Lecture 9 (Sept. 21, Mon.)
Outline for today (HW2 due, HW 3,4 assigned)

- continue dynamics of $Q M$ (time-evolution of states) in more general/mathematical framework (still not using usual schroedinger wave equation for wavefunction: lot can be done without it!
- another example of 2 state system time-evolution: neutrino(V) oscillations
- schroedinger picture so far (state evolves in time; operators do not) vs. Heisenberg picture (states time-independent; operators evolve...)

$$
x
$$

Neutrino oscillations briefly (HW4.1 for details) |electrically neutral, very light, weakly interacting particles)

- 2 "flavors" (simplified version): ν_{e}, μ (muon) interacting only with e, μ
- Energy/mass eigenstates are linear combinations of flavor eigenstates (and vice versa)

$$
\left.\left|\nu_{e}, \mu\right\rangle=\cos \theta(\sin \theta) \mid \nu_{1}\right)-\sin \theta(+\cos \theta)\left|\nu_{2}\right\rangle
$$ with $m_{1} \neq m_{2}$

- $t=0:\left(v_{e}\right)$ produced using e^{-}(source), but its two mass eigenstate "components
evolve in time with different "frequencies" \Rightarrow different linear combination at later time t : finite probability to find $\left|\nu_{\mu}\right\rangle$ (produces μ in detector), probability to detect as $\left(\nu_{e}\right)<1$ (like s_{y} + initially, detected as s_{y}-later)

Summary of 2 -state system time evolution (spin precession, neutrino oscillations)

- initial state is linear combination (l.c.) of (2) energy eigenstates \Rightarrow
(2) components evolve with different frequencies
\Rightarrow at later time, a different l.c. (state evolves non-trivially)

Schroedingergvs. Heisenbergf(Hictures
So far (more familiar/usual picture: called S), state ket evolves in time, but operators do not change... vs. H-picture (Motivation: different viewpoint can lead to better simpler understanding of sameresult) - predictions intact (inner products)
(not constant, unless $[X, H]=0$)
(1) S-picture: x unchanged, but $(\alpha),(\beta)$ evolve
(2) H-picture: $X \rightarrow \overline{U^{+} \chi U \text { (evolves), with }}$ $|\alpha\rangle|\beta\rangle$ unchanged

$$
(A(H, S) \text { are }
$$

$$
A^{(H)}(t)=U^{(t)} A^{(s)} U(t)
$$

unitary equivalent operators
$t=0$ both pictures same
$\left|\alpha, t_{0}=0\right\rangle s$ or $H(d r \circ p) \& A^{(H)}(t=0)=A^{(s)}$

$$
\begin{align*}
& \langle\beta \underbrace{|\alpha\rangle}_{\text {initial }} \xrightarrow[\begin{array}{c}
\text { later } \\
\text { time, } t
\end{array}]{ }\left(\langle\beta| U^{+}\right) \underbrace{\langle U \mid \alpha\rangle}_{\text {new key (trivial) }})=(\beta|\alpha\rangle \\
& \begin{aligned}
&\langle\beta| \times|\alpha\rangle \longrightarrow(U|\alpha\rangle) \\
&=\left(\langle\beta| \omega^{+}\right) \times\left(\beta\left|\left(U^{+} \times U\right)\right| \alpha\right\rangle
\end{aligned} \tag{1}\\
& \text { S-ficture }
\end{align*}
$$

($A^{|s|}$ time-independent)
[use: $U=\exp (-i H t / \hbar): H$ is time -
in dependent]

$$
d A^{(H)} / d t=\frac{1}{i \hbar}\left[A^{(H)}, H\right]
$$

Sanifychecks: (a) If $\left[A^{(H)}, H\right]=0 \Rightarrow$

$$
\begin{aligned}
& \text { ify checks :(a) If } \\
& A^{(s)}=U A^{(H)} U^{+}=A^{(H)} \quad[\text { knew aired }
\end{aligned}
$$

$$
=c o n s t a n t
$$

that $A^{(H)}$ constant in this case]
(b) $s_{s}\left\langle a^{\prime}\right| X^{(s)} \underbrace{\left.a^{\prime}\right\rangle_{s}}=$ constant (earlier) $\underset{\substack{\text { stationary } \\ \text { state }}}{ }([A, H)=0)$
In H-picture $d /$

$$
=0 \text { (agrees } \ldots \text {) }
$$

$$
\begin{aligned}
& \text { later time, } t \\
& \begin{array}{r}
A^{(H)}(t) \neq A^{(S)}\left(\begin{array}{c}
\text { unless }\left[A^{(S)}, H\right] \\
\text { in that case, }(=0 \\
A^{(H)}=A^{(S)}=\text { constant }
\end{array}\right)
\end{array} \\
& \&\left(\alpha, t_{0}=0, t\right)_{H}=\left(\alpha, t_{0}=0\right) \\
& \neq\left(\alpha, t_{0}=0, t\right\rangle_{s}=U(t)\left\langle\alpha, t_{0}=0\right\rangle \\
& \text { but }\left\langle\alpha, t_{0}=0, t\right| A \\
& H-E O M M:\left[a n a l o g \text { of } i \hbar \partial / \partial t\left(\alpha, t_{0} ; t\right\rangle_{s}\right. \text { (of } \\
& \begin{array}{ll}
(H) & \left.\left.=H\left|\alpha, t_{0} ; t\right\rangle_{s}^{s-} \text { picture }\right)\right]
\end{array} \\
& d A^{(t-1)} / d t=\partial v^{+} / \partial t A^{(S 1} U+U^{+} A^{(s)} \partial U / \partial t
\end{aligned}
$$

- constructing H : Inassical H, replace x, ϕ

$$
\text { by operators }\left[x p \rightarrow \frac{1}{2}(x p+p x)\right](b
$$

- Useful formula: $[x, F(p)]=i \hbar \partial F / \partial p$;

$$
[p, G(x)]=-i \hbar \partial G / \partial x
$$

Free particle: $H=p^{2} /(2 m) \Rightarrow \frac{d p}{d t}=\frac{1}{i \hbar}[p, H(b)]$

$$
\begin{aligned}
&p(t)=p(0)][\text { as expected from general result }] \\
& d x / d t=\left[x, \frac{p^{2}}{2 m}\right] \frac{1}{i \hbar}=p(t) / m=p(0) / m \\
& \Rightarrow x(t)=x(0)+p(0) / m t \\
& {[x(t), x(0)]=-i \hbar / m t \geqslant 0 }
\end{aligned}
$$

\Rightarrow uncertainty relation:
(use general formula)

$$
\begin{gathered}
\left\langle(\Delta x)^{2}\right)_{t}\left\langle(\Delta x)^{2}\right\rangle_{t=0} \\
\geqslant \hbar^{2} t^{2} / 4 m^{2}
\end{gathered}
$$

e.g. Gaussian wavepacket of earlier [at fixed time $(t=0)]:\left((\Delta x)^{2}\right)_{t=0}=d^{2} / 2$ (say, "small")
(particle localized within $\sim d$ around origin) $\frac{\text { since it is superposition }}{\text { (much) }}$ momenta (much) $\frac{\text { since it is supers of momenta, }}{}$

- At, latertime, it spreads (las seen from solving Schroedinger's wave equation), but easier with H-picture : $\left((\Delta x)^{2}\right)_{t}$ grows with $t\binom{$ uncertainty }{ relation } relation

