The Biggest Picture: Cosmology and the Cosmic Microwave Background

Al Kogut Goddard Space Flight Center

Cosmology: The Big Picture

What is all this stuff? How did it form?

What will happen to it?

Aristotle/Ptolemaeus: A Calculable Cosmology

Beginnings of Modern Cosmology

Copernicus 1543/Kepler 1609 Simplified planetary motion

Newton 1687 Unified celestial/terrestrial forces

Hubble 1923 Existence of external galaxies

Einstein and Cosmology

General Relativity: Matter Shapes Spacetime

Static universe requires repulsive force to counteract gravity: Cosmological Constant Λ

1929: Hubble Discovers Expanding Universe

4.04.03.53.03.012141618m (pg)

Edwin Hubble

Universe is not static! Einstein recants on Λ

Mt. Wilson 100 Inch Telescope

Hot Big Bang Theory

First postulated 1948

Universe was once much hotter and denser than today

Universe cools as it expands

Observable relics Microwave Heat Radiation Light Elements (H, He, Li)

Link to present-day galaxies deferred to "initial conditions"

Heat radiation detected 1965

1980's: Trouble in River City

Stars revolve around galaxies too fast for inferred gravity

Dark Matter: Interacts with gravity but not with light

Universe is too lumpy to grow via gravity alone

Solution: Look At Microwave Background

Fossil Relic of Early Universe

- GUT Physics at 10¹⁶ GeV
- Inflation/Phase Transitions
- Geometry of Space-Time
- Contents of Universe
- Gravity & Structure Formation

CMB and the Early Universe

CMB Spectrum: Energetics

- Phase transitions (GUT physics)
- Relic decay (dark matter)
- Reionization (first stars)

CMB Anisotropy: Dynamics

- Density distribution (Seeds)
- Global parameters (Ω , Λ , H₀, ...)
- Inflationary physics

Cosmology and Thermodynamics

Thermal Equilibrium:

- Interaction rates » Hubble Expansion
- Fully characterized by temperature plus list of conserved quantum numbers

Adiabatic Expansion $\lambda(t) = \lambda_0 a(t)$ $\nu(t) = \nu_0 / a(t)$ $N = [exp(hv/kT) - 1]^{-1} = constant$ $T = T_0 / a(t) = T_0(1 + z)$

Log(Time)

Energetics of Evolving Universe

- Energy release heats electrons
- Evolve toward new equilibrium
- Potentially observable distortions

Electron-Ion Interactions

- Free-free emission
- Reionization/First stars

Photon-Electron Interactions

- Compton Scattering
- Structure Formation
- Relic Decay

The Problem With Ground-Based Cosmology

Balloons Help, But Only A Little ...

The Obvious Solution

COSMIC BACKGROUND EXPLORER (COBE)

COBE Overview

3 Instruments to measure CMB and diffuse IR background Launched November 1989 Polar sun-synchronous orbit SUN SUN

COBE's Orbit

Far Infrared Absolute Spectrophotometer 50 ppm Measurement of Blackbody Spectrum

PI John Mather (GSFC)Differential SpectrometerExternal Blackbody Calibrator

Mather et al. 1990, APJ, 354, L37 Fixsen & Mather 2002, ApJ, 581, 817

Cosmology From CMB Spectrum

Energy Budget: $\Delta E/E < 6 \ge 10^{-5}$ for $10^3 < z < 10^7$

Steady State Model Ruled Out

X-Ray Background From Discrete Sources

Heavy Neutrino Decay Limits ($B\gamma < 10^{-7}$)

Still Left With The Big Question

HOW DID THIS HAPPEN?

Observing The Initial Conditions

Gravity links density ρ , velocity v, and potential Φ

$\nabla^2 \Phi$ = 4 π G ρ	(Poisson)
$\partial \rho / \partial t + \nabla \bullet (\rho v) = 0$	(Continuity)
$\partial v / \partial t + (v \bullet \nabla) v = - \nabla \Phi$	(Euler)

Observing The Initial Conditions

Gravity links density ρ , velocity v, and potential Φ

$\nabla^2 \Phi$ = 4 π G ρ	(Poisson)
$\partial \rho / \partial t + \nabla \bullet (\rho v) = 0$	(Continuity)
$\partial v / \partial t + (v \bullet \nabla) v = - \nabla \Phi$	(Euler)

Observing The Initial Conditions

Gravity links density $\rho,$ velocity v, and potential Φ

 $\nabla^2 \Phi = 4\pi G\rho \qquad (Poisson)$ $\partial \rho / \partial t + \nabla \bullet (\rho v) = 0 \qquad (Continuity)$ $\partial v / \partial t + (v \bullet \nabla) v = -\nabla \Phi \qquad (Euler)$

Observe potential $\Delta \Phi$ via CMB anisotropy ΔT

Imaging Primordial Density Field

Angular Scales > 1.5° Reflect Primordial Structure

Differential Microwave Radiometers

PI George Smooth (UCB)

Smoot et al. 1992, APJ, 396, L1 Bennett et al. 1996, ApJ, 464, L1 CMB Dipole Modulated by Earth's Velocity About The Sun

Structure Formation: The Next Step

Being close but wrong might mean that we are close, But might equally well mean that we are wrong. -- Ed Turner

Acoustic Oscillations in Primordial Plasma

Peaks and troughs depend on cosmology and constituents in calculable fashion

Wilkinson Microwave Anisotropy Probe

Science Team

GODDARD

Charles Bennett (P.I.) Robert Hill Gary Hinshaw Al Kogut Michele Limon Nils Odegard Janet Weiland Edward Wollack

PRINCETON U.

Norman Jarosik Eiichiro Komatsu Micheal Nolta Lyman Page David Spergel

U. CHICAGO Stephan Meyer

UCLA Edward Wright

U. BRIT COLUMBIA Mark Halpern

BROWN U. Greg Tucker

> Prof. David T. Wilkinson 1935 - 2002

WMAP Design Strategy

- Differential Optics
- Multiple Channels
- Multiple Frequencies
- Interleaved Scan Pattern
- Stable Calibration
- L2 Orbit Far From Earth

WMAP Differential Optics

WMAP Launch

3-Color Sky Maps

Bennett et al. (2003) ApJS, 148, 1

"Baby Picture" of the Universe

WMAP

COBE vs WMAP

Angular Power Spectrum

But What Does It Mean ...

ACDM: Standard Model of Cosmology

6 parameters describe multiple independent data sets!

Expansion	h	=	0.704 ± 0.015
Baryons	Ω_{b}	=	0.044 ± 0.004
Matter	Ω_{m}	, =	0.268 ± 0.018
Structure	σ_8	=	0.776 ± 0.032
Scalar Index	n	=	0.947 ± 0.015
Reionization	τ	=	0.073 ± 0.027

Dark Energy $\Omega_{\Lambda} = 0.732 \pm 0.018$

WMAP Predictions vs Other People's Data

Adding Parameters to Model

With seven free parameters, you can fit a charging rhino.

Geometry of Space-Time

Cosmological Constant

Compact Universe

Low power at largest scales Cut-off from finite size?

"Smoking Gun" not found

- Circles in the sky
- Full covariance test
- Cell size > 1.2 x Hubble

Cornish et al. 2004, PRL, 92, 201302 Phillips & Kogut 2006, ApJ, 645, 820

Global Rotation and Shear

Anisotropic Spacetime $\frac{\Delta T}{T} = (p^{i}u^{i})_{R} - (p^{i}u^{i})_{E} - \int_{P}^{E} p^{j}p^{k} \sigma_{jk} dt$ Bianchi VII_h Models $\frac{\sigma}{H_0}$ Amplitude $x = \sqrt{\frac{h}{1 - \Omega_0}}$ Pitch Ω_0 Focusing Limit Shear $\frac{\sigma}{H_0}$ < 10⁻⁹, Vorticity $\frac{\sigma}{H_0}$ < 5 × 10⁻⁹ Best Fit $\frac{\sigma}{H_{\circ}}$ = (5 ± 1) × 10⁻¹⁰ but Ω_0 = 0.5

> Kogut et al. 1997, PRD, 55, 1901 Jaffe et al. 2006, A&A, 460, 393J Bridges et al. 2006, astro-ph/0605325

Motivation for Inflation

 Ω = 1 Is Unstable!

Now: $0.99 < \Omega < 1.01$

Inflation 101

Guth 1981, Linde 1982, Albrecht & Steinhardt 1982

Quantum Physics on a Cosmic Scale!

Observing Quantum Gravity?

Towards a "Theory of Everything"

Intersection of Particle Physics and Cosmology

A Precise Quantification of Ignorance

Dark Energy Consistent with Cosmological Constant: Was Einstein right after all?

The Future ...

Breakfast of Theorists

Now have the "Big Picture" of cosmology

- Consistent theory fits many observations
- Flat universe dominated by dark matter and dark energy

• Stars, planets, chili dogs, etc account for only 4% of the total

Model has 6 free parameters

- Not so different from Ptolemy's 28
- Unknown stuff dominates the universe
- Will our picture last 1500 years?

New data in the pipeline

- WMAP, other CMB data: Polarization!
- Supernovae, other astronomical data
- Particle physics "Theory of Everything"

THE END

Inflation 101

Phase transition at T=Tc drives exponential expansion

Case 1: Matter-Dominated $M = Const, \frac{d^2R}{dt^2} < 0$

 $\frac{R}{d^2R} = -\frac{GM}{R^2}$

Case 2: Vacuum Energy Density

$$M = -V_0 R^3, \ \frac{d^2 R}{dt^2} = R$$
$$R(t) = R_0 \exp(t)$$

Inflate Space-Time To Force Local Flatness

