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Solutions to delayed midterm exam

1. I’ll do it in the simplest way, without using tables. Write the nucleon and pion

multiplets as |p〉 = |1/2, 1/2〉, |n〉 = |1/2,−1/2〉 and

|π+〉 = |1, 1〉, |π0〉 = |1, 0〉, |π−〉 = |1,−1〉. Construct isospin generators for each of

these multiplets so that the generators obey [I+, I−] = 2I3, etc., not Georgi’s

normalization. Then, for the nucleon multiplet,

I+ = p†n, I− = n†p, I3 = (1/2)(p†p− n†n). For the pion multiplet, obviously

I3 = π+†π+ − π−†π−. Try I+ = απ+†π+ + βπ0†π− and, of course, I− = I†+. Find α

and β that make the generators obey the CR above. Can choose α = β =
√

2.

Start with the highest weight in |3/2, 3/2〉 = |π+p〉. Use

I− = I−(π)× 1 + 1× I−(N) to lower the state; then normalize it. Keep doing this

to generate all the I = 3/2 states. The results, including the |3/2, 3/2〉 which we

already chose, are

|3/2, 3/2〉 = |π+p〉,
|3/2, 1/2〉 = (1/

√
3)[
√

2|π0p〉+ |π+n〉],
|3/2,−1/2〉 = (1/

√
3)[|π−p〉+

√
2|π0n〉],

|3/2, 3/2〉 = |π−n〉.
Next construct |1/2, 1/2〉 to be orthogonal to |3/2, 1/2〉, and lower it with I− to

find

|1/2, 1/2〉 = (1/
√

3)[−|π0p〉+
√

2|π+n〉],
|1/2,−1/2〉 = (1/

√
3)[−√2|π−p〉+ |π0n〉].

Now solve for the various initial and final states,

|π+p〉 = |3/2, 3/2〉,
|π0p〉 = (1/

√
3)[
√

2|3/2, 1/2〉 − |1/2, 1/2〉],
|π+n〉 = (1/

√
3)[|3/2, 1/2〉+

√
2|1/2, 1/2〉],

|π−p〉 = (1/
√

3)[|3/2,−1/2〉 − √2|1/2,−1/2〉],
|π0n〉 = (1/

√
3)[
√

2|3/2, 1/2〉+ |1/2, 1/2〉],
|π−n〉 = |3/2,−3/2〉.
The scattering amplitudes are independent of I3 since the scattering conserves

isospin, i.e., the transition operator is an isospin singlet. Then the amplitudes are

〈π+p|T |π+p〉 = T (3/2),



〈π0p|T |π0p〉 = (1/3)[2T (3/2) + T (1/2)],

〈π0p|T |π+n〉 = (
√

2/3)[T (3/2)− T (1/2)],

〈π−p|T |π−p〉 = (1/3)[T (3/2) + 2T (1/2)],

〈π−p|T |π0n〉 = (
√

2/3)[T (3/2)− T (1/2)].

〈π−n|T |π−n〉 = T (3/2),

The cross sections are the absolute squares of these, ignoring phase space, which is

about the same for all of them.

2. (a) With one quix, and some number of light quarks we have to find enough

light quarks to make a 6∗ which can couple with the quix to form a color singlet.

All reps are color reps here. We have

3× 3 = 6 + 3∗ = (2) + (1, 1), (1)

3× 3× 3 = 10 + 2(8) + 1 = (3) + 2(2, 1) + (1, 1, 1), (2)

3× 3× 3× 3 = 15b + 3(15a) + 2(6∗) + 3(1) = (4) + 3(3, 1) + 2(2, 2) + 3(2, 1, 1) (3)

The notation here is that a Young pattern (a, b, c, · · ·) has a boxes in the first row,

b boxes in the second row, c boxes in the third row, etc. The first time we get a 6c

is in qqqq, so the simplest color-singlet state of a quix and quarks is Qqqqq.

We need the 6∗ to bind with the quix to make a color singlet. To find the SU(6)fs,

that is flavor-spin, content that goes with an antisymmetric combination of quarks,

we treat the quark as an SU(18) object that reduces as

SU(18) → SU(6)fs × S(3)c; 18 → (6, 3). (4)

With a quark as an 18 we must find the antisymmetric four-quark states in the

3060, (1, 1, 1, 1) state of SU(18). This takes a bit of work.

18× 18 = 171 + 153 = (2) + (1, 1) (5)

153× 18 = 1938 + 816 = (2, 1) + (1, 1, 1) (6)

816× 18 = 11628 + 3060 = (2, 1, 1) + (1, 1, 1, 1) (7)

Now we want to find the SU(6)fs reps that go with the antisymmetric 3060 of

SU(18). We use the reduction SU(18) → SU(6)fs × SU(3)c. We find

18 → (6, 3) = ((1), (1)) (8)
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153 → (21, 3∗) = ((2), (1, 1)) (9)

816 → (70, 8)+(56, 1)+(20, 10) = ((2, 1), (2, 1))+((3), (1, 1, 1))+((1, 1, 1), (3)) (10)

3060 = (210, 3) + (105, 6∗) + (105, 15a) + (15, 15b) =

((3, 1), (2, 1, 1)) + ((2, 2), (2, 2)) + ((2, 1, 1), (3, 1)) + ((1, 1, 1, 1), (4)) (11)

Since we want the 6∗ for the color, we want the 105 for the flavor and spin.

We have to reduce SU(6)fs → SU(3)f × SU(2)s. We find

105 → (15b, 1) + (15a, 3) + (6∗, 5) + (6∗, 1) + (3, 3). (12)

We should now decompose the SU(3)f multiplets into SU(2)I , Y multiplets. I

won’t do this in detail, but just note that since the SU(2)s reps 5, 3, 1 occur there

will be particles of spins 2, 1, 0. The 15b of SU(3)fs will have (2I + 1, Y ) reps from

(1,−7/3) up to (5, 5/3).

(b) The simplest color-singlet state of a quix and antiquarks is Qq̄q̄. We need the

antisymmetric part,

(18∗ × 18∗)anti = 153∗ (13)

We decompose

153∗ → (21∗, 3∗) + (15∗, 6∗) (14)

Since we want the 6∗ of color, we need the 15∗ of flavor-spin.

15∗ → (6∗, 1) + (3, 3) (15)

under SU(6)fs → SU(3)f × SU(2)s. The 6∗ has spin 0 particles with the quantum

nos. of symmetric combinations of d̄d̄, d̄ū, ūū, with isospin 1, d̄s̄, ūs̄, with isospin

1/2, and s̄s̄ with isospin 0. The 3 has particles of spin 1 with the quantum nos. of

antisymmetric combinations of d̄ū of isospin 0 and d̄s̄, ūs̄ of isospin 1.

(c) In color,

3× 3 = 6 + 3∗ (16)

3× 3× 3∗ = 15a + 6∗ + 2(3) (17)

We want the 6∗.
Next we need SU(18) reps,

(18× 18)anti = 153 = (1, 1) (18)
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(18× 18)anti × 18∗ = 2736 + 18 = (18, 1) + (17, 2) (19)

where here the notation refers to columns rather than rows. Next we decompose

into SU(6)fs) × SU(3)c.

(18× 18)anti × 18∗ → (120 + 6, 6∗ + 3) + (84 + 6, 15a + 3) (20)

We want the 6∗ of color, so the SU(6)fs reps are 6 and 120. I will forgo their

decomposition into SU(3)f × SU(s)s, etc.

(d) The decays depend on details of the interactions. The simplest case is where a

particle can just fall apart; i.e. where the state contains an ordinary baryon with

the correct color structure. For a baryon that would require having (1, 1, 1) as an

antisymmetric color singlet. The only state with three or more quarks is the

Qqqqq, but this has the quarks in (2, 2), so it can’t decay. Thus none of these

states can decay to baryons. The state Qqq̄ could contain the qq̄ in a color singlet,

but then the remaining state would be Qq which is not a color singlet. So none of

the states can fall apart into color singlets.

3. (a) [a2, Λ2][a1, Λ1] = [a2 + Λ2a1, Λ2Λ1].

(b) [0, 1].

(c) [−Λ−1a, Λ−1].

(d) The set associated by conjugation with [0, Λ] is [a1−Λ1ΛΛ−1
1 a1, Λ1ΛΛ−1

1 ] which

is not in the subgroup {[0, Λ]}, so [0, Λ] is not an invariant subgroup. The set

associated with [a, 1] is [a1, Λ1][a, 1][a1, Λ]−1 = [Λ1a, 1] which is in the subgroup

{[a, 1]}, so [a, 1] is an invariant subgroup, since the left and right cosets are the

same.

e. We map the coset [a1, Λ1][a, 1] = [a1 + Λ1a, Λ1] to the element Λ1, so

SO(n, 1)/[a, 1] ∼= SO(n)

4. Since the SU(3)c has to be antisymmetric to be a singlet, we can take the three

quarks in an s-state to be in a symmetric state in SU(6)fs. So we need

6× 6 = 21 + 15 = (2) + (11) (21)

15× 5 = 70 + 56 = (2, 1) + (3) (22)
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We need the symmetric 56 which decomposes under SU(6)fs → SU(3)f × SU(2)s

as

6 → (3, 2) (23)

(3, 2)× (3, 2) → [(6, 3) + (3∗, 1)]sym + [(6, 1) + (3∗, 3)]anti (24)

[(6, 3)+(3∗, 1)]sym×(3, 2) → [(10, 4)+(8, 2)]sym +[10, 2)+(8, 4)+(8, 2)+(1, 2)]mixed

(25)

Thus

56 → [(10, 4) + (8, 2)] (26)

The states in (10, 4) are ∆, Y1, Ξ, Ω all with spin 3/2. The states in (8, 2) are

N, Σ, Λ, Ξ all with spin 1/2.

The states with one particle in a P -state are in the 70 (see Eq.(22 above), which

decomposes to

70 → [10, 2) + (8, 4) + (8, 2) + (1, 2)]mixed (27)

Since the 70 has one quark in a p-state, we have to couple the L = 1 orbital

angular momentum to the spin angular momenta of the quarks. This give more

states, all negative parity. Altogether there should be 70× 3 = 210 states

connected with the 70. We list all the states, first those in the sss configuration

and then those in the ssp configuration:

JP (D,LP ) S Octet or Decuplet Singlet

1/2+ (56, 0+) 1/2 Octet

3/2+ (56, 0+) 3/2 Decuplet

1/2− (70, 1−) 1/2 Octet Singlet

3/2− (70, 1−) 1/2 Octet Singlet

1/2− (70, 1−) 3/2 Octet

3/2− (70, 1−) 3/2 Octet

5/2− (70, 1−) 3/2 Octet

1/2− (70, 1−) 1/2 Decuplet

3/2− (70, 1−) 1/2 Decuplet

In Manley’s Table 1, the rows 1,3,4,5,6, and 12 correspond to rows 1,3,4,5,6,8

above; in addition the state N(1700)3/2− mentioned in Manley on p231, line 3
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probably corresponds to the nucleon in row 7 in my table above. These states were

suggested in my paper in 1964, more than 40 years ago.

As stated in the hint, the states ssp in the 56 correspond to center-of-mass motion

and are not excitations of the ground state 56.
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