
Chapter 4

Probing the Internal Structure of the

Proton

The protons and neutrons are the basic building blocks of atomic nuclei. The internal structure of
the nucleons determines their fundamental properties, which in turn directly affect the properties of
the nuclei. Understanding how the nucleon is built in terms of underlying quark and gluon degrees
of freedom is one of most important and challenging questions in modern nuclear physics. In the
last chapter, we discussed a simple quark model for the structure of the nucleon. This model,
however, is rather crude and must be tested against more extensive and accurate experimental
data. Eventually, we hope to get a picture of the nucleon based on QCD theory.

The structure of the nucleon can be studied by scattering electrons (and also muons), in a
similar way that the structure of condensed matter or atoms can be studied through scattering of
X-rays, neutrons, and electrons. There are two basic reasons why the electromagnetic interaction
is a good tool for taking a “picture” of the nucleon:

• QED is a “known” interaction

• αem = 1
137 ⇒ perturbation theory is valid.

So we have a well-defined interaction for our probe and a systematic calculational scheme for
computing the results of experiments.

Electrons, being common charged particles, can easily be accelerated in well-defined monoener-
getic beams and accurately detected using magnetic spectrometers and standard particle detection
techniques. This technique offers superior control over the kinematic properties of the exchanged
virtual photon that probes the hadronic system.

There are two types of scattering which are most useful in studying the nucleon. First is elastic
scattering in which the final state of the nucleon remains the same, but with a finite recoil. In this
case, the scattering cross section allows one to map out the charge and density distributions inside
the nucleon. The second type is the deep-inelastic scattering (DIS) in which a quark in a nucleon
gets knocked out by the virtual photon, and the proton gets smashed into many fragments. This
process allows one to extract the quark and gluon distributions in momentum space or Feynman
parton distributions. In the past few decades, both processes have taught us a great deal about
the structure of the nucleon and are still in use in laboratories around the world.
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60 CHAPTER 4. PROBING THE INTERNAL STRUCTURE OF THE PROTON

4.1 Elastic Electron-Nucleon Scattering

Elastic e−-N scattering is depicted in terms of a Feynman diagram in Fig. 4.1, where the dominant
one-photon exchange interaction is shown. The incident and outgoing electrons have 4-momenta
k = (E,~k) and k′ = (E′, ~k′), and the initial and final nucleon 4-momenta are P and P ′, respectively.
We are interested in the electrons with energy much larger than their rest mass. The 4-momentum
of the virtual photon is

q = k − k′ = P ′ − P . (4.1)

The invariant mass of the photon is q2 = −4EE′ sin2 θ/2, which is always negative (or space-like
by definition). This means that we can always find a frame in which the energy transfer q0 ≡ ν = 0
and q2 = −~q2 ≡ −Q2. [The so-called Breit frame is such a frame]. The elastic scattering condition
in the lab frame gives,

(P ′)2 = (P + q)2 = M2 (4.2)

= M2 + 2P · q + q2 (4.3)

= M2 + 2Mν + q2 (4.4)

Therefore, 2Mν = Q2.

k

qk’ P’

P

Figure 4.1: Elastic scattering between charged lepton and proton through one photon exchange
interaction.

Experimentally, one arranges a mono-energetic beam of electrons incident on a nucleon target,
and detects the outgoing electrons (spectrum of energies E′) at some scattered angle θ. Thus, the
incident and scattered momenta of the electrons fix all components of the 4-vector q. Since for a
given θ there is only one allowed energy loss ν = E −E′, the spectrum of ν is just a delta function
at ν = −q2/2M corresponding to the scattered energy E′ = E/(1 + 2E

M
sin2 θ

2).

The physical observables characterizing compositeness are form factors, which enter the elastic
scattering cross section. In condensed matter physics, it is also the form factors (or structure factors)
that are probed X-ray or electron scattering which, roughly speaking, are the Fourier transformation
of some density distributions. In atomic physics, the form factor of the hydrogen atom is the Fourier
transformation of the charge density. In fact, many 3-dimensional image reconstructions are done
from the inverse Fourier transformation of a certain scattering cross section.

Let us consider the scattering cross section in one-photon exchange, and seek connection to
the proton compositeness. If the electron-photon vertex is −ieγµ, the electon proton vertex is
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ie〈P ′|Jµ|P 〉. The S-matrix element then reads

S = (2π)4δ4(k + P − P ′ − k′)u(k′)(−ieγµ)u(k)
−i
q2

〈P ′|(ie)Jµ|P 〉

= −i(2π)4δ4(k + P − P ′ − k′)M . (4.5)

where M is called invariant amplitude. The electromagnetic current is,

Jµ(ξ) =
∑

i

eiψi(ξ)γ
µψi(ξ) (4.6)

where i sums over all quark flavors: up, down, strange, charm, beauty, and top. The first three
quarks are light compared with the mass of the nucleon and are mostly what we will consider in
this course. The heavier quarks are ignored because they are heavy and play relatively minor role.

In terms of the invariant amplitude, the elastic scattering cross section reads

dσ =
1

2k02P 0|v1 − v| (2π)4δ4(k + P − P ′ − k′)|Mfi|2
∏

f

d3pf

2Ef (2π)3
, (4.7)

where v1 is the electron velocity, v is the initial nucleon velocity, and 2k02P 0|v1 − v| is in-
variant when boosted along the z-direction. We can write it in the following invariant form
4I = 4

√

(k · P )2 −m2M2. The last factor is the phase space whose form is closely related to
the normalization we choose. In the laboratory frame, k = E, P 0 = M , and we can integrate over
the proton momentum by writing the phase factor as 2πδ(P ′2 −M2)d4P ′/(2π)4 to obtain

dσ =
1

2ME
|M|22πδ((q + P )2 −M2)

d3~k′

2E′(2π)3
. (4.8)

Integrating over E′ = |~k|′, we obtain

dσ =
E′

2EM2

1

1 + 2E
M

sin2 θ
2

|M|2 dΩ

(2π)2
. (4.9)

where the recoil factor is

frec =
1

1 + 2E
M

sin2 θ
2

, (4.10)

which reduces to unity if the particle is infinitely heavy.
The invariant amplitude squared is

|M|2 =
e4

Q4
ℓµν〈P |Jν |P ′〉〈P ′|Jµ|P 〉 , (4.11)

where ℓµν is the lepton tensor,

ℓµν = u(k′)γµu(k)u(k)γνu(k′) (4.12)

For unpolarized scattering, we average over the initial polarization and sum over the final polar-
ization states to obtain

ℓµν = 2
(

k′
µ
kν + k′

ν
kµ − gµνk′ · k

)

. (4.13)
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The hadron tensor W µν = 〈P |Jν |P ′〉〈P ′|Jµ|P 〉 depends on the current matrix element on which
we now focus.

The matrix element of the current between the nucleon states defines two form factors,

〈P ′|Jµ(0)|P 〉 = U(P ′)

[

F1(Q
2)γµ + F2(Q

2)
iσµνqν
2M

]

U(P ) (4.14)

F1(Q
2) is called the Dirac form factor and F2(Q

2) is the Pauli form factor. As we shall see later, it
is physically more interesting to introduce the so-called Sachs electric and magnetic form factors,

GE(Q2) = F1(Q
2) − τF2(Q

2)

F2(Q
2) = F1(Q

2) + F2(Q
2) . (4.15)

where τ = Q2/4M2.

The hadron tensor now becomes

W µν = 2(P ′µP ν + P ′νPµ − gµν(PP ′ −M2))G2
M

−2F2GM (P + P ′)µ(P + P ′)ν

+F 2
2

M2 + P · P ′

2M2
(P + P ′)µ(P + P ′)ν

= (−qµqν + gµνq2)G2
M + (P + P ′)µ(P + P ′)ν

G2
E + τG2

M

1 + τ

= gµνq2G2
M + 4PµP νG

2
E + τG2

M

1 + τ
+ ... (4.16)

where the ellipses denote terms involving factors of qµ which does not contribute to the cross section
because of the current conservation.

Contract the lepton and hadron tensors, and recall that the both tensors are symmetric and
conserved, qµℓµν = qµWµν = 0. In the lab frame, the elastic scattering cross section becomes

dσ

dΩ
= σMott

[

G2
E(Q2) + τG2

M (Q2)

1 + τ
+ 2τG2

M tan2 θ

2

]

, (4.17)

where the Mott scattering cross section represents the scattering of the electron from a point-like
scalar proton

σMott =
Z2α2 cos2 θ

2

4E2 sin4 θ
2

frec (4.18)

If the proton were structureless, then GE = GM = 1. We obtain a cross section

dσ

dΩ
= σMott

[

1 + 2τ tan2 θ

2

]

. (4.19)

Any observed deviation from this is a clear indication of nucleon substructure.

The cross section can be rewritten as

dσ

dΩ
=
σMott

1 + τ

[

G2
E(Q2) +

τ

ǫ
G2

M (Q2)

]

, (4.20)
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where ǫ−1 = 1+(1+τ)2 tan θ/2 is the virtual photon longitudinal polarization. To extract separately
the electric and magnetic form factors from elastic scattering, one must measure two cross sections
at fixed Q2 by varying the scattering angle and hence ǫ. When plotting the quantity in the square
bracket versus the quantity ǫ−1, the intercept and slope provide separately the electric and magnetic
form factors. This is called Rosenbluth separation method. However, at high-Q2, the magnetic
form factor contribution is much larger, the electric form factor is difficult to extract with this
method. We will come to this point later.

4.2 Physics of the Form Factors and Experimental Data

If the nucleon is very heavy, M → ∞, the momentum and position eigen-states are the same.
The initial and final state nucleons are fixed at the same location, never moved during the scat-
tering, although the external photon brings in some momentum change, Q2 << M2. Thus, we
may consider the initial and final states to consist of the same internal state. In this case, the
interpretation of form factors is just like the case of condensed matter or atomic physics, and the
Fourier transformation of the form factors is just the density distributions.

However, the nucleon mass is finite, and the nucleon recoil effect becomes important in its
interpretation. The initial and final state nucleon wave functions are not sampled in the same
frame and hence there is a relative Lorentz contraction. There is no known model-independent
way to separate the internal structure effects from the recoil kinematical effects, although many
model approaches have been suggested in the literature. To minimize this effect, one may consider
the scattering in the Breit frame in which the initial and final state nucleons have momenta with
the same magnitude, hence similar Lorentz contraction effect. Let us consider the virtual photon
absorption cross sections in this special frame.

Given the photon momentum qµ, the longitudinal polarization vector (time-like) is

ǫµL = (q3, 0, 0, q0)/Q , (4.21)

which satisfies the condition that q · ǫ = 0. [This condition is necessary in the Lorentz gauge where
∂µA

µ = 0.] In the Breit frame, the polarization vector becomes ǫµL = (1, 0, 0, 0). We find then the
charge density matrix element

ǫµL〈P ′|Jµ|P 〉 = 〈P ′|J0|P 〉

= U(P ′)

[

[F1(Q
2) + F2(Q

2)]γ0 − EP

M
F2(Q

2)

]

U(P ) . (4.22)

It is easy to show that U(P ′)γ0U(P ) = 2M and U(P ′)U(P ) = 2EP . Thus,

ǫµL〈P ′|Jµ|P 〉 = 2M

[

F1(Q
2) − P 2

M2
F2(Q

2)

]

= 2M

[

F1(Q
2) − Q2

4M2
F2(Q

2)

]

= 2MGE(Q2) . (4.23)

so we arrive at the Sachs electric form factor as the matrix element of the electric charge density
in the Breit frame (q0 = 0). Then GE(Q2) may be interpreted as the Fourier transformation of the
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charge distribution. If we expand it at small Q2,

∫

ei~q~rρ(r)d3r =

∫

(1 − i~q~r − 1

2
(~q~r)2 + ..)ρ(r)d3r

= Qe −
1

6
q2
∫

r2ρ(r)d3r + ...

= Qe −
1

6
q2〈r2〉 + ... (4.24)

Then

GE(Q2) = Qe −
1

6
Q2〈r2〉 + ... . (4.25)

Therefore, we define the charge radius of the nucleon as

〈r2〉 = −6
dGE(Q2)

dQ2

∣

∣

∣

∣

∣

Q2=0

. (4.26)

Other definitions of charge radius are certainly possible, but this is the most common one.
The transverse polarization vector is given by

ǫµT (λ = ±1) = ∓(0, 1,±i, 0)/
√

2 . (4.27)

Therefore we have

ǫµT (σ = 1)〈P ′sz = 1/2|Jµ|Psz = −1/2〉 = U(P ′)γµǫµ(σ = 1)U(P )[F1(Q
2) + F2(Q

2)]

= −Q/
√

2GM (Q2) . (4.28)

where GM (Q2) = F1+F2 is the Sachs magnetic form factor. The polarization vector selects Jx+iJy

components of the current. Since it is the helicity amplitudes which appear directly in the cross
section, the magnetic form factor is always suppressed and enhanced with a factor of Q, at small
and large Q. According to the above, QGM (Q2) is the Fourier transformation of the transverse
current distribution in a polarized proton in the Breit frame.

One can calculate the magnetic moment from the form factors without the effect of the recoil.
The definition of the magnetic moment is

µ(2~S) = 〈PS|1
2

∫

d3~r~r ×~j|PS〉 . (4.29)

A somewhat lengthy calculation using the form factor equation yields that,

µ = F1(0) + F2(0) . (4.30)

in the basic unit of eh̄/2mc. Since F1(0) = 1 for proton and 0 for the neutron, F2(0) is called the
anomalous magnetic moment of the nucleon.

The proton electric and magnetic form factors were first measured at former SLAC in the mid
1950’s by R. Hofstadter and collaborators, who won Nobel prize in 1961 for ”discovering the internal
structure in the protons and neutrons”. In these experiments, electrons with energies of several
hundred MeV were scattered on nucleon targets. By comparing the scattering cross sections with
that of the point-like proton, Hofstadter found that the nucleon is a diffusely extended object.
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The proton’s electric form factor has been measured now to Q2 ∼ 5 GeV2. Because of its
small contribution to the cross section at large Q2, the Rosenbluth separation yielded controversial
results. More recently, the recoil polarization technique has been employed to obtain more reliable
measurements of Gp

E . When the scattering electron is longitudinally polarized, the recoil proton has
polarization in the scattering plane. The polarizations transverse and parallel to the momentum of
the nucleon are given by

I0Pt = −2
√

τ(1 + τ)GEGM tan θ/2

I0Pl =
E + E′

M

√

τ(1 + τ)G2
M tan2 θ/2 (4.31)

where I0 = G2
E + τ/ǫG2

M . By forming the ratio of the polarizations, one obtains

GE

GM
= −Pt

Pl

E + E′

2M
tan

θ

2
(4.32)

which can be used to extract GE .
The proton magnetic form factor has been measured up to Q2=30 GeV2. The magnetic moment

of the proton was first measured by O. Stern in 1930’s. He was awarded Nobel prize for the
measurement. The latest number is µP = 2.792847337(29)µN .
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Figure 4.2: Experimental data on the electric and magnetic form factors of the nucleon.

Since there is no free neutron target, one must use either deuteron or 3He as a target, selecting
the so-called quasi-elastic scattering kinematic in the sense that it is similar to just a scattering off
a moving neutron. The best measurements are obtained using polarization observables to separate
the electric and magnetic form factors. One can either use a polarized d or 3He target, scatter a
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polarized electron beam, and observe the so-called double spin asymmetry. Another method is to
scattering a polarized electron and measure the neutron polarization. Gn

E measurements have been
carried out up to about 1.5 GeV2. By scattering thermal neutrons from the stationary electrons in
solids, one finds the neutron charge radius is

〈r2c 〉n = −0.116 fm2 . (4.33)

The Foldy contribution to the charge radius 3κ/2M2 is almost entirely the contribution of the
charge radius. This might be just some numerical coincidence.

The neutron magnetic form factor has been measured up to Q2 of 10 GeV2, using deuteron tar-
gets. More precise measurements using polarized beams and targets have been performed recently,
and more polarization experiments at higher Q2 are planned.

A recent compilation of experimental data for the electric and magnetic form factors of the
nucleon are shown in Figure 4.2. At low Q2 < 1 GeV/c2, useful approximate expressions for Gp

E ,
Gp

M , and Gn
M are given by a phenomenological parametrization known as the “dipole” form factors:

Gp
E(Q2) = Gp

M (Q2)/µp (4.34)

= Gn
M (Q2)/µn (4.35)

=
1

(

1 +Q2/Q2
0

)2 ≡ GD (4.36)

where Q2
0 = 0.71 GeV2. The neutron electric form factor Gn

E is well described by the so-called
“Galster” formula:

Gn
E(Q2) =

1.91τ

1 + 5.6τ
GD . (4.37)

These approximations are useful if one just needs to get a qualitative picture.

4.3 Strangeness and Electroweak Form Factors

Although the nucleons have no net strangeness, the nucleon does have a “sea” of qq̄ pairs. The
charm quarks and heavier quarks are not expected to be present in appreciable amount due to the
large masses that need to be created. However, the light sea quarks (including the strange quarks)
will be present and represent an interesting aspect of nucleon structure beyond the simple quark
models. The sea of gluons and qq̄ pairs are present as internal dynamical degrees of freedom in
the valence quarks used in the quark models, and are responsible for the heavy mass of the objects
considered in the quark models. The s̄s pairs in the nucleon can contribute to the electromagnetic
form factors, and this contribution can be studied by measuring neutral weak form factors and
combining the results with the well-known electromagnetic form factors.

If we use ψ to represent a column of u,d,s quarks, then we can define the octet vector current,

V µ
a = ψγµλ

a

2
ψ . (4.38)

If quark masses are not zero, only the diagonal current is conserved since the divergences of the
nondiagonal currents are proportional to the quark masses. When the quark masses are small,
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we can approximately consider them as conserved. The electromagnetic current is then just the
following combination

Jµ
EM = V µ

3 +
2√
3
V µ

8 . (4.39)

where V µ
3 = 1/2(uγµu−dγµd) and V µ

8 = (1/2
√

3)(uγµu+dγµd−2dγµd). In terms of isospin group
SU(2), the V µ

3 is a isovector current and V µ
8 is an isoscalar electromagnetic current. Because of

the isospin symmetry, the isoscalar current has the same matrix element between the neutron and
proton state, where as the isovector current has matrix elements with opposite signs. Therefore,
defining the isoscalar and isovector electromagnetic form factors, we have

Gp(Q2) = GT=1(Q2) +GT=0(Q2) ,

Gn(Q2) = −GT=1(Q2) +GT=0(Q2) . (4.40)

Or inversely,

GT=1(Q2) = (Gp(Q2) −Gn(Q2))/2 ,

GT=0(Q2) = (Gp(Q2) +Gn(Q2))/2 . (4.41)

The matrix elements of the proton and neutron allow one to extract the matrix elements of the
isovector and isoscalar vector currents in the proton states, which in term, allow determination of
two combinations of the matrix elements of up, down, and strange quark currents in the proton.

To completely determine the matrix elements of all quarks, one needs an additional combination.
We introduce the SU(3) flavor singlet λ0 =

√

2/3 I operator (where I is the identity matrix) and
define the associated flavor singlet current. The photon does not couple to this current but the
weakly interaction neutral gauge boson Z does.

In the standard model, the quark interacts with the neutral Z boson via

L = − g

4 cos θW

∑

i

ψiγ
µ(gi

V − gi
Aγ5)ψiZµ (4.42)

where the vector and axial vector coupling is

gi
V = 2(t3L(i) − 2qi sin

2 θW )

gi
A = 2t3L(i) . (4.43)

At tree level, one has GF /
√

2 = g2/8M2
W . Therefore, the Z-boson not only interacts with the vector

currents of quarks and leptons, but also interacts with the axial vector currents. The quark vector
current is

Jµ
Z =

(

1 − 8

3
sin2 θW

)

uγµu−
(

1 − 4

3
sin2 θW

)

dγµd

−
(

1 − 4

3
sin2 θW

)

sγµs (4.44)

whereas the axial current is given by

Aµ
Z = uγµγ5u− dγµγ5d− sγµγ5s . (4.45)
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One can also define the quark axial currents with flavor structure similar to the vector currents.
Consider now the interaction between the electron and the proton, not only there is a photon

exchange but also a Z-boson exchange. At low energy, the Z-boson exchange is very small but can
be studied using parity-violation in the scattering of longitudinally polarized electrons.

Suppose the incident electron is polarized in the helicity-1/2 state. Then the cross section will
have a correlation ~Se ·~k where ~Se is the polarization and ~k is the momentum of the electron. Under
parity transformation, the above is a pseudo-scalar. Since the Z-boson violates parity, the above
correlation is allowed. If so, one can flip the spin of the electron, find a difference in the scattering
cross section. This is termed the left-right asymmetry.

The S-matrix for the Z exchange is

S = (2π)4δ4(k + P − P ′ − k′)u(k′)

(

−i g

2 cos θW

)

γµ(ge
V − ge

Aγ5)u(k)

× −i
q2 −M2

Z

(

−i g

2 cos θW

)

〈P ′|Jµ
Z |P 〉

= −i(2π)4δ(k + P − k′ − P ′)
g2

16 cos2 θW

1

M2
Z

u(k′)(ge
V − ge

Aγ5)u(k)〈P ′|Jµ
Z |P 〉 . (4.46)

Therefore the invariant amplitude including the photon exchange reads,

M = − e2

Q2
u(k′)γµu(k)〈P ′|Jµ|P 〉 −

GF

2
√

2
u(k′)(ge

V − ge
Aγ5)u(k)〈P ′|Jµ

Z |P 〉 . (4.47)

We can square this amplitude to obtain

|M|2 =
e2GF

2
√

2Q2
ℓµνHµν . (4.48)

Let us first calculate the lepton tensor. We are only interested in the spin-dependent part of the
tensor,

ℓµν =
1

2
Tr[γµ 6k′γν)(ge

V − ge
Aγ5)(1 + λγ5) 6k]

= 2λ[ge
V ǫ

µναβk′αkβ − ge
A(k′

µ
kν + k′

ν
kµ − gµνk · k′)] (4.49)

Because ge
V ∼ 1 − 4 sin2 θW ∼ 0, the electron’s neutral current coupling is almost entirely ax-

ial. Therefore we can approximate the lepton tensor by just the axial part, which is symmetric.
Therefore, let us just consider the symmetric part of the hadron tensor,

Hµν = (−qµqν + gµνq2)Gγ
MGZ

M + (P + P ′)µ(P + P ′)ν
Gγ

EG
Z
E + τGγ

MG
Z
M

1 + τ
(4.50)

From this we can calculate the asymmetry as,

A =

[

−GFQ
2

8
√

2πα

]

· (AE +AM +AA) (4.51)

where the three terms AE ∼ Gγ
EG

Z
E ,

AM =
ǫGγ

EG
Z
E + τGγ

EG
Z
M

ǫ(Gγ
E)2 + τ(Gγ

E)2
(4.52)
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For an order of magnitude estimate,

A ∼ 10−4Q2 (4.53)

Therefore the experiment is very challenging.

Figure 4.3: Experimental constraints on the strange electric and magnetic form factors of the
nucleon at Q2 = 0.1 GeV/c2.

From the expression for the vector electroweak currents, we can find the strange quark matrix
elements,

Gs
EM = (1 − 4 sin2 θ2

W )Gγ,p
EM −Gγ,n

EM −GZ,p
EM (4.54)

The strange quark contribution to the magnetic moment of the proton is

µs = Gs
M (Q2) (4.55)

Since the nucleon has no net strangeness, Gs
M (0) = 0. However, one can define a strange quark

radius as

r2s = −6
dGs

E(Q2)

dQ2
. (4.56)

The first experiment to study strange form factors with this method was the SAMPLE exper-
iment, performed at the MIT-Bates linear accelerator. The measurements surprisingly favored a
positive result for the strange magnetic form factor Gs

M . This result has been confirmed by subse-
quent experiments at other laboratories, and the present constraints on Gs

M and Gs
E are shown in

Figure 4.3.

4.4 Deep Inelastic Scattering and Parton Model

One way to study the structure of a composite system is to knock out the fundamental constituents
and study their energy-momentum distribution. For example, consider the electron in a hydrogen
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atom. If one strikes it with some momentum transfer q, by measuring its final momentum ~k′,
one can figure out the initial momentum ~k. The cross section will tell us the electron momentum
distribution n(k). Another example—in a quantum liquid, like liquid 4He, the atoms distribute in
different momentum states according to n(k), and there is presumably a considerable accumulation
of particles at k = 0 (Bose-Einstein condensation). Through neutron scattering, one can measure
this distribution. A third example—quasi-elastic electron scattering on a nucleus made of neutrons
and protons. The scattering electron knocks out a proton or a neutron through exchange of a
high-momentum photon.

If there are quarks inside the proton, it would be very useful to know their distributions in
momentum space. One way to learn this is to scatter highly virtual photons off the quarks in the
proton and measure the distribution. This is called deep-inelastic scattering (DIS), first performed
by Friedmann, Kendall, and Tylor et al at Stanford Linear Accelerator Center (SLAC). However,
since the quarks cannot exist in isolation, it is a bit tricky to interpret the experiment data.

Let us introduce some terminology first. Consider electron scattering on a proton producing a
final state |X〉. Using one photon exchange approximation, the S-matrix is

S = (2π)4δ4(k + P − P ′ − k′)u(k′)(−ieγµ)u(k) × −i
q2

〈X|(ie)Jµ|P 〉 , (4.57)

where X is any hadronic final state. The corresponding inclusive cross section is

dσ

dΩdE
=
α2

Q4

E′

E
ℓµνW

µν , (4.58)

where Q2 = (k′ − k)2 and the hadron tensor is

Wµν =
1

4π

∑

X

〈P |Jµ|X〉〈X|Jν |P 〉(2π)4δ4(P + q − PX) (4.59)

Since the final states are summed over, the W tensor depends only on the initial nucleon momen-
tum P and the photon momentum q. According to Lorentz symmetry, parity and time reversal
invariance, and current conservation, one can express it in terms of two invariant tensors,

Wµν = W1

(

−gµν +
qµqν

q2

)

+
W2

M2

(

Pµ − qµ (P · q)
q2

)(

P ν − qν (P · q)
q2

)

(4.60)

W1 and W2 are functions of two Lorentz scalars, Q2 and ν.
The early SLAC data indicates that if W1 and W2 are plotted as a function of x = Q2/2Mν,

they are nearly independent of Q2! This behavior is called Bjorken scaling. If x is fixed Q2 → ∞,
this is called the Bjorken limit.

To explain Bjorken scaling, Feynman introduced the so-called parton model in which the nucleon
is made of non-interacting partons (quarks), and in DIS, the photon scatters off these free partons.
Partons can be any particles with no internal structure. Of course the partons must be interacting
because otherwise the nucleon will fall apart. To understand why the partons can be viewed as
free in DIS, one can consider a frame in which the nucleon is moving very fast, say, with the speed
of light. Suppose the typical interaction time-scale in the proton is τ , in the moving frame, the
interaction time becomes τγ, where γ = 1/

√
1 − v2 is Lorentz dilation factor. When the speed the

proton v approach that of the speed of light 1, the interaction time in the proton is so long that



4.4. DEEP INELASTIC SCATTERING AND PARTON MODEL 71

proton configuration can be considered essentially frozen. Alternatively, in the rest frame of the
proton, the photon interaction time is of order 1/Q, which is much shorter than the typical hadronic
interaction time which is order 1/ΛQCD. Therefore, the physics of scattering can be separated from
the bound state physics, and the partons can be considered as essentially free during scattering.
This is called factorization in QCD.

Let us calculate the hadronic tensor by summing over scattering on partons

W µν =

∫

dxF

xF
f(xF )wµν , (4.61)

where xFP is the longitudinal momentum carried by a parton. f(xF ) is the parton density. wµν is
the hadron tensor for a single quark. Taking into account the antiquark contribution,

W µν = − 1

4π
Im

∫

dxTr

[

γµ x 6p+ 6q
(xp+ q)2 + iǫ

γν 6pf1(x)

]

+ crossing . (4.62)

After doing the trace, we have,

W µν =
1

2ν
(f1(xB) − f1(−xB))(2xBp

µpν + pµqν + pνqµ − gµνν) . (4.63)

where −f1(−xB) is the anti-parton contribution f̄(xB). Comparing this with the definition of the
structure functions,

W1 =
1

2

∑

i

e2i [f
i
1(xB) + f̄ i

1(xB)] ,

W2 =
M

ν
xB

∑

i

e2i [f
i
1(xB) + f̄ i

1(xB)] . (4.64)

where we have restored the summation over quark flavors and included the weight of quark charges.
Define the scaling functions,

F1(xB) = W1 =
1

2

∑

i

e2i [f
i
1(xB) + f̄ i

1(xB)] ,

F2(xB) =
ν

M
W2 = xB

∑

i

e2i [f
i
1(xB) + f̄ i

1(xB)] , (4.65)

We immediately have the celebrated Callan-Gross relation,

F2(xB) = 2xBF1(xB) . (4.66)

Two comments are in order. First, the scaling functions in the impulse approximation depend
only on xB, not on Q2. Therefore, the parton model explains the scaling naturally. Second, in
the above derivation no assumptions are made about the quark interactions before scattering. In
fact, the same result will be obtained if partons are assumed to be off-shell due to initial state
interactions. Therefore Feynman’s parton model is only a model for the scattering process, not for
the internal dynamics of the nucleon.

Deep-inelastic scattering (electron, muon, neutrino) is one of the most important processes to
probe the Feynman momentum distributions of quarks and gluons. There are other hard scattering
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processes from which one can learn these distributions as well. For example, the Drell-Yan process
in which hadron-hadron scattering producing a lepton pair through quark and antiquark annihi-
lation; Direct photon production, heavy-quark production etc. In the past 30 years, thousands of
experimental data have been accumulated; and one can make very general parameterizations of
these distributions and fit the parameters to the experimental data. The result is a set of phe-
nomenological parton distributions which has been very useful to characterize the structure of the
nucleon and to calculate production of new particles in hadron collisions. The well-known parton
distribution sets include CTEQ (USA), GRV (Germany), and MRS (England) distributions.

What one has learn about the nucleon structure through high-energy scattering? First of all, one
learn there are indeed 2 up valence quarks and 1 down quark, with electric charge 2/3 and -1/3 of
the proton, respectively. Second, the number of quarks is infinite because the integration

∫

q(x)dx
does not seem to converge. This is because there are infinite number of quark and antiquark pairs
in the proton. Finally, the gluons have been found to play very important role in the nucleon
structure. In fact, by forming the integral

∫

dxxq(x), one can find the fraction of the nucleon
momentum carried by quarks. The experimental data indicate that this is only about 50% or so.
The missing momentum must be carried by the gluons. Therefore the charge-neutral gluons play
extremely important role in determining the structure of the nucleon.

4.5 Physics of Parton Distributions

In order to develop some intuition for the physical meaning of the structure function F2(x), we
consider some simple toy models of a nucleon. These are illustrated in the set of diagrams and
graphs in Figure 4.4. We first note that for a point nucleon that is simply a single quark, F2 is just
a delta function at x = 1 (all the momentum is carried by one object). For a nucleon consisting
of three quarks at rest (in the nucleon rest frame), each would carry 1/3 of the momentum in the
infinite momentum frame, and F2 would then be a delta function at x = 1/3. For three interacting
quarks, we expect a smeared out distribution peaked in the region x ≃ 1/3. Finally, for the case
of three interacting quarks plus a “sea” of quark-antiquark pairs we expect that the low x region
would become populated by soft pairs. (When a quark emits a quark-antiquark pair, all three
resulting particles have lower x than the original quark.)

In QCD, the parton distributions can be expressed as the matrix elements of non-local quark
operators. The moments of parton distributions can be calculated in lattice QCD. The nucleon
models, such as NR quark model and MIT bag model, can be used to calculate the distribution.

The structure functions of the neutron and proton have been studied in great detail and much
is known about them. We summarize some of the more important properties here. Let’s begin by
writing out F2 for both nucleons assuming only up and down quarks are present. (One can include
strange quarks, but we omit them here for simplicity. Quantitatively, the up and down quarks
dominate the structure functions.) To simplify the notation we define the up and down momentum
fraction distributions as

u(x) ≡ fu(x) (4.67)

d(x) ≡ fd(x) (4.68)

and similarly for the antiquarks. Then we can write the structure functions as follows.

F p
2 (x) = x

{

4

9
[up(x) + ūp(x)] +

1

9
[dp(x) + d̄p(x)]

}

(4.69)
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x

(x)
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single quark

x1

x1/3
3 quarks at rest

3 interacting quarks

with sea quarks

x

Model for Proton

Figure 4.4: Simple nucleon models to illustrate the behavior of the deep inelastic structure functions.

Fn
2 (x) = x

{

4

9
[un(x) + ūn(x)] +

1

9
[dn(x) + d̄n(x)]

}

(4.70)

Under isospin flip, u↔ d and n↔ p. Therefore, we have

Fn
2 (x) = x

{

4

9
[dp(x) + d̄p(x)] +

1

9
[up(x) + ūp(x)]

}

(4.71)

or, defining u(x) ≡ up(x), d(x) ≡ dp(x)

F p
2 = x

[

4

9
(u+ ū) +

1

9
(d+ d̄)

]

(4.72)

Fn
2 = x

[

4

9
(d+ d̄) +

1

9
(u+ ū)

]

(4.73)

where we have suppressed writing the x-dependence of the functions u and d.
Note that, based on this expression, we expect the inequality 1

4 ≤ F n

2

F
p

2

≤ 4 to hold. This is well

satisfied by the experimental data as shown in Fig. 4.5 In the region at low x≪ 1, the “sea” of q̄q
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Figure 4.5: Data for Fn
2 /F

p
2 vs. x.

pairs dominates the structure function and one observes
F n

2

F
p

2

→ 1. At higher x → 1, the “valence”

quarks dominate and we find
F n

2

F
p

2

→ 1/4 since u(x) > d(x) in the proton (there are 2 valence up

quarks vs. only one valence down quark).

In addition to rather direct observation of the quark structure by measuring F1,2, it is possible
to obtain evidence of the existence of a sea of gluons in the nucleon. The gluons carry a signifi-
cant fraction of the momentum of the nucleon (in the infinite momentum frame used to analyze
deep inelastic scattering) which affects a “momentum sum rule” that indicates the fraction of the
momentum carried by the quarks. For scattering from an isoscalar nucleus (like deuterium) we
define

FN
2 (x) ≡ 1

2
(F p

2 + Fn
2 ) (4.74)

=
5

18
x[u(x) + ū(x) + d(x) + d̄(x)] (4.75)

and so
18

5

∫ 1

0
FN

2 (x)dx =

∫ 1

0
x
∑

i

fi(x)dx. (4.76)

Thus one can measure the sum of the momentum fractions of all the quarks (including antiquarks)
via this integral. If there were no other significant constituents then the above integral should be
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unity. However, experimentally we observe

18

5

∫ 1

0
FN

2 (x)dx = 0.50 ± 0.05 , (4.77)

a value much less than one. This observation is consistent with about 1
2 of the nucleon momentum

being carried by the gluons.

Figure 4.6: Experimental data for the structure function F2(x) for the proton at various values of
x vs. the squared momentum transfer Q2.

This interpretation is also supported by the observed mild Q2 dependence of F2 (shown in
Figure 4.6) due to radiation of gluons by quarks. At finite q2 there are corrections to the simple
parton picture we have developed, and the number of gluons and sea quarks becomes dependent
upon the spatial resolution of the virtual photon. At lower Q2, the larger spatial region probed
by the lower resolution virtual photon effectively contains additional gluons and q̄q pairs. These
become resolved at higher Q2 with the result that there are effectively more partons (quarks,
antiquarks, and gluons) carrying the momentum of the nucleon at higher Q2. Since the total of
the momentum fractions must sum to unity, each parton carries, on average, lower x at higher Q2.
This leads to the correction for “scaling violation” where the observed structure functions increase
with Q2 at lower x (due to the greater abundance of soft partons), but decrease with Q2 at higher
x (to keep the total momentum sum fixed).
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The parton splitting process can be described by the splitting function Pij. Using QCD per-
turbation theory, one can calculate them. Once we know these functions, one can calculate the
evolution of the quark density as a function of Q2,

dq(x,Q2)

d lnQ2
=
αs

2π

[
∫ 1

x
Pqq

(

x

y

)

q(y,Q2)dy +

∫ 1

x
Pqg

(

x

y

)

g(y,Q2)dy(4.78)

This evolution has been tested to high precision.

4.6 Quark Spin Structure of the Nucleon

The constituent quarks considered in the quark models (Chapter 3) of the nucleon are massive
(∼MP /3) objects with the same spin, charge, and magnetic properties of the massless objects that
we observe in deep inelastic scattering. While these quark model objects might be related to the
degrees of freedom observed in deep inelastic scattering, they are not identical and this confusion
has even been the source of what is commonly called the “proton spin crisis”.

includegraphics[width=5.in]critical.ps
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Figure 4.7: Diagram in the Breit frame illustrating how helicity conservation leads to sensitivity of
polarized virtual photon amplitudes to the spin structure of the quarks.

The spin of the quarks can be probed in polarized deep-inelastic scattering, in which the lepton
and target proton are both polarized along the scattering axis. The polarized electron exchanges a
polarized virtual photon (its momentum is almost collinear with that of the initial electron) with
the target. Helicity conservation implies that the virtual γ inherits some of the incident lepton
helicity, and so we have a virtual γ with some net helicity. Consider the absorption of a very
high energy polarized γ on a quark of definite helicity. Recall that for a massless fermion, the
electromagnetic interaction will conserve helicity. As shown in Figure 4.7, a + helicity quark can
only absorb a + helicity photon. Similarly, a − helicity quark can only absorb a − helicity photon.

Then it is easy to see that by studying the difference under reversal of photon helicity (or
equivalently reversing the proton spin), we determine the probability that the struck quark has the
same helicity as the incident lepton for a fixed spin orientation of the proton. In particular, the
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cross section difference
∆σ = σ++ − σ+− (4.79)

is proportional to the combination of polarized momentum fraction distributions (“spin structure
functions”):

∆ ∝ 1

2

∑

i

e2i

(

q+i (x) − q−i (x)
)

≡ g1(x) (4.80)

where q
+(−)
i is defined to be the momentum fraction distribution for quark spin parallel (antipar-

allel) to the nucleon spin.
Suppose the nucleon target is polarized with a spin vector S, then the hadron tensor W µν will

contain terms depending on S. In fact, there are two such terms,

W [µν] = −iǫµναβqα
[

G1(ν,Q
2)Sβ/M

2 +G2(ν,Q
2)(SβνM − PβS · q)/M4

]

. (4.81)

In the Bjorken limit, we obtain two scaling functions,

g1(x,Q
2) =

(

ν

M

)

G1(ν,Q
2) → g1(x) ,

g2(x,Q
2) =

(

ν

M

)2

G2(ν,Q
2) → g2(x) , (4.82)

which are non-vanishing. The structure function g1 is extracted from the measured asymmetries
of the scattering cross section as the beam or target spin is reversed. These asymmetries are
measured with longitudinally polarized beams and longitudinally (A||) and transversely (A⊥) po-

larized targets. We define the differences ∆qi(x) ≡
(

q+i (x) − q−i (x)
)

, and we expect the measured

“asymmetry” to be

A =

∑

i e
2
i ∆qi(x)

∑

i e
2
i qi(x)

=
g1(x)

F1(x)
. (4.83)

Thus, by measurement of this asymmetry one can determine experimental values for the spin
dependent structure function g1(x).

By integrating over x, one forms the proton and neutron integrals

Ip =

∫ 1

0
gp
1(x)dx =

1

2

(

4

9
∆u+

1

9
∆d

)

(4.84)

In =
1

2

(

1

9
∆u+

4

9
∆d

)

(4.85)

where we have defined the integrals

∆u ≡
∫

∆u(x) dx (4.86)

∆d ≡
∫

∆d(x) dx . (4.87)

Now, it seems reasonable (at least as a rough estimate) to ignore the antiquarks and take the
simple quark model values

∆u =
4

3
; ∆d = −1

3
(4.88)
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which can be obtained from the quark model wave function and the expressions

∆u =

〈

ψp

∣

∣

∣

∣

∣

∑

i

[

t̂3(i) +
1

2

]

σz(i)

∣

∣

∣

∣

∣

ψp

〉

(4.89)

∆d =

〈

ψp

∣

∣

∣

∣

∣

∑

i

[

−t̂3(i) +
1

2

]

σz(i)

∣

∣

∣

∣

∣

ψp

〉

. (4.90)

Note that we have already utilized these matrix elements in our magnetic moment calculation

µp = ∆uµu + ∆dµd (4.91)

=
4

3
µu − 1

3
µd (4.92)

and that the fraction of the proton spin carried by the quarks is (∆µ+ ∆d) = 1. These values for
∆u and ∆d yield the predictions

Ip =
5

18
∼= 0.28 (4.93)

In = 0 (4.94)

Experimentally, one finds the results

Ip ∼= 0.13 (4.95)

In ∼= −0.03 (4.96)

where the neutron value is indeed small (as expected) but the proton value is very much smaller
than predicted by the simplest quark model.

A more careful analysis, including the possible contribution from strange quark-antiquark pairs,
can be written as follows:

Ip =

∫ 1

0
gp
1(x)dx =

1

2

(

4

9
∆u+

1

9
∆d+

1

9
∆s

)

(4.97)

In =
1

2

(

1

9
∆u+

4

9
∆d+

1

9
∆s

)

(4.98)

Ip − In =
1

6
(∆u− ∆d) =

1

6
gA (4.99)

where gA is a constant from neutron β decay n → p + e− + ν̄e . To understand why the above
equation is true, one can use the isospin symmetry to rewrite the neutron-proton matrix element
in terms of the proton matrix element alone,

〈P |uγµγ5u− dγµγ5d|P 〉 = gAU(p)γµγU(p) (4.100)

From this equation, it appears that the matrix element uγµγ5u is related to the the fraction of the
spin carried by the quark. Indeed, if the proton is polarized in the z-direction, it can be shown that
γ0γ3γ5 is related to Σz, the spin operator for a Dirac particle. The spin operator of a relativistic
particle is

~S = ψ†Σ

2
ψ (4.101)
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where ~Σ is a non-relativistic generalization of the Pauli matrices

~Σ =

(

~σ 0
0 ~σ

)

. (4.102)

If we consider the matrix element of the spin operator in the nucleon state at rest, then

〈PS|~S|PS〉 = ∆ψ~s . (4.103)

where ~s is the spin polarization vector of the nucleon in the rest frame. ∆ψ is then the fraction of
the nculeon spin carried by the quark spin.

According to our discussion in the previous chapter, we also know the combination

∆u+ ∆d− 2∆s (4.104)

from Σ and Λ beta decay (using SU(3) symmetry). g8 = ∆u+ ∆d− 2∆s. Experimentally, one has
g8 = 0.67. Therefore, measurement of Ip or In allows one to solve for ∆u,∆d, and ∆s separately.

The experimental result for the spin carried by the quarks can be summarized as follows:

∆u+ ∆d+ ∆s = 0.30 ± .03 . (4.105)

This is still much smaller than the value close to unity one expects in a simple quark model. More
careful use of the quark model including relativistic effects gives lower predictions of about 2/3 for
this sum, but still it appears that much of the nucleon spin does not reside in the quark helicity.

It is important to distinguish these quarks studied in deep inelastic scattering from the quark
model objects. The “constituent quarks” in the quark model are effective objects with complicated
internal structure involving gluons and quark-antiquark pairs. The use of these simple degrees
of freedom hides their complex substructure, which is in fact probed in deep inelastic scattering.
These gluons and q̄q pairs which are not explicit degrees of freedom in the simple quark model can
carry some of the spin (and momentum!) of the nucleon. However, they are counted as part of the
constituent quark in the simple quark model.

The question is where is the remainder of the proton spin? First of all, there is the quark orbital
angular momentum. Then there is the gluon contribution because the gluons are found to carry
about 50% of the momentum of the nucleon. So one can write

1/2 = Jq + Jg . (4.106)

with Jq = ∆Σ/2 + Lq. However, the separation is scale dependent (µ). One can show that in the
large scale limit, the gluon can carry as much as 50% angular momentum of the nucleon.

On the other hand, the quark orbital angular momentum can be measured through the so-called
deeply virtual Compton scattering. Deeply-virtual Compton scattering is a process in which a high-
energy, virtual photon strikes a quark in the proton, the quark immediately radiates a photon and
returns to the proton to form a recoil proton. In the process, one measures the so-called generalized
parton distribution, which is in fact, related to the quantum phase-phase Wigner distribution.

We know that form factors describe the spatial distributions of charge and current, and the
parton distributions measured in DIS describe the momentum space distribution. A more com-
plete information is a combined coordinate and momentum space distribution, which is a Wigner
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distribution. Consider a one-dimensional quantum mechanical system with wave function ψ(x).
One can define a phase space distribution

W (x, p) =

∫

dξeiξpψ∗(x− ξ/2)ψ(x + ξ/2) . (4.107)

After integrating over p, one gets a coordinate space density distribution. After integrating over
x, one gets a momentum space density distribution. In general, we have a quantum phase space
distribution. Deeply-virtual Compton scattering measures such a distribution which combines the
form factors and Feynman parton distribution information.

4.7 Problems

1. In elastic electron scattering, calculate the cross section in terms of electric and magnet form
factor GE and GM .
2. Derive the magnetic moment in term of the form factors of the electromagnetic current.
3. Work out the structure function W1 and W2 in parton model, as shown in Eqs. (4.64)
4. Calculate the cross section asymmetry ∆σ in polarized DIS in terms of the scaling function
g1(x) and g2(x).
5. Calculate ∆u and ∆d in MIT bag model.


