Lecture 21 Search for Spin-Mass Interaction and Precision Measurement of *G*

Ho Jung Paik

University of Maryland

May 10, 2007

Search for spin-mass interaction

- The Standard Model predicts a violation of *CP* symmetry in strong interaction, which has not been observed.
 - ⇒ To solve this "strong CP puzzle," the axion has been proposed (Peccei and Quinn, 1977; Weinberg, 1978; Wilczek, 1978).
- The axion mediates spin-mass interaction (SMI).
 - \Rightarrow Potential between an electron and an unpolarized nucleon:

$$V_{a} = g_{s}g_{p}\frac{\hbar^{2}}{8\pi m_{e}}(\hat{\sigma}\cdot\hat{r})\left(\frac{1}{\lambda r}+\frac{1}{r^{2}}\right)e^{-r/\lambda}, \quad g_{s}g_{p}\approx\frac{\theta}{\lambda^{2}}\times6\times10^{-33},$$

where $\theta \le 3 \times 10^{-10}$ and λ is in meters.

- The axion is a strong candidate for cold dark matter.
- Search for SMI complements the cavity search for the axion.
 - \Rightarrow Unlike the cavity experiment, these experiments do *not* assume any population of the axion.

Two ways to search for SMI

• Modulate σ and search for effect on r using a motion sensor.

Ritter et al. (1993):

Torsion balance with a modulated spin source

 \Rightarrow $|g_s g_p| \le 5 \times 10^{-27}$, $\lambda \ge 10$ cm

• Modulate r and search for effect on σ using a susceptometer.

Ni et al. (1994, 1999):

SQUID susceptometer with a moving source mass

 $\Rightarrow |g_{s}g_{\rho}| \leq 7 imes 10^{-29}, \ \lambda \geq 3 \ {
m cm}.$

U. Wash. experiment

The spin pendulum

large net electron spin
negligible external

magnetic field

- more spins
- greater symmetry

- gold-plated
- magnetically shielded
- 4 mirrors

Experimental limits on SMI

S/C accelerometer experiment

• Torque between a polarized source with an electron spin density ρ_s and a test mass of nucleon density ρ_N :

$$N_{a} = \frac{\theta}{\lambda^{2}} \times 7 \times 10^{-71} \rho_{s} \rho_{N} \frac{dI}{d\theta} \text{(mks)}, \quad I = \frac{1}{8\pi} \int \int (\hat{\sigma} \cdot \hat{r}) \left(\frac{1}{\lambda r} + \frac{1}{r^{2}}\right) e^{-r/\lambda} dV_{s} dV_{N}.$$

 \Rightarrow Problem: I = 0 identically for any closed loop of spin.

 Spin source: A toroid with alternating sections of two high-μ materials with spin contrast (e.g., A: Magnifer 7904, B: NdNi).

Due to quenching of L, σ is always parallel to J in transition metals. whereas σ can be anti-parallel to J in rare-earth magnets.

- \Rightarrow Problem: All rare-earth magnets are hard.
- Force sensor: A superconducting differential angular accelerometer with magnetically levitated test masses.

Experimental design

Construction of the apparatus

• Intrinsic noise:

Perform a resonance experiment to suppress the SQUID noise limit:

$$S_{\alpha}(f) = \frac{8\omega_0}{I} \left[\frac{k_B T}{Q} + \frac{k_B T_N}{Q_{\text{eff}}} \right] \approx \frac{8\omega_0}{I} \frac{k_B T}{Q}, \quad Q_{\text{eff}} = \omega_0 \tau$$

• Common-mode balance and axis alignment:

By adjusting currents in the sensing and alignment circuits, angular and linear accelerations are rejected to 10^{-5} and 5×10^{-8} m⁻¹.

• Dynamic error compensation:

Angular and linear accelerometer outputs are used to compensate the residual acceleration sensitivity to 10^{-8} and 5×10^{-11} m⁻¹.

• Nonlinearity noise:

This noise is reduced to $\leq 10^{-5}$ by stiffening the translational modes by applying feedback to the test masses.

Expected resolution of SMILE

- Soft rare-earth material is assumed.
 - \Rightarrow Without it, a factor of 100 loss in sensitivity.
 - \Rightarrow Experiment shelved in favor of the 1/*r*² law test.

Status of G measurement

Principle of the experiment

- Planetary system of the source and test masses: $GM/r^3 = \omega^2$.
 - \Rightarrow The differential accelerometer is used as a *null* detector.
 - \Rightarrow Straightforward to measure *M* and ω to <10⁻⁶.
- Superconducting levitation of the test masses.
 - \Rightarrow No anelasticity associated with a suspension fiber.
- Superconducting differential accelerometer.
 - \Rightarrow Low thermal (*T* = 4.2 K) and amplifier (SQUID) noise.
 - ⇒ Both linear and angular acceleration are rejected to $\geq 10^5$.
- Optical interferometry for distance measurement.
 - \Rightarrow Test mass separation is measured to <100 nm *in situ* at low temperature.

Design of the experiment

Absolute length measurement

- Multi-frequency interferometry (3~5 frequencies).
 - \Rightarrow With tunable CW dye laser, ±8.8 nm accuracy demonstrated between up to 1 cm distance.
- Frequency scanning interferometry, developed for alignment of ATLAS tracker.
 - \Rightarrow ~250 nm accuracy demonstrated for 0.2~1.5 m distances.
- Null detection with frequency scanning interferometry.

$$\Delta d = 4R = n\lambda_1 = (n+1)\lambda_2$$
$$\implies n = \frac{\lambda_2}{\lambda_1 - \lambda_2}$$

Error budget and expected resolution

Error source	Error (m s ⁻²)	$\Delta G/G$
Instrument	2.5 × 10 ^{−15}	$3.4 imes10^{-8}$
Seismic	1 × 10 ⁻¹⁴	1.4 × 10 ⁻⁷
Source mass metrology	8.5 × 10 ⁻¹⁵	1.2 × 10 ⁻⁷
Source mass position	$3.6 imes 10^{-14}$	4.9 × 10 ⁻⁷
Test mass metrology	8.1 × 10 ⁻¹⁵	1.1 × 10 ⁻⁷
Gradiometer baseline	1.5 × 10 ⁻¹⁴	2.1 × 10 ⁻⁷
Mass calibration	1.5 × 10 ⁻¹⁴	2.1 × 10 ⁻⁷
Turntable wobble	< 10 ⁻¹⁶	< 10 ⁻⁹
Source driven acceleration	< 10 ⁻¹⁷	< 10 ⁻¹⁰
Angle measurement	< 10 ⁻¹⁶	< 10 ⁻⁷
Temperature fluctuations	1 × 10 ⁻¹⁵	1.4 × 10 ⁻⁸
Others	< 10 ⁻¹⁵	< 10 ⁻⁸
Total	$4.5 imes 10^{-14}$	6.2 × 10 ⁻⁷