Vacuum polarization (self-energy of photon): main results are
(i) photon remains massless at 100p-level
(ii). Running of QED coupling originates in $\pi \mu \nu$, but will have to deal with $\Gamma_{\mu}^{(100 p)} \& \sum$ before getting the re...
$-\pi_{\mu \nu}(k)$ is 1 PI loop correction to photon 2-point function: $k$ is "external" photon momentum, but can be off-shell: $k^{2} \neq 0$ (don't count polarization vector, $\varepsilon_{\mu, \nu}$ of photons)


First, use WT identity to get form of $\pi_{\mu \nu}=\pi\left(k^{2}\right)\left(g_{\mu \nu} k^{2}-k_{\mu} k_{\nu}\right)$
$D=2$ (naively quadratically divergent)
$\longrightarrow D=O$ (logarithmic), due to "symmetry" requiring 2 powers of external momentum - In general, $\pi_{\mu \nu}(k)$ looks like $\left.\frac{i k e\left(\begin{array}{c}\text { see } \\ \text { diagrams } \\ \text { at end of } \\ \text { note }\end{array}\right)}{\left.k \begin{array}{l}p \text { is } \\ \text { loop }\end{array}\right)} \begin{array}{c}\text { momentum }\end{array}\right)$
(photon

"has" to start this way)
tree + 100 p full fermion propagator)

$$
i \pi_{\mu \nu}(k)=\int \frac{d^{4} p}{(2 \pi)^{4}} \times(-1)(\text { fermion loop }) \times
$$

$$
\text { Trace }[\underbrace{i e \text { Q } \gamma_{\mu}}_{\substack{\text { tree } \\ \text { on } \mathrm{LHS}}} \underbrace{i S_{F}(p)}_{\text {full }} \underbrace{i e \Gamma_{\nu}(k+p, p)}_{\substack{\text { full } \\ \text { on } R H S}} \underbrace{i S_{F}(k+p)}_{\text {full }}]
$$

Multiply by $K_{\nu}$ (contracts with $\Gamma_{\nu}$ ) use $W T$ identity in $1^{s t}$ form

$$
k^{\nu} \Gamma_{\nu}(k+p, p)=Q\left[S_{F}^{-1}(k+p)-S_{F}^{-1}(p)\right]
$$

photon
momentum
"cancels" 1 of $2 S_{F}$ 's in $\pi_{\mu \nu}$

$$
k^{\nu} \pi_{\mu \nu}(k)=i(e Q)^{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma_{\mu}\left\{S_{F}(p)-S_{F}(k+p)\right\}\right]
$$

However, $p$ is "dummy"variable(integrated over),
so $(k+p) \rightarrow b$ in $2^{n d}$ term gives

$$
k^{\nu} \pi_{\mu \nu \nu}(k)=0
$$

again, due to wT identity / gauge invariance)

- Similarly, thinking of (same)

(tree-only at V/RHS us. M/LHS earlier)
gives $K^{\mu} \pi_{\mu \nu}=0$
(can actually show for amplitude with $>2$ external photons also: see ps sec.7.4)
- Note: what about (1) at both external photon vertices ( $\mu \& \nu)$ ? !

..."double counting", so no need to "add"
$\Rightarrow \underbrace{\pi_{\mu \nu}(k)}_{\text {all loops }} \underbrace{"}_{\substack{\text { must } \\ \text { bel }}} \underbrace{\pi\left(k^{2}\right)}_{\begin{array}{c}\text { Lorentz } \\ \text { scalar }\end{array}}\left|\left(g_{\mu \nu} k^{2}-k_{\mu} k_{\nu}\right)\right|$
only tensor giving 0 upton contracting with $k_{\mu} \& k_{\nu}$ (no other momentum)
So, 2 external photons (no external fermions) $\Rightarrow$ amplitude $\propto 2$ powers of external momenta $\Rightarrow 2$ powers less of loop momenta...

$$
D=2 \text { (superficial) } \rightarrow D=0 \text { (actual) }
$$

... contrast with scalar, case,
say, in Yukawa theory

$$
\mathcal{L}_{\text {int }} \sim h \phi \bar{\psi} \psi
$$



$$
\text { of } k^{2}
$$

will remain
quadratically divergent $(D=2$ not reduced, since no analog of $\omega T$ identity ( gauge invariance)

- Next, use above form of $\pi \mu \nu$ to obtain full photon propagator, showing photon remains massless at loop-level...
... recall : zero mass for photon at tree-level "related to" gauge invariance
$\Rightarrow$ lassuming gauge invariance intact at loop-level), photon should remain massless at loop-level...
... but good to check expectation
explicitly as follows.
- Like for fermion propagator, full photon propagator by re-summing
$\pi \mu \nu$ insertions
1 PI looplon(y)

(use't Hooft-Feynman gauge for tree-(evel propagator)
- schematically, (dropping lorentz...) tensor

$$
\begin{aligned}
& \quad \frac{1}{k^{2}}+\frac{1}{k^{2}} \pi_{T} \frac{1}{k^{2}}+\frac{1}{k^{2}} \pi_{T} \frac{1}{k^{2}} \pi_{T} \frac{1}{k^{2}} \\
& \sim \text { (geometric series) } \frac{1}{\left[k^{2}-\pi_{T}\left(k^{2}\right)\right]}
\end{aligned}
$$

$\sim \frac{1}{k^{2}\left[1-\pi_{S}\left(k^{2}\right)\right]}$, since $\frac{\pi_{T} \sim k^{2} \pi_{S}}{\tau}$
scalar again, using above result (from WT identity)
$\Rightarrow$ massless pole in propagator survives due to $\pi_{\mu \nu} \propto\left(k^{2} g_{\mu \nu}-k_{\mu} k \nu\right)$, in turn $W T$ identity/gange invariance
[In detail, see PS Eq.7.74

$$
\begin{array}{r}
\text { sum }=\left(-\frac{i g_{\mu \nu}}{k^{2}}\right)+\left(-\frac{i g_{\mu \rho}}{k^{2}}\right) \underbrace{\left(i \pi^{\rho \sigma}\right)}_{\left(k^{2} g^{\rho \sigma}-k^{\rho} k^{\sigma}\right) \pi\left(k^{2}\right)}\left(-\frac{\left.i g_{\sigma \nu}\right)}{k^{2}}\right)+\ldots \\
(\text { all losps)}
\end{array}
$$

$$
\begin{aligned}
& =-\frac{i g_{\mu \nu}}{k^{2}}-\frac{i g_{\mu \rho}}{k^{2}}\left(\delta_{\nu}^{\rho}-\frac{k^{\rho} k_{\nu}}{k^{2}}\right)\left\{\begin{array}{c}
\pi\left(k^{2}\right)+\left[\pi\left(k^{2}\right)\right]^{2} \\
+\cdots
\end{array}\right\} \\
& =\frac{-i}{k^{2}\left[1-\pi\left(k^{2}\right]\right.}\left(g_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}}\right)+\frac{-i}{k^{2}} \frac{k_{\mu} k_{\nu}}{k^{2}}
\end{aligned}
$$

$\uparrow$
massless pole
"Extra" pieces $\propto k_{\mu} k_{\nu}$ don't contribute to S-matrix element, since "dot" in to fermion "current" (see PS Eq. 7.74 or LP Eq. 9.32 or PS below Eq. 9.58 for general argument), $e \cdot g$

so that $k^{\mu}$ from re-summed photon propagator multiplies $\bar{u}\left(p_{1}^{\prime}\right) \gamma_{\mu} u\left(p_{1}\right)$

$$
\text { giving } \bar{u}_{1}\left(p_{1}^{\prime}\right)\left(\not p_{1}-p_{1}^{\prime}\right)^{m} u\left(p_{1}\right)=0
$$

$\ldots$ so $k_{\mu} k_{\nu}$ terms in full photon propagator can be "dropped"...]

- Again, above argument does not apply to scalar propagator (no gauge invariance to "protect") $\Rightarrow$ even if scalar mass $=0$ at treelevel, it will acquire non-zero mass at loop-level, ie., in analogy with photon/fermion propagator, we get full/resummed scalar (massless at tree-level) propagator $\sim \frac{1}{k^{2}-\sum_{\text {scalar }}}$, but unlike photon case, $\sum_{\text {scalar of } k^{2} \text {, so no }}$ massless pole at loop-level
- onto, one-1oop calculation...
$\pi_{\mu \nu}\left(k^{2}\right)$ at one-loop in QED
- (Naive) estimate first:


$$
\sim \int d^{4} p \frac{1}{(\not p-m)} \frac{1}{(\not p+\not k-m)}
$$

Since we are looking for UV divergences, we can drop $m$ and expand $2^{\text {nd }}$ propagator for $p \gg k$ :

$$
\begin{aligned}
& \frac{1}{(p+k)} \sim \frac{1}{p}+\frac{k}{p^{2}}+\frac{k^{2}}{p^{2}}+\cdots \\
& \text { giving } \sim \int \frac{d^{4} p}{p^{2}}+\int d^{4} p \frac{k}{p^{3}}+k^{2} \int \frac{d^{4} p}{p^{4}}
\end{aligned}
$$

where $1^{\text {st }}$ term is naive quadratic divergence $(D=2)$, which should vanish based on above form of Tres, but not "obvious" when we calculate!
$2^{\text {nd }}$ term: integrates to zero due to odd (net) powers of $p \ldots$
$3^{\text {rd }}$ term gives log -divergence ( $D=0$ ) and expected dependence on external momentum

- explicit calculation using DIMREG (done in LP, but here will delineate steps): why do it when we know form of result (photon remains massless at loop-level)?!

Motivation: (i) illustrate need to use "proper" regulator (DIMREG respects gauge invariance, whereas hard momentum cut-off does not) ... not so obvious until we actually calculate (even with DIMREG vanishing of $D=2$ is subtle)
(ii) running of QED coupling will arise from $\pi_{\mu \nu}$
(iii) practice: tricks/manipulations used here valid for other loop diagrams also

Example of how a generic loop diagram can be "recast" into form shown on pages 2,3 of this note

or (same diagram)


