self energy (Σ) Fermion

-Summary: recall

has (naive/superficial) D = 1 (linear divergence), but "symmetry" lowers it to D = O (logarithmic): general argument (valid for all loops) + check by explicit calculation at 1-loop (but no need to use specific regulator, ct. Thus, where DIMREG was different than hard cut-off...) -General argument (based on structure in Dirac space, "chiral" symmetry and Lorentz invariance):

- Note that E (appearing in-between two external fermions, even if off-shell) is (4 x 4) matrix in Dirac space $\Rightarrow \Sigma$ must be a combination of 1, Ype, Juv, Y5 & Ym Y5 (in general) - In short, QED is parity-invariant $(no \gamma_{5} \text{ in interaction}) \Rightarrow \Sigma also$ can't contain Ys or YmYs...so, left with 1, Yu & Juv -Now, E is Lorentz scalar: so, must have our pro (only 4-vector available is $p^{\mu}/=0$ (by anti symmetry of Juv) - Similarly, Ypp ... => $\Xi(p) = a(p^2) \not P + b(p^2) I$

⇒ degree of divergence of a(p²) = 0 (lower than superficial = 1 due to presence of external momentum (as pergeneral arguments) $-Onto, \Sigma \ni b(p^2)\mathbf{1}$: connects" YL to YR, i.e., "violates" chiral symmetry: $\psi_{L} \rightarrow e^{+i\alpha} \psi_{L} vs.$ $\psi_R \rightarrow e^{-i\chi}\psi_R$ (i.e., opposite transformation for 4L vs. 4R/ vs. -Is there any term in L classical Which violates chiral symmetry ? Yes, its mŸY

 $\Rightarrow b(p^2)$ must be ∞ m

[Again, if m -> 0, then I classical has chiral symmetry; so will E, hence b(p²) must vanish in this limit) \Rightarrow actual degree of divergence of $b(p^2)$ is also lower by 1 than naive, i.e., $b(p^2)$ is at most log-divergent [we must obtain "m" in $b(p^2)$ by expanding fermion propagator $(k >> p, m) \sim \frac{1}{k} + \frac{p}{k^2} + \frac{m}{k^2}$ => 1 more power of k in denominator] More "carefully," use dimensional analysis. [2]=1 (again, roughly corresponds to " $\psi \geq \psi$ "term" in Lagrangian) not possible $\Rightarrow \left[b\left(p^{2}\right) \right] = 1 \quad and \quad b\left(p^{2}\right) \propto m,$ but then $b(p^2) \sim m \Lambda^{>0} \times (couplings) \Rightarrow no$ power/linear divergence (if [couplings] >, 0, i.e., renormalizable theory) but $b(p^2) \sim m \log \Lambda$ is allowed indeed will find this at 1-loop ...

[Relatedly, we don't need to be so "careful" with DIMREG vs. hard cut-off here cf. lowering of degree of divergence of TTpv (photon self-energy) relied on gauge invariance/wt identity, so had to use regulator respecting gauge invariance, i.e., DIMREG, to make it work ... + self-energy of scalar in Yukawa theory not "protected" analogously, ie., D=2 remains...) - Above is valid at all loops : onto more explicit results at one loop - As usual, schematically first, which will already suggest above structure (even if we did n't know "symmetry "arguments)

log-divergence in $b(p^2)$ in $a(p^2)$ but odd powers of k in integrand =) Sdªk expected to vanish (cf. The where do not see _ at this level how D=2-naive quadratic divergence - will be lowered : really have to calculate in detail -will check above educated guess explicitly - Motivation : (i) (again) trust, but verify! No further reduction of divergence, i.e., beyond schematic / estimate above

(again, no "extra" principle, cf. Thur, where quadratic divergence of estimate vanishes in detail: of course, expected from WT identity, but again not seen schematically ...); (ii) more practice ; (iii). relation between (divergence in) E and Tµ, based on gauge invariance (or WT identity) : we do need to use DIMREG in order to obtain this, even if we can see above structure of E by itself without "proper" regularization - Explicit calculation of $\geq (p)$ at 1-loop: details of DIMREG in HW2.1 Pauli-Villars (PV) regulator, which also preserves gauge invariance, done in LP sec. 12.6.2

- Focus on getting $a(p^2/p + b(p^2))$ structure a m - Using 't Hooft-Feynman gauge for photon propagator, we get (set Q=-1) DIMREG step 1: Use $\gamma^{\mu}\gamma_{\mu} = 4$ 1 in DIMREG in DIMREG in DIMREG ("instead" of traces in TTpu) $\sum_{k=1}^{2} \left(\frac{p}{p} \right) = i e^{2} \left(\frac{d^{4}k}{(2\pi)^{4}} \frac{2(p+k)^{2}-4m}{(p+k)^{2}-m^{2}} \right) k^{2}$

step 2: Combine denominators using Feynman parameters $= i e^{2} \int dz \int \frac{d^{4}k}{(2\pi)^{4}} \frac{2(k+k)-4m}{\left\{ 2(k+k)^{2}-m^{2} \right\} + k^{2}(1-z) \right\}^{2}}$ $= ie^{2} \int dx \int \frac{d^{4}k}{(2\pi)^{4}} \frac{2(\cancel{p} + \cancel{k}) - 4m}{(\cancel{k}^{2} + 2\varkappa \cancel{k} \cdot \cancel{p} + \varkappa)^{2}}$ $\left[k^{2}+2\chi k\cdot p+\chi\left(p^{2}-m^{2}\right)\right]^{2}$ step 3: "complete square" in denominator $(k' = k + \beta z)$ $= i e^{2} \int dx \int \frac{d^{4}k'}{(2\pi)^{4}} \frac{\left[2 k' + 2 \not((-x) - 4 m\right]}{\left[k'^{2} + x((-x) \rho^{2} - m^{2} x\right]^{2}}$ Since denominator has even powers of k', the 1st term (which has naive, linear divergence), having odd power of k' in numerator, vanishes upon Jack (more clear upon wick rotation), as was guessed schematically earlier.

Whereas, 2nd & 3rd terms "match" $a(p^2) & b(p^2)$ of above expectation (again, with log divergence ~ d4k' [k12]2) ... see HW 2.1 for DIMREG; LP sec. 12.6.2 for PV ... Counterterms for E $a(p^2) \not p + b(p^2)$, $\int \log - divergent(all loops)$ Since $\Sigma(p) =$ we can choose $\chi_{c\tau}^{(\varepsilon)} = (Z_2 - 1) \overline{\psi} \left[i \partial - (m - \delta m) \right] \psi,$ where Z2, Sm are independent of p [again, same form as L classical = ¥ (i) -m)4 -Note, need two coefficients of CT to cancel independent divergences in a, b ⇒ full fermion propagator (classical + loop + cT): $= -i/[p - m - \Sigma_R(P]], where$

$$\begin{split} & \sum_{\substack{|0| \\ |$$

 \rightarrow classical $\sim \frac{1}{k^2}$ as $k^2 \rightarrow 0$) $\Rightarrow a_{cT}, b_{cT}$ obtained by requiring (more in HW1.) $\sum \mathbf{R} \left[\mathbf{p} = \mathbf{m} = 0 & \underbrace{\partial \left[\sum \mathbf{R} \left(\mathbf{p} \right) \right]}_{\mathbf{p}} = 0$ coefficient of (p-m)² in expansion [meaning of 2/20 acting on Ep (P1: just write p² contained in E(P) as $(\not P \not P)$, so Σ_R can be thought of as function of pm.] $\Rightarrow a_{CT} = -a(m^{2}) - 2m^{2}a'(m^{2}) - 2mb'(m^{2})$ $\begin{bmatrix} a' = \frac{2}{\beta p^{2}} a(p^{2}) \\ \cdots \end{bmatrix}$ and $b_{CT} = -b(m^2) + 2m^3a'(m^2) + 2m^2b'(m^2)$

-Check that ZR is finite even for \$\$ = m (off-shell fermion): $a(p^2) = a(m^2) + a'(m^2)(p^2 - m^2) + ...$ $b(P^2) = b(m^2) + b'(m^2)(P^2 - m^2) + \cdots$ The point is that 2/2p2 lowers degree of divergence, i.e., a' (m²/, b'(m²/ are finite; divergences contained in $a(m^2)$, $b(m^2)$ and it's easy to see that a(m²), b(m²) cancel between E (loop) & Ect in ZR - Also, with above choice of CT, (divergent) "dressing" of external fermion in on-shell/physical limit can be neglected: tree + 100 p + - x cT

where loop cancels $CT(\not \to m)$, i.e., we get i for external on-shell p-m fermion... \Rightarrow mass of fermion "remains" m (classical value) [but could have chosen finite part of CT differently