
Correlation Functions and Diagrams

Correlation function of fields are the natural objects to study in the path integral

formulation. They contain the physical information we are interested in (e.g. scat-

tering amplitudes) and have a simple expansion in terms of Feynman diagrams. This

chapter develops this formalism, which will be the language used for the rest of the

course.

1 Sources

The path integral gives us the time evolution operator, which in principle contains all

the information about the dynamics of the system. However, in order to use the path

integral to do physics we need to find a way to describe initial and final particle states

in path integral language. The way to do this is to couple the fields to spacetime-

dependent background fields (“sources”) that can create or destroy particles. For

example, in our scalar field theory, we add a source field J(x) coupled linearly to φ:

L = 1
2
∂µφ∂µφ − V (φ) + Jφ. (1.1)

The source field J(x) is not dynamical; it is a c-number field that acts as a background

to the φ dynamics. (In path integral language, we integrate over configurations of φ,

for a given J .) With the addition of the source term the classical equations of motion

for φ are

φ + V ′(φ) = J. (1.2)

We see that J plays the same role as an electromagnetic current in Maxwell’s equa-

tions, which is why we call it a source.

Consider a source field that turns on briefly at some initial time, and is cleverly

chosen so that it creates two particles with close to unit probability. This part of the

field configuration therefore represents the initial state of the system. At a later time,

we choose the background field to turn on briefly in a clever way so that it precisely

absorbs two particles with a given configuration with close to unit probability. This

part of the field configuration represents the final state that the experimentalist is

interested in measuring. Then, the amplitude that the vacuum evolves back into the

vacuum in the presence of these sources is precisely the amplitude that the particles
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scatter from the chosen initial state into the chosen final state. This is illustrated

below:

Motivated by these considerations, we define the vacuum–vacuum amplitude in

the presence of the source field J :

Z[J ]
def
= lim

T→∞
〈0|ÛJ(+T,−T )|0〉. (1.3)

Here |0〉 is the vacuum state, and ÛJ is the time evolution operator in the presence

of the source J . Note that

Z[0] = lim
T→∞

e−iE0(2T ), (1.4)

where E0 is the vacuum energy.This is another one of those singular normalization

factors that will cancel when we compute physical quantities.

To compute this in terms of the path integral, we use the result of the previous

chapter that the iǫ prescription projects out the ground state. We therefore have

Z[J ] = N
∫

d[φ] eiS[φ]+i
∫

Jφ, (1.5)

with the iǫ prescription is understood, and N is a (singular) normalization factor.

We need not specify the initial and final configurations in the path integral, since the

ground state projection erases this information.1 Eq. (1.5) is the starting point for

the application of path integrals to quantum field theory.

1If we perform the path integral over field configurations with φ(~x, ti) = φi(~x), φ(~x, tf) = φf (~x),
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If the source J is sufficiently weak, if makes sense to evaluate Z[J ] in an expansion

in powers of J . Expanding the action in powers of J

exp
{

i
∫

d4x J(x)φ(x)
}

= 1 + i
∫

d4x J(x)φ(x)

+
i2

2

∫

d4xd4y J(x)φ(x)J(y)φ(y) + · · · (1.6)

and substituting into the path integral Eq. (1.5), we obtain

Z[J ] = Z[0]
(

1 + i
∫

d4x J(x)〈φ(x)〉

+
i2

2

∫

d4xd4y J(x)J(y)〈φ(x)φ(y)〉+ · · ·
)

,

(1.7)

where

〈φ(x1) · · ·φ(xn)〉 def
=

∫

d[φ] eiS[φ] φ(x1) · · ·φ(xn)
∫

d[φ] eiS[φ]
. (1.8)

We can also summarize this by writing

Z[J ] = Z[0]
∞
∑

n=0

in

n!

∫

d4x1 · · ·
∫

d4xn J(x1) · · ·J(xn)〈φ(x1) · · ·φ(xn)〉. (1.9)

This defines the correlation functions. Thus, one way of looking at Z[J ] is that it

defines the correlation functions as the coefficients in the expansion in powers of J ; we

say that Z[J ] is the generator of the correlation functions. Note that the correlation

functions are independent of the overall normalization of the path integral measure.

We now interpret the correlation functions defined above. We claim that they are

precisely the time-ordered Green’s functions familiar from the operator formalism:

〈φ(x1) · · ·φ(xn)〉 = 〈0|T φ̂H(x1) · · · φ̂H(xn)|0〉, (1.10)

where φ̂H(x) is the Heisenberg field operator. Another frequently-used notation for

the Green’s functions is

G(n)(x1, . . . , xn) = 〈0|T φ̂H(x1) · · · φ̂H(xn)|0〉. (1.11)

then N ∝ Ψ0[φf ]Ψ∗

0
[φi], where Ψ0 is the ground state wave functional. Therefore, the normaliza-

tion factor does depend on the choice of boundary conditions on the path integral, but (as stated

repeatedly) this drops out of physical quantities.
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To prove Eq. (1.10), we go back to the case of quantum mechanics for notational

simplicity. We first recall the definition of the Heisenberg picture. Heisenberg position

operator q̂H(t) is related to the Schrödinger picture operator q̂ by

q̂H(t)
def
= e+iĤtq̂e−iĤt. (1.12)

Also, the the Heisenberg position eigenstate

|q, t〉 def
= e+iĤt|q〉 (1.13)

is time dependent, and satisfies

q̂H(t)|q, t〉 = q|q, t〉. (1.14)

Using this notation, we can write the basic path integral formula as

〈qf , tf |qi, ti〉 = 〈qf |e−iĤtf e+iĤti |qi〉 =

q(tf ) = qf
∫

q(ti)= qi

d[q] eiS[q]. (1.15)

To prove the connection between path integral correlation functions and time-

ordered products, we first evaluate the time ordered product 〈qf , tf |T q̂H(t1)q̂H(t2)|qi, ti〉
in terms of a path integral. We assume without loss of generality that t2 > t1. Then

〈qf , tf |T q̂H(t1)q̂H(t2)|qi, ti〉 = 〈qf , tf |q̂H(t2)q̂H(t1)|qi, ti〉. (1.16)

Now insert a complete set of Heisenberg states after each operator:
∫

dq |q, t〉〈q, t| = e+iĤt
(
∫

dq |q〉〈q|
)

e−iĤt = 1. (1.17)

This gives

〈qf , tf |T q̂H(t1)q̂H(t2)|qi, ti〉 =
∫

dq2

∫

dq1 〈qf , tf |q̂H(t2)|q2, t2〉

× 〈q2, t2|q1, t1〉〈q1, t1|q̂H(t1)|qi, ti〉

=
∫

dq2 q2

∫

dq1 q1 〈qf , tf |q2, t2〉

× 〈q2, t2|q1, t1〉〈q1, t1|qi, ti〉. (1.18)

The three matrix elements in the above expression are each given by a path integral:

〈qf , tf |T q̂H(t1)q̂H(t2)|qi, ti〉 =
∫

dq2 q2

∫

dq1 q1

× C

q(tf )= qf
∫

q(t2) = q2

d[q] eiS[q] C

q(t2)= q2
∫

q(t1)= q1

d[q] eiS[q] C

q(t1)= q1
∫

q(ti)= qi

d[q] eiS[q]

= C

q(tf )=qf
∫

q(ti)=qi

d[q] eiS[q] q(t1)q(t2), (1.19)
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where the last line uses the path integral composition formula discussed in the pre-

vious chapter. Note that we considered the case t2 > t1; if we had considered t2 < t1
instead, the same steps would also lead to the right-hand side of Eq. (1.19). This is as

it should be, since T q̂H(t1)q̂H(t2) = T q̂H(t2)q̂H(t1). Now, the iǫ prescription projects

out the ground state in the usual way, and we obtain

〈0|T q̂H(t1)q̂H(t2)|0〉 = C
∫

d[q] eiS[q] q(t1)q(t2). (1.20)

To eliminate the divergent normalization factor, we divide out by the path integral

with no operator insertions:

〈0|T q̂H(t1)q̂H(t2)|0〉 =

∫

d[q] eiS[q] q(t1)q(t2)
∫

d[q] eiS[q]
. (1.21)

This argument obviously generalizes to products of more than two operators, and the

field theory generalization immediately gives Eq. (1.10).

We can also write Eq. (1.10) using functional derivatives. We can write

1

Z[0]

δ

δJ(x1)
· · · δ

δJ(xn)
Z[J ]

∣

∣

∣

∣

∣

J=0

= in〈φ(x1) · · ·φ(xn)〉. (1.22)

That is, the correlation functions are defined by functional differentiation of the gener-

ating functional with respect to the sources. We can also define correlation functions

for operators other than φ (e.g. φ2 or ∂µφ) by adding additional sources for them

in the Lagrangian. For operators that are already present in the Lagrangian, this is

equivalent to allowing the coupling constants to depend on spacetime. For example,

the operator 1
2
φ2 can be defined by promoting the mass term to a spacetime depen-

dent source m2 → µ2(x). The generating functional can then be written as Z[J, µ2].

We can then define e.g.

1

Z[0, m2]

δ

δµ2(x)
Z[J, µ2]

∣

∣

∣

∣

∣

J=0, µ2=m2

= − i

2
〈φ2(x)〉. (1.23)

Promoting coupling constants to sources in this way is a very useful way to keep track

of the consequences of symmetries, as we will discuss later.

2 Free Field Theory

Up to now, we have been concerned with establishing the connection between the path

integral and the operator formulation of quantum mechanics. We now compute the
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path integral for a free field theory. Although free field theory is physically trivial, it

is important as the starting point for weak coupling perturbation theory. This section

also marks the point where we begin to break free of the operator formulation and

use the path integral on its own.

The action is

S0 =
∫

d4x
[

1
2
∂µφ∂µφ − 1

2
m2φ2

]

. (2.1)

The subscript 0 reminds us that this is a free theory. We will compute

Z0[J ] =
∫

d[φ] eiS[φ]+i
∫

Jφ, (2.2)

which gives us the complete correlation functions of the theory. (Without any source

terms, the path integral is just a divergent number Z0[0]!)

We replace the spacetime continuum by a hypercubic lattice to make everything

well-defined:

x = a · (n0, n1, n2, n3), (2.3)

where n0, n1, n2, n3 are integers and a is the lattice spacing. This treats time and space

more symmetrically than the spatial lattice used in the last chapter. Discretizing the

theory is a drastic modification of the theory at the scale a, but it is not expected

to change the physics at distance scales much larger than a. In the language of the

next chapter, discretizing the theory is one way to provide the theory with a short

distance cutoff.

To define the discretized action, it is convenient to rewrite the continuum action

as

S0[φ] =
∫

d4x
1

2

[

φ(− )φ − m2φ2
]

. (2.4)

Note that = ∂µ∂µ is a linear operator, and can therefore be thought of as a kind

of matrix. In fact, in the discretized theory the derivative operator ∂µ is replaced by

the difference operator ∆µ, which really is a matrix:

(∆µφ)x =
φx+µ − φx−µ

2a

=
∑

y

(∆µ)xyφy, (2.5)

where

(∆µ)xy =
1

2a
(δx+µ,y − δx−µ,y) . (2.6)
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Here µ runs over unit lattice 4-vectors (a, 0, 0, 0), . . . , (0, 0, 0, a). (Note we have used

a symmetric definition of the derivative, so that ∆µ is a symmetric matrix.) We can

therefore write the discretized action as

S0[φ] =
∑

x

a4

[

−1

2

∑

y

φx(∆
2)xyφy −

m2

2
φ2

x

]

=
∑

x,y

a4

2
φxAxyφy, (2.7)

where

Axy = −(∆2)xy − m2δxy. (2.8)

is a symmetric matrix.

Our job is therefore to evaluate

Z0[J ] =
∫

(

∏

x

dφx

)

exp

{

i

2

∑

x,y

a4φxAxyφy + i
∑

x

a4Jxφx

}

. (2.9)

This is just a generalized Gaussian integral with a matrix defining the quadratic term.

To evaluate it, note that A is a symmetric matrix, so it can be diagonalized by an

orthogonal transformation.2 That is, there exists a matrix R with RT = R−1 such

that

Ã = RART = diagonal. (2.10)

If we define

φ̃ = Rφ, J̃ = RJ, (2.11)

we have

∑

x,y

1
2
φxAxyφy +

∑

x

Jxφx =
∑

k

(

1
2
λkφ̃

2
k + J̃kφ̃k

)

, (2.12)

where λk are the eigenvalues of A. We now change integration variables from φ to φ̃.

Because R is an orthogonal transformation, the measure is invariant

∏

x

dφx =
∏

k

dφ̃k. (2.13)

2Note that if we had used a non-symmetric discretization of the derivative, then A will not be a

symmetric matrix, but it is only the symmetric part of A that contributes to the action.
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We can set a = 1, which corresponds to measuring all distances in lattice units. We

can always restore the dependence on a by dimensional analysis. We then have

Z0[J ] =
∫

(

∏

k

dφ̃k

)

exp

{

∑

k

(

iλk

2
φ̃2

k + iJ̃kφ̃k

)}

. (2.14)

In terms of these variables, the functional integral is just a product of Gaussian

integrals:

Z0[J ] =
∏

k

(

∫

dφk exp

{

iλk

2
φ̃2

k + iJ̃kφ̃k

})

. (2.15)

These are well-defined Gaussian integrals provided that Im(λk) > 0 for all λk. We

will verify below that the iǫ prescription gives the eigenvalues a positive imaginary

part, as required. We then obtain

Z0[J ] =
∏

k

[

(

2πi

λk

)1/2

exp
{

− i

2λk
J̃2

k

}

]

. (2.16)

We can write this in a general basis by noting that

∏

k

(

1

λk

)1/2

= [Det(A)]−1/2 , (2.17)

∏

k

exp
{

− i

2λk

J̃2
k

}

= exp

{

− i

2

∑

x,y

Jx(A
−1)xyJy

}

. (2.18)

We then have

Z0[J ] = N
[

Det(−∆2 − m2)
]−1/2

exp

{

− i

2

∑

x,y

Jx(−∆2 − m2)−1
xy Jy

}

(2.19)

where

N =
∏

x

(

2πi

a4

)1/2

(2.20)

is a (divergent) normalization factor. In fact, both N and Det(A) are constants

(independent of J), and therefore do not affect the correlation functions. (Note that

we have restored factors of a by dimensional analysis.)

We now verify that the iǫ prescription gives a positive imaginary part to all of the

eigenvalues of A. We will do this using a continuum notation for simplicity, but it

8



should be clear that the results hold in the discretized case as well. The iǫ prescription

tells us to make the replacement

t → (1 − iǫ)t, (2.21)

for ǫ > 0. To linear order in ǫ this gives
∫

d4x → (1 − iǫ)
∫

d4x, (2.22)

φ̇2 → (1 + 2iǫ)φ̇2. (2.23)

Therefore, the action becomes

S0[φ] =
∫

d4x
1

2

[

φ̇2 − (~∇φ)2 − m2φ2
]

→ S0[φ] + iǫ
∫

d4x
1

2

[

φ̇2 + (~∇φ)2 + m2φ2
]

. (2.24)

The integrand in the last term is positive definite, which shows that all the eigenvalues

of A have positive imaginary parts, as required.

In continuum notation, we can write this as

Z0[J ] = N
[

Det(− − m2)
]−1/2

exp

{

− i

2

∑

x,y

Jx(− − m2)−1
xy Jy

}

(2.25)

To understand the meaning of the inverse of the operator − −m2 it is useful to go

to momentum space. We can define momentum-space by

φ̃(k)
def
=
∫

d4x eik·xφ(x). (2.26)

Note that φ(x) is real, which implies that

φ̃†(k) = φ̃(−k). (2.27)

In terms of momentum-space fields, the free action with the iǫ prescription becomes

S0[φ] →
∫

d4k

(2π)4

1

2
φ̃†(k)

(

k2 − m2
)

φ̃(k)

+ iǫ
∫ d4k

(2π)4

1

2
φ̃†(k)

(

k2
0 + ~k2 + m2

)

φ̃(k)

=
∫

d4k

(2π)4

1

2
φ̃†(k)

(

k2 − m2 + iǫ
)

φ̃(k). (2.28)
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In the last line, we have replaced ǫ(k2
0 + ~k2 + m2) by ǫ. This is legitimate because ǫ

just stands for an infinitesimal positive quantity that is taken to zero at the end of

the calculation.

Eq. (2.28) shows that the momentum-space fields diagonalize the kinetic term.

Note also that the momentum-space expression shows clearly that the imaginary

part is nonvanishing for all eigenvalues.

The momentum space expressions above also tell us how to interpret the inverse

of the kinetic operator in the continuum limit. The continuous version of Eq. (2.19)

is

Z0[J ] = Z0[0] exp
{

− i

2

∫

d4xd4y J(x)∆(x, y)J(y)
}

, (2.29)

where ∆(x1, x2) is the continuous version of the inverse matrix for the kinetic term:
(

− ∂

∂xµ

∂

∂xµ
− m2 + iǫ

)

∆(x, y) = δ4(x − y). (2.30)

That is, ∆(x, y) is a Green’s function for the free equations of motion. In general, a

Green’s function requires the specification of boundary conditions to be well-defined.

In the present approach, the iǫ prescription tells us that the appropriate Green’s

function is

∆(x, y) =
∫

d4k

(2π)4
e−ik·(x−y) 1

k2 − m2 + iǫ
. (2.31)

This is exactly the Feynman propagator encountered in the operator formalism. Our

final expression for Z0[J ] in the continuum is therefore

Z0[J ] = Z0[0] exp
{

− i

2

∫

d4xd4y J(x)∆(x, y)J(y)
}

. (2.32)

This equation expresses all the correlation functions for free field theory in a very

compact way.

2.1 Diagrammatic Expansion

Let us obtain an explicit formula for the correlation functions of free field theory.

All we have to do is expand Z0[J ] in powers of J and use Eq. (1.9) to read off the

correlation functions. Since only even powers of J appear, we have

Z0[J ] = Z0[0]
∞
∑

n=0

1

n!

(

− i

2

)n ∫

d4x1 · · · d4x2n J(x1) · · ·J(x2n)

× ∆(x1, x2) · · ·∆(x2n−1, x2n). (2.33)
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To read off the correlation functions, we must remember that they are completely

symmetric functions of their arguments. Comparing with Eq. (1.9) gives

i2n

(2n)!
〈φ(x1) · · ·φ(x2n)〉0 =

1

n!

(

− i

2

)n

[∆(x1, x2) · · ·∆(x2n−1, x2n)] . (2.34)

Here the square brackets on the right-hand side tell us to symmetrize in the arguments

x1, . . . x2n. We therefore have

〈φ(x1) · · ·φ(x2n)〉0 =
1

n!

(

i

2

)n
∑

σ

∆(xσ1
, xσ2

) · · ·∆(xσ2n−1
, xσ2n

), (2.35)

where the sum over σ runs over the (2n)! permutations of 1, . . . , 2n.

Eq. (2.35) is not the most convenient form of the answer, because many terms

in the sum are the same. The order of the ∆’s does not matter and ∆(x, y) =

∆(y, x). The distinct terms correspond precisely to the possible pairings of the in-

dices 1, . . . , 2n. For each distinct term, there are 2n permutations corresponding to

interchanging the order of the indices on the ∆’s in all possible ways, and n! ways

of reordering the ∆’s. Therefore, we must multiply each distinct term by 2nn!. This

gives

〈φ(x1) · · ·φ(x2n)〉0 =
∑

σ

′
i∆(xσ1

, xσ2
) · · · i∆(xσ2n−1

, xσ2n
), (2.36)

where the sum is now over the possible pairings of 1, 2, . . . , 2n. This is Wick’s

theorem derived in terms of path integrals.

We can write this in diagrammatic language by writing a dot for each position

x1, . . . , x2n and denoting a Feynman propagator i∆(x, y) by a line connecting the dots

x and y:

= i∆(x, y). (2.37)

The possible pairings just correspond to the possible “contractions,” i.e. the distinct

ways of connecting the dots. For example,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉0 = + +

= i∆(x1, x2)i∆(x3, x4) + i∆(x1, x3)i∆(x2, x4)

+ i∆(x1, x4)i∆(x2, x3). (2.38)

We see that the Feynman rules for free field theory emerge very elegantly from the

path integral.
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3 Weak Coupling Perturbation Theory

We now show how to evaluate the correlation functions for an interacting theory by

expanding about the free limit. We write the action as

S[φ] = S0[φ] + Sint[φ], (3.1)

where S0 is the free action and Sint contains the interaction terms, which we treat as

a perturbation. For definiteness, we take

Sint[φ] = − λ

4!

∫

d4xφ4. (3.2)

We expect that perturbing in Sint will be justified as long as λ is sufficiently small.

To evaluate the correlation functions in perturbation theory, we start with the

definition Eq. (1.8) for the correlation functions

〈φ(x1) · · ·φ(xn)〉 =

∫

d[φ] eiS[φ]φ(x1) · · ·φ(xn)
∫

d[φ] eiS[φ]
(3.3)

and expand both the numerator and denominator in powers of Sint. Up to O(λ2)

corrections, this gives

denominator =
∫

d[φ] eiS0[φ]
{

1 + iSint[φ] + O(λ2)
}

= Z0[0]

{

1 + i

(

− λ

4!

)

∫

d4y 〈φ4(y)〉0 + O(λ2)

}

. (3.4)

Note that the terms containing powers of Sint are just correlation functions in the free

theory. The same thing happens for the numerator:

numerator =
∫

d[φ] eiS0[φ]φ(x1) · · ·φ(xn)
{

1 + iSint[φ] + O(λ2)
}

= Z0[0]

{

〈φ(x1) · · ·φ(xn)〉0

+ i

(

− λ

4!

)

∫

d4y 〈φ(x1) · · ·φ(xn)φ4(y)〉0 + O(λ2)

}

. (3.5)

Let us evaluate these expressions explicitly for the 2-point function. Dividing

Eq. (3.5) by Eq. (3.4), we obtain

〈φ(x1)φ(x2)〉 = 〈φ(x1)φ(x2)〉0 + i

(

− λ

4!

)

∫

d4y 〈φ(x1)φ(x2)φ
4(y)〉0

− i〈φ(x1)φ(x2)〉0
(

− λ

4!

)

∫

d4y 〈φ4(y)〉0 + O(λ2).

(3.6)
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The free correlation functions are easily evaluated using the results above. For exam-

ple,

〈φ4(y)〉0 = 3 [i∆(y, y)]2 . (3.7)

The factor of 3 comes from the 3 possible contractions. Similarly,

〈φ(x1)φ(x2)φ
4(y)〉0 = 3i∆(x1, x2) [i∆(y, y)]2

+ 12i∆(x1, y)i∆(x2, y)i∆(y, y).
(3.8)

Again, the factors count the number of contractions. (We will discuss these factors

below, so we do not dwell on it now.) When we substitute into Eq. (3.6), we see that

the contribution from Eq. (3.7) cancels the first term in Eq. (3.8), and we are left

with

〈φ(x1)φ(x2)〉 = 〈φ(x1)φ(x2)〉0 −
iλ

2

∫

d4y i∆(x1, y)i∆(x2, y)i∆(y, y) + O(λ2). (3.9)

We now derive the diagrammatic rules to generate this expansion. As above, we

denote a contraction between fields φ(x) and φ(y) by by a line connecting the points

x and y. Each such contraction gives a Feynman propagator, so we write

= i∆(x, y). (3.10)

In addition, there are contractions involving fields φ coming from the φ4 interaction

terms. Each such term comes with a factor of −iλ, so we write each such term as a

vertex

y
= −iλ. (3.11)

We then integrate over the positions of all of the vertices. These rules do not take into

account a combinatoric factor that appears as an overall coefficient for each diagram.

In a diagram with V vertices, there is a factor of 1/4! from each vertex, and a factor of

1/V ! from the fact that the contribution comes from the (Sint)
V term in the expansion

of exp {iSint}. Finally, we must multiply by the number of contractions C that give

rise to the same diagram. We therefore multiply each diagram by

S =
(

1

4!

)V C

V !
. (3.12)

S is sometimes called the ‘symmetry factor’ of the diagram. Some books give general

rules for finding S, but it is usually less confusing just to count the contractions

explicitly.
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This notation allows us to easily find all contributions to the numerator and

denominator of Eq. (1.8) at any given order in the coupling constant expansion. For

example, let us consider again the evaluation of the 2-point function. The numerator

is the sum of all diagrams with two external points. At O(λ), there are only two

diagrams:

yx1 x2

=
−iλ

2

∫

d4y i∆(x1, y)i∆(x2, y)i∆(y, y), (3.13)

with

S =
1

4!
· 4 · 3 =

1

2
, (3.14)

and

y
x1 x2

=
−iλ

6
i∆(x1, x2)

∫

d4y [i∆(y, y)]2 , (3.15)

with

S =
1

4!
· 3 =

1

6
. (3.16)

The denominator corresponds to diagrams with no external points. Such graphs are

often called vacuum graphs. At O(λ), the only diagram is

y
=

−iλ

6

∫

d4y [i∆(y, y)]2 , (3.17)

with the symmetry factor the same as in Eq. (3.15).

We can now see that the denominator exactly cancels all the diagrams such as

Eq. (3.15) that have vacuum subdiagrams. To see this, note that the denominator is

the sum of all vacuum graphs:

denominator = 1 + + + + · · · (3.18)

(Why is there no vacuum diagram ?) For the 2-point function the numerator can

be written

numerator = + + + + · · ·
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+ + + · · ·

=



1 + + + · · ·






 + + · · ·


. (3.19)

The reason is that e.g.

= × . (3.20)

The nontrivial part of this statement is that the symmetry factor of the diagram on

the left-hand side is the product of the symmetry factors of the diagrams on the right-

hand side. We will prove below that the cancelation of disconnected diagrams holds

to all orders in the perturbative expansion. Assuming this result for a moment, we

can summarize the position space Feynman rules for computing 〈φ(x1) · · ·φ(xn)〉:
• Draw all diagrams with n external points x1, . . . , xn with no vacuum subgraphs.

• Associate a factor

= i∆(x, y) (3.21)

for each propagator, and a factor

y
= −iλ (3.22)

for each vertex.

• Integrate over the positions of all vertices.

• Multiply by the symmetry factor given by Eq. (3.12).

3.1 Connected Diagrams

To understand the general relation between connected and disconnected diagrams,

it is useful to view the generating functional Z[J ] as the sum of all diagrams in the

presence of a nonzero source J(x). This source gives rise to a position-space vertex

= iJ(x). (3.23)
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With this identification, Z[J ] is simply the sum of all graphs with no external legs

in the presence of the source; the source J creates what used to be the external legs.

We summarize this simply by

Z[J ] =
∑

diagrams, (3.24)

where ‘diagrams’ refers to all diagrams without vacuum subgraphs, but including

disconnected pieces.

With this notation, we can state our result:

Z[J ] = exp
{

∑

connected diagrams
}

. (3.25)

Note that since disconnected diagrams are products of connected diagrams, every

disconnected diagram appears in the expansion of the exponential on the right-hand

side. The nontrivial part of Eq. (3.25) is that the disconnected diagrams are generated

with the correct coefficients. Note also that the generating functional for free field

theory has this form.

There is a very pretty proof of this that is based on the replica trick. Consider a

new Lagrangian that consists of N identical copies of the theory we are interested in,

where the different theories do not interact between each other. That is, we consider

the generating functional

ZN [J ] =
∫

d[φ1] · · · d[φN ] eiS[φ1]+i
∫

Jφ1 · · · eiS[φn]+i
∫

JφN . (3.26)

This is related to the generating functional of our original theory by

ZN [J ] = (Z[J ])N . (3.27)

The Feynman rules for the new theory are also closely related to the original theory.

The only difference is that every field line or vertex can be any one of the N fields

φ1, . . . , φN . Therefore, every connected diagram is of order N , since once we choose

the identity of one of the lines, all the other lines and vertices must involve the same

field. A diagram with n disconnected pieces is proportional to Nn, since we can choose

among N fields for each disconnected piece. We see that the connected diagrams are

those proportional to N . From Eq. (3.27) we can read off the term proportional to

N :

ZN [J ] = eN lnZ[J ] = 1 + N ln Z[J ] + O(N2). (3.28)

We see that the connected diagrams sum to ln Z[J ], which is equivalent to Eq. (3.25).
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This result immediately implies the cancellation of disconnected vacuum diagrams

in the expansion of Z[J ]. The reason is simply that

Z[0] = exp {connected vacuum graphs} , (3.29)

while

Z[J ] = exp {connected vacuum graphs + connected non-vacuum graphs}
= Z[0] exp {connected non-vacuum graphs} , (3.30)

where ‘connected non-vacuum graphs’ refers to graphs with at least one source vertex.

We see that dividing by Z[0] precisely cancels the vacuum graphs.

Although the diagrams that contribute to the correlation functions do not in-

clude vacuum subdiagrams, it does include other kinds of disconnected graphs. For

example,

= + · · ·+ + · · · . (3.31)

The exponentiation of the disconnected diagrams means that these diagrams are

trivially determined from the connected graphs. In any case, we will see that the

connected graphs contain all the information that we need to do physics.

3.2 Feynman Rules in Momentum Space

For practical calculations, it is simpler to formulate the Feynman rules in momentum

space. To translate the rules given above into momentum space, we just write the

position space propagator in terms of momentum space:

∆(x, y) =
∫ d4k

(2π)4

e−ik·(x−y)

k2 − m2 + iǫ
, (3.32)

Consider a vertex at position y that appears somewhere inside of an arbitrary diagram,

as in the example below:

y

(3.33)
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The part of the diagram that involves y can be written as

y

x3

x4

x1

x2

= −iλ
∫

d4y i∆(x1, y)i∆(x2, y)i∆(x3, y)i∆(x4, y)

= −iλ
∫

d4y
∫

d4k1

(2π)4

ie−ik1·(x1−y)

k2
1 − m2

· · ·
∫

d4k4

(2π)4

ie−ik4·(x4−y)

k2
4 − m2

= −iλ
∫ d4k1

(2π)4
· · · d4k4

(2π)4
(2π)4δ4(k1 + · · ·+ k4)

× i

k2
1 − m2

· · · i

k2
4 − m2

× e−ik1·x1 · · · e−ik4·x4, (3.34)

where we have performed the y integral. We interpret k1, . . . , k4 as momenta flowing

into the vertex. In this expression, x1, . . . , x4 may be either external or internal points.

Also, some of x1, . . . , x4 may be identical because they are internal points at the same

vertex (as in the diagram shown in Eq. (3.33)). If x1 (for example) is an external

point, then the factor e−ik1·x1 remains as an external ‘wavefunction’ factor. If x1 is

an internal point, then the factor of e−ik1·x1 will be absorbed in the integral over x1,

similar to the expression Eq. (3.34) for the integral over y. Notice that the exponent

has the ‘wrong’ sign compared to the example above. This is accounted for by noting

that the momentum k1 flows away from the point x1, so the momentum flowing into

the point x1 is negative.

From these considerations, we obtain a new set of Feynman rules for computing

〈φ(x1) · · ·φ(xn)〉:
• Draw all diagrams with n external points x1, . . . , xn with no vacuum subgraphs.

• Associate a factor

k
=
∫

d4k

(2π)4

i

k2 − m2 + iǫ
(3.35)

for each propagator, a factor

k1

k2

k3

k4

= −iλ(2π)4δ4(k1 + k2 + k3 + k4) (3.36)

for each vertex, and a factor

= e−ik·x (3.37)
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for each external point.

• Integrate over all internal momenta.

• Multiply by the symmetry factor.

These Feynman rules can be simplified further, since some of the momentum integrals

are trivial because of the delta function. To see this, let us do some examples.

First, consider the contribution to the 2-point correlation function

k1k2

k3

x2 x1 =
−iλ

2

∫

d4k1

(2π)4

d4k2

(2π)4

d4k3

(2π)4
(2π)4δ4(k1 + k2 + k3 − k3)

× e−ik1·x1e−ik2·x2

× i

k2
1 − m2

i

k2
2 − m2

i

k2
3 − m2

=
∫ d4k1

(2π)4

d4k2

(2π)4
(2π)4δ4(k1 + k2)

× e−ik1·x1e−ik2·x2
i

k2
1 − m2

i

k2
2 − m2

×
[

−iλ

2

∫

d4k3

(2π)4

i

k2
3 − m2

]

. (3.38)

Notice that the factors in the first two lines of Eq. (3.38) will be present in any

contribution to the 2-point function: there will always be an integral over the external

momenta k1 and k2, there will always be a factor of e−ik1·x2e−ik2·x2 for the external

points, and there will always be a delta function that enforces overall energy and

momentum conservation. It is only the last term in brackets in Eq. (3.38) that is

special to this contribution to the 2-point function.

Let us amplify these points by doing another example.

k1

k3

k2

k4

k5

x1x2
=

(−iλ)2

6

∫

d4k1

(2π)4
· · · d4k5

(2π)4
(2π)4δ4(k1 − k3 − k4 − k5)

× (2π)4δ4(k2 + k3 + k4 + k5)e
−ik1·x1e−ik2·x2

× i

k2
1 − m2

· · · i

k2
5 − m2

=
∫

d4k1

(2π)4

d4k2

(2π)4
(2π)4δ4(k1 + k2)
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× e−ik1·x1e−ik2·x2
i

k2
1 − m2

i

k2
2 − m2

×
[

(−iλ)2

6

∫

d4k3

(2π)4

d4k4

(2π)4

i

k2
3 − m2

i

k2
4 − m2

× i

(k1 − k2 − k3)2 − m2

]

. (3.39)

Note that when the k5 integral was performed using one of the delta functions, the

left over delta function just enforces overall energy and momentum conservation.

Again, we see explicitly the factors that are present in any contribution to the 2-

point function.

It is convenient to factor out the factors common to every diagram by defining

〈φ(x1) · · ·φ(xn)〉 = G(n)(x1, . . . , xn)

=:
∫

d4k1

(2π)4
· · · d4kn

(2π)4
e−ik1···x1 · · · e−ikn·xn

× (2π)4δ4(k1 + · · · + kn)G̃
(n)(k1, . . . , kn). (3.40)

In other words, G̃(n) times a delta function is the Fourier transform of G(n). G̃(n)

is called the momentum-space Green’s function. The inverse Fourier transform

gives

(2π)4δ4(k1 + · · · + kn)G̃(n)(k1, . . . , kn)

=
∫

d4x1 · · · d4xn eik1·x1 · · · eikn·xnG(n)(x1, . . . , xn).
(3.41)

We can now state the momentum-space Feynman rules for the momentum-

space Green’s function G̃(n). (These are the rules in the form that Feynman originally

wrote them.)

• Draw all diagrams with n external momenta k1, . . . , kn with no vacuum sub-

graphs. Assign momenta to all internal lines, enforcing momentum conservation at

each vertex.

• Associate a factor

k
=

i

k2 − m2 + iǫ
(3.42)

for each propagator, and a factor

= −iλ (3.43)
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for each vertex.

• Integrate over all independent internal momenta.

• Multiply by the symmetry factor.

We close this section by defining some standard terminology. For graphs such as

and

the momentum in every internal lines is completely fixed in terms of the external

momentum by momentum conservation at each vertex. Such diagrams are called

tree diagrams, since they have the topological structure of trees. For graphs such

as

the momentum in the internal lines is not completely fixed by the external momenta,

and some momenta must be integrated over. These graphs are called loop diagrams,

since their topological structure involves at least one loop.

Also, note that the Green’s function G̃(n) defined above includes a propagator

for each internal line. It is sometimes useful to work with the amputated Green’s

function, where these factors are removed:

G̃(n)(k1, . . . , kn) =
i

k2
1 − m2

· · · i

k2
n − m2

G̃amp(k1, . . . , kn). (3.44)

This is a fairly trivial difference, and in fact the distinction between these two types of

diagrams is often blurred in the research literature. In these lectures, we will always

denote an amputated Green’s function by putting a small slash through the external

lines, e.g.

G̃(4)
amp = = + · · ·

= −iλ + · · · . (3.45)

3.3 Derivative Interactions

For the simple theories we have considered so far, all the results above can also

be obtained in a straightforward manner using operator methods. However, the path
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integral approach is much simpler for more complicated theories. The classic example

is gauge theories, which will be discussed later in the course. Another class of theories

that are more easily treated using path integral methods are theories with derivative

interactions. Consider for example a theory of a single scalar field with Lagrangian

density

L =
1

2
g(φ)∂µφ∂µφ − V (φ), (3.46)

where g(φ) is a given function of φ. This model is an example of what is called (for

historical reasons) a non-linear sigma model.

Let us quantize this theory using the canonical formalism. The first step is to

compute the conjugate momentum

π =
∂L
∂φ̇

= g(φ)φ̇, (3.47)

and the Hamiltonian density

H =
1

2g(φ)
π2 +

1

2
g(φ)

(

~∇φ
)2

+ V (φ). (3.48)

We see that the interacting part of the Hamiltonian depends on the conjugate mo-

menta. When we work out the Feynman rules for this Hamiltonian using operator

methods, we will find that the Wick contraction that defines the propagator is not

relativistically covariant, and the interaction vertices are also not covariant. However,

the underlying theory is covariant, and so the non-covariant pieces of the vertices and

the propagator must cancel to give covariant results.

We can understand all this from the path integral. The path integral is analogous

to the one for quantum mechanics with a position-dependent mass. We find that the

path integral measure depends on the fields:

d[φ] = C
∏

x

g−1/2(φx)dφx. (3.49)

We can write the φ-dependent measure factor as a term in the action:

∆S =
i

2

∑

x

ln g(φx) →
i

2

1

a4

∫

d4x ln g(φ), (3.50)

where a is a lattice spacing used to define the theory. This is highly divergent in

the continuum limit, and we will be able to give it a proper treatment only after

we have discussed renormalization. We will show then that this contribution can be

consistently ignored.
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If we trust that the extra measure factor can be ignored, the path integral quan-

tization is very simple. The propagator is just the inverse of the kinetic term, and

the vertices are read off by expanding in powers of φ around φ = 0:

L =
1

2
g(0)∂µφ∂µφ +

1

2
g′(0)φ∂µφ∂µφ + · · · − 1

2
V ′′(0)φ2 − 1

3!
V ′′′(0)φ3 + · · · (3.51)

(We assume that V ′(0) = 0, and we drop the irrelevant constant term V (0).) Note

that both the propagator and the vertices are manifestly Lorentz invariant.

Exercise: Derive the Feynman rules for this theory. Use them to calculate the

tree-level contribution to the 4-point function 〈φ(x1) · · ·φ(x4)〉.

4 The Semiclassical Expansion

We now show that the perturbative expansion described above is closely related to

an expansion around the classical limit. Our starting point is once again the path

integral expression for the correlation functions:

〈φ(x1) · · ·φ(xn)〉 =

∫

d[φ] eiS[φ]/h̄ φ(x1) · · ·φ(xn)
∫

d[φ] eiS[φ]/h̄
. (4.1)

We have explicitly included the dependence on h̄, since this will be useful in under-

standing the classical limit. (The classical action S[φ] is assumed not to depend on

h̄.)

Let us recall the intuitive understanding of the classical limit discussed briefly in

the previous chapter. A given correlation function will be classical if the sum over

paths is dominated by a classical path, that is, a field configuration φcl(x) that makes

the classical action stationary:

δS[φ]

δφ(x)

∣

∣

∣

∣

∣

φ=φcl

= 0. (4.2)

Intuitively, this is because paths close to the classical path interfere constructively,

while other paths interfere destructively.

Before making this precise, let us give some examples of what kind of classical

configurations we might be interested in. Consider our standby scalar field theory

with a potential with a negative coefficient for the φ2 term

V (φ) = −1
2
µ2φ2 +

λ

4!
φ4, (4.3)
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with µ2 > 0. This potential has the ‘double well’ form shown below:

It has three obvious constant classical solutions:

φcl = 0, (4.4)

φcl = ±v, (4.5)

where

v =

(

6µ2

λ

)1/2

. (4.6)

The solution φcl = 0 is classically unstable, so we expect it to be unstable quantum-

mechanically as well. The solutions φcl = ±v are the classical ‘ground states’ (lowest

energy states), and are therefore the natural starting point for a semiclassical ex-

pansion. Note that these solutions are Lorentz invariant and translation invariant.

However, they are not invariant under the symmetry φ 7→ −φ.

In fact, this theory has other interesting classical solutions that we might use as

the starting point for a semiclassical expansion. The classical equation of motion for

time-independent field configurations is

~∇2φ = µ2φ − λ

3!
φ3. (4.7)

We can consider a field configuration that depends only on a single spatial direction

(z say) and satisfies the boundary condition

φ(z) =

{−v as z → −∞
+v as z → +∞ (4.8)
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This has a simple solution

φcl(z) = v tanh
(√

2µ(z − z0)
)

, (4.9)

where z0 is a constant of integration. This is the lowest-energy state that satisfies the

boundary condition Eq. (4.8). In this solution, the value of the field goes from −v

to +v around the position z = z0. This is called a domain wall.3 It is the lowest

energy configuration satisfying the boundary condition Eq. (4.8), and can therefore

also be thought of as a classical ground state.

With these examples in mind, let us expand the path integral expression for the

correlation function around a classical configuration φcl that we think of as a classical

ground state. We write the fields as

φ = φcl + φ′, (4.10)

φ′ as parameterizes the quantum fluctuations about the solution φcl. We then compute

correlation functions of the fluctuation fields We then expand the action about φ = φcl:

S[φ] = S[φcl] +
1

2!

∫

d4x1d
4x2

δ2S[φ]

δφ(x1)δφ(x2)

∣

∣

∣

∣

∣

φ=φcl

φ′(x1)φ
′(x2) + O(φ′3), (4.11)

where we have used the fact that a linear term in φ′ is absent by Eq. (4.2). We treat

Eq. (4.10) as a change of variables in the path integral. Note that

d[φ] =
∏

x

dφ(x) =
∏

x

d [φ′(x) + φcl(x)] = d[φ′], (4.12)

since the difference between φ′ and φ is a constant (φ-independent) shift at each x.

We treat the quadratic term as a free action in the exponential and expand the O(φ′3)

and higher terms as ‘interactions.’ (The corresponding approximation for ordinary

integrals is called the stationary phase approximation.) In this way, we obtain

Z[0] = eiS[φcl]/h̄
∫

d[φ′] exp







i

2!h̄

∫

d4x1d
4x2

δ2S[φ]

δφ(x1)δφ(x2)

∣

∣

∣

∣

∣

φ=φcl

φ′(x1)φ
′(x2)







×


1 +
i

3!h̄

∫

d4y1 · · · d4y3
δ3S[φ]

δφ(y1) · · · δφ(y3)

∣

∣

∣

∣

∣

φ=φcl

φ′(y1) · · ·φ′(y3) + · · ·


 .

(4.13)

(Note that the δ3S/δφ3 term may vanish because of a symmetry under φ 7→ −φ, but

higher order terms are nonvanishing unless the theory is trivial.) The numerator has

a similar expansion, with additional powers of fields inside the path integral.

3In 1 + 1 dimensions, this solution looks just like a particle, and is called a soliton.
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This is in fact an expansion in powers of h̄. To see this, define a rescaled field φ̃

by

φ′ =
√

h̄φ̃. (4.14)

In terms of this, Eq. (4.13) becomes

Z[0] = eiS[φcl]/h̄
∫

d[φ̃] exp







i

2!

∫

d4x1d
4x2

δ2S[φ]

δφ(x1)δφ(x2)

∣

∣

∣

∣

∣

φ=φcl

φ̃(x1)φ̃(x2)







×


1 +
ih̄1/2

3!

∫

d4y1 · · · d4y3
δ3S[φ]

δφ(y1) · · · δφ(y3)

∣

∣

∣

∣

∣

φ=φcl

φ̃(y1) · · · φ̃(y3) + O(h̄2)



 ,

(4.15)

where we have dropped an irrelevant overall constant from the change of measure.

We now see that the leading contribution to Z is given by the exponential of the

classical action. The O(h̄) corrections from expanding the higher-order terms in the

action vanish in the classical limit h̄ → 0, and therefore parameterize the quantum

corrections.

We can perform the same expansion on the numerator of Eq. (4.1). It is convenient

to consider correlation functions of the fluctuation fields

〈φ′(x1) · · ·φ′(xn)〉 = h̄n/2〈φ̃(x1) · · · φ̃(xn)〉, (4.16)

and following the steps above we see that 〈φ̃(x1) · · · φ̃(xn)〉 has an expansion in powers

of h̄. This is called the semiclassical expansion.

For example, for the scalar field theory expanded about the solution φcl = v, the

potential can be written in terms of the fluctuation fields as

V (φ) = +µ2φ′2 +
λv

3!
φ′3 +

λ

4!
φ′4. (4.17)

Note in particular that the quadratic term is positive, so the fluctuations have a

‘right-sign’ mass. Therefore, the semiclassical expansion of this theory is equivalent

to the ordinary diagrammatic expansion of the theory with field φ′ with potential

given by Eq. (4.17). Note that because the action is even in powers of φ′, we have

〈φ′〉 = 0, and hence

〈φ〉 = v. (4.18)

Because 〈φ〉 = 〈0|φ̂H|0〉, we say that the field φ has a nonzero vacuum expectation

value. We will have much more to say about this later.
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To see what terms contribute at a given order in the semiclassical expansion, it is

convenient to go back to the Lagrangian in terms of the unshifted fields and define

the rescaled fields

φ =
√

h̄φ̃. (4.19)

In terms of these, the action including a source term becomes

S/h̄ =
∫

d4x

[

1

2
∂µφ̃∂µφ̃ − m2

2
φ̃2 − h̄λ

4!
φ̃4 +

1√
h̄
Jφ̃

]

. (4.20)

From this, we see that the expansion of correlation functions in powers of λ is the

same as the expansion in powers of h̄, in the sense that

〈φ(x1) · · ·φ(xn)〉 = h̄n/2〈φ̃(x1) · · · φ̃(xn)〉
= h̄n/2 × function of h̄λ. (4.21)

This shows that successive terms in the weak-coupling expansion in powers of λ are

suppressed by powers of h̄. In this case, the dimensionless expansion parameter is h̄λ.

The fact that the perturbative expansion is an expansion in the combination h̄λ

in φ4 theory depends on the form of the Lagrangian. However, we will now show that

in any theory there is a close relation between the weak-coupling expansion and an

expansion in powers of h̄. Consider an arbitrary connected graph contributing to an

n-point correlation function G̃(n) in an arbitrary field theory (in any dimension). Let

us count the number of powers of h̄ in this graph. The propagator is the inverse of

the quadratic term in the action, and is therefore proportional to h̄. Each vertex is

proportional to a term in the action, and is therefore proportional to 1/h̄. Therefore,

graph ∼ h̄n+I−V , (4.22)

where n is the number of external lines, I is the number of internal lines, and V is

the number of vertices. But for any connected graph,

L = I − V + 1, (4.23)

where L is the number of loops (independent momentum integrals) in the diagram.

The reason for this is that each propagator has a momentum integral, but each vertex

has a momentum-conserving delta function that reduces the number of independent

momentum integrals by one. There is an additional factor of +1 from the fact that

one of the momentum-conserving delta functions corresponds to overall momentum
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conservation, and therefore does not reduce the number of momentum integrations.

Combining Eqs. (4.22) and (4.23), we obtain

graph ∼ h̄n−1+L. (4.24)

Therefore graphs with additional loops are suppressed by additional powers of h̄. This

shows that the loop graphs can be viewed as quantum corrections.

5 Relation to Statistical Mechanics

We have seen that in quantum field theory, the basic object of study is the generating

functional

Z[J ] =
∫

d[φ]ei(S[φ]+
∫

Jφ). (5.1)

The iǫ prescription is crucial to make the integral well-defined. This can be viewed

as an infinitesimal rotation of the integration contour in the complex t plane:

x0 = (1 − iǫ)τ, τ = real. (5.2)

We can continue rotating the contour to purely imaginary t if there are no singularities

in the second and fourth quadrants of the complex t plane:

We will later show that there are no singularities to obstruct this continuation (at

least to all orders in perturbation theory), so we can go all the way to the imaginary

time axis:

x0 = −ix0
E, x0

E = real. (5.3)
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Then

d4x = −id4xE,
∂

∂x0
= i

∂

∂x0
E

, (5.4)

etc. This gives

∂µφ∂µφ = (∂0φ)2 − (∂iφ)2 = −(∂E0φ)2 − (∂iφ)2 def
= −(∂Eφ)2. (5.5)

The metric has become (minus) a Euclidean metric. The action for φ4 theory can

then be written

iS =
∫

(

−id4xE

)

(

−1

2
(∂Eφ)2 − m2

2
φ2 − λ

4!
φ4

)

= −SE, (5.6)

where

SE =
∫

d4xE

[

1

2
(∂Eφ)2 +

m2

2
φ2 +

λ

4!
φ4

]

(5.7)

is the Euclidean action. Defining

JE/h̄
def
= iJ (5.8)

we have

ZE[JE] = Z[J ] =
∫

d[φ] exp
{

−1

h̄

(

SE[φ] +
∫

JE φ
)}

, (5.9)

where we have explicitly included the factor of h̄.

We note that Eq. (5.9) has exactly the form of a partition function for classical

statistical mechanics:

Zstat mech =
∑

states

e−H/T , (5.10)

where H is the Hamiltonian and T is the temperature. In the analog statistical

mechanics system, we can think of φ(x) as a ‘spin’ variable living on a space of 4

spatial dimensions. The Hamiltonian of the statistical mechanics system is identified

with the Euclidean action SE. Note that SE is positive-definite, so the energy in the

statistical mechanics model is bounded from below. The source term
∫

JE φ in the

Euclidean action corresponds to a coupling of an external ‘magnetic’ field to the spins.

Finally, h̄ plays the role of the ‘temperature’ of the system. This makes sense, because

quantum fluctuations are large if h̄ is large (compared to other relevant scales in the
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Quantum Classical

Field Theory Statistical Mechanics

3 + 1 spacetime dimensions 4 spatial dimensions

φ(x) spin variable

J(x) external field

SE Hamiltonian

h̄ temperature

〈φ(x)〉 magnetization

Table 1. Relation between quantities in quantum field theory and

classical statistical mechanics.

problem), while thermal fluctuations are large for large T . This is very precise and

deep correspondence, which means that many ideas and techniques from statistical

mechanics are directly applicable to quantum field theory (and vice versa).

One very important connection between the two subjects is in the subject of phase

transitions. It is well-known that statistical mechanical systems can undergo phase

transitions as we vary the temperature, external fields, or other control parameters.

The occurrence of a phase transition is usually signaled by the the value of certain

order parameters. In a spin system, the simplest order parameter is the magneti-

zation, the expectation value of a single spin variable, which is nonzero only in the

‘magnetized’ state. In the quantum field theory, the analog of the magnetization is

the 1-point function 〈φx〉. Note that in the φ4 theory, the Lagrangian is invariant un-

der φ 7→ −φ, and a nonzero value for 〈φx〉 signals a breakdown of this symmetry. For

example, in the previous section, we argued that the semiclassical expansion suggests

that the field φ has a nonzero vacuum expectation value when the coefficient of the

φ2 term in the Lagrangian is negative. This important subject will be discussed in

more detail later.

6 Convergence of the Perturbative Expansion

We now discuss briefly the convergence of the weak coupling perturbative expansion

described above. A simple physical argument shows that the series cannot possibly

converge on physical grounds. Consider the φ4 theory that we have been using as

an example. If the expansion in powers of λ converged, it would define an analytic

function of complex λ in a finite region around λ = 0. But this would mean that the

expansion converged for some negative values of λ. Physically, this cannot be, since

the theory for λ < 0 has a potential that is unbounded from below, and the theory
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should not make sense.4

This argument was originally given by Freeman Dyson for quantum electrodynam-

ics. In that case, the weak coupling expansion is an expansion in powers of α = e2/4π.

If it converged for some finite α > 0, it would have to converge for some α < 0. How-

ever, in this theory we can lower the energy of the vacuum state by adding e+e− pairs

to the vacuum, so we expect an instability in this case as well.

Although the perturbative series does not converge, we do expect that the inter-

acting theory reduces to the free theory in the limit λ → 0+ (i.e. we take the limit

from the positive direction). Now consider a truncation of the series containing only

the terms up to O(λn) for some fixed n. Clearly there is a sufficiently small value of

λ such that the successive terms in the series get monotonically smaller. For these

small values of λ, we expect that keeping more and more terms in the truncation will

make the approximation more accurate. However, if we include higher and higher

terms in the series, it must eventually diverge. A series with this property is called an

asymptotic series. For any value of λ, there is an optimal truncation of the series

that gives the best accuracy.

These properties can be seen in a simple model of ‘0 + 0 dimensional Euclidean

field theory,’ i.e. the ordinary integral

Z =
∫ ∞

−∞
dφ exp

{

−1

2
φ2 − λ

4!
φ4

}

. (6.1)

The expansion in powers of λ diverges because the integral becomes ill-defined for

λ < 0. We can expand this in powers of λ

Z =
∞
∑

n=0

Znλn, (6.2)

with

Zn =
2

n!

(

− 1

4!

)n ∫ ∞

0
dφ φ4ne−φ2/2. (6.3)

We can find the asymptotic behavior of Zn for large n using the method of steepest

descents. We write the integrand as e−f(φ), with

f(φ) = 1
2
φ2 − 4n lnφ. (6.4)

This has a minimum at φ2 = 4n. Expanding about this minimum, we have

f(φ) = 2n(1 − ln 4n) + (φ − 2
√

n)2 + · · · . (6.5)

4As we have seen, the semiclassical expansion is also a weak coupling expansion, and the same

arguments apply to it.
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We therefore obtain

Zn ≃ 2

n!

(

− 1

4!

)n

e−2n(1−ln 4n)
∫ ∞

−∞
dφ e−(φ−2

√
n)2

=

√
π

n!

(

− 1

4! e2

)n

e2n ln 4n. (6.6)

Using the Stirling formula n! ≃ en lnn−n, we see that for large n the coefficients in the

series behave as

Zn ≃ √
π
(

− 1

4! e

)n

e2n ln 4n−n lnn. (6.7)

We can check when the successive terms in the series begin to diverge by computing

the ratio

Zn+1λ
n+1

Znλn
≃ λ

4!
4n. (6.8)

A good guess is that the optimal number of terms is such that this ratio is of order

1, which gives

nopt ≃
3!

λ
. (6.9)

For example, if λ ≃ 0.1, we must go out to about 60 terms in the series before it

starts to diverge! We can estimate the error by the size of the last term kept, which

gives

δZ ∼ √
πe−nopt ∼ Z0e

−3!/λ. (6.10)

This is the typical behavior expected in asymptotic series. Note that the error is

smaller than any power of λ for small λ.
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