Lecture 7 (sept. 16, wed.)

- Review part of course: framing known ideas in more general/mathematical language
- "kinematics" of QM first: state-ket(vector); - observable - operator (position/spin)...
- dynamics (Schroedinger equation) next

Outline for today

- successive translations in $x \& y \ldots \Rightarrow\left[p_{x}, p_{y}\right]$
- summary of commutation relations ("preview" of rotanons, angular momentum operator)
-Note: so far, independent of representation of x, p operators Istate - ket (no wavefuaction or $p=i \hbar \partial / \partial x$ ' yet: that's next!)
- onto more "playing with" position/ momentum ("connecting to" VG-level QM)
- wavefunction of state in position \& momentum spaces $\left[\psi_{\alpha}\left(x^{\prime}\right)\right.$ and $\left.\phi_{\alpha}\left(p^{\prime}\right)\right]$
- momentum operator in position basis

$$
\left[p \doteq i \hbar \partial / \partial x^{\prime}\right]
$$

- Gaussian wavepackets

Successive translations in x and y...
commute (rotations do not)

$$
\begin{aligned}
& T\left(\Delta y^{\prime} \hat{y}\right) T\left(\Delta x^{\prime} \hat{x}\right)=T\left(\Delta x^{\prime}, \hat{x}\right) T\left(\Delta y^{\prime}, \hat{y}\right) \\
& \ldots \Rightarrow\left[p_{x}, D_{y}\right]=0
\end{aligned}
$$

(translation group in $3 D$ is Abelian)
Summary

$$
\begin{aligned}
& {\left[x_{i}, x_{j}\right]=0=\left[p_{i}, p_{j}\right] ; } {\left[x_{i}, p_{j}\right] } \\
&=i \hbar \delta_{i j}
\end{aligned}
$$

... obtained by (1) properties of translations and (2) momentum is generator ot translation
... generalize to rotations (1) rotations don't commute and (2) angular momentum generates rotations... including spin (and orbital)
\rightarrow no classical analog (cf. position, momentum: linear and orbital angular)
vs. Dirac's "rule": classical Poissonbrackets $\frac{\text { commutator of (quantum) operators }}{\text { it }}$ works for linear \& orbital angular momentum but not for spin

Wavefunction in position space

- probability for particle described by (α) to be found in interval $d x^{\prime}$ around x^{\prime}
$=\left|\left\langle x^{\prime} \mid \alpha\right\rangle\right|^{2} d x^{\prime}$ (based on general postulate)
$\Rightarrow \psi_{\alpha}\left(x^{\prime}\right)[$ wavefunction for $|\alpha\rangle$ in position

$$
\frac{\text { representation }}{(\text { basis })} \equiv\left\langle x^{\prime} \int \alpha\right)
$$

[again, one example d of general concept: expansion coefficient, $c_{a^{r}} \equiv\left\langle a^{\prime} \mid \alpha\right\rangle$ gives probability to measure a^{\prime} (here, use $\left|x^{\prime}\right\rangle$ as $\left.\left|a^{\prime}\right\rangle\right]$
$\langle\beta \mid \alpha\rangle=$ probability amplitude for $|\alpha\rangle$ to be "found" in (B)

$$
\begin{aligned}
& =\frac{\int_{\mathbb{R}} d x^{\prime}\left\langle\left\langle\beta \| x^{\prime}\right\rangle\left\langle x^{\prime}\right\rangle \alpha\right\rangle}{\left\langle x^{\prime}\right\rangle}=\int_{\ldots d x^{\prime} \psi_{\beta}^{*}\left(x^{\prime}\right) \psi_{x}\left(x^{\prime}\right)}^{\int_{\text {as expected }}} \\
& -\underbrace{\left\langle x^{\prime} \mid \alpha\right\rangle}_{\psi_{\alpha}\left(x^{\prime}\right)}=\sum_{a^{\prime}}[\left|a^{\prime}\right\rangle\left\langle a^{\prime} \mid \alpha\right\rangle=\sum_{a^{\prime}} C_{a^{\prime}} \underbrace{u_{\alpha^{\prime}}\left(x^{\prime}\right)}_{\left\langle x^{\prime} \mid a^{\prime}\right\rangle} \\
& \text { (position. wavefunction of }
\end{aligned}
$$

$$
\begin{aligned}
& A=f(x)=\sum_{n} c_{n} x^{n} \\
& \left.\left\langle x^{\prime}\right| x^{n}\left|x^{\prime \prime}\right\rangle={ }^{n}\left\langle x^{\prime}\right| x^{\prime \prime \prime} \mid x^{\prime \prime}\right)_{\text {eigenvalue }}=x^{\prime \prime n} \delta\left(x^{\prime}-x^{\prime \prime}\right) \\
& \text { eigenvalue }
\end{aligned}
$$

$\left.\begin{array}{c}\frac{\text { Combining }}{\text { above }} 3 \text { (}\end{array} \beta|A=\underset{\text { operator }}{f}(x)| \alpha\right)=\int x^{\prime} \psi_{\beta^{\prime}}^{*}\left(x^{\prime}\right) f\left(x^{\prime}\right) \psi_{\alpha}\left(x^{\prime}\right)$
3
Momentum operator in position basis

Wavefunction in momentum space
$\left.p\left|p^{\prime}\right\rangle=p^{\prime} \eta p^{\prime}\right) \cdots$ probability for measurement to give $p^{\prime} \pm d p^{\prime} / 2$ is $/\left.\left\langle p^{\prime} \mid \alpha\right\rangle\right|^{2} p^{\prime}$

related to $\psi_{\alpha}\left(x^{\prime}\right)$ by Fourier
show by

- ouse of change of basis
(in general) : need

$$
\begin{aligned}
& \left\langle x^{\prime}\right| p\left|p^{\prime}\right\rangle=-i \hbar\left|\partial / \partial x^{\prime}\right\rangle\left\langle x^{\prime} \mid p^{\prime}\right\rangle \\
& =p^{\prime}\left\langle x \mid p^{\prime}\right\rangle \ldots \text { solve (DE) by }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 \pi \hbar}} \exp \left(i p^{\prime} x^{\prime} / \hbar\right. \\
& \underbrace{\left\langle x^{\prime} \mid \alpha\right\rangle}_{\psi_{\alpha}\left(x^{\prime}\right)}=\underbrace{\int d p^{\prime} \underbrace{\left\langle x^{\prime} \mid p^{\prime}\right\rangle}\left\langle p^{\prime} \mid \alpha\right\rangle}_{\frac{1}{\sqrt{2 \pi \hbar}} \exp \left(p^{\prime} x^{\prime} / \hbar\right) \phi_{\alpha}\left(p^{\prime}\right)} \\
& \psi_{\alpha}\left(x^{\prime}\right)=\frac{1}{\sqrt{2 \pi} \hbar} \int \frac{d p^{\prime} \phi_{\alpha}\left(p^{\prime}\right) \exp }{\left\langle p^{\prime}\left(x^{\prime}\right)=\left\langle x^{\prime}\left(p^{\prime}\right)^{*}\right.\right.}\left(\frac{i}{} \frac{p^{\prime} x^{\prime}}{\hbar}\right) \\
& \phi_{\alpha}\left(p^{\prime}\right)=1 / \sqrt{2 \pi \hbar} \int d x^{\prime} \exp \left(-i p^{\prime} x^{\prime} / \frac{1}{\hbar}\right) \psi_{\alpha}\left(x^{\prime}\right)
\end{aligned}
$$

Normalization from $\left.\left\langle x^{\prime}\right| x^{\prime \prime}\right)=\delta\left(x^{\prime}-x^{\prime \prime}\right)$

$$
\begin{aligned}
=\int d p^{\prime}\left\langle x^{\prime} \mid p^{\prime}\right\rangle\left\langle p^{\prime} \mid x^{\prime \prime}\right\rangle & =|N|^{2} \times \int d p^{\prime} \\
& \exp \left(\frac{i p^{\prime}\left(x^{\prime}-x^{\prime \prime}\right)}{\hbar}\right] \\
& =|N|^{2} 2 \pi \hbar \delta\left(x^{\prime}-x^{\prime \prime}\right)
\end{aligned}
$$

So, $N=1 / \sqrt{2 \pi \hbar}$
Position operator in momentum basis :Hw3.4

