$\frac{\text { Apply DD D }}{\text { to } Q E D}=4-E_{b}-\frac{3}{2} E_{f}-\underbrace{\sum v_{i} \delta_{i}}_{0}$
due to $\delta_{1}=[e]=0$

- First, $E_{f}=$ even by charge conservation
- So $E_{f} \neq 0$ starts with $E_{f}=2$
(1). $E_{f}=2 ; E_{b}=0$ (self-energy of electron, denoted by Σ : matrix in Dirac space, but no lorentz index)

-"matches" 1-100p estimate

$$
\frac{\mathrm{rr}_{n}^{2}}{\sim} \sim d^{4} k \frac{1}{k^{2}} \frac{1}{k} \sim n_{u v}^{1}
$$

\ldots...but valid at all loops (D independent of v_{i}-given $\delta_{i}=0$, thus number of loops)

- However, $D=1$ is superficial naive
- Actual degree of divergence is
lowered by 1 to logarithmic... ... explain more later, but due to "symmetry" requiring (potentially) divergent part of $\Sigma \infty$ external momentum, p
-Crucial point: D counts powers of loop momenta "dropping" external momenta in propagators (denominator of 100 p integral) and in derivative coupling (numerator part)
\Rightarrow if we "need" (often due to "symmetry") amplitude \propto external momentum, then must get it from derivative at vertex $\partial_{\mu} \rightarrow \underbrace{k_{\mu} 100 p}_{\text {for } D}, P_{\mu}$ (pick here) Or expanding propagator:

$$
\text { (or) expanding propagator } \frac{1}{(p-k)^{2}} \sim \underbrace{\frac{1}{k^{2}}}_{\text {for } D}+\underbrace{\frac{p}{k^{3}}}_{\begin{array}{c}
\text { "have to" } \\
\text { pick here }
\end{array}}(k \gg)_{\text {external }}
$$

\Rightarrow more power (s) of $100 p$ momentum in propagator/denominator... or less from derivative (vertex)/ numerator
\Rightarrow actual D lowered [will see explicity later, how exactly naive divergence (D) vanishes]
(2) $E_{f}=2, E_{b}=1$: vertex correction, $\Gamma_{\mu}(1000)$ (Dirac space)

$D=O$ (logarithmic divergence)
at all loops
(matches 1 loop estimate)

- actual $D=0$: no symmetry to reduce it (check explicitly at 1 - loop later)
\ldots larger $E_{b}(>1)$ for $E_{f}=2$ or $E_{b}=0$, but $E_{f}=4,6 \ldots$ gives $D<0$ (finite)
\ldots so, left with $E_{f}=0, E_{b} \neq 0$ to hunt for $D \geqslant O$ (divergences) -Now, A_{μ} is odd under charge-conjugation (C): Phys 624(?) or PS Eq. 3.149: $\bar{\psi} \gamma_{\mu} \psi$ is C-odd, so is A_{μ} such that coupling is even
- So, E_{b} must be even
(3). $E_{b}=2$ (again, $E_{f}=0$):
vacuum polarization (see later why this name), denoted by $\pi \mu v$ min n) $D=+2\binom{$ quadratic }{ divergence }
- matches 1 -loop estimate

$$
P \sim \sim \sim \sim \sim d^{4} k\left(\frac{1}{k}\right)^{2} \sim \Lambda_{v v}^{2}
$$

- However actual D lowered by 2
to logarithmic
- General argument: gauge invariance
$\Rightarrow(M$ involving external photons) "x" momentum of external photon $=0 \quad($ see PS sec.7.4)
$\Rightarrow M$ for n external photons only ∞n powers of external momenta [roughly, with no fermions/only photons, term" corresponding to "loop amplitude in Lagrangian \propto $F_{\mu \nu}$ (only gauge-invariant form) for each photon \Rightarrow amplitude \propto each photon momentum]

$$
\Rightarrow \pi_{\mu \nu} \propto\left[P(\text { external) }]^{2}: D\right.
$$

lowered by 2 (will show explicitly (after)
(4). $E_{b}=4\left(E_{f}=0\right): 4$-photon vertex (light-by-light scattering)

$D=O$ (logarithmic divergence)

- matches 1-loop estimate

... but (based on above general claim) actual D lowered by $4 \Rightarrow$ finite - $E_{b}=6,8 \ldots$ gives $D<0$ (finite)... ... done!
- So, 3 divergent amplitudes, but more symmetry (Ward-Takahashi identity relates divergences in Γ_{μ} and $\Sigma \Rightarrow$ in the end, can absorb ∞ into 2 free parameters
e and m, which need to be fitted to data
... then (all) other amplitudes can be predicted, e.g. $2 \rightarrow 2$ scattering of electrons / positrons has

$$
D=-2 \quad\left(E_{f}=4, E_{b}=0\right)
$$

\therefore matches 1-100p estimate:

$$
\begin{aligned}
\sim \int d^{4} k\left(\frac{1}{k^{2}}\right)^{2}\left(\frac{1}{k}\right)^{2} \\
\sim \int d^{4} k / k^{6} \quad \text { (finite) }
\end{aligned}
$$

... but ("flip" side of D being superficial /naive), degree of divergence can be "worse" than D: sub-diagram can be divergent,
even if full diagram is finite $(D<0)$, e.g., another loop contribution to 4 -fermion amplitude

$$
D=-2 \text { (as above) }
$$

However, sub-diagram divergence is "taken care of" at earlier stage of program, so same "cure" works now...

Next topic: ward-Takahashi $(W T)$ identity
Motivation : aid calculation of $\pi_{\mu \nu}$ (showing photon remains massless even at 100p-level); by relating divergences in $\Gamma_{\mu}(100 p) \& \sum$, it will show that ratio of charges of electron \& proton remains (-11 even at loop-level (even though proton has strong interactions, while electron does not)

