Ward-Takhashi (WT) identity

- WT identity is diagrammatic (amplitude-level) expression/version of current conservation, in turn, following from gauge invariance

$$
\mathscr{L}=\Psi(i D-m) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

with $D_{\mu}=\partial_{\mu}+i e Q A_{\mu}\left(D=\gamma^{\mu} D_{\mu}\right)$ is invariant under $A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \theta$ and $\psi \rightarrow e^{-i e Q \theta(x)} \psi$ [coupling to photon (A_{μ}) from

$$
\partial_{\mu} \rightarrow \partial_{\mu}+i e Q A_{\mu}
$$

- Notation: -ie $\Gamma_{\mu}(p, p-q)$ is amplitude for full (tree + loop) vertex/3-point function (without counting external (egs/propagators)

$$
\Gamma_{\mu}=\Gamma_{\mu}^{(0)}(t r e e)+\Gamma_{\mu}^{(100 p)}
$$

(tree-level) $\Gamma_{\mu}^{(0)}=Q \gamma_{\mu}$
(Feynman rule is -ie $Q \gamma_{\mu}$ $Q=-1$ for electron; $e>0) \Rightarrow$

$$
q^{\mu} \Gamma_{\mu}^{(0)}(p, p-q)=Q \alpha
$$

photon

$$
=Q[(\not p-m)-(\not p-\not q-m)]
$$

momentum
$=$
$S_{F}^{(0)}=\frac{1}{\not p-m}=\frac{\not p+m}{p^{2}-m^{2}}$ is fermion
propagator (Feynman rule is is $S_{\text {}}$)

- $W T$ identity: above valid at all loops
["remove" (0) superscript]

$$
q^{\mu} \Gamma_{\mu}(p, p-q)=Q\left[S_{F}^{-1}(p)-S_{F}^{-1}(p-q)\right]
$$

- Meaning of each side: Γ_{μ} as above
- iS S_{F} is propagator at all orders

$$
\begin{aligned}
& =\underbrace{\frac{i}{p-m}}_{\text {tree }}+\frac{i}{p-m} \underbrace{\left[-i \sum(p)\right]}_{\substack{\text { fermion is } \\
\text { self-energy }}} \frac{i}{p-m}+\cdots \\
&
\end{aligned}+
$$

1 PI (one particle irreducible) can not be split into 2 by cutting gust 1 line
no tree -Again, -i乏(p) (all loops) is Feynman amplitude for 2-point
fermion function (not counting external line/ propagators)

- will show later: $\Sigma(p) \sim \not \subset+\mathbb{I}$ (as far as Dirac-space structure is concerned: coefficients not shown)
-So, $\Sigma(p)(\sim \not p+\mathbb{1})$
$\frac{1}{\not p-m}=\frac{\not p+m}{p^{2}-m^{2}} \Rightarrow$ sum geometric series (see
$C L \sec 2.1$ or $P S$ sec. 7.1) to give

$$
i S_{F}(\text { tree }+ \text { all loops })=\frac{i}{[p-m-\Sigma(p)]}
$$

$\Rightarrow W T$ identity is really

$$
\begin{aligned}
& q^{\mu}\left[\Gamma_{\mu}^{(0)}+\Gamma_{\mu}^{(100 p)}\right]=Q\{[p-m-\Sigma(p)]- \\
& \text { all orders } \\
& \text { propagators }
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{Q \alpha}-Q[\Sigma(p)-\Sigma(p-q)] \\
\Rightarrow & q^{\mu} \Gamma_{\mu}^{(l o \gamma p)}=-Q[\Sigma(p)-\Sigma(p-q)]
\end{aligned}
$$

WT identity relates loop amplitudes (vertex correction \& fermion self-energy): both being matrices in Dirac space
Physical intuition / implications: not so clear from above form, will show later leads to
(a) photon remaining massless even at loop-level and
(b) electron to proton electric charge ratio $=1$ at loop-level, even
though electron \& proton have different other interactions (eg. strong force)
Proof at one-loop with only QED interaction (without actually computing loops, which are actually divergent!!
$-i \sum^{(1)}(p)$ from 1 matrix in Dirac space

$$
=(-i e Q)^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \nu_{\mu} \frac{i}{(\nmid+k-m)} \gamma_{\nu} i D^{\mu \nu}(k)
$$

photon propagator (depends on gauge fixing parameter ξ)
$-i e \Gamma_{\mu}^{(1)}$ from

$$
\begin{aligned}
& p^{\prime}=p-q \quad(-i e Q)^{3} \times \int \frac{d^{4} k}{(2 \pi)^{4}} i D^{\lambda \rho}(k) \times \\
& =\left(\sum^{\mu} p^{\prime}+k\right. \\
& \gamma_{\lambda} \frac{i}{\left(p^{\prime}+k-m\right)} \gamma_{\mu} \frac{i}{(\mid p+k-m)} \gamma_{\rho}
\end{aligned}
$$

so that $q^{\mu} \Gamma_{\mu}^{(a)}$ (entering ωT identity)

$$
\begin{aligned}
& =(-i e Q)^{2} Q \int \frac{d^{4} k}{(2 \pi)^{4}} i D^{\lambda \rho}(k) x \\
& \gamma_{\lambda} \frac{i}{\left(\not D^{\prime}+k x-m\right)} \underbrace{\left[(\nmid+k-m)-\left(\not p^{\prime}+k-m\right)\right]}_{q^{\mu} \gamma_{\mu}}, x \\
& \frac{i}{(\not p+\not x-m)} \gamma_{\rho} \\
& =(-i e Q)^{2} Q \int \frac{d^{4} k}{(2 \pi)^{4}} i D^{\lambda \rho}(k) x
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{\lambda} i\left[\frac{i}{\left(\not p^{\prime}+k x-m\right)}-\frac{i}{(\not p+k p-m)}\right] \gamma_{p} \\
\Rightarrow & q^{\mu} \Gamma_{\mu}^{(1)}\left(p, p^{\prime}\right)=Q\left\{-\Sigma^{(1)}(p)-\left[-\Sigma^{(1)}\left(p^{\prime}\right)\right]\right\}
\end{aligned}
$$

\ldots which is (loop form of ${ }^{\text {w }}$ T identity
Some comments:
(1) valid for all ξ (gauge fixing)
(2). more general proof from gauge invariance / current conservation
(a) all loops in QED only
(b). other gauge -invariant interactions, $e . g$, add $h \bar{\psi} \psi \phi$ (Yukawa coupling): $\left\{\begin{array}{l}\text { still } \\ \text { photon }\end{array}\right.$ us.
 $\Gamma_{\mu}^{(1)}$ but $\phi 100 p$
(31. Again, gauge invariance (coupling to photon from $\partial_{\mu} \rightarrow \partial_{\mu}+i e Q A \mu$) crucial...
...so, no analogous identity for (pure) Yukawa therrgy, ie., coupling to ϕ : can not relate (at least at all orders)

