Vacuum polarization (self-energy
of photon): main results are
(i) photon remains massless at
100b-level
(ii) Durning of QED coupling originates
in They, but will have to deal
in There, but will have to deal with Fridad & E before getting there
- TTUV (K) is 1 PI loop correction to
photon 2 - point function : K is "external"
photon momentum, but can be off-shell:
k ² = 0 (don't count polarization vector,
Ep, v of photons) IPI
$\alpha \alpha \overline{1}$
$ \begin{array}{c} $
First, use we identity to get
form of $\pi \mu \nu = \pi (k^2) (g_{\mu\nu} k^2 - k_{\mu} k_{\nu})$

D = 2 (naively quadratically divergent) -> D=0 (logarithmic), due to "symmetry" requiring 2 powers of external momentum (see of external momentum diagrams -Ingeneral, Thur (K) looks like at end of note photon tree + 100p "has" to start this way) (full fermion \Rightarrow propagator) $\int \frac{d^4 p}{(2\pi)^4} \times (-1) (fermion loop) \times$ i π_{μν} (k) = Trace ie QYm $iS_F(k+b)$ $i \in \Gamma_{\nu}(\kappa + \rho, \rho)$ i S_F(p) full full full on RHS Ltree on RHS on LHS

Multiply by Ky (contracts with []) use WT identity in 2st form: $k \Gamma_{\nu}(k+\ell, \ell) = Q\left[S_{F}^{-1}(k+\ell) - S_{F}^{-1}(\ell)\right]$ "cancels" 1 of 2 SF's in Thu photon momentum $k^{\nu} \pi_{\mu\nu}(k) = i (eq)^{2} (d^{4} p) T_{F} [\gamma_{\mu} \{ S_{F}(p) - S_{F}(k+p) \}]$ However, p is "dummy variable (integrated over), so $(k + p) \rightarrow p$ in 2nd term gives $\begin{array}{c} \left(k^{\nu} TT_{\mu\nu} \left(k \right) = 0 \right) & \left(again, due to \right) \\ wT identity \\ gauge invariance \end{array}$ - Similarly, Minking of (same) (tree-only at V/RHS vs. µ/LHS earlier)

gives K TTper = 0 (can actually show for amplitude with >2 external photons also: see PS sec. 7.4) - Note: what about at both external photon vertices (m& u)?! mon or no at mese vertices... no need to "add" ... double counting", so $\pi(k^2)\left(g_{\mu\nu}k^2-k_{\mu}k_{\nu}\right)$ $\Rightarrow \pi (k) = \pi$ all loops be) Lorentz Scalar only tensor giving O upton contracting with Kp & Ky (no other momentum) So, 2 external photons (no external fermions/ => amplitude or 2 powers of external momenta => 2 powers less of loop momenta...

D = 2(superficial) -> D = O (actual) ... contrast with scalar case, say, in Yukawa theory: $L_{int} \sim h \phi \overline{\psi} \psi$ $\frac{k}{---\frac{k}{----}} \qquad of \quad k^2$ will remainquadratically divergent (D=2 not reduced, since no analog of wT identity/gauge invariance) - Next, use above form of Thur to obtain full photon propagator, showing photon remains massless at loop-level... ... recall : zero mass for photon at tree-level "related to "gauge invariance

> lassuming gauge invariance intact at loop-level), photon should remain massless at loop-level... ... but good to check expectation explicitly as follows. -Like for fermion propagator, full photon propagator by re-summing πµν insertions: 1PI loop/only) pm v + m // m // m // // (use 't Hooft-Feynman gauge for tree-level propagator) -schematically, (dropping Lorentz...) tensor $\frac{1}{k^{2}} + \frac{1}{k^{2}} \pi_{\tau} \frac{1}{k^{2}} + \frac{1}{k^{2}} \pi_{\tau} \frac{1}{k^{2}} + \frac{1}{k^{2}} \pi_{\tau} \frac{1}$ $\sim (geometric series) \frac{1}{[k^2 - \pi_T(k^2)]}$

, since $\pi_{\tau} \sim k^2 \pi_s$ $\frac{1}{k^2 \left(1 - \pi_s \left(k^2\right)\right)}$ Scalar again, using above result (from WT identity) > massless pole in propagator Survives due to TTpv & (k²gpv - kpkv) in turn WT identity/gauge invariance In detail, see PS Eq. 7.74: $sum = \left(\frac{ig_{\mu\nu}}{k^2}\right) + \left(\frac{ig_{\mu\rho}}{k^2}\right) \left(\frac{i\pi^{\rho\sigma}}{k^2}\right) \left(\frac{ig_{\sigma\nu}}{k^2}\right) + \dots$ $(k^2g^{\rho} - k^{\rho}k^{\rho})\pi(k^2)$ (all loops) $= -\frac{ig_{\mu\nu}}{k^2} + -\frac{ig_{\mu\rho}}{k^2} \Delta_{\nu}^{\rho} \pi(k^2) - \frac{ig_{\mu\rho}}{k^2} \Delta_{\sigma}^{\rho} \Delta_{\nu} \left[\pi(k^2)\right] + \cdots$ $\delta^{\rho}v - k^{\rho}kv/k^{2}$ t...

 $= -\frac{i}{\frac{g_{\mu\nu}}{k^{2}}} - \frac{i}{\frac{g_{\mu\rho}}{k^{2}}} \left(\frac{s_{\nu}^{\rho} - \frac{k^{\rho}k_{\nu}}{k^{2}}}{\frac{k^{2}}{k^{2}}} \right) \left\{ \pi(k^{2}) + \left[\pi(k^{2})\right]_{k}^{2} + \cdots \right\}$ $= -\frac{i}{\frac{k^{2}}{k^{2}} \left[\frac{g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^{2}}}{\frac{k^{2}}{k^{2}}} + \frac{-\frac{i}{k^{2}}}{\frac{k^{2}}{k^{2}}} + \frac{k_{\mu}k_{\nu}}{k^{2}} \right]$ massless pole

"Extra" pieces & Kµkv don't contribute to S-matrix element, since "dot" into fermion "current" (see PS Eq. 7.74 or LP Eq. 9.32 or PS below Eq. 9.58 for general argument),

so that K from re-summed photon propagator multiplies $\overline{u}(p_i') \gamma_{\mu} u(p_i)$

giving $\overline{u}_i(p_i)(\cancel{x}_1 - \cancel{x}_1)u(p_i) = 0$

... so kµkv terms in full photon propagator can be "dropped" ...]

- Again, above argument does not apply to scalar propagator (no gauge invariance to protect ") => even if scalar mass = 0 at treelevel, it will acquire non-zero mass at loop-level, i.e., in analogy with photon/fermion propagator, we get full/resummed scalar/massless at tree-level $propagator \sim \frac{1}{k^2 - E_{scalar}}$, but unlike photon case, Escalar 96 k², so no massless pole at loop-level. - Onto, one-loop calculation...

 $TT_{\mu\nu}(k^2)$ at one-loop in QED

- (Naive) estimate first :

Since we are looking for UV divergences, we can drop m and expand 2nd propagator for $p \gg k$: $\frac{1}{(p+k)} \sim \frac{1}{p} + \frac{k}{p^2} + \frac{k^2}{p^2} + \cdots$ giving $\sim \int \frac{d^4 p}{p^2} + \int d^4 p \frac{k}{p^3} + k^2 \int \frac{d^4 p}{p^4}$ where 1^{st} term is naive quadratic divergence (D = 2), which should vanish based on above form of $\pi_{\mu\nu}$, but not "obvious" when we calculate!

2nd term: integrates to zero due to odd (net/powers of p...

 3^{rd} term gives log-divergence (D=0) and expected dependence on external momentum

- explicit calculation using DIMREG (done in LP, but here will delineate steps): why do it when we know form of result (photon remains massless at loop-level)?!

Motivation: (il illustrate need to use proper " regulator (DIMREG respects gauge invariance, whereas hard momentum cut off does not ... not so obvious until we actually calculate (even with DIMREG vanishing of D=2 is subtle) (ii) running of QED coupling will arise from TTpu (iii) practice : tricks/manipulations used here valid for other loop diagrams also

