spontaneous breaking of non-abelian (global) symmetries: $S U(2)$ examples

- main point: similar to U(1), but richer, ie., multiple possibilities for pattern of breaking, since start with >1 symmetry generators
SSB of SU(2) by (real) scalar triplet UEV (mure in HW5.3)
- Consider (pure) pion part of $\pi-N$ Lagrangian of before (obviously,
fermions - nudeons here - cannot get UEUS!):

$$
\mathscr{L}_{\Phi}=\frac{1}{2}\left(\partial^{\mu} \Phi\right)\left(\partial_{\mu} \Phi\right)-\frac{1}{2} \mu^{2} \Phi^{\top} \Phi-\frac{1}{4} \lambda\left(\Phi^{\top} \Phi\right)^{2}
$$

where $\Phi=\left(\phi_{1} \phi_{2} \phi_{3}\right)^{\top}$ is real triplet [adjoint representation of SU(2)] SC alar field

- Choose $\mu^{2}<0$ such that $\langle 0| \underbrace{\Phi^{\top} \cdot \Phi}|0\rangle=v^{2}=\frac{-\mu^{2}}{\lambda}$

$$
\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}
$$

- Just like $U(1)$ case, where $\langle 0|\left(\phi_{1}+i \phi_{2}|/ \sqrt{2}| 0\right\rangle=\frac{v}{\sqrt{2}}$,
vacuum in su(2) model is not unique: let us choose (without loss of generality), only

$$
\begin{aligned}
\langle 0| \phi_{3}|0\rangle \neq 0, \text { ie., }\langle 0| \underset{\lambda}{\Phi}|0\rangle=\left(\begin{array}{l}
0 \\
0 \\
v
\end{array}\right) \\
\text { column-vector }
\end{aligned}
$$

- Plug above VEV into $\mathcal{L} \Phi$ (see HW 5.3.1) to find $\phi_{1,2}$ are massless, while (fluctuation around VEV of) ϕ_{3} is massive...
\ldots we sort of expected to find massless scalars as NGB's due to SSB, ie., $\phi_{1,2}$ are (strong) "candidates" for being NGB's - In fact, Goldstone's theorem says there is a massless scalar ($N G B$) corresponding to each broken symmetry generator \Rightarrow in this model, at most 2 generators are broken... out of $3\left(=2^{2}-1\right)$ to begin with for $\operatorname{sU}(2) \Rightarrow$ at least one symmetry, is un broken in vacuum... ... which was expected" as follows su(2) here is really so (3) acting on Φ, ie.,
"rotations" among $\phi_{a}(a=1,2,3) \Rightarrow$ $\langle 0| \phi_{3}|0\rangle$ breaks this rotationalal symmetry by "picking a direction in $3 d^{\prime}$ ".. but $2 d$ rotations, ie, among $\phi_{1,2}$, are still a symmetry: this is 5O(2) rotating 2 real scalar fields into each other or U(I) on 1 complex scalar field
- So, we have

SU(2) [3 generators $] \rightarrow U(1)$ [1 generator $]$, ie., (only) 2 generators are broken (out of original 3) $\Rightarrow 2$ NGBS... ... which then "must be" $\phi 1,2$

- Check explicitly unbroken U(I) in HW 5.3.1; another way to "see" unbroken symmetry in HL 5.3 .2 ; "identity" of NGB matches Goldstone's theorem HW5.3.3
- Rank of group is number of diagonal generators in fundamental representation, ie, 1 for $\operatorname{SU}(2) \& U(1)$
\Rightarrow In general, rank of group is not changed/ reduced if SSB by adjoint $V E V$ [here, triplet for $S U(2)]$
SSB of SU(2) by VEV of (complex) doublet scalar field [cannot have real doublet, since (complex) unitary rotations involved... triplet can be real, since real, orthogonal rotations]
-Subtlety (see HW 5.4): 3 massless scalars ($N G B$'s), hence 3 broken generators, ie., all original $s U(2) \ldots$
... but starting symmetry (number of generators) is actually (arger than 3 (again, 3 broken) there's remnant symmetry!
... in general, rank reduced by VEV of fundamental scalar

