Physics 711, Symmetry Problems in Physics Fall 2005

Homework

Solutions for assignment due 9/13/05

Georgi 1.A. Always have a cyclic group Z_n with n elements, so have Z_3 with elements $e, a, a^2, a^3 = e$.

Uniqueness: every element of a finite group has a period of some order. The period forms a subgroup whose order must divide the order of the group. Since 3 is prime, the only period is the group itself, so Z_3 is unique. Like all Z_n it is abelian.

1.B. There is an element of order 4, so have Z_4 with elements e, a, a^2, a^3 $a^4 = e$. There is a period of order 2, so

Group table of
$$\frac{2}{2}$$
 $\frac{1}{2}$
 $\frac{1}{$

Growh take of period of order 2 If
$$b^2 = a$$
, then $b^4 = e$
 $e a b C$
 e

1.C. Take the defining rep of S_n to act on the basis vectors $|i\rangle$, $i = 1, 2, \dots, n$. Any perm is a product of transpositions, so suffices to find a (proper) invariant subspace under an arbitrary transposition (ij).

$$D((ij)) = |i\rangle\langle j| + |j\rangle\langle i| + \sum_{k \neq i,j} |k\rangle\langle k|.$$
 (1)

Guess that $\sum_{l} |l\rangle$ is invariant. Check:

$$D((ij)) = \sum_{l} \delta_{jl} |i\rangle + \delta_{il} |j\rangle + \sum_{k \neq i,j} |k\rangle \delta_{lk} = \sum_{l} |l\rangle$$
 (2)

Identity is unique: If ea = a, for all a and $e_1 = a$, for all a then $ea = e_1a$ for all a so mult by a^{-1} from the right to get $e = e_1$.

Inverse is unique: If xa = e and $x_1a = e$, then $xa = x_1a$. Mult by a^{-1} from then right to get $x = x_1$, so x is the unique inverse of a.

If a right identity and a right inverse exist, then a left identity and a left identity exist: Assume ax = e (right inverse for a), xb = e (right inverse for x), ae = e, (right identity). Then for left inverse

xa = (xa)e = (xa)(xb) = x[(ax)b] = x(eb) = (xe)b = xb = e, so x is also a left inverse to a.

For left identity

a = ae = a(xa) (we now know that xa = e) = (ax)a = ea, so e is also a left identity.