Lecture 8 Tests of the 1/*r*² Law at Sub-millimeter Distances

Ho Jung Paik

University of Maryland

February 20, 2007

- Kaluza and Klein (1920's) attempted to unify gravity and electromagnetism in 5-D spacetime.
 - ⇒ If the extra dimension is curled up, precisely 4-D Lorentz symmetry of general relativity and the gauge symmetry of Maxwell's theory were recovered.
 - ⇒ Theory failed because of the extreme mismatch of strengths between electromagnetism and gravity (by 10^{40}) and infinities that plagued quantum gravity.
- Superstring theories (1970's and 80's) attempt to unify gravity with the other three forces in 10-D spacetime.
 - ⇒ Successfully incorporates gravity in a quantum theory without the troubling infinities.
 - ⇒ Gravity-only large extra dimensions could explain why gravity is so weak ("hierarchy problem").

- Gravity may escape into *n* gravity-only extra dimensions (Arkani-Hamed, Dimopoulos and Dvali, 1998).
- For n = 2, the law of gravity changes from $1/r^2$ to $1/r^4$, as *r* is reduced to below R_2 , the "radius of compactification."

• For
$$r > R_i$$
, $\phi(r) = -\frac{GM}{r} \left(1 + \alpha e^{-r/R_i}\right)$

- ⇒ If extra dimensions are compactified on an *n*-torus, $\alpha = 2n$.
- ⇒ For two large dimensions of similar size, $\alpha = 4$, $R_1 \approx R_2 \approx 1$ mm (Arkani-Hamed *et al.*, 1999).
- The present experimental limit on the $1/r^2$ law $\Rightarrow R_1 \le 50 \ \mu m$.

• Gauss's law:
$$\Phi_{\text{total}} \equiv \oint_{S} \mathbf{g} \cdot \mathbf{n} da = -4\pi G m \implies \nabla \cdot \mathbf{g} = -4\pi G \rho$$

Total flux of field lines \propto Total mass enclosed

- "Empty" space is *not* empty.
 Galactic rotation curve ⇒ Dark matter Accelerating expansion ⇒ Dark energy
- The observed accelerating expansion of the universe is consistent with a non-vanishing cosmological constant Λ , which corresponds to a vacuum-energy density of $\rho_v \approx 4$ keV/cm³.

 \Rightarrow Length scale of 100 μ m.

Cosmological constant problem:

Such a small energy density is extremely puzzling because the quantum corrections to ρ_v imply Λ 120 orders of magnitude larger!

• Possible solution: Gravity may be cut off at $R \le 100 \ \mu m$.

 \Rightarrow "Fat gravitons" (Sundrum, 2004)

- Strong CP puzzle in Standard Model: CP symmetry is not violated in strong interaction as it should.
- Possible solution: There may exist a pseudoscalar particle, "axion" (Weinberg, 1978; Wilczek, 1978).
- Axions are expected to mediate short-range spin-spin, spin-mass, and mass-mass interactions.

⇒ Apparent violation of the $1/r^2$ law: $\phi(r) = -\frac{GM}{r} (1 + \alpha e^{-r/R})$ with 200 µm ≤ R ≤ 20 mm.

- Axion is a strong candidate for cold dark matter.
- Short-range 1/*r*² tests complement the ongoing cavity search for the dark matter axion.

Sub-millimeter tests 1

Long *et al.* (2003): λ ≈ 300 μm
 Source mass: vibrating plane at ~ 1 kHz

Detector: resonant torsional oscillator

- Chiaverini *et al.* (2003): $\lambda \approx 100 \ \mu m$ Source mass: linearly driven
 - meander
 - Detector: micro-machined resonant cantilever

actuator

drive-mass motion

drive mass

Sub-millimeter tests 2

 Hoyle *et al.* (2004): λ ≈ 1 mm
 Source mass: Cu plate w/ 10 holes
 Detector: Al disk w/ 10 holes on

torsion balance

Kapner *et al*. (2007): λ ≈ 100 μm

Source mass: Mo disk w/ 42 holes atop Ta disk w/ 21 holes Detector: Mo ring w/ 42 holes on a torsion balance

UM translating-source experiment

- Principle: $\nabla \phi_N$ is constant on either side of an infinite plane slab, independent of position.
- Source: Ta (ρ = 16.6 g cm⁻³) disk of large diameter (null source)
- Detector: 1-axis SGG formed by two thin Ta disks, located at 150 μm from the source
- Frequency discrimination:

As the source is driven at *f*, the differential signal appears at 2*f*.

 \Rightarrow This greatly reduces mechanical and magnetic cross talk.

Exploded view of the experiment

Experimental hardware (1)

Experimental hardware (2)

Apparatus integrated with the cryostat

Superconducting circuits

(a) DM sensing circuit

(b) Temperature sensing circuit

(c) Source driving circuit

• The violation signal appears at almost purely 2f.

Error budget

• Metrology errors

• Total error budget

Source	Allowed	Error 10^{-16} m s ⁻²	Error Source	Error $\times 10^{-15}$ m s ⁻²
Baseline	25 μm	0.02	Metrology	0.5
Source mass				
suspension spring		0.06	Random (τ = 10° s)	
absolute thickness	10 µm	0.016	intrinsic	4.2
density fluctuations	10-4	0.01	temperature	0.9
thickness variation	1 µm	1.3	seismic	0.5
radial taper	10 µm	0.41	Source dynamic	0.2
bowing (static)	10 µm	0.004		
bowing (dynamic)	0.06 μm	4.6	Gravity noise	< 0.1
Test masses			Magnetic coupling	< 0.1
suspension spring		0.80	Electrostatic forces	< 0.1
radial misalignment	50 μm	< 0.01	Total	ΔΔ
Total error		4.8		

Potential resolution

- The ground experiment could improve the resolution by 4 orders of magnitude over the existing limit (2004) at 100 μm.
- The experiment could probe extra dimensions down to $R_2 \approx 10 \ \mu m$.

UM rotating-source experiment

- Source: Two thin layers of materials mounted on a rotating circular disk (null source)
- Detector: A differential angular accelerometer formed by two thin test masses
- Advantage of the rotating experiment:
 - A levitated, rotating source does not exert a time-varying force on the housing and does not itself get distorted.
 - ⇒ Could allow a smaller spacing to be maintained to the shield, and thus a higher sensitivity at short distances

Expected resolutions of the UM experiments

Paik-18