spontaneous breaking of continuous [U(1) or abelian] symmetry: gives massless scalar field [Nambu-Goldstone boson $|N G B|$, with derivative -only interactions] - Complex scalar field (us. real for discrete symmetry), $\Phi(x)$ [decompose in to real and imaginary (linear representation) or modulus and phase (radial representation)] with potential only dependent on $\Phi^{+} \Phi$

$$
\mathscr{L}=\left(\partial_{\mu} \Phi^{+}\right)\left(\partial^{\mu} \Phi\right)-\underbrace{\left[\mu^{2} \Phi^{+} \Phi+\lambda\left(\Phi^{+} \Phi\right)^{2}\right]}
$$

$v(\Phi)$ : function of $\Phi^{+} \Phi$ symmetric under $\Phi \rightarrow e^{i \alpha} \Phi$ ( $\alpha$ is constant, ie, space-time independent) As for real scalar (discrete symmetry), start at classical level, choosing $\mu^{2}<0$ $\left(\Phi^{+} \Phi\right)_{\text {classical }}=v^{2} / 2=-\mu^{2} / \lambda$, ie., $\Phi_{\text {classical }}=v / \sqrt{2} e^{i \theta}$, where $\theta$ is arbitrary - modulus of $\Phi$ fixed, but not phase $\Rightarrow$
upon quantization, "expect "one massless particle ("corresponding to" fluctuations along trough: no analog for real scalar) while other is massive / fluctuations along radial direction, kind of like real scalar)


- choice of $\theta$ (phase of VEV) breaks symmetry
- continuous degeneracy of vacuua (parametrized by $\theta$ :all values have same energy)
on to quantum theory: again classical value of $\Phi$ interpreted as $V E V:\langle 0| \Phi|0\rangle=v / \sqrt{2} e^{i \theta}$
- Expand $\Phi$ around (non-zerolUEU/shift field): $\Phi(x)$ [linear representation, more familiar $]$

$$
=\frac{1}{\sqrt{2}}\left\{\left[v+\eta_{l}(x)\right] e^{i \theta}+i \zeta_{l}(x) e^{i \theta}\right\}
$$

linear
with $\langle 0| \eta_{l}(x)|0\rangle=0=\langle 0| \zeta_{l}(x)|0\rangle$ $\eta_{l}(x), \zeta_{l}(x)$ are real fields, orthogonal to each other $\Rightarrow$ expand $\eta_{l}(x), \zeta_{l}(x)$ in terms of different $a, a^{+} / s$

- Rewrite above $\mathcal{L}$ in terms of $\eta_{l}, \zeta_{l}\left(e^{i \theta}\right.$ disappears as expected by $\Phi \rightarrow e^{i \alpha} \Phi$
being symmetry)

$$
\mathscr{L}_{S S B}=\frac{1}{2}\left(\partial^{\mu} \eta_{l}\right)\left(\partial_{\mu} \eta_{l}\right)+\frac{1}{2}\left(\partial^{\mu} \zeta_{l}\right)\left(\partial_{\mu} \zeta_{l}\right)
$$

$-\lambda^{2} v^{2} \eta_{l}^{2}\left(\right.$ no $\left.\left.\zeta_{e}^{2}\right)\right\}$ mass
$\left.-\lambda v \eta_{l}\left(\eta_{l}^{2}+\zeta_{l}^{2}\right)-\frac{\lambda}{4}\left(\eta_{l}^{2}+\zeta_{l}^{2}\right)^{2}\right\} \begin{aligned} & \text { interactions } \\ & \text { seem }\end{aligned}$ non-derivative)
Note characteristics of $\mathscr{L}_{\text {SS }}$ :
(i). $\eta_{e}$ (particles) massive (must be fluctuations in radial direction: more clear using radial representation)
(ii). $\zeta_{e}$ massless / fluctuations along trough)
(iii). processes with odd number of $\eta_{e}$ 's allowed (symmetry broken)
(iv). relations among couplings [cubic (2 types) \& quartic (3 types) in terms of $\lambda, v$ (two parameters)]: "remnant "of symmetry, which will be used later to show $G_{l}$ (but not $\eta_{l}$ ) has effectively derivative interactions
$(v)$. manifestly renormalizable (coupling constants of mass dimension $\geqslant 0$ )

On to radial representation for $\Phi$, which will make features (ii) \& (iv), i.e., Ge massless and derivatively-coupled, "obvious".. ...but (v). renormalizability "obscure"

