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Frame dragging

• According to GR, spacetime is curved around any mass (or energy). 

• In 1919, Lense and Thirring predicted that a mass could deform 
spacetime in a second way − through frame-dragging. 

• In 1960, Schiff proposed a relativistic gyroscope experiment: 
If the local spacetime was curved or was twisting, the gyroscope's 
position and spin axis would change to follow this curve or twist.
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Gravitomagnetic field

• Field equations:  EM:     GR: (φ ≈ 0, v « c)

GE field      ⇒ curvature GM field       ⇒ twist
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Precession of magnetic moment
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• Precession of magnetic moment:
EM: GR: : spin angular momentum

• Precession rate of an orbiting gyro: 
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LAGEOS 1 and 2

Launch S.M. axis Inclination Period
LAGEOS 1 1976 12,270 km 109.84 deg 225 min
LAGEOS 2 1992 12,210 km 52.64 deg 223 min

• Laser-ranged satellites
with 426 corner cubes. 
(~400 kg, 60 cm dia.)

• An Earth-orbiting satellite is a gyroscope, 
and therefore its orbit will experience 
a frame-dragging.
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Lens-Thirring orbit precession

• GR predicts a LT effect of 
31.0 mas/yr on LAGEOS 1 node,  
31.5 mas/yr on LAGEOS 2 node.

• With the aid of the recent Earth 
gravity model, the only relevant 
uncertainty in the orbit of the 
LAGEOS satellites is δJ2 ~ 10-7 J2, 
in the Earth's quadrupole moment. 

• Ciufolini and Pavlis, Nature 431, 
958 (2004): Analysis of nearly 11 
years of laser-ranging data, from 
January 1993 to December 2003, 
led to a detection of the LT effect 
with 10% uncertainty.  

Raw nodal residual

After removing six-
periodic signal

GR prediction
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Gravity Probe B

Six prerequisites to a successful relativity mission with gyroscopes: 
1. Drift-free gyroscope: < 10-11 degrees/hour  
2. Sensitive gyro readout: To determine changes in spin angle to 0.1 

milliarc-second without disturbing the gyroscope (width of human 
hair at 100 miles)

3. Stable reference: Telescope and mechanical structure of referring 
the gyro readout to the guide star  

4. Trustworthy guide star: A bright, properly located star whose motion 
with respect to inertial space is known  

5. Technique for separating relativity effects: An orbit and a data 
processing method that together allow the frame-dragging and 
geodetic effects to be separated  

6. Credible calibration scheme: In-flight calibration tests to ensure that 
the gyroscopes -- and the entire instrument -- are free from errors 
that might masquerade as relativity signals 
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GP-B gyros and readout

Superconducting gyros
• Four superconducting gyros in 

a polar orbit
• Material: fused quartz spheres, 

coated with Nb 
• Sphericity:  < 8 × 10−9 m
• Homogeneity: < 2 ppm

London moment readout
• A spinning superconductor 

generates a magnetic field.
• London moment ∝ spin speed &

exactly aligned with the spin axis.
• The precession of the London 

moment is detected by a SQUID.
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GP-B telescope and spacecraft

• A quartz telescope for 
accurate pointing

• Cooled to 2 K by 
superfluid helium

• Spacecraft under drag-
free control locked to a 
guide star

IM Pegasi
The aberration of starlight is used for 
absolute calibration of the gyro sensitivity.



Paik-11

GP-B mission

• After over 40 years of development  
(and over $600M), GP-B was finally 
launched on April 20, 2004!
P.I.: Francis Everitt at Stanford

• Liquid helium lasted for 17 months.
• All four gyros worked well with a 

spin-down time of 10,000 years.
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GP-B follow-up with SGG?

• The Riemann (gravity gradient) tensor due to the gravitomagnetic field 
in a space-fixed frame in the polar orbit at altitude h:

where a = RE + h and ψ = ω0t is the phase of the orbit.

• A two-axis in-line SGG with axes at 45° from the orbit plane can 
measure ΓGM directly (Mashoon, Paik, and Will, PRD 39, 2825, 1989).

• To resolve ΓGM with S/N = 100 in a year (as GP-B), an SGG sensitivity 
of 3 × 10−6 E Hz−1/2 is required at f0 = 1.7 × 10−4 Hz.
⇒ An SGG with levitated test masses will meet the requirement.

• Pointing requirement for the spacecraft: 10−3 arcsec Hz−1/2 at f0
⇒ May require a quartz telescope or superconducting gyros.
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Why test the EP in Earth orbit?

• Test masses can fall a long time.

• Nearly the full gravitational acceleration of the Earth can be used.
⇒ Signal 103 times larger than the torsion balance experiments

• A very quiet environment can be created by a drag-free spacecraft.
⇒ More than 103 times quieter than any place on Earth

• Satellite Test of the Equivalence Principle (STEP) aims at η = 10−18.
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Coupling to gravity gradients

• Force on test mass A by source with the Newtonian potential US and an 
EP violation force Φ:

• Differential acceleration between test masses A and B:

• Near masses couple to test masses through higher multipole moments.
⇒ Helium confinement and test mass metrology requirement.
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STEP test masses 

• To null gravity gradient sensitivity, the test masses are concentric.

• To reduce the sensitivity to helium tide, the inner and outer test 
masses are matched up to octupole (l = 3) moments.
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STEP accelerometer

• Test masses are levitated magnetically on S/C meander coils.
• S/C differential accelerometer with a sensitivity of ≤10-14 m s-2 Hz-1/2
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STEP mission

• Possible NASA/ESA joint 
mission
P.I.: Francis Everitt
Co-I.: Paul Worden

• Orbit: polar

• Attitude control: rolled 
about the orbit normal at 
3~5 ×10−4 Hz to modulate 
the gravity signal

• Phase A studies have 
been conducted.

• The instrument is under 
development.
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TRIO (Test of Relativity In Orbit)

• TRIO will test three cornerstones of GR in orbit to high precision: 
Equivalence Principle (EP) - Ho Jung Paik, UM
Inverse Square Law (ISL) - Ho Jung Paik, UM
Local Lorentz Invariance (LLI) - John Lipa, Stanford

• TRIO is at concept development stage for NASA MIDEX opportunity.
Near polar, sun-synchronous orbit
Mission duration: 6-9 mos
Instrument temperature: 1.5 K

• Why test the ISL and LLI in Earth orbit?
Very soft and low-loss suspension of test masses (ISL)
Quiet platform at low frequencies and low-g (ISL, LLI)
Quiet rotation of measurement axes (LLI)
⇒ Sensitivity improved by 102 ~104.
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EP test on TRIO

• “Sphere inside sphere” geometry.

• 4 accelerometer pairs with 3 
different materials with closure.
⇒ Consistency check:

(A-B)+(B-C)+(C-A)=0, B-B=0

• The accelerometer pairs located 
symmetrically about the spin axis.
⇒ Gravity gradient detection

in two perpendicular axes

• Test mass positions are sensed with 
sensing coils mounted inside.
⇒ Insensitive to charges on the 

test masses

• Sensitivity goal: η = 10−18

Platinum-Iridium

Niobium

Titanium

⇒ Reduced coupling to helium tide
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ISL Test on TRIO 1

• Rotating source mass with two alternating layers of Ta and Ti (near 
null source).

• S/C differential angular accelerometer formed by two thin Ta disks.
• Two experiments are located along the spin axis for redundancy.

⇒ Gravity gradient detection along the spin axis.
Source 
centering coil

Sensing 
coil

Source 
alignment coil

Source 
mass

Test 
mass

Superconducting 
shield
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ISL Test on TRIO 2

• EP-ISL apparatus form 3-axis SGG. ⇒ Gauss’s law test at ~ 500 km. 
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LLI test on TRIO 1

• Why look for Lorentz violations?

1) A violation could be viewed as a window on physics on the 
Planck energy scale: 1019 Gev (early universe).

2) Allowing Lorentz violations could help develop a viable theory of 
Quantum Gravity.

3) Tight constraints on Lorentz violation (<10-17) could help 
eliminate possible Grand Unification theories, and may also 
affect string theories.

• How do we look for Lorentz violations?

1) Originally 3 basic experiments: Michelson-Morley, Kennedy 
Thorndyke, and Ives Stillwell.

2) Now many additional tests using the properties of atoms and 
fundamental particles, and from astrophysics.
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LLI test on TRIO 2

• Michelson-Morley experiment
with two sapphire etalons at 90° 
with very high finesse mirrors.

• Two lasers locked to the etalons 
with modes ~ 1-200 MHz apart.

• Beat signal detected cold.

• Reference oscillator with 6 ×10-14

stability over 1000 sec.

• Thermal control to 50 nK at 2 K.

• Roll the spacecraft slowly about 
normal to etalon plane.

• Will probe Lorentz violations to 1 
part in 1019, improvement by 
>103 over the existing limit.

LASER #1

LASER #2

POUND 
SERVO

POUND 
SERVO

HIGH SPEED 
DETECTOR

ETALON # 1 ETALON #2

EP accelerometers measure 
gravity gradients along the 
etalon axes and remove errors 
due to Earth’s gravity gradients 
and centrifugal acceleration.
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