Lecture 36 , Nov. 23 (Mon.)
(continued from lecture 35 notes)
Tensor operators (sec 3.11)
-So far, how states transform under rotations: next, rotational properties of operators

- Motivation : EM field operator causes transitions between atomic states, so rotational properties of "ingredients" (EM field operator \& states) of transition amplitude elucidates its structure (gives "selection rules")
- outline for next few lectures
(1). Vector operators (simple), e.g.,
$\bar{x}, \bar{P} ; \bar{S}, \bar{L}$ (latter generating rotations)
(2). Onto more complicated tensor operators /"generalizin g"vector) $e \circ g .$, in $4 d, \underbrace{\mu \nu}(E M$ field $)=\bar{E}, \bar{B}$ antisymmetric \Rightarrow only 6 components
or $g_{\mu \nu}$ (metric tensor) ($={ }^{4} C_{2}$)
or generator of Lorentz transformations (boosts \& rotations)
(a). Cartesian tensor (obtained by product of vectors) decomposes into irreducible spherical tensors
(b). Product of spherical tensors
(3). Martix elements of tensor operators (wigner-Eckart theorem), e.g., EM transition amplitude (chapter 5: Phys 623)
(1). Vector operators $[e \cdot g, \bar{x}, \bar{p}, L]$: rotations generated by \bar{J}, so how operator, A transforms under rotations "defined/dictated" by $[A, \bar{J}]$... kind of
"like" time-evolution of A (in H-picture) given by $[A, H]$, where Hamiltonian generates time translation
- Classically, vector (3 components) transform as $V_{i} \rightarrow \sum \underbrace{R_{i j}} V_{j}$ under rotations number 3×3 orthogonal
- So, by Ehrenfest theorem, expectation value of operator in QM transforms likewise: using $|\alpha\rangle \rightarrow D(R)|\alpha\rangle$, we get $\langle\alpha| V_{K_{i} \text { operator }}^{V_{i}|\alpha\rangle}\langle\alpha| \theta^{+}\left(R\left|V_{i} D(R)\right| \alpha\right\rangle$

$$
\text { require } \sum_{i j} R_{i j}\langle\alpha| V_{j}|\alpha\rangle
$$

for any let \Rightarrow at operator-level,

$$
D^{+}(R) V_{i} D(R)=\sum_{i j} R_{i j} V_{j}
$$

-Go to infinitesimal version

$$
\begin{gathered}
D(R)=1-i \varepsilon \bar{J} \cdot \hat{n} / \hbar \Rightarrow \\
\operatorname{D}^{+}(R) V_{i} D(R) \simeq(1+i \varepsilon \bar{J} \cdot \hat{n} / \hbar) V_{i}\left(1-i \varepsilon \frac{\tilde{J} \cdot \hat{n}}{\hbar}\right) \Rightarrow
\end{gathered}
$$

$$
V_{i}+\frac{\varepsilon}{i \hbar}\left[\begin{array}{c}
\left.\left.V_{i}, \bar{J} \cdot \hat{n}\right]_{(\text {drop }} \varepsilon^{2}\right)
\end{array}=\sum_{j} R_{i j}(\hat{n} ; \varepsilon) V_{j}\right.
$$

-choose $\hat{n}=\hat{z}$ so that

$$
\begin{aligned}
& R(\hat{z} ; \varepsilon)=\left(\begin{array}{ccc}
1 & -\varepsilon & 0 \\
+\varepsilon & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& i=1: V_{x}+\frac{\varepsilon}{i \hbar}\left[V_{x}, J_{z}\right]=V_{x}-\varepsilon V_{y} \\
& i=2: V_{y}+\frac{\varepsilon}{i \hbar}\left[V_{y}, J_{z}\right]=\varepsilon V_{x}+V_{y} \\
& i=3: V_{z}+\frac{\varepsilon}{i \hbar}\left[V_{z}, J_{z}\right]=V_{z} \\
& \Rightarrow \\
& \frac{\left[V_{i}, J_{j}\right]=i \varepsilon_{i j k} \hbar V_{k}}{i \cdot e, " s a m e " \text { as } J_{i}}
\end{aligned}
$$

- Finite rotation of V given by

$$
\exp \left(\frac{i J_{j} \phi}{\hbar}\right) V_{i} \exp \left(-i J_{j} \phi / \hbar\right)
$$

...use Baker-Hausdorff formula (like done for \bar{s} operator) to get

$$
\begin{aligned}
& \exp \left(i J_{z} \phi / \hbar\right) V_{x} \exp \left(-i J_{z} \phi / \hbar\right) \\
& =V_{x} \cos \phi-V_{y} \sin \phi
\end{aligned}
$$

\Rightarrow define vector operator by

$$
\left[V_{i}, J_{j}\right]=i \varepsilon_{i j k} \hbar V_{k}
$$

\bar{J} itself is vector; similarly $\bar{x}, \bar{\beta}$
(2)... generalize to tensor (rank, Cartesian , $T_{i j k . . .}$:

$$
T_{i j k} \rightarrow \sum_{i^{\prime}} \sum_{j^{\prime}} \sum_{k^{\prime}} \ldots R_{i i} R_{j j^{\prime}} R_{k k^{\prime}} \ldots T_{i^{\prime} j^{\prime} k^{\prime} \ldots}
$$

(rotate each index of T like $V \ldots$)

