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1 The RSJ Model of a Josephson Junction

In general both quasiparticles and Cooper pairs can tunnel through the barrier
in a Josephson junction. To include this possibility we treat the circuit model
of a JJ as a parallel combination of an ideal Josephson junction (that obeys the
two Josephson equations) and a resistor (that obeys a generalization of Ohm’s
law for nonlinear resistors). The resistance will in general depend on bias volt-
age and temperature, Ry = R(V,T). This is known as the resistively shunted
junction model (RSJ).

A bias current on the JJ will in general split between the two branches and
produce a total current of,
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More generally, if a finite frequency bias current is applied, the junction typ-
ically also has parasitic capacitance, so we add a cpacitor in parallel with the
ideal junction and resistor, creating the RCSJ model. The total current through
the JJ can now split three ways in general,

I =1Isiny+ 27?1({)1\1 ECITZ + C%, where AV is the voltage drop on the 3 parallel
circuit elements. Using the ac Josephson equation, this can be written as,
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This equation has the appearance of a "mass times acceleration” on the left
hand side, a conservative force in square brackets, and a dissipative force (func-
tion of velocity) on the right. Let’s derive a potential energy associated with the
conservative force and look at the equation of motion from a power perspective.
Multiply the current (I) equation by voltage (2—2%) to get the instantaneous
power equation as,
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The left side appears to be the time rate of change of kinetic energy plus po-
tential energy, while the right hand side is the power dissipated in the resistor.

The potential energy associated with a Josephson junction biased by current
1 is therefore:
Uy) = _2217 — h;g cosy. This is known as the tilted washboard potential. The




washboard cosy piece is tilted by the bias current I. The solution to the orig-
inal equation is now reduced to finding the coordinate v of a fictitious massive
particle living in this potential and being subjected to driving and drag forces.
The particle mass is proportional to the capacitance C of the junction.

From an alternative perspective, the current-biased JJ acts in a manner

similar to a pendulum of mass m and length [ hanging in a gravitational field g.
The bias current acts as an external torque on the pendulum, and a dissipative
force retards the motion of the pendulum. The equation of motion for the analog
pendulum is,
Ta = mglsiny + Di—z + MZQT;Y, where the angle v is analogous to the GIPD on
the JJ, the angular velocity is analogous to the voltage on the JJ, the moment
of inertia M is analogous to the capacitance term in the JJ, the damping D
is analogous to 1/Ry in the JJ, and the applied torque 7, is analogous to the
driving current on the JJ. A classic paper discussing this analogy is posted on
the class web site.

2 Tilted Washboard Potential

The motion of a point particle in the titled washboard potential is a useful way
to visualize the behavior of a current-biased JJ. Imagine a ball subjected to
gravity moving over a corrugated one-dimensional surface with various degrees
of tilt and wiggling, subjected to a drag force proportional to speed. One can
think of Johnson noise in the resistor as being analogous to Brownian motion
of the particle in a viscous fluid that provides the drag.

Starting from a horizontal washboard (I = 0) imagine tilting it to one side as
the dc current is applied. As this happens, the phase point will seek out a new
minimum in the potential, and move to a coordinate given by v = sinfl(%).
At some point as the tilt is increased the phase point is unstable and will beg;in
to run (Z—Z > 0), putting the junction in to the finite-voltage state. The critical
tilt comes when % =0, or when Ipc = I..

As the phase point moves in the case of I > I, it will speed up and slow down
periodically (but not sinusoidally) in time. For strong enough driving current

(Ige >> I.) the junction will behave like a resistor, I;. ~ 4 or in other
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words, IRy = 29 = AV.

3 Current-Voltage Characteristic of a Josephson
Junction

Since the potential is periodic, we expect the motion of the phase point to be
periodic too. We can write the time-average of the voltage as,

<‘fi—z> = 2% where T is the period of the motion.



dt
The current-voltage characteristic of a non-hysteretic (C' — 0) junction is found
to be,

One can also write <d—7> = 2% = 2716 (V).

VY — 0 I <1
V)= {IRN\/l — I/ 0)? I>1,

If the junction has large capacitance C, it is analogous to a bowling ball
running down the periodic potential under the influence of drag. The onset
of voltage with increasing tilt will be the same as the previous (C — 0) case.
However, as the tilt is reduced in the running state, the inertia of the junc-
tion/bowling ball will prevent it from coming to rest at I = I. as the current
is reduced. It will take a further reduction of the tilt to bring the phase point
to rest. This results in a hysteretic response of the junction, and allows one
to create a binary bit in which the JJ will have either zero voltage or a finite
voltage for the same current, depending on the history of the device. This was
the basis for Josephson logic used to make computers back in the 1980’s.
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