Ultra High Energy Cosmic Rays

Malina Kirn March 1, 2007 Experimental Gravitation & Astrophysics

Outline

 \diamond Cosmic Rays ¤What are UHECR? **♦**GZK Effect ¤Why study UHECR? \diamond Pillars of Research ¤Energy Spectrum [□] Composition ¤ Source/Arrival Direction

Cosmic Rays

- \diamond Victor Hess –1912
- ♦ Elementary particles: protons, nuclei, photons, etc.
- Roughly two cosmic rays through a square foot every second.

Ultra High Energy Cosmic Rays

 ♦ A single UHECR has energy from 10¹⁷ – 10²⁰ eV. LHC will only be able to accelerate protons to 10¹² eV.

- ♦ UHECR have energy of the order of a thrown baseball.
- ♦ UHECR are rare: occur at a flux of ~1/km²/year

Cosmic Ray Showers

Footprint directly detected by ground arrays such as AGASA.

Entire shower indirectly detected by nitrogen fluorescence detectors such as HiRes.

March 1, 2007

March 1, 2007

March 1, 2007

The Puzzle

- ♦ Relativity predicts that significant sources of UHECR must be nearby.
- \diamond There are no known sources of UHECR nearby.
- The February 2002 issue of Discover magazine ranked finding the source of UHECR one of the top eleven mysteries of Physics.

The GZK Feature

 \diamond Due to interactions with the CMB: $\exists p + \gamma \rightarrow \Delta^+ \rightarrow p + \pi^0, n + \pi^+$ \diamond "Pion production threshold" \diamond Protons: order 100 Mpc \diamond Iron Nuclei: order 10 Mpc \diamond Milky Way diameter is ~30 kpc ♦Andromeda is ~.9 Mpc away

Energy attenuation of protons

The AGASA Spectrum

March 1, 2007

Energy Spectrum

 \diamond "Second knee" J.S HiRes-2 Monocular ⁻lu×*E³/10²⁴ (eV² m⁻² s⁻¹ 5 HiRes-1 Monocular ¤ Near 10^{17.8} eV AGASA ▼ AGASA E1/E=0.79 I Unknown ¤ Near 10^{18.6} eV µ Pair production \diamond GZK feature ¤ Near 10^{19.8} eV \square Pion production $\diamond \sim 30\%$ disparity! 17.5 18.5 20.5 19.5 20 18 19

 $\log_{10}(E)$ (eV)

21

Super-GZK

 \diamond Possible causes: [□] Exotic particles ^{II}Violation of special relativity at high energies \diamond Possible sources: [□] Active Galactic Nuclei (M87) ^{II} High mass X-Ray Binaries (Cygnus X-3) ¤ Supergalactic Plane ^{II}Cosmological Defects

Composition

- Penetration depth vs. energy: high energy interact late, high mass interact early
- ♦ Potential composition change at 10¹⁸ eV (change in slope)
 ♦ Heavy → Light

March 1, 2007

Anisotropy Searches

March 1, 2007

AGASA Point-Sources

- AGASA: Akeno
 Giant Air Shower
 Array
- Pink circle: the "AGASA Triplet"
- Nothing of astrophysical interest near the AGASA Triplet
- No theoretical motivation for point-sources

HiRes Overlaps with AGASA Point-Sources

March 1, 2007

Ultra High Energy Cosmic Rays

HiRes Autocorrelation as a Function of Energy

Null result:

Most significant point corresponds to a chance probability of 52%.

March 1, 2007

AGASA Galactic Dipole

HiRes Galactic Dipole Search

Future of UHECR: Auger

- \diamond In southern hemisphere: Argentina
- ♦ Hybrid detector: hoped to resolve energy disparity
- \diamond Largest aperture yet at 10¹⁹ eV and above
- \diamond Should determine if GZK feature there or not (6x10¹⁹ eV)
- ♦ Won't measure full ankle(4x10¹⁸eV) or "second knee" (6x10¹⁷eV)

Future of UHECR: TA

- ♦ In northern hemisphere: Millard County, Utah
- ♦ Hybrid detector: hoped to resolve energy disparity
- ♦ Largest energy range
 yet: $10^{17} \rightarrow 10^{20.5} \text{ eV}$
- Energy range achieved through local topography
- ♦ First complete spectrum

