$\pi_{\mu \nu}(k)$ using DIMRREG
(1 $1^{\text {st }}$ step $/$ regularization

- Look out for how $\left(k^{2} g_{\mu \nu}-k_{\mu} k_{\nu}\right)$ structure emerges: non-trivial, even if was expected based on WT identity / gauge invariance
- DIMREG: number of spacetime dimensions $=(4-2 \varepsilon) \equiv N \quad(\varepsilon>0)$ as per $L \stackrel{\lambda}{P}$ (PS has " 1 ")

$$
\Rightarrow[\mathcal{L}]=4-2 \varepsilon \Rightarrow[\psi]=\frac{3}{2}-\varepsilon ;
$$

$\left[A_{\mu}\right]=1-\varepsilon$ (from kinetic terms) \Rightarrow
$L_{\text {int }} \sim e \mu^{\varepsilon} \bar{\psi} A \psi$, where $[e$ (usual) $]=0(\operatorname{since}[\bar{\psi} \phi \psi]=4-3 \xi)$

- Roughly/intuitively, net coupling constant mass dimension >0, even
if "epsilonically" vs. $=0$ in $4 d \ldots$ uv divergences "less" severe in general, since $D \ni \cdots-\delta_{i} \ldots$
\Rightarrow in addition to unphysical parameter ε, introduce μ (arbitrary mass scale (subtraction point): check later that physical amplitudes are in dependent of $\varepsilon \& \mu$
step "o": i $\pi_{\mu \nu}(k)=\int \frac{d^{4-2 \varepsilon} p}{(2 \pi)^{4-2 \varepsilon}}(-1)$

$$
x \operatorname{Tr}\left[i e \mu^{\varepsilon} \gamma_{\mu} \frac{i(p+m)}{p^{2}-m^{2}} i e \mu^{\varepsilon} \nu_{\nu} \frac{i(p+k+m)}{(p+k)^{2}-m^{2}}\right]
$$

Step 1]: Keep even powers of γ 's in numerator product, since $\operatorname{Tr}\left[\nu^{\circ d d}\right]=0$

$$
\pi_{\mu \nu}(k)=i e^{2} \mu^{2 \varepsilon} \int d^{4-2 \varepsilon} p /(2 \pi)^{4-2 \varepsilon}
$$

$$
\frac{\operatorname{Tr}\left[\gamma_{\mu} \not p \gamma_{\nu}(\not p+k)+m^{2} \gamma_{\mu} \gamma_{\nu}\right]}{\left[(p+k)^{2}-m^{2}\right]\left[p^{2}-m^{2}\right]}
$$

Step (2): Use Feynman parameters to combine denominators (LP sec. 11.3 ; PS sec. 6.3 : mathematical "trick"):

$$
\begin{aligned}
& \frac{1}{\left[(p+k)^{2}-m^{2}\right]\left(p^{2}-m^{2}\right)}=\int_{0}^{1} d x \frac{1}{\left[\begin{array}{l}
(1-x)\left(p^{2}-m^{2}\right) \\
\left.+x\left[(p+k)^{2}-m^{2}\right]\right\}^{2}
\end{array}\right.} \\
& =\int_{0}^{1} d x \frac{1}{\left[p^{2}+2 p \cdot k x-m^{2}+k^{2} x\right]^{2}}
\end{aligned}
$$

$\stackrel{1}{\substack{\text { complete } \\ \text { square }}} \int d x \frac{1}{\left[(p+k x)^{2}-m^{2}+k^{2} x(1-x)\right]^{2}}$
Step 3]: Shift (loop) momentum $p^{\prime}=p+k x$ (also in trace of numerator)

$$
\begin{aligned}
& \pi_{\mu \nu} \propto \int d^{4-2 \varepsilon} p^{\prime} \int_{0}^{1} d x \frac{1}{\left(p^{\prime 2}-a^{2}\right)^{2}} \\
& \left.\times \operatorname{Tr} \int_{\mu \mu}\left(p^{\prime}-k x\right) \gamma_{\nu}\left[p^{\prime}+k(1-x)\right]\right\} \\
& +m^{2} \gamma_{\mu} \nu_{\nu}
\end{aligned}
$$

where $a^{2} \equiv m^{2}-k^{2} x(1-x)$
\ldots then $p^{\prime} \rightarrow b$ (dummy variable)
step (4): drop odd powers of p in numerator, since denominator is even powers, so integrates to zero
(more clear after Wick rotation: see step 8)
\Rightarrow relevant numerator,

$$
\begin{aligned}
N_{\mu \nu}= & \operatorname{Tr}\left[\gamma_{\mu} \ngtr \gamma_{\nu} \not p\right]+m^{2} \operatorname{Tr}\left[\gamma_{\mu} \gamma_{\nu}\right] \\
& -x(1-x) \operatorname{Tr}\left[\gamma_{\mu} \nless \gamma_{\nu} \notin\right]
\end{aligned}
$$

Step 5: While the number of Dirac γ-matrices can be analytically continued to non-integer, ie., γ_{μ}, with $\mu=0$ to $3-2 \varepsilon$ (ct. $\gamma_{0,1,2,3}$ in $4 d$), it seems that dimension of γ-matrices can not be continued in this manner. So, we keep V-matrices of dimension 4 ,i.e., $\operatorname{Tr} \mathbb{1}=4$;

$$
\gamma_{\mu} \nu_{\nu}+\nu_{\nu} \gamma_{\mu}=2 g_{\mu \nu} \mathbb{1} 4 \times 4
$$

$$
\nu^{\mu} \nu_{\mu}=\underbrace{(4-2 \varepsilon)}_{g^{\mu \nu} g_{\mu \nu}} \mathbb{1}_{4 \times 4} \cdots
$$

So, as in $4 d, \operatorname{Tr}\left[\nu_{\mu} \nu_{\nu}\right]=4 g_{\mu \nu}$;

$$
\operatorname{Tr}\left[\gamma_{\mu} \gamma_{\nu} \gamma_{\lambda} \gamma_{\rho}\right]=4\left(g_{\mu \nu} g_{\lambda \rho}-g_{\mu \lambda} g_{\nu \rho}+g_{\mu \rho} g_{\nu \lambda}\right)
$$

Thus, after some algebra,

$$
\begin{aligned}
N_{\mu \nu}(\text { numerator }= & -8 x(1-x)\left(k_{\mu} k_{\nu}-k^{2} g_{\mu \nu}\right) \\
& +4\left[2\left[p_{\mu} p_{\nu}+g_{\mu \nu}\left(a^{2}-p^{2}\right)\right]\right.
\end{aligned}
$$

Step (6): Simplification upon $\int d^{4-2 \varepsilon} p$ In general, $I^{\nu p}=\int d^{4-2 \varepsilon} p \underbrace{p^{\nu} p^{p} f\left(p^{2}\right)}_{\text {symmetric in } \nu, \rho}$

$$
\text { (must be) }=g^{\nu p} J^{\text {constant }}
$$

Calculate " J ": $g_{u p} \times \ldots$ on both sides:

$$
\begin{aligned}
& \int d^{4-2 \varepsilon} p p^{2} f\left(p^{2}\right)=\underbrace{g^{\nu \rho} g_{\nu \rho}}_{N=4-2 \varepsilon} J \\
& \Rightarrow I^{\nu \rho}=\frac{g^{\nu \rho}}{N} \int d^{4-2 \varepsilon} p p^{2} f\left(p^{2}\right)
\end{aligned}
$$

Use it on $2^{\text {nd }}$ term in $N_{\mu \nu}$ above after $\int d^{4-2 \varepsilon} p$

$$
\begin{aligned}
& \left.N_{\mu \nu}=8 x(1-x)\left(k^{2} g_{\mu \nu}-k_{\mu} k_{\nu}\right)\right\} \begin{array}{c}
\text { form } \\
\text { expected } \\
\text { (using } \\
\text { us }
\end{array} \\
& \quad+4 g_{\mu \nu}[\left(\frac{2}{N}-1\right) p^{2}+\underbrace{\left.a^{2}\right]} \underbrace{}_{\begin{array}{c}
\text { unwanted" } \\
\text { wT identy } \\
\text { form }
\end{array}}
\end{aligned}
$$

$2^{\text {nd }}$ term (naively quadratically divergent) should integrate to O (this is at 1-100p, but valid for all orders as per theorem)...
step 7 Using DIM REG (not obvious, but) intergal of $2^{n d}$ term (after wick rotation: see next step does vanish: see LP Eq. 12.47 for details or PS bottom of page 251 (mostly "math")...
...cf. hard cut-off regularization

$$
P_{\text {E(uclidean) }}^{2} \leqslant \Lambda_{u v}^{2} \text {, analog of }
$$

\rightarrow see below
$2^{\text {nd }}$ term will not vanish, ie., will not get purely $\left(k^{2} g_{\mu \nu}-k_{\mu} k_{\nu}\right)$ structure - physics "interpretation": DIMMREG preserves gauge invariance / $W T$ identity, while hard cut-off does not (see also HW 2.1 for calculation of Γ_{μ} vs. \sum) "Intuition": analytic continuation
of number of space-time dimensions should not violate gauge invariance

$$
\psi(x) \rightarrow e^{-i e Q \theta(x)} \psi(x) \& A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \theta
$$

However, hard cut off has the following "problem". Note that while $P_{E}^{2} \leqslant \Lambda_{u u}^{2}$ restricts "frequencies" (Fourier modes) contained in the fields $A_{\mu}(x), \psi(x)$, the gauge transformation parameter (not a field), $\theta(x)$ is still arbitrary, ie., can contain frequencies above $\Lambda_{u v}$. So, such gauge transformation could lead to new fields having frequencies violating cut-off, resulting in a incomptability
Step (8): Wick rotation (mainly "math trick": see Eq. 11.61 of LP or Eq. 6.48 of $P S$) so that $\int d^{4} p$ "simplifies" to angular \& radial integration ($4 d$ "spherical" coordinates for momentum)
[Need to be careful with poles: see references..] Recall, we have so far

$$
\begin{aligned}
& \pi_{\mu \nu}(k)=8 i e^{2} \mu^{2 \varepsilon}\left(k^{2} g \mu \nu-k_{\mu} k_{\nu}\right) x \\
& \int \frac{d^{4-2 \varepsilon} p}{(2 \pi)^{4-2 \varepsilon}} \int_{0}^{1} d x \frac{x(1-x)}{\left[p^{2}-a^{2}\right]^{2}},
\end{aligned}
$$

where p^{2} (Minkowskian $)=\left(p^{0}\right)^{2}-|\bar{p}|^{2}$.
Go to Eudidean momentum: $P^{0}=i P_{E}^{0}$ so that $P^{2}=-P_{E}^{2}=-\left[\left(P_{E}^{0}\right)^{2}+|\bar{P}|^{2}\right]$,
\bar{p} unchanged

$$
\Rightarrow\left(p^{2}-a^{2}\right) \text { in integrand }=-\left(p_{\in}^{2}+a^{2}\right)
$$

Using sec. A. 4 of LP for integration, we get (after some algebra)

$$
\begin{aligned}
& \pi_{\mu \nu}(k)=\frac{-8 e^{2}}{16 \pi^{2}}\left(g_{\mu \nu} k^{2}-k_{\mu} k_{\nu}\right) \Gamma(\varepsilon) \\
& \int_{0}^{1} d x\left(\frac{\mu^{2} 4 \pi}{\left.a^{2}\right)^{\varepsilon} x(1-x)} \quad\right. \text { function (no } \\
& m^{2} \quad m^{2}-x(1-x) k^{2}
\end{aligned}
$$

Step 9 : Expand for small ε

$$
\Gamma(\varepsilon)=\frac{1}{\varepsilon}-\gamma_{\ell}+\theta(\varepsilon)
$$

divergence Euler-Mascheroni constant $\simeq 0.58$ as $\varepsilon \rightarrow 0$ (physical limit)
and $\left(\frac{\mu^{2} 4 \pi}{a^{2}}\right)^{\varepsilon}=1+\varepsilon \log \left(\frac{\mu^{2} 4 \pi}{a^{2}}\right)+\theta\left(\varepsilon^{2}\right)$
so that

$$
\begin{aligned}
& \text { so that } \\
& \pi_{\text {scalar }}\left(k^{2}\right)=-\frac{8 e^{2}}{16 \pi^{2}} \int d x x(1-x)\left[\frac{1}{\varepsilon}-\nu_{E}+\theta(\varepsilon)\right] \\
&
\end{aligned}
$$

$\operatorname{drop} \theta(\varepsilon)$ overall

$$
\begin{aligned}
& \approx-\frac{2 \alpha}{\pi} \int d x x(1-x)[\underbrace{\left[\frac{1}{\varepsilon}-\gamma_{E}+\log 4 \pi\right)}_{\equiv 1 / \varepsilon^{\prime}}+\log \frac{\mu^{2}}{a^{2}}] \\
& \alpha=e^{2} /(4 \pi) \\
& =-\frac{2 \alpha}{\pi}[\underbrace{\frac{1}{6}}_{\text {from }} \frac{1}{\varepsilon^{\prime}}-I\left(k^{2}\right)] \text {, where } \\
& =x(1-x)
\end{aligned}
$$

$$
I\left(k^{2}\right)=\int d x x(1-x) \log \{\frac{1}{\mu^{2}} \underbrace{\left[m^{2}-x(1-x) k^{2}\right]}_{a^{2}}\}
$$

Exp and for $k^{2} \ll m^{2}$,

$$
\begin{aligned}
& =\frac{1}{6} \\
& \left.+\theta\left(k^{2}\right) \quad m^{2} / \mu^{2}\right\} \begin{array}{l}
I\left(k^{2}=0\right), \\
u \sin g
\end{array} \\
& \int d x x(1-x)=\frac{1}{6}
\end{aligned}
$$

So, $\begin{aligned} \pi\left(k^{2}\right)= & \underbrace{\pi(0)}+k^{2} \pi^{\prime}(0) \\ & -\frac{\alpha}{3 \pi}\left(\frac{1}{\varepsilon^{\prime}}-\log \frac{m^{2}}{\mu^{2}}\right)\end{aligned}$
We will return to $I\left(k^{2}\right)$ when calculating running of (effective) QED coupling constant
Again, $\pi_{\mu \nu}\left(k^{2}\right)$ depends on $\mu \& \varepsilon$: unphysical parameters introduced to isolate divergence, thus should cancel in next steps...
\cdots which is adding counterterm ($C T$)
to cancel divergence:

$$
\mathcal{L}_{c T}^{(\pi)}=-\frac{1}{4}\left(z_{3}-1\right) F_{\mu \nu} F^{\mu \nu} \text { (same }
$$

form as $\left.\mathscr{L}_{\text {classical }}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right)$ suffices, where $z_{3}=1-\frac{\alpha}{3 \pi}\left(\frac{1}{\varepsilon^{\prime}}-\log m^{2} / \mu^{2}\right)$...since full propagator (classical + $100 p+C T$) $=$ (similar to resuming insertions of $\pi_{\mu \nu}$ done earlier)

$$
\begin{aligned}
& -i\left(g_{\mu \nu}-k_{\mu} k_{\nu} / k^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-i\left(g_{\mu \nu}-k_{\mu} k_{\nu} / k^{2}\right) \\
& k^{2}[\underbrace{1-\frac{\alpha}{3 \pi}\left(\frac{1}{\varepsilon^{\prime}}-\log \frac{m^{2}}{\mu^{2}}\right)}_{z_{3}}+\underbrace{\frac{\alpha}{3 \pi}\left(\frac{1}{\varepsilon^{\prime}}-\log \frac{m^{2}}{\mu^{2}}\right)-k^{2} \pi^{\prime}(0)}_{-\pi\left(k^{2}\right)}]
\end{aligned}
$$

So, divergence $\left(\infty \frac{1}{\varepsilon^{\prime}}\right)$ and μ-dependence cancels in full propagator for all k^{2} (unphysical parameters" disappear")

$$
=-\frac{i\left(g_{\mu \nu}-k_{\mu} k_{\nu} / k^{2}\right)}{k^{2}\left[1-\pi_{R}\left(k^{2}\right)\right]}
$$

where $\pi_{R}\left(k^{2}\right)=k^{2} \underbrace{\pi^{\prime}(0)}\left[\begin{array}{c}\pi_{R}\left(k^{2}=0\right) \\ =0\end{array}\right]$ renormalized
finite, $\theta(\alpha)$
\Rightarrow massless pole survives ... and for on-shell/physical photon $\left(K^{2} \rightarrow 0\right)$, full propagator $=$ classical... ...due to choice of finite part of coefficient of $C T\left(z_{3}\right)$: can choose differently...
... but no such freedom in divergent part of z_{3}, i.e., that's fixed as above by requirement of canceling divergence
[Again, in general, finite piece of $C T$ is arbitrary \Rightarrow even if no corresponding tree / classical term, there's no prediction from $(l o \Delta p+C T) \ldots$ of course, if there is tree contribution, then it's dear from get-go that can't predict. \square Bottomline" of Tr calculation: suppose we never heard of gauge invariance (or $W T$ identity). We perform DIMREG calculation -at 1-10op-to find ($\left.k^{2} g_{\mu \nu}-k_{\mu} k_{\nu}\right)$ form (after lot of work!) \Rightarrow photon massless even at (1-1 loop...
... but instead if we use hard cut-off regulator, then "surprised" to find otherwise (photon massive at loop-level) ... so, good to have deeper understanding: DIMREG preserves gauge invariance... + valid at all loops (otherwise, might "wonder...)

