Lecture 37 , Nov. 30 (Mon.) (continued from lecture 36 notes) Outline for today (\& wed.): after
(1). Vectors, go to (2) Tensors: Cartesian defined as "generalization" of (Cartesian) vector
(a). Cartesian tensor (obtained by "product"
of -Cartesian-vectors) decomposes into irreducible spherical tensors, defined as generalization of spherical harmonies
(b). Product of spherical tensors (similar to product of (artesian vectors)
(3). Martix elements of tensor operators (Wigner-Eckart theorem), egg., EM transition amplitude (chapter 5: Phys 623 or AMD)
(a) Product of Cartesian vectors (Cartesian tensor) motivates spherical tensor

Dyadic : $T_{i j} \equiv U_{i} V_{j}$, where
\bar{U}, \bar{v} are vectors (numbers for now: $i, j=1,2,3$), transforming as (based on \bar{U}, \bar{V} properties) rank two tensor:

$$
\begin{aligned}
T_{i j} & \longrightarrow \sum_{i^{\prime}} \sum_{j^{\prime}} R_{i i^{\prime}} R_{j} j^{\prime} T_{i^{\prime}} j^{\prime} \\
\text { given } U_{i} & \longrightarrow \sum_{i^{\prime}} R_{i i^{\prime}} U_{i^{\prime} ;}, v_{j} \rightarrow \sum_{j^{\prime}} R_{j j^{\prime}} U_{j^{\prime}}
\end{aligned}
$$

- Teas 9 components -"disadvantage": $T_{i j}$ is reducible it splits into multiple "objects transforming differently \& independently ("within themselves") under rotations

$$
\begin{aligned}
& U_{i} V_{j}=\underbrace{\frac{\bar{U} \cdot \bar{V}}{3} \delta_{i j}}_{\text {trace }}+\underbrace{\left.\left(\frac{\left.U_{i} v_{j}-U_{j} v_{i}\right)}{2}\right) \begin{array}{c}
\text { (check: } \\
3 \text { Rus } \\
\text { terms } \\
\text { add } \\
\text { add } \\
\text { is }
\end{array}\right)}_{\text {anti -symmetric }} \\
& +\left[\left(U_{i} v_{j}+U_{j} V_{i}\right) / 2-\frac{\bar{U} \cdot \bar{v}}{3} \delta_{i j}\right], \text { trace less, symmetric }
\end{aligned}
$$

- Trace" component(1) under rotations is invariant
- Anti-symmetric (number of components:
${ }^{3} C_{2}$: off-diagonal $=3$ / transforms as vector: $T_{i j}^{\text {anti-symmetric }} \propto \varepsilon_{i j k}(\bar{v} \times \bar{v})_{k}$
- Traceless, symmetric: number of components $={ }^{3} C_{2}$ (off-diagonal) +3 (diagonal) -1 (traceless)
$=5$, ie., sanity check: total a to begin with
- 1 (trace)
- 3 (antisymmetric)
- Note: dyadic breaks up into objects with d.o.f. "iorrespoinding to" angular $\ell=0,1,2$, "like" spherical harmonics ("tensors"):

$$
\begin{aligned}
& Y_{l} m-l,-l+1 \ldots l-1, l(=2 l+1 \text { values }) \\
& (\theta, \phi)
\end{aligned}
$$

\ldots... is is decomposition of Cartesian tensor into irreducible spherical tensors

Well define spherical tensor operators in terms of transformation under rotations, or (equivalently) commutation relations with angular momentum operators ... Just like with vectors

- Just like with vector operators, start classically, ie., with numbers; here, with spherical harmonics (motivated by above)
- So, warm-up with example/ one way to build spherical tensor (numbers to begin with \rightarrow operators later):

$$
\begin{aligned}
& Y_{l}^{m}(\underbrace{\theta, \phi}_{\hat{n}}) \xrightarrow{\hat{n} \rightarrow \bar{V} \text { (vector) }} \left\lvert\, \begin{array}{l}
\left.\left.\begin{array}{l}
m=q \\
l=k
\end{array} \right\rvert\, \bar{V}\right)
\end{array}\right. \\
& \text { spherical tensor of } \\
& \text { rank K, with } \\
& (2 k+1) \text { components } \\
& \text { (values of (q) } \\
& \text { "magnetic" } \\
& \text { <rank } \\
& \text { ("like" l) } \\
& \text { quantum number } \\
& \text { ("like" m) }
\end{aligned}
$$

... still a bit abstract, so choose $k=1$, ie., $\ell=1$ spherical harmonics, with $\cos \theta=\frac{z}{r}=(\hat{n})_{z} \rightarrow V_{z}$ and $\sin \theta e^{ \pm i \phi}=\frac{x \pm i y}{r} \longrightarrow V_{x} \pm V_{y} i$ so that

$$
Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta \longrightarrow T_{0}^{(1)}=\frac{3}{4 \pi} V_{0}\left(=V_{z}\right)
$$

$$
Y_{1}^{ \pm 1}=F \sqrt{\frac{3}{4 \pi}} \frac{\sin \theta e^{ \pm i \phi}}{\sqrt{2}} \rightarrow T_{ \pm 1}^{(1)}
$$

$\begin{aligned} & \text { Note: rank } 1 \text { spherical } \\ & \text { Tensor is just Cartesian } \\ & \text { "re-written"] }\end{aligned}=\sqrt{\frac{3}{4 \pi}\left[\mp \frac{\left(V_{x} \pm i V_{y}\right)}{\sqrt{2}}\right]}$
Similarly, rank $2\left[T_{q}^{(2)}\right.$ is 1 part $T_{i j} V_{ \pm 1}$

$$
Y_{2}^{ \pm 2}=\sqrt{\frac{15}{32 \pi}}(\frac{x \pm i y}{r_{\text {ktheck }}^{2}} T_{ \pm 2}^{(2)}=\sqrt{\frac{15}{32 \pi}} \underbrace{\left(V_{x}+i V_{y}\right)^{2}}_{2\left(V_{ \pm 1}\right)^{2}}
$$

... again, one path to T's not yet formal definition or operators/

Advantage of $\tau_{q}^{(k)}$ (spherical) [over $T_{i j}$ (Cartesian)]: ir reducible (like Y_{l}^{m} 's) ... leads us to transformation under rotations: "inspired" by how $y_{e}^{m}(\theta, \phi)$ transform, "translating" that to $Y_{\ell(=k)}^{m(=q)}(\bar{V}) \ldots$ finally, $\tau_{q}^{(k)}$ operator
[again, similar prescription as for vectors classical/number \rightarrow operator]

- Start with $|\hat{n}\rangle \rightarrow \theta(R)|\hat{n}\rangle$

$$
=\left|\hat{n}^{\prime}\right\rangle
$$

- Use

$$
\langle\hat{n}| D\left(R^{-1}\right)|l, m\rangle=\sum_{m^{\prime}}\left\langle\hat{n} \mid l, m^{\prime}\right\rangle \underbrace{\theta_{m}^{(l)} m\left(R^{-1}\right)}_{\begin{array}{c}
\text { matrix element } \\
\text { of } \theta\left(R^{-1}\right)
\end{array}}
$$

[Use $\langle\hat{n} \mid \ell, m\rangle=Y_{\ell}^{m}(\underbrace{\theta, \phi}_{\hat{n}-})$ on
both sides and $\left\langle\hat{n}^{\prime}\right|=\langle\hat{n}|[\boldsymbol{D}(R)] \overline{(0 n}\langle H S)$ $=\langle\hat{n}| D\left(R^{-1}\right)$, since θ is unitary: $\left.\theta\left(R^{-1}\right)=[\theta(R)]^{+}\right]$

$$
Y_{l}^{Y_{l}^{m}\left(\hat{n}^{\prime}\right)}=\sum_{m^{\prime}} Y_{l}^{m^{\prime}}(\hat{n}) \theta_{m^{\prime} m}^{(l)}\left(R^{-1}\right)
$$

ie, how $y_{e}^{m}(\hat{n})$ transforms...
\ldots with $\hat{n} \rightarrow \bar{V}, Y_{l}^{m}(\bar{V})$ rotate similarly ...
\Rightarrow promoting \bar{V}, hence $Y_{l}^{m}(\bar{V})$ also, to operator, it is reasonable to require

$$
\theta^{+}(R) V_{l}^{m}(\bar{V}) \theta(R)=\sum_{m^{\prime}} Y_{l}^{m^{\prime}}(\bar{V}) \theta_{m^{\prime}}^{(l)^{*}}(R)
$$

transformation of operator ("like" \bar{V} itself)

$$
\begin{gathered}
\text { use } \\
\theta\left(R^{-1}\right)=[\theta(R)]^{+}
\end{gathered}
$$

\Rightarrow in general, spherical tensor operator in QM defined as (via fundamental (rotational property)

$$
\begin{aligned}
& \theta^{+}(R) T_{q}^{(k)} \theta(R)=\sum_{q^{\prime}=}^{q^{r a n k}} \theta_{q q^{\prime}}^{(k)}(R) T_{q^{\prime}}^{(k)} \\
& \begin{array}{l}
(2 k+1)^{\prime} \\
\text { components }
\end{array}=\sum_{q^{\prime}} \theta_{q^{\prime} q}^{(k)}(R) T_{q^{\prime}}^{(k)}
\end{aligned}
$$

... "forgetting" its (possible)"origin" as $Y_{l}^{m}=k(\bar{V})$ (in motivating example), eeg.,

$$
\left(U_{x}+i U_{y}\right)\left(U_{x}+i U_{y}\right)(U \neq V) \text { is } T_{2}^{(2)}
$$

even if unlike $\left(V_{x}+i V_{y}\right)^{2}$ (of before), it's not of form $Y_{2}^{2}(\bar{V})$ [again, $Y_{l}^{m}(\bar{V})$ is one option to get T...]

- Equivalently, $T_{q}{ }^{(k)}$ defined using its commutation relations with angular momentum...
...follows from infinitesimal version of above: angular momentum eigenkets)

$$
\Rightarrow\left[\bar{J} \cdot \hat{n}, T_{q}^{(k)}\right]=\sum_{q^{\prime}} \tau_{q^{\prime}}^{(k)}\left\langle k q^{\prime}\right| \bar{J} \cdot \hat{n}|k q\rangle
$$

In order to "collapse" $\sum_{\text {q", }}$ choose
(a). $\hat{n}=\hat{z}$ so that on RHS, $\left\langle k q^{\prime}\right| J_{z}|k q\rangle$

$$
=q \delta q^{\prime} q \hbar
$$

giving $\left[J_{z}, T_{q}(k)\right]=\hbar q T_{q}(k)$
(b) $\hat{n}=\hat{x} \pm i \hat{y}$ and

$$
\left\langle k, q^{\prime}\right| J_{ \pm}|k, q\rangle=\delta_{q^{\prime}, q \pm 1 \sqrt{(k \mp q)(k \pm q+1)} \hbar}^{(k)}
$$

to get $\sqrt{\left[J_{ \pm}, T_{q}^{(k)}\right]=\hbar \sqrt{(k \mp q)(k \pm q+1)} \tau_{q \pm 1}^{k}}$
special case: $k=1 \ldots$ reduces to vector with $\left[V_{i}, J_{j}\right]=i \varepsilon_{i j k} \hbar V_{k}$

Product of spherical tensors (cf. earlier, product of Cartesian vectors gave scalar, vectors/anti-symmetric tensor \& traceless symmetric tensor), e.g., "multiply"two spherical rank 1 tensors["same" as Cartesian vectors]
recalling $V_{x, y}, z($ Cartesian $) \longrightarrow V_{0}\left(=V_{z}\right) \&$

$$
V_{ \pm 1}\left[=\mp \frac{\left(V_{x} \pm i V_{y}\right)}{\sqrt{2}}\right]
$$

$\left(V_{q}\right.$, with $q=0, \pm 1$ are components of spherical tensor/

$$
\begin{aligned}
& T_{0}^{(0)}=-\frac{\bar{U} \cdot \bar{V}}{3}=\frac{\left(u_{+1} v_{-1}+U_{-1} v_{+1}-U_{0} v_{0}\right)}{3} \\
& T_{q}^{(1)}=(\bar{U} \times \bar{v})_{q /(i \sqrt{2})} \\
& T_{ \pm 2}^{(2)}=U_{ \pm 1} v_{ \pm 1} ; T_{0}^{(2)}=\frac{\left(u_{+1} v_{-1}+U_{-1} v_{+1}+2 u_{0} v_{0}\right)}{\sqrt{6}} \\
& T_{ \pm 1}^{(2)}=\left(u_{ \pm 1} v_{0}+U_{0} v_{ \pm 1}\right) / \sqrt{2}
\end{aligned}
$$

check compare above $\tau_{q}^{(k)} / s$ (product of $\begin{aligned} &\left.\bar{V} \text { or } T^{(1)} ' s\right) \text { with } Y_{l}^{m} \underbrace{(\theta, \phi}_{\hat{n}})(\text { and }\left.\hat{n} \rightarrow \bar{V} ; V_{i} \rightarrow V_{a}\right) \text {, e.g. } \\ & \text { (earlier way) }\end{aligned}$

$$
T_{ \pm 2}^{(2)}(\text { for } u=v)=V_{ \pm 1}^{2}=\left(\frac{v_{x} \pm i v_{y}}{\sqrt{2}}\right)^{2}
$$

$\propto Y_{2}^{ \pm 2}(\bar{V})$, since $Y_{2}^{ \pm 2}(\theta, \phi) \propto\left(\sin \theta e^{ \pm i \phi}\right)^{2}$

$$
=[\underbrace{(x \pm i y) / r}_{\rightarrow v_{x} \pm i v_{y}}]^{2}
$$

Similarly, above $T_{0}^{(2)}(w i t h$

$$
\begin{aligned}
& U=\bar{v})=\left[-\left(v_{+} v_{-}\right)^{2}+v_{0}^{2}\right] 2 / \sqrt{6} \\
& =\left[-\frac{\left(v_{x}^{2}+v_{y}^{2}\right)}{2}+v_{z}^{2}\right] 2 / \sqrt{6}
\end{aligned}
$$

$\propto Y_{2}^{\circ}(\bar{V})$, since $y_{2}^{0}(\theta, \phi)=\sqrt{\frac{5}{16 \pi}}\left(\frac{3 z^{2}-r^{2}}{r^{2}}\right)$

$$
\infty \underbrace{[(2)}_{\rightarrow V_{z}^{2}} z^{2}-\underbrace{\left(x^{2}+y^{2}\right)}_{\rightarrow V_{x}^{2}}]
$$

More systematically, use theorem: if $X_{q_{1}^{(}}^{\left(k_{1}\right)} \& z_{q_{2}}^{\left(k_{2}\right)}$ are irreducible tensors of rank $k_{1,2}$, then

$$
\begin{gathered}
\left.T_{q}^{(k)}=\sum_{q_{1}} \sum_{2}\left\langle k, k_{2} ; q_{1} q_{2} \mid k_{1} k_{2} ; k q\right\rangle\right\} \text { coefficient } \\
\times \times q_{1}^{\left(k_{1}\right)} z_{q_{2}}\left(k_{2}\right) \\
\end{gathered}
$$

is spherical tensor of rank k. "Intuition" (proof in Sakurai): "like" adding two angular momenta to generate other values (hence same CG coefficients appear) \Rightarrow it's "like" $T_{q}^{(k)}$ has "angular momentum $k^{\prime \prime}$ with z-component being q/, even though it's operator (not state)

