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Spontaneously Broken
Global Symmetries

Much of the physics of this century has been built on principles of
symmetry: first the spacetime symmetries of Einstein’s 1905 special theory
of relativity, and then internal symmetries, such as the approximate SU(2)
isospin symmetry of the 1930s. It was therefore exciting when in the
1960s it was discovered that there are more internal symmetries than
could be guessed by inspection of the spectrum of elementary particles.
There are exact or approximate symmetries of the underlying theory that
are ‘spontaneously broken, in the sense that they are/not]realized as
symmetry transformations of the physical states of the theory, and in

particular dof{not/leave the vacuum state invariant. The breakthrough was
the discovery of a broken approximate global SU(2) x SU(2) symmetry of
the strong interactions, which will be discussed in detail in Section 19.3.
This was soon followed by the discovery of an exact but spontaneously
broken local SU(2) x U(1) symmetry of the weak and electromagnetic
interactions, which will be taken up along with more general broken local
symmetries in Chapter 21. In this chapter we shall begin with a general
discussion of broken global symmetries, and then move on to physical
examples,

19.1 Degenerate Vacua

We do not have to look far for examples of spontaneous symmetry
breaking. Consider a chair. The equations governing the atoms of the
chair are rotationally symmetric, but a solution of these equations, the
actual chair, has a definite orientation in space. Here we will be concerned
not so much with the breaking of symmetries by objects like chairs, but
rather with the symmetry breaking in the ground state of any realistic
quantum field theory, the vacuum.

A spontaneously broken symmetry in field theory is always associated
with a_degeneracy of vacuum states. For instance, consider a symmetry
transformation of the action, and of the measure used in integrating over
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164 19 Spontaneously Broken Global Symmetries

fields, that acts linearly on a set of scalar fields dn(x):

Du(x) = $(x) = Y Lynpm(x). (19.1.1)

(The ¢, need not be elementary fields; they can be composite objects, like
PLap.) As we saw in Section 16.4, the quantum effective action I'[¢] will
then have' the same symmetry

I'l¢] =T[Lg]. (19.1.2)

For the vacuum the expectation value of ¢(x) must be at a minimum of
the vacuum energy —I'[¢], say at ¢(x) = ¢ (a constant). But if L} #+ &,
then this vacuum is not unique; —I'[¢] has the same value at ¢=Lpasit
does at ¢. In the simple special case where the symmetry transformation
(19.1.1) is a reflection, ¢ — —¢, if —I'(¢) has a minimum at a non-zero
value ¢ of ¢, then it has two minima, at ¢ and —@, each corresponding
to a state of broken symmetry.

We are(not) yet ready to conclude that in such cases the symmetry
is broken, “because hv'"i;“gw’“?'lave@E\yst ruled out the possibility that the
true vacuum is a linear superposition of vacuum states in which ¢,, has
various expectation values, which would respect the assumed symmetry.
For instance, in a theory with a symmetry ¢ — ~@, even if I'(¢) has a
minimum for some non-zero value ¢ of ¢, how do we know that the true
vacuum is one of the states [VAC, +) for which @ has expectation values ¢
and —¢, and not some linear combination like [VAC, +) + [VAC, —) that
would respect the symmetry under ¢ — —g? The assumed symmetry under
the transformation ¢ — —¢ tells us that the vacuum matrix elements of

the Hamiltonian are

(VAC, +|H|VAC, +) = (VAC, —|H[VAC, —-)=a
(with a real) and

(VAC, +H|VAC, —) = (VAC, ~|H|VAC, +)=b,

(with b real), so the eigenstates of the Hamiltonian are [VAC,+) +
[VAC, —), with energies a + |bl. These energy eigenstates are invariant
(or invariant up to a sign) under the symmetry ¢ — —¢. In fact, the
same issue also arises for/chairs] The quantum mechanical ground state
of an isolated chair is actually rotationally invariant; it is a state with
zero angular momentum quantum numbers, and hence with no definite
orientation in space.

Spontaneous symmetry breaking actually occurs only for idealized sys-
tems that are infinitely large. The appearance of broken symmetry for a
chair atises because it has a macroscopic moment of inertia I, so that
its ground state is part of a tower of rotationally excited states whose -
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energies are separated by only tiny amounts, of order #2/I. This gives
the state vector of the chair an exquisite sensitivity to external perturba-
tions; even very weak external fields will shift the energy by much more
than the energy difference of these rotational levels. In consequence, any
rotationally asymmetric external field will cause the ground state or any
other state of the chair with definite angular momentum numbers rapidly
to develop components with other angular momentum quantum numbers.
The states of the chair that are relatively stable with respect to small
external perturbations are not those with definite angular momentum
quantum numbers, but rather those with a definite orientation, in which
the rotational symmetry of the underlying theory is broken,

For the vacuum also, the possibility of spontaneous symmetry breaking
is again related to the large size of the system, specificaily to the large
volume of space. In the above example of a reflection symmetry, the off-
diagonal matrix element b of the Hamiltonian involves an integration over
field configurations that tunnel from the minimum at ¢ = ¢ to the one at

¢ = —¢, so it is smaller than the diagonal matrix element a by a barrier

penetration factor that for a spatial volume ¥ is of the form exp(—C¥"),
where C is a positive constant’ depending on the microscopic parameters
of the theory. The two energy eigenstates [VAC, +) + |[VAC, —) are thus
essentially degenerate for any macroscopic volume, and so are strongly
mixed by any perturbation that is an odd functional of ¢. Even if such a
perturbation H” is very weak, its diagonal clements (VAC, £+|H'|VAC, +)
will differ by much more than the exponentially suppressed off-diagonal

elements of either H or the perturbation. Thus the vacuum eigenstates

of the perturbed Hamiltonian will be very close to either one of the
broken symmetry states |VAC, +) which diagonalize the perturbation,
and not to the invariant states [VAC, +) + [VAC,—). Which one of the
states {[VAC, ) is the true vacuum for very small perturbations? This
depends on the perturbation, but since these two states are related by a
symmetry transformation of the otiginal Hamiltonian, it doesn’t matter;
if the perturbation is sufficiently small, no observer will be able to tell the
difference.

The vanishing of matrix elements between vacuum states with different
field expectation values becomes exact in a space of infinite volume.! For
infinite volume, a general vacuum state [v) may be defined as a state with

—_—
* For instance, by analogy with the classic wave mechanical problem of barrier
penetration, for a Lagrangian density of the form —~§a#¢ai‘¢ — V{(¢), -we have
C= f:; VZV($}dp. We will not bother to calculate the ofi-diagonal matrix el-

ement b here, because we shall soon give a general argument that shows that it
vanishes for infinite volume,




19 Spontaneously Broken Global Symmetries

Zero moﬁlentum
Pjp) =0 (19.1.3)

for which this is a discrete momentum eigenvalue. (This excludes single-
particle or multiparticle states, for which the momentum value zero is
always part of a continuum of momentum values in a space of infinite
volume.) In general there may be a number of such states. They can
usually be expanded in a discrete set, and our notation will treat them as
if they were discrete. They will be chosen to be orthonormal

{ulp) = Ouv - (19.1.4)

Any matrix element of a product of local Hermitian operators at equal
times between these states may be expressed as a sum over states:

(uAG) BO)) = 3 (WlAO)w) (vIBO)o)
+ [ @0 AN (N pIBOW™, (1915
. h

where |N,p) are a set of orthonormalized continuum states of definite
three-momentum p that together with the |v) span the whole physical
Hilbert space. (Here N may include continuous as well as discrete labels.
Also, we are dropping time arguments.) We assume without proof that
because the |N,p) belong to the continuous spectrum of the momentum
operator P, the dependence of matrix elements on p is smooth enough
(that is, Lebesgue integrable) to allow the use of the Riemann-Lebesgue
theorem,? so that the integral over p vanishes as |x| — co. In this limit, we

have then

(u}A(x) B(0){v) l;l:; ;(uIA(O)Iw) {(w|B(O)}v) . (19.1.6)
Likewise,

{u|B(0) A(x)iv) oo Xw:(UEB(G)IW) (WIAO)v) . (19.1.7)

But causality tells us that the equal-time commutator [A(x), B(0)] vanishes
for x # 0 (see Section 5.1), s0 the matrix elements (19.1.6) and (19.1.7) are..
equal, and thus the Hermitian matrices (u]4(0)}v), {ulB(O)|v), etc., must all -
commute with one another. It follows that they can all be simultaneously
diagonalized. Changing if necessary to this basis, we have then for every
Hermitian local operator A(x) of the theory

(Wl A(O)lo) = b @ (19.18

with a, a real number, the expectation value of 4 in the state [v). :S
for infinite volume any Hamiltonian constructed from local operators Wit
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We now specialize to the case of a spontaneously broken continuous
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have vanishing matrix elements between the different vacua [v). In the
absence of off-diagonal terms in the Hamiltonian, any two jo)s connected
by a symmetry operation will be degenerate. A symmetry-breaking per-
turbation built out of such local operators will be diagonal in the same
basis, and will therefore yield a ground state that is one of the |v)s, rather
than a linear combination of them,

It is reassuring that the vacuum states |v) which are stable against
small field-dependent perturbations are also vacuum states in which the
cluster decomposition condition (see Chapter 4) is satisfied. This principle
requires that for the physical vacuum state [VAC)

(VACIA(x)B(0)]VAC) —(VACJA(X)[VAC) (VACIB(0)|VAC) . (19.19)

This condition is satisfied if we take the vacuum state [VAC) to be any
one of the states [v) in the basis defined by Eq. (19.1.8), but not if we take
it to be a general linear combination of several of the |v)s.

19.2 Goldstone Bosons

symmetry. In this case there is a theorem, that (with one important
exception, to be considered in Chapter 21) the spectrum of physical
particles must contain one particle of zero mass and spin for each broken
symmetry. Such particles, known as Goldstone bosons (or Nambu—
Goldstone bosons) were first encountered in specific models by Goldstone?
and Nambu*; two general proofs of their existence were then given by
Goldstone, Salam, and myself> This section will present both of these
proofs, and then go on to consider the properties of the Goldstone
bosons.

Suppose that the action and measure are invariant under a continu-
ous symmetry, under which a set of Hermitian scalar fields ¢,(x) (either
elementary or composite) are subjected to the linear infinitesimal trans-
formations

Gul(x) = $ulx) + i€ D tunPm(x), (19.2.1)

with it,, a finite real matrix. As we found in Section 16.4, the effective
action is then also invariant under this transformation

Z / ;i[(‘ﬁ L () dx =0 (19.22)

We shall specialize to the case of a translationally invariant theory with
constant fields ¢,, where as we saw in Section 16.2, the effective action




