Lecture 33 , Nov. 16 (Mon.)
outline for today (\& wed.)

- Calculation of CG coefficients for
$l \oplus S(=1 / 2)$ as example of general strategy
- spin-angular part of wavefunction
- Connecting CG coefficients to rotation matrices
- Schwinger's model: connecting SHO to angular momentum
Example of bootstraping to calculate CG coefficients for
$l \oplus s(=1 / 2): m_{1}=m_{l}=-l \ldots t_{0}+l$
\& $m_{2}=m_{s}= \pm 1 / 2$, with $j=l \pm 1 / 2$
- only two rows in $m_{1}=m_{l}, m_{2}=m_{s}$ plane \Rightarrow modify general strategy
- specialize (to begin with) to $j=l+1 / 2$
- Steps: (1). choose some m and $\left(m_{2}=1 /\left(m_{s}=+1 / 2\right)\right.$ upper

$(2) \cdot m_{l}\left(=m_{1}\right)=m-m_{1}=m-1 / 2$
Parent/seed/starting point (A)

$$
(m-1 / 2,+1 / 2)
$$

(3). As per (d) of general strategy, apply J_ recursion relation (lower triangular), with A on base, such that x is forbidden:

$$
B\left[m_{s}=+1 / 2(\text { same as } A), m_{l}=m+1 / 2(1\right.
$$

higher than $A \Rightarrow m+1$ us. m for A] gets related (only) to A (move right horizontally by 1)

$$
\begin{aligned}
& C G \text { of } A
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{(l+m+1 / 2)(l-m+1 / 2)} \underbrace{\left(m+\frac{1}{2}, \frac{1}{2} \left\lvert\, l+\frac{1}{2}\right., m+1\right)}_{C G \text { of } B} \\
& \Rightarrow \underbrace{\left(m-\frac{1}{2}, \frac{1}{2}\left|l+\frac{1}{2}, m\right\rangle\right.}_{C G \text { of } A}=\underbrace{\sqrt{\left.\frac{(l+m+1 / 2}{l+m+3 / 2}\right)}}_{C G \text { of } B})-1 \times
\end{aligned}
$$

(4). Keep applying I_ (relate B to $C . .1$ sliding to right on $m_{s}=+1 / 2$ line

$$
\underbrace{\left(m-1 / 2, \frac{1}{2} \left\lvert\, l+\frac{1}{2}\right.\right.}_{\text {cG of } A}, m)=\sqrt{\left(l+m+\frac{1}{2}\right)} \sqrt{\frac{(l+m+3 / 2)}{(l+m / 2)}} \times
$$

unchanged

$$
\underbrace{\left\langle m+3 / 2,\left(\frac{1}{2}\left|\ell+\frac{1}{2}, m+2\right\rangle\right.\right.}_{C G \text { of } C}
$$

(51. Hopping to right along bases of $J_{\text {_ (lower) triangles }}$ stops when we reach $m_{l}=+l$ (maximum allowed): further J_{-}gives 0

$$
\begin{aligned}
& \Rightarrow \underbrace{\left(m-\frac{1}{2}, \frac{1}{2}\left|\ell+\frac{1}{2}, m\right\rangle\right.}_{C G \text { of } A}=\sqrt{\frac{\left(l+m+\frac{1}{2}\right)}{(2 \ell+1)}} \times \text { CGof } \\
& \langle l, \frac{1}{2} \left\lvert\, \ell+\frac{1}{2} \underbrace{\ell+\frac{1}{2}}\right.\rangle \\
& \text { (maximum) } m_{l}{ }^{\prime} \\
& (\underset{m}{\text { maximum }})
\end{aligned}
$$

(6). This "extreme "case: $m_{l}=l$ \&
$m_{s}=1 / 2(\Rightarrow m=l+1 / 2)$ is not allowed for other $j=(l-1 / 2)$, since maximum m-value for latter is $(l-1 / 2)$ $\Rightarrow\left(m_{l}=\ell, m_{S}=1 / 2\right)$ in old basis must be
must be $1 e+1 / 2, m+1 / 2)$ in new basis (up to phase: set to 1)
[For non-extreme $m_{e / i n ~ g e n e r a l, ~}^{\text {gen }}$, $\left|m_{l,} m_{s}=+1 / 2\right\rangle$ in old basis $=$ sum of $\left|j=l+1 / 2, m=m_{l}+1 / 2\right\rangle$

$$
\begin{aligned}
& \& \quad\left|j=l-1 / 2, m=m_{l}+1 / 2\right\rangle \\
\Rightarrow & \langle l, 1 / 2
\end{aligned}|\underbrace{l+1 / 2}_{j}, \underbrace{l+1 / 2}_{m}\rangle=1
$$

$m_{l} m_{S} m_{\text {of extreme right of } m_{S}=\frac{1}{2} \text { line) }}$

So, we get for CG of A,

$$
\left\langle m-\frac{1}{2}, \frac{1}{2}\left(l+\frac{1}{2}, m\right\rangle=\sqrt{\frac{(l+m+1 / 2)}{(2 l+1)}}\right.
$$

... but not done yet!
For given m, there are three other

$$
\begin{aligned}
& C G \text { coefficients: } \\
& \langle\overbrace{m+1 / 2}^{m l},(-1 / 2) \mid \ell+1 / 2, m\rangle\left(\begin{array}{c}
\text { on lower } \\
\text { line of above } \\
\text { figure }
\end{array}\right) \\
& \&(m \mp 1 / 2, \pm 1 / 2|\underbrace{\ell-\frac{1}{2}}_{\text {omer } j}, m\rangle\binom{\text { another }}{\text { figure }}
\end{aligned}
$$

omer \dot{f}

- Instead of using recursion relations again, consider base kets involved $|\ell \pm 1 / 2, m\rangle$ in new basis \&

$$
\mid \underbrace{m \mp 1 / 2}_{m_{l}}, \underbrace{ \pm \pm 1 / 2}_{m_{s}})\left(\begin{array}{c}
\left.m=m_{l}+m_{s}\right) \text { in old basis } \\
\text { (for given } m
\end{array}\right.
$$

The above base kets form "close dsystem", e.g., $|\ell+1 / 2, m\rangle\binom{ n e \omega}{$ basis } can not be expressed in terms of any other old baseket, since only above 2 ways to get m; similarly $|\underbrace{m-1 / 2,+1 / 2}_{m_{1}}\rangle$ (ord obis) bust be contained in $\mid \ell \pm 1 / 2, m)$ in new basis, since old base ket has $m_{1}+m_{2}=m$, matching new base kets $\Rightarrow 2 \times 2$ orthogonal matrix to go between above pairs of base kets (its elements are $C G$ coefficients):

$$
\begin{aligned}
\left|l-\frac{1}{2}, m\right\rangle= & -\sin \alpha\left|m-1 / 2, \frac{1}{2}\right\rangle+ \\
& +\cos \alpha|m+1 / 2,-1 / 2\rangle \\
\left\langle m-\frac{1}{2}, \left.+\frac{1}{2} \right\rvert\, l+1 / 2, m\right\rangle= & \left\langle m-\frac{1}{2},+\frac{1}{2}\right| c_{\alpha}|m-1 / 2,+1 / 2\rangle+ \\
& \left\langle m-\frac{1}{2},+\frac{1}{2}\right| s_{\alpha}\left|m+\frac{1}{2},-1 / 2\right\rangle
\end{aligned}
$$

[Full C G-matrix is $\left(2 j_{1}+1\right) \times\left(2 j_{2}+1\right)=$ $\left(j_{2}=1 / 2 ; j_{1}=l\right) \quad 2(2 l+1)$-dimensional $]$ Use above CG coefficient $(m-1 / 2,1 / 2(l+1 / 2, m)$ on LHS and orthonormality on RHS gives

$$
c_{\alpha}=\sqrt{(l+m+1 / 2) /(2 l+1)} \quad \begin{aligned}
& \text { sanity check: } \\
& (l+m+1 / 2) \leqslant(2 l+1)
\end{aligned}
$$

$$
\Rightarrow s_{\alpha}=+\sqrt{(l-m+1 / 2) /(2 l+1)} \quad\binom{\text { convention }+ \text { bit }}{\text { of work: see below }}
$$

[In detail, $\sin \alpha=\left\langle m+1 / 2, \left.-\frac{1}{2} \right\rvert\, \ell+1 / 2, m\right\rangle$, but all $j=\ell+1 / 2$ states, such as $\left|l+\frac{1}{2}, m\right\rangle$, generated by $J_{\text {_ acting on }}$ $|\ell+1 / 2(=j),(m=) \ell+1 / 2\rangle$, which is $\mid\left(m_{1}=m_{l}=\right) l,\left(m_{2}=m_{s}=1+\frac{1}{2}\right\rangle$ with J. matrix elements (here in old m_{1}, m_{2} basis) >0 by choice... all together, we get $\sin \alpha>0$!
So, " $2^{n d}$ " $C G$ coefficient for $\ell+1 / 2$, ie., $\left\langle m+1 / 2,-\frac{1}{2} \left\lvert\, l+\frac{1}{2}\right., m\right\rangle=S_{\alpha}$ etc.
Aside: "total" (non-radial) wavefunction for above states (spin-angular functions)
 $=\overbrace{\text { os } \alpha-\cos \alpha}^{\cos }$ (see above)

$$
\begin{aligned}
& \pm \sqrt{\frac{l \pm m+1 / 2}{(2 l+1)}} \underbrace{\underbrace{m_{l}}_{l}}_{\text {orbital part }} \underbrace{\sin \alpha \text { or } \cos \alpha}_{\begin{array}{c}
\text { spin part } \\
m_{5}=+1 / 2
\end{array}} \\
& \sqrt[{+\sqrt{l \mp m+1 / 2}}]{2 l+1} y_{l}^{m+1 / 2(\theta, \phi)} \underbrace{\binom{0}{1}: m_{S}=-\frac{1}{2}}
\end{aligned}
$$

simultaneous eigenkets of $\mid\left[\left.\right|^{2},|\bar{s}|^{2},|\bar{J}|^{2} \& J_{z}\right.$, but not of L_{z}, S_{z} (separately) Also of $\bar{L} \cdot \bar{S}=\frac{1}{2}\left(|\bar{J}\rangle^{2}-|\bar{L}|^{2}-|\bar{S}|^{2}\right)$ (hence, relevant for spin-orbit coupling: these are (new) energy wavefunctions: again eigenstates of $\bar{L} \cdot \bar{S}$ (interaction) in H \& $|\bar{I}|^{2}$ contained in kinetic energy

$$
\begin{aligned}
& \text { L. } \bar{s} \text { eigenvalue }=\hbar^{2} / 2\left[j(j+1)-l(l+1)-\frac{3}{4}\right] \\
& =\left\{\begin{array}{cc}
l \hbar^{2} / 2 & \text { for } j=l+1 / 2 \\
-\hbar^{2} / 2(l+1) & \text { for } j=l-1 / 2
\end{array}\right. \\
& (\Rightarrow \text { degeneracy in } l \& s \text { sifted })
\end{aligned}
$$

