Gravitational-Wave Data Analysis

Peter Shawhan

Physics 798G April 12, 2007

Outline

Gravitational-wave data

- General data analysis principles
- Specific data analysis methods
 - Classification of signals
 - Methods for each class of signals
- Idiosyncracies of real detectors
- The gravitational-wave community

STANIERSITE 18 3 7 RYLN 9 56

Length Sensing and Control

Instantaneous estimate of strain for each moment in time

- *i.e.* demodulated channel sensitive to arm length difference
- (Or, for resonant detector: displacement sensed by transducer)

Digitized time series recorded in computer files

LIGO / GEO sampling rate: 16384 Hz VIRGO sampling rate: 20000 Hz Synchronized with GPS time Common "frame" file format (*.gwf)

Many auxiliary channels recorded too

Interferometric sensing and control

Environmental sensors (accelerometers, microphones, magnetometers,...)

Interferometer configuration and facilities housekeeping data

Total data volume: a few megabytes per second per interferometer

Calibration

Monitor P(f) continuously with "calibration lines" % P(f)

NVERSI

Sinusoidal arm length variations with known absolute amplitude

Apply frequency-dependent correction factor to get GW strain

$$h = (\text{GW READOUT}) \times \frac{1+G(f)}{P(f)S(f)}$$

Gravitational-Wave Strain Data

6

Outline

- Gravitational-wave data
- General data analysis principles
- Specific data analysis methods
 - Classification of signals
 - Methods for each class of signals
- Idiosyncracies of real detectors
- The gravitational-wave community

Gravitational wave sources are rare and/or intrinsically weak

Need highly sensitive detectors

A detectable signal will most likely be near threshold of detectability

Claiming the first detection will be a big deal

Past detection claims failed to be confirmed

Want to set a high standard of evidence

Require consistency among multiple detectors

Individual detectors may glitch

Require coincidence or cross-coherence of some sort

Allow for relative time delay, different antenna response, sensitivities

Estimate false alarm rate ("background") using time-shifted data

Outline

- Gravitational-wave data
- General data analysis principles

Specific data analysis methods

- Classification of signals
- Methods for each class of signals
- Idiosyncracies of real detectors
- The gravitational-wave community

The Gravitational Wave Signal Tableau

Signal Classes

Short duration				Long duration
Waveform known	Cosmic string cusp / kink High-mass inspiral	NS / BH ringdown	Low-mass inspiral	Asymmetric spinning NS
Waveform unknown	Binary merger Stellar core ???	Rot i collapse ???	ation-driven nstability ???	Cosmological stochastic background Many overlapping signals

Short-duration, Known Waveforms: Inspirals, etc.

Known well, or fairly well, in some parametrized space

e.g. post-Newtonian expansion (assumes negligible spins)

$$\Psi(f) = 2\pi f t_{c} + \frac{3}{128\eta} (\pi m f)^{-5/3} + \frac{5}{96\eta} \left(\frac{743}{336} + \frac{11}{4}\eta\right) (\pi m f)^{-1}$$

$$+ \frac{5}{96\eta} \left(\frac{743}{336} + \frac{11}{4}\eta\right) (\pi m f)^{-1}$$

$$- \frac{3\pi}{8\eta} (\pi m f)^{-2/3}$$

$$+ \frac{15}{64\eta} \left(\frac{3058673}{1016064} + \frac{5429}{1008}\eta + \frac{617}{144}\eta^{2}\right) (\pi m f)^{-1/3}$$

$$+ \cdots$$
where $m = (m_{1} + m_{2}), \quad \eta = \frac{m_{1}}{m^{2}}$
Known waveform \Rightarrow
Use matched filtering

Basic Matched Filtering

Source Parameters vs. Signal Parameters

Inspiral source parameters

Masses (m1, m2)

Spins

Orbital phase at coalescence

Inclination of orbital plane

Sky location

Distance

- \rightarrow Maximize analytically when filtering \neg
- \rightarrow Simply multiplicative for a given detector

→ Simply multiplicative

Filter with orthogonal templates, take quadrature sum

Optimal Matched Filtering in Frequency Domain

Look for maximum of |z(t)| above some threshold \rightarrow trigger

Search overlapping intervals to cover science segment, avoid wrap-around effects

Estimate power spectrum from bin-by-bin median of fifteen 256-sec data segments

Matched Filtering Susceptibility to Glitches

Waveform Consistency Tests

Chi-squared test Divide template into *p* parts, calculate $\chi^{2}(t) = p \sum_{l=1}^{p} ||z_{l}(t) - z(t)/p||^{2}$

Tests using filter output

e.g. time above threshold

Template Bank Construction

U of Maryland Phys 798G, 12 April 2007

Template Bank Construction in (τ_0, τ_3) space

Ellipses in Mass Space

Different Bank Layout Methods

Uncertain Waveforms for High-Mass Inspirals

Different models for 10+10 M_{sun} black hole binary inspiral

Templates for Detection vs. Parameter Estimation

Can use a parametrized space of templates

e.g. Buonanno, Chen, and Vallisneri, Phys. Rev. D 67, 104025 (2003) $h(f) = f^{-7/6} (1 - \alpha f^{2/3}) \theta(f_{cut} - f) \exp[i(\phi_0 + 2\pi t_0 f + \psi_0 f^{-5/3} + \psi_3 f^{-2/3})]$ Analytically calculate

 $\boldsymbol{\alpha}$ to maximize SNR

Parameters of the search

This can match the various waveform models rather well

Intended for binary components with negligible spin

Once a signal is detected, re-filter with physical templates to extract physical parameters

Signal Classes

Short duration				Long duration
Waveform known	Cosmic string cusp / kink High-mass inspiral	NS / BH ringdown	Low-mass inspiral	Asymmetric spinning NS
Waveform unknown	Binary merger Stellar core	Rot i collapse ???	ation-driven nstability ???	Cosmological stochastic background Many overlapping signals

Continuous, Known Waveform: GW from Spinning Neutron Stars

If not axisymmetric, will emit gravitational waves

Example: ellipsoid with distinct transverse axes

Along spin axis: From side:

Start with a sinusoidal signal with spin-down term(s)

Polarization content depends on orientation/inclination of spin axis

GW signals from binary systems are more complicated !

Additional Doppler shift due to orbital motion of neutron star Varying gravitational redshift if orbit is elliptical Shapiro time delay if GW passes near companion

Several cases to consider:

- Sky position and spin frequency known accurately
- Sky position and spin frequency known fairly well
- Sky position known, but frequency and/or binary orbit parameters unknown
- Search for unknown sources in favored sky regions

Search for unknown sources over the whole sky

Candidates

Radio pulsars X-ray pulsars

LMXBs

Globular clusters Galactic center Supernova remnants

Unseen isolated neutron stars

Different computational challenges \Rightarrow Different approaches

Search for Gravitational Waves from Known Pulsars

Method: heterodyne time-domain data using the known spin phase of the pulsar

Requires precise timing data from radio or X-ray observations Include binary systems in search when orbits known accurately Exclude pulsars with significant timing uncertainties Special treatment for the Crab and other pulsars with glitches, timing noise

Method: matched filtering with a bank of templates

Parameters:

Sky position Spin axis inclination and azimuthal angle Frequency, spindown, initial phase Binary orbit parameters (if in a binary system)

Use a detection statistic, \mathcal{F} , which analytically maximizes over spin axis inclination & azimuthal angle and initial phase

Even so, computing cost scales as $\sim T^6$

Detection threshold also must increase with number of templates

Check for signal consistency in multiple detectors

Problem: huge number of templates needed

Getting by with a Little Help from Our Friends

Public distributed computing project: Einstein@Home

Small bits of data distributed for processing; results collected, verified, and post-processed

Screen saver graphics

So far 156,000 users, currently providing ~77 Tflops

Can't do an all-sky coherent search using all of the data

Divide data into time intervals, calculate power, sum it

Less sensitive for a given observation time, but computationally more efficient, so can use **all** the data

Generally use 30-minute "short Fourier transforms" (SFTs)

Different methods of adding SFTs

"StackSlide" : sums normalized power

"PowerFlux" : sums normalized power with weights for sky position, noise

"Hough" : sums binary counts with weights for sky position, noise

Alternate semi-coherent and fully coherent stages

Gets closer to optimal sensitivity, at a manageable CPU cost

Signal Classes

Short duration				Long duration
Waveform known	Cosmic string cusp / kink High-mass inspiral	NS / BH ringdown	Low-mass inspiral	Asymmetric spinning NS
Waveform unknown	Binary merger Stellar core o ???	Rot i collapse ???	ation-driven nstability ???	Cosmological stochastic background Many overlapping signals

Short-duration, Unknown Waveform: Gravitational-Wave Bursts

We're exploring the sky – Who knows what is out there to find?

Want to be able to detect any arbitrary signal

"Excess Power" Search Methods

Decompose data stream into time-frequency pixels

Fourier components, wavelets, "Q transform", etc.

Normalize relative to noise as a function of frequency

Look for "hot" pixels or clusters of pixels

Can use multiple ($\Delta t, \Delta f$) pixel resolutions

Integrate over a time interval comparable to the target signal

Extensions to three or more detector sites being worked on

Signal Classes

	Short dur	Long duration		
Waveform known	Cosmic string cusp / kink High-mass inspiral	NS / BH ringdown	Low-mass inspiral	Asymmetric spinning NS
Waveform unknown	Binary merger Stellar core ???	Rot i collapse ???	ation-driven nstability ???	Cosmological stochastic background Many overlapping signals

Continuous, Unknown Waveform: Stochastic Gravitational Waves

Use cross-correlation to search for signal smaller than detector noise

For isotropic stochastic GWs, know what correlation to expect between any given pair of detectors

Optimal filter:

$$Y = \int df \, \tilde{s}_1^*(f) \, \tilde{Q}(f) \, \tilde{s}_2(f)$$
$$\tilde{Q}(f) \propto \frac{f^{-3} \Omega_{\text{GW}}(f) \gamma_{12}(f)}{P_1(f) P_2(f)}$$

Sky Map of Stochastic Gravitational Waves: "Radiometer"

Outline

- Gravitational-wave data
- General data analysis principles
- Specific data analysis methods
 - Classification of signals
 - Methods for each class of signals

Idiosyncracies of real detectors

The gravitational-wave community

Various environmental and instrumental conditions catalogued; can study relevance using *time-shifted* coincident triggers

Example from S4 all-sky burst search:

Minimal data quality cuts

Require locked interferometers Omit hardware injections Avoid times of ADC overflows

Additional data quality cuts

Avoid high seismic noise, wind, jet Avoid calibration line drop-outs Avoid times of "dips" in stored light Omit last 30 sec of each lock

U of Maryland Phys 798G, 12 April 2007

Non-Stationary Noise / Glitches

Auxiliary-channel vetoes

Outline

- Gravitational-wave data
- General data analysis principles
- Specific data analysis methods
 - Classification of signals
 - Methods for each class of signals
- Idiosyncracies of real detectors

The gravitational-wave community

The LIGO Scientific Collaboration

A few hundred people from ~50 institutions Includes everyone from GEO LIGO and GEO data analyzed together

Virgo

TAMA 300

Bar detectors (ALLEGRO, AURIGA, EXPLORER, NAUTILUS)

Cooperative observing and joint data analysis

LIGO and TAMA 300, LIGO and ALLEGRO, LIGO and AURIGA, VIRGO and Explorer+Nautilus

LIGO-VIRGO data exchange and joint analysis begins May 18