Fermion self energy (Σ)

- Summary: recall

has (naive/superficial) $D=1$ (linear divergence), but "symmetry" lowers it to $D=O$ (logarithmic) general argument (valid for all loops) + check by explicit calculation at 1-loop (but no need to use specific regulator, cf. $\pi_{\mu \nu}$, where DIMREG was different than hard cut-off..)
- General argument /based on structure in Dirac space, "chiral" symmetry and Lorentz invariance)
- Note that \sum (appearing in-between two external fermions, even if off-shell) is (4×4) matrix in Dirac space $\Rightarrow \sum$ must be a combination of $\mathbb{1}, \gamma_{\mu}, \sigma_{\mu \nu}, \gamma_{5} \& \gamma_{\mu} \gamma_{5}$ (in general)
- In short, QED is parity-invariant (no γ_{5} in interaction) $\Rightarrow \Sigma$ also can't contain γ_{5} or $\gamma_{\mu} \gamma_{5} \ldots$ so, left with 1, $\gamma_{\mu} \& \sigma_{\mu \nu}$
- Now, Σ is Lorentz scalar: so, must have $\sigma_{\mu v} p^{\mu} p^{\nu}$ (only 4 -vector available is $\left.p^{\mu}\right)=0$ (by anti symmetry of $\sigma_{\mu \nu}$)
- Similarly, $\gamma_{\mu} p^{\mu} \ldots \Rightarrow$

$$
\Sigma(p)=a\left(p^{2}\right) \not p+b\left(p^{2}\right) \pi
$$

\Rightarrow degree of divergence of $a\left(p^{2}\right)$ $=0$ (lower than superficial $=1$ due to presence of external momentum (as per general arguments) -onto, $\sum \ni b\left(p^{2}\right) \mathbb{1}$: "connects ψ_{L} to ψ_{R}, i.e., "violates" chiral symmetry $: \psi_{L} \rightarrow e^{+i \alpha} \psi_{L}$ us. $\psi_{R} \rightarrow e^{-i \alpha^{2}} \psi_{R}$ (ie., opposite transformation for ψ_{L} vs. $\psi_{R} /$ us. EM/gauge symmetry:

$$
\psi_{L, R} \rightarrow e^{-i e Q \theta(x)} \psi_{L, R}\left(\begin{array}{c}
\text { same } \\
\text { transformation } \\
\text { for } L, R
\end{array}\right)
$$

- Is there any term in $\mathcal{L}_{\text {classical }}$ Which violates chiral symmetry? Yes, it's $m \bar{\psi} \psi$
$\Rightarrow b\left(p^{2}\right)$ must be $\propto m$
l Again, if $m \rightarrow 0$, then $\mathcal{L}_{\text {classical }}$ has chiral symmetry; so will Σ, hence $b\left(p^{2}\right)$ must vanish in this limit) \Rightarrow actual degree of divergence of $b\left(p^{2}\right)$ is also lower by 1 than naive, ie., $b\left(p^{2}\right)$ is at "most log-divergent [we must obtain " m " in $b\left(p^{2}\right)$ by expanding fermion propagator $(k>p, m) \sim 1 / k+p / k^{2}+\frac{m}{k^{2}}$ $\Rightarrow 1$ more power of k in denominator] [More "carefully," use dimensional analysis.

$$
\begin{aligned}
& {[\Sigma]=1 \quad \text { (again, roughly "corresponds }} \\
& \text { to" } \bar{\psi} \sum \psi \text { "term" in Lagrangian) } \\
& \Rightarrow\left[b\left(p^{2}\right)\right]=1 \text { and possible } b\left(p^{2}\right) \propto m,
\end{aligned}
$$

but then $b\left(p^{2}\right) \sim m, \Lambda^{>0} \times($ couplings $) \Rightarrow n 0$ power / linear divergence (if [couplings] $\geqslant 0$,ie., renormalizable theory) but $b\left(p^{2}\right) \sim m \log \wedge$ is allowed: indeed
will find this at 1 -loop..

- Note above arguments do not make use of gauge invariance, so are valid for (pure) Yukawa theory as well, ie.,

[Relatedly, we don't need to be so "careful" with DIMREG us hard cut-off here... ...cf. lowering of degree of divergence of $\pi \mu \nu$ (photon self-energy) relied on gauge invariance/ WT identity, so had to use regulator respecting gauge invariance, ie., DIMREG, to make it work... + self-energy of scalar in Yukawa theory not "protected" analogously, ie., $D=2$ remains...]
- Above is valid at all loops: onto more explicit results at one loop
- As usual, schematically first, which will already suggest above structure (even if we didn't know "symmetry "arguments)

$$
\begin{aligned}
& \Sigma \sim \int d^{4} k \frac{1}{k^{2}} \frac{1}{(\not p+k-m)} \\
& \text { (neglect Dirac } \\
& \text { structure) } \\
& \text { expand for } k>p, m \\
& \sim \int d^{4} k \frac{1}{k^{2}}\left(\frac{1}{k}+\frac{p}{k^{2}}+\frac{m}{k^{2}}+\cdots\right) \\
& \text { linear divergence, } \log \text {-divergence in } b\left(p^{2}\right)
\end{aligned}
$$ but odd powers of in $a\left(p^{2}\right)$ k in integrand

$\Rightarrow \int d^{4} k$ expected to vanish (cf. $\pi_{\mu \nu}$ where do not see - at this level how $D=2$-naive quadratic divergence - will be lowered: really have to calculate in detail)

- will check above educated guess explicitly
- Motivation: (i) (again) trust, but verify! No further reduction of divergence, ie., beyond schematic/estimate above
(again, no "extra "principle, cf $\pi \mu \nu$, where quadratic divergence of estimate vanishes in detail: of course, expected from $W T$ identity, but again not seen schematically \cdots);
(ii) more practice;
(iii). relation between (divergence in) \sum and Γ_{μ}, based on garage invariance (or WT identity): we do need to use DIMREG in order to obtain this, even if we can see above structure of \sum by itself without "proper" regularization
- Explicit calculation of $\sum(p)$ at 1-loop details of DIMREG in HW 2.1
Pauli-Villars (pU)regulator, which also preserves gauge invariance, done in LP sec. 12.6.2]
- Focus on getting $a\left(p^{2}\right) b+b\left(p^{2}\right)$ structure
- Using 't Hooft-Feynman gauge for photon propagator, we get $(\operatorname{set} Q=-1)$
 DIMREG
step 1: Use $\gamma^{\mu} \gamma_{\mu}=4$ I

$$
(4-2 \varepsilon)
$$

and $\nu_{\nu} \nu_{\mu} \nu^{\nu}=-2 \nu_{\mu}$ in DIMREG

$$
(-2+\varepsilon)
$$

in DIMREG
("instead" of traces in $\pi \mu \nu$)

$$
\Sigma(p)=i e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{2(p+k)-4 m}{\left[(p+k)^{2}-m^{2}\right] k^{2}}
$$

step (2): Combine denominators using
Feynman parameters

$$
\begin{aligned}
& =i e^{2} \int_{0}^{1} d x \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{2(p+\not p)-4 m}{\left\{x\left[(p+k)^{2}-m^{2}\right]+k^{2}(1-x)\right\}^{2}} \\
& =i e^{2} \int d x \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{2(p+k)-4 m}{\left[k^{2}+2 x k \cdot p+x\left(p^{2}-m^{2}\right)\right]^{2}}
\end{aligned}
$$

step 3: "complete square" in denominator

$$
\begin{aligned}
& \left(k^{\prime}=k+p x\right) \\
& = \\
& i e^{2} \int_{0}^{1} d x \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} \frac{\left[2 k^{\prime}+2 p(1-x)-4 m\right]}{\left[k^{\prime 2}+x(1-x) p^{2}-m^{2} x\right]^{2}}
\end{aligned}
$$

Since denominator has even powers of k^{\prime}, the $1^{\text {st }}$ term (which has naive, linear divergence), having odd power of k^{\prime} in numerator, vanishes upon $\int d^{4} k^{\prime}$ (more clear upon wick rotation), as was guessed schematically earlier.

Whereas, $2^{\text {nd }} \& 3^{\text {rd }}$ terms "match" $a\left(p^{2}\right) \& b\left(p^{2}\right)$ of above expectation (again, with \log divergence $\sim \int d^{4} k^{\prime} /\left[k^{\prime 2}\right]^{2}$)
... see HW 2.1 for DIMREG;
$L P$ sec 12.6 .2 for $P V$.
Counterterms for \sum
Since $\sum(P)=a\left(p^{2}\right) \not p+b_{1}\left(p^{2}\right)$, $\tau_{\text {log -divergent (all loops) }}$)
we can choose

$$
\mathcal{L}_{c T}^{(\Sigma)}=\left(z_{2}-1\right) \bar{\psi}[i \ngtr-(m-\delta m)] \psi
$$

where $Z_{2}, \delta m$ are independent of P [again, same form as $\left.\mathcal{L}_{\text {classical }}=\bar{\psi}\left(i \not \gamma^{\gamma}-m\right) \psi\right]$ - Note, need two coefficients of $C T$ to cancel independent divergences in a, b
\Rightarrow full fermion propagator (classical $+100 \phi+c T$): $=-i /\left[p-m-\Sigma_{R}(p)\right]$, where

$$
\begin{aligned}
& \Sigma_{R}(p) \equiv \sum_{100 p}(p)+\Sigma_{c T}(p), \text { with } \\
& \Sigma_{c T}(p) \equiv a_{c T} p+b_{c T}, \text { where } \\
& \left.a_{c T}=-\left(z_{2}-1\right) \quad \begin{array}{l}
\text { no p dependence } \\
b_{c T}=\left(z_{2}-1\right)(m-\delta m)
\end{array}\right\} \text { here }
\end{aligned}
$$

Choose $a_{C T}, b_{C T}$ /really finite parts) such that for $p \rightarrow m$ (on shell fermion), full propagat or
\rightarrow classical: $-i /(\not p-m)$, i.e.,
$\left.\sum_{R}(p)\right|_{\not p \rightarrow m}$ must be $\sim \theta(\not p-m)^{2}$
$\left[\text { no }(p-m)^{0 \text { or } 1}\right]_{i}$ so that full

$$
\text { propagator }=\frac{-i}{\not p-m} \frac{1}{[1+\theta(\not p-m)]}
$$

(similar to choice of z_{3} for photon giving full propagator $\sim \frac{-i}{k^{2}\left[1+\theta\left(k^{2}\right)\right]}$
\rightarrow classical $\sim 1 / k^{2}$ as $\left.k^{2} \rightarrow 0\right)$
$\Rightarrow a_{C T}, b_{C T}$ obtained by requiring (more in HW1.)

$$
\Sigma_{R} \left\lvert\, p=m=0 \& \underbrace{\left.\frac{\partial}{\partial \not p}\left[\sum_{R}(p)\right]\right|_{\not p=m}=0}_{\text {coefficient of }(\not p-m)^{2}}\right.
$$

in expansion
[meaning of $\partial / \partial \not p$ acting on $\sum_{R}(p)$: just write p^{2} contained in $\Sigma(P)$ as $(\not P \not P)$, so Σ_{R} can be thought of as function of $\not \subset \cdots]$

$$
\begin{gathered}
\Rightarrow a_{c \tau}=-a\left(m^{2}\right)-2 m^{2} a^{\prime}\left(m^{2}\right)-2 m b^{\prime}\left(m^{2}\right) \\
{\left[a^{\prime}=\partial / \partial p^{2} a\left(p^{2}\right) \ldots\right]}
\end{gathered}
$$

and $b_{c T}=-b\left(m^{2}\right)+2 m^{3} a^{\prime}\left(m^{2}\right)+2 m^{2} b^{\prime}\left(m^{2}\right)$

- Check that Σ_{R} is finite even for $\not \subset \neq m$ (off-shell fermion) :

$$
\begin{aligned}
& a\left(p^{2}\right)=a\left(m^{2}\right)+a^{\prime}\left(m^{2}\right)\left(p^{2}-m^{2}\right)+\cdots \\
& b\left(p^{2}\right)=b\left(m^{2}\right)+b^{\prime}\left(m^{2}\right)\left(p^{2}-m^{2}\right)+\cdots
\end{aligned}
$$

The point is that $\partial / \partial p^{2}$ lowers degree of divergence, ie., $a^{\prime}\left(\mathrm{m}^{2}\right), b^{\prime}\left(\mathrm{m}^{2}\right)$ are finite; divergences contained in $a\left(m^{2}\right), b\left(m^{2}\right)$ and it's easy to see that $a\left(\mathrm{~m}^{2}\right), b\left(\mathrm{~m}^{2}\right)$ cancel between $\sum(100 p) \& \Sigma_{C T}$ in Σ_{R}

- Also, with above choice of $C T$, (divergent)"dressing "of external fermion in on-shell/physical limit can be neglected
 tree $+100 p$
where loop cancels CT $(\beta \rightarrow m)$ ie, we get $\frac{i}{\not p-m}$ for external on-shell
fermion... \Rightarrow mass of fermion "remains" m (classical value) [but could have chosen finite part of $C T$ differently]

