for some standard domains. For our purposes, we are interested in the cases where D is
either a square, rectangle, or S2 (the surface of a 2-sphere).

T.2.2 Cubature on a Square

The unit m-cube, denoted by Cm, is defined to be the domain

− 1 ≤ xc ≤ 1 c = 1, · · · ,m. (T.2.3)

A variety of cubature formulas are known for the Cm for all m. We will be particularly
interested in the case C2, which we call the unit square.

Let Pj1,j2 denote the monomial

Pj1,j2(x) = xj11 x
j2
2 . (T.2.4)

It has degree

d̂ = j1 + j2. (T.2.5)

From the work of Exercise 7.10.2 we know that the number of such monomials of degree 0
through d is given by

S0(2, d) = (2 + d)!/(2!d!). (T.2.6)

See (7.10.17). For convenience, the values of S0(2, d) are tabulated below for the first few
values of d.

Table T.2.1: S0(2, d) as a Function of d.

d 0 1 2 3 4 5 6 7
S0(2, d) 1 3 6 10 15 21 28 36

Let D be the domain C2. Again, because of the results of Weierstrass and Taylor, as our
definition of optimal we will seek k sampling points xi and weights wi such that∫

D

d2x Pj1,j2(x) =
k∑
i=1

wiPj1,j2(xi) (T.2.7)

for all monomials of degree less than or equal to d. We note that the left side of (2.7) is
easily evaluated to give the result∫

D

d2x Pj1,j2(x) = 4/[(j1 + 1)(j2 + 1)] j1, j2 both even, (T.2.8)

= 0 otherwise. (T.2.9)
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Observe that, for the 2-dimensional case, the specification of each sampling point xi

requires 2 values. Consequently, the specification of k sampling points and k weights involves
the specification of 2k + k = 3k values. On the other hand, there are S0(2, d) conditions
of the form (2.7) that need to be met. Therefore naive counting suggests that (2.7) can be
satisfied providing

3k ≥ S0(2, d). (T.2.10)

For example, for the case d = 5, we see from Table 2.1 that (2.10) yields the requirement

3k ≥ 21, or k ≥ 7. (T.2.11)

We note that a formula that works for d = 5 can be constructed by converting the
integral over the unit square into two iterated integrals, and these integrals (since they must
be exact for single-variable monomials of degrees 0 through 5) can each be approximated
using [−1, 1] variants of the 3-point Legendre-Gauss formula (1.25). Doing so produces what
is called a product cubature fromula, and evidently has k = 3× 3 = 9.

Remarkably, for the unit square and d = 5, there are two cubature formulas for which
k = 7. Stroud, in his book on the approximate calculation of multiple integrals, refers
to them as ∗C2:5-1 and ∗C2:5-2. In these formulas several sampling points have the same
weight. The formulas are described below. Each description consists of weights and the
sampling points having these weights. Also shown, in Figures 2.1 and 2.2, are the locations
of the sampling points in the x1, x2 plane. Note that all sampling points lie within the unit
square, a feature that is essential for our purposes; and all have positive weights, a feature
that is numerically desirable.

The Unit Square Cubature Formula ∗C2:5-1

weights points

8/7 (0, 0)

20/36 (±r,±s)
20/63 (0,±t)

r =
√

3/5 ' .775

s =
√

1/3 ' .577

t =
√

14/15 ' .966 (T.2.12)
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The Unit Square Cubature Formula ∗C2:5-2

weights points

8/7 (0, 0)

100/168 ± (r, r)

20/48 ± (s,−t)
20/48 ± (t,−s)

r =
√

7/15 ' .683

s = [(7 +
√

24)/15]1/2 ' .891

t = [(7−
√

24)/15]1/2 ' .374 (T.2.13)
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Figure T.2.1: Sampling points for ∗C2:5-1

Rough Error Analysis

Analysis of the errors involved with the use of cubature formulas is a complicated subject.
However, one simple thing that can be done is to see how well (2.7) works for monomials
having degree d + 1 when the method has been constructed to work for monomials having
degrees less than or equal to d. For example, for the two unit-square d = 5 and k = 7 cuba-
ture formulas we have been discussing, we can examine how well they work for monomials
of degree 5 + 1 = 6.

Observe, for these two unit-square cubature formulas, that the (0, 0) sampling point does
not contribute to the result for any first or higher degree monomial. With regard to the
other sampling points, the sampling points for each weight are symmetrically arranged in
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Figure T.2.2: Sampling points for ∗C2:5-2

such a way that their net contribution for any monomial xj11 x
j2
2 is identically zero if either j1

or j2 is odd, but not both are odd. Therefore these cubature formulas automatically satisfy
(2.7) and (2.9) exactly for this subset of monomials,

5∑
i=1

wiPj1,j2(xi) =

∫
D

d2x Pj1,j2(x) = 0 if either j1 or j2 is odd, but not both are odd.

(T.2.14)
Note that, by this symmetry, (2.7) is automatically satisfied for all odd degree polynomials.

With regard to monomials of degree 6, we need to examine the performance of the meth-
ods (2.12) and (2.13) separately. Comparison of Figures 2.1 and 2.2 shows that the sampling
points for the method (2.12) are more symmetrically arranged. In particular, for this method
we have the stronger result that for all monomials

5∑
i=1

wiPj1,j2(xi) = 0 if either j1 or j2 is odd, or both are odd. (T.2.15)

Therefore this cubature formula automatically satisfies (2.9) exactly for all monomials of
any degree if either j1 or j2 is odd, or both are odd. What remains to be examined for
monomials of degree 6 are the cases x6

1, x4
1x

2
2, x2

1x
4
2, and x6

2, for which, according to (2.8),
the exact results are 4/7, 4/15, 4/15, and 4/7, respectively. Numerical calculations show
that, for ∗C2:5-1, there are the results

5∑
i=1

wiP6,0(xi) = 4/7− .0914 · · · = (4/7)(1− .16 · · · ), (T.2.16)
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5∑
i=1

wiP4,2(xi) = 4/15 + 0, (T.2.17)

5∑
i=1

wiP2,4(xi) = 4/15− .1185 · · · = (4/15)(1− .44 · · · ), (T.2.18)

5∑
i=1

wiP0,6(xi) = 4/7 + .0271 · · · = (4/7)(1 + .05 · · · ). (T.2.19)

Surprisingly, (2.17) shows that ∗C2:5-1 is exact for x4
1x

2
2! We conclude, with regard to

monomials of degrees 0 through 7, that ∗C2:5-1 is exact for all such monomials save for the
monomials x6

1, x2
1x

4
2, and x6

2 where it makes errors of approximately 16%, 44%, and 5%,
respectively.

For ∗C2:5-2, the sampling points are less symmetrically arranged so that a larger number
of degree 6 monomials need to be considered separately. Numerical calculations show that
there are the results

5∑
i=1

wiP6,0(xi) = 4/7− .032 · · · = (4/7)(1− .06 · · · ), (T.2.20)

5∑
i=1

wiP5,1(xi) = 0− .059 · · · , (T.2.21)

5∑
i=1

wiP4,2(xi) = 4/15− .059 · · · = (4/15)(1− .22 · · · ), (T.2.22)

5∑
i=1

wiP3,3(xi) = 0 + .059 · · · , (T.2.23)

5∑
i=1

wiP2,4(xi) = 4/15− .059 · · · = (4/15)(1− .22 · · · ), (T.2.24)

5∑
i=1

wiP1,5(xi) = 0− .059 · · · , (T.2.25)

5∑
i=1

wiP0,6(xi) = 4/7− .032 · · · = (4/7)(1− .06 · · · ). (T.2.26)

We conclude, with regard to monomials of degrees 0 through 7, that ∗C2:5-2 is exact for all
such monomials save for all the monomials of degree 6 where it makes the errors indicated
above.

Finally, comparison of (2.16) through (2.19) for ∗C2:5-1 with (2.20) through (2.26) for
∗C2:5-2 shows that, save for the case x2

1x
4
2, ∗C2:5-1 generally makes smaller errors than

∗C2:5-2, and therefore might be slightly preferred.
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T.2.3 Cubature on a Rectangle

Let R(a, b) be a rectangle with sides 2a and 2b parameterized by coordinates ξ1, ξ2 such that

ξ1 ∈ [−a, a], ξ2 ∈ [−b, b]. (T.2.27)

Let g(ξ) be some function defined on R(a, b) and suppose we wish to evaluate the integral∫
R(a,b)

d2ξ g(ξ). (T.2.28)

Our goal is to find k sampling points ξi and k weights w̄i such that

∫
R(a,b)

d2ξ g(ξ) '
k∑
i=1

w̄ig(ξi). (T.2.29)

Introduce new variables x1, x2 by the rules

ξ1 = ax1, ξ2 = bx1 (T.2.30)

so that (2.30) maps C2 into R(a, b). See (2.3). Then there is the relation∫
R(a,b)

d2ξ g(ξ) = ab

∫
C2

d2x f(x) (T.2.31)

where

f(x) = g(ax1, bx2). (T.2.32)

From (2.2) we have the approximation

∫
C2

d2x f(x) '
k∑
i=1

wif(xi). (T.2.33)

It follows that ∫
R(a,b)

d2ξ g(ξ) ' ab
k∑
i=1

wif(xi) = ab
k∑
i=1

wig(axi1, bx
i
2). (T.2.34)

We conclude that (2.29) holds providing we make the definitions

w̄i = abwi, (T.2.35)

ξi1 = axi1, ξi2 = bxi2. (T.2.36)
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Exercises

T.2.1. The purpose of this exercise is to study how the accuracy of a cubature formula
depends on the size of the integration domain and the analytic properties of the function
being integrated. For simplicity, we will consider the case (2.29), cubature on a rectangle.

Suppose that g has a Taylor expansion of the form

g(ξ) =
∑
j1,j2

gj1,j2ξ
j1
1 ξ

j2
2 . (T.2.37)

Rearrange this expansion into one in homogenous polynomials by writing

g(ξ) =
∑
`

P`(ξ) (T.2.38)

where
P`(ξ) =

∑
j1+j2=`

gj1,j2ξ
j1
1 ξ

j2
2 . (T.2.39)

Since we will be employing cubature formulas that are exact for polynomials through degree
d, let use rewrite (2.38) in the form

g(ξ) =
d∑
`=0

P`(ξ) + ∆(ξ) (T.2.40)

where

∆(ξ) =
∞∑

`=d+1

P`(ξ) =
∞∑

`=d+1

∑
j1+j2=`

gj1,j2ξ
j1
1 ξ

j2
2 . (T.2.41)

In a moment, we will treat ∆ as an error term. First, assuming suitable analyticity for
g, use the Cauchy bound (33.2.18) on Taylor coefficients to show that, for ξ ∈ R(a, b), ∆
has the bound

|∆(ξ)| ≤
∞∑

`=d+1

∑
j1+j2=`

|gj1,j2||ξ
j1
1 ||ξ

j2
2 | ≤ L (T.2.42)

where

L = K
∞∑

`=d+1

∑
j1+j2=`

(a/R′1)j1(b/R′2)j2 . (T.2.43)

Verify that the series for L converges, when a < R′1 and b < R′2, by showing that there is
the relation

∞∑
`=d+1

∑
j1+j2=`

(a/R′1)j1(b/R′2)j2 ≤
∞∑
`=0

∑
j1+j2=`

(a/R′1)j1(b/R′2)j2 =
∑
j1,j2

(a/R′1)j1(b/R′2)j2

= [1/(1− a/R′1)][1/(1− b/R′2)]. (T.2.44)

Therefore, L is well defined.
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Next, from (2.40), verify the relations∫
R(a,b)

d2ξ g(ξ) =

∫
R(a,b)

d2ξ

d∑
`=0

P`(ξ) +

∫
R(a,b)

d2ξ ∆(ξ), (T.2.45)

k∑
i=1

w̄ig(ξi) =
k∑
i=1

w̄i
d∑
`=0

P`(ξ
i) +

k∑
i=1

w̄i∆(ξi). (T.2.46)

Show that, by the construction of the sampling points ξi and the weights w̄i, there must be
the relation ∫

R(a,b)

d2ξ
d∑
`=0

P`(ξ) =
k∑
i=1

w̄i
d∑
`=0

P`(ξ
i). (T.2.47)

Then subtract (2.46) from (2.45) to show that∫
R(a,b)

d2ξ g(ξ)−
k∑
i=1

w̄ig(ξi) =

∫
R(a,b)

d2ξ ∆(ξ)−
k∑
i=1

w̄i∆(ξi). (T.2.48)

Consequently, verify that there is the inequality

|
∫
R(a,b)

d2ξ g(ξ)−
k∑
i=1

w̄ig(ξi)| ≤ |
∫
R(a,b)

d2ξ ∆(ξ)|+ |
k∑
i=1

w̄i∆(ξi)|. (T.2.49)

To continue, verify the bounds

|
∫
R(a,b)

d2ξ ∆(ξ)| ≤ 4abL, (T.2.50)

|
k∑
i=1

w̄i∆(ξi)| ≤ 4abL. (T.2.51)

Thus, show that there is the final inequality

|
∫
R(a,b)

d2ξ g(ξ)−
k∑
i=1

w̄ig(ξi)| ≤ 8abL. (T.2.52)

Your challenge is to determine how the error term L depends on the dimensions of the
rectangle R(a, b). To this end suppose a and b are scaled by a common factor of σ,

a(σ) = σa1, b(σ) = σb1 (T.2.53)

so that R(a, b) is what we may call the original rectangle R(a1, b1) when σ = 1, and R(a, b)
becomes ever smaller as σ → 0.

Based on (2.43), define L(σ) by writing

L(σ) = K
∞∑

`=d+1

∑
j1+j2=`

(σa1/R
′
1)j1(σb1/R

′
2)j2 . (T.2.54)
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Show that

L(σ) = σd+1K

∞∑
`=d+1

σ`−d−1
∑

j1+j2=`

(a1/R
′
1)j1(b1/R

′
2)j2

= σd+1K ′ +O(σd+2) (T.2.55)

where
K ′ = K

∑
j1+j2=d+1

(a1/R
′
1)j1(b1/R

′
2)j2 . (T.2.56)

Insert (2.55) into (2.52) to obtain the inequality

|
∫
R(a,b)

d2ξ g(ξ)−
k∑
i=1

w̄ig(ξi)| ≤ 8σ2a1b1L(σ) = σd+38a1b1K
′ +O(σd+4). (T.2.57)

We expect that each of the two terms on the left side of (2.57) scales as σ2. You have shown
that their difference, the error, scales as σd+3. Therefore, the relative error scales as σd+1.

T.2.2. Review Exercise 2.1. The purpose of this exercise is to find a more refined error
bound for the specific case of the cubature formula ∗C2:5-1 by exploiting the relations (2.16)
through (2.19). Define two linear functionals I and Q by the rules

I[g] =

∫
R(a,b)

d2ξ g(ξ), (T.2.58)

Q[g] =
5∑
i=1

w̄ig(ξi). (T.2.59)

Show, when ∗C2:5-1 is used in (2.35) and (2.36), that

Q[Pj1,j2 ] = I[Pj1,j2 ] (T.2.60)

for all Pj1,j2 having degree less than 6, and also for all Pj1,j2 having degree 7.
Monomials of degree 6 need to be treated separately. With reference to (2.16) through

(2.19), define constants λ6,0 etc. by the rules

λ6,0 = .0914 · · · , (T.2.61)

λ2,4 = .1185 · · · , (T.2.62)

λ0,6 = .0271 · · · . (T.2.63)

Show that, when ∗C2:5-1 is used in (2.35) and (2.36), there are the results

Q[P6,0] = I[P6,0]− a7bλ6,0, (T.2.64)

Q[P2,4] = I[P2,4]− a3b5λ2,4, (T.2.65)

Q[P0,6] = I[P0,6] + ab7λ0,6, (T.2.66)
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and that (2.60) holds for all the remaining monomials of degree 6.
Using the machinery just developed show that, when ∗C2:5-1 is used in (2.35) and (2.36),

there is the result∫
R(a,b)

d2ξ g(ξ) =
5∑
i=1

w̄ig(ξi) + ab[λ6,0g6,0a
6 + λ2,4g2,4a

2b4 − λ0,6g0,6b
6] +O(σ10).

(T.2.67)

Note that

g6,0 = (1/6!)g[6,0](0, 0), g2,4 = (1/2!)(1/4!)g[2,4](0, 0), g0,6 = (1/6!)g[0,6](0, 0). (T.2.68)

Show that (2.67) can also be written in the form∫
R(a,b)

d2ξ g(ξ) =
5∑
i=1

w̄ig(ξi) + σ8a1b1[λ6,0g6,0a
6
1 + λ2,4g2,4a

2
1b

4
1 − λ0,6g0,6b

6
1] +O(σ10).

(T.2.69)

Therefore, for the case where ∗C2:5-1 is used in (2.35) and (2.36), you have found an exact
result for the O(σd+3) term in (2.57) and have shown that the O(σd+4) term, in fact, vanishes.

Examination of (2.67) and (2.68) indicates that there is still some freedom left in the
choice of orientation of the sampling point scheme and the aspect ratio of the rectangle
R(a, b). In some cases it may be possible to minimize the leading error term in (2.67) by
exploiting this freedom. Suppose that something is known about the relative sizes of the
terms g6,0, g4,2, g2,4, and g0,6. If, for example, g4,2 is much smaller than g2,4, then it might be
advantageous to rotate the sampling points shown in Figure 2.1 by 90◦ so that the cubature
formula error no longer involves g2,4 but instead involves g4,2. With regard to the aspect
ratio of R(a, b), in the case that (2.67) is employed and assuming that g6,0 and g0,6 are
comparable, it might be advantageous to use rectangles for which a < b since λ6,0 > λ0,6.
Obviously, when contemplating this strategy, attention should also be paid to the size of the
λ2,4g2,4a

2b4 error term.

T.2.4 Cubature on the Two-Sphere
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Appendix U

Rotational Classification and
Properties of Polynomials and
Analytic/Polynomial Vector Fields

U.1 Introduction

SupposeA(r) is an analytic vector field in three dimensions. That is, suppose there are three
component functions Ax(r), Ay(r), and Az(r), all of which are analytic in some common
domain in the variables x, y, and z. Without loss of generality, we may take this domain to
be centered on the origin. Doing so brings us to the notationally easier problem of studying
polynomial vector fields, vector fields whose components are polynomials in the variables
x, y, and z. In this appendix we will study how to use SO(3), the rotation group in 3
dimensions, as a tool for labeling/classifying both such polynomials and such polynomial
vector fields. We will also study some of their properties.

U.2 Polynomials and Spherical Polynomials

U.2.1 Polynomials

The first step in studying multi-variable polynomials is to decompose them into homogeneous
polynomials. According to (7.3.40) the number of monomials of degree n in d = 3 variables
is given by N(n, 3). And, according to (7.10.17), the total number of monomials in d = 3
variables having degrees 0 through n is given by S0(n, 3). Table 2.1 below shows values
of N(n, 3) and S0(n, 3) for various values of n. Also shown are the quantities 3N(n, 3)
and 3S0(n, 3). The quantity 3N(n, 3) is the number of parameters required to specify 3
homogeneous polynomials of degree n in d = 3 variables. And the quantity 3S0(n, 3) is
the number of parameters required to specify a d = 3 dimensional vector field in d = 3
variables through terms of degree n. Thus, for example, to specify a 3-dimensional vector
field through terms of degree n = 4 requires 3S0(4, 3) = 105 parameters. Finally, the table
displays SB(n), the number of parameters required to specify a source-free magnetic field
through terms of degree n. See (2.7). Thus, for example, to specify a source-free magnetic
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field through terms of degree n = 4 requires requires SB(4) = 35 parameters. Note that
the requirement that the field be source free, namely divergence and curl free, reduces the
parameter count substantially even for modest values of n.

Table U.2.1: N(n, 3), S0(n, 3), 3N(n, 3), 3S0(n, 3), and SB(n) as functions of n.

n N(n, 3) S0(n, 3) 3N(n, 3) 3S0(n, 3) SB(n)
0 1 1 3 3 3
1 3 4 9 12 8
2 6 10 18 30 15
3 10 20 30 60 24
4 15 35 45 105 35
5 21 56 63 168 48
6 28 84 84 252 63
7 36 120 108 360 80
8 45 165 135 495 99

U.2.2 Spherical Polar Coordinates and Harmonic Polynomials

Introduce spherical polar coordinates in the usual way as in Section 15.2.2:

r2 = x2 + y2 + z2, (U.2.1)

x = r sin(θ) cos(φ), (U.2.2)

y = r sin(θ) sin(φ), (U.2.3)

z = r cos θ. (U.2.4)

Let Y m
` (θ, φ) denote the usual spherical harmonics,

Y m
` (θ, φ) = {[(2`+ 1)(`−m)!]/[4π(`+m)!]}1/2Pm

` (cos θ) exp(imφ)

with − ` ≤ m ≤ `. (U.2.5)

Here the Pm
` are the usual associated Legendre functions. Consider the functions

Hm
` (r) = r`Y m

` (θ, φ). (U.2.6)

They are homogeneous polynomials of degree ` in the variables x, y, and z. They are also
harmonic functions, and are variously called harmonic polynomials or solid harmonics. For
a given ` there are 2`+ 1 such polynomials as m ranges over −` ≤ m ≤ `.

At this point we are prepared to compute SB(n). Evidently a source-free magnetic field
homogeneous of degree ` results from the gradient of a harmonic polynomial of degree `+ 1,
and there are 2(`+ 1) + 1 = 2`+ 3 such harmonic polynomials. Therefore we have the result

SB(n) =
n∑
`=0

(2`+3) = 3
n∑
`=0

1+2
n∑
`=0

` = 3(n+1)+2(n/2)(n+1) = (n+1)(n+3). (U.2.7)
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U.2.3 Examples of Harmonic Polynomials and Missing
Homogeneous Polynomials

Continuing with the discussion of harmonic polynomials we find, for example, the results

H0
0 (r) = 1/

√
4π; (U.2.8)

H1
1 (r) =

√
3/(4π)(−1/

√
2)(x+ iy) = −

√
3/(8π)(x+ iy),

H0
1 (r) =

√
3/(4π)z,

H−1
1 (r) =

√
3/(4π)(1/

√
2)(x− iy) =

√
3/(8π)(x− iy); (U.2.9)

H2
2 (r) =

√
15/(32π)(x+ iy)2,

H1
2 (r) = −

√
15/(8π)(x+ iy)z,

H0
2 (r) =

√
5/(16π)(2z2 − x2 − y2),

H−1
2 (r) =

√
15/(8π)(x− iy)z,

H−2
2 (r) =

√
15/(32π)(x− iy)2. (U.2.10)

Note that there is one function for the case ` = 0, three functions for the case ` = 1,
and five functions in the case ` = 2. Comparison of this function count with the first
thee lines of Table 2.1 shows that all the homogeneous monomials of degrees 0 and 1 have
been accounted for, but one homogenous polynomial of degree 2 is missing. This missing
polynomial is evidently proportional to r2 = x2 + y2 + z2, and may be taken to be r2H0

0 (r).1

What about the case n = 3? There are the polynomials Hm
3 (r), and there are 2`+ 1 = 7

such polynomials when ` = 3. But from Table 2.1 we see that there should be, in total, ten
polynomials when n = 3. What are the remaining three? The remaining three third-degree
polynomials can be taken to be the polynomials r2Hm

1 (r).

U.2.4 Spherical Polynomials

The general picture should now be clear. Form the functions Smn`(r), which we will call
spherical polynomials, by the rule

Smn`(r) = rnY m
` (θ, φ) with ` = n, n− 2, · · · , 0 for n even, (U.2.11)

Smn`(r) = rnY m
` (θ, φ) with ` = n, n− 2, · · · , 1 for n odd. (U.2.12)

So doing produces polynomials of degree n, and these polynomials form a basis for the set of
all polynomials of degree n. But still more can be said. The functions Y m

` have well-defined
transformation properties under rotations, and r is unchanged by rotations. It follows that
the Smn`(r) have the same transformation properties as the Y m

` .
Listed below, for possible future use, are the spherical polynomials for the cases n = 0,

n = 1, and n = 2:
S0

00(r) = 1/
√

4π; (U.2.13)

1Note that quantities of the form r2k = (x2 + y2 + x2)k are polynomials in the variables x, y, and z.
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S1
11(r) = −

√
3/(8π)(x+ iy),

S0
11(r) =

√
3/(4π)z,

S−1
11 (r) =

√
3/(8π)(x− iy); (U.2.14)

S0
20(r) = 1/

√
4π(x2 + y2 + z2); (U.2.15)

S2
22(r) =

√
15/(32π)(x+ iy)2,

S1
22(r) = −

√
15/(8π)(x+ iy)z,

S0
22(r) =

√
5/(16π)(2z2 − x2 − y2),

S−1
22 (r) =

√
15/(8π)(x− iy)z,

S−2
22 (r) =

√
15/(32π)(x− iy)2. (U.2.16)

U.3 Analytic/Polynomial Vector Fields and Spherical

Polynomial Vector Fields

With the Smn`(r) in hand, we next turn to the problem of classifying/labeling all vector fields
whose components are polynomials in x, y, and z. Our construction will be analogous to
that for vector spherical harmonics.

U.3.1 Vector Spherical Harmonics

Define a spherical basis e±1, e0 by the rule

e+1 = −(1/
√

2)(ex + iey),

e0 = ez,

e−1 = (1/
√

2)(ex − iey). (U.3.1)

Note the resemblance between (3.1) and (2.9) and (2.14).2 Indeed, suppose we define three
functions rm(r) by the rules

r+1(r) = r · e+1 = −(1/
√

2)(x+ iy),

r0(r) = r · e0 = z,

r−1(r) = r · e−1 = (1/
√

2)(x− iy). (U.3.2)

Then (2.13) can be rewritten in the form

Sm11(r) =
√

3/(4π) rm(r) =
√

3/(4π) r · em. (U.3.3)

2Note also that the basis (3.1) differs slightly from that of Exercise 3.7.22, which was selected to make
the so(3) structure constants real.
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Moreover, we have the relation

r−1(r)e+1 + r+1(r)e−1 = −(1/2)[(x− iy)(ex + iey) + (x+ iy)(ex − iey)]
= −xex − yey. (U.3.4)

It follows that there is the relation

− r−1(r)e+1 + r0(r)e0 − r+1(r)e−1 = xex + yey + zez = r. (U.3.5)

But, we have digressed. The vector spherical harmonics Y M
`J (θ, φ) are defined by the

rules

Y M
`J (θ, φ) =

∑
m1,m2

C`1J
m1m2M

Y m1
` (θ, φ)em2 . (U.3.6)

Here the C`1J
m1m2M

denote the Clebsch-Gordan coefficients that couple the angular momenta
` and 1 to produce angular momentum J .3 In particular, there are range rules:

when ` = 0, then J = 1; (U.3.7)

when ` > 0, then J can have the values J = `− 1, `, `+ 1. (U.3.8)

The particular Clebsch-Gordan coefficients needed for our purposes are given by the
relations

C`,1,`+1
M−1,1,M =

√
(`+M)(`+M + 1)/[(2`+ 1)(2`+ 2)], (U.3.9)

C`,1,`+1
M,0,M =

√
(`−M + 1)(`+M + 1)/[(2`+ 1)(`+ 1)], (U.3.10)

C`,1,`+1
M+1,−1,M =

√
(`−M)(`−M + 1)/[(2`+ 1)(2`+ 2)]; (U.3.11)

C`,1,`
M−1,1,M = −

√
(`+M)(`−M + 1)/[2`(`+ 1)], (U.3.12)

C`,1,`
M,0,M = M/

√
`(`+ 1), (U.3.13)

C`,1,`
M+1,−1,M =

√
(`−M)(`+M + 1)/[2`(`+ 1)]; (U.3.14)

C`,1,`−1
M−1,1,M =

√
(`−M)(`−M + 1)/[2`(2`+ 1)], (U.3.15)

C`,1,`−1
M,0,M = −

√
(`−M)(`+M)/[`(2`+ 1)], (U.3.16)

C`,1,`−1
M+1,−1,M =

√
(`+M + 1)(`+M)/[2`(2`+ 1)]. (U.3.17)

3Note that we write the subscripts on the vector spherical harmonics and elsewhere in the order `J ,
the same order in which they appear in the Clebsch-Gordan coefficients. Thus, the last lower index and
the upper index are paired and obey the rule −J ≤ M ≤ J . Many authors employ the opposite order,
namely J`. We also remark that the Clebsch-Gordan coefficients are also sometimes called Wigner or
vector-addition coefficients. Finally, we use the more compact notation C`1Jm1m2M

for what some authors
write as C(`1J ;m1m2M).
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U.3.2 Spherical Polynomial Vector Fields

In a corresponding manner, we define spherical polynomial vector fields SMn`J(r) by the rule

SMn`J(r) =
∑
m1,m2

C`1J
m1m2M

Sm1
n` (r)em2

= rn
∑
m1,m2

C`1J
m1m2M

Y m1
` (θ, φ)em2 = rnY M

`J (θ, φ). (U.3.18)

Note that by construction the components of SMn`J(r) are polynomial (analytic) functions of
the variables x, y, and z.

For convenience, Table 3.1 lists the allowed values of the triplets n`J in accord with the
relations (2.10), (2.11), (3.7), and (3.8). And, of course, M lies in the range −J ≤M ≤ J .

Table U.3.1: Allowed values of n`J

n ` J
0 0 1
1 1 0
1 1 1
1 1 2
2 0 1
2 2 1
2 2 2
2 2 3
3 1 0
3 1 1
3 1 2
3 3 2
3 3 3
3 3 4
· · ·
· · ·

U.3.3 Examples of and Counting Spherical Polynomial Vector
Fields

Let us work out a first few examples. The simplest are those for n = 0. In this case we must
have ` = 0, see (2.10), and J = 1, see (3.7). For the SM001 we find from (3.18) the results

SM001(r) = C011
0MMS

0
00(r)eM . (U.3.19)

From (3.9) through (3.11) we see that all the C011
0MM have value 1, and S0

00(r) is given by
(2.12). Therefore, there is the final result

SM001(r) = (1/
√

4π)eM . (U.3.20)
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Note that M can take the three values −1, 0,+1 corresponding to the fact that a constant
vector field has 3 constant components.

The next simplest case is n = 1. Then we must have ` = 1, see (2.11), and there are the
possibilities J = 0, 1, 2. See (3.8). For the case J = 0 we find from (3.18) the result

S0
110(r) = C110

−1,1,0S
−1
11 (r)e+1 + C110

000S
0
11(r)e0 + C110

1,−1,0S
1
11(r)e−1. (U.3.21)

From (3.15) through (3.17) we see that the required Clebsch-Gordan coefficients have the
values

C110
−1,1,0 =

√
1/3, (U.3.22)

C110
000 = −

√
1/3, (U.3.23)

C110
1,−1,0 =

√
1/3. (U.3.24)

Also, the required Sm11(r) can be written in the form (3.3). Therefore, (3.21) can be rewritten
in the final form

S0
110(r) = [

√
1/3][

√
3/(4π)][r−1(r)e+1 − r0(r)e0 + r+1(r)e−1] = −

√
1/(4π) r. (U.3.25)

Here we have used (3.5).
For the case J = 1 we find from (3.18) and (3.3) the results

SM111(r) =
∑
m1,m2

C111
m1m2M

Sm1
11 (r)em2 =

√
3/(4π)

∑
m1,m2

C111
m1m2M

rm1(r)em2 . (U.3.26)

It follows that

S1
111(r) = [

√
3/(4π)][C111

011r0(r)e+1 + C111
101r+1(r)e0], (U.3.27)

S0
111(r) = [

√
3/(4π)][C111

−1,1,0r−1(r)e+1 + C111
000r0(r)e0 + C111

1,−1,0r+1(r)e−1], (U.3.28)

S−1
111(r) = [

√
3/(4π)][C111

−1,0,−1r−1(r)e0 + C111
0,−1,−1r0(r)e−1]. (U.3.29)

In this case the relevant Clebsch-Gordan coefficients are given by the following relations:

C111
011 = −1/

√
2, (U.3.30)

C111
101 = 1/

√
2, (U.3.31)

see (3.12) and (3.13);

C111
−1,1,0 = −1/

√
2, (U.3.32)

C111
000 = 0, (U.3.33)

C111
1,−1,0 = 1/

√
2, (U.3.34)

see (3.12) through (3.14);

C111
−1,0,−1 = −1/

√
2, (U.3.35)

C111
0,−1,−1 = 1/

√
2, (U.3.36)
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see (3.13) and (3.14). Consequently, the relations (3.27) through (3.29) can be rewritten in
the form

S1
111(r) = [

√
3/(8π)][−r0(r)e+1 + r+1(r)e0], (U.3.37)

S0
111(r) = [

√
3/(8π)][−r−1(r)e+1 + r+1(r)e−1], (U.3.38)

S−1
111(r) = [

√
3/(8π)][−r−1(r)e0 + r0(r)e−1]. (U.3.39)

After a little struggle, we recognize that the expressions appearing on the right sides of
(3.37) through (3.39) can be written more compactly in terms of the vector cross product.
Doing so, we find the neat result

SM111(r) = −i[
√

3/(8π)][r × eM ]. (U.3.40)

In retrospect, the cross-product result we have found should not be too surprising since we
have, in effect, been combining two spin 1 objects to produce another spin 1 object, and
that is just what the vector cross product operation does.

We also note, in view of (3.20), that there is the relation

SM111(r) = −i[
√

3/2][r × SM001(r)]. (U.3.41)

Finally, consider the case J = 2. Now, from (3.18) and (3.3), we find that

SM112(r) =
∑
m1,m2

C112
m1m2M

Sm1
11 (r)em2 =

√
3/(4π)

∑
m1,m2

C112
m1m2M

rm1(r)em2 . (U.3.42)

It follows that
S2

112(r) = [
√

3/(4π)][C112
112r1(r)e1], (U.3.43)

S1
112(r) = [

√
3/(4π)][C112

011r0(r)e1 + C112
101r1(r)e0], (U.3.44)

S0
112(r) = [

√
3/(4π)][C112

−1,1,0r−1(r)e1 + C112
000r0(r)e0 + C112

1,−1,0r1(r)e−1], (U.3.45)

S−1
112(r) = [

√
3/(4π)][C112

−1,0,−1r−1(r)e0 + C112
0,−1,−1r0(r)e−1], (U.3.46)

S−2
112(r) = [

√
3/(4π)][C112

−1,−1,−2r−1(r)e−1]. (U.3.47)

To complete this calculation we need the Clebsch-Gordan coefficient values listed below:

C112
112 = 1, (U.3.48)

see (3.9);
C112

011 = 1/
√

2, (U.3.49)

C112
101 = 1/

√
2, (U.3.50)

see (3.9) and (3.10);
C112
−1,1,0 = 1/

√
6, (U.3.51)

C112
000 =

√
2/3 = 2/

√
6, (U.3.52)

C112
1,−1,0 = 1/

√
6, (U.3.53)
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see (3.9) through (3.11);

C112
−1,0,−1 = 1/

√
2, (U.3.54)

C112
0,−1,−1 = 1/

√
2, (U.3.55)

see (3.10) and (3.11);

C112
−1,−,1−2 = 1, (U.3.56)

see (3.11)).
Putting everything together gives the final results

S2
112(r) = [

√
3/(4π)][C112

112r1(r)e1] = [
√

3/(4π)]r1(r)e1

= [
√

3/(16π)](x+ iy)(ex + iey), (U.3.57)

S1
112(r) = [

√
3/(4π)][C112

011r0(r)e1 + C112
101r1(r)e0]

= [
√

3/(8π)][r0(r)e1 + r1(r)e0]

= −[
√

3/(16)π)][z(ex + iey) + (x+ iy)ez], (U.3.58)

S0
112(r) = [

√
3/(4π)][C112

−1,1,0r−1(r)e1 + C112
000r0(r)e0 + C112

1,−1,0r1(r)e−1]

= [
√

1/(8π)][r−1(r)e1 + 2r0(r)e0 + r1(r)e−1]

= [
√

1/(8π)](−xex − yey + 2zez), (U.3.59)

S−1
112(r) = [

√
3/(4π)][C112

−1,0,−1r−1(r)e0 + C112
0,−1,−1r0(r)e−1]

= [
√

3/(8π)][r−1(r)e0 + r0(r)e−1]

= [
√

3/(16π)][(x− iy)ez + z(ex − iey)], (U.3.60)

S−2
112(r) = [

√
3/(4π)][C112

−1,−1,−2r−1(r)e−1] = [
√

3/(4π)]r−1(r)e−1

= [
√

3/(16π)](x− iy)(ex − iey). (U.3.61)

Let us do a count of the n = 1 spherical polynomial vector fields we have found. Observe
that, when considering all n = 1 cases, there are 1 + 3 + 5 = 9 possibilities, which is to be
expected: When n = 1, N(1, 3) = 3. See table 2.1. Moreover there are three components to
be specified, and therefore there are 3N(1, 3) = 9 parameters to be specified.

At this point the dubious reader may wonder at our counting calculations because com-
plex numbers require two real numbers for their specification, and we appear to be working
over the complex field. Should, therefore, all our counts be doubled? The answer is no be-
cause in our case there are implicit built-in constraints. Let * denote complex conjugation.
Then, for the vectors em, there are the conjugation relations

(em)∗ = (−1)me−m. (U.3.62)
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And for the functions Y m
` there are the conjugation relations

[Y m
` (θ, φ)]∗ = (−1)mY −ml (θ, φ). (U.3.63)

Finally, since the Clebsch-Gordan coefficients are real and satisfy the relation

Cj1j2j3
m1m2m3

= (−1)j1+j2−j3Cj1j2j3
−m1,−m2,−m3

, (U.3.64)

it follows from (3.18) and (3.62) through (3.64) that the SMn`J(r) satisfy the conjugation
relations

[SMn`J(r)]∗ = (−1)`+J−M+1S−Mn`J (r). (U.3.65)

U.4 Independence/Orthogonality/Integral Properties

of Spherical Polynomials and Spherical

Polynomial Vector Fields

The spherical polynomials Smn`(r) and Sm
′

n′`′(r) are evidently linearly independent if their
degrees n and n′ differ. What can be said if n = n′? The spherical harmonics have the
orthogonality properties ∫

dΩ [Y m
` (θ, φ)]∗Y m′

`′ (θ, φ) = δ``′δmm′ . (U.4.1)

Here ∫
dΩ =

∫ π

0

sin(θ)dθ

∫ 2π

0

dφ. (U.4.2)

It follows from (2.9), (2.10), and (4.1) that the various Smn`(r) are all linearly independent.

The spherical polynomial vector fields SMn`J(r) and SM
′

n′`′J ′(r) are also evidently linearly
independent if their degrees n and n′ differ. What can be said if n = n′? The vector spherical
harmonics have the orthogonality properties∫

dΩ [Y M
`J (θ, φ)]∗ · Y M ′

`′J ′ (θ, φ) = δ``′δJJ ′δMM ′ . (U.4.3)

It follows from (3.18) and (4.3) that the various SMn`J(r) are all linearly independent.

U.5 Differential Properties of Spherical Polynomials

and Spherical Polynomial Vector Fields

The purpose of the section is to list various effects of the differential operator ∇ when acting
on spherical polynomials and spherical polynomial vector fields.
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U.5.1 Gradient Action on Spherical Polynomials

We begin with the action of ∇ on spherical polynomials. Suppose f(r) is any function of r,
and suppose ` ≥ 1. Then it can be shown that

∇[f(r)Y m
` (θ, φ)] =

√
`/(2`+ 1){f ′(r) + [(`+ 1)/r]f(r)}Y m

`−1,`(θ, φ)

−
√

(`+ 1)/(2`+ 1){f ′(r)− (`/r)f(r)}Y m
`+1,`(θ, φ).

(U.5.1)

For the case of the spherical polynomial functions Smn`(r) we have

f(r) = rn. (U.5.2)

See (2.10) and (2.11). It follows (again supposing ` ≥ 1) that

∇Smn`(r) =
√
`/(2`+ 1)(n+ `+ 1)Smn−1,`−1,`(r)

−
√

(`+ 1)/(2`+ 1)(n− `)Smn−1,`+1,`(r). (U.5.3)

What about the special case ` = 0? Then n must be even. So we write

n = 2k. (U.5.4)

Also we must have m = 0. If ` = 0, we might imagine evaluating (5.3) with the first term
omitted since it contains

√
`. Doing so gives the result

∇S0
2k,0(r) = −2kS0

2k−1,1,0(r). (U.5.5)

This result is, in fact, correct, and can be verified directly. See Exercise 6.11.
We close this subsection by observing that a special case of (5.3) is the relation

∇Smnn(r) =
√
n(2n+ 1)Smn−1,n−1,n(r). (U.5.6)

U.5.2 Divergence Action on Spherical Polynomial Vector Fields

We continue with the case of spherical polynomial vector fields. Suppose again that f(r) is
any function of r. Then (assuming ` ≥ 1) it can be shown that

∇·[f(r)Y M
`,J (θ, φ)] =

√
J/(2J + 1){f ′(r)−[(J−1)/r]f(r)}Y M

J (θ, φ) when J = `+1, (U.5.7)

∇ · [f(r)Y M
`,J (θ, φ)] = 0 when J = `, (U.5.8)

∇· [f(r)Y M
`,J (θ, φ)] = −

√
(J + 1)/(2J + 1){f ′(r)+[(J+2)/r]f(r)}Y M

J (θ, φ) when J = `−1.
(U.5.9)

For the case of the spherical polynomial vector fields SMn,`,J(r) the relation (5.2) again
holds. It follows (again assuming ` ≥ 1) that

∇ · SMn,`,J(r) =
√
J/(2J + 1)(n− J + 1)SMn−1,J(r) when J = `+ 1, (U.5.10)
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∇ · SMn,`,J(r) = 0 when J = `, (U.5.11)

∇ · SMn,`,J(r) = −
√

(J + 1)/(2J + 1)(n+ J + 2)SMn−1,J(r) when J = `− 1. (U.5.12)

What about the special case ` = 0? Then we must have J = 1. Moreover n must be even so
that (5.4) again holds. Evidently when ` = 0 and J = 1 the conditions relating J and ` in
(5.11) and (5.12) do not hold. However, the condition in (5.10) does hold and so we might
speculate that (5.10) should be evaluated with J = 1 to give the result

∇ · SM2k,0,1(r) = (
√

1/3)2kSM2k−1,1(r). (U.5.13)

This speculation is correct, and can be proved directly. See Exercise 6.13.

U.5.3 Curl Action on Spherical Polynomial Vector Fields

It can also be shown (assuming ` ≥ 1) that

∇× [f(r)Y M
`,J (θ, φ)] = i

√
(J + 1)/(2J + 1){f ′(r)− [(J − 1)/r]f(r)}Y M

J,J(θ, φ)

when J = `+ 1, (U.5.14)

∇× [f(r)Y M
`,J (θ, φ)] = i

√
(J + 1)/(2J + 1){f ′(r) + [(J + 1)/r]f(r)}Y M

J−1,J(θ, φ)

+i
√
J/(2J + 1){f ′(r)− (J/r)f(r)}Y M

J+1,J(θ, φ)

when J = `, (U.5.15)

∇× [f(r)Y M
`,J (θ, φ)] = i

√
J/(2J + 1){f ′(r) + [(J + 2)/r]f(r)}Y M

J,J(θ, φ)

when J = `− 1. (U.5.16)

For the case of the spherical polynomial vector fields SMn,`J(r) the relation (5.2) remains
true. It follows (again assuming ` ≥ 1) that there are the relations:

∇× SMn,`,J(r) = i
√

(J + 1)/(2J + 1)(n− J + 1)SMn−1,J,J(r)

when J = `+ 1. Equivalently, we have

∇× SMn,`,`+1(r) = i
√

(`+ 2)/(2`+ 3)(n− `)SMn−1,`+1,`+1(r), (U.5.17)

∇× SMn,`,J(r) = i
√

(J + 1)/(2J + 1)(n+ J + 1)SMn−1,J−1,J(r)

+i
√
J/(2J + 1)(n− J)SMn−1,J+1,J(r)

when J = `. Equivalently, we have

∇× SMn,`,`(r) = i
√

(`+ 1)/(2`+ 1)(n+ `+ 1)SMn−1,`−1,`(r)

+i
√
`/(2`+ 1)(n− `)SMn−1,`+1,`(r), (U.5.18)

∇× SMn,`,J(r) = i
√
J/(2J + 1)(n+ J + 2)SMn−1,J,J(r)

when J = `− 1. Equivalently, we have

∇× SMn,`,`−1(r) = i
√

(`− 1)/(2`− 1)(n+ `+ 1)SMn−1,`−1,`−1(r). (U.5.19)
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Again we must consider the special case ` = 0, in which case J = 1 and (5.4) holds. The
conditions relating J and ` associated with (5.18) and (5.19) do not hold in this case, but the
one associated with (5.17) does hold. We therefore speculate that (5.17) should be employed
in the case ` = 0 and J = 1 to give the result

∇× SM2k,0,1(r) = i(
√

2/3)(2k)SM2k−1,1,1(r). (U.5.20)

This speculation is also correct, and can be proved directly. See Exercise 6.17.
Note that in all cases there is the pleasant fact that the ∇× operator preserves the top

index and the last bottom index, the M and J indices, on SMn,`,J . It can be shown that
there are total angular momentum operators J1, J2, and J3, and this preservation is a
consequence of the fact that the operator ∇× commutes with the total angular momentum
operators.

We close this subsection by observing that a special case of (5.18) is the relation

∇× SMn,n,n(r) = i
√

(n+ 1)(2n+ 1)SMn−1,n−1,n(r). (U.5.21)

U.6 Multiplicative Properties of Spherical

Polynomials and Spherical Polynomial Vector

Fields

This section deals with the effects of multiplication by r.

U.6.1 Ordinary Multiplication

We begin with the case of spherical polynomials and consider ordinary multiplication. Sup-
pose ` ≥ 1. Then it can be shown that

rY m
` (θ, φ) =

√
`/(2`+ 1) rY m

`−1,`(θ, φ)−
√

(`+ 1)/(2`+ 1) rY m
`+1,`(θ, φ). (U.6.1)

In view of (3.18), it follows (again supposing ` ≥ 1) that

rSmn`(r) =
√
`/(2`+ 1) Smn+1,`−1,`(r)−

√
(`+ 1)/(2`+ 1) Smn+1,`+1,`(r). (U.6.2)

What about the special case ` = 0? Then n must be even. So we write

n = 2k. (U.6.3)

Also we must have m = 0. If ` = 0, we might imagine evaluating (6.1) with the first term
omitted since it contains

√
`. Doing so gives the result

rS0
2k,0(r) = −S0

2k+1,1,0(r). (U.6.4)

This result is, in fact, correct, and can be verified directly. See Exercise 6.23.
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U.6.2 Dot Product Multiplication

We continue with the case of spherical polynomial vector fields, and consider the case of dot
product multiplication. Assume that ` ≥ 1. Then it can be shown that

r · Y M
`,J (θ, φ) =

√
J/(2J + 1) rY M

J (θ, φ) when J = `+ 1, (U.6.5)

r · Y M
`,J (θ, φ) = 0 when J = `, (U.6.6)

r · Y M
`,J (θ, φ) = −

√
(J + 1)/(2J + 1) rY M

J (θ, φ) when J = `− 1. (U.6.7)

It follows from (3.18), again assuming ` ≥ 1, that

r · SMn,`,J(r) =
√
J/(2J + 1) SMn+1,J(r) when J = `+ 1, (U.6.8)

r · SMn,`,J(r) = 0 when J = `, (U.6.9)

r · SMn,`,J(r) = −
√

(J + 1)/(2J + 1) SMn+1,J(r) when J = `− 1. (U.6.10)

What about the special case ` = 0? Then we must have J = 1. Moreover n must be even
so that (5.4) again holds. Evidently when ` = 0 and J = 1 the conditions relating J and `
in (6.9) and (6.10) do not hold. However, the condition in (6.8) does hold and so we might
speculate that (6.8) should be evaluated with J = 1 to give the result

r · SM2k,0,1(r) =
√

1/3 SM2k+1,1(r). (U.6.11)

This speculation is correct, and can be proved directly. See Exercise 6.25.

U.6.3 Cross Product Multiplication

Lastly, we consider the case of cross product multiplication of spherical polynomial vector
fields. It can also be shown (assuming ` ≥ 1) that

r × Y M
`,J (θ, φ) = i

√
(J + 1)/(2J + 1) rY M

J,J(θ, φ)

when J = `+ 1, (U.6.12)

r × Y M
`,J (θ, φ) = i

√
(J + 1)/(2J + 1) rY M

J−1,J(θ, φ)

+i
√
J/(2J + 1) rY M

J+1,J(θ, φ)

when J = `, (U.6.13)

r × Y M
`,J (θ, φ)] = i

√
J/(2J + 1) rY M

J,J(θ, φ)

when J = `− 1. (U.6.14)

It follows from (3.18), again assuming ` ≥ 1, that there are the following results:

r × SMn,`,J(r) = i
√

(J + 1)/(2J + 1)SMn+1,J,J(r)

when J = `+ 1. Equivalently, we have

r × SMn,`,`+1(r) = i
√

(`+ 2)/(2`+ 3)SMn+1,`+1,`+1(r), (U.6.15)
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r × SMn,`,J(r) = i
√

(J + 1)/(2J + 1)SMn+1,J−1,J(r)

+i
√
J/(2J + 1)SMn+1,J+1,J(r)

when J = `. Equivalently, we have

r × SMn,`,`(r) = i
√

(`+ 1)/(2`+ 1)SMn+1,`−1,`(r)

+i
√
`/(2`+ 1)SMn+1,`+1,`(r), (U.6.16)

r × SMn,`,J(r) = i
√
J/(2J + 1)SMn+1,J,J(r)

when J = `− 1. Equivalently, we have

r × SMn,`,`−1(r) = i
√

(`− 1)/(2`− 1)SMn+1,`−1,`−1(r). (U.6.17)

Again we must consider the special case ` = 0, in which case J = 1 and (5.4) holds. The
conditions relating J and ` associated with (6.16) and (6.17) do not hold in this case, but the
one associated with (6.15) does hold. We therefore speculate that (6.15) should be employed
in the case ` = 0 and J = 1 to give the result

r × SM2k,0,1(r) = i(
√

2/3)SM2k+1,1,1(r). (U.6.18)

This speculation is also correct, and can be proved directly. See Exercise 6.27.
Note that in all cases there is also the pleasant fact that the r× operator also preserves

the top index and the last bottom index, the M and J indices, on SMn,`,J .
We close this subsection by making two useful observations. The first observation is that

a special case of (6.15) yields the relation

SMnnn(r) = [−i
√

(2n+ 1)/(n+ 1)][r × SMn−1,n−1,n(r)]. (U.6.19)

To verify this claim, evaluate (6.15) for the case

n = n′ − 1 (U.6.20)

and
` = n′ − 1; (U.6.21)

from which it follows that
`+ 1 = n′ (U.6.22)

and
(`+ 2)/(2`+ 3) = (n′ + 1)/(2n′ + 1). (U.6.23)

So doing gives the result

r × SMn′−1,n′−1,n′(r) = i
√

(n′ + 1)/(2n′ + 1)SMn′n′n′(r), (U.6.24)

from which (6.19) follows. Note that (3.41) is special case of (6.19).
The second observation is that combining (5.6) and (6.19) gives the relation

SMnnn(r) = [−i
√

(2n+ 1)/(n+ 1)][r × SMn−1,n−1,n(r)]

= [−i/
√
n(n+ 1)][r ×∇SMnn(r)]. (U.6.25)
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Note that if we define an orbital angular momentum operator L by the rule

L = r ×∇, (U.6.26)

then (6.25) can be written in the form

SMnnn(r) = [−i/
√
n(n+ 1)]LSMnn(r). (U.6.27)

Exercises

U.6.1. Cognizant of the relation between ` and n given by (2.10) and (2.11) and the rule
−` ≤ m ≤ `, count how many Smn` there are for a given n. Show the result agrees with
N(n, 3).

U.6.2. Verify (3.3) through (3.5).

U.6.3. Verify (3.19) and (3.20).

U.6.4. Verify (3.21) through (3.25).

U.6.5. Verify (3.26) through (3.41).

U.6.6. Verify (3.42) through (3.61).

U.6.7. Verify (3.65) given (3.18), (3.62), (3.63), and (3.65). Verify (3.65) directly for the
cases SM001, S0

110, SM111, and SM112 worked out explicitly in Subsection 3.3.

U.6.8. Recall the relation between n, `, and J given by (2.10), (2.11), (3.3), and (3.4). See
Table 3.1. Recall also the rule −J ≤ M ≤ J . Count how many SMn`J there are for a given
n. Show the result agrees with 3N(n, 3).

U.6.9. Show that ∫
dΩ Smn` =

√
4π rnδ`0δm0. (U.6.28)

Recall Exercise 16.1.1.

U.6.10. Given (5.1) and (5.2), derive (5.3). Verify (5.6).

U.6.11. Show from the definition (2.10) that

S0
2k,0(r) = (1/

√
4π)(x2 + y2 + z2)k. (U.6.29)

Show from the definition (3.18) and the result (3.25) that

S0
2k−1,1,0(r) = (−1/

√
4π)(x2 + y2 + z2)k−1r = (−1/

√
4π) r2k−2r. (U.6.30)

Verify (5.5) by direct computation.

U.6.12. Given (5.2) and (5.8) through (5.9), derive (5.10) through (5.12).
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U.6.13. Show from the definition (2.11) that

SM2k−1,1(r) = r2k−2SM11 (r). (U.6.31)

Show from the definition (3.18) and the relation (3.20) that

SM2k,0,1(r) = r2kSM001(r) = (1/
√

4π)r2keM . (U.6.32)

Verify (5.13) by direct computation. Hint: Use (3.3).

U.6.14. Verify that Smnn(r) is a harmonic polynomial. Verify, using the rules (5.3) and (5.5)
and (5.9) through (5.12), that

∇ · [∇Smnn(r)] = 0, (U.6.33)

as expected.

U.6.15. Show that

∇2Smn` = [n(n+ 1)− `(`+ 1)]Smn−2,`. (U.6.34)

U.6.16. Given (5.2) and (5.14) through (5.16), derive (5.17) through (5.19). Verify (5.21).

U.6.17. Show from the definition (3.18) and the relation (3.40) that

SM2k−1,1,1(r) = −i
√

3/(4π) r2k−2r × eM . (U.6.35)

Review Exercise 6.13. Using the results (6.32) and (6.35) for SM2k,0,1 and SM2k−1,1,1, verify
(5.20) by direct computation.

U.6.18. Using the rules (5.3) and (5.5) and (5.17) through (5.20), verify that

∇× [∇Smn`(r)] = 0, (U.6.36)

as expected.

U.6.19. Using the rules (5.10) through (5.13) and (5.17) through (5.20), verify that

∇ · [∇× SMn`J(r)] = 0, (U.6.37)

as expected.

U.6.20. Verify the relations

∇× S0
110(r) = 0, (U.6.38)

∇× SM111(r) = i
√

6SM001(r), (U.6.39)

∇× SM112(r) = 0. (U.6.40)
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U.6.21. Show that
∇× SM201(r) = i

√
8/3SM111(r), (U.6.41)

∇× SM223(r) = 0, (U.6.42)

∇× SM222(r) = i
√

15SM112(r), (U.6.43)

∇× SM221(r) = i
√

25/3SM111(r). (U.6.44)

Show that
∇×∇× SM201(r) = i

√
8/3∇× SM111(r) = −4SM001(r), (U.6.45)

∇×∇× SM223(r) = 0, (U.6.46)

∇×∇× SM222(r) = i
√

15∇× SM112(r) = 0 (U.6.47)

∇×∇× SM221(r) = i
√

25/3∇× SM111(r) = −
√

50 SM001(r). (U.6.48)

U.6.22. Given (6.1), derive (6.2).

U.6.23. Verify (6.4) using (2.10) and (3.25).

U.6.24. Given (6.5) through (6.7), derive (6.8) through (6.10).

U.6.25. Review Exercise 6.13. Verify (6.11) using (6.32), (3.3), and (2.11).

U.6.26. Given (6.12) through (6.14), derive (6.15) through (6.17).

U.6.27. Review Exercise 6.13. Verify (6.18) using (6.32), (3.40), (3.18), and (2.11).

U.6.28. Verify the steps that connect (6.14) to (6.19).

U.6.29. Verify that combining (5.6) and (6.19) yields (6.25).
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Appendix V

PROT without and in the Presence of
a Magnetic Field

V.1 The Case of No Magnetic Field

The material to be covered in this section is standard fare with results known through at
least third order, but not yet completely documented.

V.2 The Constant Magnetic Field Case

V.2.1 Preliminaries

Recall from Exercise 1.6.2 that the Hamiltonian for charged-particle motion in an electro-
magnetic field, when employing cylindrical coordinates with the angle φ as the independent
variable, is given by the relation

K = −ρ[(pt + qψ)2/c2 −m2c2 − (pρ − qAρ)2 − (py − qAy)2]1/2 − qρAφ. (V.2.1)

Assume that ψ = 0 in accord with the desire that there be no electric field. Also stipulate
that A have the components

Aρ = 0, (V.2.2)

Ay = 0, (V.2.3)

Aφ = −(ρ/2)B. (V.2.4)

According to Exercise 1.5.8 this choice for A results in a constant magnetic field

B = Bey. (V.2.5)

With these provisos it follows that K takes the form

K = −ρ[(pt/c)
2 −m2c2 − p2

ρ − p2
y]

1/2 + q(ρ2/2)B. (V.2.6)

Note that (1.5.49) can be written in the vector/matrix form(
Aφ
Aρ

)
=

(
cosφ − sinφ
sinφ cosφ

)(
Az
Ax

)
, (V.2.7)
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from which it follows immediately that there is the inverse relation(
Az
Ax

)
=

(
cosφ sinφ
− sinφ cosφ

)(
Aφ
Aρ

)
. (V.2.8)

Upon combining (1.2) through (1.4), (1.8), and (1.5.33), we see that there is the relation

A = (B/2)(−xez + zex). (V.2.9)

Evidently, A is in the Poincaré-Coulomb gauge.

V.2.2 Dimensionless Variables and Limiting Hamiltonian

Change to new scaled variables by writing

ρ = ρ0`+ ξ`, (V.2.10)

pρ = Pξp0, (V.2.11)

y = Y `, (V.2.12)

py = Pyp0, (V.2.13)

t = τ`/c, (V.2.14)

pt = p0
t + Pτp0c. (V.2.15)

Here ` is a scale length and p0 is the design momentum. [Note that the variable Y in (2.12)
is not to be confused with the Y associated with the R of Section 15.9.] Correspondingly,
there are the Poisson bracket relations

[ξ, Pξ] = (p0`)
−1[ρ, pρ], (V.2.16)

[Y, Py] = (p0`)
−1[y, py], (V.2.17)

[τ, Pτ ] = (p0`)
−1[t, pt]. (V.2.18)

Let K̃ be the new Hamiltonian for these new variables. It is given by the relation

K̃ = λ`{−(ρ0 + ξ)[(p0
t + Pτp0c)

2/c2 −m2c2 − p2
0P

2
ξ − p2

0P
2
y ]1/2 + (qB`/2)(ρ0 + ξ)2},

(V.2.19)

or, equivalently,

K̃ = λ`p0{−(ρ0 + ξ)[(p0
tp
−1
0 c−1 + Pτ )

2 −m2c2/p2
0 − P 2

ξ − P 2
y ]1/2 + [qB`/(2p0)](ρ0 + ξ)2}.

(V.2.20)

Here
λ = (`p0)−1. (V.2.21)

Observe that there are the relations

p0 = γmv0 = γβmc, (V.2.22)
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p0
t = −γmc2. (V.2.23)

It follows that there are the relations

m2c2/p2
0 = m2c2/(βγmc)2 = 1/(βγ)2, (V.2.24)

p0
t/(p0c) = −(γmc2)/(γβmc2) = −1/β. (V.2.25)

Consequently, K̃ can also be written on the form

K̃ = −(ρ0 + ξ)[(−1/β + Pτ )
2 − (βγ)−2 − P 2

ξ − P 2
y ]1/2 + (b/2)(ρ0 + ξ)2

(V.2.26)

where
b = qB`/p0. (V.2.27)

We also observe that
1/β2 − 1/(βγ)2 = 1. (V.2.28)

It follows that K̃ can also be written as

K̃ = −(ρ0 + ξ)[1− 2Pτ/β + P 2
τ − P 2

ξ − P 2
y ]1/2 + (b/2)(ρ0 + ξ)2.

(V.2.29)

Finally, we take the limit ρ0 → 0 to obtain the limiting Hamiltonian

K̃ lim = −ξ[1− 2Pτ/β + P 2
τ − P 2

ξ − P 2
y ]1/2 + (b/2)ξ2. (V.2.30)

V.2.3 Design Trajectory

Evidently Py and Pτ are integrals of motion and vanish on the design trajectory. Therefore
the variables ξ, Pξ on the design trajectory are governed by the Hamiltonian

K̃dt = −ξ[1− P 2
ξ ]1/2 + (b/2)ξ2. (V.2.31)

Correspondingly, the associated equations of motion for these variables on the design tra-
jectory are given by the relations

ξ′ = ∂K̃dt/∂Pξ = ξPξ[1− P 2
ξ ]−1/2, (V.2.32)

P ′ξ = −∂K̃dt/∂ξ = [1− P 2
ξ ]1/2 − bξ. (V.2.33)

They have the particular solution
ξ = 0, (V.2.34)

Pξ(φ) = sin ∆, (V.2.35)

where
∆ = φ− φin. (V.2.36)

We will take (2.34) through (2.36) to be the ξ, Pξ results for the design trajectory. Note that
the design trajectory does not depend on b. That is, it does not depend on the magnetic
field.

As assumed earlier, and consistent with the full equations of motion associated with the
full Hamiltonian (2.30), the remaining variables on the design trajectory vanish,

Y = Py = τ = Pτ = 0. (V.2.37)

It follows, from (2.34) through (2.37), that all the variables save Pξ are deviation variables.
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V.2.4 Deviation Variables

To proceed further we wish to replace ξ and Pξ by deviation variables, which we will call

ξ̂ and P̂ξ, so that all variables are deviation variables. This is simply done by making the
definitions

ξ = ξ̂, (V.2.38)

Pξ = sin ∆ + P̂ξ, (V.2.39)

and leaving all other variables in peace. The relations (2.38) and (2.39) are a canonical
transformation and can be obtained from the F2 generating function given by

F2(ξ, P̂ξ) = ξ(sin ∆ + P̂ξ). (V.2.40)

Indeed, employing the standard machinery (6.5.5) yields the results

Pξ = ∂F2/∂ξ = sin ∆ + P̂ξ, (V.2.41)

ξ̂ = ∂F2/∂P̂ξ = ξ, (V.2.42)

as desired.

V.2.5 Deviation Variable Hamiltonian

We may regard the deviation variables as new variables. Associated with the use of these
new variables will be a new Hamiltonian H given by the relation

H = K̃ lim + ∂F2/∂φ = K̃ lim + ξ cos ∆ = K̃ lim + ξ̂ cos ∆. (V.2.43)

Use of (2.43) yields the result

H = −ξ̂[1− 2Pτ/β + P 2
τ − (P̂ξ + sin ∆)2 − P 2

y ]1/2 + (b/2)ξ̂2 + ξ̂ cos ∆, (V.2.44)

or

H = −ξ̂[1− sin2 ∆− 2Pτ/β + P 2
τ − P̂ 2

ξ − 2P̂ξ sin ∆− P 2
y ]1/2 + (b/2)ξ̂2 + ξ̂ cos ∆, (V.2.45)

or

H = −ξ̂[cos2 ∆− 2Pτ/β + P 2
τ − P̂ 2

ξ − 2P̂ξ sin ∆− P 2
y ]1/2 + (b/2)ξ̂2 + ξ̂ cos ∆. (V.2.46)

V.2.6 Computation of Transfer Map

Our aim is to find the transfer map associated with H. According to Section 10.4, this
entails expanding H in terms of homogeneous polynomials,

H = H0 +H1 +H2 +H3 +H4 + · · · . (V.2.47)

So doing gives for H0 through H2 the results

H0 = 0, (V.2.48)
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H1 = 0, (V.2.49)

H2 = ξ̂Pτ/(β cos ∆) + ξ̂P̂ξ tan ∆ + (b/2)ξ̂2. (V.2.50)

Note that H1 vanishes as expected. That is, the design trajectory is given by the relations
(2.37) supplemented by the relations

ξ̂ = P̂ξ = 0. (V.2.51)

Linear Part of Transfer Map

The first step is to find R, the linear part of the transfer map. This requires solving the
equations of motion associated with H2. They read

ξ̂′ = ∂H2/∂P̂ξ = ξ̂ tan ∆, (V.2.52)

P̂ ′ξ = −∂H2/∂ξ̂ = −P̂ξ tan ∆− Pτ/(β cos ∆)− bξ̂, (V.2.53)

Y ′ = ∂H2/∂Py = 0, (V.2.54)

P ′y = −∂H2/∂Y = 0, (V.2.55)

τ ′ = ∂H2/∂Pτ = ξ̂/(β cos ∆), (V.2.56)

P ′τ = −∂H2/∂τ = 0. (V.2.57)

The solutions to (2.54), (2.55), and (2.57) can be written immediately,

Y (φ) = Y in, (V.2.58)

PY (φ) = P in
Y , (V.2.59)

Pτ (φ) = P in
τ . (V.2.60)

The solution to (2.52), which is less trivial, is

ξ̂(φ) = ξ̂in/ cos ∆. (V.2.61)

The results (2.60) and (2.61) can now be inserted into (2.53) to yield the differential equation

P̂ ′ξ = −P̂ξ tan ∆−P in
τ /(β cos ∆)−bξ̂in/ cos ∆ = −P̂ξ tan ∆−(bξ̂in +P in

τ /β)/ cos ∆. (V.2.62)

It has the solution

P̂ξ(φ) = P̂ in
ξ cos ∆− (bξ̂in + P in

τ /β) sin ∆. (V.2.63)

Finally, insertion of (2.61) into (2.56) yields the differential equation

τ ′ = ξ̂in/(β cos2 ∆). (V.2.64)

It has the solution

τ(φ) = τ in + ξ̂in(1/β) tan ∆. (V.2.65)
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From these solutions we can read off the matrix R associated with R. From (2.58)
through (2.61), (2.63), and (2.65) we see that there is the vector/matrix relation

ξ̂(φ)

P̂ξ(φ)
Y (φ)
Py(φ)
τ(φ)
Pτ (φ)

 =


1/ cos ∆ 0 0 0 0 0
−b sin ∆ cos ∆ 0 0 0 −(1/β) sin ∆

0 0 1 0 0 0
0 0 0 1 0 0

(1/β) tan ∆ 0 0 0 1 0
0 0 0 0 0 1




ξ̂in

P̂ in
ξ

Y in

P in
y

τ in

P in
τ

 . (V.2.66)

The matrix R is the matrix appearing in (2.66).

Nonlinear Parts of Transfer Map

To compute the nonlinear parts of the transfer map it is necessary to continue the expansion
(2.47) begun in (2.48) through (2.50) to find H3, H4 · · · and to then apply the machinery of
Section 10.5 to find the associated f3, f4 · · · . For example, one finds from (2.46) and (2.47)
the result

H3 = . (V.2.67)

Exercises

V.2.1. Verify that the solutions given by (2.34) through (2.36) do indeed satisfy the differ-
ential equations (2.32) and (2.33).

V.2.2. Verify the expansion (2.48) through (2.50).

V.2.3. Verify that the solutions (2.58) through (2.61), (2.63), and (2.65) do indeed satisfy
the differential equations (2.52) through (2.57).

V.2.4. Verify that R, the matrix appearing in (1.65), is symplectic.

V.2.5. Verify (2.67).

V.3 The Inhomogeneous Field Case

The work so far has dealt with the case of a constant magnetic field. We now consider the
general case.

V.3.1 Vector Potential for the General Inhomogeneous Field
Case

We begin by expanding the vector potential in the Poincaré-Coulomb gauge and in homo-
geneous polynomials employing Cartesian coordinates and Cartesian unit vectors. That is
we write

A(r) = Amin 1(r) +Amin 2(r) +Amin 3(r) + · · · . (V.3.1)
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For Amin 1(r) we use (2.9) to account for the constant part of the magnetic field and write

Amin 1(r) = (B/2)(−xez + zex). (V.3.2)

For example, in the case of a magnetic monopole doublet, there is the result

Amin 1(r) = [ga/(X2
0 + Z2

0 + a2)3/2](−zex + xez), (V.3.3)

and there is the relation
B = −2[ga/(X2

0 + Z2
0 + a2)3/2]. (V.3.4)

And, for the same example and again employing Cartesian coordinates and Cartesian unit
vectors, there is the result

Amin 2(r) = [−2ga/(X2
0 + Z2

0 + a2)5/2]×
[(Z0y

2 − Z0z
2 −X0xz)ex + (X0yz − Z0xy)ey + (X0x

2 + Z0xz −X0y
2)ez].

(V.3.5)

See (15.9.7) and (15.9.8) in Section 15.9. For other examples the Amin n(r) with n ≥ 2
will be different, but still homogeneous of degree n. We will continue to assume that the
constant part of the magnetic field is of the form (2.5), and therefore (3.2) will always be
assumed to hold.

V.3.2 Transition to Cylindrical Coordinates

Next, as in Exercise 1.5.4, introduce polar coordinates in the x, z plane by the relations

x = ρ cos φ, (V.3.6)

z = ρ sin φ.

That is, we will again employ the cylindrical coordinates ρ, y, φ and also the unit vectors
eρ, ey, eφ of Exercise 1.5.4. See (3.6) and (1.5.52) through (1.5.54). Let us express A in
terms of these cylindrical coordinates and unit vectors.

Begin, for example, with (3.2). With the aid of (3.6) and (1.5.53) the relation (3.2) can
be rewritten in the form

Amin 1(r) = −(B/2)ρ(− sinφ ex + cosφ ez)

= −(B/2)ρeφ. (V.3.7)

Since eρ, ey, eφ form an orthonormal triad, it follows from (1.5.44) and (3.2) that there are
the results

Amin 1
ρ (r) = eρ ·Amin 1(r) = 0, (V.3.8)

Amin 1
y (r) = ey ·Amin 1(r) = 0, (V.3.9)

Amin 1
φ (r) = eφ ·Amin 1(r) = −(B/2)ρ, (V.3.10)

which are to be expected in accord with (2.2) through (2.4) and (2.9).
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As a second illustrative example, let us work on (3.5), which would be the Amin 2(r) in
the case of a magnetic monopole doublet. With the aid of (3.6) it takes the form

Amin 2(r) = [−2ga/(X2
0 + Z2

0 + a2)5/2]×
{[Z0y

2 − ρ2(Z0 sin2 φ−X0 cosφ sinφ)]ex + [ρy(X0 sinφ− Z0 cosφ)]ey

+[ρ2(X0 cos2 φ+ Z0 cosφ sinφ)−X0y
2ez}.

(V.3.11)

From (1.5.35), the definitions (1.5.44), and (3.11) there are the results

Amin 2
ρ (r) = eρ ·Amin 2(r) = [−2ga/(X2

0 + Z2
0 + a2)5/2]×

{[cosφ ex + sinφ ez] · [Z0y
2ex − ρ2(Z0 sin2 φ−X0 cosφ sinφ)ex]

+[cosφ ex + sinφ ez] · [ρ2(X0 cos2 φ+ Z0 cosφ sinφ)ez −X0y
2ez]}

= [−2ga/(X2
0 + Z2

0 + a2)5/2]×
{(cosφ)[Z0y

2 − ρ2(Z0 sin2 φ−X0 cosφ sinφ)]

+(sinφ)[ρ2(X0 cos2 φ+ Z0 cosφ sinφ)−X0y
2]}, (V.3.12)

Amin 2
y (r) = ey ·Amin 2(r) = [−2ga/(X2

0 + Z2
0 + a2)5/2][ρy(X0 sinφ− Z0 cosφ)], (V.3.13)

Amin 2
φ (r) = eφ ·Amin 2(r) = [−2ga/(X2

0 + Z2
0 + a2)5/2]×

{[− sinφ ex + cosφ ez] · [Z0y
2ex − ρ2(Z0 sin2 φ−X0 cosφ sinφ)ex]

+[− sinφ ex + cosφ ez] · [ρ2(X0 cos2 φ+ Z0 cosφ sinφ)ez −X0y
2ez]}

= [−2ga/(X2
0 + Z2

0 + a2)5/2]×
{−(sinφ)[Z0y

2 − ρ2(Z0 sin2 φ−X0 cosφ sinφ)]

+(cosφ)[ρ2(X0 cos2 φ+ Z0 cosφ sinφ)−X0y
2]}. (V.3.14)

V.3.3 Dimensionless Variables and Limiting Vector Potential

We now make the substitutions (2.10) through (2.15) and take the limit ρ0 → 0 to obtain
the limiting vector potential whose components we will denote by letters with breve marks
˘ above. So doing yields for the constant part of the magnetic field the limiting result

Ămin 1
φ = −`(B/2)ξ. (V.3.15)

And for the leading term of the nonconstant part of the magnetic field, again taking for
illustrative purposes the magnetic monopole doublet example, there are the results

Ămin 2
ρ = `2[−2ga/(X2

0 + Z2
0 + a2)5/2]×

{(cosφ)[Z0Y
2 − ξ2(Z0 sin2 φ−X0 cosφ sinφ)]

+(sinφ)[ξ2(X0 cos2 φ+ Z0 cosφ sinφ)−X0Y
2]}, (V.3.16)

Ămin 2
y = `2[−2ga/(X2

0 + Z2
0 + a2)5/2][ξY (X0 sinφ− Z0 cosφ)], (V.3.17)

Ămin 2
φ = `2[−2ga/(X2

0 + Z2
0 + a2)5/2]×

{−(sinφ)[Z0Y
2 − ξ2(Z0 sin2 φ−X0 cosφ sinφ)]

+(cosφ)[ξ2(X0 cos2 φ+ Z0 cosφ sinφ)−X0Y
2]}. (V.3.18)
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V.3.4 Computation of Limiting Hamiltonian in Dimensionless
Variables

At this point we are again ready to compute K̃ lim, but this time with possible inhomogeneity
in the magnetic field included. Let us introduce the notation

Ămin non = Ămin 2 + Ămin 3 + Ămin 4 + · · · (V.3.19)

to denote the nonlinear part of the vector potential. We now find for the limiting Hamilto-
nian the result

K̃ lim = −ξ[1− 2Pτ/β + P 2
τ − (Pξ −Amin non

ρ )2 − (Py −Amin non
y )2]1/2

+(b/2)ξ2 − ξAmin non
φ

(V.3.20)

where

Amin non
ρ = (q/p0)Ămin non

ρ , (V.3.21)

Amin non
y = (q/p0)Ămin non

y , (V.3.22)

Amin non
φ = (q/p0)Ămin non

φ . (V.3.23)

V.3.5 Deviation Variable Hamiltonian

Introduce, as before, deviation variables (ξ̂, τ, Y ; P̂ξ, Pτ , Py) with ξ̂ and P̂ξ defined by (2.38)
and (2.39). Doing so, and employing the rule (2.43), yields the new Hamiltonian

H = −ξ̂[1− 2Pτ/β + P 2
τ − (sin ∆ + P̂ξ − Âmin non

ρ )2 − (Py − Âmin non
y )2]1/2

+ (b/2)ξ̂2 − ξ̂Âmin non
φ + ξ̂ cos ∆. (V.3.24)

Here we have used the notation Âmin non
ρ to indicate that the variable ξ in Amin non

ρ has been

replaced by ξ̂, etc. For example, in the case of a magnetic monopole doublet, there are the
results

Âmin 2
ρ = (q/p0)`2[−2ga/(X2

0 + Z2
0 + a2)5/2]×

{(cosφ)[Z0Y
2 − ξ̂2(Z0 sin2 φ−X0 cosφ sinφ)]

+(sinφ)[ξ̂2(X0 cos2 φ+ Z0 cosφ sinφ)−X0Y
2]}, (V.3.25)

Âmin 2
y = (q/p0)`2[−2ga/(X2

0 + Z2
0 + a2)5/2][ξ̂Y (X0 sinφ− Z0 cosφ)], (V.3.26)

Âmin 2
φ = (q/p0)`2[−2ga/(X2

0 + Z2
0 + a2)5/2]×

{−(sinφ)[Z0Y
2 − ξ̂2(Z0 sin2 φ−X0 cosφ sinφ)]

+(cosφ)[ξ̂2(X0 cos2 φ+ Z0 cosφ sinφ)−X0Y
2]}. (V.3.27)



2632 V. PROT WITHOUT AND IN THE PRESENCE OF A MAGNETIC FIELD

V.3.6 Expansion of Deviation Variable Hamiltonian and
Computation of Transfer Map

As done before in Subsection 2.6, we expand H in terms of homogeneous polynomials. Begin
by observing that there is the relation

1− (sin ∆ + P̂ξ − Âmin non
ρ )2 =

cos2 ∆− P̂ 2
ξ − (Âmin non

ρ )2 − 2(sin ∆)P̂ξ + 2(sin ∆)Âmin non
ρ + 2P̂ξÂmin non

ρ .

(V.3.28)

Consequently H, as given by (3.24), can be rewritten in the form

H = −ξ̂[cos2 ∆− 2Pτ/β + P 2
τ − P̂ 2

ξ − (Âmin non
ρ )2

−2(sin ∆)P̂ξ + 2(sin ∆)Âmin non
ρ + 2P̂ξÂmin non

ρ

−P 2
y + 2PyÂmin non

y − (Âmin non
y )2]1/2

+(b/2)ξ̂2 − ξ̂Âmin non
φ + ξ̂ cos ∆.

(V.3.29)

We are now prepared to expand H in the form (2.47). Compare (2.46) and (3.29). Since
Âmin non
ρ and Âmin non

y consist entirely of terms of degree 2 and higher, and ξ̂Âmin non
φ consists

entirely of terms of degree 3 and higher, it follows that they make no contribution to H0

through H2. {Note that the term of the form [∗∗∗]1/2 in (3.29) is multiplied by ξ̂.} Therefore
the H0, H1, and H2 terms in the expansion are the same as those given by (2.48) through
(2.50). Consequently the design orbit and R, the linear part of the transfer map about the
design orbit, are the same as those found earlier. That is, the design orbit does not depend
on the magnetic field, and the linear part of the transfer map depends only on the uniform
part of the magnetic field, described by Amin 1

φ or b. The design orbit and the linear part
of the transfer map do not depend on field inhomogeneities described by the Amin n with
n ≥ 2. Field inhomogeneities play a role only in the calculation of the Hm with m ≥ 3.
Correspondingly, field inhomogeneities play a role in the transfer map only for the generators
fm with m ≥ 3.

We close this subsection by computing, for example, the H3 that occurs in the expansion
of (3.29). We find the result

H3 = . (V.3.30)

See Exercise 3.1. Note that (2.67) and (3.30) agree when there are no field inhomogeneities.

Exercises

V.3.1. Verify that, in the computation of the H3 term that occurs in the expansion of (3.29),
the terms * are of too high an order to play a role, and therefore may be neglected.
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Appendix W

Smoothing for Harmonic Functions

W.1 Introduction

W.2 The Line in Two Space

Consider in x, y space the line y = 0 and suppose a potential ψ0(x) is specified on this line.
Define its Fourier transform ψ̃0(kx) by the rule

ψ̃0(kx) = [1/
√

(2π)]

∫
dx exp(−ikxx)ψ0(x). (W.2.1)

Make the Ansatz

ψ(x, y) = [1/
√

(2π)]

∫
dkx exp(ikxx) exp(−ky)ψ̃0(kx) (W.2.2)

where
k =

√
k2
x = |kx|. (W.2.3)

Evidently this ψ(x, y) is harmonic and vanishes as y → +∞. We also have the result

ψ(x, 0) = [1/
√

(2π)]

∫
dkx exp(ikxx)ψ̃0(kx) = ψ0(x). (W.2.4)

It follows that we have found the solution to Laplace’s equation in the upper half plane
y ≥ 0 associated with the y = 0 boundary value ψ0(x).

Note that the operation defined by (2.2) is smoothing for y > 0. High spatial frequencies
are suppressed by the factor exp(−ky), and this exponential suppression/damping is ever
more effective the larger the value of y. The higher the y observation line is above the y = 0
line, the smoother ψ(x, y) on this observation line becomes as a function of x.

We also observe, in passing, two facts. First, suppose ψ0, now to be called ψc0, is a
constant function,

ψc0(x) = c. (W.2.5)

Then, by (2.1),
ψ̃c0(kx) = c

√
2πδ(kx). (W.2.6)
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It follows from (2.2) that there is the relation

ψc(x, y) = c. (W.2.7)

As expected, if ψ is constant on the boundary y = 0, it will have the same constant value
in the upper half plane y ≥ 0. Second, for any solution, there is the relation∫

dx ψ(x, y) = [1/
√

(2π)]

∫
dkx exp(−ky)ψ̃0(kx)

∫
dx exp(ikxx)

= [1/
√

(2π)]

∫
dkx exp(−ky)ψ̃0(kx)(2π)δ(kx)

=
√

(2π)ψ̃0(0) =

∫
dx ψ0(x). (W.2.8)

That is, the dx integral of ψ(x, y) over any line of constant y is independent of y.
To further study smoothing in the case of a line, suppose ψ0, now to be called ψδ0, is a

delta function centered on the origin,

ψδ0(x) = δ(x). (W.2.9)

Then, by (2.1),

ψ̃δ0(kx) = 1/
√

(2π), (W.2.10)

and (2.2) takes the form

ψδ(x, y) = [1/(2π)]

∫
dkx exp(ikxx) exp(−ky). (W.2.11)

This integral can be evaluated to give the result

ψδ(x, y) = (1/π)[y/(x2 + y2)]. (W.2.12)

We next observe directly that, as expected, the function ψδ(x, y) given by (2.12) is
harmonic. Define ρ by the rule

ρ =
√
x2 + y2. (W.2.13)

From 2-D potential theory we know that the function log(ρ) is harmonic. By the properties
of the logarithm function there is the relation

log(ρ2) = 2 log(ρ), (W.2.14)

and therefore the function log(ρ2) is also harmonic. We next observe that the operators ∂y
and ∇2 commute. It follows that the function ∂y log(ρ2) is also harmonic. Finally, there is
the result

∂y log(ρ2) = ∂y log(x2 + y2) = 2y/(x2 + y2). (W.2.15)

Upon comparing (2.12) and (2.15) we see that ψδ(x, y) is indeed harmonic.
Let us now, with the aid of (2.12), illustrate the general behavior of ψδ(x, y). Figure 2.1

displays ψδ(x, y) as a function of x for various values of y. Figure 2.2 displays ψδ(x, y) as a
function of y for various values of x.
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Figure W.2.1: The function ψδ(x, y) as a function of x for various values of y.
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Figure W.2.2: The function ψδ(x, y) as a function of y for various values of x.
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From Figure 2.1 we see that the delta function potential spike on the y = 0 line becomes
an ever lower and broader bump on lines of increasing y. And we know from (2.8) that the
weighted area under the bump remains the same for all y,∫

dx ψδ(x, y) =

∫
dx δ(x) = 1. (W.2.16)

Thus the effect of a disturbance in the potential on the y = 0 line “decays” away as one
moves to lines with successively larger values of y. Figure 2.2 illustrates this decay as a
function of y for various values of x. Indeed, there are the expansions

ψδ(x, y) = (1/π)(1/y)[1− (x2/y2) + (x2/y2)2 − · · · ] for x < y, (W.2.17)

ψδ(x, y) = [1/(2π)](1/y) for x = y, (W.2.18)

ψδ(x, y) = (1/π)(y/x2)[1− (y2/x2) + (y2/x2)2 − · · · ] for y < x. (W.2.19)

Evidently, as expected, the sequence of functions ψδ(x, y) for varying y converges to the
delta function,

lim
y→0+

ψδ(x, y) = δ(x). (W.2.20)

Finally, we see from (2.17) that ψδ(x, y) falls of as y−1 for fixed x and large y, and observe
that the dimension of a line is 1. And, from (2.19), we see that ψδ(x, y) falls of as x−2 for
fixed y and large x. For yet more insight, see Exercise 2.3.

What is the mechanism for this decay? In agreement with (2.8) and (2.16), this decay
occurs entirely due to spreading. Indeed, the relations (2.5) and (2.7) illustrate that if the
initial/boundary potential distribution is completely “spread out”, i.e. constant, then no
decay occurs.

We have seen an example of how the effects of a local disturbance in the potential
diminish with distance from the disturbance.

From the response (2.12) to a delta function disturbance (2.9) we can derive the response
to a general disturbance. With (2.12) in mind, define a kernel G(x;x′; y) by the rule

G(x;x′; y) = (1/π){y/[y2 + (x− x′)2]. (W.2.21)

Observe that a general disturbance ψ0(x) has the integral representation

ψ0(x) =

∫
dx′ψ0(x′)δ(x− x′). (W.2.22)

It follows that the response to ψ0(x) is given by the integral

ψ(x, y) =

∫
dx′ψ0(x′)G(x;x′; y). (W.2.23)

For what it’s worth we remark that, according to the connection between Laplace and
Monte Carlo, the quantity G(x;x′; y) is the probability that a random walk initiated at the
point x, y will reach the point x′, 0.
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Exercises

W.2.1. Evaluate the integral (2.11) to verify the claim (2.12).

W.2.2. Evaluate directly the integral on the left side of (2.16) using (2.12). Verify (2.23)
for the case (2.5).

W.2.3. The purpose of this exercise is to verify and employ an observation made by Dan
Abell. Using (2.12), consider the level curves of ψδ having heights h by writing

ψδ(x, y) = h. (W.2.24)

Show that so doing yields the relation

x2 + [y − 1/(2πh)]2 = [1/(2πh)]2. (W.2.25)

Observe that the level curves (equipotential lines) are all circles, and that all the circles pass
through the origin. Sketch them for yourself, and label them according to the values of h!
Employ this result to explain the features of Figures 2.1 and 2.2.

W.3 The Plane in Three Space

Consider in x, y, z space the plane z = 0 and suppose a potential ψ0(x, y) is specified on this
plane. Define its Fourier transform ψ̃0(kx, ky) by the rule

ψ̃0(kx, ky) = [1/(2π)]

∫
dxdy exp(−ikxx) exp(−ikyy)ψ0(x, y). (W.3.1)

Make the Ansatz

ψ(x, y, z) = [1/(2π)]

∫
dkxdky exp(ikxx) exp(ikyy) exp(−kz)ψ̃0(kx, ky) (W.3.2)

where
k =

√
k2
x + k2

y. (W.3.3)

Evidently this ψ(x, y, z) is harmonic and vanishes as z → +∞. We also have the result

ψ(x, y, 0) = [1/(2π)]

∫
dkxdky exp(ikxx) exp(ikyy)ψ̃0(kx, ky) = ψ0(x, y). (W.3.4)

It follows that we have found the solution to Laplace’s equation in the upper half space
z ≥ 0 associated with the z = 0 boundary value ψ0(x, y).

Note that the operation defined by (3.2) is smoothing for z > 0. High spatial frequencies
are suppressed by the factor exp(−kz), and this exponential suppression/damping is ever
more effective the larger the value of z. The higher the z observation plane is above the
z = 0 plane, the smoother ψ(x, y, z) on this observation plane becomes as a function of x
and y.
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We also observe, in passing, two facts. First, suppose ψ0, now to be called ψc0, is a
constant function,

ψc0(x, y) = c. (W.3.5)

Then, by (3.1),
ψ̃c0(kx) = c(2π)δ(kx)δ(ky). (W.3.6)

It follows from (3.2) that there is the relation

ψc(x, y, z) = c. (W.3.7)

As expected, if ψ is constant on the boundary z = 0, it will have the same constant value
in the upper half space z ≥ 0. Second, for any solution, there is the relation∫

dxdy ψ(x, y, z) = [1/(2π)]

∫
dkxdky exp(−kz)ψ̃0(kx, ky)

∫
dxdy exp(ikxx) exp(ikyy)

= [1/(2π)]

∫
dkxdky exp(−kz)ψ̃0(kx, ky)(2π)2δ(kx)δ(ky)

= (2π)ψ̃0(0, 0) =

∫
dxdy ψ0(x, y). (W.3.8)

That is, the dxdy integral of ψ(x, y, z) over any plane of constant z is independent of z.
To further study smoothing in the case of a plane, suppose ψ0, now to be called ψδ0, is a

delta function centered on the origin,

ψδ0(x, y) = δ(x)δ(y). (W.3.9)

Then, by (3.1),
ψ̃δ0(kx, ky) = 1/(2π), (W.3.10)

and (3.2) takes the form

ψδ(x, y, z) = [1/(2π)2]

∫
dkxdky exp(ikxx) exp(ikyy) exp(−kz). (W.3.11)

Let work to evaluate this double integral. Introduce polar variables by writing

x = ρ cos(θ),

y = ρ sin(θ); (W.3.12)

kx = k cos(φ),

ky = k sin(φ). (W.3.13)

Then we have the relations

kxx+ kyy = kρ[cos(φ) cos(θ) + sin(φ) sin(θ)] = kρ cos(φ− θ), (W.3.14)

dkxdky = kdkdφ. (W.3.15)
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Correspondingly, (3.11) takes the form

ψδ(x, y, z) = [1/(2π)2]

∫ ∞
0

kdk exp(−kz)
∫ 2π

0

dφ exp[ikρ cos(φ− θ)]. (W.3.16)

Next perform further manipulations. By periodicity we have the result∫ 2π

0

dφ exp[ikρ cos(φ− θ)] =

∫ 2π

0

dφ exp[ikρ cos(φ)]. (W.3.17)

Also there is the result

exp[ikρ cos(φ)] = cos[kρ cos(φ)] + i sin[kρ cos(φ)]. (W.3.18)

Moreover, we recall the relations

cos[kρ cos(φ)] = J0(kρ) + 2
∞∑
k=1

(−1)kJ2k(kρ) cos(2kφ), (W.3.19)

sin[kρ cos(φ)] = 2
∞∑
k=0

(−1)kJ2k+1(kρ) cos[(2k + 1)φ)]. (W.3.20)

It follows that ∫ 2π

0

dφ cos[kρ cos(φ)] = (2π)J0(kρ), (W.3.21)∫ 2π

0

dφ sin[kρ cos(φ)] = 0, (W.3.22)

and therefore ∫ 2π

0

dφ exp[ikρ cos(φ)] = (2π)J0(kρ). (W.3.23)

Upon combining the fruits of our labor we find the pleasant result

ψδ(x, y, z) = [1/(2π)]

∫ ∞
0

kdkJ0(kρ) exp(−kz). (W.3.24)

Note that ψδ(x, y, z) depends on x and y only through the rotationally invariant quantity
ρ, as expected by axial symmetry about the z axis.

Yet more can be accomplished. There is the general Bessel function relation∫ ∞
0

tdt exp(−at)J0(bt) = a/(a2 + b2)3/2. (W.3.25)

Consequently, we have the final result

ψδ(x, y, z) = [1/(2π)][z/(z2 + ρ2)3/2]. (W.3.26)

We next observe directly that, as expected, the function ψδ(x, y, z) given by (3.26) is
harmonic. Define r by the rule

r =
√
x2 + y2 + z2 =

√
z2 + ρ2. (W.3.27)
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From 3-D potential theory we know that the function 1/r is harmonic. We next observe that
the operators ∂z and ∇2 commute. It follows that the function ∂z(1/r) is also harmonic.
Finally, there is the result

∂z(1/r) = ∂z(1/
√
z2 + ρ2) = z/(z2 + ρ2)3/2. (W.3.28)

Upon comparing (3.26) and (3.28) we see that ψδ(x, y, z) is indeed harmonic.
Let us now, with the aid of (3.26), illustrate the general behavior of ψδ(x, y, z). Figure 3.1

displays ψδ(x, y, z) as a function of ρ for various values of z. Figure 3.2 displays ψδ(x, y, z)
as a function of z for various values of ρ.
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Figure W.3.1: The function ψδ(x, y, z) = ψδ(ρ, z) as a function of ρ for various values of z.
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Figure W.3.2: The function ψδ(x, y, z) = ψδ(ρ, z) as a function of z for various values of ρ.

From Figure 3.1 we see that the delta function potential spike in the z = 0 plane becomes
an ever lower and broader bump in planes with increasing z. And we know from (3.8) that
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the weighted area under the bump remains the same for all z,∫
dxdy ψδ(x, y, z) =

∫
dxdy δ(x)δ(y) = 1. (W.3.29)

Thus the effect of a disturbance in the potential in the z = 0 plane “decays” away as one
moves to planes with successively larger values of z. Figure 3.2 illustrates this decay as a
function of z for various values of ρ. Indeed, there are the expansions

ψδ(x, y, z) = [1/(2π)](1/z2)[1− (3/2)(ρ2/z2) + (15/8)(ρ2/z2)2 − · · · ] for ρ < z, (W.3.30)

ψδ(x, y, z) = [1/(2π)](1/23/2)(1/z2) for ρ = z, (W.3.31)

ψδ(x, y, z) = [1/(2π)](z/ρ3)[1− (3/2)(z2/ρ2) + (15/8)(z2/ρ2)2 − · · · ] for z < ρ. (W.3.32)

Evidently, as expected, the sequence of functions ψδ(x, y, z) for varying z converges to the
delta function,

lim
z→0+

ψδ(x, y, z) = δ(x)δ(y). (W.3.33)

Finally, we see from (3.30) that ψδ(x, y, z) falls of as z−2 for fixed ρ and large z, and observe
that the dimension of a plane is 2. And, from (3.32), we see that ψδ(x, y, z) falls of as ρ−3

for fixed z and large ρ. What is the mechanism for this decay? In agreement with (3.8)
and (3.29), this decay occurs entirely due to spreading. Indeed, the relations (3.5) and (3.7)
illustrate that if the initial/boundary potential distribution is completely “spread out”, i.e.
constant, then no decay occurs.

We have again seen an example of how the effects of a local disturbance in the potential
diminish with distance from the disturbance.

From the response (3.26) to a delta function disturbance (3.9) we can derive the response
to a general disturbance. With (3.26) in mind, define a kernel G(x, y;x′, y′; z) by the rule

G(x, y;x′, y′; z) = [1/(2π)]{z/[z2 + (x− x′)2 + (y − y′)2]3/2}. (W.3.34)

Observe that a general disturbance ψ0(x, y) has the integral representation

ψ0(x, y) =

∫
dx′dy′ ψ0(x′, y′)δ(x− x′)δ(y − y′). (W.3.35)

It follows that the response to ψ0(x, y) is given by the integral

ψ(x, y, z) =

∫
dx′dy′ ψ0(x′, y′)G(x, y;x′, y′; z). (W.3.36)

For what it’s worth we remark that, according to the connection between Laplace and
Monte Carlo, the quantity G(x, y;x′, y′; z) is the probability that a random walk initiated
at the point x, y, z will reach the point x′, y′, 0.

Exercises

W.3.1. Evaluate directly the integral on the left side of (3.29) using (3.26). Verify (3.36)
for the case (3.5).
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W.4 The Circle in Two Space

Consider in x, y space a circle of radius R centered on the origin, and suppose a potential
ψR is specified on this circle. More specifically, employ the polar variables (3.9) so that

ψ(x, y) = ψ(ρ, θ) (W.4.1)

and
ψ(R, θ) = ψR(θ). (W.4.2)

Define the angular Fourier transform of ψR(θ) by the rule

ψ̃R(m) = ([1/(2π)]

∫ 2π

0

dθ exp(−imθ)ψR(θ). (W.4.3)

Make the Ansatz

ψ(ρ, θ) =
m=∞∑
m=−∞

(ρ/R)|m| exp(imθ)ψ̃R(m). (W.4.4)

Evidently this ψ(ρ, θ) is harmonic. We also have the result

ψ(R, θ) =
m=∞∑
m=−∞

exp(imθ)ψ̃R(m) = ψR(θ). (W.4.5)

It follows that we have found the solution to Laplace’s equation in the disk of radius R with
the boundary value ψR(θ).

Note that the operation defined by (4.4) is smoothing for (ρ/R) < 1. We see that high
angular frequencies are suppressed by the factor

(ρ/R)|m| = exp[|m| log(ρ/R)], (W.4.6)

and observe that log(ρ/R) < 0. This exponential suppression/damping is ever more effective
the larger the value of R and/or the smaller the value of ρ. The larger the radius R of the
boundary circle and/or the smaller the radius ρ of the observation circle, the smoother
ψ(ρ, θ) becomes as a function of θ.

We also observe, in passing, three facts. First, suppose ψR, now to be called ψcR, is a
constant function,

ψcR(θ) = c. (W.4.7)

Then, by (4.3),
ψ̃cR(m) = cδm,0. (W.4.8)

It follows from (4.4) that there is the relation

ψc(ρ, θ) = c. (W.4.9)

As expected, if ψ is constant on the boundary ρ = R, it will have the same constant value
inside the circle. Second, for any solution, there is the relation∫ 2π

0

dθ ψ(ρ, θ) = (2π)
m=∞∑
m=−∞

(ρ/R)|m|ψ̃R(m)δm,0 = (2π)ψ̃R(0) =

∫ 2π

0

dθ ψR(θ). (W.4.10)
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That is, the dθ integral of ψ(ρ, θ) over any circle of constant ρ is independent of ρ. Third,
we also see from (4.4) that there is the relation

ψ(0, θ) = ψ̃R(0) = [1/(2π)]

∫ 2π

0

dθψR(θ), (W.4.11)

which shows that the average value of an harmonic function over a circle equals its value at
the center of the circle, a result which in turn is a special case of the connection between
Laplace and Monte Carlo.

To further study smoothing in the case of a circle in two space, suppose ψR, now to be
called ψδR, is a delta function centered on θ = 0,

ψδR(θ) = δ(θ). (W.4.12)

Then, by (4.3),
ψ̃δR(m) = 1/(2π), (W.4.13)

and (4.4) takes the form

ψδ(ρ, θ) = [1/(2π)]
m=∞∑
m=−∞

(ρ/R)|m| exp(imθ). (W.4.14)

Let us work to evaluate this sum. Introduce the simplifying notation

λ = ρ/R (W.4.15)

with the understanding that, for our purposes,

λ ∈ [0, 1]. (W.4.16)

Correspondingly, make the definition

ψ̂δ(λ, θ) = ψδ(ρ, θ) = [1/(2π)]
m=∞∑
m=−∞

λ|m| exp(imθ). (W.4.17)

Observe that there is the result

m=∞∑
m=−∞

λ|m| exp(imθ) = −1 +
m=∞∑
m=0

λm exp(imθ) +
m=∞∑
m=0

λm exp(−imθ). (W.4.18)

Each of the series appearing on the right side of (4.18) is a geometric series, and can therefore
be evaluated. We find the results

m=∞∑
m=0

λm exp(imθ) = 1/[1− λ exp(iθ)], (W.4.19)

m=∞∑
m=0

λm exp(−imθ) = 1/[1− λ exp(−iθ)]. (W.4.20)
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Consequently,

ψ̂δ(λ, θ) = [1/(2π)]{−1 + 1/[1− λ exp(iθ)] + 1/[1− λ exp(−iθ)]}. (W.4.21)

The three terms on the right side of (4.21) can be put over a common denominator. Doing
so, and recalling that

cos(θ) = (1/2)[exp(iθ) + exp(−iθ)], (W.4.22)

give the final result

ψ̂δ(λ, θ) = [1/(2π)]{[λ−1 − λ]/[λ−1 + λ− 2 cos(θ)]}. (W.4.23)

We know that, by construction, the function ψ̂δ(λ, θ) is harmonic. See (4.14). We will
next observe directly that the function ψ̂δ(λ, θ), as given by (4.23), is harmonic. To do so
we will exploit a fact about analytic functions. Suppose f is an analytic function of the
complex variable z = x + iy. (Here z is not a Cartesian coordinate.) Define a function
u(x, y) by writing

u(x, y) = f(z) = f(x+ iy). (W.4.24)

Then, by the chain rule, it follows that

(∂x)
2u(x, y) = f ′′(z) (W.4.25)

and
(∂y)

2u(x, y) = (i2)f ′′(z) = −f ′′(z), (W.4.26)

from which it follows that
[(∂x)

2 + (∂y)
2]u(x, y) = 0; (W.4.27)

the function u(x, y) defined by (4.24) is harmonic. Similarly the function v(x, y) defined by

v(x, y) = f(z̄) = f(x− iy) (W.4.28)

is also harmonic. Now look at the right sides of (4.19) and (4.20). They can be rewritten in
the forms

1/[1− λ exp(iθ)] = 1/[1− (1/R)(x+ iy)] = 1/[1− (1/R)z], (W.4.29)

1/[1− λ exp(−iθ)] = 1/[1− (1/R)(x− iy)] = 1/[1− (1/R)z̄]. (W.4.30)

It follows that both these functions are harmonic. Finally, we see from (4.23) that ψ̂δ(λ, θ) is
the sum of a constant (which is a harmonic function) and multiples of the harmonic functions
in (4.29) and (4.30). Therefore ψ̂δ(λ, θ) is harmonic.

Let us now, with the aid of (4.23), illustrate the general behavior of ψ̂δ. Figure 4.1
displays the function ψ̂δ(λ, θ) as a function of θ ∈ (−π, π) for various values of λ ∈ [0, 1].
Note that there are the relations

(λ−1 + λ) > 2 for λ ∈ (0, 1) (W.4.31)

and
(λ−1 + λ) = 2 for λ = 1. (W.4.32)

From the figure two facts are evident:
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• For λ ' 1, ψ̂δ(λ, θ) is highly peaked about θ = 0 and is small for θ 6= 0.

• For λ ' 0, ψ̂δ(λ, θ) is nearly 1. Indeed, by (4.14), there is the small λ expansion

ψ̂δ(λ, θ) = [1/(2π)][1 + 2λ cos(θ) + 2λ2 cos(2θ) + · · · ]. (W.4.33)

Also, again by (4.14), there is the integral relation∫ π

−π
dθ ψ̂δ(λ, θ) = 1. (W.4.34)

[Note that (4.34) is a special case of (4.10).] Putting all these facts together, we conclude
that the sequence of functions ψ̂δ(λ, θ) for varying λ converges to the delta function,

lim
λ→1−

ψ̂δ(λ, θ) = δ(θ). (W.4.35)

We see that the delta function spike about θ = 0 on the circle ρ = R (which corresponds
to λ = 1) becomes an ever lower and broader bump with decreasing ρ. Thus the effect of a
disturbance in the potential on the ρ = R circle “decays” away as one moves to circles with
successively smaller values of ρ. Finally we note that, in agreement with (4.10), the “decay”
we have been observing is entirely due to spreading. Indeed, the relations (4.7) and (4.9)
illustrate that if the initial/boundary potential distribution is completely “spread out”, i.e.
constant, then no decay occurs.

-1.0 -0.5 0.5 1.0
z
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-0.5

0.5
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Figure W.4.1: (Place Holder) The function ψ̂δ(λ, θ) as a function of θ for various values of
λ.

We have again seen an example of how the effects of a local disturbance in the potential
diminish with distance from the disturbance.

From the response (4.23) to a delta function disturbance (4.12) we can derive the response
to a general disturbance. With (4.23) in mind, define a kernel G(θ; θ′;λ) by the rule

G(θ; θ′;λ) = [1/(2π)]{[λ−1 − λ]/[λ−1 + λ− 2 cos(θ − θ′)]}. (W.4.36)

Observe that a general disturbance ψR(θ) has the integral representation

ψR(θ) =

∫ π

−π
dθ′ψR(θ′)δ(θ − θ′). (W.4.37)
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It follows that the response to ψR(θ) is given by the integral

ψ(ρ, θ) =

∫ π

−π
dθ′ψR(θ′)G(θ; θ′;λ). (W.4.38)

For what it’s worth we remark that, according to the connection between Laplace and
Monte Carlo, the quantity G(θ; θ′;λ) is the probability that a random walk initiated at the
point ρ, θ will reach the point R, θ′.

We close this section by making two calculations that will be of future use. First we will
present a previous result in terms of the Cartesian coordinates x, y. From (4.33) we see that
there is the result

ψδ(x, y) = ψδ(ρ, θ) = [1/(2π)][1 + 2(ρ/R) cos(θ) + 2(ρ/R)2 cos(2θ) + · · · ]. (W.4.39)

There are also the relations

ρ cos(θ) = x, (W.4.40)

ρ2 cos(2θ) = ρ2[cos2(θ)− sin2(θ)] = x2 − y2. (W.4.41)

It follows that there is the result

ψδ(x, y) = [1/(2π)][1 + 2(1/R)x+ 2(1/R2)(x2 − y2) + · · · ]. (W.4.42)

As a second complementary case, suppose ψR, now to be called ψ∆
R , is a delta function

centered on θ = π/2,

ψ∆
R (θ) = δ(θ − π/2). (W.4.43)

Then, by (4.3),

ψ̃∆
R (m) = 1/(2π) exp(−imπ/2), (W.4.44)

and (4.4) takes the form

ψ∆(x, y) = ψ∆(ρ, θ) = [1/(2π)]
m=∞∑
m=−∞

(ρ/R)|m| exp[im(θ − π/2)]

= [1/(2π){1 + 2(ρ/R) cos(θ − π/2) + 2(ρ/R)2 cos[2(θ − π/2)] + · · · }
= [1/(2π){1 + 2(ρ/R) sin(θ)− 2(ρ/R)2 cos(2θ) + · · · }
= [1/(2π){1 + 2(1/R)y − 2(1/R2)(x2 − y2) + · · · }.

(W.4.45)

Exercises

W.4.1. Verify the steps that led from (4.14) to (4.23).

W.4.2. Verify (4.29) and (4.30).

W.4.3. Verify (4.31).
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W.4.4. Show that
lim
λ→1−

ψ̂δ(λ, θ) = 0 for θ 6= 0. (W.4.46)

Show that
lim
λ→1−

ψ̂δ(λ, 0) = +∞. (W.4.47)

W.4.5. Verify directly the relation (4.34) using (4.23). Verify (4.38) for the case (4.7).

W.5 The Circular Cylinder in Three Space

Consider in x, y, z space a circular cylinder of radius R centered on the z axis, and suppose a
potential ψR(φ, z) is specified on this cylinder. [Here we have used the cylindrical coordinates
ρ, φ, and z specified by the rules (15.2.12) through (15.2.16).] More specifically, write

ψ(x, y, z) = ψ(ρ, φ, z) (W.5.1)

and
ψ(R, φ, z) = ψR(φ, z). (W.5.2)

Given the boundary potential ψR(φ, z), we wish to find the interior harmonic function (so-
lution to Laplace’s equation) ψ(ρ, φ, z) associated with this boundary potential.

From (15.3.7) we know that the most general ψ that is harmonic and finite within the
cylinder is of the form

ψ(ρ, φ, z) =
∞∑

m=−∞

∫ ∞
−∞

dk Gm(k) exp(ikz) exp(imφ)Im(kρ). (W.5.3)

Next define the double Fourier transform ˜̃ψ(R,m′, k′) of the boundary potential by the rule

˜̃ψ(R,m′, k′) = [1/(2π)]2
∫ ∞
−∞

dz exp(−ik′z)

∫ 2π

0

dφ exp(−im′φ)ψR(φ, z). (W.5.4)

See (17.2.2). Then we know from (17.2.5) that

Gm(k) = ˜̃ψ(R,m, k)/Im(kR). (W.5.5)

Consequently, the desired ψ is given by the relation

ψ(ρ, φ, z) =
∞∑

m=−∞

exp(imφ)

∫ ∞
−∞

dk exp(ikz) ˜̃ψ(R,m, k)[Im(kρ)/Im(kR)]. (W.5.6)

Let us verify that our criteria have been met. By construction the ψ given by (5.6) is a
superposition of the functions exp(ikz) exp(imφ)Im(kρ) and therefore is harmonic. Also it
has the property

ψ(R, φ, z) =
∞∑

m=−∞

exp(imφ)

∫ ∞
−∞

dk exp(ikz) ˜̃ψ(R,m, k) = ψR(φ, z). (W.5.7)
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We have found the solution to Laplace’s equation in the circular cylinder in three space
having boundary ρ = R and the boundary value ψR(φ, z).

We also observe, in passing, two facts. First, suppose ψR, now to be called ψcR, is a
constant function,

ψcR(φ, z) = c. (W.5.8)

Then, by (5.4),
˜̃ψc(R,m′, k′) = cδ(k′)δm′,0. (W.5.9)

It follows from (5.6) that there is the relation

ψc(ρ, φ, z) = c. (W.5.10)

As expected, if ψ is constant on the cylinder boundary ρ = R, it will have the same constant
value everywhere within the cylinder. Second, for any solution, there is the relation∫ 2π

0

dφ

∫ ∞
−∞

dz ψ(ρ, φ, z) = (2π)2

∞∑
m=−∞

δm,0

∫ ∞
−∞

dk δ(k) ˜̃ψ(R,m, k)[Im(kρ)/Im(kR)]

= (2π)2 ˜̃ψ(R, 0, 0) =

∫ 2π

0

dφ

∫ ∞
−∞

dz ψR(φ, z). (W.5.11)

That is, the dφdz integral of ψ(ρ, φ, z) over any cylinder of constant ρ is independent of ρ.
We are now prepared to address the general subject of smoothing. We will examine the

asymptotic behavior of the kernel K(m, k; ρ,R), defined by the rule

K(m, k; ρ,R) = [Im(kρ)/Im(kR)], (W.5.12)

that appears in (5.6). Note that, because

I−m(w) = Im(w) (W.5.13)

and
Im(−w) = (−1)mIm(w), (W.5.14)

the kernel K(m, k; ρ,R) is evidently an even function of both m and k. Therefore we only
need consider the cases m ≥ 0 and k ≥ 0. Finally, by (15.3.11), we see that

K(m, 0; ρ,R) = (ρ/R)|m|. (W.5.15)

For fixed m and large w the Bessel functions Im(w) have the asymptotic property

|Im(w)| ' (1/
√

2πw) exp(w) as w →∞. (W.5.16)

Consequently, for fixed m, there is the asymptotic relation

K(m, k; ρ,R) ' (
√
R/ρ) exp[k(ρ−R)] as k →∞. (W.5.17)

We see that, for each fixed m, there is smoothing/damping in the longitudinal variable z
when ρ < R. Note that this smoothing is analogous to that for the line in two space and
the plane in three space.
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For fixed w and large m the Bessel functions Im(w) have the asymptotic property

|Im(w)| ' (1/
√

2πm)[(e|w|)/(2m)]m

' (1/2)m[
√

2πm(m/e)m]−1|w|m

' (1/2)m(1/m!)|w|m as m→∞. (W.5.18)

Here we have used the Stirling large m approximation

m! '
√

2πm(m/e)m, (W.5.19)

which is actually already quite accurate for m ≥ 2.1 Consequently, for fixed k, there is the
asymptotic relation

K(m, k; ρ,R) ' (ρ/R)m as m→∞. (W.5.20)

We see that, for each fixed k, there is smoothing/damping in the angular variable φ when
ρ < R. Note that this smoothing is analogous to that for the circle in two space.

With regard to angular smoothing there is also the consideration that the angular Fourier
transform filters out all angular Fourier modes save for the one of interest. Moreover, the
disturbance in the angular Fourier mode of interest produced by an error in any given grid-
point value is suppressed by 1/N where N is the number of sampling points used in the
discrete angular Fourier transform.

What happens if k and m increase simultaneously? This is a more difficult question. We
will explore the case were k and m are proportional,

k = λm (W.5.21)

where λ is some proportionality constant having the dimensions of inverse length.
If w = τm, where τ is some proportionality constant, there is the uniform doubly asymp-

totic relation

Im(τm) ' (1/
√

2πm)[1/(1 + τ 2)1/4] exp(mη) as m→∞. (W.5.22)

Here η is a function of τ given by the relation

η(τ) =
√

1 + τ 2 + log[τ/(1 +
√

1 + τ 2)]. (W.5.23)

We will use the assumption (5.21) and the result (5.22) to estimate Im(λmρ) and Im(λmR),
the numerator and denominator appearing in (5.9).

For the numerator define a quantity τ̂ by the rule

τ̂ = λρ, (W.5.24)

and for the denominator define a quantity τ̌ by the rule

τ̌ = λR. (W.5.25)

1Note that the final result in (5.18) also follows from retaining only the ` = 0 term in (15.3.11).
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(Note that both τ̂ and τ̌ are dimensionless.) In terms of these definitions we have, as a
consequence of (5.22), the large m results

Im(λmρ) ' (1/
√

2πm)[1/(1 + τ̂ 2)1/4] exp(mη̂), (W.5.26)

Im(λmR) ' (1/
√

2πm)[1/(1 + τ̌ 2)1/4] exp(mη̌). (W.5.27)

Here we have used the notation
η̂ = η(τ̂), (W.5.28)

η̌ = η(τ̌). (W.5.29)

It follows that there is the large m result

K(m,λm; ρ,R) ' [(1 + τ̌ 2)1/4/(1 + τ̂ 2)1/4] exp[m(η̂ − η̌)] as m→∞. (W.5.30)

We see that there is exponential smoothing/damping if

η̂ < η̌. (W.5.31)

When does the smoothing condition (5.31) hold? Let us examine the function η(τ) given
by (5.23). Its behavior is displayed in Figure 5.1. Evidently, for τ ≥ 0, it appears to
be monotonically increasing. This surmise is proved in Exercise 5.1. Consequently, (5.31)
holds if τ̂ < τ̌ and hence ρ < R. We conclude, assuming ρ < R, that there is exponential
smoothing/damping as one goes out in any direction from the origin in the m k plane; and
the damping rate depends on the direction. For example, Figure 5.2 displays K(m, k; ρ,R)
as function of m and k for the case ρ = 2 cm and R = 2.5 cm.
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Figure W.5.1: The function η(τ). It appears to be monotonically increasing.

To further study smoothing in the case of a circular cylinder in three space, suppose ψR,
now to be called ψδR, is a delta function centered on (φ, z) = (0, 0),

ψδR(φ, z) = δ(φ)δ(z). (W.5.32)

Then, by (5.4),
˜̃ψδ(R,m′, k′) = [1/(2π)]2, (W.5.33)
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Figure W.5.2: (Place Holder) The kernel K(m, k; ρ,R) as function of m and k for the case
ρ = 2 cm and R = 2.5 cm. The quantity k has units of inverse centimeters.

and (5.6) takes the form

ψδ(ρ, φ, z) = [1/(2π)]2
∞∑

m=−∞

exp(imφ)

∫ ∞
−∞

dk exp(ikz)[Im(kρ)/Im(kR)]. (W.5.34)

Our task now is to study the properties of ψδ(ρ, φ, z). We begin by observing that, as a
consequence of (5.11), there is the integral relation∫ 2π

0

dφ

∫ ∞
−∞

dz ψδ(ρ, φ, z) = (2π)2 ˜̃ψδ(R, 0, 0) = 1. (W.5.35)

To proceed further, and in analogy to what was done in previous sections for ψδ, it would be
ideal if the representation (5.34) could be evaluated analytically in terms of known functions.
However, this seems to be a difficult. What we can do is to evaluate (5.34) numerically for
various values of ρ and R. Figure 5.3 shows ψδ(ρ, φ, z) as a function of φ and z when
ρ = 2 cm and R = 2.5 cm. And Figure 5.4 shows ψδ(ρ, φ, z) as a function of φ and z
when ρ = 1 cm and R = 2.5 cm. Evidently ψδ(ρ, φ, z) falls off for large z. Moreover, it
is smaller and less peaked about (φ, z) = (0, 0) for the smaller value of ρ. The effect of
a disturbance in the potential at the point (φ, z) = (0, 0) “decays” away as one moves to
cylinders with successively smaller values of ρ. Conversely, as ρ increases, the sequence of
functions ψδ(ρ, φ, z) for varying ρ converges to the delta function,

lim
ρ→R−

ψδ(ρ, φ, z) = δ(φ)δ(z). (W.5.36)

Finally we note that, in agreement with (5.11), the “decay” we have been observing is entirely
due to spreading. Indeed, the relations (5.8) and (5.10) illustrate that if the initial/boundary
potential distribution is completely “spread out”, i.e. constant, then no decay occurs.

At this point we might wonder how fast the effect of a disturbance falls off as a function
of z. Figure 5.5 shows ψδ(1, 0, z) as a function of z when R = 2.5 cm. We can also study
the on-axis case ρ = 0 for which (5.34) takes the simpler form

ψδ(0, φ, z) = [1/(2π)]2
∫ ∞
−∞

dk exp(ikz)[1/I0(kR)]. (W.5.37)
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Figure W.5.3: (Place Holder) The function ψδ(ρ, φ, z) as a function of φ and z when ρ = 2
cm and R = 2.5 cm.
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Figure W.5.4: (Place Holder) The function ψδ(ρ, φ, z) as a function of φ and z when ρ = 1
cm and R = 2.5 cm.
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Make the change of variables λ = kR. So doing brings (5.37) to the form

ψδ(0, φ, z) = [1/(2π)]2(1/R)

∫ ∞
−∞

dλ exp(iλz/R)/I0(λ). (W.5.38)

We have already studied the integral appearing on the right side of (5.38). Reference to
(21.1.37) shows that there is the result

ψδ(0, φ, z) = [1/(2π)](1/R)F (z/R, 0). (W.5.39)

It follows from the work of Section 21.1.3, see Figure 21.1.2, that there is the asymptotic
behavior

ψδ(0, φ, z) ∝ exp[−π|z|/(2R)] as |z| → ∞. (W.5.40)

When viewed from on axis the effect of a disturbance falls off exponentially. Reference to
Figure 5.5 shows that there is a similar rapid fall off with z in the off-axis case.
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Figure W.5.5: (Place Holder) The function ψδ(1, 0, z) as a function of z when R = 2.5 cm.

We have again seen an example of how the effects of a local disturbance in the potential
diminish with distance from the disturbance.

From the response (5.34) to a delta function disturbance (5.32) we can derive the response
to a general disturbance. With (5.34) in mind, define a kernel G(φ, z;φ′, z′; ρ) by the rule

G(φ, z;φ′, z′; ρ) = ψδ(ρ, φ− φ′, z − z′). (W.5.41)

Observe that a general disturbance ψR(φ, z) has the integral representation

ψR(φ, z) =

∫ π

−π
dφ′
∫ ∞
−∞

dz′ψR(φ′, z′)δ(φ− φ′)δ(z − z′). (W.5.42)

It follows that the response to ψR(φ, z) is given by the integral

ψ(ρ, φ, z) =

∫ π

−π
dφ′
∫ ∞
−∞

dz′ψR(φ′, z′)G(φ, z;φ′, z′; ρ). (W.5.43)

For what it’s worth we remark that, according to the connection between Laplace and
Monte Carlo, the quantity G(φ, z;φ′, z′; ρ) is the probability that a random walk initiated
at the point ρ, φ, z will reach the point R, φ′, z′.
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Exercises

W.5.1. The purpose of this exercise is to prove that η(τ) is a monotonically increasing
function of τ . We begin by observing that the

√
1 + τ 2 term just to the right of the equal

sign in (5.23) is a monotonically increasing function of τ , and we know that the log function
is a monotonically increasing function of its argument. It remains to be shown that the
function f(τ) defined by

f(τ) = τ/(1 +
√

1 + τ 2), (W.5.44)

the argument of the log function, is monotonically increasing. If this can be verified, then
η(τ) is a monotonically increasing function of τ .

To complete the proof, show that

f ′(τ) = 1/(1 +
√

1 + τ 2)− (τ 2/
√

1 + τ 2)/(1 +
√

1 + τ 2)2

= [1/(1 +
√

1 + τ 2)2][(1 +
√

1 + τ 2)− (τ 2/
√

1 + τ 2)]

= [1/(1 +
√

1 + τ 2)2](1/
√

1 + τ 2)(
√

1 + τ 2 + 1 + τ 2 − τ 2)

= [1/(1 +
√

1 + τ 2)2](1/
√

1 + τ 2)(
√

1 + τ 2 + 1)

= [1/(1 +
√

1 + τ 2)](1/
√

1 + τ 2). (W.5.45)

Evidently all factors on the far right side of (5.45) are positive, and therefore f(τ) is mono-
tonically increasing.

W.5.2. Verify (5.15) given (15.3.11).

W.5.3. Verify (5.17) given (5.16).

W.5.4. Verify (5.20) given (5.18).

W.5.5. Verify (5.30) given (5.22).

W.5.6. Verify (5.38) given (5.37).

W.5.7. Compare the fall off in the case of a plane in three space given by (3.32) with the
fall off in the case of a circular cylinder in three space given (5.40). Explain why the fall off
is so much more rapid in the case of a cylinder.

W.6 The Ellipse in Two Space

For the ellipse in two space let us employ the coordinates given by (17.4.1) and (17.4.2) and
illustrated in Figure 17.4.2. Then, upon writing the relation

ψ(x, y) = ψ(u, v), (W.6.1)

we find from (17.4.12) that

∇2ψ = (1/f 2)[cosh2(u)− cos2(v)]−1[(∂u)
2 + (∂v)

2]ψ. (W.6.2)
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Consequently, ψ will be harmonic provided it satisfies the relation

[(∂u)
2 + (∂v)

2]ψ = 0. (W.6.3)

In analogy with (17.4.35) through (17.4.37) let us define functions cn(v) and sn(v) by the
rules

c0(v) = 1/
√

2, (W.6.4)

cn(v) = cos(nv) for n ≥ 1, (W.6.5)

s0(v) = 0, (W.6.6)

sn(v) = sin(nv) for n ≥ 1. (W.6.7)

Evidently they form a complete orthogonal set and are normalized so that∫ 2π

0

dv cm(v) cn(v) = πδmn, (W.6.8)

∫ 2π

0

dv sm(v) sn(v) = πδmn, (W.6.9)∫ 2π

0

dv cm(v) sn(v) = 0. (W.6.10)

Also, in analogy with (17.4.70) and (7.4.71), let us define functions Cn(u) and Sn(u) by
the rules

Cn(u) = cn(iu), (W.6.11)

Sn(u) = −isn(iu). (W.6.12)

In view of (6.4) through (6.7) we have the results

C0(u) = 1/
√

2, (W.6.13)

Cn(u) = cosh(nu) for n ≥ 1, (W.6.14)

S0(u) = 0, (W.6.15)

Sn(u) = sinh(nu) for n ≥ 1. (W.6.16)

Evidently the functions Cn(u) and Sn(u) are entire functions of u, and the functions cn(v)
and sn(v) are entire functions of v. However, they are not entire functions of x and y because
of the singularities described in Exercise 17.4.2.

It is easily verified that functions ψcn(u, v) and ψsn(u, v) of the form

ψcn(u, v) ∝ Cn(u)cn(v), (W.6.17)

ψsn(u, v) ∝ Sn(u)sn(v) (W.6.18)

satisfy (6.3) and are therefore harmonic functions. We claim that they are also polynomial,
and therefore entire analytic, functions of x and y. For example, there are the relations

C0(u)c0(v) = 1/2, (W.6.19)
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S0(u)s0(v) = 0, (W.6.20)

C1(u)c1(v) = cosh(u) cos(v) = x/f, (W.6.21)

S1(u)s1(v) = sinh(u) sin(v) = y/f, (W.6.22)

C2(u)c2(v) = cosh(2u) cos(2v) = (1/2) cosh(2u) cos(2v) + (1/2) cosh(2u) cos(2v)

= (1/2)[2 cosh2(u)− 1][2 cos2(v)− 1]

−(1/2)[2 sinh2(u) + 1][2 sin2(v)− 1]

= (1/2){4 cosh2(u) cos2(v)− 2[cosh2(u) + cos2(v)] + 1}
−(1/2){4 sinh2(u) sin2(v)− 2[sinh2(u)− sin2(v)]− 1}

= 2 cosh2(u) cos2(v)− 2 sinh2(u) sin2(v)

− cosh2(u) + sinh2(u)− cos2(v)− sin2(v) + 1/2 + 1/2

= 2 cosh2(u) cos2(v)− 2 sinh2(u) sin2(v)− 1

= 2(x2 − y2)/f 2 − 1. (W.6.23)

S2(u)s2(v) = sinh(2u) sin(2v) = 4 sinh(u) cosh(u) sin(v) cos(v)

= 4xy/f 2. (W.6.24)

For a general proof for all n, see Exercise 6.3.
With the above background in mind, consider the ellipse u = U and suppose a potential

ψU(v) is specified on this ellipse. Since the functions cn(v) and sn(v) form a complete set,
we may make the expansion

ψU(v) =
∞∑
n=0

ψ̃cU(n)cn(v) +
∞∑
n=1

ψ̃sU(n)sn(v) (W.6.25)

with

ψ̃cU(n) = (1/π)

∫ 2π

0

dv cn(v)ψU(v), (W.6.26)

ψ̃sU(n) = (1/π)

∫ 2π

0

dv sn(v)ψU(v). (W.6.27)

Now make the Ansatz

ψ(u, v) =
∞∑
n=0

ψ̃cU(n)[Cn(u)/Cn(U)]cn(v) +
∞∑
n=1

ψ̃sU(n)[Sn(u)/Sn(U)]sn(v). (W.6.28)

By construction ψ(u, v) is a harmonic function, and also has the property

ψ(U, v) = ψU(v). (W.6.29)

We have found the solution to Laplace’s equation in the ellipse having boundary u = U and
the boundary value ψU(v).
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Note that the operation (6.28) is smoothing for u < U . Indeed, according (6.14) and
(6.16), there are the asymptotic results

Cn(u) ∝ exp(nu) as n→∞, (W.6.30)

Sn(u) ∝ exp(nu) as n→∞. (W.6.31)

It follows that there are the asymptotic results

[Cn(u)/Cn(U)] ∝ exp[−n(U − u)] as n→∞, (W.6.32)

[Sn(u)/Sn(U)] ∝ exp[−n(U − u)] as n→∞. (W.6.33)

Consequently, there is exponential smoothing provided u < U .
We also observe, in passing, two facts. First, suppose ψU , now to be called ψdU , is a

constant function with value d,
ψdU(v) = d. (W.6.34)

Then, by (6.26) and (6.27),
ψ̃dcU (n) = d

√
2δn,0, (W.6.35)

ψ̃dsU (n) = 0. (W.6.36)

It follows from (6.28) that there is the relation

ψd(u, v) = d. (W.6.37)

As expected, if ψ is constant on the boundary u = U , it will have the same constant value
inside the ellipse. Second, for any solution, we find from (6.28) that there is the relation∫ 2π

0

dv ψ(u, v) = (π
√

2)
∞∑
n=0

ψ̃cU(n)[Cn(u)/Cn(U)]δn,0 = (π
√

2)ψ̃cU(0) =

∫ 2π

0

dv ψU(v).

(W.6.38)
That is, the dv integral of ψ(u, v) over any ellipse of constant u is independent of u.

To further study smoothing in the case of an ellipse in two space, suppose ψU , now to
be called ψδU , is a delta function centered on v = 0,

ψδU(v) = δ(v). (W.6.39)

Then, by (6.26) and (6.27),
ψ̃δcU (0) = 1/(π

√
2), (W.6.40)

ψ̃δcU (n) = 1/π for n ≥ 1, (W.6.41)

ψ̃δsU (n) = 0, (W.6.42)

and (6.28) takes the form

ψδ(u, v) =
∞∑
n=0

ψ̃δcU (n)[1/Cn(U)]Cn(u)cn(v)

= [1/(π
√

2)][1/C0(U)]C0(u)c0(v) + (1/π)
∞∑
n=1

[1/Cn(U)]Cn(u)cn(v).

= [1/(2π)] + (1/π)
∞∑
n=1

[1/ cosh(nU)] cosh(nu) cos(nv). (W.6.43)
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Figure 6.1 shows ψδ(u, v) as a function of v for various values of u. For this example U = 0.5.
We see that the delta function spike about v = 0 on the ellipse u = U becomes an ever lower
and broader bump with decreasing u. Thus the effect of a disturbance in the potential on
the u = U ellipse “decays” away as one moves to ellipses with successively smaller values
of u. Finally we note that, in agreement with (6.38), the “decay” we have been observing
is entirely due to spreading. Indeed, the relations (6.34) and (6.37) illustrate that if the
initial/boundary potential distribution is completely “spread out”, i.e. constant, then no
decay occurs.

-1.0 -0.5 0.5 1.0
z

-1.0

-0.5

0.5

1.0

sgn

Figure W.6.1: (Place Holder) The function ψδ(u, v) as a function of v for various values of
u when U = 0.5 and therefore tanh(U) = 0.46 · · · .

For future use let us examine the behavior of ψδ(u, v) about the origin. Evidently there
is the expansion

ψδ(u, v) =
2∑

n=0

ψ̃δcU (n)[1/Cn(U)]Cn(u)cn(v) + · · ·

= [1/(π
√

2)][1/C0(U)]C0(u)c0(v) + (1/π)[1/C1(U)]C1(u)c1(v)

+(1/π)[1/C2(U)]C2(u)c2(v) + · · ·
= [1/(π

√
2)][1/

√
2] + (1/π)[1/C1(U)](x/f)

+(1/π)[1/C2(U)][2(x2 − y2)/f 2 − 1] + · · · .
= 1/(2π) + (1/π)[1/ cosh(U)](x/f)

+(1/π)[1/ cosh(2U)][2(x2 − y2)/f 2 − 1] + · · · . (W.6.44)

Next, suppose ψU , now to be called ψ∆
U , is a delta function centered on v = π/2,

ψ∆
U (v) = δ(v − π/2). (W.6.45)

Then, by (6.26) and (6.27), the first few Fourier coefficients results are

ψ̃∆c
U (0) = 1/(π

√
2), (W.6.46)

ψ̃∆c
U (1) = 0, (W.6.47)
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ψ̃∆c
U (2) = −1/π; (W.6.48)

ψ̃∆s
U (0) = 0, (W.6.49)

ψ̃∆s
U (1) = 1/π, (W.6.50)

ψ̃∆s
U (2) = 0. (W.6.51)

Correspondingly, (6.28) now takes the form

ψ∆(u, v) =
2∑

n=0

ψ̃∆c
U (n)[Cn(u)/Cn(U)]cn(v) + · · ·

+
2∑

n=1

ψ̃∆s
U (n)[Sn(u)/Sn(U)]sn(v) + · · ·

= [1/(π
√

2)][1/C0(U)]C0(u)c0(v)− (1/π)[1/C2(U)]C2(u)c2(v) + · · ·
+(1/π)[1/S1(U)]S1(u)s1(v) + · · ·

= 1/(2π) + (1/π)[1/ sinh(U)](y/f)

−(1/π)[1/ cosh(2U)][2(x2 − y2)/f 2 − 1] + · · · . (W.6.52)

Let us compare the terms in ψδ given by (6.44) with the terms in ψ∆ given by (6.52). In
particular, let us begin by making the comparison

[1/ cosh(U)](x/f) versus [1/ sinh(U)](y/f). (W.6.53)

For ψδ the delta function disturbance in the boundary potential is made at the point (x, y) =
(xδ, 0) with

xδ = f cosh(U). (W.6.54)

See (17.4.1) and Figure 17.4.2. And for ψ∆ the delta function disturbance in the boundary
potential is made at the point (x, y) = (0, y∆) with

y∆ = f sinh(U). (W.6.55)

See (17.4.2). With this observation in mind, we see that the comparison (6.53) can be
rewritten in the form

x/xδ versus y/y∆. (W.6.56)

Now suppose the bounding ellipse u = U has been chosen so that

y∆ < xδ. (W.6.57)

See Figure 17.4.3. Then, according to (6.56), near the origin the effect of a disturbance at
(xδ, 0) is diminished from the effect of a disturbance at (0, y∆) by a factor of

y∆/xδ = tanh(U). (W.6.58)

By contrast, comparison of (4.42) and (4.45) shows, as expected, there is no such effect in
the case of a circular boundary. Our findings are in accord with the expectation described



2662 W. SMOOTHING FOR HARMONIC FUNCTIONS

in Section 17.4.1 to the effect that, for wigglers or dipoles with small gaps and wide pole
faces, use of a cylinder with elliptical cross section should give improved error insensitivity.

Let us also examine the next higher-order (and non constant) terms in ψδ and ψ∆ which,
according to (6.44) and (6.52), are

± (1/π)[1/ cosh(2U)][2(x2 − y2)/f 2]. (W.6.59)

Note that there is the relation

f 2 cosh(2U) = f 2[cosh2(U) + sinh2(U)] = (xδ)2 + (y∆)2. (W.6.60)

Thus, (6.59) can also be written in the form

± (1/π)(x2 − y2)/{(1/2)[(xδ)2 + (y∆)2]}. (W.6.61)

The comparable term for the circle in two-space case, that given in (4.42) or (4.49), is

± (1/π)(x2 − y2)/R2. (W.6.62)

Thus, to contrast the use of a circle with the use of an ellipse, we should make the comparison

R2 versus {(1/2)[(xδ)2 + (y∆)2]}. (W.6.63)

Moreover, when contrasting the use of a circle to the use of an ellipse, it is reasonable to
presume that the ellipse just contains the circle so that

y∆ = R. (W.6.64)

In this case (6.63) becomes

(1/2)(y∆)2 versus (1/2)(xδ)2. (W.6.65)

In view of (6.57) the left term in the comparison (6.65) is smaller than the term on the
right. Correspondingly, the denominator in (6.61) is larger than that in (6.62) thereby again
illustrating that the use of a cylinder with elliptical cross section should give improved error
insensitivity.

Exercises

W.6.1. Verify that the functions (6.17) and (6.18) are harmonic.

W.6.2. Since deriving the result (6.23) involved considerable algebra, it is useful to check
a few specific cases. Consider the points (x, y) = (0, 0) and (x, y) = (±f, 0) for which
(u, v) = (0, π/2 or 3π/2) and (u, v) = (0, 0 or π). See Figure 17.4.3. Verify that (6.23) holds
at these points.
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W.6.3. The purpose of this exercise is to prove the claim that, for all n, functions ψcn and
ψsn of the form (6.17) and (6.18) are polynomial functions of x and y. Recall (17.4.7). Show
that from this relation it follows that

(x+ iy)n/fn = [cosh(w)]n. (W.6.66)

Next verify the expansion

[cosh(w)]n = (1/2n){exp(w) + exp(−w)}n

= (1/2n){exp(nw) + n exp[(n− 2)w] + [n(n− 1)/2!] exp[(n− 4)w]

+ · · ·+ [n(n− 1)/2!] exp[−(n− 4)w] + n exp[−(n− 2)w] + exp(−nw)}.
(W.6.67)

Show that the terms in this expansion can be combined to yield the result

[cosh(w)]n = (1/2n−1){cosh(nw) + n cosh[(n− 2)w] + [n(n− 1)/2!] cosh[(n− 4)w] + · · · }.
(W.6.68)

Verify that the last term on the right side of (6.68) is

(1/2)n
(

n
n/2

)
if n is even, (W.6.69)

and is

(1/2)n−1

(
n

(n− 1)/2

)
cosh(w) if n is odd. (W.6.70)

Next verify that

cosh(mw) = cosh(mu+ imv) = cosh(mu) cosh(imv) + sinh(mu) sinh(imv)

= cosh(mu) cos(mv) + i sinh(mu) sin(mv), (W.6.71)

from which it follows that

cosh(mu) cos(mv) = <[cosh(mw)], (W.6.72)

sinh(mu)sin(mv) = =[cosh(mw)]. (W.6.73)

Using the results found so far, take real and imaginary parts to rewrite (6.66) in the form

(1/2n−1) cosh(nu) cos(nv) = <[(x+ iy)n/fn]−(1/2n−1)<{n cosh[(n−2)w]+ · · · }, (W.6.74)

(1/2n−1) sinh(nu) sin(nv) = =[(x+ iy)n/fn]− (1/2n−1)={n cosh[(n−2)w]+ · · · }. (W.6.75)

Conclude that cosh(nu) cos(nv) is a polynomial in x and y provided the same is true of
cosh(mu) cos(mv) for m = n− 2, n− 4, · · · . Make a similar conclusion for sinh(nu) sin(nv).
Finally prove by induction, starting with (6.19) through (6.22), the claim stated at the
beginning of this exercise.

W.6.4. Use some of the machinery of Exercise 6.3 above to produce an easy derivation of
the relations (6.23) and (6.24).
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W.7 The Elliptical Cylinder in Three Space

W.8 The Rectangle in Two Space

W.9 The Rectangular Cylinder in Three Space

W.10 The Sphere in Three Space

Higher angular modes are suppressed by the exponential factor (r/R)` = exp[` log(r/R)].
Note that log(r/R) < 0.

W.11 The Ellipsoid in Three Space
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Appendix X

Lie Algebraic Theory of Light Optics

Overview

Need text here.

X.1 Hamiltonian Formulation

Consider the optical system illustrated schematically in Figure 1.1. A ray originates at the
general initial point P i with spatial coordinate ri and moves in an initial direction specified
by the unit vector ŝi. After passing through an optical device it arrives at the final point P f

with with spatial coordinate rf and moves in a final direction specified by the unit vector
ŝf . Given the initial quantities (ri, ŝi), the fundamental problem of geometrical optics is to
determine the final quantities (rf , ŝf ) and to design an optical device in such a way that
the relation between the initial and final ray quantities has various desired properties.

Suppose the z coordinates of the initial and final points P i and P fare held fixed. In
some instances the planes z = zi and z = zf can be viewed as object and image planes,
respectively. But in other cases they simply serve as convenient reference planes. Further,
suppose the general light ray from P i to P f is parameterized using z as an independent/time-
like variable. That is, the path of a general ray is described by specifying the two functions
x(z) and y(z). Then the element of path length ds along a ray is given by the expression

ds = [(dz)2 + (dx)2 + (dy)2]1/2 = [1 + (x′)2 + (y′)2]1/2dz. (X.1.1)

Here a prime denotes the differentiation d/dz. Consequently the optical path length along
a ray from P i to P f is given by the integral

A =

∫ zf

zi
n(x, y, z)[1 + (x′)2 + (y′)2]1/2dz. (X.1.2)

Here the function n(x, y, z) = n(r) specifies the index of refraction at each point before and
after the optical device and in the device itself.

Fermat’s principle requires that A be an extremum for the path of an actual ray. There-
fore the ray path satisfies the Euler-Lagrange equations

d/dz(∂L/∂x′)− ∂L/∂x = 0, (X.1.3)

2667
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Figure X.1.1: Optical system consisting of an optical device preceded and followed by simple
transit. A ray originates at P i with initial location ri and initial direction ŝi, and terminates
at P f with final location rf and final direction ŝf

.

d/dz(∂L/∂y′)− ∂L/∂y = 0, (X.1.4)

with a Lagrangian L given by the expression

L = n(x, y, z)[1 + (x′)2 + (y′)2]1/2. (X.1.5)

To proceed further, it is useful to pass from a Lagrangian formulation to a Hamiltonian
formulation. Introduce two momenta px and py conjugate to the coordinates x and y by the
rule

px = ∂L/∂x′, (X.1.6)

py = ∂L/∂y′, (X.1.7)

with the explicit results that

px = n(r)x′/[1 + (x′)2 + (y′)2]1/2, (X.1.8)

py = n(r)y′/[1 + (x′)2 + (y′)2]1/2. (X.1.9)

The Hamiltonian H is defined in terms of the Lagrangian L by the Legendre transformation

H(x, y, px, py; z) = pxx
′ + pyy

′ − L. (X.1.10)

It follows from (1.5) through (1.10) that in our case H is given by the relation

H = −[n2(r)− p2
x − p2

y]
1/2. (X.1.11)
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Let q be a two-component vector with entries qx = x and qy = y, and let p be a two-
component vector with entries px and py. Evidently, a ray leaving the initial point P i is
characterized by the quantities zi, qi, and pi. The quantity qi specifies the initial point of
origin on the plane z = zi and, according to (1.8) and (1.9), pi describes the initial direction
of the ray. Similarly, qf and pf characterize the ray as it arrives at the final point P f in
the plane z = zf . Finally, the relation between the initial conditions qi and pi and the final
conditions qf and pf is given by following from z = zi to z = zf a trajectory q(z), p(z)
governed by the Hamiltonian H.

At this point it is convenient to introduce a four-component vector w with entries q, p:

w = (w1, w2, w3, w4) = (qx, px, qy, py). (X.1.12)

Also, let wi and wf denote initial and final values of w. The fact that initial conditions
determine the final conditions can be expressed in terms of a functional relationship or
mapping M. This relationship can be defined formally by writing the expression

wf =Mwi. (X.1.13)

Hamilton’s equations of motion for the canonical variables q and p read

q′α = ∂H/∂pα =: −H : qα, (X.1.14)

p′α = −∂H/∂qα =: −H : pα. (X.1.15)

Correspondingly, there is an equation of motion for M given by the relation

M′ =M : −H : (X.1.16)

with the initial condition
M|z=zi = I (X.1.17)

where I is the identity map. Recall Subsection 10.1.1.
As has been seen, Fermat’s principle is equivalent to the statement that the initial con-

ditions wi and the final conditions wf are related by following a trajectory governed by
a Hamiltonian, namely the Hamiltonian (1.11). From the work of Subsection 6.4.1 this
statement is equivalent in turn to the statement that M is a symplectic map.

Let us recapitulate briefly for the light optics context some of what we have learned
about symplectic maps. Let M be the Jacobian matrix associated with the mappingM. It
is defined by the relation

Mαβ = ∂wfα/∂w
i
β, (X.1.18)

and describes how small changes in wi produce small changes in wf . Also, let J be the
four-by-four matrix defined by the equation

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (X.1.19)
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Then from earlier work we know that M satisfies the matrix equation

MTJM = J. (X.1.20)

Equation (1.20) is the condition thatM be a symplectic matrix (and in the context of optics is
sometimes called the lens equation). Correspondingly, as described earlier, a mapM whose
Jacobian matrix M is symplectic is said to be a symplectic map. Note that, as indicated by
the notation M(wi; zi, zf ), the matrix M depends in general on the variables wi, zi, and zf .
Observe, however, that the right side of (1.20), namely the matrix J given by (1.19), does
not depend on these variables and is in fact a constant matrix. The requirement that (1.20)
holds for all values of wi, zi, and zf places strong restrictions on the nature of symplectic
maps. These restrictions were first studied by Hamilton (in the context of light optics!)
and led to the introduction/invention of characteristic/generating functions to describe and
manage symplectic maps. In this appendix we will see, in the context of light optics, how
Lie methods can also be used for this purpose.

Exercises

X.1.1. Verify that H as given by (1.11) is indeed the Hamiltonian associated with the
Lagrangian L given by (1.5).

X.1.2. Recall Liouville’s theorem. See Subsection 6.8.1. Google the word etendue. Work
out the consequences of Liouville’s theorem when applied to the case of light optics.

X.2 Assumption of Axial Symmetry and

Lie-algebraic Consequences

Although framed in the context of light optics, the discussion so far is applicable to general
Hamiltonian systems having a four-dimensional phase space. We are dealing with symplectic
maps M whose linear parts M about any trajectory/ray are elements of Sp(4,R). We now
turn to the specific case of the optical Hamiltonian (1.11). Moreover, at this point we also
assume that the optical device has axial/rotational symmetry about the z axis. Introduce
the definitions

q2 = (qx)
2 + (qy)

2 = q · q, (X.2.1)

p2 = (px)
2 + (py)

2 = p · p, (X.2.2)

p · q = pxqx + pyqy. (X.2.3)

(Note that this notation can be misleading since, for example, q2 is not the square of any
Cartesian coordinate.) From (1.11) we see that the optical Hamiltonian depends on p only
through the quantity p2. To enforce axial symmetry, we assume that n(r) is of the functional
form

n(r) = n̂(q2, z) (X.2.4)
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so that the index of refraction also has axial symmetry. Now imagine that H as given by
(1.11) and the assumption (2.4) is expanded in a power series in the components of q and
p. By the assumption of axial symmetry, such an expansion must be of the form

H = H0 +H2 +H4 +H6 + · · · (X.2.5)

where the Hn are homogeneous polynomials of degree n in the components of q and p. That
is, only even powers can occur. Indeed, the Hn depend only on powers of q2 and p2 and
products of these powers. Since only even powers of the components of w can occur in H, it
follows that the z axis, w(z) = 0, is a trajectory/ray for the equations of motion generated
by H, and the phase-space origin is a fixed point of M, M0 = 0.

Let Lz denote the second degree homogeneous polynomial

Lz = (q × p) · ez = qxpy − qypx (X.2.6)

and let Lz be the associated Lie operator

Lz =: Lz : . (X.2.7)

Then, as a Lie-algebraic expression of the condition of axial symmetry for the quantities q2,
p2, and (p · q), we have the relations

Lzq2 = Lzp2 = Lz(p · q) = 0. (X.2.8)

And, as a Lie-algebraic expression of the condition of axial symmetry for H, we have the
relations

LzHn = 0 (X.2.9)

and
LzH = 0. (X.2.10)

We conclude from (2.10) that Lz is an integral of motion,

LzH =: Lz : H = [Lz, H] = 0 (X.2.11)

from which it follows that there is the relation

Lfz = Liz (X.2.12)

which takes the explicit form

qfxp
f
y − qfypfx = qixp

i
y − qiypix. (X.2.13)

We note, for future use, that there is the relation

(Lz)
2 = (qxpy − qypx)2 = q2

xp
2
y − 2qxpxqypy + p2

xq
2
y = p2q2 − (p · q)2, (X.2.14)

and the relation

(Lz)† = : Lz :†= (: qxpy − qypx :)† =: qxpy :† − : qypx :†

= : qypx : − : qxpy := −Lz. (X.2.15)
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For the steps made in obtaining the latter relation, recall (7.3.16) through (7.3.18).
We also pause to make the definitions

L+ =: −p2/2 :, (X.2.16)

L0 =: (p · q)/2 :, (X.2.17)

L− =: q2/2 : . (X.2.18)

From (7.3.16) through (7.3.18) we see that

(L+)† =: −p2
x/2− p2

y/2 :†=: q2
x/2 + q2

y/2 := L−, (X.2.19)

(L0)† =: (p · q)/2 :†=: pxqx + pyqy :†=: pxqx + pyqy := L0, (X.2.20)

(L−)† =: q2
x/2 + q2

y/2 :†=: −p2
x/2− p2

y/2 := L+. (X.2.21)

The Lie operators (2.16) through (2.18) obey the commutation rules

{L+,L−} = 2L0, (X.2.22)

{L0,L+} = L+, (X.2.23)

{L0,L−} = −L−. (X.2.24)

According to Exercise 27.5.5 these commutation rules are a variant of the commutation
rules for sp(2,R). (Only some labeling and normalizations have been changed.) Therefore
we will be able to work with a particular Sp(2,R) subgroup of Sp(4,R), thereby simplifying/
organizing many computations and results.

The rules (2.22) through (2.24) are also the commutation rules for su(2) in its raising
and lowering operator form. [Recall that su(2) and sp(2,R) are equivalent over the complex
field, and therefore a relation of this form between them should not be a surprise. See
Subsection 3.7.6.] Finally note, as a consequence of (5.3.14) and (2.8), that Lz commutes
with L± and L0,

{Lz,L±} = {Lz,L0} = 0. (X.2.25)

Next we invoke a Lie algebraic fact: It can be shown that the solution of (1.16) involves
only the ingredients of H and quantities that can be formed by taking Poisson brackets
of the ingredients of H. See Chapter 10. It follows that, under the assumption of axial
symmetry, the solution to (1.16) must be of the form

M = exp(: f c2 :) exp(: fa2 :) exp(: f4 :) exp(: f6 :) exp(: f8 :) · · ·
= R exp(: f4 :) exp(: f6 :) exp(: f8 :) · · · . (X.2.26)

That is, only the fn with even n can occur in the factored product representation of M.
Moreover, all the fn must satisfy the axial symmetry (rotational invariance) relation

Lzfn = 0. (X.2.27)

Also, there is the Poisson bracket relation

[q2, p2] = 4q · p = 4p · q. (X.2.28)
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Therefore f c2 and fa2 , and hence R, can depend only on the quantities q2, p · q, and p2. (We
note, as can be easily verified, that p2 − q2 and p · q are fa2 polynomials, and p2 + q2 is an
f c2 polynomial.) Similarly, f4 can depend only on the six quantities (p2)2, p2(p · q), (p · q)2,
p2q2, (p · q)q2, and (q2)2. That is, under the assumption of axial symmetry, we may write

f4 = A(p2)2 +Bp2(p · q) + C(p · q)2 +Dp2q2 + E(p · q)q2 + F (q2)2 (X.2.29)

where the coefficients A through F are to be determined. Note that all these ingredients of
f4 are rotationally invariant [as required by (2.27)] and are powers and products of powers of
the ingredients for f2. Similarly, the ingredients of all the fn for n ≥ 4 are axially symmetric
and are powers and products of powers of the ingredients for f2. Finally we remark it can be
demonstrated that (for an imaging system) the polynomials in (2.29), shown multiplied by
the coefficients A through E, are related to the Seidel aberrations of spherical aberration,
coma, astigmatism, curvature of field, and distortion, respectively:1

A(p2)2 ↔ spherical aberration, (X.2.30)

Bp2(p · q)↔ coma, (X.2.31)

C(p · q)2 ↔ astigmatism, (X.2.32)

Dp2q2 ↔ curvature of field, (X.2.33)

E(p · q)q2 ↔ distortion, (X.2.34)

F (q2)2 ↔ nameless. (X.2.35)

The nameless aberration does not affect the ability of an imaging system to form images,
but may be important for other systems.

Suppose we present a general/arbitrary f4 in terms of monomials by writing

f4 =
∑
|k|=4

f(k1, k2, k3, k4)qk1
x p

k2
x q

k3
y p

k4
y (X.2.36)

where the coefficients f(k1, k2, k3, k4) are arbitrary and we have used the notation

|k| = k1 + k2 + k3 + k4. (X.2.37)

Under the assumption of axial symmetry, as exemplified by (2.27), there will be relations
among the various f(k1, k2, k3, k4). For example, we see from (2.2) that there is the monomial
expansion

(p2)2 = [(px)
2 + (py)

2]2 = (px)
4 + 2(px)

2(py)
2 + (py)

4. (X.2.38)

Also, we see from (2.29) that only the A(p2)2 term in (2.29) contributes to monomials that
are of degree four in the components of p. Therefore comparison of (2.29) and (2.36) gives
the relations

f(0, 4, 0, 0) = A, f(0, 2, 0, 2) = 2A, f(0, 0, 0, 4) = A. (X.2.39)

1Philipp Ludwig von Seidel (1821-1896) classified and described the possible third-order geometric aber-
rations for axially symmetric optical systems.
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In Exercise 2.2 you will have the pleasure of working out the further relations of this kind
that are implied by (2.29). From these relations one can extract formulas for the coefficients
A through F in terms of the f(k1, k2, k3, k4) with |k| = 4, and vice versa. In particular, you
will verify the relations

A = f(0, 4, 0, 0), (X.2.40)

B = f(1, 3, 0, 0), (X.2.41)

C = (1/2)f(1, 1, 1, 1), (X.2.42)

D = f(0, 2, 2, 0), (X.2.43)

E = f(3, 1, 0, 0), (X.2.44)

F = f(4, 0, 0, 0). (X.2.45)

Exercises

X.2.1. Verify (2.14).

X.2.2. Verify that (2.27) follows from (2.9) and the work of Chapter 10.

X.2.3. Consider the ingredients of (2.29). We have already found the monomial decompo-
sition (2.38). Verify that all the ingredients of (2.29) have the monomial decompositions

(p2)2 = [(px)
2 + (py)

2]2 = (px)
4 + 2(px)

2(py)
2 + (py)

4, (X.2.46)

p2(p · q) = [(px)
2 + (py)

2](pxqx + pyqy) = qx(px)
3 + (px)

2qypy + qxpx(py)
2 + qy(py)

3, (X.2.47)

(p · q)2 = (pxqx + pyqy)
2 = (qx)

2(px)
2 + 2qxpxqypy + (qy)

2(py)
2, (X.2.48)

p2q2 = [(px)
2+(py)

2][(qx)
2+(qy)

2] = (qx)
2(px)

2+(px)
2(qy)

2+(qx)
2(py)

2+(qy)
2(py)

2, (X.2.49)

(p · q)q2 = (pxqx + pyqy)[(qx)
2 + (qy)

2] = (qx)
3px + qxpx(qy)

2 + qx(qy)
2py + (qy)

3py, (X.2.50)

(q2)2 = [(qx)
2 + (qy)

2]2 = (qx)
4 + 2(qx)

2(qy)
2 + (qy)

4. (X.2.51)

From (2.29), (2.36), and (2.40) we have already found the results

f(0, 4, 0, 0) = A, f(0, 2, 0, 2) = 2A, f(0, 0, 0, 4) = A. (X.2.52)

Verify from (2.41) that there are the results

f(1, 3, 0, 0) = B, f(2, 0, 1, 1) = B, f(1, 1, 0, 2) = B, f(0, 0, 1, 3) = B. (X.2.53)

Verify from (2.42) and (2.43) that there are the results

f(2, 2, 0, 0) = C +D, f(0, 0, 2, 2) = C +D, (X.2.54)

f(1, 1, 1, 1) = 2C, (X.2.55)

f(0, 2, 2, 0) = D, f(2, 0, 0, 2) = D. (X.2.56)

Verify from (2.44) that there are the results

f(3, 1, 0, 0) = E, f(1, 1, 2, 0) = E, f(1, 0, 2, 1) = E, f(0, 0, 3, 1) = E. (X.2.57)

Verify from (2.45) that there are the results

f(4, 0, 0, 0) = F, f(2, 0, 2, 0) = 2F, f(0, 0, 4, 0) = F. (X.2.58)

Verify (2.40) through (2.45).
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X.3 Lie-Algebraic Decomposition of Polynomials

X.3.1 Fourth Degree Homogeneous Polynomials

Define the fourth degree homogeneous polynomials 4χ0
0(w) and 4χ2

m(w) by the rules

4χ0
0 = (Lz)

2 = q2
xp

2
y − 2qxpxqypy + p2

xq
2
y = p2q2 − (p · q)2; (X.3.1)

4χ2
2 = (p2)2, (X.3.2)

4χ2
1 = 2p2(p · q), (X.3.3)

4χ2
0 = (2/3)1/2[p2q2 + 2(p · q)2], (X.3.4)

4χ2
−1 = 2q2(p · q), (X.3.5)

4χ2
−2 = (q2)2. (X.3.6)

(Note that all these polynomials are axially symmetric.) Then it can be verified that there
are the operator results

L±4χ0
0 = 0, (X.3.7)

L0
4χ0

0 = 0; (X.3.8)

L+
4χ2

m = [(2−m)(3 +m)]1/2 4χ2
m+1, (X.3.9)

L−4χ2
m = [(2 +m)(3−m)]1/2 4χ2

m−1, (X.3.10)

L0
4χ2

m = m 4χ2
m. (X.3.11)

Note that, in a manner identical to that found in the subject of quantum-mechanical angular
momentum [which amounts to a study of the representations of su(2)], the operator L0

extracts the m value, and the operators L+ and L− raise and lower m values, respectively.
In particular, the results (3.7) through (3.11) can be written in the form

L+
nχjm = [(j −m)(j +m+ 1)]1/2 nχjm+1, (X.3.12)

L−nχjm = [(j +m)(j −m+ 1)]1/2 nχjm−1, (X.3.13)

L0
nχjm = m nχjm. (X.3.14)

with j, which (as will become evident subsequently) plays the role of “spin”, having the
values j = 0 or j = 2.2 Thus, under the action of L± and L0, 4χ0

0 behaves as a singlet
and the 5 = 2j + 1 with j = 2 quantities 4χ2

m. behave as a quintuplet. Lastly, n denotes
the degree of the homogeneous polynomial, with n = 4 in this case. This similarity arises
because the underlying Lie algebra/group theory is the same here and in the treatment of
quantum-mechanical angular momentum.

2We have placed the word spin in quotation marks because here j does not arise in the context of physical
rotations, but rather in this instance is an aspect of the symplectic Lie algebra sp(2,R). Note also that,
because of the (j − m) term on the right side of (3.12), the raising operation terminates when m = j.
Similarly, the lowering operation terminates when m = −j.
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Finally we observe that, in the present context, f4 decomposes into a singlet spanned by
4χ0

0 and a quintuplet spanned by the 4χ2
m. That is, we may write

f4 = 4c0
0

4χ0
0 +

2∑
m=−2

4c2
m

4χ2
m (X.3.15)

where 4c0
0 and the 4c2

m are uniquely defined coefficients.3

Let us compare the presentations (2.29) and (3.15). Upon equating like powers we obtain
the the relations

A(p2)2 = 4c2
2

4χ2
2 ⇔ A = 4c2

2 ⇔ 4c2
2 = A, (X.3.16)

Bp2(p · q) = 4c2
1

4χ2
1 ⇔ B = 2 4c2

1 ⇔ 4c2
1 = B/2, (X.3.17)

C(p · q)2 +Dp2q2 = 4c0
0

4χ0
0 + 4c2

0
4χ2

0, (X.3.18)

E(p · q)q2 = 4c2
−1

4χ2
−1 ⇔ E = 2 4c2

−1 ⇔ 4c2
−1 = E/2, (X.3.19)

F (q2)2 = 4c2
−2

4χ2
−2 ⇔ F = 4c2

−2 ⇔ 4c2
−2 = F. (X.3.20)

Further equating of like terms in (3.18 yields the results

C = −4c0
0 + 2(2/3)1/2 4c2

0, (X.3.21)

D = 4c0
0 + (2/3)1/2 4c2

0. (X.3.22)

See Exercise 3.4. Finally, the relations (3.21) and (3.22) can be inverted to yield the relations

4c0
0 = (1/3)(−C + 2D), (X.3.23)

4c2
0 = (1/6)1/2(C +D). (X.3.24)

If we make use of (2.34) through (2.39), and the results of the previous paragraph, we
can also express the cjm in terms of various f(k1, k2, k3, k4). So doing gives the results

4c0
0 = (1/3)(−C + 2D) = (1/3)[−(1/2)f(1, 1, 1, 1) + 2f(0, 2, 2, 0)]

= (1/6)[−f(1, 1, 1, 1) + 4f(0, 2, 2, 0)]; (X.3.25)

4c2
2 = A = f(0, 4, 0, 0), (X.3.26)

4c2
1 = B/2 = (1/2)f(1, 3, 0, 0), (X.3.27)

4c2
0 = (1/6)1/2(C +D) = (1/6)1/2[(1/2)f(1, 1, 1, 1) + f(0, 2, 2, 0)]

= (1/2)(1/6)1/2[f(1, 1, 1, 1) + 2f(0, 2, 2, 0)], (X.3.28)

4c2
−1 = E/2 = (1/2)f(3, 1, 0, 0), (X.3.29)

4c2
−2 = F = f(4, 0, 0, 0). (X.3.30)

3It is interesting to note that, while in the case of su(2) the construction of representations involves the
mathematical use of two-variable polynomials, these variables otherwise play no direct physical role. By
contrast, in the construction/representation of symplectic maps, polynomials in the phase-space variables
play a direct physical role and have specific physical interpretations.



X.3. LIE-ALGEBRAIC DECOMPOSITION OF POLYNOMIALS 2677

There is another way of obtaining explicit formulas for the cjm in terms of f4 that is
both instructive and convenient. Let 〈∗, ∗〉 denote the scalar product defined in Section 7.3.
See (7.3.1) through (7.3.9). Upon employing this scalar product we find, as will be seen
subsequently, the results

〈4χ0
0,

4χ0
0〉 = 12, (X.3.31)

〈4χ2
m,

4χ2
m′〉 = 64δmm′ , (X.3.32)

〈4χ2
m,

4χ0
0〉 = 0. (X.3.33)

Consequently, there are the formulas

4c0
0 = (1/12)〈4χ0

0, f4〉, (X.3.34)

4c2
m = (1/64)〈4χ2

m, f4〉. (X.3.35)

Finally, we remark that the quantity

4c0
0

4χ0
0 = 4c0

0 (Lz)
2 = 4c0

0 [p2q2 − (p · q)2] = 4c0
0 p

2q2 − 4c0
0 (p · q)2, (X.3.36)

which evidently is a combination of astigmatism and curvature of field, is called the (Joseph
Maximilian) Petzval (1807-1891) in honor of his early analytic work on geometric aberra-
tions. From (3.23) we see that the Petzval vanishes when

− C + 2D = 0. (X.3.37)

X.3.2 Second Degree Homogeneous Polynomials

Let us continue with the Lie-algebraic decomposition of polynomials. The polynomials q2,
p2, and p · q that go into making up f2 may be labelled according to a scheme that is
analogous to that used in (3.2) through (3.6). Define the axially-symmetric second degree
homogeneous polynomials 2χ1

m(w) by the rules

2χ1
1 = p2, (X.3.38)

2χ1
0 = (2)1/2(p · q), (X.3.39)

2χ1
−1 = q2. (X.3.40)

Then we find the operator results

L+
2χ1

m = [(1−m)(2 +m)]1/2 2χ1
m+1, (X.3.41)

L−2χ1
m = [(1 +m)(2−m)]1/2 2χ1

m−1, (X.3.42)

L0
2χ1

m = m 2χ1
m. (X.3.43)

Consequently the rules (3,12) through (3.14) continue to hold with, in this case, j = 1 and
n = 2.

We may also define an axially-symmetric second degree homogeneous polynomial 2ψ0
0(w)

by the rule
2ψ0

0 = Lz. (X.3.44)
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It meets our requirement for axial symmetry because it satisfies

Lz 2ψ0
0 =: Lz : Lz = 0. (X.3.45)

It also satisfies the relation

L0
2ψ0

0 = (1/2) : (p · q) : Lz = (1/2)[(p · q), Lz] = −(1/2)Lz(p · q) = 0. (X.3.46)

Similarly, there are the relations
L± 2ψ0

0 = 0. (X.3.47)

(The polynomial 2ψ0
0 is therefore entitled to carry the index values j = 0 and m = 0.)

According to our previous discussion, Lz = 2ψ0
0 does not appear as an odd power in f2 or

any other fn. Only the 2χ1
m can appear in the fn. That is why we have used the symbol ψ

for it rather than χ.
However that is not the end of the matter. According to (2.14) L2

z depends on p2, q2,
and (p · q), which are allowed ingredients for the fn. Therefore, although odd powers of Lz
are not allowed to appear in the fn, even powers are allowed as, for example, in 4χ0

0. See
(3.1).4

At this point it may be observed that there are the relations

4χ0
0 = (4/3)1/2[(2χ1

1)(2χ1
−1)− (2χ1

0)2]; (X.3.48)

4χ2
2 = (2χ1

1)2, (X.3.49)

4χ2
1 = (2)1/2(2χ1

1)(2χ1
0), (X.3.50)

4χ2
0 = (2/3)1/2[(2χ1

1)(2χ1
−1) + (2χ1

0)2], (X.3.51)

4χ2
−1 = (2)1/2(2χ1

−1)(2χ1
0), (X.3.52)

4χ2
−2 = (2χ1

−1)2. (X.3.53)

These relations are examples of the Clebsch-Gordan series for sp(2,R), and are identical to
the relations in quantum mechanics for coupling spin 1 and spin 1 to achieve net spin 0 or
net spin 2. Agreement between the Clebsch-Gordan series for sp(2,R) and su(2) is to be
expected because the commutation rules (2.22) through (2.24) for sp(2,R) are the same as
those for su(2) in raising and lowering operator form, and the state relations (3.12) through
(3.14) are the same in both cases.

X.3.3 Sixth and Eighth Degree Homogeneous Polynomials

The homogeneous polynomials that go into making f6, f8, etc., may be classified in similar
fashion. One finds, for example, that f6 decomposes into a triplet and a septuplet given by
the relations

6χ1
m = (4χ0

0)(2χ1
m); (X.3.54)

6χ3
3 = (p2)3, (X.3.55)

4Odd (as well as even) powers of Lz are allowed in the fn for the magnetic optics case of a solenoid,
which also has axial symmetry. See Section 16.2.
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6χ3
2 = (6)1/2(p2)2(p · q), (X.3.56)

6χ3
1 = (3/5)1/2[4p2(p · q)2 + (p2)2q2], (X.3.57)

6χ3
0 = (4/5)1/2[2(p · q)3 + 3(p · q)p2q2], (X.3.58)

6χ3
−1 = (3/5)1/2[4q2(p · q)2 + (q2)2p2], (X.3.59)

6χ3
−2 = (6)1/2(q2)2(p · q), (X.3.60)

6χ3
−3 = (q2)3. (X.3.61)

Consequently we may present a general (axially symmetric) f6 in the form

f6 =
1∑

m=−1

6c1
m

6χ1
m +

3∑
m=−3

6c3
m

6χ3
m (X.3.62)

where the 6c1
m and 6c3

m are uniquely defined coefficients.
Similarly, f8 decomposes into a singlet, a quintuplet, and a 9-tuplet given by the relations

8χ0
0 = (4χ0

0)2; (X.3.63)

8χ2
m = (4χ0

0)(4χ2
m); (X.3.64)

8χ4
4 = (2χ1

1)4 = (p2)4, (X.3.65)

8χ4
3 = (8)1/2(p2)3(p · q), (X.3.66)

8χ4
2 = (4/7)1/2[(p2)3q2 + 6(p2)2(p · q)2], (X.3.67)

8χ4
1 = (8/7)1/2[3(p2)2(p · q)q2 + 4(p2)(p · q)3], (X.3.68)

8χ4
0 = (2/35)1/2[24p2q2(p · q)2 + 3(q2)2(p2)2 + 8(p · q)4], (X.3.69)

8χ4
−1 = (8/7)1/2[3(q2)2(p · q)p2 + 4(q2)(p · q)3], (X.3.70)

8χ4
−2 = (4/7)1/2[(q2)3p2 + 6(q2)2(p · q)2, (X.3.71)

8χ4
−3 = (8)1/2(q2)3(p · q), (X.3.72)

8χ4
−4 = (2χ1

−1)4 = (q2)4. (X.3.73)

Consequently we may present a general (axially symmetric) f8 in the form

f8 = 8c0
0

8χ0
0 +

2∑
m=−2

8c2
m

8χ2
m +

4∑
m=−4

8c4
m

8χ4
m (X.3.74)

where 8c0
0 and the 8c2

m and the 8c4
m are uniquely defined coefficients.

It can be checked, as implied by the presentations (3.15), (3.62), and (3.74), that the
decompositions given above are exhaustive. That is, the various nχjm span each (axially
symmetric) fn. Moreover, the nχjm have been defined in such a way that one has the general
relations (3.12) through (3.14).
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X.3.4 Proof of Orthogonality and Definition/Use of the
Quadratic Casimir Operator

The aim of this subsection is to prove the scalar product relations

〈n′χj
′

m′ ,
nχjm〉 = N(n, j)δn′nδj′jδm′m (X.3.75)

where the N(n, j) are normalization constants independent of m. One of the tools for doing
so will be the quadratic Casimir operator for our realization of sp(2,R).

That (3.75) should contain the delta function δn′n is obvious because, by definition,
〈∗, ∗〉 is zero for unlike monomial pairs, and hence vanishes for homogeneous polynomials of
different degrees. See Subsection 7.3.1 and Exercise 7.3.25.

Let us next verify the δm′m factor. Consider the quantity 〈n′χj
′

m′ , L0
nχjm〉. With the aid

of (3.14) we may write

〈n′χj
′

m′ , L0
nχjm〉 = m〈n′χj

′

m′ ,
nχjm〉. (X.3.76)

But, with the aid of (2.20) and (3.14), we may also write

〈n′χj
′

m′ , L0
nχjm〉 = 〈(L0)† n

′
χj
′

m′ ,
nχjm〉 = 〈L0

n′χj
′

m′ ,
nχjm〉 = m′〈n′χj

′

m′ ,
nχjm〉. (X.3.77)

It follows that
(m′ −m)〈n′χj

′

m′ ,
nχjm〉 = 0 (X.3.78)

from which we conclude that

〈n′χj
′

m′ ,
nχjm〉 = 0 when m′ 6= m. (X.3.79)

To see that N(n, j) is (as the notation asserts) independent of m, consider the quantity
〈L+

nχjm , L+
nχjm〉. Making use of (3.12) gives the result

〈L+
nχjm , L+

nχjm〉 = [(j−m)(j+m+1)]1/2[(j−m)(j+m+1)]1/2〈nχjm+1 ,
nχjm+1〉. (X.3.80)

From (2.19) we conclude that

〈L+
nχjm , L+

nχjm〉 = 〈nχjm , (L+)†L+
nχjm〉 = 〈nχjm , L−L+

nχjm〉. (X.3.81)

But from (3.12) and (3.13) we see that

L−L+
nχjm = [(j −m)(j +m+ 1)]1/2Ln−χ

j
m+1

= [(j −m)(j +m+ 1)]1/2[(j +m+ 1)(j −m)]1/2 nχjm (X.3.82)

so that

〈L+
nχjm , L+

nχjm〉 = [(j −m)(j +m+ 1)]1/2[(j +m+ 1)(j −m)]1/2 〈nχjm , nχjm〉. (X.3.83)

Upon comparing (3.80) with (3.83) we see that there is the relation

[(j −m)(j +m+ 1)]1/2[(j −m)(j +m+ 1)]1/2〈nχjm+1 ,
nχjm+1〉 =

[(j −m)(j +m+ 1)]1/2[(j +m+ 1)(j −m)]1/2 〈nχjm , nχjm〉. (X.3.84)
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Therefore, as long as [(j−m)(j+m+ 1)] 6= 0 (which will be true if raising of m is possible),
we have found the relation

〈nχjm+1 ,
nχjm+1〉 = 〈nχjm , nχjm〉. (X.3.85)

With this result we can repeatedly increase m starting from m = −j to obtain the result

〈nχjm , nχjm〉 = 〈nχj−j , nχ
j
−j〉 for m ∈ [−j, j], (X.3.86)

which verifies that N does not depend on m.
The last step is to verify the δj′j factor in (3.75). This can be done with the aid of

the quadratic Casimir operator C2 for our realization of sp(2,R). For the purposes of this
appendix, it is defined by the rule

C2 = (L+L− + L−L+ + 2L2
0)/2. (X.3.87)

(For a discussion of Casimir operators, see Section 27.11.) It follows from (2.19) through
(2.21) that C2 is Hermitian,

C†2 = C2. (X.3.88)

And it follows from (2.22) through (2.24) that C2 commutes with all the sp(2,R) generators,
L± and L0,

{C2,L±} = {C2,L0} = 0, (X.3.89)

as expected for a Casimir operator.
Let us compute C2

nχjj. Evidently,

C2
nχjj = (1/2)(L+L− + L−L+ + 2L2

0) nχjj. (X.3.90)

Evaluate each of the three terms appearing in (3.90). For L2
0
nχjj there is the result

L2
0
nχjj = j2 nχjj. (X.3.91)

Recall (3.14). For (1/2)L−L+
nχjj there is the result

(1/2)L−L+
nχjj = 0. (X.3.92)

Recall (3.82) evaluated for m = j. Finally, for (1/2)L+L− nχjj, there is the result

(1/2)L+L− nχjj = (1/2)L+(2j)1/2 nχjj−1 = (1/2)(2j)1/2(2j)1/2 nχjj = j nχjj. (X.3.93)

Recall (3.12) and (3.13). Consequently, as in the analogous quantum-mechanical calculation,
there is the net result

C2
nχjj = (j + j2) nχjj = [j(j + 1)] nχjj. (X.3.94)

To continue our exploration, multiply both sides of (3.94) by L`− where ` = j −m. So
doing gives the result

[j(j + 1)]L`− nχjj = L`−C2
nχjj = C2L`− nχjj (X.3.95)
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where (3.89) has been used. But from (repeated, if necessary) use of (3.13) it follows that
there is a relation of the form

L`− nχjj = λ(j, `) nχjm (X.3.96)

where λ(j, `) is a non-vanishing proportionality constant. Combining (3.95) and (3.96) gives
the final result

C2
nχjm = [j(j + 1)] nχjm. (X.3.97)

We are now prepared to verify the δj′j factor in (3.75). Using (3.97) gives the relation

〈nχj′m , C2
nχjm〉 = [j(j + 1)]〈nχj′m , nχjm〉 = [(j + 1/2)2 − 1/4]〈nχj′m , nχjm〉. (X.3.98)

But, from (3.88), we also have the relation

〈nχj′m , C2
nχjm〉 = 〈C2

nχj
′

m ,
nχjm〉 = [(j′ + 1/2)2 − 1/4]〈nχj′m , nχjm〉. (X.3.99)

Upon combining (3.98) and (3.99) we see that

[(j′ + 1/2)2 − (j + 1/2)2]〈nχj′m , nχjm〉 = 0. (X.3.100)

It is easily verified that

[(j′ + 1/2)2 − (j + 1/2)2] = 0⇔ j′ = j or j′ + j = −1. (X.3.101)

The second possibility on the right side of (3.101) cannot occur since we are only working
with nonnegative values of j and j′. We conclude that for our purposes the factor

[(j′ + 1/2)2 − (j + 1/2)2] 6= 0 for j′ 6= j, (X.3.102)

and therefore (3.100) requires that

〈nχj′m , nχjm〉 = 0 for j′ 6= j. (X.3.103)

What remains is to evaluate/specify the N(n, j). Presumably there is a relatively simple
formula that does so. But for our purposes the Table below suffices for values of n and j of
present interest.
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Table X.3.1: Some Values of N(n, j).

n N(n, 0) N(n, 1) N(n, 2) N(n, 3) N(n, 4)

2 * 4 * * *

4 12 * 64 * *

6 * 160 * 2304 *

8 ? * ? * ?

Exercises

X.3.1. Verify (3.7) through (3.11) and (3.41) through (3.43).

X.3.2. Verify (3.25) through (3.30).

X.3.3. Review Exercise 2.3. Equation (3.1) provides the monomial decomposition for 4χ0
0.

Verify that the relations below provide the monomial decompositions for the 4χ2
m:

4χ2
2 = (p2)2 = (px)

4 + 2(px)
2(py)

2 + (py)
4, (X.3.104)

4χ2
1 = 2p2(p · q) = 2qx(px)

3 + 2(px)
2qypy + 2qxpx(py)

2 + 2qy(py)
3, (X.3.105)

4χ2
0 = (2/3)1/2[p2q2 + 2(p · q)2]

= (2/3)1/2{[(px)2 + (py)
2][(qx)

2 + (qy)
2] + 2(qxpx + qypy)

2}
= (2/3)1/2[(qx)

2(px)
2 + (px)

2(qy)
2 + (qx)

2(py)
2 + (qy)

2(py)
2

+2(qx)
2(px)

2 + 4qxpxqypy + 2(qy)
2(py)

2]

= (2/3)1/2[3(qx)
2(px)

2 + (px)
2(qy)

2 + (qx)
2(py)

2 + 3(qy)
2(py)

2 + 4qxpxqypy],

(X.3.106)

4χ2
−1 = 2(p · q)q2 = 2(qx)

3px + 2qxpx(qy)
2 + 2(qx)

2qypy + 2(qy)
3py, (X.3.107)

4χ2
−2 = (q2)2 = (qx)

4 + 2(qx)
2(qy)

2 + (qy)
4. (X.3.108)

X.3.4. The aim of this exercise is to verify the relations (3.21) through (3.24). Review the
results (2.46) through (2.51), (3.1), and (3.104) through (3.108). Verify that

C(p · q)2 +Dp2q2 = C[(qx)
2(px)

2 + 2qxpxqypy + (qy)
2(py)

2]

+ D[(qx)
2(px)

2 + (px)
2(qy)

2 + (qx)
2(py)

2 + (qy)
2(py)

2]

= (C +D)[(qx)
2(px)

2 + (qy)
2(py)

2]

+ 2Cqxpxqypy +D[(px)
2(qy)

2 + (qx)
2(py)

2]. (X.3.109)
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Verify that

4c0
0

4χ0
0 + 4c2

0
4χ2

0 = 4c0
0 [q2

xp
2
y − 2qxpxqypy + p2

xq
2
y]

+4c2
0(2/3)1/2[3(qx)

2(px)
2 + (px)

2(qy)
2 + (qx)

2(py)
2 + 3(qy)

2(py)
2 + 4qxpxqypy]

= (6)1/2 4c2
0[(qx)

2(px)
2 + (qy)

2(py)
2] + [−2 4c0

0 + 4(2/3)1/2 4c2
0]qxpxqypy

+[4c0
0 + (2/3)1/2 4c2

0][(px)
2(qy)

2 + (qx)
2(py)

2]. (X.3.110)

Since the monomials appearing on the right sides of (3.109) and (3.110) are linearly inde-
pendent, we may equate the coefficients of like terms. In particular, we may equate the
coefficients of the polynomials

[(qx)
2(px)

2 + (qy)
2(py)

2], qxpxqypy, and [(px)
2(qy)

2 + (qx)
2(py)

2]. (X.3.111)

Conclude that (3.18), when combined with (3.109) and (3.110), implies the relations

4c2
0 = 6−1/2(C +D)⇔ C +D = (6)1/2 4c2

0, (X.3.112)

2C = [−2 4c0
0 + 4(2/3)1/2 4c2

0]⇔ C = [− 4c0
0 + 2(2/3)1/2 4c2

0], (X.3.113)

D = [4c0
0 + (2/3)1/2 4c2

0], (X.3.114)

from which it follows that

4c0
0 = (1/3)(−C + 2D)⇔ (−C + 2D) = 3 4c0

0. (X.3.115)

Observe that (3.113) and (3.114) agree with the claims (3.21) and (3.22). Also, observe that
taking the sum of (3.21) and (3.22) produces (3.24), which agrees with (3.112). Finally,
verify that (3.23) follows from (3.21) and (3.22).

X.3.5. Observe that the operators L± and L0 are derivations. Work out their effects on 4χ0
0

and the 4χ2
m using (3.1) and (3.48) through (3.53) and (3.41) through (3.43). Verify that

your results agree with (3.7) through (3.11).

X.3.6. Review the derivation of the result (3.85) obtained with the use of the operator L+.
Using the operator L− in a similar way, derive the relation

〈nχjm−1 ,
nχjm−1〉 = 〈nχjm , nχjm〉. (X.3.116)

X.3.7. Verify that the nχjm given by (3.1) through (3.6), (3.38) through (3.40), (3.54)
through (3.61), and (3.63) through (3.73) all obey the rules (3.12) through (3.14).

X.3.8. Verify the relations

L+ =: −p2/2 := −(1/2) : 2χ1
1 :, (X.3.117)

L0 =: (p · q)/2 := (1/8)1/2 : 2χ1
0 :, (X.3.118)

L− =: q2/2 := (1/2) : 2χ1
−1 : . (X.3.119)

X.3.9. Verify the correctness of the entries in Table 3.1.
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X.4 Application of Multiplet Decomposition

It has been shown that the various fn can be decomposed into multiplets with members
nχjm. What is this decomposition good for? Suppose an optical system is composed of N
elements, and letMi be the optical transfer map for the i’th element. Then the net optical
transfer map M for the entire system can be written as the product

Mnet =M1M2 · · ·MN . (X.4.1)

Next observe that each of the Mi has a factorization of the form (2.26). Suppose further
that the various f ’s for the various Mi are all known. Then the only problem involved in
computing Mnet is that of combining a collection of known maps and writing the result in
factorized form.

The general problem of combining/concatenating maps has been treated in Section 8.4.
Let us briefly summarize the consequences of this treatment for the present discussion.
Suppose Mf and Mg are two optical transfer maps written in factored product form,

Mf = Rf exp(: f4 :) exp(: f6 :) exp(: f8 :) · · · , (X.4.2)

Mg = Rg exp(: g4 :) exp(: g6 :) exp(: g8 :) · · · . (X.4.3)

Let Mh be their product,
Mh =MfMg, (X.4.4)

and write Mh in the factorized form

Mh = Rh exp(: h4 :) exp(: h6 :) exp(: h8 :) · · · . (X.4.5)

Employ (4.2) and (4.3) in (4.4), and judiciously insert factors of I = RgR−1
g , to write

Mh = Rf exp(: f4 :) exp(: f6 :) exp(: f8 :) · · · × Rg exp(: g4 :) exp(: g6 :) exp(: g8 :) · · ·
= RfRgR−1

g exp(: f4 :)RgR−1
g exp(: f6 :)RgR−1

g exp(: f8 :)Rg · · ·
× exp(: g4 :) exp(: g6 :) exp(: g8 :) · · · . (X.4.6)

Next manipulate and make the definition

R−1
g exp(: fn :)Rg = exp[R−1

g : fn : Rg] = exp(: R−1
g fn :) = exp(: f tr

n :). (X.4.7)

Here the transformed polynomials f tr
n are defined in terms of the original fn by the relations

f tr
n = R−1

g fn, (X.4.8)

from which it follows that
f tr
n (w) = fn[(Rg)−1w] (X.4.9)

where Rg is the matrix associated with Rg. [See (8.2.26).] Upon combining the results of
our manipulation and definition we conclude that

Mh = RfRg exp(: f tr
4 :) exp(: f tr

6 :) exp(: f tr
8 :) · · · × exp(: g4 :) exp(: g6 :) exp(: g8 :) · · · .

(X.4.10)
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Now compare (4.5) and (4.10) to conclude that

Rh = RfRg, (X.4.11)

and

exp(: h4 :) exp(: h6 :) exp(: h8 :) · · · =
exp(: f tr

4 :) exp(: f tr
6 :) exp(: f tr

8 :) · · · × exp(: g4 :) exp(: g6 :) exp(: g8 :) · · · .
(X.4.12)

It follows from (4.11) that the associated matrices obey the relation

Rh = RgRf . (X.4.13)

And, from the work of Section 8.4, we know that (4.12) yields the aberration generator
relations

h4 = f tr
4 + g4, (X.4.14)

h6 = f tr
6 + g6 + [f tr

4 , g4]/2, (X.4.15)

h8 = f tr
8 + g8 + [f tr

6 , g4]− [f tr
4 , [f

tr
4 , g4]]/6 + [g4, [g4, f

tr
4 ]]/3, etc. (X.4.16)

Inspection of (4.14) through (4.16) shows that the determination of the aberration gen-
erators involves carrying out the transformations (4.9) and the evaluation of certain Poisson
brackets. It is these two tasks that may, in some cases, be simplified by multiplet decompo-
sition.

Observe that any R−1
g is generated by L± and L0. It follows from (3.12) through (3.14)

that any R−1
g acting on any element of a given multiplet must give a result in the same

multiplet. Specifically, one must have results of the form

R−1
g

nχjm =

j∑
m′=−j

Dj
m′m[(Rg)−1] nχjm′ . (X.4.17)

Here the Dj
m′m[(Rg)−1] are the transformation functions associated with the symplectic ma-

trices (Rg)−1 and are the analytic continuation from SU(2) to Sp(2,R) of the SU(2) Wigner
functions (which are entire so that unique analytic continuation is always well defined).
Special cases of the relations (4.17) are the results

R−1
g

nχ0
0 = nχ0

0 for n = 4, 8, (X.4.18)

which are immediately evident consequences of (3.7) and (3.8), and analogous relations for
8χ

0
0.
The relations (4.17) in analytic form may or may not be computationally useful.5 How-

ever, they do show what contributes to what. Suppose, for example, that f4 is given by
(3.15), and similarly g4 is given by

g4 = 4d0
0

4χ0
0 +

2∑
m=−2

4d2
m

4χ2
m. (X.4.19)

5What is essentially involved here is the operation (4.9). It can be realized numerically utilizing the
efficient and fast algorithm described in Section 39.9. The operation (4.9) is of direct/immediate use if one
wishes to compute the f tr

n . It is of intermediate use if one wishes to compute the Dj
m′m using (4.52).
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Then, from the definition (4.8) and using (4.17) and (4.18), we find that

f tr
4 = R−1

g f4 = R−1
g [4c0

0
4χ0

0 +
2∑

m=−2

4c2
m

4χ2
m] =

= 4c0
0

4χ0
0 +

2∑
m′=−2

{
2∑

m=−2

D2
m′m[(Rg)−1] 4c2

m } 4χ2
m′

= 4c0
0

4χ0
0 +

2∑
m=−2

{
2∑

m′=−2

D2
mm′ [(R

g)−1] 4c2
m′ } 4χ2

m

= 4c0
0

4χ0
0 +

2∑
m=−2

4e2
m

4χ2
m (X.4.20)

where the coefficients 4e2
m are given by the relation

4e2
m =

2∑
m′=−2

D2
mm′ [(R

g)−1] 4c2
m′ . (X.4.21)

All the ingredients are now available for insertion into (4.14) to yield the result

h4 = f tr
4 + g4 = (4c0

0 + 4d0
0) 4χ0

0 +
2∑

m=−2

(4e2
m + 4d2

m) 4χ2
m. (X.4.22)

We see that the singlet contributions (the Petzval contributions) to h4 are purely additive,
and depend only on the singlet content of f4 and g4, Similarly, the quintuplet content of
h4 depends only on the quintuplet content of f4 and g4, although in a somewhat more
complicated way: The quintuplet content of f4 first has to be transformed by R−1

g before
its addition to the quintuplet content of g4 to yield the net quintuplet content for h4.

The discussion so far has dealt with the combining of third-order aberrations as described
by (4.14). Now look at (4.15) which describes how fifth-order aberrations combine/arise.
Evidently, by an argument similar to that made for third-order aberrations, the triplet and
septuplet components of f6 and g6 contribute separately and independently to the triplet
and septuplet components, respectively, of h6. Moreover, according to (4.15), there is a
contribution arising from third-order aberrations due to the Poisson bracket term. We will
discuss Poisson bracket terms shortly,

We end this part of the discussion with the observation that there are some similarities in
the computation of h8 and the computation of h4. From (3.63) and (3.74) we see that eight-
order polynomials of the form f8 may also have a singlet content 8χ0

0, which may be viewed
as a higher-order Petzval. And these singlet contributions to h8 will also be purely addi-
tive. Moreover, there are quintuplet, and 9-tuple components of f8 and g8 that contribute
separately and independently to the quintuplet, and 9-tuple components, respectively, of h8

What remains is to study the Poisson bracket terms in the expressions (4.15), (4.16)
etc. for h6, h8, etc. These terms describe how lower-order aberrations combine (feed up) to
produce higher-order aberrations. We will begin with the Poisson bracket term [f tr

4 , g4] in
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(4.15). Before going into specifics, there are two general observations. First, the ordinary
product and the Lie product (the Poisson bracket) of any two axially symmetric polynomials
must also be axially symmetric. See Exercise 4.3. Second, there is the rule (7.6.14) relating
the degree of a Poisson bracket to the degrees of its ingredients. From these observations it
follows, for example, that [f tr

4 , g4] must be some linear combination of the 6χ1
m and the 6χ3

m.
Let us now be more specific. From (4.19) and (4.20) we see that [f tr

4 , g4] is some linear
combination of the Poisson brackets

[4χ0
0,

4χ0
0], (X.4.23)

[4χ0
0,

4χ2
m], (X.4.24)

[4χ2
m,

4χ2
m′ ]. (X.4.25)

Evidently the Poisson bracket term (4.23) vanishes due to antisymmetry. We will soon see
that the Poisson bracket terms (4.24) vanish due to axial symmetry. All that remains are
the Poisson brackets (4.25). It follows that the only feed-up terms contributing to h6 arise
from quintuplet terms in f4 interacting with quintuplet terms in g4. There are no feed up
terms arising from a singlet term interacting with a singlet term, nor from the interaction
of singlet and quintuplet terms.

To see that (4.24) vanishes, observe that

[4χ0
0,

4χ2
m] = [(Lz)

2, 4χ2
m] = 2Lz[Lz,

4χ2
m] = 0. (X.4.26)

Here we have used (3.1), the derivation property (1.7.7), and the axial symmetry of the 4χ2
m.

We now study the remaining quantities (4.25). Define polynomials θ22
m,m′ by the rule

θ22
m,m′ = [4χ2

m,
4χ2

m′ ]. (X.4.27)

Then, since L0 and L± are derivations with respect to the Poisson bracket Lie product,
recall (5.3.9), we find the results

L0θ
22
m,m′ = [L0

4χ2
m,

4χ2
m′ ] + [4χ2

m,L0
4χ2

m′ ] = (m+m′)θ22
m,m′ , (X.4.28)

L+θ
22
m,m′ = [L+

4χ2
m,

4χ2
m′ ] + [4χ2

m,L+
4χ2

m′ ]

= [(2−m)(2 +m+ 1)]1/2[4χ2
m+1,

4χ2
m′ ] + [(2−m′)(2 +m′ + 1)]1/2[4χ2

m,
4χ2

m′+1]

= [(2−m)(2 +m+ 1)]1/2θ22
m+1,m′ + [(2−m′)(2 +m′ + 1)]1/2θ22

m,m′+1, (X.4.29)

L−θ22
m,m′ = [L− 4χ2

m,
4χ2

m′ ] + [4χ2
m,L− 4χ2

m′ ]

= [(2 +m)(2−m+ 1)]1/2[4χ2
m−1,

4χ2
m′ ] + [(2 +m′)(2−m′ + 1)]1/2[4χ2

m,
4χ2

m′−1]

= [(2 +m)(2−m+ 1)]1/2θ22
m−1,m′ + [(2 +m′)(2−m′ + 1)]1/2θ22

m,m′−1. (X.4.30)

Inspection of the relations (4.28) through (4.30) shows that they are analogous to the behav-
ior of the (tensor) product of two j = 2 entities. Therefore all the standard Clebsch-Gordan
and Wigner-Eckart su(2) machinery is available. Also, following earlier reasoning, all the
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entries in (4.25) must be some linear combination of the 6χ1
m and the 6χ3

m. Consequently
there must be relations of the form∑

m1m2

C(22j;m1,m2,m) [4χ2
m1
, 4χ2

m2
] =

∑
m1m2

C(22j;m1,m2,m)θ22
m1m2

= δj1α(221) 6χ1
m + δj3α(223) 6χ3

m, (X.4.31)

where the coefficients C are su(2) Clebsch-Gordan coefficients and the coefficients α(221)
and α(223) are to be determined. See Exercise 4.5. The relations (4.31) can be inverted
using the completeness properties of the Clebsch-Gordan coefficients to yield the final result

[4χ2
m,

4χ2
m′ ] = α(221) C(221;m,m′,m+m′) 6χ1

m+m′

+ α(223) C(223;m,m′,m+m′) 6χ3
m+m′ , (X.4.32)

where the coefficients α are seen to play the role of the reduced matrix elements that occur
in applications of the Wigner-Eckart theorem. Again see Exercise 4.5. The needed Clebsch-
Gordan coefficients are listed in Tables 4.1 and 4.2 below.
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Table X.4.1: Some values of C(221;m,m′,m+m′) and C(223;m,m′,m+m′)
.

m m′ m+m′ C(221; ∗ ∗ ∗) C(223; ∗ ∗ ∗)

2 2 4 0 0

2 1 3 0
√

1/2

2 0 2 0
√

1/2

2 -1 1
√

1/5
√

3/10

2 -2 0
√

2/5
√

1/10

1 2 3 0 −
√

1/2

1 1 2 0 0

1 0 1 −
√

3/10
√

1/5

1 -1 0 −
√

1/10
√

2/5

1 -2 -1
√

1/5
√

3/10

0 2 2 0 −
√

1/2

0 1 1
√

3/10 −
√

1/5

0 0 0 0 0



X.4. APPLICATION OF MULTIPLET DECOMPOSITION 2691

Table X.4.2: Remaining values of C(221;m,m′,m+m′) and C(223;m,m′,m+m′)
.

m m′ m+m′ C(221; ∗ ∗ ∗) C(223; ∗ ∗ ∗)

0 -1 -1 −
√

3/10
√

1/5

0 -2 -2 0
√

1/2

-1 2 1 −
√

1/5 −
√

3/10

-1 1 0
√

1/10 −
√

2/5

-1 0 -1
√

3/10 −
√

1/5

-1 -1 -2 0 0

-1 -2 -3 0
√

1/2

-2 2 0 −
√

2/5 −
√

1/10

-2 1 -1 −
√

1/5 −
√

3/10

-2 0 -2 0 −
√

1/2

-2 -1 -3 0 −
√

1/2

-2 -2 -4 0 0
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What remains is to find α(221) and α(223). An easy computation gives the result

[4χ2
2,

4χ2
−2] = −(384/25)1/2 6χ1

0 − (64/5)1/2 6χ3
0. (X.4.33)

For the same j and m values use of (4.32) gives the result

[4χ2
2,

4χ2
−2] = α(221) C(221; 2,−2, 0) 6χ1

0

+ α(223) C(223; 2,−2, 0) 6χ3
0, (X.4.34)

Upon comparing (4.33) and (4.34) and with the knowledge that 6χ1
0 and 6χ3

0 are linearly
independent, see (3.75), we conclude that

α(221) C(221; 2,−2, 0) = −(384/25)1/2, (X.4.35)

α(221) C(223; 2,−2, 0) = −(64/5)1/2. (X.4.36)

According to Table 4.1 the Clebsch-Gordan coefficients associated with (4.35) and (4.36) are
given by the relations

C(221; 2,−2, 0) =
√

2/5, (X.4.37)

C(223; 2,−2, 0) =
√

1/10. (X.4.38)

It follows from (4.35) through (4.38) that the constants α(221) and α(223) have the values

α(221) = −(384/25)1/2/(2/5)1/2 = −(192/5)1/2, (X.4.39)

α(223) = −(64/5)1/2/(1/10)1/2 = −(128)1/2. (X.4.40)

Correspondingly, (4.32) takes the final form

[4χ2
m,

4χ2
m′ ] = −(192/5)1/2 C(221;m,m′,m+m′) 6χ1

m+m′

−(128)1/2 C(223;m,m′,m+m′) 6χ3
m+m′ . (X.4.41)

Upon reflection, we see that what has been illustrated is that the evaluation of Poisson
brackets can be carried out in general in terms of su(2) Clebsch-Gordan coefficients and a
few simply computed numbers analogous to reduced matrix elements.

The discussion of the combining of fifth-order aberrations, and the feed-up effect of lower-
order aberrations to contribute to fifth-order aberrations, is now complete. Moreover, it is
clear from (4.16) and Poisson bracket relations analogous to (4.41) that the the combining of
seventh and still higher-order aberrations, and the feed-up effect of lower-order aberrations to
contribute to these higher-order aberrations, follow a similar pattern. All that is needed is the
computation of the f tr

n and various single and multiple Poisson brackets. Finally we remark
that, although the existence and knowledge of explicit formulas, such as (4.41), for Poisson
brackets may be illuminating, they are not required for actual numerical computation. Their
rapid numerical evaluation may be performed using the methods described in Section 39.8.
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Exercises

X.4.1. Show that (4.14) through (4.16) are special cases of (8.4.32), (8.4.34), and (8.4.36).

X.4.2. Show, using (3.75) and (4.17), that there is the relation

Dj
m′m[(Rg)−1] = [1/N(n, j)]〈nχjm′ ,R

−1
g

nχjm〉. (X.4.42)

X.4.3. Recall (1.7.7), review Exercise 5.2.3, and recall the axial symmetry relation/condition
(2.27). Show that if two functions f and g have axial symmetry, then so does their ordinary
product fg and their Lie product (Poisson bracket) [f, g].

X.4.4. Verify (4.33).

X.4.5. The purpose of this exercise is to establish (4.31) and its inverse (4.32). We have
seen from (4.28) through (4.30) that the behavior of the θ22

m1m2
is analogous to the behavior

of the product of two j = 2 entities. From the Quantum Theory of angular momentum,
we know that two entities of spin 2 can be combined/coupled to produce entities of spins
0, 1, 2, 3, and 4. That is what the left side of (4.31) seeks to do for the values j = 0, 1, 2, 3, 4.
The right side of (4.31) states the expected results for these same j values. The expected
results seem sensible for the cases j = 1 and j = 3. But what about the cases j = 0, 2, 4? Do
we expect the left side of (4.31) to actually vanish in these cases as the right side states? We
do. It can be shown that the su(2) Clebsch-Gordan coefficients have the symmetry property

C(j1j2j;m1,m2,m1 +m2) = (−1)j1+j2−jC(j2j1j;m2,m1,m1 +m2). (X.4.43)

A special case of (4.43) is the relation

C(22j;m1,m2,m1 +m2) = (−1)−jC(22j;m2,m1,m1 +m2). (X.4.44)

That is, these C values are even under the interchange of m1 and m2 for even values of j,
and odd under the interchange for odd values of j. But from the antisymmetry property of
the Poisson bracket we know that

θ22
m1m2

= −θ22
m2m1

. (X.4.45)

Verify, therefore, that there must be the result∑
m1m2

C(22j;m1,m2,m)θ22
m1m2

= 0 for j = 0, 2, 4. (X.4.46)

And this desired result follows simply from symmetry considerations alone without any
additional information.

It can be shown that the su(2) Clebsch-Gordan coefficients satisfy the completeness
relation∑

j

C(j1j2j;m1,m2,m1 +m2)C(j1j2j;m
′
1,m

′
2,m

′
1 +m′2) = δm1m′1

δm2m′2
. (X.4.47)
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Use this result to derive (4.32) from (4.31).

Finally note that, because of the described symmetry properties of the Clebsch-Gordan
coefficients and Poisson brackets, both sides of (4.32) are antisymmetric under the inter-
change of m and m′, as desired, and the Clebsch-Gordan coefficients involved in (4.32)
vanish when m = m′. Scan the entries of Tables 4.1 and 4.2 to verify that the listed C
values do indeed have these advertised symmetry properties.

X.4.6. Using (3.75) and (4.32) show that there is the relation

〈6χjm+m′ , [
4χ2

m,
4χ2

m′ ]〉 = −(192/5)1/2 C(221;m,m′,m+m′)N(6, 1)δj1

−(128)1/2 C(223;m,m′,m+m′)N(6, 3)δj3. (X.4.48)

X.5 Maps/Lie Generators for Continuous Systems

X.6 Maps/Lie Generators for Discontinuous Systems

X.7 Two Sample Designs

X.7.1 Aberration Corrected Doublet

In this subsection we will illustrate how some of out earlier results can be used to design
an imaging doublet system that is free of all third-order aberrations and four fifth-order
aberrations. This system is illustrated schematically in Figure 7.1 below.

The system consists of four surfaces separated by drift spaces either in air or two possibly
different refractive media. Between the object plane and Surface S1 there is a left-side drift
space (in air) of on-axis length DL. Surfaces S1 and S2, with an on-axis separation of
thickness tL, constitute a first lens made of a medium with refractive index nL. Surfaces
S3 and S4, with an on-axis separation of thickness tR, constitute a second lens made of a
medium with refractive index nR. Between surfaces S2 and S3 there is a drift space (in air)
of on-axis length D. Finally, between S4 and the image plane there is a right-side drift space
(in air) of on-axis length DR. The surfaces S1 and S2 will be chosen so that (in paraxial
approximation) the first lens is converging, and the surfaces S3 and S4 will be chosen so
that (in paraxial approximation) the second lens is diverging.

Elimination of Petzval

We begin our design with the requirement that the net (third-order) Petzval aberration
vanish. From our earlier work we know that only the maps associated with the surfaces S1

through S4 contribute to the Petzval, and their contributions are additive. According to
*, passage through a surface S from a medium with refraction index n− to a medium with
refraction index n+ makes a contribution to the Petzval coefficient given by the relation

contribution = β2[(1/n+)− (1/n−)]. (X.7.1)
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Figure X.7.1: Schematic layout of imaging doublet system that is free of all third-order
aberrations and four fifth-order aberrations. The object plane is on the left and the image
plane is on the right.

Here β2 is the quadratic parameter of the surface.6 Consequently, for the four surfaces, we
find the Petzval coefficient contributions to be as follows:

For S1, n− = 1 and n+ = nL ⇒ contribution = β1
2 [(1/nL)− 1], (X.7.2)

For S2, n− = nL and n+ = 1⇒ contribution = β2
2 [1− (1/nL)], (X.7.3)

For S3, n− = 1 and n+ = nR ⇒ contribution = β3
2 [(1/nR)− 1], (X.7.4)

For S4, n− = nR and n+ = 1⇒ contribution = β4
2 [1− (1/nR)]. (X.7.5)

Here the quantity βj2 is the quadratic parameter for the jth surface. The net Petzval coeffi-
cient is the sum of these terms, and we require that it vanish,

Net Petzval coefficient = (β1
2 − β2

2)[(1/nL)− 1] + (β3
2 − β4

2)[(1/nR)− 1] = 0. (X.7.6)

There are several ways to satisfy (7.6). For simplicity, we specify that

nL = nR = n. (X.7.7)

6Unlike the third-order aberrations associated with the 4χ2
m, the Petzval aberration (associated with

4χ0
0) is independent of the quartic parameter β4 of surfaces. We may view parameters that govern paraxial

behavior as being “paraxial” parameters. Consequently, the β2 parameters, as well as indices of refraction
and lengths, are paraxial parameters. By contrast, the β4, β6, etc. have no effect on paraxial behavior and
therefore are not paraxial parameters. The Petzval is different from other third-order aberrations in that is
governed by paraxial parameters, and is independent of the β4 parameters.
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Also we specify that
β1

2 > 0 and β2
2 = −β1

2 (X.7.8)

so that the first lens is (symmetrically) biconvex and converging. And we specify that

β3
2 < 0 and β4

2 = −β3
2 (X.7.9)

so that the second lens is (symmetrically) biconcave and diverging. (Our intuition, which can
be checked, is that minimizing the curvatures of all lens surfaces by making lenses symmet-
rical, which essentially amounts to sharing power equally between leading and trailing lens
surfaces save for finite lens thickness effects, should on average help minimize aberrations.)
With these specifications the requirement (7.6) takes the simpler form

Net Petzval coefficient = 2β1
2 [(1/n)− 1] + 2β3

2 [(1/n)− 1] = 0, (X.7.10)

and we see that (7.10) is satisfied providing

β3
2 = −β1

2 . (X.7.11)

See Figure 7.2 where these specifications and the requirements (7.7) through (7.9) and (7.11)
are depicted graphically. We conclude that, in order to be Petzval aberration free, a system
must have both focusing and defocusing elements.

Paraxial Properties

The next design step is to examine, in the paraxial approximation, the optical transfer map
associated with the drifts and lenses depicted in Figure 7.2. These maps can all be written
as products of maps of the form exp(: f2 :). Listed below are the f2 polynomials for the
various items depicted in Figure 7.2.

Drift space of length d in air: f2 = −(d/2)p2. (X.7.12)

Here d takes the values
d = DL, d = D, and d = DR. (X.7.13)

Drift space of length d in medium with index n: f2 = −[d/(2n)]p2. (X.7.14)

Here we assume that both lenses in the doublet have on-axis thickness t so that

d = t. (X.7.15)

According to (*) the f2 associated with passage through a surface S from a medium with
refraction index n− to a medium with refraction index n+ is given by the relation

f2 = β2(n− − n+)q2. (X.7.16)

Here again β2 is the quadratic parameter for the surface. Therefore, for the surfaces S1

through S4, there are the following general results:

For S1, n− = 1 and n+ = nL ⇒ f2 = β1
2(1− nL)q2, (X.7.17)
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Figure X.7.2: Less schematic layout of imaging doublet system that is free of all third-order
aberrations and four fifth-order aberrations. The object plane is on the far left and the
image plane is on the far right (so that both are not visible), and only the shapes of the
various lens surfaces and the lens thicknesses and spacings are illustrated.
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For S2, n− = nL and n+ = 1⇒ f2 = β2
2(nL − 1)]q2, (X.7.18)

For S3, n− = 1 and n+ = nR ⇒ f2 = β3
2(1− nR)q2, (X.7.19)

For S4, n− = nR and n+ = 1⇒ f2 = β4
2(nR − 1)q2. (X.7.20)

We will use these general results for the specific cases described by (7.7) through (7.9),
(7.11), (7.13), and (7.15).

We are now prepared to compute R, the linear part of the transfer map for the optical
system illustrated in Figure 7.2. Based on the results summarized in *, it is given by the
product

R = exp[−(DL/2) : p2 :] exp[β1
2(1− n) : q2 :] exp{−[t/(2n)] : p2 :} exp[β1

2(1− n) : q2 :]×
exp[−(D/2) : p2 :] exp[−β1

2(1− n) : q2 :] exp{−[t/(2n)] : p2 :} exp[−β1
2(1− n) : q2 :]×

exp[−(DR/2) : p2 :].

(X.7.21)

Let R be the matrix associated with R. Since only the Lie operators : p2 : and : q2 : appear
in R, and since these operators map the pairs qx, px and qy, py into themselves and in the
same way, it follows that R must be of the block form

R =

(
G O
O G

)
(X.7.22)

where each block is 2 × 2, the block G is symplectic, and the block O is the zero matrix.
Therefore, for the computation of R, there is the simplification of only needing to work with
various 2 × 2 matrices corresponding to the various exp(: f2 :). Let us list these matrices,
call them K: For f2 of the form (7.12) there is the correspondence

f2 = −(d/2)p2 ↔ K =

(
1 d
0 1

)
. (X.7.23)

For f2 of the form (7.14) there is the correspondence

f2 = −[(d/(2n)p2]↔ K =

(
1 d/n
0 1

)
. (X.7.24)

For f2 of the form (7.16) there is the correspondence

f2 = β2(n− − n+)q2 ↔ K =

(
1 0

2β2(n− − n+) 1

)
. (X.7.25)

Since (7.21) has nine factors, it follows that the G associated with R is the product of
nine 2 × 2 matrices of the form (7.23) through (7.25). We will eventually compute this G
numerically. But we will first make some preliminary observations/calculations.
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Map R for the System and Map R′ for the Device

In practical applications, we may imagine that most of the parameter values in (7.21) are
fixed save for DL and DR, which could be fairly readily adjusted to achieve imaging and the
desired magnification. This circumstance suggests that we should understand the nature of
the map that these leading and trailing drifts surround. That is, we are interested in the
map R′ defined by the product

R′ = exp[β1
2(1− n) : q2 :] exp{−[t/(2n)] : p2 :} exp[β1

2(1− n) : q2 :]×
exp[−(D/2) : p2 :] exp[−β1

2(1− n) : q2 :] exp{−[t/(2n)] : p2 :} exp[−β1
2(1− n) : q2 :].

(X.7.26)

Compare (7.21) and (7.26). That is, we have the relation

R = exp[−(DL/2) : p2 :]R′ exp[−(DR/2) : p2 :]. (X.7.27)

Put another way, we may view R′ as being the linear part of the map for the optical device
and R as being the linear part of the map for the complete optical system.

Normal Form

What would we like to know about R′ or, equivalently, the matrices R′ and G′? We will see
that it is possible to associate with R′ a kind of normal form. Suppose, as a mathematical
trick, we consider the map R′′ defined by relation

R′′ = exp[(dL/2) : p2 :]R′ exp[(dR/2) : p2 :]. (X.7.28)

We have “sandwiched” R′ between two negative length drift maps where dL and dR are to
be determined. Let us compute the matrix G′′ associated with R′′. With the aid of (7.23)
we see that it is given by the relation

G′′ =

(
1 −dR
0 1

)
G′
(

1 −dL
0 1

)
=

(
1 −dR
0 1

)(
G′11 G′12

G′21 G′22

)(
1 −dL
0 1

)
=

(
1 −dR
0 1

)(
G′11 −G′11dL +G′12

G′21 −G′21dL +G′22

)
=

(
G′11 − dRG′21 −G′11dL +G′12 − dR(−G′21dL +G′22)

G′21 −G′21dL +G′22

)
=

(
G′′11 G′′12

G′′21 G′′22

)
. (X.7.29)

Upon comparing the last two lines in (7.29) we see that

G′′21 = G′21. (X.7.30)
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Next we seek values of dL and dR such that

1 = G′′11 = G′11 − dRG′21 ⇒ dR = (G′11 − 1)/G′21, (X.7.31)

1 = G′′22 = −G′21dL +G′22 ⇒ dL = (G′22 − 1)/G′21. (X.7.32)

We see that the goals G′′11 = 1 and G′′22 = 1 can be achieved provided

G′21 6= 0. (X.7.33)

For the values of dR and dL given by (7.31) and (7.32) we find that

G′′12 = −G′11dL +G′12 − dR(−G′21dL +G′22)

= −G′11(G′22 − 1)/G′21 +G′12 − [(G′11 − 1)/G′21]{−G′21[(G′22 − 1)/G′21] +G′22}
= −G′11(G′22 − 1)/G′21 +G′12 − [(G′11 − 1)/G′21]

= [−G′11(G′22 − 1) +G′12G
′
21 − (G′11 − 1)]/G′21

= [−G′11G
′
22 +G′12G

′
21 + 1]/G′21

= [− det(G′) + 1]/G′21

= 0. (X.7.34)

Here we have used the fact that G′ is symplectic.7 We have verified the remarkable result
that there is a (unique) choice for the pair dL, dR such that G′′ takes the simple/normal form

G′′ =

(
1 0
G′21 1

)
. (X.7.35)

Upon solving (7.29) for G′, we find the result

G′ =

(
1 dR
0 1

)
G′′
(

1 dL
0 1

)
. (X.7.36)

We conclude that, in paraxial approximation, the device acts like a thin lens preceded by a
drift of length dL and followed by a drift of length dR. And the thin lens has a focal length
f given by

1/f = −G′21 ⇔ f = −1/(G′21). (X.7.37)

That is, (7.35) can be rewritten in the form

G′′ =

(
1 0
−1/f 1

)
(X.7.38)

with f given by (7.37). For the problem at hand we will eventually find that

f > 0. (X.7.39)

From (7.35) we see that R′′ has the Lie form

R′′ = exp[(G′21/2) : q2 :]. (X.7.40)

Correspondingly, from (7.28) and (7.40), we see that R′ has the factorization

R′ = exp[−(dL/2) : p2 :] exp[(G′21/2) : q2 :] exp[−(dR/2) : p2 :].

Note that this result is consistent with (7.35) and (7.36).

7As rewarding as the messy calculation (7.34) ultimately proved to be, it is/was actually not necessary.
Once (7.31) through (7.33) are established, the relation G′′12 = 0 must hold in order for G′′ to be symplectic,
which we already know to be the case.
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Imaging Condition and Computation of Magnification

Let us use the normal form for R′ and the associated matrix G′ to discuss the possible
imaging and magnification properties of R. We will do this by working with the associated
matrix G. According to (7.27), it is given by the product

G =

(
1 DR

0 1

)
G′
(

1 DL

0 1

)
=

(
1 DR

0 1

)(
1 dR
0 1

)
G′′
(

1 dL
0 1

)(
1 DL

0 1

)
=

(
1 DR + dR
0 1

)
G′′
(

1 DL + dL
0 1

)
=

(
1 DR + dR
0 1

)(
1 0
−1/f 1

)(
1 DL + dL
0 1

)
. (X.7.41)

At this point, to simplify continuation of this calculation, it is convenient to define effective
drift lengths De

L and De
R by the rules

De
L = DL + dL, (X.7.42)

De
R = DR + dR, (X.7.43)

With these definitions we can move the calculation (7.41) forward to find the result

G =

(
1 DR + dR
0 1

)(
1 0
−1/f 1

)(
1 DL + dL
0 1

)
=

(
1 De

R

0 1

)(
1 0
−1/f 1

)(
1 De

L

0 1

)
=

(
1 De

R

0 1

)(
1 De

L

−1/f −De
L/f + 1

)
=

(
1−De

R/f De
L −De

RD
e
L/f +De

R

−1/f −De
L/f + 1

)
.

(X.7.44)

Suppose further we attempt to select De
L and De

R in such a way that

G12 = 0 (X.7.45)

so that R is imaging. Enforcing the relation (7.45) produces the chain of relations

0 = De
L −De

RD
e
L/f +De

R ⇔
0 = 1/De

R − 1/f + 1/De
L ⇔

1/De
L + 1/De

R = 1/f. (X.7.46)

Note that the last line of (7.46) is the familiar elementary imaging condition except that it
involves effective quantities.
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When (7.45) is enforced, (7.44) takes the form

G =

(
1−De

R/f 0
−1/f −De

L/f + 1

)
. (X.7.47)

As a sanity check, let us verify that this G is symplectic. We find that for this G

G11G22 = (1−De
R/f)(1−De

L/f) = 1− (De
R/f +De

L/f) + (De
R/f)(De

L/f)

= 1− (De
Ld

e
R/f)(1/De

L + 1/De
R) + (De

RD
e
L/f)(1/f)

= 1− (De
Ld

e
R/f)(1/De

L + 1/De
R − 1/f e) = 1 (X.7.48)

as expected. [Here we have used the last line of (7.46).] It follows that (7.47) can be rewritten
in the form

G =

(
m 0
−1/f 1/m

)
(X.7.49)

where m is the magnification given by the upper left entry in (7.47),

m = −(De
R/f − 1)

= −(DR/f + dR/f − 1). (X.7.50)

From (7.50) it is evident that, for sufficiently large values of DR, m is negative (the
image is inverted as expected) and can become large in magnitude as DR → ∞ providing
physically possible values of DL can be found such that (7.46 is satisfied. Expressing the
imaging condition (7.46) in terms of DL and DR yields the result

1/(DL + dL) + 1/(DR + dR) = 1/f. (X.7.51)

In the limit DR →∞ we find from (7.51) that

DL → f − dL. (X.7.52)

The right side of (7.52) is a physically possible value for DL provided

f − dL ≥ 0⇔ f ≥ dL. (X.7.53)

We conclude that
m→ +∞ as DR →∞ (X.7.54)

provided (7.53) holds. In this case the magnification can be made arbitrarily large in mag-
nitude.

How small can the magnification be? Can it be made vanishingly small for physical
values of DL and DR? From the second line of (7.50) we see that

m = 0⇔ DR = f − dR (X.7.55)

so that DR is non-negative (physically possible) provided

f − dR ≥ 0⇔ f ≥ dR. (X.7.56)

But does the DR given by (7.55) lead to a physical value of DL when employed in (7.51)?
Inserting the right side of (7.55) into (7.51) yields the relation

1/(DL + dL) + 1/f = 1/f ⇒ 1/(DL + dL) = 0⇒ DL = +∞. (X.7.57)

We conclude that DR → (f − dR) and DL → +∞ is consistent with imaging and results in
vanishing magnification. This conclusion is valid provided (7.56) holds.
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Thin-Lens Approximation

Eventually we will want to compute to compute G′ and hence R′. According to (7.26) this
computation involves the product of 7 matrices, and is therefore best done numerically. But
before doing so it would be useful to have an approximate result to get some feeling for
the expected nature of the exact result. This can be done by treating the two lenses in
the thin-lens approximation. That is, we will set t = 0 in (7.26). When this is done, what
remains is to compute the map R̄′ defined by the product

R̄′ = exp[2β1
2(1− n) : q2 :] exp[−(D/2) : p2 :] exp[−2β1

2(1− n) : q2 :]. (X.7.58)

Since the Lie transformation exp[2β1
2(1 − n) : q2 :] is that for a thin lens, let us make the

correspondence

exp[2β1
2(1− n) : q2 :]↔

(
1 0

−1/F 1

)
(X.7.59)

where F is the focal length of the first lens in the thin-lens approximation. So doing yields
the relation

− 1/F = 4β1
2(1− n). (X.7.60)

Note, according to our prescription that the first lens in the doublet be focusing, recall (7.8),
it follows that

F > 0. (X.7.61)

Now, to compute the matrix Ḡ′ associated with R̄′, we only need to compute the matrix
product

Ḡ′ =

(
1 0

1/F 1

)(
1 D
0 1

)(
1 0

−1/F 1

)
=

(
1 0

1/F 1

)(
1−D/F D
−1/F 1

)
=

(
1−D/F D
−D/F 2 1 +D/F

)
. (X.7.62)

What can we conclude in the thin-lens approximation? Let us apply the normal-form
procedure to Ḡ′. First, in analogy to (7.35) and from (7.62), we see that

Ḡ′′ =

(
1 0
Ḡ′21 1

)
=

(
1 0

−D/F 2 1

)
. (X.7.63)

Also we know that D > 0 and therefore

Ḡ′21 = −D/F 2 < 0. (X.7.64)

That is, in the thin-lens approximation, the net effect of the doublet is focusing.8 In analogy
to (7.37) we make the definition

1/f̄ = −Ḡ′21 ⇔ f̄ = −1/(Ḡ′21) = F 2/D. (X.7.65)

8Note that this conclusion holds no matter the sign F . This observation is the essence of strong focussing
in Accelerator Physics applications. Although only obtained here in the thin-lens approximation, there are
analogous results for thick lenses and thick magnetic elements.
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That is, (7.63) can be rewritten in the form

G′′ =

(
1 0
−1/f̄ 1

)
(X.7.66)

with f̄ given by (7.65). Moreover, from (7.31) and (7.32) we find that

d̄L = (Ḡ′22 − 1)/Ḡ′21 = (D/F )/(−D/F 2) = −F (X.7.67)

d̄R = (Ḡ′11 − 1)/Ḡ′21 = −(D/F )/(−D/F 2) = F. (X.7.68)

Let us use these thin-lens results to examine what magnifications can be achieved in
the thin-lens approximation. According to (7.54) the magnification can be made arbitrarily
large in magnitude providing (7.53) holds. But, in the thin-lens approximation, we find that

f̄ − d̄L = f̄ + F > 0 (X.7.69)

because both f̄ and F are positive. Thus, if the thin-lens approximation is to be believed,
the magnification can be made arbitrarily large in magnitude. What about making the
magnification arbitrarily small? According to (7.55) the magnification can be made to
vanish providing (7.56) holds. But, in the thin-lens approximation we find

f̄ − d̄R = F 2/D − F. (X.7.70)

Therefore

f̄ − d̄R ≥ 0⇔ F 2/D − F ≥ 0⇔ F/D − 1 ≥ 0⇔ F ≥ D ⇔ D ≤ F. (X.7.71)

The inequality on the far right side of (7.71) provides a design criterion: D must not be too
large. And if this criterion is met and the thin-lens approximation is to be believed, then
arbitrarily small magnification can also be achieved.

Case for which Both Lenses Have Finite Thickness

We have verified that a doublet can be designed to have satisfactory paraxial performance in
the thin-lens approximation. The next step is to verify that a doublet system can be found
that has satisfactory paraxial performance when the two lenses have finite thickness. As an
example, we suppose the doublet has the parameter values

β1
2 = to be determined by fitting, (X.7.72)

n = 1.5, (X.7.73)

t = 0.75, (X.7.74)

D = 4.75, (X.7.75)

and that the remaining βj2 are given by (7.8), (7.9), and (7.11).
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Fitting the Focal Length

We now compute G′ while varying β1
2 to achieve some desired value for the focal length as

given by (7.37). For example, suppose we wish/aim to have

f = 20⇔ G′21 = −.05. (X.7.76)

For the aim (G′21 = −.05) we find for the doublet that

G′ =

(
4.69171E − 01 5.74703E + 00
−5.00000E − 02 1.51895E + 00

)
(X.7.77)

and
β1

2 = 5.0003711901875095E − 02. (X.7.78)

Verification that Any Magnification can be Achieved

From (7.77) we see that

− 1/f = G′21 = −5.00000E − 02⇔ f = 20 as desired, (X.7.79)

dL = (G′22 − 1)/G′21 = (1.51895− 1.0)/(−.05) = −10.3790424, (X.7.80)

dR = (G′11 − 1)/G′21 = (0.469171− 1.0)/(−.05) = 10.6165777. (X.7.81)

Consequently,
f − dL = 20 + 10.3790424 = 30.3790424 > 0 (X.7.82)

and
f − dR = 20− 10.6165777 = 9.3834224 > 0. (X.7.83)

We conclude that for this doublet there are physical/positive values of DL and DR for which
any desired (negative) value of m can be achieved for the full system.

Selection of Magnification m and Determination of Lengths DL and DR

From (7.47) and (7.49) we see that

−De
L/f + 1 = 1/m (X.7.84)

from which it follows that
DL = f [1− (1/m)]− dL. (X.7.85)

And from (7.50) we see that
DR = f(1−m)− dR. (X.7.86)

Let us now select some value for m. For example, suppose we select the value

m = −0.5 = −1/2. (X.7.87)

Then DL and DR have the values

DL = 20[1 + 2] + 10.3790424 = 70.3790424 (X.7.88)
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and
DR = 20(3/2)− 10.6165777 = 19.3834223. (X.7.89)

And, for the full system consisting of the device plus leading and trailing drifts, we find that
the matrix R associated with the full linear map R has the related matrix G given by

G =

(
−5.00000E − 01 0.00000E + 00
−5.00000E − 02 −2.00000E + 00

)
. (X.7.90)

Evidently, the full map M is imaging in paraxial approximation because G12 = 0, and the
magnification is

m = G11 = −0.50, (X.7.91)

as desired.

Vanishing of Petzval

What can be said about the third-order aberrations of this system consisting of the doublet
plus leading and trailing drifts ? The f4 entries for M are listed below.

Exhibit *. Nonzero elements in generating polynomial assuming spherical lenses :

f( 33)=f( 20 00 01 )=-9.65181400681940E-02

f( 38)=f( 11 00 01 )= 1.9303628013639

f( 53)=f( 02 00 01 )= -18.561180782345

f( 67)=f( 00 20 01 )=-9.65181400681940E-02

f( 70)=f( 00 11 01 )= 1.9303628013639

f( 76)=f( 00 02 01 )= -18.561180782345

f( 83)=f( 00 00 03 )= -19.536145932398

f( 84)=f( 40 00 00 )=-2.58550347222222E-03

f( 85)=f( 31 00 00 )= 0.26342013888889

f( 90)=f( 22 00 00 )= -10.101302083333

f( 95)=f( 20 20 00 )=-5.17100694444444E-03

f( 96)=f( 20 11 00 )= 0.26342013888889

f( 99)=f( 20 02 00 )= -3.3671006944444

f(104)=f( 20 00 02 )=-0.13135810207182

f(105)=f( 13 00 00 )= 172.00868055556

f(110)=f( 11 20 00 )= 0.26342013888889

f(111)=f( 11 11 00 )= -13.468402777778

f(114)=f( 11 02 00 )= 172.00868055556

f(119)=f( 11 00 02 )= 4.3469930621546

f(140)=f( 04 00 00 )= -1098.2855902778

f(145)=f( 02 20 00 )= -3.3671006944444

f(146)=f( 02 11 00 )= 172.00868055556

f(149)=f( 02 02 00 )= -2196.5711805556

f(154)=f( 02 00 02 )= -42.459483682532

f(175)=f( 00 40 00 )=-2.58550347222222E-03

f(176)=f( 00 31 00 )= 0.26342013888889

f(179)=f( 00 22 00 )= -10.101302083333

f(184)=f( 00 20 02 )=-0.13135810207182

f(185)=f( 00 13 00 )= 172.00868055556

f(190)=f( 00 11 02 )= 4.3469930621546
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f(195)=f( 00 04 00 )= -1098.2855902778

f(200)=f( 00 02 02 )= -42.459483682532

f(209)=f( 00 00 04 )= -24.897680899171

Calculation shows that for this f4

〈4χ0
0 , f4〉 = 0, (X.7.92)

thereby indicating that the Petzval aberration indeed vanishes as desired. Alternatively,
using (2.42), (2.43), and (3.23), we expect that

0 = (2C − 4D) = f(1, 1, 1, 1)− 4f(0, 2, 2, 0) = 0⇔ f(111)− 4f(145) = 0. (X.7.93)

Examination of the values for f(111) and f(145) in the list of f4 values above shows that
the relation on the right side of (7.87) is indeed satisfied.

Evidently many of the f4 entries listed above are nonzero. Calculation shows that there
are the results

〈4χ2
2 , f4〉 = ∗, (X.7.94)

〈4χ2
1 , f4〉 = ∗, (X.7.95)

〈4χ2
0 , f4〉 = ∗, (X.7.96)

〈4χ2
−1 , f4〉 = ∗, (X.7.97)

〈4χ2
−2 , f4〉 = ∗. (X.7.98)

In view of (3.15) the scalar product results (7.92) and (7.94) through (7.98) specify f4

completely because of the assumption/imposition of axial symmetry.
We have examined a particular system which is specified by the parameter values given

by (7.73) through (7.75), (7.8), (7.9), (7.11) and the requirements (7.76) [which led to
(7.78)] and (7.91). For this system we have verified that the third-order Petzval aberration
vanishes, as desired. But upon reflection we see that, no matter what parameter values and
requirements are imposed, the third-order Petzval aberration will vanish as long as (7.6) is
satisfied.

Elimination of Remaining Third-Order Aberrations

Ideally we would like to have vanishing values for all the coefficients A through E appearing
in (2.30) through (2.34). There are five such coefficients, but we have already caused the
Petzval combination (C− 2D) to vanish thereby leaving four more goals to be met. We also
observe that there are four surfaces S1 through S4 for which values β1

4 through β4
4 can be

assigned. Can they be set in such a way that all the f4 save for the F terms vanish? We
will find that the answer is yes, but the matter is subtle.

For a spherical surface of radius r there are the relations

β2 = 1/(2r) (X.7.99)

and
β4 = 1/(8r3) (X.7.100)
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so that
β4 = (β2)3. (X.7.101)

For the calculation that produced the f4 in Exhibit *, the βj4 values were set in such a way
that the relation (7.100) was satisfied for all four surfaces. Equivalently, the surfaces were
assumed to be spherical.

But what happens if the βj4 values are instead set to zero? In this case, because all
surfaces are now parabolas of revolution through fourth order, one might hope that third-
order aberrations would be reduced. Below are the relevant scalar products for the f4 found
in this case:

〈4χ0
0 , f4〉 = 0, (X.7.102)

〈4χ2
2 , f4〉 = ∗, (X.7.103)

〈4χ2
1 , f4〉 = ∗, (X.7.104)

〈4χ2
0 , f4〉 = ∗, (X.7.105)

〈4χ2
−1 , f4〉 = ∗, (X.7.106)

〈4χ2
−2 , f4〉 = ∗. (X.7.107)

Looking at (7.102), we see that the Petzval still vanishes as before. But this is not surprising
since we know that the Petzval is independent of β4, and the condition (7.6) is still met
because the paraxial parameters have not been changed. What about the remaining entries?
Comparison of the entries in (7.94) through (7.98) with those in (7.103) through (7.107)
shows that the latter are still sizable despite all surfaces being parabolic. Why is this? First
of all, surface maps are not the only source of aberrations. As we see from *, transfer maps
for drifts involve 4χ2

2, 6χ3
3 · · · generators. And these generators can turn into 4χ2

m, 6χ3
m · · ·

generators under the action of exp(: f2 :) maps that occur/act in the course of concatenation.
Second, inspection of * for example, shows that for a surface map f4 generator there is the
expansion

f4 = ∗4χ0
0 + ∗4χ2

0 + ∗4χ2
−1 + ∗4χ2

−2, (X.7.108)

and only the 4χ2
−2 term depends on β4 but does not vanish when β4 = 0. See Exercise *.

Evidently there are non-vanishing 4χ2
m terms even when β4 = 0.

What to do now that a simple strategy has been explored and found wanting? Since
there are four goals to be achieved and four βj4 parameters to be set, we might try varying
the βj4 to meet the goals

〈4χ2
m , f4〉 = 0 for m = 2, 1, 0,−1. (X.7.109)

Experience shows that this strategy succeeds. Below are values for the f4 when the βj4 are
optimally set. Evidently all entries vanish save for the coefficients of q4

x, q
2
xq

2
y , and q4

y . All
third-order aberrations that affect image formation have been caused to vanish. This was
accomplished by selecting the values

β1
4 =, (X.7.110)

β2
4 =, (X.7.111)

β3
4 =, (X.7.112)
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β4
4 = . (X.7.113)

It can be shown that the calculation leading to the satisfaction of (7.109), after the Petzval
has already been eliminated, amounts to a linear fitting operation, and consequently the
values (7.110) through (7.113) are unique.

Entries in f4 when the βj4 are given the values (7.110) through (7.113).

nonzero elements in generating polynomial are :

f( 33)=f( 20 00 01 )=-9.65181400681940E-02

f( 38)=f( 11 00 01 )= 1.9303628013639

f( 53)=f( 02 00 01 )= -18.561180782345

f( 67)=f( 00 20 01 )=-9.65181400681940E-02

f( 70)=f( 00 11 01 )= 1.9303628013639

f( 76)=f( 00 02 01 )= -18.561180782345

f( 83)=f( 00 00 03 )= -19.536145932398

f( 84)=f( 40 00 00 )=-2.58550347222222E-03

f( 85)=f( 31 00 00 )= 0.26342013888889

f( 90)=f( 22 00 00 )= -10.101302083333

f( 95)=f( 20 20 00 )=-5.17100694444444E-03

f( 96)=f( 20 11 00 )= 0.26342013888889

f( 99)=f( 20 02 00 )= -3.3671006944444

f(104)=f( 20 00 02 )=-0.13135810207182

f(105)=f( 13 00 00 )= 172.00868055556

f(110)=f( 11 20 00 )= 0.26342013888889

f(111)=f( 11 11 00 )= -13.468402777778

f(114)=f( 11 02 00 )= 172.00868055556

f(119)=f( 11 00 02 )= 4.3469930621546

f(140)=f( 04 00 00 )= -1098.2855902778

f(145)=f( 02 20 00 )= -3.3671006944444

f(146)=f( 02 11 00 )= 172.00868055556

f(149)=f( 02 02 00 )= -2196.5711805556

f(154)=f( 02 00 02 )= -42.459483682532

f(175)=f( 00 40 00 )=-2.58550347222222E-03

f(176)=f( 00 31 00 )= 0.26342013888889

f(179)=f( 00 22 00 )= -10.101302083333

f(184)=f( 00 20 02 )=-0.13135810207182

f(185)=f( 00 13 00 )= 172.00868055556

f(190)=f( 00 11 02 )= 4.3469930621546

f(195)=f( 00 04 00 )= -1098.2855902778

f(200)=f( 00 02 02 )= -42.459483682532

f(209)=f( 00 00 04 )= -24.897680899171

Elimination of First Four Leading Fifth-Order Aberrations

The values of the βj6 are also available to be set thereby attempting to cause four fifth-
order aberrations to vanish. On the assumption that it is the sixth-order monomials with
the highest powers of px and py that are the most damaging for image formation, we may
attempt to cause the coefficients of 6χ3

3, 6χ3
2, 6χ3

1, and 6χ3
0 in f6 to vanish by a suitable choice

of the βj6. This goal can also be achieved. Below are the entries in f6 for two cases. In the
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first case the βj6 are set to zero [and the βj4 are set to the values (7.88) through (7.91)]. In
the second case the βj6 are set to cause the coefficients of 6χ3

3 through 6χ3
0 in f6 to vanish.

These βj6 have the values
β1

6 =, (X.7.114)

β2
6 =, (X.7.115)

β3
6 =, (X.7.116)

β4
6 = . (X.7.117)

Entries in f6 when the βj6 =0.
Entries in f6 when the βj6 have the values (7.114) through (7.117).

Corrector Strengths Depend on Magnification

Ray Traces

X.7.2 Aberration Corrected Hubble Telescope

Exercises

X.8 Inclusion of Chromatic Effects

X.9 Possibly Complementary Approaches

X.9.1 The Constant Index Case

Suppose the lenses of an optical system are all made of constant (not graded) index materials.
In that case computers can numerically trace a large number of rays through the system in
a very short time simply by invoking Snell’s law at each interface.

In that case fairly rapid ray traces can also be performed using Lie methods. The interface
maps S described in the Technical Report Foundations of a Lie · · · can be computed in
milliseconds using equations (7.46a) through (7.46d) of that paper and combined in further
milliseconds with surrounding transit maps (6.10) to yield the fm displayed in the first line
of equation (2.44) below:

wfα = Mwiα = {exp(: f2 :) exp(: f4 :) exp(: f6 :) exp(: f8 :) · · · }wiα
= gα1 (wi) + gα3 (wi) + gα5 (wi) + gα7 (wi) · · · . (X.9.1)

Then the homogeneous polynomials gαm displayed in the second line of (2.44) can be found
in a few milliseconds more. The terms gα1 (wi) describe the paraxial behavior of the optical
system, and the terms gα3 (wi), gα5 (wi), · · · describe ever higher degree departures from
paraxial behavior. [Note that the gαm are not independent because of the symplectic condition
(1.16). Therefore they are ill suited for use in optimization/fitting procedures. By contrast,
the fm are independent, and any choice for them is consistent with the symplectic condition.]
Finally, these polynomials gαm(wi) can be evaluated rapidly for any collection of initial
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conditions wi to find the associated finial conditions wf . And if ray coordinates are desired
at intermediate positions, they may be found by performing ray traces at intermediate
positions as the full end-to-end map M is being built up.

Of course, this use of Lie methods presumes that the series in the second line of (2.44)
is convergent and that to good approximation terms beyond some degree can be neglected.
But this can be checked using the Snell’s law ray trace. For example, let wfs`rt

α denote the

result of a Snell’s law ray trace for some initial condition wi and let w
f [7]
α be the associated

through seventh order result

wf [7]
α = gα1 (wi) + gα3 (wi) + gα5 (wi) + gα7 (wi). (X.9.2)

Then we expect the result
wf [7]
α = wfs`rt

α +O(|wi|9). (X.9.3)

The validity of (2.46) can be verified by comparing w
f [7]
α and wfs`rt

α for a variety of initial
conditions wi as wi → 0.

Assuming that the series in the second line of (2.44) is convergent and that to good ap-
proximation terms beyond some degree can be neglected, it might be illuminating/interesting
to monitor the Lie generators fm during the course of a ray-trace-driven design/optimization
process to observe, from a Lie perspective, what is being accomplished during the process.
If it is observed, for example, that some particular fm or set of fm is being driven to zero,
then one might experiment with including their values as part of a merit function.

In some settings, at least in the context of magnetic optics, it is useful to replace an
optimization process by a fitting process is which several parameters are varied to drive
several or all “offensive” Lie generators to zero. (To verify that some set of fm is offensive,
one can perform Lie algebraic ray traces with some of the fm set to zero to see what effect that
has on the wf so computed. Note that so doing does not violate the symplectic condition.)
For example, it is possible to design a complete third-order achromat in which the strengths
of three quadrupoles, three sextuples, and eight octupoles are varied to set/remove various
fm in a particular basis, and all remaining fm are cancelled by repetitive symmetry. (In
magnetic optics parlance, an achromat bends a charged-particle beam, but otherwise acts as
the identity map.) In so doing, 203 conditions are met. (Magnetic optical systems generally
do not have axial symmetry and, therefore, there are many more aberrations to be corrected.)
It is unlikely that this goal could have been achieved with an optimization program.

It is also possible to carry out procedures in which fitting loops are inside an optimization
loop. This was done in connection with some octupole-corrected Los Alamos charged-particle
beam projects.

X.9.2 The Graded Index Case

Suppose one wishes to employ lenses made of graded index material. (Something analogous
is always the case in magnetic optics since magnetic fields are position dependent.) In that
case one ray-tracing possibility is to employ direct numerical integration of the equations of
motion (1.34) and (1.35) associated with H, perhaps with the aid of symplectic integrators
to ensure maintenance of the symplectic condition. But this process is slow if many rays
are to be traced with high accuracy. Moreover, extraction of aberration data from ray
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data, if desired, is subject to the numerical errors associated with high-order numerical
differentiation.

A second option is to employ Lie methods. Suppose all the graded-index lenses have
flat faces. In that case there are equations of motion for the Lie generators fm that can
be integrated to yield a Lie representation for the end-to-end M. (See Chapter 10 of Lie
Methods for Nonlinear · · · .) And, once M is found in Lie form, numerous ray traces can
be carried out rapidly. (And fitting/optimization can be carried out using both the values
of the Lie generators and ray-trace results.) Figures 2 and 3 illustrate ray traces for two
charged-particle beam devices carried out in this fashion.

The treatment of graded-index lenses with curved faces is more complicated, but some
progress has also been made in handling this problem. And again, once M is found in Lie
form, numerous ray traces can be carried out rapidly. And fitting/optimization can again
be carried out using both the values of the Lie generators and ray-trace results.

Figure X.9.1: Lie Algebraically Designed Magnetic Optical System for Fast Dynamic
(Nanosecond) Imaging of Dense Objects Using High-Energy Proton Beams.
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Figure X.9.2: Ray Trace of Soft-Edge Lie Algebraically Designed Super Lens for 50 GeV
protons.
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Appendix Y

Relation between the Classical
Poisson Bracket Lie Algebra and the
Quantum Commutator-Based Lie
Algebra

Overview

This appendix explores the relation between the classical Poisson bracket Lie algebra and the
quantum commutator-based Lie algebra. Lie methods are used to construct bases for each.
It is found that the basis in the quantum case coincides with the Weyl basis. Next a natural
correspondence is set up between the classical and quantum bases. Finally, these bases are
used to determine the structure constants for the classical and quantum Lie algebras. It is
found that many, but not all, of the structure constants for the two Lie algebras are the same.
In particular, it is found that the classical Lie algebra is a contraction of the quantum Lie
algebra. Conversely, the quantum Lie algebra is a deformation of the classical Lie algebra.

Y.1 Classical Polynomial Basis

For introductory simplicity, work with a two-dimensional phase space with variables q and
p. (Higher-dimensional cases can be treated in a similar manner.) Let f and g be any
functions of the phase-space variables. Introduce a classical mechanical Lie product [∗, ∗]cm

among such functions by use of the Poisson bracket,

[f, g]cm = (∂f/∂q)(∂g/∂p)− (∂f/∂p)(∂g/∂q). (Y.1.1)

Given any phase-space function f , define an associated Lie operator, denoted by : f :, by
the rule

: f : g = [f, g]cm. (Y.1.2)

In view of (1.1) and (1.2), this is the usual definition of : f :, but presented with a slightly
different notation.
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AND THE QUANTUM COMMUTATOR-BASED LIE ALGEBRA

Introduce basis monomials ar−s,s by the rule

ar−s,s(q, p) = [(r − s)!/r!] : −p2/2 :s qr. (Y.1.3)

So doing yields, for the first few monomials, the results

a00 = 1; (Y.1.4)

a10 = q, (Y.1.5)

a01 = p; (Y.1.6)

a20 = q2, (Y.1.7)

a11 = qp, (Y.1.8)

a02 = p2; (Y.1.9)

a30 = q3, (Y.1.10)

a21 = q2p, (Y.1.11)

a12 = qp2, (Y.1.12)

a03 = p3; (Y.1.13)

a40 = q4, (Y.1.14)

a31 = q3p, (Y.1.15)

a22 = q2p2, (Y.1.16)

a13 = qp3, (Y.1.17)

a04 = p4. (Y.1.18)

The degree of a monomial ars is given by the sum (r+ s), and we refer to the monomials
of a fixed degree as a forming a ladder. Within a ladder and up to multiplicative factors,
: −p2/2 : acts on ars as an operator that lowers r and raises s. Indeed, there is the recursion
relation

: −p2/2 : ar,s = rar−1,s+1. (Y.1.19)

Similarly, within a ladder and up to multiplicative factors, : q2/2 : acts as an operator that
raises r and lowers s.



Y.2. QUANTUM POLYNOMIAL BASIS 2719

Y.2 Quantum Polynomial Basis

Let Q and P be the quantum-mechanical counterparts of q and p. They obey the commu-
tation rule

{Q,P} = QP − PQ = i~I (Y.2.1)

where ~ is the reduced Planck’s constant h/(2π), and which we will eventually view as
an adjustable parameter in Section 4. Suppose F (Q,P ) and G(Q,P ) are any polynomial
functions of Q and P with some ordering rule for products of Q’s and P ’s. Given these
functions, define a quantum mechanical Lie product [∗, ∗]qm by the rule

[F,G]qm = (i~)−1{F,G}. (Y.2.2)

Here we note two facts: First, [∗, ∗]qm is a Lie product because the commutator is a Lie
product. Second, if F and G are Hermitian, [F,G]qm will also be Hermitian. Indeed, from
the definition (2.2) there is the relation

[F,G]†qm = −(i~)−1{F,G}†. (Y.2.3)

But, there is also the relation

{F,G}† = (FG−GF )† = (FG)†− (GF )† = G†F †−F †G† = GF −FG = −{F,G}. (Y.2.4)

Consequently, there is the advertised result

[F,G]†qm = [F,G]qm. (Y.2.5)

Within the quantum mechanical context, define an operator : −P 2/2 : by the rule

: −P 2/2 : G = [−P 2/2, G]qm. (Y.2.6)

Powers of : −P 2/2 : are defined by the rules

: −P 2/2 :0 G = G, (Y.2.7)

: −P 2/2 :2 G = [−P 2/2, [−P 2/2, G]qm]qm, etc. (Y.2.8)

Next, in analogy to the construction (1.3), use : −P 2/2 : to define polynomials Ar−s,s by
the rule

Ar−s,s(Q,P ) = [(r − s)!/r!] : −P 2/2 :s Qr. (Y.2.9)

Here use is to be made of the relation (2.1) to evaluate the commutators that occur, and we
presume that

Q0 = I. (Y.2.10)

Doing so gives, for the first few values of r and s, the results

A00 = I; (Y.2.11)

A10 = Q, (Y.2.12)
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A01 = P ; (Y.2.13)

A20 = Q2, (Y.2.14)

A11 = (QP + PQ)/2, (Y.2.15)

A02 = P 2; (Y.2.16)

A30 = Q3, (Y.2.17)

A21 = (Q2P + PQ2)/2, (Y.2.18)

A12 = (QP 2 + P 2Q)/2, (Y.2.19)

A03 = P 3; (Y.2.20)

A40 = Q4, (Y.2.21)

A31 = (Q3P + PQ3)/2, (Y.2.22)

A22 = (QP + PQ)2/6 + (Q2P 2 + P 2Q2)/6, (Y.2.23)

A13 = (QP 3 + P 3Q/)2, (Y.2.24)

A04 = P 4. (Y.2.25)

Note that the Ars are Hermitian, as expected. Also, the Ars are polynomials in the
Weyl basis. That is, products of Q’s and P ’s are Weyl ordered. Moreover, this ordering
of constituents has not been achieved by demanding/imposing permutation symmetry, but
instead arises naturally from a Lie algebraic procedure.

The degree of a polynomial Ars is again given by the sum (r+s), and we again refer to the
polynomials of a fixed degree as a forming a ladder. Within a ladder and up to multiplicative
factors, : −P 2/2 : acts on Ars as an operator that lowers r and raises s. Indeed, there is the
recursion relation

: −P 2/2 : Ar,s = rAr−1,s+1. (Y.2.26)

Similarly, within a ladder and up to multiplicative factors, : Q2/2 : acts as an operator that
raises r and lowers s.

Y.3 A Natural Correspondence between Classical

and Quantum Bases

How can we set up a natural correspondence between the classical and quantum bases? In
so doing, by linearity, we will also set up a natural correspondence between the classical Lie
algebra of phase-space functions with Lie product [∗, ∗]cm and the quantum Lie algebra of
polynomials in Q and P with Lie product [∗, ∗]qm. We will call these Lie algebras Lcm and
Lqm.
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First, it is natural to set up the correspondences

1↔ I, (Y.3.1)

qn ↔ Qn, (Y.3.2)

pn ↔ P n. (Y.3.3)

But then, because of the Lie algebraic similarity of the definitions (1.3) and (2.9), it is also
natural to set up the correspondences

ars(q, p)↔ Ars(Q,P ), (Y.3.4)

for which (3.1) through (3.3) are special cases.

Y.4 Relation between the Lie Algebras Lcm and Lqm

The Lie algebra Lcm has structure constants ctujk;rs defined by the relation

[ajk, ars]cm =
∑
tu

ctujk;rs atu. (Y.4.1)

Similarly, the Lie algebra Lqm has structure constants Ctu
jk;rs defined by the relation

[Ajk, Ars]qm =
∑
tu

Ctu
jk;rs Atu. (Y.4.2)

How do the structure constants ctujk;rs and Ctu
jk;rs compare? They are not all the same, and

therefore the two Lie algebras Lcm and Lqm are not manifestly the same.1 However, many
of the structure constants are the same. In particular, there are the equalities

Ctu
jk;rs = ctujk;rs for j + k ≤ 2. (Y.4.3)

One consequence of (4.3) is that the subalgebras generated by classical and quantum
polynomials of degree ≤ 2 are identical, and are in fact the Lie algebra isp(2,R), the Lie
algebra of the inhomogeneous symplectic group in two dimensions over the real field.2

Another consequence is the special role played by the ajk and the Ajk with j + k = 2.
Both generate the Lie algebra for sp(2,R). We have already seen that p2 and q2, and their
quantum counterparts, act as raising and lowering operators within ladders. Recall (1.19)

1In the very early editions of Dirac’s classic text The Principles of Quantum Mechanics he proceeded as
if these two Lie algebras were the same. This misconception was removed by more careful wording in later
editions.

2In light wave optics the quantity λ/(2π), where λ is the wavelength, plays the role of ~. Consequently,
Fourier optics results can be read off from paraxial ray optics results. We also remark that although the
subalgebras are identical, the underling groups are not identical. In the classical case the group is the
inhomogeneous symplectic group in two dimensions over the real field. In the quantum case the group is
the inhomogeneous metaplectic group in two dimensions over the real field, which is a two-fold cover of the
inhomogeneous symplectic group in two dimensions over the real field.
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and (2.26). What can be said about the action of a11 and its quantum counterpart A11?
Simple calculation gives the result

: a11 : ars = [qp, qrps]cm = (s− r)ars. (Y.4.4)

Thus the ars are eigenfunctions of the operator : a11 : with eigenvalues (s − r). It follows
from (4.3) that there are the analogous quantum results

: A11 : Ars = (s− r)Ars. (Y.4.5)

The Ars are eigenfunctions of the operator : A11 : with eigenvalues (s− r).
The first differences between Lcm and Lqm results occur at degree 4. There are the

classical relations
[a03, a30]cm = −9a22 (Y.4.6)

and
[a12, a21]cm = −3a22. (Y.4.7)

By contrast, there are the quantum relations

[A03, A30]qm = −9A22 + (3/2)~2A00, (Y.4.8)

and
[A12, A21]qm = −3A22 − (1/2)~2A00. (Y.4.9)

The Lie products of all other degree 3 polynomials yield degree 4 results that are identical
in the classical and quantum cases.

It can be verified that there are the relations

lim
~→0

Ctu
jk;rs = ctujk;rs, (Y.4.10)

and consequently there is the limiting correspondence

[ajk, ars]cm ↔ lim
~→0

[Ajk, Ars]qm. (Y.4.11)

Thus, Lcm is a contraction of Lqm and, conversely, Lqm is a deformation of Lcm.
It is notable that the differences between the classical and quantum cases actually involve

~2 and not ~ itself.3 Thus, the relation (4.10) may be replaced by the stronger result

Ctu
jk;rs = ctujk;rs +O(~2). (Y.4.12)

Moreover note, as inspection of (4.8) and (4.9) illustrates, that the O(~2) terms involve only
lower-degree polynomials than those that occur classically.

We also observe that the nature of the terms that can occur in a Lie product can be
inferred from the Clebsch-Gordan series for the symplectic group. We have already seen
that in the case of a two-dimensional phase space the basis elements Ajk have well-defined

3It follows that wave-optics aberration results, up to corrections of order [λ/(2π)]2, can be read off from
ray-optics aberration results.
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transformation properties under the action of the symplectic group Lie algebra sp(2,R).
Consequently, their Lie products must also have well-defined transformation properties under
the action of sp(2,R). For example, the Ajk with j + k = d belong to an irreducible
representation of sp(2,R) that behaves like “spin” d/2.4 In the cases of (4.8) and (4.9), the
ingredients of the Lie products on the left sides carry the representation 3/2. According to
Clebsch and Gordan, two spin 3/2 objects can combine to produce objects of spins 3, 2, 1,
and 0. Since the Lie product is antisymmetric under the interchange of its ingredients, the
spins 3 and 1 are ruled out by symmetry considerations. What possibly remain are spins 2
and 0. The two terms that occur on the right sides of (4.8) and (4.9), namely A22 and A00,
have spins 2 and 0, respectively.

Exercises

Y.4.1. Verify the results (1.4) through (1.19) and the results (2.11) through (2.26).

Y.4.2. Verify the results (4.3) through (4.11).

Y.4.3. Determine the effect of : q2/2 : on ars and the effect of : Q2/2 : on Ars.

4Here we use the fact that the Lie algebras sp(2,R) and su(2) are equivalent over the complex field, and
therefore their Clebsch-Gordan series are essentially the same. In the case of phase spaces of dimension 2n,
one must know the Clebsch-Gordan series for sp(2n,R).
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