Lecture 38 , Dec. 2 (Wed.)
Outline for today: Wigner-Eckart (From Fri, onto ch. 4 on symmetries)
(3). Matrix elements of tensor operators (in angular momentum eigenstate basis)
(Wigner-Eckart theorem)
Motivation : interactions of atomic/ nudear states with EM field (e.g., chapter 5 in Phys 623 or AM O), ie., transition amplitude \sim
 eigenket

- Properties deduced from"kinematics or geometry" (rest depends on "non-angular" features, e.g, radial part of wavefunctions, thus needs case-by-case analysis)
(i). Kinematics - based selection rule:

$$
\begin{aligned}
& \left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right| T_{q}^{(k)} \mid \alpha, \underbrace{\substack{\text { radial } \\
\text { quantum } \\
\text { number }}}_{\substack{\text { e.g., }}}
\end{aligned}
$$

unless $m^{\prime}=q+m$

$$
\begin{aligned}
& \text { Proof: use }\left[J_{z}, T_{q}^{(k)}\right]=\hbar q \tau_{q}^{(k)} \text { to write } \\
& \left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right|\left[\left(J_{z,} T_{q}^{(k)}\right]-\hbar q T_{q}^{(k)}| | \alpha, j m\right\rangle=0 \\
& \left.\left.=\left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right| \frac{J_{z} T_{q}}{m^{\prime} \hbar}{ }^{(k)}-\tau_{q}^{(k)} J_{z}-\hbar q T_{q}^{(k)} \right\rvert\, \alpha, j m\right) \\
& =\left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right| T_{q}^{(k)}|\alpha, j m\rangle \hbar\left(m^{\prime}-m-q\right)
\end{aligned}
$$

$\Rightarrow\langle\alpha, j m| T^{(k)}|\alpha, j m\rangle \neq 0$ only if $m^{\prime}-m-q=0$
[Not so simple for Cartesian tensor operator... have to decompose it into spherical tensor operators...]
(2). Wigner-Eckart theorem, giving another selection rule for matrix element of spherical tensor operator, $\underbrace{\left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right|}_{\text {different... }} \tau_{q}^{(k)} \underbrace{\mid \alpha, j m)}_{\text {angular momentum eigenket }}$
Intuition: even for given j, j^{\prime}, too many "orientations" to consider: m, m " (of initial \& final states) and q (of tensor operator!
Instead of computing each case separately, it suffices to do it for one (suitably chosen)
easier to compute?) set of orientations; then obtain rest (for other values of m, m^{\prime}, q) in terms of "seed/parent" using "geometry"
Claim (proof in Sakurai)
$\left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right| T_{q}^{(k)}|\alpha, j m\rangle=\underbrace{\left\langle j k ; m q \mid j^{k} ; j^{\prime} m^{\prime}\right\rangle}_{C G \text { coefficient }}$
$\times\langle\alpha^{\prime}, j \underbrace{\| \|_{\mathcal{F}}}_{\uparrow} \tau^{(k)} \underbrace{\|} \alpha, j\rangle / \sqrt{(2 j+1)}$
notation: independent of $m, m^{\prime} \& q$
(orientations relative to z-axis)
Realizes" intuition: matrix element of (spherical) tensor operator "factorizes": it is product of
(1). CG coefficient as relevant for adding $j m$ (initial state) \& $k q$ (ot operator) to get $j^{\prime} m^{\prime}$ (final state): for given j, j^{\prime}, this part depends only
on orientations (geometry) , not on radial part (α) of initial/final state wavefunctions \ldots or other than angular features of operator
(2). "dynamical" factor: $\left\langle\alpha^{\prime}, j\left\|T^{(k)}\right\| \alpha, j\right\rangle$ which does not depend on $m, q \& m^{\prime}$ (geometry), but contains information about r adial part of wavefunctions (and non-angular details of tensor operator)
\Rightarrow In order to compute matrix elements for various $m, q \& m^{\prime}$,
step (a): calculate for one choice of m, m^{\prime} \& q (involved: radial integrals... but no need to do it again!)
step (b): get other matrix elements via CG coefficients (kinematical factor)

CG coefficient non-vanishing
(hence selection rule) only if
(i) $m^{\prime}=m+q$ (same as earlier)
(ii). $|j-k| \leqslant j^{\prime} \leqslant(j+k)$

Examples (more in HW 10)
(I). Scalar operator: $T_{0}^{(0)^{\notin K} \equiv S \Rightarrow}$

$$
\begin{aligned}
& \left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right| s|\alpha, j m\rangle=\frac{\left.\left\langle\alpha^{\prime}, j\right||s| \alpha, j\right\rangle}{\sqrt{(2 j+1)}} \\
& x j j^{\prime} \delta m m^{\prime} \\
& |i-0|<i^{\prime}<i+0 \quad m^{\prime}=m+
\end{aligned}
$$

$$
\left|j-0_{k^{\top}}^{\top}\right| \leq j^{\prime} \leq j+o_{k}{\underset{m}{\prime}}_{k}^{k}+
$$

as expected based on operator carrying"no angular momentum" ($k=0 ; q=0$), so cant change j or m of initial state
(II). Vector operator/spherical rank 1 tensor operator

$$
\begin{aligned}
& v_{i=1,2,3} \text { (or } x, y, z \text {) "rearranged' } \\
& \text { as } V_{q}=0, \pm 1 \Rightarrow \\
& \Delta m=m^{\prime}-m= \pm 1,0 \quad(=q) \& \\
& \overbrace{}^{(j-1)} \text { for } j \geqslant 1 \\
& \overbrace{\mid j-1}^{\lambda} \mid \leqslant j^{\prime} \leqslant j+1 \underbrace{}_{k} \\
& \Rightarrow-1 \leqslant \underbrace{j^{\prime}-j}_{\Delta j} \leqslant+1 \\
& \text { ide., } \Delta j=\left\{\begin{array}{c}
\pm 1 \\
0
\end{array} \text { for } j \geqslant 1\right.
\end{aligned}
$$

However, for $j=O\binom{$ inititial state }{ rotation_inariant } , we get

$0 \rightarrow 0$ transition forbidden (as expected based on operator having non-zero("̈ne"), thus must give final state with non-zero (one) angular momentum when acting on initial state with vanishing angular momentum

- Restricting to $j^{\prime}=j$ (initial \& final j same) and vector operator. WE becomes "projection theorem" (see Sakurai)

