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Homework 4

Solving exercises is the most effective way of learning physics. Although only one third of the final grades
for this course will be based on the homeworks, you should take them very seriously.

Assignement to be turned in at the beginning of the class on Thursday, April 20 by students
registered to the course:

• Work the three exercises below

Exercises:
Radiation from accelerated masses

We consider the gravitational radiation produced during the elastic deflection of a particle by a fixed
scattering center. We denote the initial and final four-momenta of the particle with pµ and p′

µ
. The

energy-momentum tensor of the particle is

T µν(x) =
pµ pν

γ m
δ(3)(x − x0(t)) , (1)

where m is the particle’s mass, γ = 1/(1 − v2/c2) and x0(t) is the particle’s trajectory. Approximating
the collision as instantaneous, the Fourier transform of the energy-momentum tensor for a massive particle,
Eq. (1), reads

T̃ µν(ω,k) =
c

iγ m

[

pµ pν

ω − k · v
−

p′
µ

p′
ν

ω − k · v′

]

. (2)

1. Elastic collisions: non-relativistic limit [M. Maggiore (2006)] (3.5 points)

Show that in the non-relativistic limit, Eq. (1) reduces to

T̃ ij(ω) ≃ −
i c

ω m
(pi pj − p′i p′j) . (3)

Assume v = v (1, 0, 0) and v′ = v (cos θs, sin θs, 0) and |v| = |v′| (elastic collision). In class we derived
that the distribution of the energy radiated in gravitational waves is (dΩ = d cos θ dφ)

dE

dΩ
=

G

2π2 c7
Λij,kl(n)

∫ +∞

0

dω ω2 T̃ij(ω, ω n/c) T̃ ⋆
kl(ω, ω n/c) , (4)

where

n = (sin θ cosφ, sin θ sin φ, cos θ) , Λij,kl = Pik Pjl − Pij Pkl/2 Pij = δij − ni nj . (5)

Plugging Eq. (3) into Eq. (4), derive the following formula

dE

dΩ dω
=

Gm2 v4

π2 c5

[

f1(θs) − f2(θs; φ) sin2 θ + f3(θs; φ) sin4 θ
]

. (6)

What are the explicit expressions for the coefficients f1, f2 and f3? Show that the radiation is mostly
emitted along the z-axis. Evaluate dE/dω.

2. Elastic collisions: relativistic limit [M. Maggiore (2006)] (3 points)

In the relativistic limit p = γmv. Setting k = nω/c, we have

T̃ ij(ω,nω/c) =
c γ m

iω

(

vi vj

1 − n · v/c
−

v′i v′j
1 − n · v′/c

)

. (7)
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Plugging Eq. (7) into Eq. (4), derive the following formula

dE

dΩ dω
=

Gm2 γ2 v4

π2

[

f1(v, θs; θ, φ) − f2(v, θs; θ, φ) sin2 θ + f3(v, θs; θ, φ) sin4 θ
]

. (8)

What are the explicit expressions for the coefficients f1, f2 and f3? Notice that the factors 1/(1−n·v/c)
appearing in the coefficients f1, f2 and f3 tend to bend the radiation in the direction of the motion.

3. Lack of beaming from accelerated masses [M. Maggiore (2006)] (4 points)

Here we want to compare the GW radiation to the EM radiation and show that in the former case
there is a lack of beaming.

We consider a relativistic particle which is instantaneously accelerated from 0 to v. The Fourier
transform of the energy-momentum tensor reads

T̃ ij(ω,nω/c) =
c γ m

iω

(

vi vj

1 − cos θ v/c

)

. (9)

Show that the distribution of the energy radiated in gravitational waves is

(

dE

dΩ dω

)

GW

=
Gm2 γ2

4π2c

(v

c

)4

pGW(θ) , (10)

and evaluate the coefficient pGW(θ). The distribution of the energy radiated in electromagnetic waves
is

(

dE

dΩ dω

)

EM

=
e2

4π2c

(v

c

)2

pEM(θ) , pEM(θ) =
sin2 θ

(1 − cos θ v/c)2
. (11)

Estimate for which value of θ, the functions pEM(θ) and pGW(θ) have a maximum. Estimate also the
width of the maximum. From these results you should conclude that even in the limit γ → ∞ the
gravitational radiation is not beamed in a narrow cone, as the electromagnetic radiation does, but it
is extended over a solid angle comparable to 4π.


