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Introduction

Gravitational waves (GW) appear as vacuum solutions to
the linearized Einstein equations in the weak field limit

g,uv = 7Zav-l_h,uv
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h =1072" for r~Hubble distance

and

h =107 for r~Virgo cluster

For a 3 m bar, this is a displacement of

Al=h x1=3 x102! meters !!



GW Polarizations




Spherical Antenna

A sphere has 5 degenerate quadrupole
modes.

— Full-sky coverage with
uniform cross section.

—> Can determine both source
direction (6, @) and wave
polarization (&, h,).

— Much larger cross-section than
a comparable bar antenna.

—> Due to overdetermination,
non-GW disturbances can be
vetoed. (Wagoner & Paik, 1976)

Mario Schenberg, Brazilian GW
detector 6



Equation of motion for elastic sphere 1s

2
8 =(A+u)V(V- s)+/N s+F

where s 1s the displacement field of the sphere.

The general solution for the spheroidal modes have the form

sP0,0)=A_ ©OY, (0,¢)d-B_ (0iaxXLY, (8,0)



Truncated Icosahedral Gravitational
wave Antenna (TIGA)

Mount 6 radial transducers on face-

centers of a truncated icosahedron
(Johnson & Merkowitz, 1993).

= “Spherically symmetric” detection of
the sphere.

= Signal extracted from simple
combination of outputs of 6 transducers .



Mini-Grail

68 cm spherical detector made of
CuAl (6%) alloy with a mass of
1400 Kg, a resonance frequency
of 2.9 kHz and a bandwidth
around 230 Hz.

*Peak strain sensitivity of about
1.5 x 1020 Hz 1”2,

eSources could be non-
axisymmetric instabilities in
rotating single and binary
neutron stars, small black-hole or
neutron-star mergers

MiniGRAIL, Leiden University,
Netherlands 9



Dual sphere detector

e Proposed by M. Cerdonio, L.
Conti et. al. in 2001

e Two nested spheres

e Fabry-Perot cavity as motion
sensor

Optical cavity

Main advantages
e Wide bandwidth

e Spherical detector
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Dual sphere contiguration

e Inner sphere has quadrupole mode at f
e Quter sphere at 2-3 times f

At frequencies in between, the two
spheres are driven out of phase by GW
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Noise spectral density for each sensor
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Sensitivity at Standard Quantum
Features lelt (SQL)

e R=095m,anda=0.57m
 Cross section proportional to pv >

— Molybdenum p = 10000 kg/m’ and v.= 6.2 km/s Q ~ 20
million at T <4 K

Input light power of 7 W , Q/T > 2-10% K-!

300 500 700 1000 1500 2000 3000
frequency [Hz]
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= Beryllium p = 1900 kg/m3 and vs= 13 km/s, Q ?
Input light power of 12 W, Q/T = 2-108 K-!

= Sapphire p = 4000 kg/m?3 and vs= 10 km/s
Q>10%8atT < 10K
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Moon as a Spherical Detector

* Due to lack of plate tectonics, the Moon is extremely quiet
seismically. The energy release per year is 10° times lower than
the Earth.

= “Strong” quakes: ~10™ mHz~'”? at 0.1-1 Hz, 0.5-1.3 on
Richter!

= With the absence of ocean waves and winds, the seismic
noise level between moonquakes may be extremely low.

But how low?
e The Moon does not have atmosphere or water.
— The Moon is thermally quiet except at sunrise and sunset.

— A more stable thermal environment could be achieved by

burying the instrument under the Moon dust.
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% A superconducting disk is
levitated magnetically.

= Almost free horizontally.

Sensing
. . . Coil
% Horizontal displacement 1s

sensed in two directions with a

superconducting circuit.

@ Intrinsic displacement noise:
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. With m=100kg, f,=03Hz, T=2K, 0 =107,287=05, E,(f) = 103']

Hz'(1+0.1 Hz/f),

S 12(f) ~ 106 m Hz''2, f=0.3 Hz

(106 times more sensitive than the lunar seismometers)
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Resonant spherical detector

 Moon’s quadrupole modes (0.001 to 10 Hz) are monitored.

* Directionality of various configurations:

Triangle at great circle Tetrahedral configuration Icosahedral configuration

¥ 6 horizontal motion sensors in truncated icosahedral configuration

— Full-sky coverage with uniform cross section.
= Detection of the source direction and wave polarization.
— Discrimination against seismic and other disturbances.
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Wideband “spherical” detector
* Wideband detection against the rigid Moon (< 0.001 Hz).

e Directionality of various configurations:

Triangle at great circle Tetrahedral configuration Icosahedral configuration

150

50

@ 6 horizontal motion sensors in truncated icosahedral configuration
— Full-sky coverage with uniform cross section.
— Detection of the source direction and wave polarization.

— Discrimination against seismic and other disturbances.
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Thank you!
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