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The rf impedance of superconducting point contacts has been measured as a function of the quantum-
mechancial phase difFerence $ across the point contact. By representing the point contact as a parallel
combination of an inductor Z($) = (h/2e) (&&„/BQ) ' and a resistor R = 1/G(p) the current-phase relation

I~($) and the phase-dependent conductance G($) have been determined from measurements at 30 MHz on
phase-biased niobium point contacts. For point contacts with sufficiently small critical current I„ the
inductance was J($) = h/2eI, c~ yielding the expected negative inductance branch for m/2 & $ ( w and a
sinusoidal current-phase relation. For larger critical currents there were departures from the sinusoidal form
for the measured E„($).There was a phaseMependent conductance that is an increasing function of $
corresponding to a negative coefFicient for the cos$ term in the Josephson current.

I. INTRODUCTION

The Joseyhson equations describing the total
current I flowing between two weakly connected
suyerconductors can be written in the form

I = I, sin p+ G, (1+ n cosp)V,

~B 2e
'dt

where (Ie) is the gauge-invariant phase difference
between the wave functions of the two superconduc-
tors, I, is the critical current, G, is the normal
conductance of the weak link, and n is the ratio
of conductance associated with the phase-depen-
dent term to the normal conductance (g, /cr, in
Josephson's notation). ' In general the coefficients
I„Gp, and n depend on voltage and temperature,
however, we will assume that for small voltages
relative to the energy gay and fixed temperature
they are constants; we also assume a uniform
current density.

The total current I can be considered to be the
sum of two contributions, a pair current
I~ (P) = I, sing and a quasiparticle current I, (p)
=G(P) V determined by e phase-dependent conduc-
tance G(p). Many experiments have demonstrated
implicitly good qualitative agreement with a sinu-
soidal current-phase relation I& (p). Some rela-
tively direct measurements' ~ ' of I~ (p) have shown
nearly sinusoidal form for several types of weak
links, and extremely good agreement with the
sinusoidal relation has been found for oxidized
Nb point contacts. 4

For the phase-dependent quasiparticle current
the situation is not so clear. Recent experi-
ments' ' have demonstrated qualitatively the ex-
istence of the cosp term with a coefficient n= —1.

However, the results are still open to some ques-
tion. For example, none of the experiments pro-
vide strong concurrent evidence that the various
weak links used do indeed have sinusoidal current-
phase relations. Thus it is not known what form to
expect for the corresponding G(p). Moreover,
some confusion still exists about relating the mi-
croscopic theory to the experiments. "

In this paper we discuss a technique for obtain-
ing both I~ (p) and G(p) from measurements of the
impedance of a weak link and we report results of
measurements on phase-biased Nb point contacts
made at 30 MHz.

II. CIRCUIT MODEL

If a steady current Ip(I, is passed through a
weak link the phase difference across the weak
link will be fixed at a particular value tII)p. If in
addition a very small alternating current I„«I,
is passed through the weak link, an ac voltage
V„will be developed across it, and the voltage
is related to the alternating current by

V„= I~ Z(go) .

In this small-signal limit the junction can be re-
garded as an impedance Z(p, ) whose value is de-
termined by the fixed value of the phase difference
(I) p-

By use of a current bias the phase difference
Qp can be fized stably only at values between zero
and ~m. However, if the weak link is incorporated
into a superconducting ring (Fig. 1) with sufficiently
small inductance L, the phase can be fixed stably
at any value by fixing the value of an externally
applied flux 4„. The relation between p and 4„ is
established through the requirement of fluxoid
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bination of Z(p) and R(p) where

2(p) = 4, /2vI, cosP (6)

PEG. 1. Diagram of weak link J in superconducting
ring of inductance I- carrying a current I. An externally
applied flux 4„passes through the ring.

quantization which can be written

(4 /2v)$ + LI(p) + 4 = n4 (3)

where 4,=—h/2e is the flux quantum and n is an in-
teger. For I~ (p) = I, sing, solving Eq. (3) for P
gives the well-known result that (Ij) is a continuous
function of 4, if LI, &40/2w. Thus the junction can
be phase biased by fixing the value of 4„.

In the experiments to be described below both a
steady flux and an extremely small alternating
flux are applied so

R (p) —= 1/G(p) = 1/G, (1+ o. cosP) .
The conditions for this impedance representation
to be valid are p, «2m, or equivalently
2elV„I/hu«1, or II„I«I

In our experiments the superconducting ring
containing a weak link was coupled to a high-Q
tax& circuit through mutual inductance jji as shown
in Fig. 2(a). We have not included any capacitance
in the model because reasonable estimates indicate
its effect to be negligible for our experiments. By
reflecting the ring impedance into the tank circuit,
we can represent the effect of the ring on the tank

~D (~)
It

= VT

y = y, + y, cosa)t.

The corresponding current and the voltage across
the junction can be obtained by inserting the phase,
Eq. (4), into Eqs. (1) and (2). For very small p„
keeping only the first-order terms yields the re-
sult that there are three components of the cur-
rent: (i) a dc partI, sing„(ii) a component at
frequency (d for which the current and voltage are
90' out of phase. This is the pair current which
is purely reactive and for which

C T

(aj

&D (~)

I 1

R (4') ~(f) i'

V„/I~ = ~4, /2m I, cosp, .
The pair current corresponds to the current flow
through a phase-dependent inductor Z(p). This
well-known result can be obtained more simply by

combining I~(&b) with Eq. (2) to find V= Z(p)el~($)/
et where

Ref f

It

= VT

g(@)
h az()
2e 8(II)

(6) C T

A measurement of 1;(p) is in essence a determina-
tion of the current-phase relation I, (P). The first
qualitative measurements of this parametric in-
ductance were reported by Silver and Zimmerman. "
(iii) a component at frequency ~ for which the cur-
rent and voltage are in phase. This is the quasi-
particle current for which

V„ /I, = 1/G, (1+ n cosp, ) .

It is possible then to represent the weak link as
an impedance Z(p) consisting of a parallel com-

FIG. 2. (a) Model of weak link in superconducting
ring coupled to tank circuit through mutual inductance
M. The two paralleled impedances within the dashed
box represent the weak link. (b) Schematic diagram of
tank circuit showing effective impedances used to rep-
resent the effect of coupling the superconducting ring
with weak l.ink to tank circuit.
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in terms of the effective impedances shown in
Fig. 2(b), where L,„and R,„are found by standard
circuit theory to be

R M (2 + L) + &u M2g ~L
eff r R2(g + L)2+ +2g2L2 (10)

~v M~X'

(g + L}2+ (o2g~L~

The effective impedances R,ff and L.ff are the
quantities actually measured in the experiments
by measuring the voltage V~ across the tax' when
it is driven with an rf current In(~) (Fig. 2). By
inverting Eqs. (10) and (11) we obtain 2 and R in
terms of L, ,ff and R ff

..
(R,ff -Rr) L + (u [M + (Luff L~)L]

-(u'(Luf Ir)[M + (Luf Lr)L) —(R,„Rr)L-'

(12)

(R,ff -Rr)'L + &u [M + (L,ff Lr)L]
(R„-R,)M'

(13)

HI. EXPERIMENTS

As shown in Fig. 3 the weak link used for the
experiments was a Nb point contact incorporated
into a ring of toroidal configuration. This con-
figuration was used both because it makes pos-
sible an extremely low inductance L for the super-
conducting ring and because this geometry mini-
mized coupling to extraneous fields. The screw
tip was very blunt to reduce the total inductance.
There were two toroidal cavities in a niobium
block, one with mean diameter D, = 18 mm and
cross-sectional diameter d = 1.0 mm and the sec-
ond of diameter D, = 16 mm and cross-sectional
area, of - 0.2 mm'. Both cavities contained coils
wound with 51-p-diam niobium wire. The smal-
ler coil was used as the inductor L„of the tank
circuit. The total inductance of the toroidal ring
with the point contact shorted was measured to be
1.0 x 10 ' H. This low inductance permitted anal-
ysis of point contacts with critical currents as
high as - 3 p, A while still remaining in the regime
LI, & 4o j2v.

The rf drive coil (Lr in Fig. 2) had a calculated
inductance of 1.6 x 10 ' H which when combined
with a 100-pF capacitor and - 80 pF of distributed
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FIG. 3 Detailed drawing of the superconducting ring
showing Nb block with concentric toroidal cavities and
Nb point contact.

FIG. 4. Block diagram of experimental set up showing
technique employed to extract magnitude and phase of
rf voltage across the tank circuit.
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capacitance formed a tank circuit resonant at - 30
MHz. With Q = 150 the tank circuit served to im-
prove the match of the low impedance of the ring
to that of the rf amplifier.

As shown in Fig. 4, an rf oscillator coupled to
the tank through an extremely small capacitor
provided a constant current source. To set the
phase p a steady external flux 4d, was applied to
the toroidal ring by a dc current in either the in-
put coil or the rf drive coil (Fig. 3). The com-
ponents shown within the dashed box in Fig. 4 were
contained in a copper chamber filled with helium
gas. This chamber, which was immersed in liquid
helium, was completely surrounded by lead foil
to serve as a superconducting shield. The helium
Dewar was located inside a pair of concentric mu-
metal magnetic shields and all electrical leads
except the rf coax passed through rf filters as they
entered the cryostat.

The circuit of Fig. 2(a) is the standard one for
an rf superconducting quantum interference device
(SQUID). In contrast to operation as a SQUID how-
ever, for our experiments the rf drive current ID
was kept as small as possible so that the ac cur-
rent in the superconducting ring was much less
than the critical current of the weak link. The
variation of Vz with 4 d, was then a measure of

z(y).
When operating the SQUID as a magnetometer it

is most common to set In to a value (ID),„which
maximizes the sensitivity of V~ to variations of
Cd, . This condition corresponds approximately to
an rf current in the superconducting ring with amp-
litude I, and is obtained when the Bessel function
determining the dependence of V~ on I~ is at its
first maximum. A convenient check on the assump-
tion that we were operating in the small signal
limit was obtained by determining (In),„and then
insuring that In «(In),„. All the measurements
reported here were made with ln = —,', (In) ...
Another operational check on the small-signal as-
sumption was that for sufficiently small drive cur-
rent the values determined for Z(p) were indepen-
dent of I~.

The quantities L«f and jeff that served as the
input data to Eqs. (12) and (13) for determining
R(P) and Z(P) were determined in two ways. For
the first the detected output from the rf amplifier
(Fig. 4) was plotted as a function of the frequency
of the drive current giving a resonant response
curve. From the resonant frequency vp and the Q
determined from this curve L,ff and Rgff were
obtained. A family of such curves for various
values of 4d, are shown in Fig. 5. Data of this type
were used by Vincent and Deaver for the first
determination of the phase-dependent conductance
of point contacts.

v
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FIG. 5. Plot of Vz vs frequency at various @dc taken
in the low signal limit. The origin has been shifted
vertically for the different values of @dz/Cp.

For most of our experiments data of this type
was displayed on an oscilloscope and served as
a quick qualitative method for determining I, and

G,. It was found that I, was roughly proportional
to hv„ the shift of the resonant frequency between
@dc B4O Rlld @dc = (n+ 1/2)4o, where n is an in-
teger. [Z(P) is periodic with one period corre-
sponding to a variation of 4d. by one flux quantum
4,.] Correspondingly, G, was roughly proportional
to 4Q for the same change in Cd, . With resonant
frequencies near 30 MHz we observed values of
b. vo/vo from less than 10 up to 10 ' representing
critical currents from less than 1 to 5 p, A, re-
spectively. Point contacts with I, & 1.5 p. A showed
no measurable AQ implying Gp & 2 0 '. Point con-
tacts with large I, showed Q variations as large as
a factor of four implying Gp 5 Q

A second more precise technique was used for
all quantitative determinations of L,f~ and R.ff . As
shown in Fig. 4 an rf vector voltmeter (HP Model
8405A) was used to measure the magnitude ~Vr)
and phase angle 8 of the tank voltage relative to
drive current. The instrument provided

~ Vr ~
and

8 directly and in addition gave two 20-kHz outputs
with the same amplitude and phase relations as the
input rf signals. Improved signal to noise ratio
was obtained by using a lock-in amplifier to mea-
sure the magnitude and phase of these outputs with
longer integration time than that of the voltmeter
itself.

Numerical values for the parameters in Eqs.
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(12) and (13) were obtained as follows: The tank
inductance I ~ was calculated from standard formu-
las. Measurements of the resonant frequency and

Q with the point contact open were used to obtain
C~ and R~. The mutual inductance Iwas deter-
mined by measuring the dc current I, in the tank
coil required to give one period of the periodic
variation of Vr(4„) which has period 4, . Then

Iy =M@0 We found M = 3.65x 10 "H.
The inductance L of the toroidal ring was de-

termined by measuring the change in tank imped-
ance as the point contact was changed from open
to shorted. Both the resonant-response-curve
technique and the vector voltmeter measurements
were used to determine this impedance change,
giving values of L within 5k of each other and
yielding L = (1.0 + 0.1) x 10 'o H.

The experimental data and Eqs. (12) and (13)
permit the direct determination of Z and R as
functions of the external flux 4d, . To obtain 2(Q)
and R(p) requires a knowledge of p(Cd, ) which is
established by the condition of fluxoid quantization
Eq. (3) together with the data Z(4„). The relation-
ship p(4~, ) can be obtained by differentiating Eq. (3)
with respect to 4„(in the small signal limit
@„=@„)using the definition of |l(P), Eq. (6), and

integrating to find

are very pronounced and consistent with the con-
clusions of Jackel et al.

Kith the toroidal device diagrammed in Fig. 3
we have used several different Nb screws for
semiquantitative measurements of the impedance
of well over a hundred settings of the point con-
tact with critical currents in the range 1-5 p, A.
We have obtained detailed data, S(4„) and G(4„)
for twenty different settings. It is convenient to
discuss the results in terms of two general group-
ings: (i) Point contacts with critical current of
about 1 p. A, which gave good agreement with a
sinusoidal current-phase relation. For these data
the parameter e = 2vLI, /4, was approximately 0.3
and p(4„) was a continuous function. Unf ortunately,
for these cases we did not have sufficiently good
signal to noise ratio to permit a determination of
G. (ii) Point contacts with critical currents in
the range 3-5 p. A for which the measurements
of Z(y) lead to an apparently nonsinusoidal cur-
rent-phase relation. For these cases a phase-
dependent conductance G(p) was observed.

Figure 6(a) shows R(4„) data for a point contact
representative of the first group. The inductance

(14)

Numerically integrating the data thus yields the
needed relationship p(4d, ) which in turn can be
used to express the data 2(4d, ) as the desired
function 2(p) and also by substituting into Eq. (3)
to obtain the current-phase relation I~(P) for the
weak link. Correspondingly the data G(4 ) can be
expressed as G(g).

This discussion has ignored the effects of thermal
fluctuations and noise. The quantity actually mea-
sured is a time average of ll(P) over some dis-
tribution of fluctuations in (II), and the current-
phase relation deduced from the measurements
are correspondingly aff ected. Jackel et al. have
analyzed in detail the effects of fluctuations on the
current-phase relation determined from measure-
ments of the total flux through a superconducting
ring as a function of the externally applied flux.
In contrast to their experiment which in essence
measures the time average of I~ (Q), our experi-
ments measure the time average of S(P) which
is a derivative of I~(p). We have simulated the ef-
fects of fluctuations on a computer with an assumed
sinusoidal current-phase relation and f ind that
for sufficiently small critical currents the effects
are probably too small to be observed within our
precision, however for larger critical currents,
particularly when p(4~, ) is multivalued, the effects

4 ~-
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FIG. 6. (a) Plot of g vs 4tk/4' p for point contact with
I~ = 1.1 pA. The horizontal axis has been shifted so that
the origin corresponds to an integral number of 4

p in
the ring. (b) Plot of g((II) ) from above data using Q (4d, )

calculated from Eq. (15). Solid line is 4 p/2~I, cosQ
with I~ = 1.1 pA.
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FIG. 7. Plot of I&($) calcul. ated from data of Fig. 6(a).
Solid line is I =I~ sing with I~ = 1.1 pA. The bars on the
point inset indicate the estimated uncertainties for each
point.

FIG. 9. Plot of I&(p) calculated from data of Fig. 8.
The bars on the point inset indicate the estimaed uncer-
tainties for each point.
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FIG. 8. Plot of 8 vs 4 dc j& 0 for point contact with
I, = 4 pA. The horizontal axis has been shifted so that
the origin corresponds to an integral number of 40 in
the ring.

is singular at 4d, only slightly greater than +Op
indicating that indeed there was only a small screen-
ing flux II.. The singularity is followed by the
expected negative-inductance region. "

Figure 6(b) shows the samedatabutnowexpressed
as 2 (p) by using the p(4„) obtained from Eq.
(14). Here the data are almost precisely anti-
symmetric about p = —,'~. The solid line plotted in
the figure is the function 4o/2vl, cosP with I,
=1.1 p, A; the good fit indicates that the current-
phase relation is almost sinusoidal. For point
contacts in this group the inductance can be mea-
sured over the entire range 0» p» n because
e =—2@I,L/40 is less than unity and as a result
P(4d, ) is a continuous function. The current-phase
relation shown in Fig. 7 (crosses) were calculated
from the same data shown in Figs. 5 and 6 and in-
deed is nearly sinusoidal.

Data representative of the second group of point
contacts are shown in Fig. 8. The effects of the
large screening flux is apparent from the large
displacement of the singularity to the right of

In this case only the initial portion of the

negative inductance curve is obtained reliably since
with the large screening flux the function p(4d, )
becomes discontinuous. This discontinuity is not
immediately obvious in the 2(4 ~, ) data which are
quite smooth, but becomes apparent on evaluating

p(4„) from Eq. (14) since p does not reach v when

4„is integrated up to p 4p The current-phase
relation calculated from the data of Fig. 8 is shown
in Fig. 9 and it is correspondingly truncated. This
curve is a measure of current-phase relation only
up to some value 4„=(4„)z at which the discon-
tinuity in p(4„) occurred.

The precise value of (@d, )z cannot be obtained
without a Priori knowledge of the current-phase
relation. However an estimate can be obtained by
assuming I~ (P) = I, sing, using Eq. (3) to calculate
p(4, ), and finding the value (4d, )z at which P(4~, )
becomes multivalued and at which a jump in p
would lead to a lower energy E = —(4,I, /2v) cosg
+—,

' II for the ring. With I, = 4.1 p, A and L = 1.0
x10 "H we estimate (4„)z = 0.4840 corresponding
to p = 1.9. Thus for the data of Fig. 8 we expect
that for 0& 4d, & 0.484p the measured 2 corresponds
to the continuous variation of (Ie) from 0 to 1.9.
However for 4d, & 0.484p the measured 8 corre-
sponds to the variation of p some where in the
range n & p& —,'g.

The jump in phase would in general produce a
discontinuity in Z(4„); however, fluctuations in

P are expected to produce some averaging that
leads to a continuous variation for the actual mea-
sured values of Z. In addition the rf measuring
current produces an additional small dither in

4„, , so the measured 8 corresponds to some
average of the values of 2 appropriate to the sec-
ond and third quadrants of I(p). As a result of
this discontinuous variation of p, the values of

P(4„) and consequently of I(P) in Fig. 9 are not
expected to be valid beyond P = 1.9. Calculations
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FIG. 10. Plot of ~ (Q) for point contact for which g(4q, )
is shown in Fig. 8. Estimated uncertainties are shown

by the bars on five representative points.

using an assumed sinusoidal current-phase re-
lation to estimate the expected variation of 8 after
the jump give qualitatively the observed variation
of C(4„}and a reasonable explanation for the shape
and incompleteness of the I(p) curve calculated
from the Z(4~} data.

Our discussion of the discontinuous behavior of
p(4~, ) is an oversimplification of a problem that
has been analyzed in detail by Kurkijarvi, "Kurki-
jarvi and Webb, '~ and Jackel, Buhrman, and Webb.
However the discussion probably suffices to es-
tablish an estimate of (4„)z that is adequate for
interpreting the data.

For point-contacts in this second group the con-
ductance 6 was large enough to be measured. Ex-
perimental values for G(4) are shown in Fig. 10
for the same point contact for which the Z(4~, )
data are shown in Fig. 8. By inserting values for
the various circuit parameters into Eq. (11) it can
be seen that for small values of fIt) the measured
quantity R,« is not very sensitive to 6; however,
the sensitivity increases as p approaches —,'w.

Correspondingly small uncertainties in the mea-
sured values of R,« —R~ result in very large un-
certainties in the experimentaL&y determined G(4)
as indicated by the error bars in Fig. 10. Thus,
although the conductance 6 is probably nonzero
for small p we cannot distinguish it from zero
within the accuracy of the measurements in that
range of P. However, the data do indicate a phase-
dependent conductance that is an increasing func-
tion of P up to P = 1.9. Although the data in Fig.
10 are not well represented by the function G(P)
=G, (1+ n cosp), to achieve even qualitative agree-
ment so that 6 increases for 0 & ft} & 1.9 requires
a negative value for Gt. The data are also con-
sistent with the form of G(4} obtained from a sim-

pie phenomenological model" which predicts it to
be an increasing function of 0 & ft)& m.

As discussed above, for this data for (t) & 1.9 it
is very likely that there was a jump in tt} so that
the data plotted for 1.9 & p& m actually correspond
to w & (t} & —,

' ~. The decrease in the experimental
values of 6 in Fig. 10 for p & 1.9 are consistent
with this interpretation since the function G(p)
would be predicted to decrease in the range
m & p& —,w either with negative a or using the phe-
nomenological model.

The general behavior of the data for all point
contacts in this second group was like that shown
in Fig. 10 and the data require a phase-dependent
conductance. However, the accuracy of the data is
not sufficient to determine a particular function
G(g). In part the inaccuracy may arise from the
inadequacies of our idealized circuit model which
can lead to errors in determining R,« —R~ when
R,« -—R~.

For point contacts with critical currents greater
than 5 pA we f ind that the measured I~ (Q) curve
(analogous to Fig. 9) peaks well before —,

' v. For
this range of I„p( 4} is discontinuous near —,

' v,
and the effect of averaging the impedance S(p)
over the hysteretic portion is more pronounced
than it was for the smaller I, . The data do not
mean that the actual current-phase relation is
necessarily nonsinusoidal, but fluctuations can
result in an averaged impedance which in turn can
yield an apparent I~ (p) that is very nonsinusoidal.

IV. CONCLUSIONS

The experiments described above demonstrate
that both the current-phase relation and the phase-
dependent conductance can be obtained simulta-
neously using ac techniques. The measurements
show the validity of representing the weak link as
a phase-dependent impedance in the small-signal
limit. The use of phase bias permitted a continu-
ous mapping af the impedance for 0 ~ pc 2v there-
by enabling us to observe the entire negative-in-
ductance branch.

For point contacts with sufficiently small critical
currents we found good agreement with a sinusoidal
current-phase relation. For point contacts with
larger critical currents we were able to resolve
a phase-dependent conductance with suff icient
accuracy to determine that it was an increasing
function of phase at least for 0 & ft) & 1.9 and hence
was consistent with a negative coefficient for the
cosp term. For large critical currents the mea-
sured current-phase relation, particularly in the
discontinuous mode, was consistent with that ex-
pected to be produced by fluctuations. Experi-
ments of this type may be another useful technique
for studying the effects of fluctuations.
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