Lecture 32 , Nov. 13 (Frill: part(Ir)
outline: continue properties of $C G$ coefficients with goal of computing $C G$ coefficients (which determine transition amplitudes between initial \& final states which are "combinations" of angular momenta (spins andlor orbital motion)
(5). Recursion relation for CG coefficients
-connects CG coefficients with different indices [like with solving DE by series ansatz: here, used to compute CG coefficients (next topic)] - Recall definition of CG coefficients:

$$
\begin{aligned}
& \left|j_{1} j_{2} ; j m\right\rangle=\sum \sum\left|j_{1} j_{2} ; m_{1} m_{2}\right\rangle \times(c G \text { coefficient }) \\
& \text { basis (B) } m_{1} m_{2} \text { basis(A)(old) } \\
& \text { (new) } \\
& \left\langle j_{1} j_{2} ; m_{1} m_{2} \mid j_{1} j_{2} ; j, m\right\rangle
\end{aligned}
$$

- Consider fixed j_{1}, j_{2}, so for simplicity "drop" $j_{1} j_{2}$ label: $\left\langle m_{1} m_{2} \mid j m\right\rangle$ - with $j_{\text {min }}=\left|j_{1}-j_{2}\right| \leqslant j \leqslant j_{\text {max }}^{=}=\left(j_{1}+j_{2}\right)^{\text {index }}$ column index - Schematically, recursion relation:

$$
\left\langle m_{1} m_{2} \mid j m \pm 1\right\rangle \sim\left\langle m_{1} \mp 1 m_{2} \mid j m\right\rangle+\left\langle m_{2} m_{2} \mp 1 \mid j, m\right\rangle
$$

Features
(i). all 3 CG coefficients have same j (part of "column" index)
(ii) Rest of column index (m) : same for 2 RHS terms, but LHS is different by 1 ("net" column index different for LHS vs. full RHS)
(iii) "Row" index $\left(m_{1} m_{2}\right)$: same m_{2} for LHS \& $1^{\text {st }}$ RHS, but $2^{\text {nd }}$ RMS different; m_{1} same LHS \& $2^{\text {nd }}$ RMS, but different for $1^{\text {st }}$ RMS
\Rightarrow "net" row index different for all 3 terms

Derivation
(1).

$$
\begin{aligned}
J_{ \pm}|j m\rangle= & \left(J_{1 \pm}+J_{2 \pm}\right) \sum_{m_{1}^{\prime} m_{2}^{\prime}}\left|m_{1}^{\prime} m_{2}^{\prime}\right\rangle x \\
& \left\langle m_{1}^{\prime} m_{2}^{\prime} \mid j m\right\rangle_{\int_{\text {coefficient }} \text { (number) }}^{C G}
\end{aligned}
$$

(2) Use general result:

$$
J_{ \pm}|j m\rangle=C_{j m}^{ \pm}|j m \pm 1\rangle
$$

where $c_{j m}^{ \pm}=\sqrt{(j \mp m)(j \pm m+1)}$
(Just do J_{+}: J_{-}is analogous)

$$
\begin{aligned}
& \sum_{j m} m\left(\begin{array}{l}
m_{1} m_{2}|j m+1\rangle \\
c_{j} m_{1}^{\prime}\left\langle m_{1} m_{2}\right| m_{1}^{\prime}+1 \\
c_{j_{2}} m_{2}^{\prime}\left\langle m_{2}^{\prime}\right\rangle+m_{1} m_{2}\left|m_{1}^{\prime} m_{2}^{\prime}+1\right\rangle
\end{array}\right)
\end{aligned}
$$

(3) Use orthonormality of $\left(\mathrm{m} \mathrm{m}^{\prime}\right.$'s:

$$
\left\langle m_{1} m_{2} \mid m_{1}^{\prime} m_{2}^{\prime}\right\rangle=\delta_{m_{1} m_{1}^{\prime}} \delta_{m_{2} m_{2}^{\prime}}
$$

$\Rightarrow 1^{\text {st }}$ term on above RHS
$\left\langle m_{1} m_{2} \mid m_{1}^{\prime}+1 m_{2}^{\prime}\right\rangle$ sets

$$
m_{1}^{\prime}=m_{1}-1 \quad \& \quad m_{2}^{\prime}=m_{2}
$$

Similarly, in $2^{\text {nd }}$ term: $m_{1}^{\prime}=m_{1}$

$$
m_{2}^{\prime}=m_{2}-1
$$

So, recursion relation

$$
\begin{array}{r}
c_{j m}^{+}\left\langle m_{1} m_{2} \mid j m+1\right\rangle=c_{j_{2} m_{1}-1}^{+}\left\langle m_{1}-1 m_{2} \mid j m\right\rangle \\
+c_{j_{2}}^{+} m_{2}-1\left\langle m_{1} m_{2}-1 \mid j m\right\rangle
\end{array}
$$

Similarly, using J_ gives

$$
\left[\begin{array}{c}
C_{j m}\left\langle m_{1} m_{2} \mid j m-1\right\rangle=c_{j_{1} m_{1}+1}^{-}\left\langle m_{1}+1 m_{2} \mid j m\right\rangle \\
+c_{j_{2} m_{2}+1}^{-}\left\langle m_{2} m_{2}+1 \mid j m\right\rangle
\end{array}\right]
$$

Mote: for CG coefficients to be non-vanishing, we need as per property (1)

$$
\text { per property }\left(\begin{array}{l}
m_{1}+m_{2}=m \pm 1
\end{array}\right. \text { (spending) }
$$

but this is not explicitly applied above

- Display recursion relation in m_{1}, m_{2}-plane: J_ relates $C G$

$$
\text { at }\left(m_{1}, m_{2}\right) \text { to }\left(m_{1}, m_{2}+1\right) \&\left(m_{1}+1, m_{2}\right)
$$ [all 3 are "points" in plane] \Rightarrow a triangle

Similarly, J_{+}("upper triangular")

$$
\begin{aligned}
& 1^{\text {st }} \text { RHS } \leftarrow-\cdots \text { LHS }\left(m_{1} m_{2}\right) \\
& \left(m_{1}-1, m_{2}\right) \backslash J_{+} \\
& 2^{\text {nd }} \text { RHS } \\
& \text { (} m_{1}, m_{2}-1 \text {) } \\
& \text { (botom) }
\end{aligned}
$$

Finally, computing CG coefficients
Basic strategy :
(a). choose one $[\mathrm{see}(d)] C G$ coefficient as "parent/seed" (unknown at this stage: to be fixed in last step)
(b). Use recursion relations to express other CG coefficients in terms of seed (idea: bootstrap)
(c). Fix seed by normalization condition $[p$ roperty (4)], which in volves sum over (squares of) CG coefficients (now all written in terms of seed)
(d). However, recursion relation (in general) involves 3 CG coefficients (so "complicated" to express other $C G$ coefficients in terms of one seed/?!

No worries! For seeding, choose a special case where one CG coefficient vanishes due to raising/ lowering of highest (lowest allowed $m \Rightarrow$ bootstrap will work! Let's do it! Consider (m, m_{2}) plane for fixed $j_{1,2}$ and some choice of j in range
First, (I). chart "playground" (allowed $\left.m_{1,2}\right)$ based on (i). $\left|m_{1,2}\right| \leqslant j_{1,2} \&$
(ii). $\left|m_{1}+m_{2}(=m)\right| \leqslant j \leqslant j_{\max }, ~ m_{1}+m_{2}=\left(j_{1}+j_{2}\right)$

Play ball
(II). Start at A (upper right corner), will implement strategy (d)':

(IIJ). Use J_ (lower triangular)

$$
\begin{aligned}
&\left(m_{1} m_{2}|j m-1\rangle\right. \sim\left\langle m_{1}+1 m_{2} \mid j m\right\rangle+ \\
&\left\langle m_{1} m_{2}+1 \mid j m\right\rangle
\end{aligned}
$$

with $A\left(j_{1} y-j_{1}\right)$ being $2^{\text {nd }}$ RUS m_{1} (apex of D)
$\Rightarrow 1^{\text {st }}$ RHS has $m_{1}+1=j_{1}+1$, forbidden (point x outside of playground) \Rightarrow get rid of 1 CG in recursion relation B (as LHS) connected to A only $C G$ of B expressed in terms of $C G$ of A
(IV). To get to D, use J_{+} (upper triangular) on $A B D \Rightarrow$ $C G$ of D in terms of $C G$'s $A \& B$ (all 3 CG's non-vanishing/,but Ok! \Rightarrow given (III) [relates $C G$ of $A \& B]$, $C G$ of D from $C G$ of $A \ldots($ continue)
$C G$ of E from $\triangle D B E \ldots$
(V) Similarly, go up in m_{2}
\triangle GAD gives $C G$ of G in terms of $C G$ of A [via $C G$ of D from (IV)] ... every $C G$ of playground gotten in terms of $C G$ of A (only 1 unknown) ... fix $C G$ of A (hence rest) from normalization condition (sum of squares of CG's)
Example: add \bar{L} and \bar{S} of single spin-1/2 particle (fine structure of one-electron atom) so that $g_{1}=l$; $m_{1}=m_{l}[=-l,-l+1 \ldots 0 \ldots l-1, l] \&$
$j_{2}=s=\frac{1}{2} ; m_{2}=m_{s}[= \pm 1 / 2] \Rightarrow$ allowed $j=(l \pm 1 / 2)$ for $l>0\binom{j=1 / 2$ for }{$l=0}$ e.g, $l=1$ (p-wave) gives $P_{j}=3 / 2,1 / 2$

