Non-abelian symmetries: global
Motivation (reminder!): in order to transition from QED [massless, $U(1)$, gauge boson] to full SM, we need two extensions/generalizations
(i) renormalizable theory of massive gauge boson (for weak (nuclear) force, with short range us. long in QED]: (ganged) SSB / Riggs mechanism ( $2^{\text {nd }} Q F T$ topic) and
(ii). Non-abelian gauge theory: needed to describe (a)strong (nudear) force, where coupling binding partons (constituents of hadrons) becomes weaker at higher energies (cf. ( $R$-free in QED); due to self-interactions of gauge bosons in vacuum polarization... and
(b) weak (nudear) force: $\omega^{+}$couples $\mu^{-} e^{-}$ to $\nu_{\mu}, \nu_{e}$ (i.e., off-diagonally us. QED)... ... again, in dependent of above "applications", non-abelian gauge (Yang-Mills) theory is a robust, fascinating possibility within QFT.

- So, $3^{r d}$ QFT topic is to first generalize global, in ternal sym metries from $U(1)$ to $S U(n)$. note internal implies transformation involves fields at same space-time point (ie, do not touch $x_{\mu}$ or Dirac index of $\psi_{\alpha} \ldots$ ) us space-time symmetries connect fields at different space-time points /mix-up Dirac index...), egg, Lorentz transformation; global stands for transformation parameters being spacetime independent...
... then gauge these "new" symmetries (promote parameters to be space-fime derivatives, coupling gaugefields to matter...)
outline for non-abelian global symmetries:
- warm-up: from $U(1)$ to $S U(n)$
- elementary group theory [including $S O(n) \ldots$ ]
- SSB of non-abelian (global )symmetries ( NIGB's...): a bit more complicated than $U(1)$, e.g., part of symmetry unbroken (use multiple scalar field discussion)

From $u(1)$ to $u(2) \ldots s u(n)$
-Symmetrylinvariance under global phase rotation (including interactions, even if not gauge), e.g.,

$$
\begin{aligned}
& (1) \mathscr{L}_{\psi, \phi^{\psi^{\text {real }}}}^{=} \bar{\psi}(i \partial-m) \psi+\partial_{\mu} \phi \partial^{\mu} \phi+\underbrace{\bar{\psi} \psi \phi h}_{\text {Yukawa coupling }} \\
& \text { is invariant under } \\
& \text { spacetime - } \\
& \text { independent } \\
& \text { (since global) } \\
& \text { (Diracindex) untouched } \\
& \text { since internal } \\
& \text { symmetry }
\end{aligned}
$$

(2) $\mathcal{L}_{\Phi}$ complex
with $\Phi \rightarrow e^{i \theta} \Phi$
... called abelian or $U(1)$ symmetry, since transformation, $e^{i \theta}$, is $1 \times 1$ "matrix", which is unitary, ie., $\left(e^{i \theta}\right)^{+}\left(e^{i \theta}\right)=1$ : $\infty$ number of transformations, parametrized by single (continuous, real) parameter ( $\theta$ )

- Aside: two different matrix spaces/structures: internal (trivial above, since only $1 \psi$, cf. below)
us. Dirac space (which is non-trivial above, but not focus here, ie, for internal symmetry it goes along for ride as above) anyway, for sake of completeness,
$(\bar{\psi})_{\beta}($ "row" $) \equiv\left(\psi^{+}\right)_{\alpha}\left(\boldsymbol{\gamma}_{0}\right)_{\alpha \beta}\left(\psi_{\beta}\right.$ is column $)$;
$\bar{\psi} \gamma^{\mu} \psi=\left(\psi^{+}\right)_{\alpha}\left(\gamma_{0}\right)_{\alpha \beta}\left(\gamma^{\mu}\right)_{\beta \delta} \psi_{\delta}$ etc.
(not shown explicitly in above $\mathcal{L} .$. ) $\Rightarrow$ these 2 spaces/structures are " independent/commuting"
- Onto 2 fermions (free for now) with different masses (in general)

$$
\mathcal{L}_{\psi_{i}}=\sum_{i=1,2} \bar{\psi}_{i}\left(i \not \partial-m_{i}\right) \psi
$$

-notation: "upper case" $\psi$ for "doublet" (in internal space): $\Psi_{(\alpha)}=\left[\begin{array}{l}\left(\psi_{1}\right)_{(\alpha)} \\ \left(\psi_{2}\right)_{(\alpha)}\end{array}\right]$
so that suppressing Dirac structure:

$$
\mathscr{L}_{\Psi}=\bar{\Psi}[i \not \partial \underbrace{\mathbb{I}_{2 \times 2}}-\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)] \Psi
$$

internal/doublet space

- symmetry is $U(1)_{2} \times U(1)_{2}$, ie., separate phase rotations on $\psi_{1,2}$
Special case: $m_{1}=m_{2}$ so that/"dropping" double-space structure also):
$\mathscr{L}_{\Psi}=\bar{\Psi}(i \not \partial-m) \Psi$, where (again)

$$
\begin{aligned}
& \bar{\Psi} \Psi=\left(\begin{array}{ll}
\bar{\psi}_{1} & \bar{\psi}_{2}
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=(\psi_{1}^{+} \gamma_{0}, \underbrace{\psi_{2}^{+} \gamma_{0}}_{\text {row in }})\binom{\psi_{1}}{\psi_{2}} \\
& =\bar{\psi}_{1} \psi_{1}+\bar{\psi}_{2} \psi_{2} \\
& \text { Dirac space } \\
& \left(=\psi_{1}^{+} \gamma_{0} \psi_{1}+\psi_{2}^{+} \gamma_{0} \psi_{2}\right) \\
& \text { (but "suppressed" } \\
& \text { ere) }
\end{aligned}
$$

$=$ (spelled out, including summation over repeated indices)
$\begin{gathered}\text { doubletlinternal } \\ \text { space }\end{gathered}$
$\sum_{i} \underbrace{\sum_{\alpha} \sum_{\beta}}_{\begin{array}{c}\text { Dirac } \\ \text { space }\end{array}} \psi_{i \alpha}^{+}\left(\gamma_{0}\right)_{\alpha \beta} \psi_{i \beta}$.

- Above $\mathscr{L}$ invariant mixing $\left(\psi_{1}\right)_{\alpha}$ with $\left(\psi_{2}\right) \alpha$ : "1,2" here refer to doublet/in ternal space, ie, rotation in doubletlinternal space, with Dirac index a "staying put",
cf. Lorentz (space-time us. internal above) transformation rotates $\left(\psi_{1}\right) \alpha$ into $\left(\psi_{1}\right)_{\beta}$ (ie., does not touch doublet space: $\psi_{1,2}$ transform independently)
- Mathematically, $\mathscr{L} \Psi$ invariant under $U(2)[2 \times 2$ unitary matrix $]$ transformation:

$$
\Psi^{\prime}(\text { new })=U_{2 \times 2} \Psi, U^{+} U=\mathbb{1}_{2 \times 2}
$$

- In general, with $n \psi$ 's of same mass, we have $U(n)$ symmetry $y$, with
$U_{n \times n}=\exp \left[-i \sum_{a} \beta_{a}\left(T_{n \times n}^{a}\right)\right]$, where

$$
\exp (A-\text { matrix }) \equiv 1+A+A^{2} / 2!+\cdots \frac{A^{n}}{n!}+\cdots ;
$$

Ba are real parameters and $T_{n \times n}^{a}$ are hermitian, so that $U^{+}=\exp \left(+i \beta_{a} T^{a}\right)$, giving $U^{+} U=\mathbb{1}$

- Now, $(n \times n)$ complex matrix has $2 n^{2}$ real parameters, but hermitian
condition reduces that to $n^{2}$, since diagonal elements of $T^{a}$ are real, while (appropriatel off-diagonal elements are complex conjugates of each other

$$
\Rightarrow a=1,2 \ldots n^{2}\left(T^{a}\right. \text { 's are called }
$$ generators of this fundamental representation: more on this group theory later, including other representations) -e.g., for $n=2$, we get $T^{a}=1, \bar{\sigma}$, where $\bar{\sigma}=\sigma_{1,2,3}$ are Pauli matrices - In general, choose $T^{a=n^{2}}=\mathbb{1}_{n \times n}$,

So that other (all independent)

$$
\begin{aligned}
& \tau^{a} s, a=1,2 \ldots\left(n^{2}-1\right) \text { are traceless } \\
& \Rightarrow U_{n \times n}=e^{-i \beta_{n^{2}} \mathbb{1}} \times \tilde{U}_{n \times n} \text {, where } \\
& \tilde{U}_{n \times n}=\exp \left[-i \sum_{a=1}^{n^{2}-1} \beta_{a} \tau^{a}\right] \text { traceless }
\end{aligned}
$$

- Using (schematically) $\operatorname{det} e^{A} \sim e^{\operatorname{tr} A}$,
we see that $\widetilde{U}$ have determinant II
so this subgroup of transformations are called $S U(n)$, where " $S$ "denotes special/determinant $=1$
- Clearly, the $1^{s t}$ part of $U$, ie., $\exp \left(-i \beta_{n^{2}}\right) \underline{1}$ is a $U(1)$ transformation [multiplies all $\psi$ 's by same phase]
-So, schematically, $U(n)=S U(n) \times U(1)$
$\left[e \cdot g ., \operatorname{su(2)}\right.$ "generated" by $\left.\sigma_{1,2,3}\right]$
- Even more special case with $n$ *'s $m(c o m m \circ n)=0 \Rightarrow$ symmetry enlarged to $U(n)_{L} \times U(n)_{R}$, i.e., separate rotations on $L, R$ chiralities / since only mass term "connects" them)
- We can also include (rather trivially) interactions which are $\operatorname{su}(n)$ invariant, egg.
(1). L yukawa $=\sum_{i, j} h_{i j} \bar{\psi}_{i} \psi_{j} \phi=\bar{\psi} \underset{y_{\text {matrix }}}{h} \underset{\psi}{\psi}$ where $\phi$ is real scalar, not transforming under $U(n)$ : for arbitrary $h_{i j}$, this coupling is not $U(n)$-invariant, but it is $U(n)$ invariant if we choose $h_{i j}=h \delta_{i j}(h \propto \mathbb{I})$
(2). All $n$ 's have electric charge
+1 (couple identically to photon)
$\partial!$ of earlier $\rightarrow(\varnothing+i e 1)$ II, ie.
$\operatorname{su}(n)$ is still global symmetry, but $U(1)$ part of $U(n)$ is gauged (local symmetry), with Age (photon) being $\operatorname{sU}(n)$ - in variant (like $\phi$ ), but of course A $A^{\prime}$ transforms (inhomogeneously) under local U(1)...
... onto more nontrivial [U(n)-invariant] interactions, i.e, where $\psi$ 's couple to a field which is not a "singlet" it transforms under this symmetry

