Part (I) (QFT topics)
(A) Renormalizability of $Q E D$
-Loop diagrams can be UU-divergent, due to $\int d^{4} k(100 p)$, with $k \rightarrow \infty$, e.g., vertex correction (2 electron1 photon coupling) denotes tree-level $\left[\Gamma^{(0)}\right]$

Loop correction

Schematically (dropping i, $\boldsymbol{\gamma}_{\mu}$'s: not relevant for divergence structure)

$$
\begin{aligned}
& \begin{array}{l}
\Gamma^{(1)} \sim e^{3} \int \frac{d^{4} k}{(2 \pi)^{4}} \begin{array}{l}
\text { loop-momentum } \\
\text { integrated } \\
\text { over all values }
\end{array} \\
\times \frac{g_{\mu \nu}}{k^{2}} \quad\binom{\text { photon propagator in }}{\text { ithooft-Feynmangauge }}
\end{array} \\
& \left.\begin{array}{rr}
x & \frac{p-k+m}{(p-k)^{2}-m^{2}} \\
x & \frac{\left(p^{\prime}-k\right)-m}{\left(p^{\prime}-k\right)^{2}-m^{2}}
\end{array}\right\} \\
& 2 \text { electron/ } \\
& \text { fermion } \\
& \text { propagators } \\
& \xrightarrow[k \rightarrow \infty]{u v \text {-limit }} \frac{e^{3}}{16 \pi^{4}} \int d^{4} k \frac{1}{k^{2}} \frac{k}{k^{2}} \frac{k}{k^{2}} \\
& \sim \frac{e^{3}}{16 \pi^{4}} \int^{\wedge u v} \frac{d^{4} k}{k^{4}} \propto \log \Lambda u v
\end{aligned}
$$

Outline of (general) program to "interpret /eliminate" UU divergences
Step 1: Regularization (isolate) parametrize divergence)

- $\int d^{4} k$ is actually " ∞ ", since must allow k to be arbitrary $(\rightarrow \infty)$
- So, introduce a (UV) "regulator", ie., extra (in the end unphysical) parameter such that integral can be done/is "finite" for certain range of parameter
(of course, result depends on parameter in such a way that ∞ "returns" if we take physical limit of parameter/remove regula tor.)

Concretely, many options: here, mostly choose dimensional regularization ($D I M R E G$): formally, $(4-2 \varepsilon)$ number of dimensions such that integral "finite" for $\varepsilon \neq 0 \quad($ but $\rightarrow \infty$ for $\varepsilon \rightarrow 0$)

- divergent part of amplitude part which depends on extra parameter and $\rightarrow \infty$ in physical limit of parameter.
Step 2 Add counterterms (CT): product of fields /ie, "like terms in Lagrangian/ with coefficients chosen so that $C T$ contribution to amplitude cancels
divergent part of same amplitude (Other ways, e.g., possibly in Phys 851)

Step 3 Full Lagrangian = classical (what we started with) + (added) CT's (in step 2) (Roughly speaking: more precise later) - $I f$ CT's of same form as \mathscr{L} classical, then this process is just rescaling/renormalization of original coupling constants \& fields (by divergent constants) renormalizable theory (e.g .QED) ...seems like "mathematical trick" to hide infinities (simply redefinition of pre-existing terms?!)
... Not quite: there are observable consequences

- allows systematic predictions for other amplitudes (again, once divergences are "taken care of")
- "left-over" (finite) effects even from/related to divergent amplitudes, e.g., running of coupling constants Let's see how it plays out in QED already saw 1 example of divergent diagram at 1 -loop level (vertex correction)...
... but what about higher loops? other QED amplitudes also divergent? other theories?
... So, better to have a systematic, general, simple way/formula to Know (even if superficial / naive) degree of divergence of amplitude/diagram (D)
... again, without actually estimating loop integral (which we did for vertex correction), since that's still involved, especially at higher loops!
- We can use formula for D to first (exhaustively) list divergent amplitudes in QED; then apply above program
- Here's summary of results of above process (as "heads-up") - Formula for $D \Rightarrow$ mass dimension of coupling constants crucial ("natural" units: $\hbar=1=c \cdots)$, e.g.

$$
\mathcal{L}_{Q E D} \sim e \bar{\psi}_{e} \gamma_{\mu} A^{\mu} \psi+\bar{\psi}_{e} \not \psi_{e}+\left(\partial_{\mu} A_{\nu}\right)^{2}
$$

mass dimension of e, denoted by $[e]$ or $\delta_{e}=[\mathcal{Z}]-2\left[\psi_{e}\right]-\left[A_{\mu}\right]$, with

$$
\begin{aligned}
& {\left[s=\int d^{4} x \mathcal{L}\right]=0 \Rightarrow[\mathcal{L}]=4} \\
& {[\psi \not \partial \psi]=[\mathcal{Z}]=4 \Rightarrow\left[\psi_{e}\right]=3 / 2} \\
& {\left[\left(\partial_{\mu} A_{\nu}\right)^{2}\right]=[\mathcal{Z}]=4 \Rightarrow\left[A_{\mu}\right]=1}
\end{aligned}
$$

So, $\delta_{e}=0$ (dimenisionless)

- If all coupling constants have mass dimension $\geqslant 0$, then only finite number of amplitudes are divergent (at all loop-level) \Rightarrow add CT's for these amplitudes, so cannot predict these (to be taken as input parameter from data)... but other amplitudes which are finite can be predicted (renormalizable theory)
- However, if any coupling constant has mass dimension <0, then every amplitude is divergent (at sufficiently high order l \Rightarrow need CT's for all amplitudes, thus no predictions (non-renormalizable)
- Apply to $Q E D: \delta_{e}=0$ (coupling constant, e, is dimensionless) \Rightarrow QED is renormalizable \Rightarrow (naively) 4 (on 4) amplitudes divergent

(naively)
\longrightarrow (actually) linear logarithmic

quadratic \longrightarrow logarithmic
:logarithmic \longrightarrow stays.

logarithmic \rightarrow finite
- Before embarking on (complicated) calculation of these amplitudes, figure out (more easily) their general structure / form using "symmetries" (good to know what to expect)..
... in fact, such analysis will show actual degree of divergence to be smaller than naivel superficial (D) for 3 cases, leaving only 3 divergent
- Furthermore, symmetry will "relate" divergence in 2 of these amplitudes (ward. Takahashi identity) \Rightarrow absorb divergences in 2 input/free parameters: e \& m (fixed by data)
- other amplitudes (finite superficially) can be predicted, egg,

(see it quickly using degree of divergence / check it - with bit more effort! at 1-100p level)
- Onto details...

