Lecture 43, Dec. 14 (Mon.) Outline for last lecture
Based on time-reversal properties of angular momentum eigenkets, derive those of expectation values for these states of time-reversal even lode operators

- more physical consequences of time-reversal transformation
- e.g. of using symmetries for getting selection rule
-For A being even/odd under time reversal (in general)

$$
\begin{aligned}
& \langle\alpha| A|\alpha\rangle= \pm\langle\tilde{\alpha}| A \underbrace{|\tilde{\alpha}\rangle}_{\theta|\alpha\rangle} \\
& -P l u g|\alpha\rangle=|\alpha, \underbrace{j, m}_{\text {angular }}\rangle_{\lambda}
\end{aligned}
$$

radial quantum k angular number eigenket $\theta|j, m\rangle=(i)^{2 m}|j,-m\rangle$

$$
\leftrightarrow\langle j,-m|\left[(i)^{2 m}\right]^{*}
$$

to get

$$
\langle\alpha, j, m| A|\alpha, j, m\rangle= \pm\langle\alpha, j,-m| A \mid \alpha, j,-m)
$$

- More specifically, A is spherical tensor: $T_{q}^{(k)}$: suffices to get matrix elements for $q=0$, since others related to it "geometrically" using wigner-Eckart theorem - $ا(k)$ (Hermitian) even/odd under time-reversal based on $q=0$

$$
\theta T_{q=0}^{(k)} \theta^{-1}= \pm T_{q=0}^{(k)} \Rightarrow
$$

$$
\langle\alpha, j, m| T_{q=0}^{(k)}|\alpha, j, m\rangle= \pm\langle\alpha, j,-m| T_{0}^{(k)}|\alpha, j,-m\rangle
$$

-Now, lg,-m) "related to" $l j,+m)$ by rotation operator and we know how $\tau_{0}^{(k)}$ transforms under rotations \Rightarrow (details in sakurai)

$$
\begin{array}{r}
\langle\alpha, j, m| T_{0}^{(k)}|\alpha, j, m\rangle= \pm(-1)^{k}\langle\alpha, j, m| T_{0}^{(k)}|\alpha, j, m\rangle \\
\text { not }-m!
\end{array}
$$

ie., $\langle\alpha, j, m| \tau_{0}^{(k)}|\alpha, j, m\rangle\left[1 \mp(-1)^{k}\right]$
$\tau_{0}^{(k)}$ is even/odd.
$\left.\Rightarrow\langle\alpha, j, m| T_{0}{ }^{(k)} \mid \alpha, j, m\right)$ vanishes unless

$$
\begin{aligned}
& \pm(-1)^{k}=1 \\
& \rightarrow \tau_{q=0}^{(k)} \text { evenlodd }
\end{aligned}
$$

e.g., $T_{0}^{(k)}=\bar{x} \quad(k=1)$, with \bar{x} even
$\Rightarrow\langle j, m| \bar{x}|j, m\rangle \subseteq 0$: EDM vanishes for angular momentum eigenket, cf. earlier, vanishes if parity eigenket

- complementary: $|\alpha, j, m\rangle$ need not have definite parity, e.g., spin $-1 / 2$ partide with $l=0$ (s-wave) or $l=1$ (p-wave) can have $j=1 / 2$

$$
\underbrace{(j=1 / 2, m\rangle}=c_{s}\left|s_{1 / 2}\right\rangle+c_{p}\left|p_{1 / 2}\right\rangle
$$

$$
\underbrace{k}_{\begin{array}{c}
\text { angular momentum } \\
\text { eigenket }
\end{array} \quad \lambda \quad k \quad l=1 \quad k j}
$$

ie., not parity eigenket (sore p are even or odd)

Physical implication of timereversal symmetry: even if $[\theta, H]=0, \theta U\left(t, t_{0}\right)=U\left(t, t_{0}\right)$, since $U=1-i H\left(t-t_{0}\right) / \hbar$
(cf. other symmetries, inclu ding parity)...
.. but do get wavefunction real (no degeneracy), without spin

- More mileage including spin
$[\theta, H]=0 \Rightarrow|n\rangle \& \theta|n\rangle$ have energy eigenvalue
- If they are same state (no degeneracy),
then $\theta|n\rangle=e^{i \delta}|n\rangle \Rightarrow$

$$
\begin{aligned}
\theta^{2}|n\rangle=\theta\left(e^{i \delta}|n\rangle\right) & =e^{-i \delta} \theta|n\rangle \\
& =e^{-i \delta} e^{i \delta}|n\rangle
\end{aligned}
$$

ie, $\theta^{2}(n)=+|n\rangle$... which is not valid for half-integer $j\left(\theta^{2}=-1\right.$ for it) $\Rightarrow|n\rangle$ and $\theta|n\rangle$ are different: there is Kramer's degeneracy, e.g., $V=e \phi(x)$ (external electrostaticfield) $\Rightarrow[\theta, H]=0$ since $[\theta, x]=0$
$=[\theta$, function of $x]$
\Rightarrow with odd number of electrons (total j-including orbital \& spin -is half-integerl in any \bar{E}, each energy level at least 2-fold degenerate

- However, with external magnetic field (assume not changed by timereversal), $H \Rightarrow \bar{S} \cdot \bar{B} ; \bar{P} \cdot \bar{A}+\bar{A} \cdot \bar{P}$ $(\bar{B}=\bar{D} \times \bar{A})$, where \bar{S}, \bar{P} odd under time-reversal, so $\theta H \neq H \theta \Rightarrow$ Kramer's degeneracy for odd number of electrons removed by external \bar{B} e.g. spin -1/2 system: $\theta|t\rangle \sim \mid \rightarrow$, but energies in \bar{B} different for $1 \pm\rangle$

Example of angular momentum conservation combined with Bose-Einstein statistics (identical integer-spin particles)
spin-1 particle $\xrightarrow{\text { decay } 2}$ identical (vector)

$$
\begin{aligned}
& 2 \text { identical } \\
& \text { spin-o(scalar)? }
\end{aligned}
$$

(creation/annihilation of particles needs relativistic QM / quantum field theory, but here simply assume some interaction Hamiltonian - rotationally invariant can do it: angular momentum conserved between initial \& final state)

- Final state: 2 identical bosons integer spin particles) \Rightarrow overall wavefunction unchanged/symmetric under exchange of all quantum numbers of 2 particles
- 2 "sub "-spaces of quantum state / in general): spin \& orbital angular momentum
- Here no spin for final state particles, hence orbital part of wavefunction ψ^{*} must be symmetric
- Now, ψ is function of $\bar{r}=\bar{r}_{1}-\bar{r}_{2}$ relative position vector of 2 particles
- Upon exchanging 2 partides, $\bar{r} \rightarrow-\bar{r}$
\Rightarrow we require $\psi(-\bar{r})=\psi(\bar{r})$
ie., "like"even under parity \Rightarrow
l must be even $\left[(-1)^{l}\right.$ eigenvalue
in general] \Rightarrow total angular momentum j final of final state $=l_{\text {final }}$ (since $s_{\text {final }}=0$) $=$ even
... but then it cannot match initial angular momentum (spin) of 1 \Rightarrow spin-1 partide cannot decay into 2 identical spin-0 particles

