Physics 711, Symmetry Problems in Physics Fall 2005

Homework

Solutions for assignment 2

Georgi 1.D. From $D_2(g) = SD_1(g)S^{-1}$ and $D_2(g)A = AD_1(g)$, both $\forall g$, $D_2(g)A = AS^{-1}D_2(g)S$, and $D_2(g)AS^{-1} = AS^{-1}D_2(g)$, so by Schur's lemma $AS^{-1} = \lambda \mathbf{1}$, or $A = \lambda S$, where S is a nonsingular $n \times n$ matrix and $n = \dim D_{1,2}$.

Group of integers 1, 2, ..., n - 1, n prime, mod n is a group of order n - 1. The product is $(k_2, k_1) \rightarrow k_2 k_1$, mod n. The powers of any element g in a finite group must recur. Let $g^s = g$ be the first recurrance for any element g. Then $g^{s-1} = e$. Taking cosets with respect to the subgroup generated by these powers, s - 1 must divide n - 1; i.e. (n - 1)/(s - 1) = t, where t is an integer. Then $g^{(s-1)t} = g^n = e$. In our case, e = 1, g = k, and $k^{n-1} = 1$, mod n.

Character table of S_3

Rep Class	111	3	12
(3)	1	1	1
(111)	1	1	-1
(21)	2	-1	0

Normalized character table of S_3

Rep Class	111	3	12
(3)	$1/\sqrt{6}$	$1/\sqrt{3}$	$-1/\sqrt{2}$
(111)	$1/\sqrt{6}$	$1/\sqrt{3}$	$1/\sqrt{2}$
(21)	$\sqrt{2/3}$	$-1/\sqrt{3}$	0

 $\chi_{a,\alpha} = \sqrt{k_{\alpha}/N}, N = 6, k_{\alpha} = 1, 111; 2, 3; 3, 12.$