Lecture 133/, Nov. 16 (Mon.) Outline for today (& Wed.) - Calculation of CG coefficients for l (+) s (= 1/2) as example of general strategy - spin-angular part of wavefunction - Connecting CG coefficients to rotation matrices - Schwinger's model: connecting sho to angular momentum Example of bootstraping to calculate CG coefficients for $\ell + 5 = \frac{1}{2} : m_1 = m_{\ell} = -\ell ... to + \ell$ $8 m_2 = m_5 = \pm \frac{1}{2}$, with $j = l \pm \frac{1}{2}$ -Only two rows in m_1=me, m_2=ms plane => modify general strategy - specialize (to begin with) to j=l+1/2 -Steps: (1). choose some m and $(m_2 = |m_s = +1/2)$ [upper]

$$(m_2 =)$$
 m_S
 $+1/2$
 $start: 0 - - B$
 $(m_1 =)$ m_R
 $(m_1 =)$ m_R

Pare nt | Seed | Starting point (A):

 $(m - 1/2, + 1/2)$

(3). As per (d) of general strategy, apply

 T recursion relation (lower triangular), with A on base, such that x is forbidden:

 $B[m_S = +1/2](some as A), m_R = m + 1/2 (1)$

higher than $A \Rightarrow m+1$ vs. m for A

gets related (only) to A (move right horizontally by 1)

$$\sqrt{(ll + \frac{1}{2} + m + 1)(ll + \frac{1}{2} - m)(m - \frac{1}{2}, \frac{1}{2} | l + \frac{1}{2}, m)} \\
(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

$$(m_2 =) m_3 = + \frac{1}{2}$$

$$(m_1 =) m_2$$

unchanged $(m + 3/2, (\frac{1}{2}) + (\frac{1}{2}) + (\frac{1}{2}) + (\frac{1}{2})$ CG of C (5). Hopping to right along bases of J_ (lower)triangles stops when we reach me = +l (maximum allowed): further I_gives 0 $\Rightarrow (m - \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = \sqrt{(l + m + \frac{1}{2})} \times (G \text{ of } \frac{1}{2}, \frac{1$ (l, 1/2 | l+ 1/2) (maximum) me (maximum) (6). This extreme case: Me = l&

 $m_s = \frac{1}{2} \left(\frac{1}{2} \right) m = l + \frac{1}{2} is not$ allowed for other j=(l-1/2), since maximum m-value for latter is $(l - \frac{1}{2})$ $\Rightarrow | m_l = l, m_s = \frac{1}{2} | in old basis$ must be = 1/2, m+1/2) in new basis (up to phase: set to 1) [For non-extreme melin general, | me, ms = + 1/2 > in old basis = Sum of |j=l+1/2|, $m=m_2+1/2$)

absent for extreme m_1 |j=l-1/2|, $m=m_2+1/2$) $\Rightarrow \left(\frac{l}{2} \right) \left(\frac{l+1}{2}, \frac{l+1}{2} \right) = 1$ $m_{e} \quad m_{s} \quad m_{s} \quad (cG \text{ of extreme right of } m_{s} = \frac{1}{2} \text{ line})$

So, we get for CG of A,

$$(m-\frac{1}{2},\frac{1}{2}(l+\frac{1}{2},m) = \sqrt{(l+m+\frac{1}{2})}$$

 $(2l+1)$

... but not done yet! For given m, here are three other CG coefficients: & $(m \mp \frac{1}{2}, \pm \frac{1}{2} | l - \frac{1}{2}, m)$ another figure other 1

- Instead of using recursion relations again, consider base kets involved: | lt 1/2, m) in new basis & $m + \frac{1}{2}, + \frac{1}{2}$ $(m = m_{\ell} + m_{s})$ in old basis (for given m)

The above base kets form "closed system", e.g., |l+1/2, m) (new basis) cannot be expressed in terms of any other old base ket, since only above 2 ways to get m; similarly $|m-1/2,+1/2\rangle$ (old basis) must be contained in 12± 2 m) in new basis, since old base ket has $m_1 + m_2 = m$, matching new base kets => 2 x 2 or Maganal matrix to go between above pairs of base kets (its elements are CG coefficients): (l-1/2,m) = -sin x (m-1/2, 1/2) + + cos a | m + 1/2, -1/2) $(m-\frac{1}{2},\frac{1}{2})(l+\frac{1}{2},m)=(m-\frac{1}{2},\frac{1}{2})(c_{\alpha}(m-\frac{1}{2},\frac{1}{2})+c_{\alpha}(m-\frac{1}{2},\frac{1}{2})+c_{\alpha}(m-\frac{1}{2},\frac{1}{2})+c_{\alpha}(m-\frac{1}{2},\frac{1}{2})$ $\left(m-\frac{1}{2},+\frac{1}{2}\right) > \alpha \mid m+\frac{1}{2},-\frac{1}{2}$ [Full (G_ matrix is (2j1+1)x(2j2+1) = $(j_2 = \frac{1}{2}, j_1 = \ell)$ 2(21+1)-dimensional] Use above CG coefficient (m-1/2,1/2/12+1/2,m) on LHS and orthonormality on RHS gives $C_{\alpha} = \int (l + m + 1/2)/(2l+1)$ sanity check: $(l + m + 1/2) \le (2l+1)$

 $\Rightarrow S_{\alpha} = + \left(l - m + \frac{1}{2}\right) / (2l+1) \quad \text{(convention + bit)}$ $m_{1} = m_{2} \quad m_{2} = m_{3} \quad \text{(of work: see below)}$ $[\text{In detail, sin} \alpha = (m + \frac{1}{2}, -\frac{1}{2}|l + \frac{1}{2}, m), \text{ but all } j = l + \frac{1}{2}$ states, such as $|1+\frac{1}{2},m\rangle$, generated by J_a acting on |l+1/2(-j),(m-)l+1/2, which is $|(m_1=m_2=)l,(m_2=m_S=)+\frac{1}{2})$... with J_ matrix elements (here in old m1, m2 basis) > 0 by choice ... all together, we get sin <> 0!] So, 2nd CG coefficient for l+1/2, i.e., $\langle m + \frac{1}{2}, -\frac{1}{2} | \ell + \frac{1}{2}, m \rangle = S_{\alpha} \text{ etc...}$ Aside: "total" (non-radial) wavefunction for above states (spin-angular functions)

y j=l±½, m

m_l+m_s (new basis)

= cos x or-sin x (see above) $Y = \frac{m - 1}{2} (\theta, \phi) \times_{+} (= \frac{1}{0})$ $\pm\sqrt{\frac{l\pm m+\frac{1}{2}}{(2l+1)}}$ l me orbital part spin part M5 = + 1/2 $\frac{\sin \alpha \operatorname{or} \cos \alpha}{1/2}$ $\gamma_{e}^{m+1/2}(\theta,\phi) \times \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $m_S = -\frac{1}{2}$

Simultaneous eigenkets of $[L(z)]^2 [J]^2 [J]^2$

[.5] eigenvalue =
$$\frac{\hbar^{2}}{2}[j(j+1)-l(l+1)-\frac{3}{4}]$$

= $\int l \, \hbar^{2}/2$ for $j = l + \frac{1}{2}$
 $-\frac{\hbar^{2}}{2}(l+1)$ for $j = l - \frac{1}{2}$
 \Rightarrow degeneracy in $l \, l \, l \, s \, s \, lifted)$