Lecture 39, Dec. 4 (Fri.)
Outline for remaining lectures
-symmetries (and their consequences constants of motion \& degeneracies) in QM (ch. 4 of sakurai)
-continuous (e.g., rotations): sec.4.1
vs. - discrete (e.g. parity / space inversion: sec. 4.2 \& time-reversal: $\sec 4.4)$
Outline / motivation for continuous symmetry

- In study of rotations, angular momentum (ch.3), central potential was a focus: $H=\frac{|\overline{\bar{P}}|^{2}}{2 m}+V(r(=|\bar{x}|))$ rotationally invariant : symmetry so (3)

$$
\left.[H, \bar{L}]=0=L H, L^{2}\right]
$$

Consequences
(i) constant of motion/ conservation law for expectation value of \bar{L}; in H-picture,

$$
\begin{aligned}
d / \overbrace{d t}^{\langle\alpha|} L \underbrace{\langle\alpha| y}_{\text {arbitrary }}|\alpha\rangle & =\langle\alpha| \frac{d L}{d t}|\alpha\rangle \\
& =\langle\alpha| \frac{1}{i \hbar}[L, H]|\alpha\rangle=0
\end{aligned}
$$

(ii) energy eigenkets are also eigenkets of angular momentum: $|\alpha, \underbrace{\ell m}_{\text {m }}\rangle$ radial angular
Energy eigenvalues (E) from radial equation

$$
\begin{array}{r}
{\left[-\frac{\hbar^{2}}{2 m r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)+\frac{l(l+1) \hbar^{2}}{2 m r^{2}}+V(r)\right] R_{E l}(r)} \\
=E R_{E l}(r)
\end{array}
$$

$\Rightarrow E$ depends on l : no degeneracy (i ngeneral, egg., ∞ spherical well)
\cdots but not on $m: m=-l \ldots$ to $+l$ (for given l) degenerate:

$$
(2 l+1)-f \sigma l d
$$

...generalize: symmetry
\Rightarrow constant of motion \& degeneracy

- Back to Coulomb potential $\left(\frac{1}{r}\right)$ more than $(2 l+1)$-fold degeneracy E depends only on n : for fixed $n, l=0, \ldots n-1$ (n^{2}-fold degeneracy), larger than expected from sol) [rotational invariance] ... can't be accident: must be due to larger symmetry: indeed sol

Continuous symmetry

- classically / Hamiltonian formulation): if $H\left(q_{i}, p_{i}\right)$ does not explicitly depend on q_{i} [x "generalized"] H has symmetry under transformation $\left.q_{i} \rightarrow q_{i}+\delta q_{i}\right)$, then

$$
d p_{i} / d t=\underset{\text { Hamilton's }}{\lambda_{\text {Ham }} / \partial q_{i}}=0
$$

(constant of motion)
Onto QM: transformations (egg., translations, rotations) correspond to unitary operator $\&\left(s^{+}=s^{-1}\right)$ $S^{-1} H B$ is transformed $H, e . g$. $\theta^{+}(R) \underbrace{T_{q}(k)}_{\text {tensor }} \underbrace{\theta(R)}_{\text {rotation operator }}$ - Continuous transformation has infinitesimal version: $8=\left(1-i \frac{\varepsilon}{\hbar} G\right)$, where G (generator) is Hermitian

- S is symmetry if H_{-1}^{H} is invariant

$$
\begin{aligned}
& 8^{-1} H S=H=\overbrace{\left(1+i \frac{\varepsilon}{\hbar} G\right)}^{s^{-1}} H\left(1-\frac{i \varepsilon}{\hbar} G\right) \\
& \Rightarrow[H, G]=0 \quad \Rightarrow \frac{d G}{d t}=\frac{1}{i \hbar}[H, G] \\
& \text { (Heisenberg picture) } \\
& \Rightarrow \frac{d}{d t}\langle\alpha| G|\alpha\rangle=\langle\alpha| \frac{d}{d t} G|\alpha\rangle
\end{aligned}
$$

expectation value of G is constant of motion
(Ehrenfest theorem) [consequence (i)]
egg. invariance under translation/rotation \Rightarrow constantation value of tinear/angular momentum - Relatedly, if system is in eigenket of G at t_{0} (given by $\left.\left|g^{\prime}\right\rangle\right)$, then it evolves at time t into $U\left(t, t_{0}\right)\left|g^{\prime}\right\rangle$ which is also (like $\left.\left|g^{\prime}\right\rangle\right)$ eigenket of G with same eigenvalue $\left(g^{\prime}\right)$ ("constant of motion"): $\left[G, \mu\left(t, t_{0}\right)\right]=0$

$$
\Rightarrow G \underbrace{u\left(t, t_{0}| | g^{\prime}\right\rangle}_{\text {time-evolved }\left|g^{\prime}\right\rangle}=u\left(t, t_{0}\right) G\left|g^{\prime}\right\rangle=u g^{\prime}\left|g^{\prime}\right\rangle)
$$

Equivalently, $\left|g^{\prime}\right\rangle$ is also eigenket of H
$\Rightarrow\left|g^{\prime}\right\rangle$ is energy eigenket \Rightarrow phase only upon time -evolution]
Consequence (ii): degeneracies
If $[H, G]=0$, then $H \underbrace{|n\rangle}=E_{n}|n\rangle \Rightarrow H(G|n\rangle)$

$$
\begin{aligned}
\text { energy eigenket } & =G H(n) \\
& =E_{n}(G(n))
\end{aligned}
$$

$G(n)$ is also energy eigenket with same energy as $|n\rangle$

If $G|n\rangle \neq|n\rangle$, then degeneracy
eeg., S is rotation operator $\theta(R)$, with H being rotationally invariant $\theta^{-1}(R) H \not D(R)=H$ (egg., spherically symmetric potential! no spin)

$$
\Rightarrow[\bar{J}, H]=0=\left[|\bar{J}|^{2}, H\right] \Rightarrow \text { eigenkets }
$$ simultaneously

generat or $\left[\begin{array}{c}\text { of rotations } \\ \text { here] }\end{array}\right.$ of $H,|F|^{2}, J_{Z}$

Degeneracy in m follows from $\left[H, \widehat{J_{ \pm}}\right]=0$, with $J_{ \pm}$raising/lowering m (but same $j) \Rightarrow(2 l+1)$-fold degeneracy [for only angular momentum being orbital] (saw it earlier using radial equation, but here follows from general principles)

- include spin-orbit interaction

$$
V(r)+V_{L s}(r) \underbrace{E \cdot \bar{s}}
$$

(also) rotationally -invariant
$\Rightarrow(2 j+1)$-fold degeneracy e.g., based on L. \bar{S} eigenvalues in $(\bar{L}+\bar{S}=) \bar{J}$ eigenvalue $\begin{aligned} & \bar{\eta} \dot{\gamma} \cdot 3.8 .66 \text { (Sakurai) }\end{aligned}$ (degeneracy in l by itself broken)
onto Coulomb potential (special case of spherically symmetric potential)

Why are different l 's for given n degenerate? Additional symmetry of $1 / r$ potential (not for 3D isotropic SHO \Rightarrow another constant of motion ... even classically: Kepler problem "obvious" constants of motion: $\hat{\bar{l}}$ (unit vector): fixes plane of orbit

$$
(\perp \hat{\bar{e}})
$$

$|\bar{\ell}|, E:$ fix size, shape of orbit
... what else? orientation of ellipse in plane

or direction of major axis of ellipse, given by Laplace-Runge. Len vector:

$$
\bar{M}=\frac{\bar{P} \times \bar{l}}{m}-z e^{2} \bar{r} / r\binom{\text { Goldstein }}{\text { sec.3.9 }}
$$

(another/new constant of motion)
Onto QM: define Hermitian operator corresponding to $\bar{M}:[\bar{M}, H]=0$
summary (details in sakurai)
(a). obtain algebra(commutators) of M \& I
(b) above uggebrassimilar to that of rotations in $4 \mathrm{~d}[50(4)]$, ie., symmetry enhanced from so (3)
(c) relate so (4) to larger degeneracy
onto parity/space inversion as example of discrete symmetry /not continuously connected to 11: no infinitesimal version Preview in SHO and linear potential: energyeigenstates wavefunctions classified as even/odd under $x^{\prime} \rightarrow-x^{\prime}$): not accident, due to H invariant under $x \rightarrow-x$ [parity transformation, π (operator)] parity is symmetry of H

Outline for parity discussion - properties of $\pi:\{\pi, x\}=0$ anti-commutator

- behavior of $\psi\left(x^{\prime}\right),{ }_{e}{ }_{e}^{m}(\theta, \phi)$ under π
\Rightarrow e.g. of selection rule combining parity transformation (even if not symmetry) and angular momentum conservation (rotational symmetry)
- Consequences of parity symmetry: $[\pi, H]=0$

Getting to know π

- often, parity/space inversion as passive operation: $R H \longrightarrow L H$ coordinate system (state unchanged)

...us. active here: transform state
kets, with coordinate system fixed

π transforms wave packet localized at
x_{0} to $\left(-x_{0}\right)$
$|\alpha\rangle \longrightarrow \underbrace{\pi}|\alpha\rangle\left(\begin{array}{l}\text { new, }\end{array}\right.$ (old) paritytransformed/ space inverted state)
- classically, \bar{x} (coordinates) $\rightarrow-\bar{x} \Rightarrow$ in $Q M$, require expectation value of \bar{x} (Ehrenfest theorem), egg., above wavepacket

$$
\underbrace{\langle\pi \alpha|} x|\pi \alpha\rangle=-\underbrace{\langle\alpha| x|\alpha\rangle}_{\sigma l d \cdots}
$$

new expectation value

$$
=\left\langle\begin{array}{c}
\text { new expectation value } \\
\\
\left.\hline \alpha\left|\pi^{+} \pi\right| \alpha\right\rangle \ldots \text { for all }|\alpha\rangle \Rightarrow \\
\rightarrow \pi=-\pi x
\end{array}\right.
$$

(as expected) $\pi^{+} x \pi=-x \Rightarrow x \pi=-\pi x$ $\{x, \pi\}=0$

- transformation of position eigenket
expect $\pi\left|x^{\prime}\right\rangle=e^{i \delta}\left|-x^{\prime}\right\rangle$

$$
\begin{aligned}
& x p e c t ~ \pi\left|x^{\prime}\right\rangle=e \\
& x\left(\pi\left|x^{\prime}\right\rangle\right)=-\pi x\left|x^{\prime}\right\rangle=-x^{\prime}\left(\pi\left|x^{\prime}\right\rangle\right)
\end{aligned}
$$

$\Rightarrow \pi\left|x^{\prime}\right\rangle$ has eigenvalue $-x^{\prime}$: must be $\left(-x^{\prime}\right\rangle$
(unto phase)
choose $e^{i \delta}=1 \Rightarrow \pi\left|x^{\prime}\right\rangle=+\left|-x^{\prime}\right\rangle$

$$
\Rightarrow \pi^{2} \underbrace{\left|x^{\prime}\right\rangle}=\pi\left|-x^{\prime}\right\rangle=+\left|x^{\prime}\right\rangle \Rightarrow \pi^{2}=1
$$

basekets
$\Rightarrow \pi$ eigenvalues $= \pm 1$
but π unitary: $\pi^{+} \pi=\mathbb{1}$ (on general grounds:

$$
\langle\pi \alpha \mid \pi \alpha\rangle=\langle\alpha \mid \alpha\rangle) \ldots \& \pi^{2}=\mathbb{R} \quad \begin{aligned}
& \left.=\pi^{+} \pi\right)
\end{aligned}
$$

$\Rightarrow \pi$ also Hermitian \Rightarrow eigenvalues real
How does \bar{p} transform under π ?
\bar{p} "like" $\frac{m \frac{d \bar{x}}{d t} \text {, so expect odd under }}{\text { s }}$, parity, but check using \bar{P} is generator of (infinitesimal) translation:

2 paths should give same result

$$
\begin{aligned}
& \underbrace{\pi}_{\begin{array}{c}
\text { then } \\
\text { parity }
\end{array}} \underbrace{T\left(d x^{\prime}\right)}_{\begin{array}{c}
\text { translate } \\
I^{s t}
\end{array}}=\underbrace{T\left(-d x^{\prime}\right)}_{\begin{array}{c}
\text { followed } \\
\text { by translation } \\
\text { in opposite } \\
\text { direction }
\end{array}} \underbrace{T}_{\text {parity }} \underbrace{T} \\
& \Rightarrow \pi\left(\mathbb{1}-\frac{i d x^{\prime}}{\hbar} p\right) \pi^{+}=\left(\mathbb{1}+\frac{i d x^{\prime}}{\hbar} p\right) \underbrace{\pi \pi^{+}}
\end{aligned}+
$$

- What else? Transformation under parity of \bar{J} : eeg. $\bar{L}=\bar{x} \times \bar{p}$, with \bar{x}, \bar{p} being odd under parity, sol is even $\Rightarrow[\pi, \tau]=0$

$$
\left[\begin{array}{c}
\pi^{+} L_{i} \pi=\pi^{+} \varepsilon_{i j k} x_{j} p_{k} \pi=\varepsilon_{i j k}\left(\pi^{+} x_{j} \pi\right)\left(\pi^{+} p_{k} \pi\right) \\
=\varepsilon_{i j k}\left(-x_{j}\right)\left(-P_{k}\right)=+\varepsilon_{i j k} x_{j} P_{k}=L_{i} \\
\text { but spin (S) not expressed in terms }
\end{array}\right]
$$

... but spin($\bar{S})$ not expressed in terms of \bar{x}, \bar{P} ?! Think of \bar{J} as generator of rotation (not just as $\bar{L}=\bar{x} \times \bar{p}$)

- start with rotation, parity transformation
of classical vector: both parametrized by 3×3 orthogonal matrix

$$
R^{\text {parity }}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \operatorname{det} R^{\text {parity }}=-1
$$

Clearly, parity commutes with rotation

$$
R^{\text {parity }} R^{\text {rotation }}=R^{\text {rotation }} R^{\text {parity }}
$$

Picture it:

So, in $Q M$, same for correspoinding rotation operators $D(R)$: like $R_{1} R_{2}=R_{3} \Rightarrow D\left(R_{1}\right) D\left(R_{2}\right)=\theta\left(R_{3}\right)$
$\theta(R) \pi=\pi \theta(R)$, with $\theta_{R}=1-i \frac{\varepsilon}{\hbar} \bar{J} \cdot \bar{\phi}$

$$
\Rightarrow[\pi, \bar{J}]=0 \text {, but } \bar{J}=\bar{L}+\bar{s}
$$

and $[\pi,[\bar{L}]=0 \Rightarrow[\bar{\pi}, \bar{S}]=0$

- Under rotations $[S O(3)], \bar{x}, \bar{P}, \bar{J}$ are vectors (spherical tensor rank 2), but \bar{x}, \bar{p} odd under parity (pseudo-vectors)vs. J (even parity: vector)
- Scalars under rotations: $\bar{s} \cdot \bar{x}$ or $\bar{s} \cdot \bar{p}$

$$
=\pi^{-1} S_{i} \pi \pi^{-1} x_{i} \pi=+S_{i}\left(-x_{i}\right)=-\bar{s} \cdot \bar{x}(\text { similarly }, \bar{s} \cdot \bar{P})
$$

(called psendo-scalar) vs. $\pi^{-1}(\bar{L} \cdot \bar{S}) \pi=\bar{L} \cdot \bar{s}$ or $\pi^{-1}(\bar{x} \cdot \bar{p}) \pi=\bar{x} \cdot \bar{p}$ are even (called scalars)

Wavefunctions under parity: if $\psi_{\alpha}\left(x^{\prime}\right)=\left\langle x^{\prime} \mid \alpha\right\rangle$, then wavefunction of wavefunction space-inverted ket is of $|\alpha\rangle$

$$
\begin{array}{r}
\left\langle x^{\prime}\right| \underbrace{\pi|\alpha\rangle}_{\text {parity }}=\left\langle-x^{\prime} \mid \alpha\right\rangle \\
=\psi_{\alpha}
\end{array}
$$

transformed
e.g. wavepacket localized at $x_{0} \longrightarrow \cdots$ at $-x_{0}$

Eigenket of parity operator

$$
\pi \underbrace{(\pm)}=\underbrace{ \pm 1}(\pm)
$$

not spinonly allowed eigenvalues up/down!

$$
\Rightarrow \quad\left\langle x^{\prime} 7 \pi \mid \pm\right\rangle= \pm\left\langle x^{\prime} \mid \pm\right\rangle= \pm \psi_{ \pm}\left(x^{\prime}\right)
$$

in general,

$$
\left\langle-x^{\prime} \mid \pm\right\rangle=\psi_{ \pm}\left(-x^{\prime}\right)
$$

\Rightarrow state ket even/odd under parity operator if its expansion in $\left|x^{\prime}\right|$ basis, $\psi\left(x^{\prime}\right)$, is even lode in x^{\prime} [earlier, e.g., SHO, linear potential, discussed $\psi_{\alpha}\left(x^{\prime}\right)$ being odd/even...vs. here ket under parity operator]

- Not all wavefunctions are odd/even, $e . g$. , wavepacket localized at $x_{0}(\neq 0)$
or $\left|p^{\prime}\right\rangle \propto e^{-i \frac{p^{\prime} x^{\prime}}{\hbar}}$: expected since $[\bar{p}, \pi] \neq 0$ (given $\{\pi, p\}=0$), so no simultaneous eigenkets
\ldots better luck with $Y_{l}^{m}(\theta, \phi)$, since $\left[\pi_{i} \tau\right]=0$ and eigenkets of \bar{L} are $\left\langle x^{\prime} \mid \alpha, l, m\right\rangle=R(r) Y_{l}{ }^{m}$, so must be parity oddleven (simultaneous) eigenkets
- Under parity,

$$
r \rightarrow r \stackrel{\prime}{\Rightarrow} R(r) \text { invariant, so } y_{l}^{m}(\theta, \phi)
$$

even/odd
$\theta \rightarrow(\pi-\theta) \begin{aligned} & \text { since } z \rightarrow-z(z=r \cos \theta) \\ & \text { [and want to kep }\end{aligned}$ [and want to keep $0 \leqslant \theta($ new $) \leqslant \pi$]
$\phi \rightarrow \phi+\pi \quad \sin c e \quad x=r \sin \theta \cos \phi \rightarrow-x$ $(\sin \theta$ unchanged, both $\sin \phi, \rightarrow y=r \sin \theta \sin \phi \rightarrow-y$

- Determine parity of $Y_{l}{ }^{m}(\theta, \phi)$:
start with $m=0$: $y_{e}^{0}(\theta, \phi) \propto P_{e}(\cos \theta)$, which are even/odd in $\cos \theta$ for even/odd l, so is $y_{\ell}^{0}(\theta, \phi)$ then even lode with $\ell \mid$, thus $|\ell, 0\rangle \ldots$

And $Y_{l}^{m}(\theta, \phi) \quad(m>0) \sim\left(L_{+}\right)^{m}$ "on" Y_{l}^{0}

$$
\begin{aligned}
& \text {.. but }\left[\pi,(L+)^{m}\right]=0 \Rightarrow \\
& \quad \pi(L+1^{m}|l, 0\rangle=(L+1^{m} \underbrace{\pi|l, 0\rangle}_{(-1)^{l}|l, 0\rangle} \\
& \Rightarrow \pi\left((L+)^{m}|l, 0\rangle\right)=(-1)^{l}\left((L+)^{m}|l, 0\rangle\right)
\end{aligned}
$$

$|l, m\rangle$: also eigenket of π with $(-1)^{l}$

$$
\Rightarrow \underbrace{}_{\begin{array}{c}
\text { wavefunction of } \\
|l, m\rangle
\end{array} \frac{y_{l}^{m}(\theta, \phi)}{\left.\begin{array}{c}
\text { again, } \\
\text { independent } \\
\text { of } m
\end{array}\right)}}
$$

