(superficial) Degree of divergence (D) of diagram / amplitude

- quickly/generally/systematically determine if diagram is $U V$-divergent or not (again, from $k \rightarrow \infty$ in $\int d^{4} k$ (000) and (if yes) then to what degree (logarithmic, like vertex correction, or power...)
[There are also $1 R$ divergences: $K_{\text {loop }} \rightarrow 0$ or $P_{\text {external }} \rightarrow 0$, ie., (final) soft emissions: see Phys 851 or QFT textbooks (briefly in HW 2.1)]
- following discussion somewhat abstract (mathematical), so to get intuition, just choose example of vertex correction
- Notation first: \& loops; $n_{f, b}$ number of internal fermion/boson lines (since $\sim \frac{1}{k}$ for fermion, $\frac{1}{k^{2}}$ for boson); v_{i} number of times $i^{\text {th }}$-type vertex appears; d_{i} number of derivatives in $2^{\text {th }}$-type vertex
$-Q E D: i=1, d_{1}=O\left(o n l y \psi A_{\mu} \psi e\right)$
\ldots but scalar $Q E D: i=1,2 ; d_{1}=1 ; d_{2}=0$ $\left[\partial_{\mu} \phi A^{\mu} \phi \&\left(\phi A_{\mu}\right)^{2}\right.$: see problem 9.1 of $\left.P S\right]$
- 1-100p vertex correction: $\ell=1$;

$$
n_{b}=1 ; n_{f}=2 ; v_{1}=3
$$

\Rightarrow (Superficial) degree of divergence (D) from counting powers of 100 p momenta in integral (neglect external momenta
-as appropriate - in UV-limit/D 100 p momental

$$
\begin{align*}
& D=4 l-2 n_{b}-1 n_{f}+\sum_{i} v_{i} d_{i} \tag{1}\\
& \left.\uparrow \begin{array}{c}
\uparrow
\end{array}\right] \\
& {\left[\int d^{4} k_{100 p}\right]^{l}\left[\frac{1}{k^{2}}\right]_{100 p}^{n_{b}}\left[\frac{1}{k_{100 p}^{1}}\right]^{n_{f}} \begin{array}{c}
\text { from } \\
{\left[\partial_{\mu} \sim k_{100 p}^{1}\right]}
\end{array}}
\end{align*}
$$

e.g., vertex correction: $D=0(\log$-divergent) [as shown earlier]
$D>0$: power-divergent; $D<0$: finite

- Massage" above D into more convenient form, since it's difficult to quickly determine number of internal lines $\left(n_{b, f}\right)$ for large number of loops (l): in any case, we'd like an all-100p order formula for $D \ldots$
..."expect" $n_{b, f}$, l to be related to
number of external lines (more tractable):
Indeed (pure) "graph theory/math" (see exercise 6.6 of LP) gives

$$
\begin{equation*}
\sum_{i} v_{i}-n_{b}-n_{f}-1=-\ell \tag{2}
\end{equation*}
$$

[sanity check: for 1-loop vertex correction, $\left.v_{1}=3 ; n_{b}=1 ; n_{f}=2 ; l=1\right]$ (More math)

- Also, let f_{i} denote number of fermionic fields involved in $i^{\text {th }}$ type vertex, say, "coming-out" \Rightarrow $v_{i} f_{i}$ fermioniclines from v_{i} of these vertices; $\sum_{i} v_{i} f_{i}$ in total... ...what's "fate" of these fermions: each either becomes external line (whose other end is "dangling") or internal line, whose other end "soaks-up" another fermion emerging from vertex
- So, we have ("matching" of fermionic lines from vertices with internallexternal lines)

$$
\begin{equation*}
E_{f}+2 n_{f}=\sum_{i} v_{i} f_{i} \tag{3}
\end{equation*}
$$

number of external fermions (Again, internal fermion line "uses-up" 1 fermion from vertex, while external needs 2 ...) e.g., 1-100p vertex correction: $v_{1}=3 ; E_{b}=1 ;$

$$
n_{b}=1 ; b_{1}=1 \& E_{f}=2 ; n_{f}=2 ; f_{1}=2
$$

Sonly 1 type of vertex with 2 fermions, 1 boson appearing thrice)

Similarly for bosons,

Combining (1) thru' (4) gives (eliminating $l, n_{b, f}$ in favor of E_{b}, f)

$$
D=4-E_{6}-\frac{3}{2} E_{f}-\sum_{i} v_{i} \delta_{i}
$$

where $\delta_{i}=4-\left(d_{i}+b_{i}+\frac{3}{2} f_{i}\right)$
Back to physics! what's meaning of δ_{i} ? Recall (mass) dimension of bosonic or fermionic field is 1 or $\frac{3}{2}$; each derivative "contributes" $1 .$.
... so, b_{i} / f_{i} bosonic/fermionic fields \& d_{i} derivatives at $i^{\text {th }}$-type vertex add up to $\operatorname{dimension}\left(3 / 2 f_{i}+b_{i}+d_{i}\right)$
Hdimension of coupling constant
= net mass dimension
of term in Lagrangian $=[\mathscr{L}]$

$$
\Rightarrow \delta_{i}=4-\left(d_{i}+b_{i}+\frac{3}{2} f_{i}\right)
$$

is (mass) dimension of $i^{\text {th }}$ type coupling constant
2 cases
(by power-counting)
(1). Renormalizable λ theories: all $\delta_{i} \geqslant 0$ "large" $E_{b, f}$ gives $D<0$ (finite), no matter loop-level (ie., v_{i} number of vertices)
$\Rightarrow D \geqslant 0$ (divergence) only for finite/small number of cases (small $E_{b, f}$)
\Rightarrow In short, tame these by adding CT's (to cancel divergences), but then cant predict these amplitudes (get from data)

- Other amplitudes (convergent), that too a large number of them ("most/infinite": large $E_{b, f}$) can be predicted
- In more detail (still schematic), say $100 p$ contribution to amplitude

$$
\begin{aligned}
& A_{l o o p} \simeq+\log \Lambda_{u v}+x \\
& \text { (fixed, up to } \\
&\text { on } \left.\Lambda_{u v,} \text { eeg. } \sim \sim \frac{1}{\Lambda_{u v}}\right)
\end{aligned}
$$

So, add CT with coefficient, A CT
$=-\log \operatorname{Muv}$ (no choice here,
$+y$ (arbitrary) since must cancel $+\log n_{u u}$ from (loop)
2 sub-cases (same end result)
(i) There exists tree/classical-level term in \mathcal{L} (coefficient z) of same form as CT \Rightarrow total amplitude, $A=z+y_{\uparrow}+x_{\pi}$ tree(free \nearrow arbitrary fixed parameter) arbitrary (loop: $\left.\begin{array}{c}\text { finite as } \\ \text { nov } \rightarrow \infty\end{array}\right)$
\Rightarrow this amplitude is a free parameter (to be gotten from data)
(ii) There is no treelclassical level term of $C T$ form $(z=0)$ \Rightarrow amplitude $=x+y$, still can't
predict...
$e \cdot g_{i}$ Yukawa theory: $\mathscr{L}_{\text {int }}=h \bar{\psi} \psi \phi$, but no ϕ^{4} at treelclassical level
\Rightarrow get ϕ^{4} at loop-level/log-divergent)
$D=0$ due to

$$
\begin{aligned}
& \delta_{1}(\text { of } h)=0 ; \\
& E_{b}=4 ; E_{f}=0
\end{aligned}
$$

$\left(A t\right.$ 1-180p: $\left.\int d^{4} k(1 / k)^{4} \sim \log 1 u v \cdots\right)$
[D independent of v_{i}-given $\delta_{i}=0$, thus loop-number] So, can't predict $\phi \phi \rightarrow \phi \phi \ldots$... but loop-induced ϕ^{6} is convergent:

$$
\begin{aligned}
& D=-2 \text { due to } \\
& \delta_{1}=0 ; E_{b}=6 ; E_{f}=0 \\
& \left.A t 1-100 p, \int d^{4} k\left(\frac{1}{k}\right)^{6}\right] \\
& \Rightarrow \phi \phi \rightarrow \phi \phi \phi \phi \text { or } \phi \phi \phi \rightarrow \phi \phi \phi
\end{aligned}
$$ \ldots can be predicted

(2) (Power-counting) Non-renormalizable if (any) $\delta_{i}<0$ (coupling constant of negative mass dimension) \Rightarrow For every amplitude (no matter what's given E_{b}, f), D "can be made" <0 by choosinglarge enough v_{i} (number of vertices, ie., higher loops) \Rightarrow need to add CT for every amplitude, introducing a free parameter (y), even if no corresponding tree-level term...
... so, even though divergences can be "cancelled", we lose all predictivity
[divergences are unrelated/different
D 's in general, so $1 C T$ is not enough, ie, can't reduce number of free parameters to recover prediction...]
e.g. Fermi theory for weak interactions (return to it for motivating SSB/Higgs mechanism)
$\mathscr{L}_{\text {int }} \sim G_{\text {Fermi) }} \psi^{4} \Rightarrow \delta_{1}\left(o f G_{F}\right)=-2$
... so, ψ^{6} diverges at $1-100 p$:

$D=+1$ due to
$E_{f}=6 ; E_{b}=0 ;$
$v_{1}=3 ; \delta_{1}=-2$
$1-100 p, \int d^{9} k\left(\frac{1}{k}\right)^{3}$
$\left.\sim n_{u v}^{1}\right]$
[D does depend on v_{i}-given $\delta_{i} \neq 0$, thus loop-number] hence can't predict $\psi^{3} \rightarrow \psi^{3}$, even if G_{F} fixed from data

